1 // output.cc -- manage the output file for gold
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 // Mingw does not have S_ISLNK.
116 # define S_ISLNK(mode) 0
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
128 gold_fallocate(int o, off_t offset, off_t len)
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
143 // Output_data variables.
145 bool Output_data::allocated_sizes_are_fixed;
147 // Output_data methods.
149 Output_data::~Output_data()
153 // Return the default alignment for the target size.
156 Output_data::default_alignment()
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
162 // Return the default alignment for a size--32 or 64.
165 Output_data::default_alignment_for_size(int size)
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
194 // Compute the current data size.
197 Output_section_headers::do_size() const
199 // Count all the sections. Start with 1 for the null section.
201 if (!parameters->options().relocatable())
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
219 count += this->unattached_section_list_->size();
221 const int size = parameters->target().get_size();
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
230 return count * shdr_size;
233 // Write out the section headers.
236 Output_section_headers::do_write(Output_file* of)
238 switch (parameters->size_and_endianness())
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
265 template<int size, bool big_endian>
267 Output_section_headers::do_sized_write(Output_file* of)
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
288 oshdr.put_sh_size(section_count);
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
294 oshdr.put_sh_link(shstrndx);
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
354 of->write_output_view(this->offset(), all_shdrs_size, view);
357 // Output_segment_header methods.
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
363 this->set_current_data_size_for_child(this->do_size());
367 Output_segment_headers::do_write(Output_file* of)
369 switch (parameters->size_and_endianness())
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
396 template<int size, bool big_endian>
398 Output_segment_headers::do_sized_write(Output_file* of)
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
415 gold_assert(v - view == all_phdrs_size);
417 of->write_output_view(this->offset(), all_phdrs_size, view);
421 Output_segment_headers::do_size() const
423 const int size = parameters->target().get_size();
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
432 return this->segment_list_.size() * phdr_size;
435 // Output_file_header methods.
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
442 segment_header_(osh),
443 section_header_(NULL),
446 this->set_data_size(this->do_size());
449 // Set the section table information for a file header.
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
459 // Write out the file header.
462 Output_file_header::do_write(Output_file* of)
464 gold_assert(this->offset() == 0);
466 switch (parameters->size_and_endianness())
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
493 // Write out the file header with appropriate size and endianness.
495 template<int size, bool big_endian>
497 Output_file_header::do_sized_write(Output_file* of)
499 gold_assert(this->offset() == 0);
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
535 oehdr.put_e_entry(this->entry<size>());
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
540 oehdr.put_e_phoff(this->segment_header_->offset());
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546 if (this->segment_header_ == NULL)
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
569 oehdr.put_e_shnum(0);
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
581 of->write_output_view(0, ehdr_size, view);
584 // Return the value to use for the entry address.
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
596 typename Sized_symbol<size>::Value_type v;
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
610 v = strtoull(entry, &endptr, 0);
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
622 // Compute the current data size.
625 Output_file_header::do_size() const
627 const int size = parameters->target().get_size();
629 return elfcpp::Elf_sizes<32>::ehdr_size;
631 return elfcpp::Elf_sizes<64>::ehdr_size;
636 // Output_data_const methods.
639 Output_data_const::do_write(Output_file* of)
641 of->write(this->offset(), this->data_.data(), this->data_.size());
644 // Output_data_const_buffer methods.
647 Output_data_const_buffer::do_write(Output_file* of)
649 of->write(this->offset(), this->p_, this->data_size());
652 // Output_section_data methods.
654 // Record the output section, and set the entry size and such.
657 Output_section_data::set_output_section(Output_section* os)
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
664 // Return the section index of the output section.
667 Output_section_data::do_out_shndx() const
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
677 Output_section_data::set_addralign(uint64_t addralign)
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
685 // Output_data_strtab methods.
687 // Set the final data size.
690 Output_data_strtab::set_final_data_size()
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
696 // Write out a string table.
699 Output_data_strtab::do_write(Output_file* of)
701 this->strtab_->write(of, this->offset());
704 // Output_reloc methods.
706 // A reloc against a global symbol.
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
726 this->set_needs_dynsym_index();
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
733 Sized_relobj<size, big_endian>* relobj,
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
749 this->set_needs_dynsym_index();
752 // A reloc against a local symbol.
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
763 bool is_section_symbol,
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
777 this->set_needs_dynsym_index();
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
789 bool is_section_symbol,
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
804 this->set_needs_dynsym_index();
807 // A reloc against the STT_SECTION symbol of an output section.
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
825 this->set_needs_dynsym_index();
827 os->set_needs_symtab_index();
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
834 Sized_relobj<size, big_endian>* relobj,
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
846 this->u2_.relobj = relobj;
848 this->set_needs_dynsym_index();
850 os->set_needs_symtab_index();
853 // An absolute or relative relocation.
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 Sized_relobj<size, big_endian>* relobj,
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
889 // A target specific relocation.
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
911 Sized_relobj<size, big_endian>* relobj,
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
922 this->u2_.relobj = relobj;
925 // Record that we need a dynamic symbol index for this relocation.
927 template<bool dynamic, int size, bool big_endian>
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
932 if (this->is_symbolless_)
934 switch (this->local_sym_index_)
940 this->u1_.gsym->set_needs_dynsym_entry();
944 this->u1_.os->set_needs_dynsym_index();
948 // The target must take care of this if necessary.
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
963 relobj->output_section(lsi)->set_needs_dynsym_index();
969 // Get the symbol index of a relocation.
971 template<bool dynamic, int size, bool big_endian>
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
977 if (this->is_symbolless_)
979 switch (this->local_sym_index_)
985 if (this->u1_.gsym == NULL)
988 index = this->u1_.gsym->dynsym_index();
990 index = this->u1_.gsym->symtab_index();
995 index = this->u1_.os->dynsym_index();
997 index = this->u1_.os->symtab_index();
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1006 // Relocations without symbols use a symbol index of 0.
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1019 index = relobj->dynsym_index(lsi);
1021 index = relobj->symtab_index(lsi);
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1028 index = os->dynsym_index();
1030 index = os->symtab_index();
1035 gold_assert(index != -1U);
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1068 // Get the output address of a relocation.
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1096 // Write out the offset and info fields of a Rel or Rela relocation
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1110 // Write out a Rel relocation.
