6e5cd2510a0e9f9e352e3fe9114611a3958d0842
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstdlib>
27 #include <cstring>
28 #include <cerrno>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33
34 #ifdef HAVE_SYS_MMAN_H
35 #include <sys/mman.h>
36 #endif
37
38 #include "libiberty.h"
39
40 #include "dwarf.h"
41 #include "parameters.h"
42 #include "object.h"
43 #include "symtab.h"
44 #include "reloc.h"
45 #include "merge.h"
46 #include "descriptors.h"
47 #include "layout.h"
48 #include "output.h"
49
50 // For systems without mmap support.
51 #ifndef HAVE_MMAP
52 # define mmap gold_mmap
53 # define munmap gold_munmap
54 # define mremap gold_mremap
55 # ifndef MAP_FAILED
56 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
57 # endif
58 # ifndef PROT_READ
59 #  define PROT_READ 0
60 # endif
61 # ifndef PROT_WRITE
62 #  define PROT_WRITE 0
63 # endif
64 # ifndef MAP_PRIVATE
65 #  define MAP_PRIVATE 0
66 # endif
67 # ifndef MAP_ANONYMOUS
68 #  define MAP_ANONYMOUS 0
69 # endif
70 # ifndef MAP_SHARED
71 #  define MAP_SHARED 0
72 # endif
73
74 # ifndef ENOSYS
75 #  define ENOSYS EINVAL
76 # endif
77
78 static void *
79 gold_mmap(void *, size_t, int, int, int, off_t)
80 {
81   errno = ENOSYS;
82   return MAP_FAILED;
83 }
84
85 static int
86 gold_munmap(void *, size_t)
87 {
88   errno = ENOSYS;
89   return -1;
90 }
91
92 static void *
93 gold_mremap(void *, size_t, size_t, int)
94 {
95   errno = ENOSYS;
96   return MAP_FAILED;
97 }
98
99 #endif
100
101 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102 # define mremap gold_mremap
103 extern "C" void *gold_mremap(void *, size_t, size_t, int);
104 #endif
105
106 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107 #ifndef MAP_ANONYMOUS
108 # define MAP_ANONYMOUS  MAP_ANON
109 #endif
110
111 #ifndef MREMAP_MAYMOVE
112 # define MREMAP_MAYMOVE 1
113 #endif
114
115 // Mingw does not have S_ISLNK.
116 #ifndef S_ISLNK
117 # define S_ISLNK(mode) 0
118 #endif
119
120 namespace gold
121 {
122
123 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
124 // or the --no-posix-fallocate option is set, we try the fallocate
125 // system call directly.  If that fails, we use ftruncate to set
126 // the file size and hope that there is enough disk space.
127
128 static int
129 gold_fallocate(int o, off_t offset, off_t len)
130 {
131 #ifdef HAVE_POSIX_FALLOCATE
132   if (parameters->options().posix_fallocate())
133     return ::posix_fallocate(o, offset, len);
134 #endif // defined(HAVE_POSIX_FALLOCATE)
135 #ifdef HAVE_FALLOCATE
136   if (::fallocate(o, 0, offset, len) == 0)
137     return 0;
138 #endif // defined(HAVE_FALLOCATE)
139   if (::ftruncate(o, offset + len) < 0)
140     return errno;
141   return 0;
142 }
143
144 // Output_data variables.
145
146 bool Output_data::allocated_sizes_are_fixed;
147
148 // Output_data methods.
149
150 Output_data::~Output_data()
151 {
152 }
153
154 // Return the default alignment for the target size.
155
156 uint64_t
157 Output_data::default_alignment()
158 {
159   return Output_data::default_alignment_for_size(
160       parameters->target().get_size());
161 }
162
163 // Return the default alignment for a size--32 or 64.
164
165 uint64_t
166 Output_data::default_alignment_for_size(int size)
167 {
168   if (size == 32)
169     return 4;
170   else if (size == 64)
171     return 8;
172   else
173     gold_unreachable();
174 }
175
176 // Output_section_header methods.  This currently assumes that the
177 // segment and section lists are complete at construction time.
178
179 Output_section_headers::Output_section_headers(
180     const Layout* layout,
181     const Layout::Segment_list* segment_list,
182     const Layout::Section_list* section_list,
183     const Layout::Section_list* unattached_section_list,
184     const Stringpool* secnamepool,
185     const Output_section* shstrtab_section)
186   : layout_(layout),
187     segment_list_(segment_list),
188     section_list_(section_list),
189     unattached_section_list_(unattached_section_list),
190     secnamepool_(secnamepool),
191     shstrtab_section_(shstrtab_section)
192 {
193 }
194
195 // Compute the current data size.
196
197 off_t
198 Output_section_headers::do_size() const
199 {
200   // Count all the sections.  Start with 1 for the null section.
201   off_t count = 1;
202   if (!parameters->options().relocatable())
203     {
204       for (Layout::Segment_list::const_iterator p =
205              this->segment_list_->begin();
206            p != this->segment_list_->end();
207            ++p)
208         if ((*p)->type() == elfcpp::PT_LOAD)
209           count += (*p)->output_section_count();
210     }
211   else
212     {
213       for (Layout::Section_list::const_iterator p =
214              this->section_list_->begin();
215            p != this->section_list_->end();
216            ++p)
217         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218           ++count;
219     }
220   count += this->unattached_section_list_->size();
221
222   const int size = parameters->target().get_size();
223   int shdr_size;
224   if (size == 32)
225     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226   else if (size == 64)
227     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228   else
229     gold_unreachable();
230
231   return count * shdr_size;
232 }
233
234 // Write out the section headers.
235
236 void
237 Output_section_headers::do_write(Output_file* of)
238 {
239   switch (parameters->size_and_endianness())
240     {
241 #ifdef HAVE_TARGET_32_LITTLE
242     case Parameters::TARGET_32_LITTLE:
243       this->do_sized_write<32, false>(of);
244       break;
245 #endif
246 #ifdef HAVE_TARGET_32_BIG
247     case Parameters::TARGET_32_BIG:
248       this->do_sized_write<32, true>(of);
249       break;
250 #endif
251 #ifdef HAVE_TARGET_64_LITTLE
252     case Parameters::TARGET_64_LITTLE:
253       this->do_sized_write<64, false>(of);
254       break;
255 #endif
256 #ifdef HAVE_TARGET_64_BIG
257     case Parameters::TARGET_64_BIG:
258       this->do_sized_write<64, true>(of);
259       break;
260 #endif
261     default:
262       gold_unreachable();
263     }
264 }
265
266 template<int size, bool big_endian>
267 void
268 Output_section_headers::do_sized_write(Output_file* of)
269 {
270   off_t all_shdrs_size = this->data_size();
271   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274   unsigned char* v = view;
275
276   {
277     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278     oshdr.put_sh_name(0);
279     oshdr.put_sh_type(elfcpp::SHT_NULL);
280     oshdr.put_sh_flags(0);
281     oshdr.put_sh_addr(0);
282     oshdr.put_sh_offset(0);
283
284     size_t section_count = (this->data_size()
285                             / elfcpp::Elf_sizes<size>::shdr_size);
286     if (section_count < elfcpp::SHN_LORESERVE)
287       oshdr.put_sh_size(0);
288     else
289       oshdr.put_sh_size(section_count);
290
291     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292     if (shstrndx < elfcpp::SHN_LORESERVE)
293       oshdr.put_sh_link(0);
294     else
295       oshdr.put_sh_link(shstrndx);
296
297     size_t segment_count = this->segment_list_->size();
298     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
300     oshdr.put_sh_addralign(0);
301     oshdr.put_sh_entsize(0);
302   }
303
304   v += shdr_size;
305
306   unsigned int shndx = 1;
307   if (!parameters->options().relocatable())
308     {
309       for (Layout::Segment_list::const_iterator p =
310              this->segment_list_->begin();
311            p != this->segment_list_->end();
312            ++p)
313         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314                                                           this->secnamepool_,
315                                                           v,
316                                                           &shndx);
317     }
318   else
319     {
320       for (Layout::Section_list::const_iterator p =
321              this->section_list_->begin();
322            p != this->section_list_->end();
323            ++p)
324         {
325           // We do unallocated sections below, except that group
326           // sections have to come first.
327           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328               && (*p)->type() != elfcpp::SHT_GROUP)
329             continue;
330           gold_assert(shndx == (*p)->out_shndx());
331           elfcpp::Shdr_write<size, big_endian> oshdr(v);
332           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333           v += shdr_size;
334           ++shndx;
335         }
336     }
337
338   for (Layout::Section_list::const_iterator p =
339          this->unattached_section_list_->begin();
340        p != this->unattached_section_list_->end();
341        ++p)
342     {
343       // For a relocatable link, we did unallocated group sections
344       // above, since they have to come first.
345       if ((*p)->type() == elfcpp::SHT_GROUP
346           && parameters->options().relocatable())
347         continue;
348       gold_assert(shndx == (*p)->out_shndx());
349       elfcpp::Shdr_write<size, big_endian> oshdr(v);
350       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
351       v += shdr_size;
352       ++shndx;
353     }
354
355   of->write_output_view(this->offset(), all_shdrs_size, view);
356 }
357
358 // Output_segment_header methods.
359
360 Output_segment_headers::Output_segment_headers(
361     const Layout::Segment_list& segment_list)
362   : segment_list_(segment_list)
363 {
364   this->set_current_data_size_for_child(this->do_size());
365 }
366
367 void
368 Output_segment_headers::do_write(Output_file* of)
369 {
370   switch (parameters->size_and_endianness())
371     {
372 #ifdef HAVE_TARGET_32_LITTLE
373     case Parameters::TARGET_32_LITTLE:
374       this->do_sized_write<32, false>(of);
375       break;
376 #endif
377 #ifdef HAVE_TARGET_32_BIG
378     case Parameters::TARGET_32_BIG:
379       this->do_sized_write<32, true>(of);
380       break;
381 #endif
382 #ifdef HAVE_TARGET_64_LITTLE
383     case Parameters::TARGET_64_LITTLE:
384       this->do_sized_write<64, false>(of);
385       break;
386 #endif
387 #ifdef HAVE_TARGET_64_BIG
388     case Parameters::TARGET_64_BIG:
389       this->do_sized_write<64, true>(of);
390       break;
391 #endif
392     default:
393       gold_unreachable();
394     }
395 }
396
397 template<int size, bool big_endian>
398 void
399 Output_segment_headers::do_sized_write(Output_file* of)
400 {
401   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
403   gold_assert(all_phdrs_size == this->data_size());
404   unsigned char* view = of->get_output_view(this->offset(),
405                                             all_phdrs_size);
406   unsigned char* v = view;
407   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408        p != this->segment_list_.end();
409        ++p)
410     {
411       elfcpp::Phdr_write<size, big_endian> ophdr(v);
412       (*p)->write_header(&ophdr);
413       v += phdr_size;
414     }
415
416   gold_assert(v - view == all_phdrs_size);
417
418   of->write_output_view(this->offset(), all_phdrs_size, view);
419 }
420
421 off_t
422 Output_segment_headers::do_size() const
423 {
424   const int size = parameters->target().get_size();
425   int phdr_size;
426   if (size == 32)
427     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428   else if (size == 64)
429     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430   else
431     gold_unreachable();
432
433   return this->segment_list_.size() * phdr_size;
434 }
435
436 // Output_file_header methods.
437
438 Output_file_header::Output_file_header(const Target* target,
439                                        const Symbol_table* symtab,
440                                        const Output_segment_headers* osh)
441   : target_(target),
442     symtab_(symtab),
443     segment_header_(osh),
444     section_header_(NULL),
445     shstrtab_(NULL)
446 {
447   this->set_data_size(this->do_size());
448 }
449
450 // Set the section table information for a file header.
451
452 void
453 Output_file_header::set_section_info(const Output_section_headers* shdrs,
454                                      const Output_section* shstrtab)
455 {
456   this->section_header_ = shdrs;
457   this->shstrtab_ = shstrtab;
458 }
459
460 // Write out the file header.
461
462 void
463 Output_file_header::do_write(Output_file* of)
464 {
465   gold_assert(this->offset() == 0);
466
467   switch (parameters->size_and_endianness())
468     {
469 #ifdef HAVE_TARGET_32_LITTLE
470     case Parameters::TARGET_32_LITTLE:
471       this->do_sized_write<32, false>(of);
472       break;
473 #endif
474 #ifdef HAVE_TARGET_32_BIG
475     case Parameters::TARGET_32_BIG:
476       this->do_sized_write<32, true>(of);
477       break;
478 #endif
479 #ifdef HAVE_TARGET_64_LITTLE
480     case Parameters::TARGET_64_LITTLE:
481       this->do_sized_write<64, false>(of);
482       break;
483 #endif
484 #ifdef HAVE_TARGET_64_BIG
485     case Parameters::TARGET_64_BIG:
486       this->do_sized_write<64, true>(of);
487       break;
488 #endif
489     default:
490       gold_unreachable();
491     }
492 }
493
494 // Write out the file header with appropriate size and endianness.
495
496 template<int size, bool big_endian>
497 void
498 Output_file_header::do_sized_write(Output_file* of)
499 {
500   gold_assert(this->offset() == 0);
501
502   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503   unsigned char* view = of->get_output_view(0, ehdr_size);
504   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506   unsigned char e_ident[elfcpp::EI_NIDENT];
507   memset(e_ident, 0, elfcpp::EI_NIDENT);
508   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512   if (size == 32)
513     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514   else if (size == 64)
515     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516   else
517     gold_unreachable();
518   e_ident[elfcpp::EI_DATA] = (big_endian
519                               ? elfcpp::ELFDATA2MSB
520                               : elfcpp::ELFDATA2LSB);
521   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
522   oehdr.put_e_ident(e_ident);
523
524   elfcpp::ET e_type;
525   if (parameters->options().relocatable())
526     e_type = elfcpp::ET_REL;
527   else if (parameters->options().output_is_position_independent())
528     e_type = elfcpp::ET_DYN;
529   else
530     e_type = elfcpp::ET_EXEC;
531   oehdr.put_e_type(e_type);
532
533   oehdr.put_e_machine(this->target_->machine_code());
534   oehdr.put_e_version(elfcpp::EV_CURRENT);
535
536   oehdr.put_e_entry(this->entry<size>());
537
538   if (this->segment_header_ == NULL)
539     oehdr.put_e_phoff(0);
540   else
541     oehdr.put_e_phoff(this->segment_header_->offset());
542
543   oehdr.put_e_shoff(this->section_header_->offset());
544   oehdr.put_e_flags(this->target_->processor_specific_flags());
545   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546
547   if (this->segment_header_ == NULL)
548     {
549       oehdr.put_e_phentsize(0);
550       oehdr.put_e_phnum(0);
551     }
552   else
553     {
554       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
555       size_t phnum = (this->segment_header_->data_size()
556                       / elfcpp::Elf_sizes<size>::phdr_size);
557       if (phnum > elfcpp::PN_XNUM)
558         phnum = elfcpp::PN_XNUM;
559       oehdr.put_e_phnum(phnum);
560     }
561
562   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
563   size_t section_count = (this->section_header_->data_size()
564                           / elfcpp::Elf_sizes<size>::shdr_size);
565
566   if (section_count < elfcpp::SHN_LORESERVE)
567     oehdr.put_e_shnum(this->section_header_->data_size()
568                       / elfcpp::Elf_sizes<size>::shdr_size);
569   else
570     oehdr.put_e_shnum(0);
571
572   unsigned int shstrndx = this->shstrtab_->out_shndx();
573   if (shstrndx < elfcpp::SHN_LORESERVE)
574     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575   else
576     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577
578   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579   // the e_ident field.
580   parameters->target().adjust_elf_header(view, ehdr_size);
581
582   of->write_output_view(0, ehdr_size, view);
583 }
584
585 // Return the value to use for the entry address.
586
587 template<int size>
588 typename elfcpp::Elf_types<size>::Elf_Addr
589 Output_file_header::entry()
590 {
591   const bool should_issue_warning = (parameters->options().entry() != NULL
592                                      && !parameters->options().relocatable()
593                                      && !parameters->options().shared());
594   const char* entry = parameters->entry();
595   Symbol* sym = this->symtab_->lookup(entry);
596
597   typename Sized_symbol<size>::Value_type v;
598   if (sym != NULL)
599     {
600       Sized_symbol<size>* ssym;
601       ssym = this->symtab_->get_sized_symbol<size>(sym);
602       if (!ssym->is_defined() && should_issue_warning)
603         gold_warning("entry symbol '%s' exists but is not defined", entry);
604       v = ssym->value();
605     }
606   else
607     {
608       // We couldn't find the entry symbol.  See if we can parse it as
609       // a number.  This supports, e.g., -e 0x1000.
610       char* endptr;
611       v = strtoull(entry, &endptr, 0);
612       if (*endptr != '\0')
613         {
614           if (should_issue_warning)
615             gold_warning("cannot find entry symbol '%s'", entry);
616           v = 0;
617         }
618     }
619
620   return v;
621 }
622
623 // Compute the current data size.
624
625 off_t
626 Output_file_header::do_size() const
627 {
628   const int size = parameters->target().get_size();
629   if (size == 32)
630     return elfcpp::Elf_sizes<32>::ehdr_size;
631   else if (size == 64)
632     return elfcpp::Elf_sizes<64>::ehdr_size;
633   else
634     gold_unreachable();
635 }
636
637 // Output_data_const methods.
638
639 void
640 Output_data_const::do_write(Output_file* of)
641 {
642   of->write(this->offset(), this->data_.data(), this->data_.size());
643 }
644
645 // Output_data_const_buffer methods.
646
647 void
648 Output_data_const_buffer::do_write(Output_file* of)
649 {
650   of->write(this->offset(), this->p_, this->data_size());
651 }
652
653 // Output_section_data methods.
654
655 // Record the output section, and set the entry size and such.
656
657 void
658 Output_section_data::set_output_section(Output_section* os)
659 {
660   gold_assert(this->output_section_ == NULL);
661   this->output_section_ = os;
662   this->do_adjust_output_section(os);
663 }
664
665 // Return the section index of the output section.
666
667 unsigned int
668 Output_section_data::do_out_shndx() const
669 {
670   gold_assert(this->output_section_ != NULL);
671   return this->output_section_->out_shndx();
672 }
673
674 // Set the alignment, which means we may need to update the alignment
675 // of the output section.
676
677 void
678 Output_section_data::set_addralign(uint64_t addralign)
679 {
680   this->addralign_ = addralign;
681   if (this->output_section_ != NULL
682       && this->output_section_->addralign() < addralign)
683     this->output_section_->set_addralign(addralign);
684 }
685
686 // Output_data_strtab methods.
687
688 // Set the final data size.
689
690 void
691 Output_data_strtab::set_final_data_size()
692 {
693   this->strtab_->set_string_offsets();
694   this->set_data_size(this->strtab_->get_strtab_size());
695 }
696
697 // Write out a string table.
698
699 void
700 Output_data_strtab::do_write(Output_file* of)
701 {
702   this->strtab_->write(of, this->offset());
703 }
704
705 // Output_reloc methods.
706
707 // A reloc against a global symbol.
708
709 template<bool dynamic, int size, bool big_endian>
710 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711     Symbol* gsym,
712     unsigned int type,
713     Output_data* od,
714     Address address,
715     bool is_relative,
716     bool is_symbolless,
717     bool use_plt_offset)
718   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
719     is_relative_(is_relative), is_symbolless_(is_symbolless),
720     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 {
722   // this->type_ is a bitfield; make sure TYPE fits.
723   gold_assert(this->type_ == type);
724   this->u1_.gsym = gsym;
725   this->u2_.od = od;
726   if (dynamic)
727     this->set_needs_dynsym_index();
728 }
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732     Symbol* gsym,
733     unsigned int type,
734     Sized_relobj<size, big_endian>* relobj,
735     unsigned int shndx,
736     Address address,
737     bool is_relative,
738     bool is_symbolless,
739     bool use_plt_offset)
740   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
741     is_relative_(is_relative), is_symbolless_(is_symbolless),
742     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 {
744   gold_assert(shndx != INVALID_CODE);
745   // this->type_ is a bitfield; make sure TYPE fits.
746   gold_assert(this->type_ == type);
747   this->u1_.gsym = gsym;
748   this->u2_.relobj = relobj;
749   if (dynamic)
750     this->set_needs_dynsym_index();
751 }
752
753 // A reloc against a local symbol.