1112 template<bool dynamic, int size, bool big_endian>
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1121 // Get the value of the symbol referred to by a Rel relocation.
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1128 if (this->local_sym_index_ == GSYM_CODE)
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1135 return sym->value() + addend;
1137 if (this->local_sym_index_ == SECTION_CODE)
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1162 template<bool dynamic, int size, bool big_endian>
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1168 if (this->is_relative_)
1170 if (!r2.is_relative_)
1172 // Otherwise sort by reloc address below.
1174 else if (r2.is_relative_)
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1182 else if (sym1 > sym2)
1184 // Otherwise sort by reloc address.
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1191 else if (addr1 > addr2)
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1200 else if (type1 > type2)
1203 // These relocs appear to be exactly the same.
1207 // Write out a Rela relocation.
1209 template<bool dynamic, int size, bool big_endian>
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1227 // Output_data_reloc_base methods.
1229 // Adjust the output section.
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1252 os->set_should_link_to_dynsym();
1255 // Standard relocation writer, which just calls Output_reloc::write().
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 struct Output_reloc_writer
1260 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1261 typedef std::vector<Output_reloc_type> Relocs;
1264 write(typename Relocs::const_iterator p, unsigned char* pov)
1268 // Write out relocation data.
1270 template<int sh_type, bool dynamic, int size, bool big_endian>
1272 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1275 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1276 this->do_write_generic<Writer>(of);
1279 // Class Output_relocatable_relocs.
1281 template<int sh_type, int size, bool big_endian>
1283 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1285 this->set_data_size(this->rr_->output_reloc_count()
1286 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1289 // class Output_data_group.
1291 template<int size, bool big_endian>
1292 Output_data_group<size, big_endian>::Output_data_group(
1293 Sized_relobj_file<size, big_endian>* relobj,
1294 section_size_type entry_count,
1295 elfcpp::Elf_Word flags,
1296 std::vector<unsigned int>* input_shndxes)
1297 : Output_section_data(entry_count * 4, 4, false),
1301 this->input_shndxes_.swap(*input_shndxes);
1304 // Write out the section group, which means translating the section
1305 // indexes to apply to the output file.
1307 template<int size, bool big_endian>
1309 Output_data_group<size, big_endian>::do_write(Output_file* of)
1311 const off_t off = this->offset();
1312 const section_size_type oview_size =
1313 convert_to_section_size_type(this->data_size());
1314 unsigned char* const oview = of->get_output_view(off, oview_size);
1316 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1317 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1320 for (std::vector<unsigned int>::const_iterator p =
1321 this->input_shndxes_.begin();
1322 p != this->input_shndxes_.end();
1325 Output_section* os = this->relobj_->output_section(*p);
1327 unsigned int output_shndx;
1329 output_shndx = os->out_shndx();
1332 this->relobj_->error(_("section group retained but "
1333 "group element discarded"));
1337 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1340 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1341 gold_assert(wrote == oview_size);
1343 of->write_output_view(off, oview_size, oview);
1345 // We no longer need this information.
1346 this->input_shndxes_.clear();
1349 // Output_data_got::Got_entry methods.
1351 // Write out the entry.
1353 template<int got_size, bool big_endian>
1355 Output_data_got<got_size, big_endian>::Got_entry::write(
1356 unsigned int got_indx,
1357 unsigned char* pov) const
1361 switch (this->local_sym_index_)
1365 // If the symbol is resolved locally, we need to write out the
1366 // link-time value, which will be relocated dynamically by a
1367 // RELATIVE relocation.
1368 Symbol* gsym = this->u_.gsym;
1369 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1370 val = parameters->target().plt_address_for_global(gsym);
1373 switch (parameters->size_and_endianness())
1375 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1376 case Parameters::TARGET_32_LITTLE:
1377 case Parameters::TARGET_32_BIG:
1379 // This cast is ugly. We don't want to put a
1380 // virtual method in Symbol, because we want Symbol
1381 // to be as small as possible.
1382 Sized_symbol<32>::Value_type v;
1383 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1384 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1388 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1389 case Parameters::TARGET_64_LITTLE:
1390 case Parameters::TARGET_64_BIG:
1392 Sized_symbol<64>::Value_type v;
1393 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1394 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1401 if (this->use_plt_or_tls_offset_
1402 && gsym->type() == elfcpp::STT_TLS)
1403 val += parameters->target().tls_offset_for_global(gsym,
1410 val = this->u_.constant;
1414 // If we're doing an incremental update, don't touch this GOT entry.
1415 if (parameters->incremental_update())
1417 val = this->u_.constant;
1422 const Relobj* object = this->u_.object;
1423 const unsigned int lsi = this->local_sym_index_;
1424 bool is_tls = object->local_is_tls(lsi);
1425 if (this->use_plt_or_tls_offset_ && !is_tls)
1426 val = parameters->target().plt_address_for_local(object, lsi);
1429 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1430 val = convert_types<Valtype, uint64_t>(lval);
1431 if (this->use_plt_or_tls_offset_ && is_tls)
1432 val += parameters->target().tls_offset_for_local(object, lsi,
1439 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1442 // Output_data_got methods.
1444 // Add an entry for a global symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already had a GOT
1448 template<int got_size, bool big_endian>
1450 Output_data_got<got_size, big_endian>::add_global(
1452 unsigned int got_type)
1454 if (gsym->has_got_offset(got_type))
1457 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1458 gsym->set_got_offset(got_type, got_offset);
1462 // Like add_global, but use the PLT offset.
1464 template<int got_size, bool big_endian>
1466 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1467 unsigned int got_type)
1469 if (gsym->has_got_offset(got_type))
1472 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1473 gsym->set_got_offset(got_type, got_offset);
1477 // Add an entry for a global symbol to the GOT, and add a dynamic
1478 // relocation of type R_TYPE for the GOT entry.
1480 template<int got_size, bool big_endian>
1482 Output_data_got<got_size, big_endian>::add_global_with_rel(
1484 unsigned int got_type,
1485 Output_data_reloc_generic* rel_dyn,
1486 unsigned int r_type)
1488 if (gsym->has_got_offset(got_type))
1491 unsigned int got_offset = this->add_got_entry(Got_entry());
1492 gsym->set_got_offset(got_type, got_offset);
1493 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1496 // Add a pair of entries for a global symbol to the GOT, and add
1497 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1498 // If R_TYPE_2 == 0, add the second entry with no relocation.
1499 template<int got_size, bool big_endian>
1501 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1503 unsigned int got_type,
1504 Output_data_reloc_generic* rel_dyn,
1505 unsigned int r_type_1,
1506 unsigned int r_type_2)
1508 if (gsym->has_got_offset(got_type))
1511 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512 gsym->set_got_offset(got_type, got_offset);
1513 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1516 rel_dyn->add_global_generic(gsym, r_type_2, this,
1517 got_offset + got_size / 8, 0);
1520 // Add an entry for a local symbol to the GOT. This returns true if
1521 // this is a new GOT entry, false if the symbol already has a GOT
1524 template<int got_size, bool big_endian>
1526 Output_data_got<got_size, big_endian>::add_local(
1528 unsigned int symndx,
1529 unsigned int got_type)
1531 if (object->local_has_got_offset(symndx, got_type))
1534 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1536 object->set_local_got_offset(symndx, got_type, got_offset);
1540 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1541 // true if this is a new GOT entry, false if the symbol already has a GOT
1544 template<int got_size, bool big_endian>
1546 Output_data_got<got_size, big_endian>::add_local(
1548 unsigned int symndx,
1549 unsigned int got_type,
1552 if (object->local_has_got_offset(symndx, got_type, addend))
1555 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1557 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1561 // Like add_local, but use the PLT offset.
1563 template<int got_size, bool big_endian>
1565 Output_data_got<got_size, big_endian>::add_local_plt(
1567 unsigned int symndx,
1568 unsigned int got_type)
1570 if (object->local_has_got_offset(symndx, got_type))
1573 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1575 object->set_local_got_offset(symndx, got_type, got_offset);
1579 // Add an entry for a local symbol to the GOT, and add a dynamic
1580 // relocation of type R_TYPE for the GOT entry.
1582 template<int got_size, bool big_endian>
1584 Output_data_got<got_size, big_endian>::add_local_with_rel(
1586 unsigned int symndx,
1587 unsigned int got_type,
1588 Output_data_reloc_generic* rel_dyn,
1589 unsigned int r_type)
1591 if (object->local_has_got_offset(symndx, got_type))
1594 unsigned int got_offset = this->add_got_entry(Got_entry());
1595 object->set_local_got_offset(symndx, got_type, got_offset);
1596 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1599 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1600 // relocation of type R_TYPE for the GOT entry.
1602 template<int got_size, bool big_endian>
1604 Output_data_got<got_size, big_endian>::add_local_with_rel(
1606 unsigned int symndx,
1607 unsigned int got_type,
1608 Output_data_reloc_generic* rel_dyn,
1609 unsigned int r_type, uint64_t addend)
1611 if (object->local_has_got_offset(symndx, got_type, addend))
1614 unsigned int got_offset = this->add_got_entry(Got_entry());
1615 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1616 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1620 // Add a pair of entries for a local symbol to the GOT, and add
1621 // a dynamic relocation of type R_TYPE using the section symbol of
1622 // the output section to which input section SHNDX maps, on the first.
1623 // The first got entry will have a value of zero, the second the
1624 // value of the local symbol.
1625 template<int got_size, bool big_endian>
1627 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1629 unsigned int symndx,
1631 unsigned int got_type,
1632 Output_data_reloc_generic* rel_dyn,
1633 unsigned int r_type)
1635 if (object->local_has_got_offset(symndx, got_type))
1638 unsigned int got_offset =
1639 this->add_got_entry_pair(Got_entry(),
1640 Got_entry(object, symndx, false));
1641 object->set_local_got_offset(symndx, got_type, got_offset);
1642 Output_section* os = object->output_section(shndx);
1643 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1646 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1647 // a dynamic relocation of type R_TYPE using the section symbol of
1648 // the output section to which input section SHNDX maps, on the first.
1649 // The first got entry will have a value of zero, the second the
1650 // value of the local symbol.
1651 template<int got_size, bool big_endian>
1653 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1655 unsigned int symndx,
1657 unsigned int got_type,
1658 Output_data_reloc_generic* rel_dyn,
1659 unsigned int r_type, uint64_t addend)
1661 if (object->local_has_got_offset(symndx, got_type, addend))
1664 unsigned int got_offset =
1665 this->add_got_entry_pair(Got_entry(),
1666 Got_entry(object, symndx, false, addend));
1667 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1668 Output_section* os = object->output_section(shndx);
1669 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1672 // Add a pair of entries for a local symbol to the GOT, and add
1673 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1674 // The first got entry will have a value of zero, the second the
1675 // value of the local symbol offset by Target::tls_offset_for_local.
1676 template<int got_size, bool big_endian>
1678 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1680 unsigned int symndx,
1681 unsigned int got_type,
1682 Output_data_reloc_generic* rel_dyn,
1683 unsigned int r_type)
1685 if (object->local_has_got_offset(symndx, got_type))
1688 unsigned int got_offset
1689 = this->add_got_entry_pair(Got_entry(),
1690 Got_entry(object, symndx, true));
1691 object->set_local_got_offset(symndx, got_type, got_offset);
1692 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1695 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1697 template<int got_size, bool big_endian>
1699 Output_data_got<got_size, big_endian>::reserve_local(
1702 unsigned int sym_index,
1703 unsigned int got_type)
1705 this->do_reserve_slot(i);
1706 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1709 // Reserve a slot in the GOT for a global symbol.
1711 template<int got_size, bool big_endian>
1713 Output_data_got<got_size, big_endian>::reserve_global(
1716 unsigned int got_type)
1718 this->do_reserve_slot(i);
1719 gsym->set_got_offset(got_type, this->got_offset(i));
1722 // Write out the GOT.
1724 template<int got_size, bool big_endian>
1726 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1728 const int add = got_size / 8;
1730 const off_t off = this->offset();
1731 const off_t oview_size = this->data_size();
1732 unsigned char* const oview = of->get_output_view(off, oview_size);
1734 unsigned char* pov = oview;
1735 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1737 this->entries_[i].write(i, pov);
1741 gold_assert(pov - oview == oview_size);
1743 of->write_output_view(off, oview_size, oview);
1745 // We no longer need the GOT entries.
1746 this->entries_.clear();
1749 // Create a new GOT entry and return its offset.