754
755 template<bool dynamic, int size, bool big_endian>
756 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757     Sized_relobj<size, big_endian>* relobj,
758     unsigned int local_sym_index,
759     unsigned int type,
760     Output_data* od,
761     Address address,
762     bool is_relative,
763     bool is_symbolless,
764     bool is_section_symbol,
765     bool use_plt_offset)
766   : address_(address), local_sym_index_(local_sym_index), type_(type),
767     is_relative_(is_relative), is_symbolless_(is_symbolless),
768     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769     shndx_(INVALID_CODE)
770 {
771   gold_assert(local_sym_index != GSYM_CODE
772               && local_sym_index != INVALID_CODE);
773   // this->type_ is a bitfield; make sure TYPE fits.
774   gold_assert(this->type_ == type);
775   this->u1_.relobj = relobj;
776   this->u2_.od = od;
777   if (dynamic)
778     this->set_needs_dynsym_index();
779 }
780
781 template<bool dynamic, int size, bool big_endian>
782 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783     Sized_relobj<size, big_endian>* relobj,
784     unsigned int local_sym_index,
785     unsigned int type,
786     unsigned int shndx,
787     Address address,
788     bool is_relative,
789     bool is_symbolless,
790     bool is_section_symbol,
791     bool use_plt_offset)
792   : address_(address), local_sym_index_(local_sym_index), type_(type),
793     is_relative_(is_relative), is_symbolless_(is_symbolless),
794     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795     shndx_(shndx)
796 {
797   gold_assert(local_sym_index != GSYM_CODE
798               && local_sym_index != INVALID_CODE);
799   gold_assert(shndx != INVALID_CODE);
800   // this->type_ is a bitfield; make sure TYPE fits.
801   gold_assert(this->type_ == type);
802   this->u1_.relobj = relobj;
803   this->u2_.relobj = relobj;
804   if (dynamic)
805     this->set_needs_dynsym_index();
806 }
807
808 // A reloc against the STT_SECTION symbol of an output section.
809
810 template<bool dynamic, int size, bool big_endian>
811 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812     Output_section* os,
813     unsigned int type,
814     Output_data* od,
815     Address address,
816     bool is_relative)
817   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
818     is_relative_(is_relative), is_symbolless_(is_relative),
819     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 {
821   // this->type_ is a bitfield; make sure TYPE fits.
822   gold_assert(this->type_ == type);
823   this->u1_.os = os;
824   this->u2_.od = od;
825   if (dynamic)
826     this->set_needs_dynsym_index();
827   else
828     os->set_needs_symtab_index();
829 }
830
831 template<bool dynamic, int size, bool big_endian>
832 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833     Output_section* os,
834     unsigned int type,
835     Sized_relobj<size, big_endian>* relobj,
836     unsigned int shndx,
837     Address address,
838     bool is_relative)
839   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
840     is_relative_(is_relative), is_symbolless_(is_relative),
841     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 {
843   gold_assert(shndx != INVALID_CODE);
844   // this->type_ is a bitfield; make sure TYPE fits.
845   gold_assert(this->type_ == type);
846   this->u1_.os = os;
847   this->u2_.relobj = relobj;
848   if (dynamic)
849     this->set_needs_dynsym_index();
850   else
851     os->set_needs_symtab_index();
852 }
853
854 // An absolute relocation.
855
856 template<bool dynamic, int size, bool big_endian>
857 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858     unsigned int type,
859     Output_data* od,
860     Address address)
861   : address_(address), local_sym_index_(0), type_(type),
862     is_relative_(false), is_symbolless_(false),
863     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865   // this->type_ is a bitfield; make sure TYPE fits.
866   gold_assert(this->type_ == type);
867   this->u1_.relobj = NULL;
868   this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873     unsigned int type,
874     Sized_relobj<size, big_endian>* relobj,
875     unsigned int shndx,
876     Address address)
877   : address_(address), local_sym_index_(0), type_(type),
878     is_relative_(false), is_symbolless_(false),
879     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
880 {
881   gold_assert(shndx != INVALID_CODE);
882   // this->type_ is a bitfield; make sure TYPE fits.
883   gold_assert(this->type_ == type);
884   this->u1_.relobj = NULL;
885   this->u2_.relobj = relobj;
886 }
887
888 // A target specific relocation.
889
890 template<bool dynamic, int size, bool big_endian>
891 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
892     unsigned int type,
893     void* arg,
894     Output_data* od,
895     Address address)
896   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
897     is_relative_(false), is_symbolless_(false),
898     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
899 {
900   // this->type_ is a bitfield; make sure TYPE fits.
901   gold_assert(this->type_ == type);
902   this->u1_.arg = arg;
903   this->u2_.od = od;
904 }
905
906 template<bool dynamic, int size, bool big_endian>
907 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
908     unsigned int type,
909     void* arg,
910     Sized_relobj<size, big_endian>* relobj,
911     unsigned int shndx,
912     Address address)
913   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
914     is_relative_(false), is_symbolless_(false),
915     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
916 {
917   gold_assert(shndx != INVALID_CODE);
918   // this->type_ is a bitfield; make sure TYPE fits.
919   gold_assert(this->type_ == type);
920   this->u1_.arg = arg;
921   this->u2_.relobj = relobj;
922 }
923
924 // Record that we need a dynamic symbol index for this relocation.
925
926 template<bool dynamic, int size, bool big_endian>
927 void
928 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
929 set_needs_dynsym_index()
930 {
931   if (this->is_symbolless_)
932     return;
933   switch (this->local_sym_index_)
934     {
935     case INVALID_CODE:
936       gold_unreachable();
937
938     case GSYM_CODE:
939       this->u1_.gsym->set_needs_dynsym_entry();
940       break;
941
942     case SECTION_CODE:
943       this->u1_.os->set_needs_dynsym_index();
944       break;
945
946     case TARGET_CODE:
947       // The target must take care of this if necessary.
948       break;
949
950     case 0:
951       break;
952
953     default:
954       {
955         const unsigned int lsi = this->local_sym_index_;
956         Sized_relobj_file<size, big_endian>* relobj =
957             this->u1_.relobj->sized_relobj();
958         gold_assert(relobj != NULL);
959         if (!this->is_section_symbol_)
960           relobj->set_needs_output_dynsym_entry(lsi);
961         else
962           relobj->output_section(lsi)->set_needs_dynsym_index();
963       }
964       break;
965     }
966 }
967
968 // Get the symbol index of a relocation.
969
970 template<bool dynamic, int size, bool big_endian>
971 unsigned int
972 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
973   const
974 {
975   unsigned int index;
976   if (this->is_symbolless_)
977     return 0;
978   switch (this->local_sym_index_)
979     {
980     case INVALID_CODE:
981       gold_unreachable();
982
983     case GSYM_CODE:
984       if (this->u1_.gsym == NULL)
985         index = 0;
986       else if (dynamic)
987         index = this->u1_.gsym->dynsym_index();
988       else
989         index = this->u1_.gsym->symtab_index();
990       break;
991
992     case SECTION_CODE:
993       if (dynamic)
994         index = this->u1_.os->dynsym_index();
995       else
996         index = this->u1_.os->symtab_index();
997       break;
998
999     case TARGET_CODE:
1000       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1001                                                       this->type_);
1002       break;
1003
1004     case 0:
1005       // Relocations without symbols use a symbol index of 0.
1006       index = 0;
1007       break;
1008
1009     default:
1010       {
1011         const unsigned int lsi = this->local_sym_index_;
1012         Sized_relobj_file<size, big_endian>* relobj =
1013             this->u1_.relobj->sized_relobj();
1014         gold_assert(relobj != NULL);
1015         if (!this->is_section_symbol_)
1016           {
1017             if (dynamic)
1018               index = relobj->dynsym_index(lsi);
1019             else
1020               index = relobj->symtab_index(lsi);
1021           }
1022         else
1023           {
1024             Output_section* os = relobj->output_section(lsi);
1025             gold_assert(os != NULL);
1026             if (dynamic)
1027               index = os->dynsym_index();
1028             else
1029               index = os->symtab_index();
1030           }
1031       }
1032       break;
1033     }
1034   gold_assert(index != -1U);
1035   return index;
1036 }
1037
1038 // For a local section symbol, get the address of the offset ADDEND
1039 // within the input section.
1040
1041 template<bool dynamic, int size, bool big_endian>
1042 typename elfcpp::Elf_types<size>::Elf_Addr
1043 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1044   local_section_offset(Addend addend) const
1045 {
1046   gold_assert(this->local_sym_index_ != GSYM_CODE
1047               && this->local_sym_index_ != SECTION_CODE
1048               && this->local_sym_index_ != TARGET_CODE
1049               && this->local_sym_index_ != INVALID_CODE
1050               && this->local_sym_index_ != 0
1051               && this->is_section_symbol_);
1052   const unsigned int lsi = this->local_sym_index_;
1053   Output_section* os = this->u1_.relobj->output_section(lsi);
1054   gold_assert(os != NULL);
1055   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1056   if (offset != invalid_address)
1057     return offset + addend;
1058   // This is a merge section.
1059   Sized_relobj_file<size, big_endian>* relobj =
1060       this->u1_.relobj->sized_relobj();
1061   gold_assert(relobj != NULL);
1062   offset = os->output_address(relobj, lsi, addend);
1063   gold_assert(offset != invalid_address);
1064   return offset;
1065 }
1066
1067 // Get the output address of a relocation.
1068
1069 template<bool dynamic, int size, bool big_endian>
1070 typename elfcpp::Elf_types<size>::Elf_Addr
1071 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1072 {
1073   Address address = this->address_;
1074   if (this->shndx_ != INVALID_CODE)
1075     {
1076       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1077       gold_assert(os != NULL);
1078       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1079       if (off != invalid_address)
1080         address += os->address() + off;
1081       else
1082         {
1083           Sized_relobj_file<size, big_endian>* relobj =
1084               this->u2_.relobj->sized_relobj();
1085           gold_assert(relobj != NULL);
1086           address = os->output_address(relobj, this->shndx_, address);
1087           gold_assert(address != invalid_address);
1088         }
1089     }
1090   else if (this->u2_.od != NULL)
1091     address += this->u2_.od->address();
1092   return address;
1093 }
1094
1095 // Write out the offset and info fields of a Rel or Rela relocation
1096 // entry.
1097
1098 template<bool dynamic, int size, bool big_endian>
1099 template<typename Write_rel>
1100 void
1101 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1102     Write_rel* wr) const
1103 {
1104   wr->put_r_offset(this->get_address());
1105   unsigned int sym_index = this->get_symbol_index();
1106   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1107 }
1108
1109 // Write out a Rel relocation.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 void
1113 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1114     unsigned char* pov) const
1115 {
1116   elfcpp::Rel_write<size, big_endian> orel(pov);
1117   this->write_rel(&orel);
1118 }
1119
1120 // Get the value of the symbol referred to by a Rel relocation.
1121
1122 template<bool dynamic, int size, bool big_endian>
1123 typename elfcpp::Elf_types<size>::Elf_Addr
1124 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1125     Addend addend) const
1126 {
1127   if (this->local_sym_index_ == GSYM_CODE)
1128     {
1129       const Sized_symbol<size>* sym;
1130       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1131       if (this->use_plt_offset_ && sym->has_plt_offset())
1132         return parameters->target().plt_address_for_global(sym);
1133       else
1134         return sym->value() + addend;
1135     }
1136   if (this->local_sym_index_ == SECTION_CODE)
1137     {
1138       gold_assert(!this->use_plt_offset_);
1139       return this->u1_.os->address() + addend;
1140     }
1141   gold_assert(this->local_sym_index_ != TARGET_CODE
1142               && this->local_sym_index_ != INVALID_CODE
1143               && this->local_sym_index_ != 0
1144               && !this->is_section_symbol_);
1145   const unsigned int lsi = this->local_sym_index_;
1146   Sized_relobj_file<size, big_endian>* relobj =
1147       this->u1_.relobj->sized_relobj();
1148   gold_assert(relobj != NULL);
1149   if (this->use_plt_offset_)
1150     return parameters->target().plt_address_for_local(relobj, lsi);
1151   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1152   return symval->value(relobj, addend);
1153 }
1154
1155 // Reloc comparison.  This function sorts the dynamic relocs for the
1156 // benefit of the dynamic linker.  First we sort all relative relocs
1157 // to the front.  Among relative relocs, we sort by output address.
1158 // Among non-relative relocs, we sort by symbol index, then by output
1159 // address.
1160
1161 template<bool dynamic, int size, bool big_endian>
1162 int
1163 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1164   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1165     const
1166 {
1167   if (this->is_relative_)
1168     {
1169       if (!r2.is_relative_)
1170         return -1;
1171       // Otherwise sort by reloc address below.
1172     }
1173   else if (r2.is_relative_)
1174     return 1;
1175   else
1176     {
1177       unsigned int sym1 = this->get_symbol_index();
1178       unsigned int sym2 = r2.get_symbol_index();
1179       if (sym1 < sym2)
1180         return -1;
1181       else if (sym1 > sym2)
1182         return 1;
1183       // Otherwise sort by reloc address.
1184     }
1185
1186   section_offset_type addr1 = this->get_address();
1187   section_offset_type addr2 = r2.get_address();
1188   if (addr1 < addr2)
1189     return -1;
1190   else if (addr1 > addr2)
1191     return 1;
1192
1193   // Final tie breaker, in order to generate the same output on any
1194   // host: reloc type.
1195   unsigned int type1 = this->type_;
1196   unsigned int type2 = r2.type_;
1197   if (type1 < type2)
1198     return -1;
1199   else if (type1 > type2)
1200     return 1;
1201
1202   // These relocs appear to be exactly the same.
1203   return 0;
1204 }
1205
1206 // Write out a Rela relocation.
1207
1208 template<bool dynamic, int size, bool big_endian>
1209 void
1210 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1211     unsigned char* pov) const
1212 {
1213   elfcpp::Rela_write<size, big_endian> orel(pov);
1214   this->rel_.write_rel(&orel);
1215   Addend addend = this->addend_;
1216   if (this->rel_.is_target_specific())
1217     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1218                                                this->rel_.type(), addend);
1219   else if (this->rel_.is_symbolless())
1220     addend = this->rel_.symbol_value(addend);
1221   else if (this->rel_.is_local_section_symbol())
1222     addend = this->rel_.local_section_offset(addend);
1223   orel.put_r_addend(addend);
1224 }
1225
1226 // Output_data_reloc_base methods.
1227
1228 // Adjust the output section.
1229
1230 template<int sh_type, bool dynamic, int size, bool big_endian>
1231 void
1232 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1233     ::do_adjust_output_section(Output_section* os)
1234 {
1235   if (sh_type == elfcpp::SHT_REL)
1236     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1237   else if (sh_type == elfcpp::SHT_RELA)
1238     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1239   else
1240     gold_unreachable();
1241
1242   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1243   // static link.  The backends will generate a dynamic reloc section
1244   // to hold this.  In that case we don't want to link to the dynsym
1245   // section, because there isn't one.
1246   if (!dynamic)
1247     os->set_should_link_to_symtab();
1248   else if (parameters->doing_static_link())
1249     ;
1250   else
1251     os->set_should_link_to_dynsym();
1252 }
1253
1254 // Write out relocation data.
1255
1256 template<int sh_type, bool dynamic, int size, bool big_endian>
1257 void
1258 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1259     Output_file* of)
1260 {
1261   const off_t off = this->offset();
1262   const off_t oview_size = this->data_size();
1263   unsigned char* const oview = of->get_output_view(off, oview_size);
1264
1265   if (this->sort_relocs())
1266     {
1267       gold_assert(dynamic);
1268       std::sort(this->relocs_.begin(), this->relocs_.end(),
1269                 Sort_relocs_comparison());
1270     }
1271
1272   unsigned char* pov = oview;
1273   for (typename Relocs::const_iterator p = this->relocs_.begin();
1274        p != this->relocs_.end();
1275        ++p)
1276     {
1277       p->write(pov);
1278       pov += reloc_size;
1279     }
1280
1281   gold_assert(pov - oview == oview_size);
1282
1283   of->write_output_view(off, oview_size, oview);
1284
1285   // We no longer need the relocation entries.
1286   this->relocs_.clear();
1287 }
1288
1289 // Class Output_relocatable_relocs.
1290
1291 template<int sh_type, int size, bool big_endian>
1292 void
1293 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1294 {
1295   this->set_data_size(this->rr_->output_reloc_count()
1296                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1297 }
1298
1299 // class Output_data_group.
1300
1301 template<int size, bool big_endian>
1302 Output_data_group<size, big_endian>::Output_data_group(
1303     Sized_relobj_file<size, big_endian>* relobj,
1304     section_size_type entry_count,
1305     elfcpp::Elf_Word flags,
1306     std::vector<unsigned int>* input_shndxes)
1307   : Output_section_data(entry_count * 4, 4, false),
1308     relobj_(relobj),
1309     flags_(flags)
1310 {
1311   this->input_shndxes_.swap(*input_shndxes);
1312 }
1313
1314 // Write out the section group, which means translating the section
1315 // indexes to apply to the output file.
1316
1317 template<int size, bool big_endian>
1318 void
1319 Output_data_group<size, big_endian>::do_write(Output_file* of)
1320 {
1321   const off_t off = this->offset();
1322   const section_size_type oview_size =
1323     convert_to_section_size_type(this->data_size());
1324   unsigned char* const oview = of->get_output_view(off, oview_size);
1325
1326   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1327   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1328   ++contents;
1329
1330   for (std::vector<unsigned int>::const_iterator p =
1331          this->input_shndxes_.begin();
1332        p != this->input_shndxes_.end();
1333        ++p, ++contents)
1334     {
1335       Output_section* os = this->relobj_->output_section(*p);
1336
1337       unsigned int output_shndx;
1338       if (os != NULL)
1339         output_shndx = os->out_shndx();
1340       else
1341         {
1342           this->relobj_->error(_("section group retained but "
1343                                  "group element discarded"));
1344           output_shndx = 0;
1345         }
1346
1347       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1348     }
1349
1350   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1351   gold_assert(wrote == oview_size);
1352
1353   of->write_output_view(off, oview_size, oview);
1354
1355   // We no longer need this information.
1356   this->input_shndxes_.clear();
1357 }
1358
1359 // Output_data_got::Got_entry methods.
1360
1361 // Write out the entry.
1362
1363 template<int got_size, bool big_endian>
1364 void
1365 Output_data_got<got_size, big_endian>::Got_entry::write(
1366     unsigned int got_indx,
1367     unsigned char* pov) const
1368 {
1369   Valtype val = 0;
1370
1371   switch (this->local_sym_index_)
1372     {
1373     case GSYM_CODE:
1374       {
1375         // If the symbol is resolved locally, we need to write out the
1376         // link-time value, which will be relocated dynamically by a
1377         // RELATIVE relocation.
1378         Symbol* gsym = this->u_.gsym;
1379         if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1380           val = parameters->target().plt_address_for_global(gsym);
1381         else
1382           {
1383             switch (parameters->size_and_endianness())
1384               {
1385 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1386               case Parameters::TARGET_32_LITTLE:
1387               case Parameters::TARGET_32_BIG:
1388                 {
1389                   // This cast is ugly.  We don't want to put a
1390                   // virtual method in Symbol, because we want Symbol
1391                   // to be as small as possible.
1392                   Sized_symbol<32>::Value_type v;
1393                   v = static_cast<Sized_symbol<32>*>(gsym)->value();
1394                   val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1395                 }
1396                 break;
1397 #endif
1398 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1399               case Parameters::TARGET_64_LITTLE:
1400               case Parameters::TARGET_64_BIG:
1401                 {
1402                   Sized_symbol<64>::Value_type v;
1403                   v = static_cast<Sized_symbol<64>*>(gsym)->value();
1404                   val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1405                 }
1406                 break;
1407 #endif
1408               default:
1409                 gold_unreachable();
1410               }
1411             if (this->use_plt_or_tls_offset_
1412                 && gsym->type() == elfcpp::STT_TLS)
1413               val += parameters->target().tls_offset_for_global(gsym,
1414                                                                 got_indx);
1415           }
1416       }
1417       break;
1418
1419     case CONSTANT_CODE:
1420       val = this->u_.constant;
1421       break;
1422
1423     case RESERVED_CODE:
1424       // If we're doing an incremental update, don't touch this GOT entry.
1425       if (parameters->incremental_update())
1426         return;
1427       val = this->u_.constant;
1428       break;
1429
1430     default:
1431       {
1432         const Relobj* object = this->u_.object;
1433         const unsigned int lsi = this->local_sym_index_;
1434         bool is_tls = object->local_is_tls(lsi);
1435         if (this->use_plt_or_tls_offset_ && !is_tls)
1436           val = parameters->target().plt_address_for_local(object, lsi);
1437         else
1438           {
1439             uint64_t lval = object->local_symbol_value(lsi, 0);
1440             val = convert_types<Valtype, uint64_t>(lval);
1441             if (this->use_plt_or_tls_offset_ && is_tls)
1442               val += parameters->target().tls_offset_for_local(object, lsi,
1443                                                                got_indx);
1444           }
1445       }
1446       break;
1447     }
1448
1449   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1450 }
1451
1452 // Output_data_got methods.