1751 template<int got_size, bool big_endian>
1753 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1755 if (!this->is_data_size_valid())
1757 this->entries_.push_back(got_entry);
1758 this->set_got_size();
1759 return this->last_got_offset();
1763 // For an incremental update, find an available slot.
1764 off_t got_offset = this->free_list_.allocate(got_size / 8,
1766 if (got_offset == -1)
1767 gold_fallback(_("out of patch space (GOT);"
1768 " relink with --incremental-full"));
1769 unsigned int got_index = got_offset / (got_size / 8);
1770 gold_assert(got_index < this->entries_.size());
1771 this->entries_[got_index] = got_entry;
1772 return static_cast<unsigned int>(got_offset);
1776 // Create a pair of new GOT entries and return the offset of the first.
1778 template<int got_size, bool big_endian>
1780 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1781 Got_entry got_entry_1,
1782 Got_entry got_entry_2)
1784 if (!this->is_data_size_valid())
1786 unsigned int got_offset;
1787 this->entries_.push_back(got_entry_1);
1788 got_offset = this->last_got_offset();
1789 this->entries_.push_back(got_entry_2);
1790 this->set_got_size();
1795 // For an incremental update, find an available pair of slots.
1796 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1798 if (got_offset == -1)
1799 gold_fallback(_("out of patch space (GOT);"
1800 " relink with --incremental-full"));
1801 unsigned int got_index = got_offset / (got_size / 8);
1802 gold_assert(got_index < this->entries_.size());
1803 this->entries_[got_index] = got_entry_1;
1804 this->entries_[got_index + 1] = got_entry_2;
1805 return static_cast<unsigned int>(got_offset);
1809 // Replace GOT entry I with a new value.
1811 template<int got_size, bool big_endian>
1813 Output_data_got<got_size, big_endian>::replace_got_entry(
1815 Got_entry got_entry)
1817 gold_assert(i < this->entries_.size());
1818 this->entries_[i] = got_entry;
1821 // Output_data_dynamic::Dynamic_entry methods.
1823 // Write out the entry.
1825 template<int size, bool big_endian>
1827 Output_data_dynamic::Dynamic_entry::write(
1829 const Stringpool* pool) const
1831 typename elfcpp::Elf_types<size>::Elf_WXword val;
1832 switch (this->offset_)
1834 case DYNAMIC_NUMBER:
1838 case DYNAMIC_SECTION_SIZE:
1839 val = this->u_.od->data_size();
1840 if (this->od2 != NULL)
1841 val += this->od2->data_size();
1844 case DYNAMIC_SYMBOL:
1846 const Sized_symbol<size>* s =
1847 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1852 case DYNAMIC_STRING:
1853 val = pool->get_offset(this->u_.str);
1856 case DYNAMIC_CUSTOM:
1857 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1861 val = this->u_.od->address() + this->offset_;
1865 elfcpp::Dyn_write<size, big_endian> dw(pov);
1866 dw.put_d_tag(this->tag_);
1870 // Output_data_dynamic methods.
1872 // Adjust the output section to set the entry size.
1875 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1877 if (parameters->target().get_size() == 32)
1878 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1879 else if (parameters->target().get_size() == 64)
1880 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1885 // Get a dynamic entry offset.
1888 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1892 if (parameters->target().get_size() == 32)
1893 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1894 else if (parameters->target().get_size() == 64)
1895 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1899 for (size_t i = 0; i < entries_.size(); ++i)
1900 if (entries_[i].tag() == tag)
1901 return i * dyn_size;
1906 // Set the final data size.
1909 Output_data_dynamic::set_final_data_size()
1911 // Add the terminating entry if it hasn't been added.
1912 // Because of relaxation, we can run this multiple times.
1913 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1915 int extra = parameters->options().spare_dynamic_tags();
1916 for (int i = 0; i < extra; ++i)
1917 this->add_constant(elfcpp::DT_NULL, 0);
1918 this->add_constant(elfcpp::DT_NULL, 0);
1922 if (parameters->target().get_size() == 32)
1923 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1924 else if (parameters->target().get_size() == 64)
1925 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1928 this->set_data_size(this->entries_.size() * dyn_size);
1931 // Write out the dynamic entries.
1934 Output_data_dynamic::do_write(Output_file* of)
1936 switch (parameters->size_and_endianness())
1938 #ifdef HAVE_TARGET_32_LITTLE
1939 case Parameters::TARGET_32_LITTLE:
1940 this->sized_write<32, false>(of);
1943 #ifdef HAVE_TARGET_32_BIG
1944 case Parameters::TARGET_32_BIG:
1945 this->sized_write<32, true>(of);
1948 #ifdef HAVE_TARGET_64_LITTLE
1949 case Parameters::TARGET_64_LITTLE:
1950 this->sized_write<64, false>(of);
1953 #ifdef HAVE_TARGET_64_BIG
1954 case Parameters::TARGET_64_BIG:
1955 this->sized_write<64, true>(of);
1963 template<int size, bool big_endian>
1965 Output_data_dynamic::sized_write(Output_file* of)
1967 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1969 const off_t offset = this->offset();
1970 const off_t oview_size = this->data_size();
1971 unsigned char* const oview = of->get_output_view(offset, oview_size);
1973 unsigned char* pov = oview;
1974 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1975 p != this->entries_.end();
1978 p->write<size, big_endian>(pov, this->pool_);
1982 gold_assert(pov - oview == oview_size);
1984 of->write_output_view(offset, oview_size, oview);
1986 // We no longer need the dynamic entries.
1987 this->entries_.clear();
1990 // Class Output_symtab_xindex.
1993 Output_symtab_xindex::do_write(Output_file* of)
1995 const off_t offset = this->offset();
1996 const off_t oview_size = this->data_size();
1997 unsigned char* const oview = of->get_output_view(offset, oview_size);
1999 memset(oview, 0, oview_size);
2001 if (parameters->target().is_big_endian())
2002 this->endian_do_write<true>(oview);
2004 this->endian_do_write<false>(oview);
2006 of->write_output_view(offset, oview_size, oview);
2008 // We no longer need the data.
2009 this->entries_.clear();
2012 template<bool big_endian>
2014 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2016 for (Xindex_entries::const_iterator p = this->entries_.begin();
2017 p != this->entries_.end();
2020 unsigned int symndx = p->first;
2021 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2022 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2026 // Output_fill_debug_info methods.
2028 // Return the minimum size needed for a dummy compilation unit header.
2031 Output_fill_debug_info::do_minimum_hole_size() const
2033 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2035 const size_t len = 4 + 2 + 4 + 1;
2036 // For type units, add type_signature, type_offset.
2037 if (this->is_debug_types_)
2042 // Write a dummy compilation unit header to fill a hole in the
2043 // .debug_info or .debug_types section.
2046 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2048 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2049 static_cast<long>(off), static_cast<long>(len));
2051 gold_assert(len >= this->do_minimum_hole_size());
2053 unsigned char* const oview = of->get_output_view(off, len);
2054 unsigned char* pov = oview;
2056 // Write header fields: unit_length, version, debug_abbrev_offset,
2058 if (this->is_big_endian())
2060 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2061 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2062 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2066 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2067 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2068 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2073 // For type units, the additional header fields -- type_signature,
2074 // type_offset -- can be filled with zeroes.
2076 // Fill the remainder of the free space with zeroes. The first
2077 // zero should tell the consumer there are no DIEs to read in this
2078 // compilation unit.
2079 if (pov < oview + len)
2080 memset(pov, 0, oview + len - pov);
2082 of->write_output_view(off, len, oview);
2085 // Output_fill_debug_line methods.
2087 // Return the minimum size needed for a dummy line number program header.
2090 Output_fill_debug_line::do_minimum_hole_size() const
2092 // Line number program header fields: unit_length, version, header_length,
2093 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2094 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2095 const size_t len = 4 + 2 + 4 + this->header_length;
2099 // Write a dummy line number program header to fill a hole in the
2100 // .debug_line section.
2103 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2105 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2106 static_cast<long>(off), static_cast<long>(len));
2108 gold_assert(len >= this->do_minimum_hole_size());
2110 unsigned char* const oview = of->get_output_view(off, len);
2111 unsigned char* pov = oview;
2113 // Write header fields: unit_length, version, header_length,
2114 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2115 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2116 // We set the header_length field to cover the entire hole, so the
2117 // line number program is empty.
2118 if (this->is_big_endian())
2120 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2121 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2122 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2126 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2127 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2128 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2131 *pov++ = 1; // minimum_instruction_length
2132 *pov++ = 0; // default_is_stmt
2133 *pov++ = 0; // line_base
2134 *pov++ = 5; // line_range
2135 *pov++ = 13; // opcode_base
2136 *pov++ = 0; // standard_opcode_lengths[1]
2137 *pov++ = 1; // standard_opcode_lengths[2]
2138 *pov++ = 1; // standard_opcode_lengths[3]
2139 *pov++ = 1; // standard_opcode_lengths[4]
2140 *pov++ = 1; // standard_opcode_lengths[5]
2141 *pov++ = 0; // standard_opcode_lengths[6]
2142 *pov++ = 0; // standard_opcode_lengths[7]
2143 *pov++ = 0; // standard_opcode_lengths[8]
2144 *pov++ = 1; // standard_opcode_lengths[9]
2145 *pov++ = 0; // standard_opcode_lengths[10]
2146 *pov++ = 0; // standard_opcode_lengths[11]
2147 *pov++ = 1; // standard_opcode_lengths[12]
2148 *pov++ = 0; // include_directories (empty)
2149 *pov++ = 0; // filenames (empty)
2151 // Some consumers don't check the header_length field, and simply
2152 // start reading the line number program immediately following the
2153 // header. For those consumers, we fill the remainder of the free
2154 // space with DW_LNS_set_basic_block opcodes. These are effectively
2155 // no-ops: the resulting line table program will not create any rows.
2156 if (pov < oview + len)
2157 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2159 of->write_output_view(off, len, oview);
2162 // Output_section::Input_section methods.
2164 // Return the current data size. For an input section we store the size here.
2165 // For an Output_section_data, we have to ask it for the size.
2168 Output_section::Input_section::current_data_size() const
2170 if (this->is_input_section())
2171 return this->u1_.data_size;
2174 this->u2_.posd->pre_finalize_data_size();
2175 return this->u2_.posd->current_data_size();
2179 // Return the data size. For an input section we store the size here.
2180 // For an Output_section_data, we have to ask it for the size.
2183 Output_section::Input_section::data_size() const
2185 if (this->is_input_section())
2186 return this->u1_.data_size;
2188 return this->u2_.posd->data_size();
2191 // Return the object for an input section.
2194 Output_section::Input_section::relobj() const
2196 if (this->is_input_section())
2197 return this->u2_.object;
2198 else if (this->is_merge_section())
2200 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2201 return this->u2_.pomb->first_relobj();
2203 else if (this->is_relaxed_input_section())
2204 return this->u2_.poris->relobj();
2209 // Return the input section index for an input section.
2212 Output_section::Input_section::shndx() const
2214 if (this->is_input_section())
2215 return this->shndx_;
2216 else if (this->is_merge_section())
2218 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2219 return this->u2_.pomb->first_shndx();
2221 else if (this->is_relaxed_input_section())
2222 return this->u2_.poris->shndx();
2227 // Set the address and file offset.
2230 Output_section::Input_section::set_address_and_file_offset(
2233 off_t section_file_offset)
2235 if (this->is_input_section())
2236 this->u2_.object->set_section_offset(this->shndx_,
2237 file_offset - section_file_offset);
2239 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2242 // Reset the address and file offset.
2245 Output_section::Input_section::reset_address_and_file_offset()
2247 if (!this->is_input_section())
2248 this->u2_.posd->reset_address_and_file_offset();
2251 // Finalize the data size.
2254 Output_section::Input_section::finalize_data_size()
2256 if (!this->is_input_section())
2257 this->u2_.posd->finalize_data_size();
2260 // Try to turn an input offset into an output offset. We want to
2261 // return the output offset relative to the start of this
2262 // Input_section in the output section.
2265 Output_section::Input_section::output_offset(
2266 const Relobj* object,
2268 section_offset_type offset,
2269 section_offset_type* poutput) const
2271 if (!this->is_input_section())
2272 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2275 if (this->shndx_ != shndx || this->u2_.object != object)
2282 // Write out the data. We don't have to do anything for an input
2283 // section--they are handled via Object::relocate--but this is where
2284 // we write out the data for an Output_section_data.
2287 Output_section::Input_section::write(Output_file* of)
2289 if (!this->is_input_section())
2290 this->u2_.posd->write(of);
2293 // Write the data to a buffer. As for write(), we don't have to do
2294 // anything for an input section.