1453
1454 // Add an entry for a global symbol to the GOT.  This returns true if
1455 // this is a new GOT entry, false if the symbol already had a GOT
1456 // entry.
1457
1458 template<int got_size, bool big_endian>
1459 bool
1460 Output_data_got<got_size, big_endian>::add_global(
1461     Symbol* gsym,
1462     unsigned int got_type)
1463 {
1464   if (gsym->has_got_offset(got_type))
1465     return false;
1466
1467   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1468   gsym->set_got_offset(got_type, got_offset);
1469   return true;
1470 }
1471
1472 // Like add_global, but use the PLT offset.
1473
1474 template<int got_size, bool big_endian>
1475 bool
1476 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1477                                                       unsigned int got_type)
1478 {
1479   if (gsym->has_got_offset(got_type))
1480     return false;
1481
1482   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1483   gsym->set_got_offset(got_type, got_offset);
1484   return true;
1485 }
1486
1487 // Add an entry for a global symbol to the GOT, and add a dynamic
1488 // relocation of type R_TYPE for the GOT entry.
1489
1490 template<int got_size, bool big_endian>
1491 void
1492 Output_data_got<got_size, big_endian>::add_global_with_rel(
1493     Symbol* gsym,
1494     unsigned int got_type,
1495     Output_data_reloc_generic* rel_dyn,
1496     unsigned int r_type)
1497 {
1498   if (gsym->has_got_offset(got_type))
1499     return;
1500
1501   unsigned int got_offset = this->add_got_entry(Got_entry());
1502   gsym->set_got_offset(got_type, got_offset);
1503   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1504 }
1505
1506 // Add a pair of entries for a global symbol to the GOT, and add
1507 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1508 // If R_TYPE_2 == 0, add the second entry with no relocation.
1509 template<int got_size, bool big_endian>
1510 void
1511 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1512     Symbol* gsym,
1513     unsigned int got_type,
1514     Output_data_reloc_generic* rel_dyn,
1515     unsigned int r_type_1,
1516     unsigned int r_type_2)
1517 {
1518   if (gsym->has_got_offset(got_type))
1519     return;
1520
1521   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1522   gsym->set_got_offset(got_type, got_offset);
1523   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1524
1525   if (r_type_2 != 0)
1526     rel_dyn->add_global_generic(gsym, r_type_2, this,
1527                                 got_offset + got_size / 8, 0);
1528 }
1529
1530 // Add an entry for a local symbol to the GOT.  This returns true if
1531 // this is a new GOT entry, false if the symbol already has a GOT
1532 // entry.
1533
1534 template<int got_size, bool big_endian>
1535 bool
1536 Output_data_got<got_size, big_endian>::add_local(
1537     Relobj* object,
1538     unsigned int symndx,
1539     unsigned int got_type)
1540 {
1541   if (object->local_has_got_offset(symndx, got_type))
1542     return false;
1543
1544   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1545                                                           false));
1546   object->set_local_got_offset(symndx, got_type, got_offset);
1547   return true;
1548 }
1549
1550 // Like add_local, but use the PLT offset.
1551
1552 template<int got_size, bool big_endian>
1553 bool
1554 Output_data_got<got_size, big_endian>::add_local_plt(
1555     Relobj* object,
1556     unsigned int symndx,
1557     unsigned int got_type)
1558 {
1559   if (object->local_has_got_offset(symndx, got_type))
1560     return false;
1561
1562   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1563                                                           true));
1564   object->set_local_got_offset(symndx, got_type, got_offset);
1565   return true;
1566 }
1567
1568 // Add an entry for a local symbol to the GOT, and add a dynamic
1569 // relocation of type R_TYPE for the GOT entry.
1570
1571 template<int got_size, bool big_endian>
1572 void
1573 Output_data_got<got_size, big_endian>::add_local_with_rel(
1574     Relobj* object,
1575     unsigned int symndx,
1576     unsigned int got_type,
1577     Output_data_reloc_generic* rel_dyn,
1578     unsigned int r_type)
1579 {
1580   if (object->local_has_got_offset(symndx, got_type))
1581     return;
1582
1583   unsigned int got_offset = this->add_got_entry(Got_entry());
1584   object->set_local_got_offset(symndx, got_type, got_offset);
1585   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1586 }
1587
1588 // Add a pair of entries for a local symbol to the GOT, and add
1589 // a dynamic relocation of type R_TYPE using the section symbol of
1590 // the output section to which input section SHNDX maps, on the first.
1591 // The first got entry will have a value of zero, the second the
1592 // value of the local symbol.
1593 template<int got_size, bool big_endian>
1594 void
1595 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1596     Relobj* object,
1597     unsigned int symndx,
1598     unsigned int shndx,
1599     unsigned int got_type,
1600     Output_data_reloc_generic* rel_dyn,
1601     unsigned int r_type)
1602 {
1603   if (object->local_has_got_offset(symndx, got_type))
1604     return;
1605
1606   unsigned int got_offset =
1607       this->add_got_entry_pair(Got_entry(),
1608                                Got_entry(object, symndx, false));
1609   object->set_local_got_offset(symndx, got_type, got_offset);
1610   Output_section* os = object->output_section(shndx);
1611   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1612 }
1613
1614 // Add a pair of entries for a local symbol to the GOT, and add
1615 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1616 // The first got entry will have a value of zero, the second the
1617 // value of the local symbol offset by Target::tls_offset_for_local.
1618 template<int got_size, bool big_endian>
1619 void
1620 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1621     Relobj* object,
1622     unsigned int symndx,
1623     unsigned int got_type,
1624     Output_data_reloc_generic* rel_dyn,
1625     unsigned int r_type)
1626 {
1627   if (object->local_has_got_offset(symndx, got_type))
1628     return;
1629
1630   unsigned int got_offset
1631     = this->add_got_entry_pair(Got_entry(),
1632                                Got_entry(object, symndx, true));
1633   object->set_local_got_offset(symndx, got_type, got_offset);
1634   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1635 }
1636
1637 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
1639 template<int got_size, bool big_endian>
1640 void
1641 Output_data_got<got_size, big_endian>::reserve_local(
1642     unsigned int i,
1643     Relobj* object,
1644     unsigned int sym_index,
1645     unsigned int got_type)
1646 {
1647   this->do_reserve_slot(i);
1648   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1649 }
1650
1651 // Reserve a slot in the GOT for a global symbol.
1652
1653 template<int got_size, bool big_endian>
1654 void
1655 Output_data_got<got_size, big_endian>::reserve_global(
1656     unsigned int i,
1657     Symbol* gsym,
1658     unsigned int got_type)
1659 {
1660   this->do_reserve_slot(i);
1661   gsym->set_got_offset(got_type, this->got_offset(i));
1662 }
1663
1664 // Write out the GOT.
1665
1666 template<int got_size, bool big_endian>
1667 void
1668 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1669 {
1670   const int add = got_size / 8;
1671
1672   const off_t off = this->offset();
1673   const off_t oview_size = this->data_size();
1674   unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676   unsigned char* pov = oview;
1677   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1678     {
1679       this->entries_[i].write(i, pov);
1680       pov += add;
1681     }
1682
1683   gold_assert(pov - oview == oview_size);
1684
1685   of->write_output_view(off, oview_size, oview);
1686
1687   // We no longer need the GOT entries.
1688   this->entries_.clear();
1689 }
1690
1691 // Create a new GOT entry and return its offset.
1692
1693 template<int got_size, bool big_endian>
1694 unsigned int
1695 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1696 {
1697   if (!this->is_data_size_valid())
1698     {
1699       this->entries_.push_back(got_entry);
1700       this->set_got_size();
1701       return this->last_got_offset();
1702     }
1703   else
1704     {
1705       // For an incremental update, find an available slot.
1706       off_t got_offset = this->free_list_.allocate(got_size / 8,
1707                                                    got_size / 8, 0);
1708       if (got_offset == -1)
1709         gold_fallback(_("out of patch space (GOT);"
1710                         " relink with --incremental-full"));
1711       unsigned int got_index = got_offset / (got_size / 8);
1712       gold_assert(got_index < this->entries_.size());
1713       this->entries_[got_index] = got_entry;
1714       return static_cast<unsigned int>(got_offset);
1715     }
1716 }
1717
1718 // Create a pair of new GOT entries and return the offset of the first.
1719
1720 template<int got_size, bool big_endian>
1721 unsigned int
1722 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1723     Got_entry got_entry_1,
1724     Got_entry got_entry_2)
1725 {
1726   if (!this->is_data_size_valid())
1727     {
1728       unsigned int got_offset;
1729       this->entries_.push_back(got_entry_1);
1730       got_offset = this->last_got_offset();
1731       this->entries_.push_back(got_entry_2);
1732       this->set_got_size();
1733       return got_offset;
1734     }
1735   else
1736     {
1737       // For an incremental update, find an available pair of slots.
1738       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1739                                                    got_size / 8, 0);
1740       if (got_offset == -1)
1741         gold_fallback(_("out of patch space (GOT);"
1742                         " relink with --incremental-full"));
1743       unsigned int got_index = got_offset / (got_size / 8);
1744       gold_assert(got_index < this->entries_.size());
1745       this->entries_[got_index] = got_entry_1;
1746       this->entries_[got_index + 1] = got_entry_2;
1747       return static_cast<unsigned int>(got_offset);
1748     }
1749 }
1750
1751 // Replace GOT entry I with a new value.
1752
1753 template<int got_size, bool big_endian>
1754 void
1755 Output_data_got<got_size, big_endian>::replace_got_entry(
1756     unsigned int i,
1757     Got_entry got_entry)
1758 {
1759   gold_assert(i < this->entries_.size());
1760   this->entries_[i] = got_entry;
1761 }
1762
1763 // Output_data_dynamic::Dynamic_entry methods.
1764
1765 // Write out the entry.
1766
1767 template<int size, bool big_endian>
1768 void
1769 Output_data_dynamic::Dynamic_entry::write(
1770     unsigned char* pov,
1771     const Stringpool* pool) const
1772 {
1773   typename elfcpp::Elf_types<size>::Elf_WXword val;
1774   switch (this->offset_)
1775     {
1776     case DYNAMIC_NUMBER:
1777       val = this->u_.val;
1778       break;
1779
1780     case DYNAMIC_SECTION_SIZE:
1781       val = this->u_.od->data_size();
1782       if (this->od2 != NULL)
1783         val += this->od2->data_size();
1784       break;
1785
1786     case DYNAMIC_SYMBOL:
1787       {
1788         const Sized_symbol<size>* s =
1789           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1790         val = s->value();
1791       }
1792       break;
1793
1794     case DYNAMIC_STRING:
1795       val = pool->get_offset(this->u_.str);
1796       break;
1797
1798     default:
1799       val = this->u_.od->address() + this->offset_;
1800       break;
1801     }
1802
1803   elfcpp::Dyn_write<size, big_endian> dw(pov);
1804   dw.put_d_tag(this->tag_);
1805   dw.put_d_val(val);
1806 }
1807
1808 // Output_data_dynamic methods.
1809
1810 // Adjust the output section to set the entry size.
1811
1812 void
1813 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1814 {
1815   if (parameters->target().get_size() == 32)
1816     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1817   else if (parameters->target().get_size() == 64)
1818     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1819   else
1820     gold_unreachable();
1821 }
1822
1823 // Set the final data size.
1824
1825 void
1826 Output_data_dynamic::set_final_data_size()
1827 {
1828   // Add the terminating entry if it hasn't been added.
1829   // Because of relaxation, we can run this multiple times.
1830   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1831     {
1832       int extra = parameters->options().spare_dynamic_tags();
1833       for (int i = 0; i < extra; ++i)
1834         this->add_constant(elfcpp::DT_NULL, 0);
1835       this->add_constant(elfcpp::DT_NULL, 0);
1836     }
1837
1838   int dyn_size;
1839   if (parameters->target().get_size() == 32)
1840     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1841   else if (parameters->target().get_size() == 64)
1842     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1843   else
1844     gold_unreachable();
1845   this->set_data_size(this->entries_.size() * dyn_size);
1846 }
1847
1848 // Write out the dynamic entries.
1849
1850 void
1851 Output_data_dynamic::do_write(Output_file* of)
1852 {
1853   switch (parameters->size_and_endianness())
1854     {
1855 #ifdef HAVE_TARGET_32_LITTLE
1856     case Parameters::TARGET_32_LITTLE:
1857       this->sized_write<32, false>(of);
1858       break;
1859 #endif
1860 #ifdef HAVE_TARGET_32_BIG
1861     case Parameters::TARGET_32_BIG:
1862       this->sized_write<32, true>(of);
1863       break;
1864 #endif
1865 #ifdef HAVE_TARGET_64_LITTLE
1866     case Parameters::TARGET_64_LITTLE:
1867       this->sized_write<64, false>(of);
1868       break;
1869 #endif
1870 #ifdef HAVE_TARGET_64_BIG
1871     case Parameters::TARGET_64_BIG:
1872       this->sized_write<64, true>(of);
1873       break;
1874 #endif
1875     default:
1876       gold_unreachable();
1877     }
1878 }
1879
1880 template<int size, bool big_endian>
1881 void
1882 Output_data_dynamic::sized_write(Output_file* of)
1883 {
1884   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1885
1886   const off_t offset = this->offset();
1887   const off_t oview_size = this->data_size();
1888   unsigned char* const oview = of->get_output_view(offset, oview_size);
1889
1890   unsigned char* pov = oview;
1891   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1892        p != this->entries_.end();
1893        ++p)
1894     {
1895       p->write<size, big_endian>(pov, this->pool_);
1896       pov += dyn_size;
1897     }
1898
1899   gold_assert(pov - oview == oview_size);
1900
1901   of->write_output_view(offset, oview_size, oview);
1902
1903   // We no longer need the dynamic entries.
1904   this->entries_.clear();
1905 }
1906
1907 // Class Output_symtab_xindex.
1908
1909 void
1910 Output_symtab_xindex::do_write(Output_file* of)
1911 {
1912   const off_t offset = this->offset();
1913   const off_t oview_size = this->data_size();
1914   unsigned char* const oview = of->get_output_view(offset, oview_size);
1915
1916   memset(oview, 0, oview_size);
1917
1918   if (parameters->target().is_big_endian())
1919     this->endian_do_write<true>(oview);
1920   else
1921     this->endian_do_write<false>(oview);
1922
1923   of->write_output_view(offset, oview_size, oview);
1924
1925   // We no longer need the data.
1926   this->entries_.clear();
1927 }
1928
1929 template<bool big_endian>
1930 void
1931 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1932 {
1933   for (Xindex_entries::const_iterator p = this->entries_.begin();
1934        p != this->entries_.end();
1935        ++p)
1936     {
1937       unsigned int symndx = p->first;
1938       gold_assert(symndx * 4 < this->data_size());
1939       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1940     }
1941 }
1942
1943 // Output_fill_debug_info methods.
1944
1945 // Return the minimum size needed for a dummy compilation unit header.
1946
1947 size_t
1948 Output_fill_debug_info::do_minimum_hole_size() const
1949 {
1950   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1951   // address_size.
1952   const size_t len = 4 + 2 + 4 + 1;
1953   // For type units, add type_signature, type_offset.
1954   if (this->is_debug_types_)
1955     return len + 8 + 4;
1956   return len;
1957 }
1958
1959 // Write a dummy compilation unit header to fill a hole in the
1960 // .debug_info or .debug_types section.
1961
1962 void
1963 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1964 {
1965   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1966              static_cast<long>(off), static_cast<long>(len));
1967
1968   gold_assert(len >= this->do_minimum_hole_size());
1969
1970   unsigned char* const oview = of->get_output_view(off, len);
1971   unsigned char* pov = oview;
1972
1973   // Write header fields: unit_length, version, debug_abbrev_offset,
1974   // address_size.
1975   if (this->is_big_endian())
1976     {
1977       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1978       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1979       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1980     }
1981   else
1982     {
1983       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1984       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1985       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1986     }
1987   pov += 4 + 2 + 4;
1988   *pov++ = 4;
1989
1990   // For type units, the additional header fields -- type_signature,
1991   // type_offset -- can be filled with zeroes.
1992
1993   // Fill the remainder of the free space with zeroes.  The first
1994   // zero should tell the consumer there are no DIEs to read in this
1995   // compilation unit.
1996   if (pov < oview + len)
1997     memset(pov, 0, oview + len - pov);
1998
1999   of->write_output_view(off, len, oview);
2000 }
2001
2002 // Output_fill_debug_line methods.
2003
2004 // Return the minimum size needed for a dummy line number program header.
2005
2006 size_t
2007 Output_fill_debug_line::do_minimum_hole_size() const
2008 {
2009   // Line number program header fields: unit_length, version, header_length,
2010   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2011   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2012   const size_t len = 4 + 2 + 4 + this->header_length;
2013   return len;
2014 }
2015
2016 // Write a dummy line number program header to fill a hole in the
2017 // .debug_line section.
2018
2019 void
2020 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2021 {
2022   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2023              static_cast<long>(off), static_cast<long>(len));
2024
2025   gold_assert(len >= this->do_minimum_hole_size());
2026
2027   unsigned char* const oview = of->get_output_view(off, len);
2028   unsigned char* pov = oview;
2029
2030   // Write header fields: unit_length, version, header_length,
2031   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2032   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2033   // We set the header_length field to cover the entire hole, so the
2034   // line number program is empty.
2035   if (this->is_big_endian())
2036     {
2037       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2038       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2039       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2040     }
2041   else
2042     {
2043       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2044       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2045       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2046     }
2047   pov += 4 + 2 + 4;
2048   *pov++ = 1;   // minimum_instruction_length
2049   *pov++ = 0;   // default_is_stmt
2050   *pov++ = 0;   // line_base
2051   *pov++ = 5;   // line_range
2052   *pov++ = 13;  // opcode_base
2053   *pov++ = 0;   // standard_opcode_lengths[1]
2054   *pov++ = 1;   // standard_opcode_lengths[2]
2055   *pov++ = 1;   // standard_opcode_lengths[3]
2056   *pov++ = 1;   // standard_opcode_lengths[4]
2057   *pov++ = 1;   // standard_opcode_lengths[5]
2058   *pov++ = 0;   // standard_opcode_lengths[6]
2059   *pov++ = 0;   // standard_opcode_lengths[7]
2060   *pov++ = 0;   // standard_opcode_lengths[8]
2061   *pov++ = 1;   // standard_opcode_lengths[9]
2062   *pov++ = 0;   // standard_opcode_lengths[10]
2063   *pov++ = 0;   // standard_opcode_lengths[11]
2064   *pov++ = 1;   // standard_opcode_lengths[12]
2065   *pov++ = 0;   // include_directories (empty)
2066   *pov++ = 0;   // filenames (empty)
2067
2068   // Some consumers don't check the header_length field, and simply
2069   // start reading the line number program immediately following the
2070   // header.  For those consumers, we fill the remainder of the free
2071   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2072   // no-ops: the resulting line table program will not create any rows.
2073   if (pov < oview + len)
2074     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2075
2076   of->write_output_view(off, len, oview);
2077 }
2078
2079 // Output_section::Input_section methods.
2080
2081 // Return the current data size.  For an input section we store the size here.
2082 // For an Output_section_data, we have to ask it for the size.
2083
2084 off_t
2085 Output_section::Input_section::current_data_size() const
2086 {
2087   if (this->is_input_section())
2088     return this->u1_.data_size;
2089   else
2090     {
2091       this->u2_.posd->pre_finalize_data_size();
2092       return this->u2_.posd->current_data_size();
2093     }
2094 }
2095
2096 // Return the data size.  For an input section we store the size here.
2097 // For an Output_section_data, we have to ask it for the size.
2098
2099 off_t
2100 Output_section::Input_section::data_size() const
2101 {
2102   if (this->is_input_section())
2103     return this->u1_.data_size;
2104   else
2105     return this->u2_.posd->data_size();
2106 }
2107
2108 // Return the object for an input section.
2109
2110 Relobj*
2111 Output_section::Input_section::relobj() const
2112 {
2113   if (this->is_input_section())
2114     return this->u2_.object;
2115   else if (this->is_merge_section())
2116     {
2117       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2118       return this->u2_.pomb->first_relobj();
2119     }
2120   else if (this->is_relaxed_input_section())
2121     return this->u2_.poris->relobj();
2122   else
2123     gold_unreachable();
2124 }
2125
2126 // Return the input section index for an input section.