2297 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2299 if (!this->is_input_section())
2300 this->u2_.posd->write_to_buffer(buffer);
2303 // Print to a map file.
2306 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2308 switch (this->shndx_)
2310 case OUTPUT_SECTION_CODE:
2311 case MERGE_DATA_SECTION_CODE:
2312 case MERGE_STRING_SECTION_CODE:
2313 this->u2_.posd->print_to_mapfile(mapfile);
2316 case RELAXED_INPUT_SECTION_CODE:
2318 Output_relaxed_input_section* relaxed_section =
2319 this->relaxed_input_section();
2320 mapfile->print_input_section(relaxed_section->relobj(),
2321 relaxed_section->shndx());
2325 mapfile->print_input_section(this->u2_.object, this->shndx_);
2330 // Output_section methods.
2332 // Construct an Output_section. NAME will point into a Stringpool.
2334 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2335 elfcpp::Elf_Xword flags)
2340 link_section_(NULL),
2342 info_section_(NULL),
2347 order_(ORDER_INVALID),
2352 first_input_offset_(0),
2354 postprocessing_buffer_(NULL),
2355 needs_symtab_index_(false),
2356 needs_dynsym_index_(false),
2357 should_link_to_symtab_(false),
2358 should_link_to_dynsym_(false),
2359 after_input_sections_(false),
2360 requires_postprocessing_(false),
2361 found_in_sections_clause_(false),
2362 has_load_address_(false),
2363 info_uses_section_index_(false),
2364 input_section_order_specified_(false),
2365 may_sort_attached_input_sections_(false),
2366 must_sort_attached_input_sections_(false),
2367 attached_input_sections_are_sorted_(false),
2369 is_small_section_(false),
2370 is_large_section_(false),
2371 generate_code_fills_at_write_(false),
2372 is_entsize_zero_(false),
2373 section_offsets_need_adjustment_(false),
2375 always_keeps_input_sections_(false),
2376 has_fixed_layout_(false),
2377 is_patch_space_allowed_(false),
2378 is_unique_segment_(false),
2380 extra_segment_flags_(0),
2381 segment_alignment_(0),
2383 lookup_maps_(new Output_section_lookup_maps),
2385 free_space_fill_(NULL),
2388 // An unallocated section has no address. Forcing this means that
2389 // we don't need special treatment for symbols defined in debug
2391 if ((flags & elfcpp::SHF_ALLOC) == 0)
2392 this->set_address(0);
2395 Output_section::~Output_section()
2397 delete this->checkpoint_;
2400 // Set the entry size.
2403 Output_section::set_entsize(uint64_t v)
2405 if (this->is_entsize_zero_)
2407 else if (this->entsize_ == 0)
2409 else if (this->entsize_ != v)
2412 this->is_entsize_zero_ = 1;
2416 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2417 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2418 // relocation section which applies to this section, or 0 if none, or
2419 // -1U if more than one. Return the offset of the input section
2420 // within the output section. Return -1 if the input section will
2421 // receive special handling. In the normal case we don't always keep
2422 // track of input sections for an Output_section. Instead, each
2423 // Object keeps track of the Output_section for each of its input
2424 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2425 // track of input sections here; this is used when SECTIONS appears in
2428 template<int size, bool big_endian>
2430 Output_section::add_input_section(Layout* layout,
2431 Sized_relobj_file<size, big_endian>* object,
2433 const char* secname,
2434 const elfcpp::Shdr<size, big_endian>& shdr,
2435 unsigned int reloc_shndx,
2436 bool have_sections_script)
2438 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2439 if ((addralign & (addralign - 1)) != 0)
2441 object->error(_("invalid alignment %lu for section \"%s\""),
2442 static_cast<unsigned long>(addralign), secname);
2446 if (addralign > this->addralign_)
2447 this->addralign_ = addralign;
2449 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2450 uint64_t entsize = shdr.get_sh_entsize();
2452 // .debug_str is a mergeable string section, but is not always so
2453 // marked by compilers. Mark manually here so we can optimize.
2454 if (strcmp(secname, ".debug_str") == 0)
2456 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2460 this->update_flags_for_input_section(sh_flags);
2461 this->set_entsize(entsize);
2463 // If this is a SHF_MERGE section, we pass all the input sections to
2464 // a Output_data_merge. We don't try to handle relocations for such
2465 // a section. We don't try to handle empty merge sections--they
2466 // mess up the mappings, and are useless anyhow.
2467 // FIXME: Need to handle merge sections during incremental update.
2468 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2470 && shdr.get_sh_size() > 0
2471 && !parameters->incremental())
2473 // Keep information about merged input sections for rebuilding fast
2474 // lookup maps if we have sections-script or we do relaxation.
2475 bool keeps_input_sections = (this->always_keeps_input_sections_
2476 || have_sections_script
2477 || parameters->target().may_relax());
2479 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2480 addralign, keeps_input_sections))
2482 // Tell the relocation routines that they need to call the
2483 // output_offset method to determine the final address.
2488 section_size_type input_section_size = shdr.get_sh_size();
2489 section_size_type uncompressed_size;
2490 if (object->section_is_compressed(shndx, &uncompressed_size))
2491 input_section_size = uncompressed_size;
2493 off_t offset_in_section;
2495 if (this->has_fixed_layout())
2497 // For incremental updates, find a chunk of unused space in the section.
2498 offset_in_section = this->free_list_.allocate(input_section_size,
2500 if (offset_in_section == -1)
2501 gold_fallback(_("out of patch space in section %s; "
2502 "relink with --incremental-full"),
2504 return offset_in_section;
2507 offset_in_section = this->current_data_size_for_child();
2508 off_t aligned_offset_in_section = align_address(offset_in_section,
2510 this->set_current_data_size_for_child(aligned_offset_in_section
2511 + input_section_size);
2513 // Determine if we want to delay code-fill generation until the output
2514 // section is written. When the target is relaxing, we want to delay fill
2515 // generating to avoid adjusting them during relaxation. Also, if we are
2516 // sorting input sections we must delay fill generation.
2517 if (!this->generate_code_fills_at_write_
2518 && !have_sections_script
2519 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2520 && parameters->target().has_code_fill()
2521 && (parameters->target().may_relax()
2522 || layout->is_section_ordering_specified()))
2524 gold_assert(this->fills_.empty());
2525 this->generate_code_fills_at_write_ = true;
2528 if (aligned_offset_in_section > offset_in_section
2529 && !this->generate_code_fills_at_write_
2530 && !have_sections_script
2531 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2532 && parameters->target().has_code_fill())
2534 // We need to add some fill data. Using fill_list_ when
2535 // possible is an optimization, since we will often have fill
2536 // sections without input sections.
2537 off_t fill_len = aligned_offset_in_section - offset_in_section;
2538 if (this->input_sections_.empty())
2539 this->fills_.push_back(Fill(offset_in_section, fill_len));
2542 std::string fill_data(parameters->target().code_fill(fill_len));
2543 Output_data_const* odc = new Output_data_const(fill_data, 1);
2544 this->input_sections_.push_back(Input_section(odc));
2548 // We need to keep track of this section if we are already keeping
2549 // track of sections, or if we are relaxing. Also, if this is a
2550 // section which requires sorting, or which may require sorting in
2551 // the future, we keep track of the sections. If the
2552 // --section-ordering-file option is used to specify the order of
2553 // sections, we need to keep track of sections.
2554 if (this->always_keeps_input_sections_
2555 || have_sections_script
2556 || !this->input_sections_.empty()
2557 || this->may_sort_attached_input_sections()
2558 || this->must_sort_attached_input_sections()
2559 || parameters->options().user_set_Map()
2560 || parameters->target().may_relax()
2561 || layout->is_section_ordering_specified())
2563 Input_section isecn(object, shndx, input_section_size, addralign);
2564 /* If section ordering is requested by specifying a ordering file,
2565 using --section-ordering-file, match the section name with
2567 if (parameters->options().section_ordering_file())
2569 unsigned int section_order_index =
2570 layout->find_section_order_index(std::string(secname));
2571 if (section_order_index != 0)
2573 isecn.set_section_order_index(section_order_index);
2574 this->set_input_section_order_specified();
2577 this->input_sections_.push_back(isecn);
2580 return aligned_offset_in_section;
2583 // Add arbitrary data to an output section.
2586 Output_section::add_output_section_data(Output_section_data* posd)
2588 Input_section inp(posd);
2589 this->add_output_section_data(&inp);
2591 if (posd->is_data_size_valid())
2593 off_t offset_in_section;
2594 if (this->has_fixed_layout())
2596 // For incremental updates, find a chunk of unused space.
2597 offset_in_section = this->free_list_.allocate(posd->data_size(),
2598 posd->addralign(), 0);
2599 if (offset_in_section == -1)
2600 gold_fallback(_("out of patch space in section %s; "
2601 "relink with --incremental-full"),
2603 // Finalize the address and offset now.
2604 uint64_t addr = this->address();
2605 off_t offset = this->offset();
2606 posd->set_address_and_file_offset(addr + offset_in_section,
2607 offset + offset_in_section);
2611 offset_in_section = this->current_data_size_for_child();
2612 off_t aligned_offset_in_section = align_address(offset_in_section,
2614 this->set_current_data_size_for_child(aligned_offset_in_section
2615 + posd->data_size());
2618 else if (this->has_fixed_layout())
2620 // For incremental updates, arrange for the data to have a fixed layout.
2621 // This will mean that additions to the data must be allocated from
2622 // free space within the containing output section.
2623 uint64_t addr = this->address();
2624 posd->set_address(addr);
2625 posd->set_file_offset(0);
2626 // FIXME: This should eventually be unreachable.
2627 // gold_unreachable();
2631 // Add a relaxed input section.
2634 Output_section::add_relaxed_input_section(Layout* layout,
2635 Output_relaxed_input_section* poris,
2636 const std::string& name)
2638 Input_section inp(poris);
2640 // If the --section-ordering-file option is used to specify the order of
2641 // sections, we need to keep track of sections.
2642 if (layout->is_section_ordering_specified())
2644 unsigned int section_order_index =
2645 layout->find_section_order_index(name);
2646 if (section_order_index != 0)
2648 inp.set_section_order_index(section_order_index);
2649 this->set_input_section_order_specified();
2653 this->add_output_section_data(&inp);
2654 if (this->lookup_maps_->is_valid())
2655 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2656 poris->shndx(), poris);
2658 // For a relaxed section, we use the current data size. Linker scripts
2659 // get all the input sections, including relaxed one from an output
2660 // section and add them back to the same output section to compute the
2661 // output section size. If we do not account for sizes of relaxed input
2662 // sections, an output section would be incorrectly sized.
2663 off_t offset_in_section = this->current_data_size_for_child();
2664 off_t aligned_offset_in_section = align_address(offset_in_section,
2665 poris->addralign());
2666 this->set_current_data_size_for_child(aligned_offset_in_section
2667 + poris->current_data_size());
2670 // Add arbitrary data to an output section by Input_section.
2673 Output_section::add_output_section_data(Input_section* inp)
2675 if (this->input_sections_.empty())
2676 this->first_input_offset_ = this->current_data_size_for_child();
2678 this->input_sections_.push_back(*inp);
2680 uint64_t addralign = inp->addralign();
2681 if (addralign > this->addralign_)
2682 this->addralign_ = addralign;
2684 inp->set_output_section(this);
2687 // Add a merge section to an output section.
2690 Output_section::add_output_merge_section(Output_section_data* posd,
2691 bool is_string, uint64_t entsize)
2693 Input_section inp(posd, is_string, entsize);
2694 this->add_output_section_data(&inp);
2697 // Add an input section to a SHF_MERGE section.
2700 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2701 uint64_t flags, uint64_t entsize,
2703 bool keeps_input_sections)
2705 // We cannot merge sections with entsize == 0.
2709 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2711 // We cannot restore merged input section states.
2712 gold_assert(this->checkpoint_ == NULL);
2714 // Look up merge sections by required properties.
2715 // Currently, we only invalidate the lookup maps in script processing
2716 // and relaxation. We should not have done either when we reach here.
2717 // So we assume that the lookup maps are valid to simply code.
2718 gold_assert(this->lookup_maps_->is_valid());
2719 Merge_section_properties msp(is_string, entsize, addralign);
2720 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2721 bool is_new = false;
2724 gold_assert(pomb->is_string() == is_string
2725 && pomb->entsize() == entsize
2726 && pomb->addralign() == addralign);
2730 // Create a new Output_merge_data or Output_merge_string_data.