2127
2128 unsigned int
2129 Output_section::Input_section::shndx() const
2130 {
2131   if (this->is_input_section())
2132     return this->shndx_;
2133   else if (this->is_merge_section())
2134     {
2135       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2136       return this->u2_.pomb->first_shndx();
2137     }
2138   else if (this->is_relaxed_input_section())
2139     return this->u2_.poris->shndx();
2140   else
2141     gold_unreachable();
2142 }
2143
2144 // Set the address and file offset.
2145
2146 void
2147 Output_section::Input_section::set_address_and_file_offset(
2148     uint64_t address,
2149     off_t file_offset,
2150     off_t section_file_offset)
2151 {
2152   if (this->is_input_section())
2153     this->u2_.object->set_section_offset(this->shndx_,
2154                                          file_offset - section_file_offset);
2155   else
2156     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2157 }
2158
2159 // Reset the address and file offset.
2160
2161 void
2162 Output_section::Input_section::reset_address_and_file_offset()
2163 {
2164   if (!this->is_input_section())
2165     this->u2_.posd->reset_address_and_file_offset();
2166 }
2167
2168 // Finalize the data size.
2169
2170 void
2171 Output_section::Input_section::finalize_data_size()
2172 {
2173   if (!this->is_input_section())
2174     this->u2_.posd->finalize_data_size();
2175 }
2176
2177 // Try to turn an input offset into an output offset.  We want to
2178 // return the output offset relative to the start of this
2179 // Input_section in the output section.
2180
2181 inline bool
2182 Output_section::Input_section::output_offset(
2183     const Relobj* object,
2184     unsigned int shndx,
2185     section_offset_type offset,
2186     section_offset_type* poutput) const
2187 {
2188   if (!this->is_input_section())
2189     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2190   else
2191     {
2192       if (this->shndx_ != shndx || this->u2_.object != object)
2193         return false;
2194       *poutput = offset;
2195       return true;
2196     }
2197 }
2198
2199 // Return whether this is the merge section for the input section
2200 // SHNDX in OBJECT.
2201
2202 inline bool
2203 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2204                                                     unsigned int shndx) const
2205 {
2206   if (this->is_input_section())
2207     return false;
2208   return this->u2_.posd->is_merge_section_for(object, shndx);
2209 }
2210
2211 // Write out the data.  We don't have to do anything for an input
2212 // section--they are handled via Object::relocate--but this is where
2213 // we write out the data for an Output_section_data.
2214
2215 void
2216 Output_section::Input_section::write(Output_file* of)
2217 {
2218   if (!this->is_input_section())
2219     this->u2_.posd->write(of);
2220 }
2221
2222 // Write the data to a buffer.  As for write(), we don't have to do
2223 // anything for an input section.
2224
2225 void
2226 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2227 {
2228   if (!this->is_input_section())
2229     this->u2_.posd->write_to_buffer(buffer);
2230 }
2231
2232 // Print to a map file.
2233
2234 void
2235 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2236 {
2237   switch (this->shndx_)
2238     {
2239     case OUTPUT_SECTION_CODE:
2240     case MERGE_DATA_SECTION_CODE:
2241     case MERGE_STRING_SECTION_CODE:
2242       this->u2_.posd->print_to_mapfile(mapfile);
2243       break;
2244
2245     case RELAXED_INPUT_SECTION_CODE:
2246       {
2247         Output_relaxed_input_section* relaxed_section =
2248           this->relaxed_input_section();
2249         mapfile->print_input_section(relaxed_section->relobj(),
2250                                      relaxed_section->shndx());
2251       }
2252       break;
2253     default:
2254       mapfile->print_input_section(this->u2_.object, this->shndx_);
2255       break;
2256     }
2257 }
2258
2259 // Output_section methods.
2260
2261 // Construct an Output_section.  NAME will point into a Stringpool.
2262
2263 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2264                                elfcpp::Elf_Xword flags)
2265   : name_(name),
2266     addralign_(0),
2267     entsize_(0),
2268     load_address_(0),
2269     link_section_(NULL),
2270     link_(0),
2271     info_section_(NULL),
2272     info_symndx_(NULL),
2273     info_(0),
2274     type_(type),
2275     flags_(flags),
2276     order_(ORDER_INVALID),
2277     out_shndx_(-1U),
2278     symtab_index_(0),
2279     dynsym_index_(0),
2280     input_sections_(),
2281     first_input_offset_(0),
2282     fills_(),
2283     postprocessing_buffer_(NULL),
2284     needs_symtab_index_(false),
2285     needs_dynsym_index_(false),
2286     should_link_to_symtab_(false),
2287     should_link_to_dynsym_(false),
2288     after_input_sections_(false),
2289     requires_postprocessing_(false),
2290     found_in_sections_clause_(false),
2291     has_load_address_(false),
2292     info_uses_section_index_(false),
2293     input_section_order_specified_(false),
2294     may_sort_attached_input_sections_(false),
2295     must_sort_attached_input_sections_(false),
2296     attached_input_sections_are_sorted_(false),
2297     is_relro_(false),
2298     is_small_section_(false),
2299     is_large_section_(false),
2300     generate_code_fills_at_write_(false),
2301     is_entsize_zero_(false),
2302     section_offsets_need_adjustment_(false),
2303     is_noload_(false),
2304     always_keeps_input_sections_(false),
2305     has_fixed_layout_(false),
2306     is_patch_space_allowed_(false),
2307     is_unique_segment_(false),
2308     tls_offset_(0),
2309     extra_segment_flags_(0),
2310     segment_alignment_(0),
2311     checkpoint_(NULL),
2312     lookup_maps_(new Output_section_lookup_maps),
2313     free_list_(),
2314     free_space_fill_(NULL),
2315     patch_space_(0)
2316 {
2317   // An unallocated section has no address.  Forcing this means that
2318   // we don't need special treatment for symbols defined in debug
2319   // sections.
2320   if ((flags & elfcpp::SHF_ALLOC) == 0)
2321     this->set_address(0);
2322 }
2323
2324 Output_section::~Output_section()
2325 {
2326   delete this->checkpoint_;
2327 }
2328
2329 // Set the entry size.
2330
2331 void
2332 Output_section::set_entsize(uint64_t v)
2333 {
2334   if (this->is_entsize_zero_)
2335     ;
2336   else if (this->entsize_ == 0)
2337     this->entsize_ = v;
2338   else if (this->entsize_ != v)
2339     {
2340       this->entsize_ = 0;
2341       this->is_entsize_zero_ = 1;
2342     }
2343 }
2344
2345 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2346 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2347 // relocation section which applies to this section, or 0 if none, or
2348 // -1U if more than one.  Return the offset of the input section
2349 // within the output section.  Return -1 if the input section will
2350 // receive special handling.  In the normal case we don't always keep
2351 // track of input sections for an Output_section.  Instead, each
2352 // Object keeps track of the Output_section for each of its input
2353 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2354 // track of input sections here; this is used when SECTIONS appears in
2355 // a linker script.
2356
2357 template<int size, bool big_endian>
2358 off_t
2359 Output_section::add_input_section(Layout* layout,
2360                                   Sized_relobj_file<size, big_endian>* object,
2361                                   unsigned int shndx,
2362                                   const char* secname,
2363                                   const elfcpp::Shdr<size, big_endian>& shdr,
2364                                   unsigned int reloc_shndx,
2365                                   bool have_sections_script)
2366 {
2367   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2368   if ((addralign & (addralign - 1)) != 0)
2369     {
2370       object->error(_("invalid alignment %lu for section \"%s\""),
2371                     static_cast<unsigned long>(addralign), secname);
2372       addralign = 1;
2373     }
2374
2375   if (addralign > this->addralign_)
2376     this->addralign_ = addralign;
2377
2378   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2379   uint64_t entsize = shdr.get_sh_entsize();
2380
2381   // .debug_str is a mergeable string section, but is not always so
2382   // marked by compilers.  Mark manually here so we can optimize.
2383   if (strcmp(secname, ".debug_str") == 0)
2384     {
2385       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2386       entsize = 1;
2387     }
2388
2389   this->update_flags_for_input_section(sh_flags);
2390   this->set_entsize(entsize);
2391
2392   // If this is a SHF_MERGE section, we pass all the input sections to
2393   // a Output_data_merge.  We don't try to handle relocations for such
2394   // a section.  We don't try to handle empty merge sections--they
2395   // mess up the mappings, and are useless anyhow.
2396   // FIXME: Need to handle merge sections during incremental update.
2397   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2398       && reloc_shndx == 0
2399       && shdr.get_sh_size() > 0
2400       && !parameters->incremental())
2401     {
2402       // Keep information about merged input sections for rebuilding fast
2403       // lookup maps if we have sections-script or we do relaxation.
2404       bool keeps_input_sections = (this->always_keeps_input_sections_
2405                                    || have_sections_script
2406                                    || parameters->target().may_relax());
2407
2408       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2409                                         addralign, keeps_input_sections))
2410         {
2411           // Tell the relocation routines that they need to call the
2412           // output_offset method to determine the final address.
2413           return -1;
2414         }
2415     }
2416
2417   section_size_type input_section_size = shdr.get_sh_size();
2418   section_size_type uncompressed_size;
2419   if (object->section_is_compressed(shndx, &uncompressed_size))
2420     input_section_size = uncompressed_size;
2421
2422   off_t offset_in_section;
2423   off_t aligned_offset_in_section;
2424   if (this->has_fixed_layout())
2425     {
2426       // For incremental updates, find a chunk of unused space in the section.
2427       offset_in_section = this->free_list_.allocate(input_section_size,
2428                                                     addralign, 0);
2429       if (offset_in_section == -1)
2430         gold_fallback(_("out of patch space in section %s; "
2431                         "relink with --incremental-full"),
2432                       this->name());
2433       aligned_offset_in_section = offset_in_section;
2434     }
2435   else
2436     {
2437       offset_in_section = this->current_data_size_for_child();
2438       aligned_offset_in_section = align_address(offset_in_section,
2439                                                 addralign);
2440       this->set_current_data_size_for_child(aligned_offset_in_section
2441                                             + input_section_size);
2442     }
2443
2444   // Determine if we want to delay code-fill generation until the output
2445   // section is written.  When the target is relaxing, we want to delay fill
2446   // generating to avoid adjusting them during relaxation.  Also, if we are
2447   // sorting input sections we must delay fill generation.
2448   if (!this->generate_code_fills_at_write_
2449       && !have_sections_script
2450       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2451       && parameters->target().has_code_fill()
2452       && (parameters->target().may_relax()
2453           || layout->is_section_ordering_specified()))
2454     {
2455       gold_assert(this->fills_.empty());
2456       this->generate_code_fills_at_write_ = true;
2457     }
2458
2459   if (aligned_offset_in_section > offset_in_section
2460       && !this->generate_code_fills_at_write_
2461       && !have_sections_script
2462       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2463       && parameters->target().has_code_fill())
2464     {
2465       // We need to add some fill data.  Using fill_list_ when
2466       // possible is an optimization, since we will often have fill
2467       // sections without input sections.
2468       off_t fill_len = aligned_offset_in_section - offset_in_section;
2469       if (this->input_sections_.empty())
2470         this->fills_.push_back(Fill(offset_in_section, fill_len));
2471       else
2472         {
2473           std::string fill_data(parameters->target().code_fill(fill_len));
2474           Output_data_const* odc = new Output_data_const(fill_data, 1);
2475           this->input_sections_.push_back(Input_section(odc));
2476         }
2477     }
2478
2479   // We need to keep track of this section if we are already keeping
2480   // track of sections, or if we are relaxing.  Also, if this is a
2481   // section which requires sorting, or which may require sorting in
2482   // the future, we keep track of the sections.  If the
2483   // --section-ordering-file option is used to specify the order of
2484   // sections, we need to keep track of sections.
2485   if (this->always_keeps_input_sections_
2486       || have_sections_script
2487       || !this->input_sections_.empty()
2488       || this->may_sort_attached_input_sections()
2489       || this->must_sort_attached_input_sections()
2490       || parameters->options().user_set_Map()
2491       || parameters->target().may_relax()
2492       || layout->is_section_ordering_specified())
2493     {
2494       Input_section isecn(object, shndx, input_section_size, addralign);
2495       /* If section ordering is requested by specifying a ordering file,
2496          using --section-ordering-file, match the section name with
2497          a pattern.  */
2498       if (parameters->options().section_ordering_file())
2499         {
2500           unsigned int section_order_index =
2501             layout->find_section_order_index(std::string(secname));
2502           if (section_order_index != 0)
2503             {
2504               isecn.set_section_order_index(section_order_index);
2505               this->set_input_section_order_specified();
2506             }
2507         }
2508       if (this->has_fixed_layout())
2509         {
2510           // For incremental updates, finalize the address and offset now.
2511           uint64_t addr = this->address();
2512           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2513                                             aligned_offset_in_section,
2514                                             this->offset());
2515         }
2516       this->input_sections_.push_back(isecn);
2517     }
2518
2519   return aligned_offset_in_section;
2520 }
2521
2522 // Add arbitrary data to an output section.
2523
2524 void
2525 Output_section::add_output_section_data(Output_section_data* posd)
2526 {
2527   Input_section inp(posd);
2528   this->add_output_section_data(&inp);
2529
2530   if (posd->is_data_size_valid())
2531     {
2532       off_t offset_in_section;
2533       if (this->has_fixed_layout())
2534         {
2535           // For incremental updates, find a chunk of unused space.
2536           offset_in_section = this->free_list_.allocate(posd->data_size(),
2537                                                         posd->addralign(), 0);
2538           if (offset_in_section == -1)
2539             gold_fallback(_("out of patch space in section %s; "
2540                             "relink with --incremental-full"),
2541                           this->name());
2542           // Finalize the address and offset now.
2543           uint64_t addr = this->address();
2544           off_t offset = this->offset();
2545           posd->set_address_and_file_offset(addr + offset_in_section,
2546                                             offset + offset_in_section);
2547         }
2548       else
2549         {
2550           offset_in_section = this->current_data_size_for_child();
2551           off_t aligned_offset_in_section = align_address(offset_in_section,
2552                                                           posd->addralign());
2553           this->set_current_data_size_for_child(aligned_offset_in_section
2554                                                 + posd->data_size());
2555         }
2556     }
2557   else if (this->has_fixed_layout())
2558     {
2559       // For incremental updates, arrange for the data to have a fixed layout.
2560       // This will mean that additions to the data must be allocated from
2561       // free space within the containing output section.
2562       uint64_t addr = this->address();
2563       posd->set_address(addr);
2564       posd->set_file_offset(0);
2565       // FIXME: This should eventually be unreachable.
2566       // gold_unreachable();
2567     }
2568 }
2569
2570 // Add a relaxed input section.
2571
2572 void
2573 Output_section::add_relaxed_input_section(Layout* layout,
2574                                           Output_relaxed_input_section* poris,
2575                                           const std::string& name)
2576 {
2577   Input_section inp(poris);
2578
2579   // If the --section-ordering-file option is used to specify the order of
2580   // sections, we need to keep track of sections.
2581   if (layout->is_section_ordering_specified())
2582     {
2583       unsigned int section_order_index =
2584         layout->find_section_order_index(name);
2585       if (section_order_index != 0)
2586         {
2587           inp.set_section_order_index(section_order_index);
2588           this->set_input_section_order_specified();
2589         }
2590     }
2591
2592   this->add_output_section_data(&inp);
2593   if (this->lookup_maps_->is_valid())
2594     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2595                                                   poris->shndx(), poris);
2596
2597   // For a relaxed section, we use the current data size.  Linker scripts
2598   // get all the input sections, including relaxed one from an output
2599   // section and add them back to the same output section to compute the
2600   // output section size.  If we do not account for sizes of relaxed input
2601   // sections, an output section would be incorrectly sized.
2602   off_t offset_in_section = this->current_data_size_for_child();
2603   off_t aligned_offset_in_section = align_address(offset_in_section,
2604                                                   poris->addralign());
2605   this->set_current_data_size_for_child(aligned_offset_in_section
2606                                         + poris->current_data_size());
2607 }
2608
2609 // Add arbitrary data to an output section by Input_section.
2610
2611 void
2612 Output_section::add_output_section_data(Input_section* inp)
2613 {
2614   if (this->input_sections_.empty())
2615     this->first_input_offset_ = this->current_data_size_for_child();
2616
2617   this->input_sections_.push_back(*inp);
2618
2619   uint64_t addralign = inp->addralign();
2620   if (addralign > this->addralign_)
2621     this->addralign_ = addralign;
2622
2623   inp->set_output_section(this);
2624 }
2625
2626 // Add a merge section to an output section.
2627
2628 void
2629 Output_section::add_output_merge_section(Output_section_data* posd,
2630                                          bool is_string, uint64_t entsize)
2631 {
2632   Input_section inp(posd, is_string, entsize);
2633   this->add_output_section_data(&inp);
2634 }
2635
2636 // Add an input section to a SHF_MERGE section.
2637
2638 bool
2639 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2640                                         uint64_t flags, uint64_t entsize,
2641                                         uint64_t addralign,
2642                                         bool keeps_input_sections)
2643 {
2644   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2645
2646   // We only merge strings if the alignment is not more than the
2647   // character size.  This could be handled, but it's unusual.
2648   if (is_string && addralign > entsize)
2649     return false;
2650
2651   // We cannot restore merged input section states.
2652   gold_assert(this->checkpoint_ == NULL);
2653
2654   // Look up merge sections by required properties.
2655   // Currently, we only invalidate the lookup maps in script processing
2656   // and relaxation.  We should not have done either when we reach here.
2657   // So we assume that the lookup maps are valid to simply code.
2658   gold_assert(this->lookup_maps_->is_valid());
2659   Merge_section_properties msp(is_string, entsize, addralign);
2660   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2661   bool is_new = false;
2662   if (pomb != NULL)
2663     {
2664       gold_assert(pomb->is_string() == is_string
2665                   && pomb->entsize() == entsize
2666                   && pomb->addralign() == addralign);
2667     }
2668   else
2669     {
2670       // Create a new Output_merge_data or Output_merge_string_data.
2671       if (!is_string)
2672         pomb = new Output_merge_data(entsize, addralign);
2673       else
2674         {
2675           switch (entsize)
2676             {
2677             case 1:
2678               pomb = new Output_merge_string<char>(addralign);
2679               break;
2680             case 2:
2681               pomb = new Output_merge_string<uint16_t>(addralign);
2682               break;
2683             case 4:
2684               pomb = new Output_merge_string<uint32_t>(addralign);
2685               break;
2686             default:
2687               return false;
2688             }
2689         }
2690       // If we need to do script processing or relaxation, we need to keep
2691       // the original input sections to rebuild the fast lookup maps.
2692       if (keeps_input_sections)
2693         pomb->set_keeps_input_sections();
2694       is_new = true;
2695     }
2696
2697   if (pomb->add_input_section(object, shndx))
2698     {
2699       // Add new merge section to this output section and link merge
2700       // section properties to new merge section in map.
2701       if (is_new)
2702         {
2703           this->add_output_merge_section(pomb, is_string, entsize);
2704           this->lookup_maps_->add_merge_section(msp, pomb);
2705         }
2706
2707       // Add input section to new merge section and link input section to new
2708       // merge section in map.
2709       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2710       return true;
2711     }
2712   else
2713     {
2714       // If add_input_section failed, delete new merge section to avoid
2715       // exporting empty merge sections in Output_section::get_input_section.
2716       if (is_new)
2717         delete pomb;
2718       return false;
2719     }
2720 }
2721
2722 // Build a relaxation map to speed up relaxation of existing input sections.
2723 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2724
2725 void
2726 Output_section::build_relaxation_map(
2727   const Input_section_list& input_sections,
2728   size_t limit,
2729   Relaxation_map* relaxation_map) const
2730 {
2731   for (size_t i = 0; i < limit; ++i)
2732     {
2733       const Input_section& is(input_sections[i]);
2734       if (is.is_input_section() || is.is_relaxed_input_section())
2735         {
2736           Section_id sid(is.relobj(), is.shndx());
2737           (*relaxation_map)[sid] = i;
2738         }
2739     }
2740 }
2741
2742 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2743 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2744 // indices of INPUT_SECTIONS.
2745
2746 void
2747 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2748   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2749   const Relaxation_map& map,
2750   Input_section_list* input_sections)
2751 {
2752   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2753     {
2754       Output_relaxed_input_section* poris = relaxed_sections[i];
2755       Section_id sid(poris->relobj(), poris->shndx());
2756       Relaxation_map::const_iterator p = map.find(sid);
2757       gold_assert(p != map.end());
2758       gold_assert((*input_sections)[p->second].is_input_section());
2759
2760       // Remember section order index of original input section
2761       // if it is set.  Copy it to the relaxed input section.
2762       unsigned int soi =
2763         (*input_sections)[p->second].section_order_index();
2764       (*input_sections)[p->second] = Input_section(poris);
2765       (*input_sections)[p->second].set_section_order_index(soi);
2766     }
2767 }
2768   
2769 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2770 // is a vector of pointers to Output_relaxed_input_section or its derived
2771 // classes.  The relaxed sections must correspond to existing input sections.
2772
2773 void
2774 Output_section::convert_input_sections_to_relaxed_sections(
2775   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2776 {
2777   gold_assert(parameters->target().may_relax());
2778
2779   // We want to make sure that restore_states does not undo the effect of
2780   // this.  If there is no checkpoint active, just search the current
2781   // input section list and replace the sections there.  If there is
2782   // a checkpoint, also replace the sections there.
2783   
2784   // By default, we look at the whole list.
2785   size_t limit = this->input_sections_.size();
2786
2787   if (this->checkpoint_ != NULL)
2788     {
2789       // Replace input sections with relaxed input section in the saved
2790       // copy of the input section list.
2791       if (this->checkpoint_->input_sections_saved())
2792         {
2793           Relaxation_map map;
2794           this->build_relaxation_map(
2795                     *(this->checkpoint_->input_sections()),
2796                     this->checkpoint_->input_sections()->size(),
2797                     &map);
2798           this->convert_input_sections_in_list_to_relaxed_sections(
2799                     relaxed_sections,
2800                     map,
2801                     this->checkpoint_->input_sections());
2802         }
2803       else
2804         {
2805           // We have not copied the input section list yet.  Instead, just
2806           // look at the portion that would be saved.
2807           limit = this->checkpoint_->input_sections_size();
2808         }
2809     }
2810
2811   // Convert input sections in input_section_list.
2812   Relaxation_map map;
2813   this->build_relaxation_map(this->input_sections_, limit, &map);
2814   this->convert_input_sections_in_list_to_relaxed_sections(
2815             relaxed_sections,
2816             map,
2817             &this->input_sections_);
2818
2819   // Update fast look-up map.
2820   if (this->lookup_maps_->is_valid())
2821     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2822       {
2823         Output_relaxed_input_section* poris = relaxed_sections[i];
2824         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2825                                                       poris->shndx(), poris);
2826       }
2827 }
2828
2829 // Update the output section flags based on input section flags.
2830
2831 void
2832 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2833 {
2834   // If we created the section with SHF_ALLOC clear, we set the
2835   // address.  If we are now setting the SHF_ALLOC flag, we need to
2836   // undo that.
2837   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2838       && (flags & elfcpp::SHF_ALLOC) != 0)
2839     this->mark_address_invalid();
2840
2841   this->flags_ |= (flags
2842                    & (elfcpp::SHF_WRITE
2843                       | elfcpp::SHF_ALLOC
2844                       | elfcpp::SHF_EXECINSTR));
2845
2846   if ((flags & elfcpp::SHF_MERGE) == 0)
2847     this->flags_ &=~ elfcpp::SHF_MERGE;
2848   else
2849     {
2850       if (this->current_data_size_for_child() == 0)
2851         this->flags_ |= elfcpp::SHF_MERGE;
2852     }
2853
2854   if ((flags & elfcpp::SHF_STRINGS) == 0)
2855     this->flags_ &=~ elfcpp::SHF_STRINGS;
2856   else
2857     {
2858       if (this->current_data_size_for_child() == 0)
2859         this->flags_ |= elfcpp::SHF_STRINGS;
2860     }
2861 }
2862
2863 // Find the merge section into which an input section with index SHNDX in
2864 // OBJECT has been added.  Return NULL if none found.
2865
2866 Output_section_data*
2867 Output_section::find_merge_section(const Relobj* object,
2868                                    unsigned int shndx) const
2869 {
2870   if (!this->lookup_maps_->is_valid())
2871     this->build_lookup_maps();
2872   return this->lookup_maps_->find_merge_section(object, shndx);
2873 }
2874
2875 // Build the lookup maps for merge and relaxed sections.  This is needs
2876 // to be declared as a const methods so that it is callable with a const
2877 // Output_section pointer.  The method only updates states of the maps.
2878
2879 void
2880 Output_section::build_lookup_maps() const
2881 {
2882   this->lookup_maps_->clear();
2883   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2884        p != this->input_sections_.end();
2885        ++p)
2886     {
2887       if (p->is_merge_section())
2888         {
2889           Output_merge_base* pomb = p->output_merge_base();
2890           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2891                                        pomb->addralign());
2892           this->lookup_maps_->add_merge_section(msp, pomb);
2893           for (Output_merge_base::Input_sections::const_iterator is =
2894                  pomb->input_sections_begin();
2895                is != pomb->input_sections_end();
2896                ++is) 
2897             {
2898               const Const_section_id& csid = *is;
2899             this->lookup_maps_->add_merge_input_section(csid.first,
2900                                                         csid.second, pomb);
2901             }
2902             
2903         }
2904       else if (p->is_relaxed_input_section())
2905         {
2906           Output_relaxed_input_section* poris = p->relaxed_input_section();
2907           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2908                                                         poris->shndx(), poris);
2909         }
2910     }
2911 }
2912
2913 // Find an relaxed input section corresponding to an input section
2914 // in OBJECT with index SHNDX.
2915
2916 const Output_relaxed_input_section*
2917 Output_section::find_relaxed_input_section(const Relobj* object,
2918                                            unsigned int shndx) const
2919 {
2920   if (!this->lookup_maps_->is_valid())
2921     this->build_lookup_maps();
2922   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2923 }
2924
2925 // Given an address OFFSET relative to the start of input section
2926 // SHNDX in OBJECT, return whether this address is being included in
2927 // the final link.  This should only be called if SHNDX in OBJECT has
2928 // a special mapping.
2929
2930 bool
2931 Output_section::is_input_address_mapped(const Relobj* object,
2932                                         unsigned int shndx,
2933                                         off_t offset) const
2934 {
2935   // Look at the Output_section_data_maps first.
2936   const Output_section_data* posd = this->find_merge_section(object, shndx);
2937   if (posd == NULL)
2938     posd = this->find_relaxed_input_section(object, shndx);
2939
2940   if (posd != NULL)
2941     {
2942       section_offset_type output_offset;
2943       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2944       gold_assert(found);   
2945       return output_offset != -1;
2946     }
2947
2948   // Fall back to the slow look-up.
2949   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2950        p != this->input_sections_.end();
2951        ++p)
2952     {
2953       section_offset_type output_offset;
2954       if (p->output_offset(object, shndx, offset, &output_offset))
2955         return output_offset != -1;
2956     }
2957
2958   // By default we assume that the address is mapped.  This should
2959   // only be called after we have passed all sections to Layout.  At
2960   // that point we should know what we are discarding.
2961   return true;
2962 }
2963
2964 // Given an address OFFSET relative to the start of input section
2965 // SHNDX in object OBJECT, return the output offset relative to the
2966 // start of the input section in the output section.  This should only
2967 // be called if SHNDX in OBJECT has a special mapping.
2968
2969 section_offset_type
2970 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2971                               section_offset_type offset) const
2972 {
2973   // This can only be called meaningfully when we know the data size
2974   // of this.
2975   gold_assert(this->is_data_size_valid());
2976
2977   // Look at the Output_section_data_maps first.
2978   const Output_section_data* posd = this->find_merge_section(object, shndx);
2979   if (posd == NULL) 
2980     posd = this->find_relaxed_input_section(object, shndx);
2981   if (posd != NULL)
2982     {
2983       section_offset_type output_offset;
2984       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2985       gold_assert(found);   
2986       return output_offset;
2987     }
2988
2989   // Fall back to the slow look-up.
2990   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2991        p != this->input_sections_.end();
2992        ++p)
2993     {
2994       section_offset_type output_offset;
2995       if (p->output_offset(object, shndx, offset, &output_offset))
2996         return output_offset;
2997     }
2998   gold_unreachable();
2999 }
3000
3001 // Return the output virtual address of OFFSET relative to the start
3002 // of input section SHNDX in object OBJECT.
3003
3004 uint64_t
3005 Output_section::output_address(const Relobj* object, unsigned int shndx,
3006                                off_t offset) const
3007 {
3008   uint64_t addr = this->address() + this->first_input_offset_;
3009
3010   // Look at the Output_section_data_maps first.
3011   const Output_section_data* posd = this->find_merge_section(object, shndx);
3012   if (posd == NULL) 
3013     posd = this->find_relaxed_input_section(object, shndx);
3014   if (posd != NULL && posd->is_address_valid())
3015     {
3016       section_offset_type output_offset;
3017       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3018       gold_assert(found);
3019       return posd->address() + output_offset;
3020     }
3021
3022   // Fall back to the slow look-up.
3023   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3024        p != this->input_sections_.end();
3025        ++p)
3026     {
3027       addr = align_address(addr, p->addralign());
3028       section_offset_type output_offset;
3029       if (p->output_offset(object, shndx, offset, &output_offset))
3030         {
3031           if (output_offset == -1)
3032             return -1ULL;
3033           return addr + output_offset;
3034         }
3035       addr += p->data_size();
3036     }
3037
3038   // If we get here, it means that we don't know the mapping for this
3039   // input section.  This might happen in principle if
3040   // add_input_section were called before add_output_section_data.
3041   // But it should never actually happen.
3042
3043   gold_unreachable();
3044 }
3045
3046 // Find the output address of the start of the merged section for
3047 // input section SHNDX in object OBJECT.
3048
3049 bool
3050 Output_section::find_starting_output_address(const Relobj* object,
3051                                              unsigned int shndx,
3052                                              uint64_t* paddr) const
3053 {
3054   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3055   // Looking up the merge section map does not always work as we sometimes
3056   // find a merge section without its address set.
3057   uint64_t addr = this->address() + this->first_input_offset_;
3058   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3059        p != this->input_sections_.end();
3060        ++p)
3061     {
3062       addr = align_address(addr, p->addralign());
3063
3064       // It would be nice if we could use the existing output_offset
3065       // method to get the output offset of input offset 0.
3066       // Unfortunately we don't know for sure that input offset 0 is
3067       // mapped at all.
3068       if (p->is_merge_section_for(object, shndx))
3069         {
3070           *paddr = addr;
3071           return true;
3072         }
3073
3074       addr += p->data_size();
3075     }
3076
3077   // We couldn't find a merge output section for this input section.
3078   return false;
3079 }
3080
3081 // Update the data size of an Output_section.
3082
3083 void
3084 Output_section::update_data_size()
3085 {
3086   if (this->input_sections_.empty())
3087       return;
3088
3089   if (this->must_sort_attached_input_sections()
3090       || this->input_section_order_specified())
3091     this->sort_attached_input_sections();
3092
3093   off_t off = this->first_input_offset_;
3094   for (Input_section_list::iterator p = this->input_sections_.begin();
3095        p != this->input_sections_.end();
3096        ++p)
3097     {
3098       off = align_address(off, p->addralign());
3099       off += p->current_data_size();
3100     }
3101
3102   this->set_current_data_size_for_child(off);
3103 }
3104
3105 // Set the data size of an Output_section.  This is where we handle
3106 // setting the addresses of any Output_section_data objects.
3107
3108 void
3109 Output_section::set_final_data_size()
3110 {
3111   off_t data_size;
3112
3113   if (this->input_sections_.empty())
3114     data_size = this->current_data_size_for_child();
3115   else
3116     {
3117       if (this->must_sort_attached_input_sections()
3118           || this->input_section_order_specified())
3119         this->sort_attached_input_sections();
3120
3121       uint64_t address = this->address();
3122       off_t startoff = this->offset();
3123       off_t off = startoff + this->first_input_offset_;
3124       for (Input_section_list::iterator p = this->input_sections_.begin();
3125            p != this->input_sections_.end();
3126            ++p)
3127         {
3128           off = align_address(off, p->addralign());
3129           p->set_address_and_file_offset(address + (off - startoff), off,
3130                                          startoff);
3131           off += p->data_size();
3132         }
3133       data_size = off - startoff;
3134     }
3135
3136   // For full incremental links, we want to allocate some patch space
3137   // in most sections for subsequent incremental updates.
3138   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3139     {
3140       double pct = parameters->options().incremental_patch();
3141       size_t extra = static_cast<size_t>(data_size * pct);
3142       if (this->free_space_fill_ != NULL
3143           && this->free_space_fill_->minimum_hole_size() > extra)
3144         extra = this->free_space_fill_->minimum_hole_size();
3145       off_t new_size = align_address(data_size + extra, this->addralign());
3146       this->patch_space_ = new_size - data_size;
3147       gold_debug(DEBUG_INCREMENTAL,
3148                  "set_final_data_size: %08lx + %08lx: section %s",
3149                  static_cast<long>(data_size),
3150                  static_cast<long>(this->patch_space_),
3151                  this->name());
3152       data_size = new_size;
3153     }
3154
3155   this->set_data_size(data_size);
3156 }
3157
3158 // Reset the address and file offset.
3159
3160 void
3161 Output_section::do_reset_address_and_file_offset()
3162 {
3163   // An unallocated section has no address.  Forcing this means that
3164   // we don't need special treatment for symbols defined in debug
3165   // sections.  We do the same in the constructor.  This does not
3166   // apply to NOLOAD sections though.
3167   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3168      this->set_address(0);
3169
3170   for (Input_section_list::iterator p = this->input_sections_.begin();
3171        p != this->input_sections_.end();
3172        ++p)
3173     p->reset_address_and_file_offset();
3174
3175   // Remove any patch space that was added in set_final_data_size.
3176   if (this->patch_space_ > 0)
3177     {
3178       this->set_current_data_size_for_child(this->current_data_size_for_child()
3179                                             - this->patch_space_);
3180       this->patch_space_ = 0;
3181     }
3182 }
3183
3184 // Return true if address and file offset have the values after reset.
3185
3186 bool
3187 Output_section::do_address_and_file_offset_have_reset_values() const
3188 {
3189   if (this->is_offset_valid())
3190     return false;
3191
3192   // An unallocated section has address 0 after its construction or a reset.
3193   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3194     return this->is_address_valid() && this->address() == 0;
3195   else
3196     return !this->is_address_valid();
3197 }
3198
3199 // Set the TLS offset.  Called only for SHT_TLS sections.
3200
3201 void
3202 Output_section::do_set_tls_offset(uint64_t tls_base)
3203 {
3204   this->tls_offset_ = this->address() - tls_base;
3205 }
3206
3207 // In a few cases we need to sort the input sections attached to an
3208 // output section.  This is used to implement the type of constructor
3209 // priority ordering implemented by the GNU linker, in which the
3210 // priority becomes part of the section name and the sections are
3211 // sorted by name.  We only do this for an output section if we see an
3212 // attached input section matching ".ctors.*", ".dtors.*",
3213 // ".init_array.*" or ".fini_array.*".
3214
3215 class Output_section::Input_section_sort_entry
3216 {
3217  public:
3218   Input_section_sort_entry()
3219     : input_section_(), index_(-1U), section_has_name_(false),
3220       section_name_()
3221   { }
3222
3223   Input_section_sort_entry(const Input_section& input_section,
3224                            unsigned int index,
3225                            bool must_sort_attached_input_sections)
3226     : input_section_(input_section), index_(index),
3227       section_has_name_(input_section.is_input_section()
3228                         || input_section.is_relaxed_input_section())
3229   {
3230     if (this->section_has_name_
3231         && must_sort_attached_input_sections)
3232       {
3233         // This is only called single-threaded from Layout::finalize,
3234         // so it is OK to lock.  Unfortunately we have no way to pass
3235         // in a Task token.
3236         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3237         Object* obj = (input_section.is_input_section()
3238                        ? input_section.relobj()
3239                        : input_section.relaxed_input_section()->relobj());
3240         Task_lock_obj<Object> tl(dummy_task, obj);
3241
3242         // This is a slow operation, which should be cached in
3243         // Layout::layout if this becomes a speed problem.
3244         this->section_name_ = obj->section_name(input_section.shndx());
3245       }
3246   }
3247
3248   // Return the Input_section.
3249   const Input_section&
3250   input_section() const
3251   {
3252     gold_assert(this->index_ != -1U);
3253     return this->input_section_;
3254   }
3255
3256   // The index of this entry in the original list.  This is used to
3257   // make the sort stable.
3258   unsigned int
3259   index() const
3260   {
3261     gold_assert(this->index_ != -1U);
3262     return this->index_;
3263   }
3264
3265   // Whether there is a section name.
3266   bool
3267   section_has_name() const
3268   { return this->section_has_name_; }
3269
3270   // The section name.
3271   const std::string&
3272   section_name() const
3273   {
3274     gold_assert(this->section_has_name_);
3275     return this->section_name_;
3276   }
3277
3278   // Return true if the section name has a priority.  This is assumed
3279   // to be true if it has a dot after the initial dot.
3280   bool
3281   has_priority() const
3282   {
3283     gold_assert(this->section_has_name_);
3284     return this->section_name_.find('.', 1) != std::string::npos;
3285   }
3286
3287   // Return the priority.  Believe it or not, gcc encodes the priority
3288   // differently for .ctors/.dtors and .init_array/.fini_array
3289   // sections.
3290   unsigned int
3291   get_priority() const
3292   {
3293     gold_assert(this->section_has_name_);
3294     bool is_ctors;
3295     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3296         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3297       is_ctors = true;
3298     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3299              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3300       is_ctors = false;
3301     else
3302       return 0;
3303     char* end;
3304     unsigned long prio = strtoul((this->section_name_.c_str()
3305                                   + (is_ctors ? 7 : 12)),
3306                                  &end, 10);
3307     if (*end != '\0')
3308       return 0;
3309     else if (is_ctors)
3310       return 65535 - prio;
3311     else
3312       return prio;
3313   }
3314
3315   // Return true if this an input file whose base name matches
3316   // FILE_NAME.  The base name must have an extension of ".o", and
3317   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3318   // This is to match crtbegin.o as well as crtbeginS.o without
3319   // getting confused by other possibilities.  Overall matching the
3320   // file name this way is a dreadful hack, but the GNU linker does it
3321   // in order to better support gcc, and we need to be compatible.
3322   bool
3323   match_file_name(const char* file_name) const
3324   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3325
3326   // Returns 1 if THIS should appear before S in section order, -1 if S
3327   // appears before THIS and 0 if they are not comparable.
3328   int
3329   compare_section_ordering(const Input_section_sort_entry& s) const
3330   {
3331     unsigned int this_secn_index = this->input_section_.section_order_index();
3332     unsigned int s_secn_index = s.input_section().section_order_index();
3333     if (this_secn_index > 0 && s_secn_index > 0)
3334       {
3335         if (this_secn_index < s_secn_index)
3336           return 1;
3337         else if (this_secn_index > s_secn_index)
3338           return -1;
3339       }
3340     return 0;
3341   }
3342
3343  private:
3344   // The Input_section we are sorting.
3345   Input_section input_section_;
3346   // The index of this Input_section in the original list.
3347   unsigned int index_;
3348   // Whether this Input_section has a section name--it won't if this
3349   // is some random Output_section_data.
3350   bool section_has_name_;
3351   // The section name if there is one.
3352   std::string section_name_;
3353 };
3354
3355 // Return true if S1 should come before S2 in the output section.
3356
3357 bool
3358 Output_section::Input_section_sort_compare::operator()(
3359     const Output_section::Input_section_sort_entry& s1,
3360     const Output_section::Input_section_sort_entry& s2) const
3361 {
3362   // crtbegin.o must come first.
3363   bool s1_begin = s1.match_file_name("crtbegin");
3364   bool s2_begin = s2.match_file_name("crtbegin");
3365   if (s1_begin || s2_begin)
3366     {
3367       if (!s1_begin)
3368         return false;
3369       if (!s2_begin)
3370         return true;
3371       return s1.index() < s2.index();
3372     }
3373
3374   // crtend.o must come last.
3375   bool s1_end = s1.match_file_name("crtend");
3376   bool s2_end = s2.match_file_name("crtend");
3377   if (s1_end || s2_end)
3378     {
3379       if (!s1_end)
3380         return true;
3381       if (!s2_end)
3382         return false;
3383       return s1.index() < s2.index();
3384     }
3385
3386   // We sort all the sections with no names to the end.
3387   if (!s1.section_has_name() || !s2.section_has_name())
3388     {
3389       if (s1.section_has_name())
3390         return true;
3391       if (s2.section_has_name())
3392         return false;
3393       return s1.index() < s2.index();
3394     }
3395
3396   // A section with a priority follows a section without a priority.
3397   bool s1_has_priority = s1.has_priority();
3398   bool s2_has_priority = s2.has_priority();
3399   if (s1_has_priority && !s2_has_priority)
3400     return false;
3401   if (!s1_has_priority && s2_has_priority)
3402     return true;
3403
3404   // Check if a section order exists for these sections through a section
3405   // ordering file.  If sequence_num is 0, an order does not exist.
3406   int sequence_num = s1.compare_section_ordering(s2);
3407   if (sequence_num != 0)
3408     return sequence_num == 1;
3409
3410   // Otherwise we sort by name.
3411   int compare = s1.section_name().compare(s2.section_name());
3412   if (compare != 0)
3413     return compare < 0;
3414
3415   // Otherwise we keep the input order.
3416   return s1.index() < s2.index();
3417 }
3418
3419 // Return true if S1 should come before S2 in an .init_array or .fini_array
3420 // output section.
3421
3422 bool
3423 Output_section::Input_section_sort_init_fini_compare::operator()(
3424     const Output_section::Input_section_sort_entry& s1,
3425     const Output_section::Input_section_sort_entry& s2) const
3426 {
3427   // We sort all the sections with no names to the end.
3428   if (!s1.section_has_name() || !s2.section_has_name())
3429     {
3430       if (s1.section_has_name())
3431         return true;
3432       if (s2.section_has_name())
3433         return false;
3434       return s1.index() < s2.index();
3435     }
3436
3437   // A section without a priority follows a section with a priority.
3438   // This is the reverse of .ctors and .dtors sections.
3439   bool s1_has_priority = s1.has_priority();
3440   bool s2_has_priority = s2.has_priority();
3441   if (s1_has_priority && !s2_has_priority)
3442     return true;
3443   if (!s1_has_priority && s2_has_priority)
3444     return false;
3445
3446   // .ctors and .dtors sections without priority come after
3447   // .init_array and .fini_array sections without priority.
3448   if (!s1_has_priority
3449       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3450       && s1.section_name() != s2.section_name())
3451     return false;
3452   if (!s2_has_priority
3453       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3454       && s2.section_name() != s1.section_name())
3455     return true;
3456
3457   // Sort by priority if we can.
3458   if (s1_has_priority)
3459     {
3460       unsigned int s1_prio = s1.get_priority();
3461       unsigned int s2_prio = s2.get_priority();
3462       if (s1_prio < s2_prio)
3463         return true;
3464       else if (s1_prio > s2_prio)
3465         return false;
3466     }
3467
3468   // Check if a section order exists for these sections through a section
3469   // ordering file.  If sequence_num is 0, an order does not exist.
3470   int sequence_num = s1.compare_section_ordering(s2);
3471   if (sequence_num != 0)
3472     return sequence_num == 1;
3473
3474   // Otherwise we sort by name.
3475   int compare = s1.section_name().compare(s2.section_name());
3476   if (compare != 0)
3477     return compare < 0;
3478
3479   // Otherwise we keep the input order.
3480   return s1.index() < s2.index();
3481 }
3482
3483 // Return true if S1 should come before S2.  Sections that do not match
3484 // any pattern in the section ordering file are placed ahead of the sections
3485 // that match some pattern.
3486
3487 bool
3488 Output_section::Input_section_sort_section_order_index_compare::operator()(
3489     const Output_section::Input_section_sort_entry& s1,
3490     const Output_section::Input_section_sort_entry& s2) const
3491 {
3492   unsigned int s1_secn_index = s1.input_section().section_order_index();
3493   unsigned int s2_secn_index = s2.input_section().section_order_index();
3494
3495   // Keep input order if section ordering cannot determine order.
3496   if (s1_secn_index == s2_secn_index)
3497     return s1.index() < s2.index();
3498   
3499   return s1_secn_index < s2_secn_index;
3500 }
3501
3502 // This updates the section order index of input sections according to the
3503 // the order specified in the mapping from Section id to order index.
3504
3505 void
3506 Output_section::update_section_layout(
3507   const Section_layout_order* order_map)
3508 {
3509   for (Input_section_list::iterator p = this->input_sections_.begin();
3510        p != this->input_sections_.end();
3511        ++p)
3512     {
3513       if (p->is_input_section()
3514           || p->is_relaxed_input_section())
3515         {
3516           Object* obj = (p->is_input_section()
3517                          ? p->relobj()
3518                          : p->relaxed_input_section()->relobj());
3519           unsigned int shndx = p->shndx();
3520           Section_layout_order::const_iterator it
3521             = order_map->find(Section_id(obj, shndx));
3522           if (it == order_map->end())
3523             continue;
3524           unsigned int section_order_index = it->second;
3525           if (section_order_index != 0)
3526             {
3527               p->set_section_order_index(section_order_index);
3528               this->set_input_section_order_specified();
3529             }
3530         }
3531     }
3532 }
3533
3534 // Sort the input sections attached to an output section.
3535
3536 void
3537 Output_section::sort_attached_input_sections()
3538 {
3539   if (this->attached_input_sections_are_sorted_)
3540     return;
3541
3542   if (this->checkpoint_ != NULL
3543       && !this->checkpoint_->input_sections_saved())
3544     this->checkpoint_->save_input_sections();
3545
3546   // The only thing we know about an input section is the object and
3547   // the section index.  We need the section name.  Recomputing this
3548   // is slow but this is an unusual case.  If this becomes a speed
3549   // problem we can cache the names as required in Layout::layout.
3550
3551   // We start by building a larger vector holding a copy of each
3552   // Input_section, plus its current index in the list and its name.
3553   std::vector<Input_section_sort_entry> sort_list;
3554
3555   unsigned int i = 0;
3556   for (Input_section_list::iterator p = this->input_sections_.begin();
3557        p != this->input_sections_.end();
3558        ++p, ++i)
3559       sort_list.push_back(Input_section_sort_entry(*p, i,
3560                             this->must_sort_attached_input_sections()));
3561
3562   // Sort the input sections.
3563   if (this->must_sort_attached_input_sections())
3564     {
3565       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3566           || this->type() == elfcpp::SHT_INIT_ARRAY
3567           || this->type() == elfcpp::SHT_FINI_ARRAY)
3568         std::sort(sort_list.begin(), sort_list.end(),
3569                   Input_section_sort_init_fini_compare());
3570       else
3571         std::sort(sort_list.begin(), sort_list.end(),
3572                   Input_section_sort_compare());
3573     }
3574   else
3575     {
3576       gold_assert(this->input_section_order_specified());
3577       std::sort(sort_list.begin(), sort_list.end(),
3578                 Input_section_sort_section_order_index_compare());
3579     }
3580
3581   // Copy the sorted input sections back to our list.
3582   this->input_sections_.clear();
3583   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3584        p != sort_list.end();
3585        ++p)
3586     this->input_sections_.push_back(p->input_section());
3587   sort_list.clear();
3588
3589   // Remember that we sorted the input sections, since we might get
3590   // called again.
3591   this->attached_input_sections_are_sorted_ = true;
3592 }
3593
3594 // Write the section header to *OSHDR.
3595
3596 template<int size, bool big_endian>
3597 void
3598 Output_section::write_header(const Layout* layout,
3599                              const Stringpool* secnamepool,
3600                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3601 {
3602   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3603   oshdr->put_sh_type(this->type_);
3604
3605   elfcpp::Elf_Xword flags = this->flags_;
3606   if (this->info_section_ != NULL && this->info_uses_section_index_)
3607     flags |= elfcpp::SHF_INFO_LINK;
3608   oshdr->put_sh_flags(flags);
3609
3610   oshdr->put_sh_addr(this->address());
3611   oshdr->put_sh_offset(this->offset());
3612   oshdr->put_sh_size(this->data_size());
3613   if (this->link_section_ != NULL)
3614     oshdr->put_sh_link(this->link_section_->out_shndx());
3615   else if (this->should_link_to_symtab_)
3616     oshdr->put_sh_link(layout->symtab_section_shndx());
3617   else if (this->should_link_to_dynsym_)
3618     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3619   else
3620     oshdr->put_sh_link(this->link_);
3621
3622   elfcpp::Elf_Word info;
3623   if (this->info_section_ != NULL)
3624     {
3625       if (this->info_uses_section_index_)
3626         info = this->info_section_->out_shndx();
3627       else
3628         info = this->info_section_->symtab_index();
3629     }
3630   else if (this->info_symndx_ != NULL)
3631     info = this->info_symndx_->symtab_index();
3632   else
3633     info = this->info_;
3634   oshdr->put_sh_info(info);
3635
3636   oshdr->put_sh_addralign(this->addralign_);
3637   oshdr->put_sh_entsize(this->entsize_);
3638 }
3639
3640 // Write out the data.  For input sections the data is written out by
3641 // Object::relocate, but we have to handle Output_section_data objects
3642 // here.
3643
3644 void
3645 Output_section::do_write(Output_file* of)
3646 {
3647   gold_assert(!this->requires_postprocessing());
3648
3649   // If the target performs relaxation, we delay filler generation until now.
3650   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3651
3652   off_t output_section_file_offset = this->offset();
3653   for (Fill_list::iterator p = this->fills_.begin();
3654        p != this->fills_.end();
3655        ++p)
3656     {
3657       std::string fill_data(parameters->target().code_fill(p->length()));
3658       of->write(output_section_file_offset + p->section_offset(),
3659                 fill_data.data(), fill_data.size());
3660     }
3661
3662   off_t off = this->offset() + this->first_input_offset_;
3663   for (Input_section_list::iterator p = this->input_sections_.begin();
3664        p != this->input_sections_.end();
3665        ++p)
3666     {
3667       off_t aligned_off = align_address(off, p->addralign());
3668       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3669         {
3670           size_t fill_len = aligned_off - off;
3671           std::string fill_data(parameters->target().code_fill(fill_len));
3672           of->write(off, fill_data.data(), fill_data.size());
3673         }
3674
3675       p->write(of);
3676       off = aligned_off + p->data_size();
3677     }
3678
3679   // For incremental links, fill in unused chunks in debug sections
3680   // with dummy compilation unit headers.
3681   if (this->free_space_fill_ != NULL)
3682     {
3683       for (Free_list::Const_iterator p = this->free_list_.begin();
3684            p != this->free_list_.end();
3685            ++p)
3686         {
3687           off_t off = p->start_;
3688           size_t len = p->end_ - off;
3689           this->free_space_fill_->write(of, this->offset() + off, len);
3690         }
3691       if (this->patch_space_ > 0)
3692         {
3693           off_t off = this->current_data_size_for_child() - this->patch_space_;
3694           this->free_space_fill_->write(of, this->offset() + off,
3695                                         this->patch_space_);
3696         }
3697     }
3698 }
3699
3700 // If a section requires postprocessing, create the buffer to use.
3701
3702 void
3703 Output_section::create_postprocessing_buffer()
3704 {
3705   gold_assert(this->requires_postprocessing());
3706
3707   if (this->postprocessing_buffer_ != NULL)
3708     return;
3709
3710   if (!this->input_sections_.empty())
3711     {
3712       off_t off = this->first_input_offset_;
3713       for (Input_section_list::iterator p = this->input_sections_.begin();
3714            p != this->input_sections_.end();
3715            ++p)
3716         {
3717           off = align_address(off, p->addralign());
3718           p->finalize_data_size();
3719           off += p->data_size();
3720         }
3721       this->set_current_data_size_for_child(off);
3722     }
3723
3724   off_t buffer_size = this->current_data_size_for_child();
3725   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3726 }
3727
3728 // Write all the data of an Output_section into the postprocessing
3729 // buffer.  This is used for sections which require postprocessing,
3730 // such as compression.  Input sections are handled by
3731 // Object::Relocate.
3732
3733 void
3734 Output_section::write_to_postprocessing_buffer()
3735 {
3736   gold_assert(this->requires_postprocessing());
3737
3738   // If the target performs relaxation, we delay filler generation until now.
3739   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3740
3741   unsigned char* buffer = this->postprocessing_buffer();
3742   for (Fill_list::iterator p = this->fills_.begin();
3743        p != this->fills_.end();
3744        ++p)
3745     {
3746       std::string fill_data(parameters->target().code_fill(p->length()));
3747       memcpy(buffer + p->section_offset(), fill_data.data(),
3748              fill_data.size());
3749     }
3750
3751   off_t off = this->first_input_offset_;
3752   for (Input_section_list::iterator p = this->input_sections_.begin();
3753        p != this->input_sections_.end();
3754        ++p)
3755     {
3756       off_t aligned_off = align_address(off, p->addralign());
3757       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3758         {
3759           size_t fill_len = aligned_off - off;
3760           std::string fill_data(parameters->target().code_fill(fill_len));
3761           memcpy(buffer + off, fill_data.data(), fill_data.size());
3762         }
3763
3764       p->write_to_buffer(buffer + aligned_off);
3765       off = aligned_off + p->data_size();
3766     }
3767 }
3768
3769 // Get the input sections for linker script processing.  We leave
3770 // behind the Output_section_data entries.  Note that this may be
3771 // slightly incorrect for merge sections.  We will leave them behind,
3772 // but it is possible that the script says that they should follow
3773 // some other input sections, as in:
3774 //    .rodata { *(.rodata) *(.rodata.cst*) }
3775 // For that matter, we don't handle this correctly:
3776 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3777 // With luck this will never matter.
3778
3779 uint64_t
3780 Output_section::get_input_sections(
3781     uint64_t address,
3782     const std::string& fill,
3783     std::list<Input_section>* input_sections)
3784 {
3785   if (this->checkpoint_ != NULL
3786       && !this->checkpoint_->input_sections_saved())
3787     this->checkpoint_->save_input_sections();
3788
3789   // Invalidate fast look-up maps.
3790   this->lookup_maps_->invalidate();
3791
3792   uint64_t orig_address = address;
3793
3794   address = align_address(address, this->addralign());
3795
3796   Input_section_list remaining;
3797   for (Input_section_list::iterator p = this->input_sections_.begin();
3798        p != this->input_sections_.end();
3799        ++p)
3800     {
3801       if (p->is_input_section()
3802           || p->is_relaxed_input_section()
3803           || p->is_merge_section())
3804         input_sections->push_back(*p);
3805       else
3806         {
3807           uint64_t aligned_address = align_address(address, p->addralign());
3808           if (aligned_address != address && !fill.empty())
3809             {
3810               section_size_type length =
3811                 convert_to_section_size_type(aligned_address - address);
3812               std::string this_fill;
3813               this_fill.reserve(length);
3814               while (this_fill.length() + fill.length() <= length)
3815                 this_fill += fill;
3816               if (this_fill.length() < length)
3817                 this_fill.append(fill, 0, length - this_fill.length());
3818
3819               Output_section_data* posd = new Output_data_const(this_fill, 0);
3820               remaining.push_back(Input_section(posd));
3821             }
3822           address = aligned_address;
3823
3824           remaining.push_back(*p);
3825
3826           p->finalize_data_size();
3827           address += p->data_size();
3828         }
3829     }
3830
3831   this->input_sections_.swap(remaining);
3832   this->first_input_offset_ = 0;
3833
3834   uint64_t data_size = address - orig_address;
3835   this->set_current_data_size_for_child(data_size);
3836   return data_size;
3837 }
3838
3839 // Add a script input section.  SIS is an Output_section::Input_section,
3840 // which can be either a plain input section or a special input section like
3841 // a relaxed input section.  For a special input section, its size must be
3842 // finalized.
3843
3844 void
3845 Output_section::add_script_input_section(const Input_section& sis)
3846 {
3847   uint64_t data_size = sis.data_size();
3848   uint64_t addralign = sis.addralign();
3849   if (addralign > this->addralign_)
3850     this->addralign_ = addralign;
3851
3852   off_t offset_in_section = this->current_data_size_for_child();
3853   off_t aligned_offset_in_section = align_address(offset_in_section,
3854                                                   addralign);
3855
3856   this->set_current_data_size_for_child(aligned_offset_in_section
3857                                         + data_size);
3858
3859   this->input_sections_.push_back(sis);
3860
3861   // Update fast lookup maps if necessary. 
3862   if (this->lookup_maps_->is_valid())
3863     {
3864       if (sis.is_merge_section())
3865         {
3866           Output_merge_base* pomb = sis.output_merge_base();
3867           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3868                                        pomb->addralign());
3869           this->lookup_maps_->add_merge_section(msp, pomb);
3870           for (Output_merge_base::Input_sections::const_iterator p =
3871                  pomb->input_sections_begin();
3872                p != pomb->input_sections_end();
3873                ++p)
3874             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3875                                                         pomb);
3876         }
3877       else if (sis.is_relaxed_input_section())
3878         {
3879           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3880           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3881                                                         poris->shndx(), poris);
3882         }
3883     }
3884 }
3885
3886 // Save states for relaxation.
3887
3888 void
3889 Output_section::save_states()
3890 {
3891   gold_assert(this->checkpoint_ == NULL);
3892   Checkpoint_output_section* checkpoint =
3893     new Checkpoint_output_section(this->addralign_, this->flags_,
3894                                   this->input_sections_,
3895                                   this->first_input_offset_,
3896                                   this->attached_input_sections_are_sorted_);
3897   this->checkpoint_ = checkpoint;
3898   gold_assert(this->fills_.empty());
3899 }
3900
3901 void
3902 Output_section::discard_states()
3903 {
3904   gold_assert(this->checkpoint_ != NULL);
3905   delete this->checkpoint_;
3906   this->checkpoint_ = NULL;
3907   gold_assert(this->fills_.empty());
3908
3909   // Simply invalidate the fast lookup maps since we do not keep
3910   // track of them.
3911   this->lookup_maps_->invalidate();
3912 }
3913
3914 void
3915 Output_section::restore_states()
3916 {
3917   gold_assert(this->checkpoint_ != NULL);
3918   Checkpoint_output_section* checkpoint = this->checkpoint_;
3919
3920   this->addralign_ = checkpoint->addralign();
3921   this->flags_ = checkpoint->flags();
3922   this->first_input_offset_ = checkpoint->first_input_offset();
3923
3924   if (!checkpoint->input_sections_saved())
3925     {
3926       // If we have not copied the input sections, just resize it.
3927       size_t old_size = checkpoint->input_sections_size();
3928       gold_assert(this->input_sections_.size() >= old_size);
3929       this->input_sections_.resize(old_size);
3930     }
3931   else
3932     {
3933       // We need to copy the whole list.  This is not efficient for
3934       // extremely large output with hundreads of thousands of input
3935       // objects.  We may need to re-think how we should pass sections
3936       // to scripts.
3937       this->input_sections_ = *checkpoint->input_sections();
3938     }
3939
3940   this->attached_input_sections_are_sorted_ =
3941     checkpoint->attached_input_sections_are_sorted();
3942
3943   // Simply invalidate the fast lookup maps since we do not keep
3944   // track of them.
3945   this->lookup_maps_->invalidate();
3946 }
3947
3948 // Update the section offsets of input sections in this.  This is required if
3949 // relaxation causes some input sections to change sizes.
3950
3951 void
3952 Output_section::adjust_section_offsets()
3953 {
3954   if (!this->section_offsets_need_adjustment_)
3955     return;
3956
3957   off_t off = 0;
3958   for (Input_section_list::iterator p = this->input_sections_.begin();
3959        p != this->input_sections_.end();
3960        ++p)
3961     {
3962       off = align_address(off, p->addralign());
3963       if (p->is_input_section())
3964         p->relobj()->set_section_offset(p->shndx(), off);
3965       off += p->data_size();
3966     }
3967
3968   this->section_offsets_need_adjustment_ = false;
3969 }
3970
3971 // Print to the map file.
3972
3973 void
3974 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3975 {
3976   mapfile->print_output_section(this);
3977
3978   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3979        p != this->input_sections_.end();
3980        ++p)
3981     p->print_to_mapfile(mapfile);
3982 }
3983
3984 // Print stats for merge sections to stderr.
3985
3986 void
3987 Output_section::print_merge_stats()
3988 {
3989   Input_section_list::iterator p;
3990   for (p = this->input_sections_.begin();
3991        p != this->input_sections_.end();
3992        ++p)
3993     p->print_merge_stats(this->name_);
3994 }
3995
3996 // Set a fixed layout for the section.  Used for incremental update links.
3997
3998 void
3999 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4000                                  off_t sh_size, uint64_t sh_addralign)
4001 {
4002   this->addralign_ = sh_addralign;
4003   this->set_current_data_size(sh_size);
4004   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4005     this->set_address(sh_addr);
4006   this->set_file_offset(sh_offset);
4007   this->finalize_data_size();
4008   this->free_list_.init(sh_size, false);
4009   this->has_fixed_layout_ = true;
4010 }
4011
4012 // Reserve space within the fixed layout for the section.  Used for
4013 // incremental update links.
4014
4015 void
4016 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4017 {
4018   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4019 }
4020
4021 // Allocate space from the free list for the section.  Used for
4022 // incremental update links.
4023
4024 off_t
4025 Output_section::allocate(off_t len, uint64_t addralign)
4026 {
4027   return this->free_list_.allocate(len, addralign, 0);
4028 }
4029
4030 // Output segment methods.
4031
4032 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4033   : vaddr_(0),
4034     paddr_(0),
4035     memsz_(0),
4036     max_align_(0),
4037     min_p_align_(0),
4038     offset_(0),
4039     filesz_(0),
4040     type_(type),
4041     flags_(flags),
4042     is_max_align_known_(false),
4043     are_addresses_set_(false),
4044     is_large_data_segment_(false),
4045     is_unique_segment_(false)
4046 {
4047   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4048   // the flags.
4049   if (type == elfcpp::PT_TLS)
4050     this->flags_ = elfcpp::PF_R;
4051 }
4052
4053 // Add an Output_section to a PT_LOAD Output_segment.
4054
4055 void
4056 Output_segment::add_output_section_to_load(Layout* layout,
4057                                            Output_section* os,
4058                                            elfcpp::Elf_Word seg_flags)
4059 {
4060   gold_assert(this->type() == elfcpp::PT_LOAD);
4061   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4062   gold_assert(!this->is_max_align_known_);
4063   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4064
4065   this->update_flags_for_output_section(seg_flags);
4066
4067   // We don't want to change the ordering if we have a linker script
4068   // with a SECTIONS clause.
4069   Output_section_order order = os->order();
4070   if (layout->script_options()->saw_sections_clause())
4071     order = static_cast<Output_section_order>(0);
4072   else
4073     gold_assert(order != ORDER_INVALID);
4074
4075   this->output_lists_[order].push_back(os);
4076 }
4077
4078 // Add an Output_section to a non-PT_LOAD Output_segment.
4079
4080 void
4081 Output_segment::add_output_section_to_nonload(Output_section* os,
4082                                               elfcpp::Elf_Word seg_flags)
4083 {
4084   gold_assert(this->type() != elfcpp::PT_LOAD);
4085   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4086   gold_assert(!this->is_max_align_known_);
4087
4088   this->update_flags_for_output_section(seg_flags);
4089
4090   this->output_lists_[0].push_back(os);
4091 }
4092
4093 // Remove an Output_section from this segment.  It is an error if it
4094 // is not present.
4095
4096 void
4097 Output_segment::remove_output_section(Output_section* os)
4098 {
4099   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4100     {
4101       Output_data_list* pdl = &this->output_lists_[i];
4102       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4103         {
4104           if (*p == os)
4105             {
4106               pdl->erase(p);
4107               return;
4108             }
4109         }
4110     }
4111   gold_unreachable();
4112 }
4113
4114 // Add an Output_data (which need not be an Output_section) to the
4115 // start of a segment.
4116
4117 void
4118 Output_segment::add_initial_output_data(Output_data* od)
4119 {
4120   gold_assert(!this->is_max_align_known_);
4121   Output_data_list::iterator p = this->output_lists_[0].begin();
4122   this->output_lists_[0].insert(p, od);
4123 }
4124
4125 // Return true if this segment has any sections which hold actual
4126 // data, rather than being a BSS section.
4127
4128 bool
4129 Output_segment::has_any_data_sections() const
4130 {
4131   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4132     {
4133       const Output_data_list* pdl = &this->output_lists_[i];
4134       for (Output_data_list::const_iterator p = pdl->begin();
4135            p != pdl->end();
4136            ++p)
4137         {
4138           if (!(*p)->is_section())
4139             return true;
4140           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4141             return true;
4142         }
4143     }
4144   return false;
4145 }
4146
4147 // Return whether the first data section (not counting TLS sections)
4148 // is a relro section.
4149
4150 bool
4151 Output_segment::is_first_section_relro() const
4152 {
4153   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4154     {
4155       if (i == static_cast<int>(ORDER_TLS_DATA)
4156           || i == static_cast<int>(ORDER_TLS_BSS))
4157         continue;
4158       const Output_data_list* pdl = &this->output_lists_[i];
4159       if (!pdl->empty())
4160         {
4161           Output_data* p = pdl->front();
4162           return p->is_section() && p->output_section()->is_relro();
4163         }
4164     }
4165   return false;
4166 }
4167
4168 // Return the maximum alignment of the Output_data in Output_segment.
4169
4170 uint64_t
4171 Output_segment::maximum_alignment()
4172 {
4173   if (!this->is_max_align_known_)
4174     {
4175       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4176         {       
4177           const Output_data_list* pdl = &this->output_lists_[i];
4178           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4179           if (addralign > this->max_align_)
4180             this->max_align_ = addralign;
4181         }
4182       this->is_max_align_known_ = true;
4183     }
4184
4185   return this->max_align_;
4186 }
4187
4188 // Return the maximum alignment of a list of Output_data.
4189
4190 uint64_t
4191 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4192 {
4193   uint64_t ret = 0;
4194   for (Output_data_list::const_iterator p = pdl->begin();
4195        p != pdl->end();
4196        ++p)
4197     {
4198       uint64_t addralign = (*p)->addralign();
4199       if (addralign > ret)
4200         ret = addralign;
4201     }
4202   return ret;
4203 }
4204
4205 // Return whether this segment has any dynamic relocs.
4206
4207 bool
4208 Output_segment::has_dynamic_reloc() const
4209 {
4210   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4211     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4212       return true;
4213   return false;
4214 }
4215
4216 // Return whether this Output_data_list has any dynamic relocs.
4217
4218 bool
4219 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4220 {
4221   for (Output_data_list::const_iterator p = pdl->begin();
4222        p != pdl->end();
4223        ++p)
4224     if ((*p)->has_dynamic_reloc())
4225       return true;
4226   return false;
4227 }
4228
4229 // Set the section addresses for an Output_segment.  If RESET is true,
4230 // reset the addresses first.  ADDR is the address and *POFF is the
4231 // file offset.  Set the section indexes starting with *PSHNDX.
4232 // INCREASE_RELRO is the size of the portion of the first non-relro
4233 // section that should be included in the PT_GNU_RELRO segment.
4234 // If this segment has relro sections, and has been aligned for
4235 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4236 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4237 // and *PSHNDX.
4238
4239 uint64_t
4240 Output_segment::set_section_addresses(Layout* layout, bool reset,
4241                                       uint64_t addr,
4242                                       unsigned int* increase_relro,
4243                                       bool* has_relro,
4244                                       off_t* poff,
4245                                       unsigned int* pshndx)
4246 {
4247   gold_assert(this->type_ == elfcpp::PT_LOAD);
4248
4249   uint64_t last_relro_pad = 0;
4250   off_t orig_off = *poff;
4251
4252   bool in_tls = false;
4253
4254   // If we have relro sections, we need to pad forward now so that the
4255   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4256   if (parameters->options().relro()
4257       && this->is_first_section_relro()
4258       && (!this->are_addresses_set_ || reset))
4259     {
4260       uint64_t relro_size = 0;
4261       off_t off = *poff;
4262       uint64_t max_align = 0;
4263       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4264         {
4265           Output_data_list* pdl = &this->output_lists_[i];
4266           Output_data_list::iterator p;
4267           for (p = pdl->begin(); p != pdl->end(); ++p)
4268             {
4269               if (!(*p)->is_section())
4270                 break;
4271               uint64_t align = (*p)->addralign();
4272               if (align > max_align)
4273                 max_align = align;
4274               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4275                 in_tls = true;
4276               else if (in_tls)
4277                 {
4278                   // Align the first non-TLS section to the alignment
4279                   // of the TLS segment.
4280                   align = max_align;
4281                   in_tls = false;
4282                 }
4283               relro_size = align_address(relro_size, align);
4284               // Ignore the size of the .tbss section.
4285               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4286                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4287                 continue;
4288               if ((*p)->is_address_valid())
4289                 relro_size += (*p)->data_size();
4290               else
4291                 {
4292                   // FIXME: This could be faster.
4293                   (*p)->set_address_and_file_offset(addr + relro_size,
4294                                                     off + relro_size);
4295                   relro_size += (*p)->data_size();
4296                   (*p)->reset_address_and_file_offset();
4297                 }
4298             }
4299           if (p != pdl->end())
4300             break;
4301         }
4302       relro_size += *increase_relro;
4303       // Pad the total relro size to a multiple of the maximum
4304       // section alignment seen.
4305       uint64_t aligned_size = align_address(relro_size, max_align);
4306       // Note the amount of padding added after the last relro section.
4307       last_relro_pad = aligned_size - relro_size;
4308       *has_relro = true;
4309
4310       uint64_t page_align = parameters->target().abi_pagesize();
4311
4312       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4313       uint64_t desired_align = page_align - (aligned_size % page_align);
4314       if (desired_align < *poff % page_align)
4315         *poff += page_align - *poff % page_align;
4316       *poff += desired_align - *poff % page_align;
4317       addr += *poff - orig_off;
4318       orig_off = *poff;
4319     }
4320
4321   if (!reset && this->are_addresses_set_)
4322     {
4323       gold_assert(this->paddr_ == addr);
4324       addr = this->vaddr_;
4325     }
4326   else
4327     {
4328       this->vaddr_ = addr;
4329       this->paddr_ = addr;
4330       this->are_addresses_set_ = true;
4331     }
4332
4333   in_tls = false;
4334
4335   this->offset_ = orig_off;
4336
4337   off_t off = 0;
4338   uint64_t ret;
4339   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4340     {
4341       if (i == static_cast<int>(ORDER_RELRO_LAST))
4342         {
4343           *poff += last_relro_pad;
4344           addr += last_relro_pad;
4345           if (this->output_lists_[i].empty())
4346             {
4347               // If there is nothing in the ORDER_RELRO_LAST list,
4348               // the padding will occur at the end of the relro
4349               // segment, and we need to add it to *INCREASE_RELRO.
4350               *increase_relro += last_relro_pad;
4351             }
4352         }
4353       addr = this->set_section_list_addresses(layout, reset,
4354                                               &this->output_lists_[i],
4355                                               addr, poff, pshndx, &in_tls);
4356       if (i < static_cast<int>(ORDER_SMALL_BSS))
4357         {
4358           this->filesz_ = *poff - orig_off;
4359           off = *poff;
4360         }
4361
4362       ret = addr;
4363     }
4364
4365   // If the last section was a TLS section, align upward to the
4366   // alignment of the TLS segment, so that the overall size of the TLS
4367   // segment is aligned.
4368   if (in_tls)
4369     {
4370       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4371       *poff = align_address(*poff, segment_align);
4372     }
4373
4374   this->memsz_ = *poff - orig_off;
4375
4376   // Ignore the file offset adjustments made by the BSS Output_data
4377   // objects.
4378   *poff = off;
4379
4380   return ret;
4381 }
4382
4383 // Set the addresses and file offsets in a list of Output_data
4384 // structures.
4385
4386 uint64_t
4387 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4388                                            Output_data_list* pdl,
4389                                            uint64_t addr, off_t* poff,
4390                                            unsigned int* pshndx,
4391                                            bool* in_tls)
4392 {
4393   off_t startoff = *poff;
4394   // For incremental updates, we may allocate non-fixed sections from
4395   // free space in the file.  This keeps track of the high-water mark.
4396   off_t maxoff = startoff;
4397
4398   off_t off = startoff;
4399   for (Output_data_list::iterator p = pdl->begin();
4400        p != pdl->end();
4401        ++p)
4402     {
4403       if (reset)
4404         (*p)->reset_address_and_file_offset();
4405
4406       // When doing an incremental update or when using a linker script,
4407       // the section will most likely already have an address.
4408       if (!(*p)->is_address_valid())
4409         {
4410           uint64_t align = (*p)->addralign();
4411
4412           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4413             {
4414               // Give the first TLS section the alignment of the
4415               // entire TLS segment.  Otherwise the TLS segment as a
4416               // whole may be misaligned.
4417               if (!*in_tls)
4418                 {
4419                   Output_segment* tls_segment = layout->tls_segment();
4420                   gold_assert(tls_segment != NULL);
4421                   uint64_t segment_align = tls_segment->maximum_alignment();
4422                   gold_assert(segment_align >= align);
4423                   align = segment_align;
4424
4425                   *in_tls = true;
4426                 }
4427             }
4428           else
4429             {
4430               // If this is the first section after the TLS segment,
4431               // align it to at least the alignment of the TLS
4432               // segment, so that the size of the overall TLS segment
4433               // is aligned.
4434               if (*in_tls)
4435                 {
4436                   uint64_t segment_align =
4437                       layout->tls_segment()->maximum_alignment();
4438                   if (segment_align > align)
4439                     align = segment_align;
4440
4441                   *in_tls = false;
4442                 }
4443             }
4444
4445           if (!parameters->incremental_update())
4446             {
4447               off = align_address(off, align);
4448               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4449             }
4450           else
4451             {
4452               // Incremental update: allocate file space from free list.
4453               (*p)->pre_finalize_data_size();
4454               off_t current_size = (*p)->current_data_size();
4455               off = layout->allocate(current_size, align, startoff);
4456               if (off == -1)
4457                 {
4458                   gold_assert((*p)->output_section() != NULL);
4459                   gold_fallback(_("out of patch space for section %s; "
4460                                   "relink with --incremental-full"),
4461                                 (*p)->output_section()->name());
4462                 }
4463               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4464               if ((*p)->data_size() > current_size)
4465                 {
4466                   gold_assert((*p)->output_section() != NULL);
4467                   gold_fallback(_("%s: section changed size; "
4468                                   "relink with --incremental-full"),
4469                                 (*p)->output_section()->name());
4470                 }
4471             }
4472         }
4473       else if (parameters->incremental_update())
4474         {
4475           // For incremental updates, use the fixed offset for the
4476           // high-water mark computation.
4477           off = (*p)->offset();
4478         }
4479       else
4480         {
4481           // The script may have inserted a skip forward, but it
4482           // better not have moved backward.
4483           if ((*p)->address() >= addr + (off - startoff))
4484             off += (*p)->address() - (addr + (off - startoff));
4485           else
4486             {
4487               if (!layout->script_options()->saw_sections_clause())
4488                 gold_unreachable();
4489               else
4490                 {
4491                   Output_section* os = (*p)->output_section();
4492
4493                   // Cast to unsigned long long to avoid format warnings.
4494                   unsigned long long previous_dot =
4495                     static_cast<unsigned long long>(addr + (off - startoff));
4496                   unsigned long long dot =
4497                     static_cast<unsigned long long>((*p)->address());
4498
4499                   if (os == NULL)
4500                     gold_error(_("dot moves backward in linker script "
4501                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4502                   else
4503                     gold_error(_("address of section '%s' moves backward "
4504                                  "from 0x%llx to 0x%llx"),
4505                                os->name(), previous_dot, dot);
4506                 }
4507             }
4508           (*p)->set_file_offset(off);
4509           (*p)->finalize_data_size();
4510         }
4511
4512       if (parameters->incremental_update())
4513         gold_debug(DEBUG_INCREMENTAL,
4514                    "set_section_list_addresses: %08lx %08lx %s",
4515                    static_cast<long>(off),
4516                    static_cast<long>((*p)->data_size()),
4517                    ((*p)->output_section() != NULL
4518                     ? (*p)->output_section()->name() : "(special)"));
4519
4520       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4521       // section.  Such a section does not affect the size of a
4522       // PT_LOAD segment.
4523       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4524           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4525         off += (*p)->data_size();
4526
4527       if (off > maxoff)
4528         maxoff = off;
4529
4530       if ((*p)->is_section())
4531         {
4532           (*p)->set_out_shndx(*pshndx);
4533           ++*pshndx;
4534         }
4535     }
4536
4537   *poff = maxoff;
4538   return addr + (maxoff - startoff);
4539 }
4540
4541 // For a non-PT_LOAD segment, set the offset from the sections, if
4542 // any.  Add INCREASE to the file size and the memory size.
4543
4544 void
4545 Output_segment::set_offset(unsigned int increase)
4546 {
4547   gold_assert(this->type_ != elfcpp::PT_LOAD);
4548
4549   gold_assert(!this->are_addresses_set_);
4550
4551   // A non-load section only uses output_lists_[0].
4552
4553   Output_data_list* pdl = &this->output_lists_[0];
4554
4555   if (pdl->empty())
4556     {
4557       gold_assert(increase == 0);
4558       this->vaddr_ = 0;
4559       this->paddr_ = 0;
4560       this->are_addresses_set_ = true;
4561       this->memsz_ = 0;
4562       this->min_p_align_ = 0;
4563       this->offset_ = 0;
4564       this->filesz_ = 0;
4565       return;
4566     }
4567
4568   // Find the first and last section by address.
4569   const Output_data* first = NULL;
4570   const Output_data* last_data = NULL;
4571   const Output_data* last_bss = NULL;
4572   for (Output_data_list::const_iterator p = pdl->begin();
4573        p != pdl->end();
4574        ++p)
4575     {
4576       if (first == NULL
4577           || (*p)->address() < first->address()
4578           || ((*p)->address() == first->address()
4579               && (*p)->data_size() < first->data_size()))
4580         first = *p;
4581       const Output_data** plast;
4582       if ((*p)->is_section()
4583           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4584         plast = &last_bss;
4585       else
4586         plast = &last_data;
4587       if (*plast == NULL
4588           || (*p)->address() > (*plast)->address()
4589           || ((*p)->address() == (*plast)->address()
4590               && (*p)->data_size() > (*plast)->data_size()))
4591         *plast = *p;
4592     }
4593
4594   this->vaddr_ = first->address();
4595   this->paddr_ = (first->has_load_address()
4596                   ? first->load_address()
4597                   : this->vaddr_);
4598   this->are_addresses_set_ = true;
4599   this->offset_ = first->offset();
4600
4601   if (last_data == NULL)
4602     this->filesz_ = 0;
4603   else
4604     this->filesz_ = (last_data->address()
4605                      + last_data->data_size()
4606                      - this->vaddr_);
4607
4608   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4609   this->memsz_ = (last->address()
4610                   + last->data_size()
4611                   - this->vaddr_);
4612
4613   this->filesz_ += increase;
4614   this->memsz_ += increase;
4615
4616   // If this is a RELRO segment, verify that the segment ends at a
4617   // page boundary.
4618   if (this->type_ == elfcpp::PT_GNU_RELRO)
4619     {
4620       uint64_t page_align = parameters->target().abi_pagesize();
4621       uint64_t segment_end = this->vaddr_ + this->memsz_;
4622       if (parameters->incremental_update())
4623         {
4624           // The INCREASE_RELRO calculation is bypassed for an incremental
4625           // update, so we need to adjust the segment size manually here.
4626           segment_end = align_address(segment_end, page_align);
4627           this->memsz_ = segment_end - this->vaddr_;
4628         }
4629       else
4630         gold_assert(segment_end == align_address(segment_end, page_align));
4631     }
4632
4633   // If this is a TLS segment, align the memory size.  The code in
4634   // set_section_list ensures that the section after the TLS segment
4635   // is aligned to give us room.
4636   if (this->type_ == elfcpp::PT_TLS)
4637     {
4638       uint64_t segment_align = this->maximum_alignment();
4639       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4640       this->memsz_ = align_address(this->memsz_, segment_align);
4641     }
4642 }
4643
4644 // Set the TLS offsets of the sections in the PT_TLS segment.
4645
4646 void
4647 Output_segment::set_tls_offsets()
4648 {
4649   gold_assert(this->type_ == elfcpp::PT_TLS);
4650
4651   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4652        p != this->output_lists_[0].end();
4653        ++p)
4654     (*p)->set_tls_offset(this->vaddr_);
4655 }
4656
4657 // Return the first section.
4658
4659 Output_section*
4660 Output_segment::first_section() const
4661 {
4662   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4663     {
4664       const Output_data_list* pdl = &this->output_lists_[i];
4665       for (Output_data_list::const_iterator p = pdl->begin();
4666            p != pdl->end();
4667            ++p)
4668         {
4669           if ((*p)->is_section())
4670             return (*p)->output_section();
4671         }
4672     }
4673   gold_unreachable();
4674 }
4675
4676 // Return the number of Output_sections in an Output_segment.
4677
4678 unsigned int
4679 Output_segment::output_section_count() const
4680 {
4681   unsigned int ret = 0;
4682   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4683     ret += this->output_section_count_list(&this->output_lists_[i]);
4684   return ret;
4685 }
4686
4687 // Return the number of Output_sections in an Output_data_list.
4688
4689 unsigned int
4690 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4691 {
4692   unsigned int count = 0;
4693   for (Output_data_list::const_iterator p = pdl->begin();
4694        p != pdl->end();
4695        ++p)
4696     {
4697       if ((*p)->is_section())
4698         ++count;
4699     }
4700   return count;
4701 }
4702
4703 // Return the section attached to the list segment with the lowest
4704 // load address.  This is used when handling a PHDRS clause in a
4705 // linker script.
4706
4707 Output_section*
4708 Output_segment::section_with_lowest_load_address() const
4709 {
4710   Output_section* found = NULL;
4711   uint64_t found_lma = 0;
4712   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4713     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4714                                       &found_lma);
4715   return found;
4716 }
4717
4718 // Look through a list for a section with a lower load address.
4719
4720 void
4721 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4722                                             Output_section** found,
4723                                             uint64_t* found_lma) const
4724 {
4725   for (Output_data_list::const_iterator p = pdl->begin();
4726        p != pdl->end();
4727        ++p)
4728     {
4729       if (!(*p)->is_section())
4730         continue;
4731       Output_section* os = static_cast<Output_section*>(*p);
4732       uint64_t lma = (os->has_load_address()
4733                       ? os->load_address()
4734                       : os->address());
4735       if (*found == NULL || lma < *found_lma)
4736         {
4737           *found = os;
4738           *found_lma = lma;
4739         }
4740     }
4741 }
4742
4743 // Write the segment data into *OPHDR.
4744
4745 template<int size, bool big_endian>
4746 void
4747 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4748 {
4749   ophdr->put_p_type(this->type_);
4750   ophdr->put_p_offset(this->offset_);
4751   ophdr->put_p_vaddr(this->vaddr_);
4752   ophdr->put_p_paddr(this->paddr_);
4753   ophdr->put_p_filesz(this->filesz_);
4754   ophdr->put_p_memsz(this->memsz_);
4755   ophdr->put_p_flags(this->flags_);
4756   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4757 }
4758
4759 // Write the section headers into V.
4760
4761 template<int size, bool big_endian>
4762 unsigned char*
4763 Output_segment::write_section_headers(const Layout* layout,
4764                                       const Stringpool* secnamepool,
4765                                       unsigned char* v,
4766                                       unsigned int* pshndx) const
4767 {
4768   // Every section that is attached to a segment must be attached to a
4769   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4770   // segments.
4771   if (this->type_ != elfcpp::PT_LOAD)
4772     return v;
4773
4774   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4775     {
4776       const Output_data_list* pdl = &this->output_lists_[i];
4777       v = this->write_section_headers_list<size, big_endian>(layout,
4778                                                              secnamepool,
4779                                                              pdl,
4780                                                              v, pshndx);
4781     }
4782
4783   return v;
4784 }
4785
4786 template<int size, bool big_endian>
4787 unsigned char*
4788 Output_segment::write_section_headers_list(const Layout* layout,
4789                                            const Stringpool* secnamepool,
4790                                            const Output_data_list* pdl,
4791                                            unsigned char* v,
4792                                            unsigned int* pshndx) const
4793 {
4794   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4795   for (Output_data_list::const_iterator p = pdl->begin();
4796        p != pdl->end();
4797        ++p)
4798     {
4799       if ((*p)->is_section())
4800         {
4801           const Output_section* ps = static_cast<const Output_section*>(*p);
4802           gold_assert(*pshndx == ps->out_shndx());
4803           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4804           ps->write_header(layout, secnamepool, &oshdr);
4805           v += shdr_size;
4806           ++*pshndx;
4807         }
4808     }
4809   return v;
4810 }
4811
4812 // Print the output sections to the map file.
4813
4814 void
4815 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4816 {
4817   if (this->type() != elfcpp::PT_LOAD)
4818     return;
4819   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4820     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4821 }
4822
4823 // Print an output section list to the map file.
4824
4825 void
4826 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4827                                               const Output_data_list* pdl) const
4828 {
4829   for (Output_data_list::const_iterator p = pdl->begin();
4830        p != pdl->end();
4831        ++p)
4832     (*p)->print_to_mapfile(mapfile);
4833 }
4834
4835 // Output_file methods.
4836
4837 Output_file::Output_file(const char* name)
4838   : name_(name),
4839     o_(-1),
4840     file_size_(0),
4841     base_(NULL),
4842     map_is_anonymous_(false),
4843     map_is_allocated_(false),
4844     is_temporary_(false)
4845 {
4846 }
4847
4848 // Try to open an existing file.  Returns false if the file doesn't
4849 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4850 // NULL, open that file as the base for incremental linking, and
4851 // copy its contents to the new output file.  This routine can
4852 // be called for incremental updates, in which case WRITABLE should
4853 // be true, or by the incremental-dump utility, in which case
4854 // WRITABLE should be false.
4855
4856 bool
4857 Output_file::open_base_file(const char* base_name, bool writable)
4858 {
4859   // The name "-" means "stdout".
4860   if (strcmp(this->name_, "-") == 0)
4861     return false;
4862
4863   bool use_base_file = base_name != NULL;
4864   if (!use_base_file)
4865     base_name = this->name_;
4866   else if (strcmp(base_name, this->name_) == 0)
4867     gold_fatal(_("%s: incremental base and output file name are the same"),
4868                base_name);
4869
4870   // Don't bother opening files with a size of zero.
4871   struct stat s;
4872   if (::stat(base_name, &s) != 0)
4873     {
4874       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4875       return false;
4876     }
4877   if (s.st_size == 0)
4878     {
4879       gold_info(_("%s: incremental base file is empty"), base_name);
4880       return false;
4881     }
4882
4883   // If we're using a base file, we want to open it read-only.
4884   if (use_base_file)
4885     writable = false;
4886
4887   int oflags = writable ? O_RDWR : O_RDONLY;
4888   int o = open_descriptor(-1, base_name, oflags, 0);
4889   if (o < 0)
4890     {
4891       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4892       return false;
4893     }
4894
4895   // If the base file and the output file are different, open a
4896   // new output file and read the contents from the base file into
4897   // the newly-mapped region.
4898   if (use_base_file)
4899     {
4900       this->open(s.st_size);
4901       ssize_t bytes_to_read = s.st_size;
4902       unsigned char* p = this->base_;
4903       while (bytes_to_read > 0)
4904         {
4905           ssize_t len = ::read(o, p, bytes_to_read);
4906           if (len < 0)
4907             {
4908               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4909               return false;
4910             }
4911           if (len == 0)
4912             {
4913               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4914                         base_name,
4915                         static_cast<long long>(s.st_size - bytes_to_read),
4916                         static_cast<long long>(s.st_size));
4917               return false;
4918             }
4919           p += len;
4920           bytes_to_read -= len;
4921         }
4922       ::close(o);
4923       return true;
4924     }
4925
4926   this->o_ = o;
4927   this->file_size_ = s.st_size;
4928
4929   if (!this->map_no_anonymous(writable))
4930     {
4931       release_descriptor(o, true);
4932       this->o_ = -1;
4933       this->file_size_ = 0;
4934       return false;
4935     }
4936
4937   return true;
4938 }
4939
4940 // Open the output file.
4941
4942 void
4943 Output_file::open(off_t file_size)
4944 {
4945   this->file_size_ = file_size;
4946
4947   // Unlink the file first; otherwise the open() may fail if the file
4948   // is busy (e.g. it's an executable that's currently being executed).
4949   //
4950   // However, the linker may be part of a system where a zero-length
4951   // file is created for it to write to, with tight permissions (gcc
4952   // 2.95 did something like this).  Unlinking the file would work
4953   // around those permission controls, so we only unlink if the file
4954   // has a non-zero size.  We also unlink only regular files to avoid
4955   // trouble with directories/etc.
4956   //
4957   // If we fail, continue; this command is merely a best-effort attempt
4958   // to improve the odds for open().
4959
4960   // We let the name "-" mean "stdout"
4961   if (!this->is_temporary_)
4962     {
4963       if (strcmp(this->name_, "-") == 0)
4964         this->o_ = STDOUT_FILENO;
4965       else
4966         {
4967           struct stat s;
4968           if (::stat(this->name_, &s) == 0
4969               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4970             {
4971               if (s.st_size != 0)
4972                 ::unlink(this->name_);
4973               else if (!parameters->options().relocatable())
4974                 {
4975                   // If we don't unlink the existing file, add execute
4976                   // permission where read permissions already exist
4977                   // and where the umask permits.
4978                   int mask = ::umask(0);
4979                   ::umask(mask);
4980                   s.st_mode |= (s.st_mode & 0444) >> 2;
4981                   ::chmod(this->name_, s.st_mode & ~mask);
4982                 }
4983             }
4984
4985           int mode = parameters->options().relocatable() ? 0666 : 0777;
4986           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4987                                   mode);
4988           if (o < 0)
4989             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4990           this->o_ = o;
4991         }
4992     }
4993
4994   this->map();
4995 }
4996
4997 // Resize the output file.
4998
4999 void
5000 Output_file::resize(off_t file_size)
5001 {
5002   // If the mmap is mapping an anonymous memory buffer, this is easy:
5003   // just mremap to the new size.  If it's mapping to a file, we want
5004   // to unmap to flush to the file, then remap after growing the file.
5005   if (this->map_is_anonymous_)
5006     {
5007       void* base;
5008       if (!this->map_is_allocated_)
5009         {
5010           base = ::mremap(this->base_, this->file_size_, file_size,
5011                           MREMAP_MAYMOVE);
5012           if (base == MAP_FAILED)
5013             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5014         }
5015       else
5016         {
5017           base = realloc(this->base_, file_size);
5018           if (base == NULL)
5019             gold_nomem();
5020           if (file_size > this->file_size_)
5021             memset(static_cast<char*>(base) + this->file_size_, 0,
5022                    file_size - this->file_size_);
5023         }
5024       this->base_ = static_cast<unsigned char*>(base);
5025       this->file_size_ = file_size;
5026     }
5027   else
5028     {
5029       this->unmap();
5030       this->file_size_ = file_size;
5031       if (!this->map_no_anonymous(true))
5032         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5033     }
5034 }
5035
5036 // Map an anonymous block of memory which will later be written to the
5037 // file.  Return whether the map succeeded.
5038
5039 bool
5040 Output_file::map_anonymous()
5041 {
5042   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5043                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5044   if (base == MAP_FAILED)
5045     {
5046       base = malloc(this->file_size_);
5047       if (base == NULL)
5048         return false;
5049       memset(base, 0, this->file_size_);
5050       this->map_is_allocated_ = true;
5051     }
5052   this->base_ = static_cast<unsigned char*>(base);
5053   this->map_is_anonymous_ = true;
5054   return true;
5055 }
5056
5057 // Map the file into memory.  Return whether the mapping succeeded.
5058 // If WRITABLE is true, map with write access.
5059
5060 bool
5061 Output_file::map_no_anonymous(bool writable)
5062 {
5063   const int o = this->o_;
5064
5065   // If the output file is not a regular file, don't try to mmap it;
5066   // instead, we'll mmap a block of memory (an anonymous buffer), and
5067   // then later write the buffer to the file.
5068   void* base;
5069   struct stat statbuf;
5070   if (o == STDOUT_FILENO || o == STDERR_FILENO
5071       || ::fstat(o, &statbuf) != 0
5072       || !S_ISREG(statbuf.st_mode)
5073       || this->is_temporary_)
5074     return false;
5075
5076   // Ensure that we have disk space available for the file.  If we
5077   // don't do this, it is possible that we will call munmap, close,
5078   // and exit with dirty buffers still in the cache with no assigned
5079   // disk blocks.  If the disk is out of space at that point, the
5080   // output file will wind up incomplete, but we will have already
5081   // exited.  The alternative to fallocate would be to use fdatasync,
5082   // but that would be a more significant performance hit.
5083   if (writable)
5084     {
5085       int err = gold_fallocate(o, 0, this->file_size_);
5086       if (err != 0)
5087        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5088     }
5089
5090   // Map the file into memory.
5091   int prot = PROT_READ;
5092   if (writable)
5093     prot |= PROT_WRITE;
5094   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5095
5096   // The mmap call might fail because of file system issues: the file
5097   // system might not support mmap at all, or it might not support
5098   // mmap with PROT_WRITE.
5099   if (base == MAP_FAILED)
5100     return false;
5101
5102   this->map_is_anonymous_ = false;
5103   this->base_ = static_cast<unsigned char*>(base);
5104   return true;
5105 }
5106
5107 // Map the file into memory.
5108
5109 void
5110 Output_file::map()
5111 {
5112   if (parameters->options().mmap_output_file()
5113       && this->map_no_anonymous(true))
5114     return;
5115
5116   // The mmap call might fail because of file system issues: the file
5117   // system might not support mmap at all, or it might not support
5118   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5119   // see in all cases, so if the mmap fails for any reason and we
5120   // don't care about file contents, try for an anonymous map.
5121   if (this->map_anonymous())
5122     return;
5123
5124   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5125              this->name_, static_cast<unsigned long>(this->file_size_),
5126              strerror(errno));
5127 }
5128
5129 // Unmap the file from memory.
5130
5131 void
5132 Output_file::unmap()
5133 {
5134   if (this->map_is_anonymous_)
5135     {
5136       // We've already written out the data, so there is no reason to
5137       // waste time unmapping or freeing the memory.
5138     }
5139   else
5140     {
5141       if (::munmap(this->base_, this->file_size_) < 0)
5142         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5143     }
5144   this->base_ = NULL;
5145 }
5146
5147 // Close the output file.
5148
5149 void
5150 Output_file::close()
5151 {
5152   // If the map isn't file-backed, we need to write it now.
5153   if (this->map_is_anonymous_ && !this->is_temporary_)
5154     {
5155       size_t bytes_to_write = this->file_size_;
5156       size_t offset = 0;
5157       while (bytes_to_write > 0)
5158         {
5159           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5160                                           bytes_to_write);
5161           if (bytes_written == 0)
5162             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5163           else if (bytes_written < 0)
5164             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5165           else
5166             {
5167               bytes_to_write -= bytes_written;
5168               offset += bytes_written;
5169             }
5170         }
5171     }
5172   this->unmap();
5173
5174   // We don't close stdout or stderr
5175   if (this->o_ != STDOUT_FILENO
5176       && this->o_ != STDERR_FILENO
5177       && !this->is_temporary_)
5178     if (::close(this->o_) < 0)
5179       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5180   this->o_ = -1;
5181 }
5182
5183 // Instantiate the templates we need.  We could use the configure
5184 // script to restrict this to only the ones for implemented targets.
5185
5186 #ifdef HAVE_TARGET_32_LITTLE
5187 template
5188 off_t
5189 Output_section::add_input_section<32, false>(
5190     Layout* layout,
5191     Sized_relobj_file<32, false>* object,
5192     unsigned int shndx,
5193     const char* secname,
5194     const elfcpp::Shdr<32, false>& shdr,
5195     unsigned int reloc_shndx,
5196     bool have_sections_script);
5197 #endif
5198
5199 #ifdef HAVE_TARGET_32_BIG
5200 template
5201 off_t
5202 Output_section::add_input_section<32, true>(
5203     Layout* layout,
5204     Sized_relobj_file<32, true>* object,
5205     unsigned int shndx,
5206     const char* secname,
5207     const elfcpp::Shdr<32, true>& shdr,
5208     unsigned int reloc_shndx,
5209     bool have_sections_script);
5210 #endif
5211
5212 #ifdef HAVE_TARGET_64_LITTLE
5213 template
5214 off_t
5215 Output_section::add_input_section<64, false>(
5216     Layout* layout,
5217     Sized_relobj_file<64, false>* object,
5218     unsigned int shndx,
5219     const char* secname,
5220     const elfcpp::Shdr<64, false>& shdr,
5221     unsigned int reloc_shndx,
5222     bool have_sections_script);
5223 #endif
5224
5225 #ifdef HAVE_TARGET_64_BIG
5226 template
5227 off_t
5228 Output_section::add_input_section<64, true>(
5229     Layout* layout,
5230     Sized_relobj_file<64, true>* object,
5231     unsigned int shndx,
5232     const char* secname,
5233     const elfcpp::Shdr<64, true>& shdr,
5234     unsigned int reloc_shndx,
5235     bool have_sections_script);
5236 #endif
5237
5238 #ifdef HAVE_TARGET_32_LITTLE
5239 template
5240 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5241 #endif
5242
5243 #ifdef HAVE_TARGET_32_BIG
5244 template
5245 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5246 #endif
5247
5248 #ifdef HAVE_TARGET_64_LITTLE
5249 template
5250 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5251 #endif
5252
5253 #ifdef HAVE_TARGET_64_BIG
5254 template
5255 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5256 #endif
5257
5258 #ifdef HAVE_TARGET_32_LITTLE
5259 template
5260 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5261 #endif
5262
5263 #ifdef HAVE_TARGET_32_BIG
5264 template
5265 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5266 #endif
5267
5268 #ifdef HAVE_TARGET_64_LITTLE
5269 template
5270 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5271 #endif
5272
5273 #ifdef HAVE_TARGET_64_BIG
5274 template
5275 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5276 #endif
5277
5278 #ifdef HAVE_TARGET_32_LITTLE
5279 template
5280 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5281 #endif
5282
5283 #ifdef HAVE_TARGET_32_BIG
5284 template
5285 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5286 #endif
5287
5288 #ifdef HAVE_TARGET_64_LITTLE
5289 template
5290 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5291 #endif
5292
5293 #ifdef HAVE_TARGET_64_BIG
5294 template
5295 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5296 #endif
5297
5298 #ifdef HAVE_TARGET_32_LITTLE
5299 template
5300 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_BIG
5304 template
5305 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5306 #endif
5307
5308 #ifdef HAVE_TARGET_64_LITTLE
5309 template
5310 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_BIG
5314 template
5315 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5316 #endif
5317
5318 #ifdef HAVE_TARGET_32_LITTLE
5319 template
5320 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5321 #endif
5322
5323 #ifdef HAVE_TARGET_32_BIG
5324 template
5325 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5326 #endif
5327
5328 #ifdef HAVE_TARGET_64_LITTLE
5329 template
5330 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5331 #endif
5332
5333 #ifdef HAVE_TARGET_64_BIG
5334 template
5335 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5336 #endif
5337
5338 #ifdef HAVE_TARGET_32_LITTLE
5339 template
5340 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5341 #endif
5342
5343 #ifdef HAVE_TARGET_32_BIG
5344 template
5345 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5346 #endif
5347
5348 #ifdef HAVE_TARGET_64_LITTLE
5349 template
5350 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5351 #endif
5352
5353 #ifdef HAVE_TARGET_64_BIG
5354 template
5355 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5356 #endif
5357
5358 #ifdef HAVE_TARGET_32_LITTLE
5359 template
5360 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5361 #endif
5362
5363 #ifdef HAVE_TARGET_32_BIG
5364 template
5365 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5366 #endif
5367
5368 #ifdef HAVE_TARGET_64_LITTLE
5369 template
5370 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5371 #endif
5372
5373 #ifdef HAVE_TARGET_64_BIG
5374 template
5375 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5376 #endif
5377
5378 #ifdef HAVE_TARGET_32_LITTLE
5379 template
5380 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_BIG
5384 template
5385 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_64_LITTLE
5389 template
5390 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_BIG
5394 template
5395 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_32_LITTLE
5399 template
5400 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_BIG
5404 template
5405 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_64_LITTLE
5409 template
5410 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_BIG
5414 template
5415 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_32_LITTLE
5419 template
5420 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_BIG
5424 template
5425 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_64_LITTLE
5429 template
5430 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_BIG
5434 template
5435 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_32_LITTLE
5439 template
5440 class Output_data_group<32, false>;
5441 #endif
5442
5443 #ifdef HAVE_TARGET_32_BIG
5444 template
5445 class Output_data_group<32, true>;
5446 #endif
5447
5448 #ifdef HAVE_TARGET_64_LITTLE
5449 template
5450 class Output_data_group<64, false>;
5451 #endif
5452
5453 #ifdef HAVE_TARGET_64_BIG
5454 template
5455 class Output_data_group<64, true>;
5456 #endif
5457
5458 template
5459 class Output_data_got<32, false>;
5460
5461 template
5462 class Output_data_got<32, true>;
5463
5464 template
5465 class Output_data_got<64, false>;
5466
5467 template
5468 class Output_data_got<64, true>;
5469
5470 } // End namespace gold.