2732 pomb = new Output_merge_data(entsize, addralign);
2738 pomb = new Output_merge_string<char>(addralign);
2741 pomb = new Output_merge_string<uint16_t>(addralign);
2744 pomb = new Output_merge_string<uint32_t>(addralign);
2750 // If we need to do script processing or relaxation, we need to keep
2751 // the original input sections to rebuild the fast lookup maps.
2752 if (keeps_input_sections)
2753 pomb->set_keeps_input_sections();
2757 if (pomb->add_input_section(object, shndx))
2759 // Add new merge section to this output section and link merge
2760 // section properties to new merge section in map.
2763 this->add_output_merge_section(pomb, is_string, entsize);
2764 this->lookup_maps_->add_merge_section(msp, pomb);
2771 // If add_input_section failed, delete new merge section to avoid
2772 // exporting empty merge sections in Output_section::get_input_section.
2779 // Build a relaxation map to speed up relaxation of existing input sections.
2780 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2783 Output_section::build_relaxation_map(
2784 const Input_section_list& input_sections,
2786 Relaxation_map* relaxation_map) const
2788 for (size_t i = 0; i < limit; ++i)
2790 const Input_section& is(input_sections[i]);
2791 if (is.is_input_section() || is.is_relaxed_input_section())
2793 Section_id sid(is.relobj(), is.shndx());
2794 (*relaxation_map)[sid] = i;
2799 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2800 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2801 // indices of INPUT_SECTIONS.
2804 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2805 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2806 const Relaxation_map& map,
2807 Input_section_list* input_sections)
2809 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2811 Output_relaxed_input_section* poris = relaxed_sections[i];
2812 Section_id sid(poris->relobj(), poris->shndx());
2813 Relaxation_map::const_iterator p = map.find(sid);
2814 gold_assert(p != map.end());
2815 gold_assert((*input_sections)[p->second].is_input_section());
2817 // Remember section order index of original input section
2818 // if it is set. Copy it to the relaxed input section.
2820 (*input_sections)[p->second].section_order_index();
2821 (*input_sections)[p->second] = Input_section(poris);
2822 (*input_sections)[p->second].set_section_order_index(soi);
2826 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2827 // is a vector of pointers to Output_relaxed_input_section or its derived
2828 // classes. The relaxed sections must correspond to existing input sections.
2831 Output_section::convert_input_sections_to_relaxed_sections(
2832 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2834 gold_assert(parameters->target().may_relax());
2836 // We want to make sure that restore_states does not undo the effect of
2837 // this. If there is no checkpoint active, just search the current
2838 // input section list and replace the sections there. If there is
2839 // a checkpoint, also replace the sections there.
2841 // By default, we look at the whole list.
2842 size_t limit = this->input_sections_.size();
2844 if (this->checkpoint_ != NULL)
2846 // Replace input sections with relaxed input section in the saved
2847 // copy of the input section list.
2848 if (this->checkpoint_->input_sections_saved())
2851 this->build_relaxation_map(
2852 *(this->checkpoint_->input_sections()),
2853 this->checkpoint_->input_sections()->size(),
2855 this->convert_input_sections_in_list_to_relaxed_sections(
2858 this->checkpoint_->input_sections());
2862 // We have not copied the input section list yet. Instead, just
2863 // look at the portion that would be saved.
2864 limit = this->checkpoint_->input_sections_size();
2868 // Convert input sections in input_section_list.
2870 this->build_relaxation_map(this->input_sections_, limit, &map);
2871 this->convert_input_sections_in_list_to_relaxed_sections(
2874 &this->input_sections_);
2876 // Update fast look-up map.
2877 if (this->lookup_maps_->is_valid())
2878 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2880 Output_relaxed_input_section* poris = relaxed_sections[i];
2881 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2882 poris->shndx(), poris);
2886 // Update the output section flags based on input section flags.
2889 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2891 // If we created the section with SHF_ALLOC clear, we set the
2892 // address. If we are now setting the SHF_ALLOC flag, we need to
2894 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2895 && (flags & elfcpp::SHF_ALLOC) != 0)
2896 this->mark_address_invalid();
2898 this->flags_ |= (flags
2899 & (elfcpp::SHF_WRITE
2901 | elfcpp::SHF_EXECINSTR));
2903 if ((flags & elfcpp::SHF_MERGE) == 0)
2904 this->flags_ &=~ elfcpp::SHF_MERGE;
2907 if (this->current_data_size_for_child() == 0)
2908 this->flags_ |= elfcpp::SHF_MERGE;
2911 if ((flags & elfcpp::SHF_STRINGS) == 0)
2912 this->flags_ &=~ elfcpp::SHF_STRINGS;
2915 if (this->current_data_size_for_child() == 0)
2916 this->flags_ |= elfcpp::SHF_STRINGS;
2920 // Find the merge section into which an input section with index SHNDX in
2921 // OBJECT has been added. Return NULL if none found.
2923 const Output_section_data*
2924 Output_section::find_merge_section(const Relobj* object,
2925 unsigned int shndx) const
2927 return object->find_merge_section(shndx);
2930 // Build the lookup maps for relaxed sections. This needs
2931 // to be declared as a const method so that it is callable with a const
2932 // Output_section pointer. The method only updates states of the maps.
2935 Output_section::build_lookup_maps() const
2937 this->lookup_maps_->clear();
2938 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2939 p != this->input_sections_.end();
2942 if (p->is_relaxed_input_section())
2944 Output_relaxed_input_section* poris = p->relaxed_input_section();
2945 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2946 poris->shndx(), poris);
2951 // Find an relaxed input section corresponding to an input section
2952 // in OBJECT with index SHNDX.
2954 const Output_relaxed_input_section*
2955 Output_section::find_relaxed_input_section(const Relobj* object,
2956 unsigned int shndx) const
2958 if (!this->lookup_maps_->is_valid())
2959 this->build_lookup_maps();
2960 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2963 // Given an address OFFSET relative to the start of input section
2964 // SHNDX in OBJECT, return whether this address is being included in
2965 // the final link. This should only be called if SHNDX in OBJECT has
2966 // a special mapping.
2969 Output_section::is_input_address_mapped(const Relobj* object,
2973 // Look at the Output_section_data_maps first.
2974 const Output_section_data* posd = this->find_merge_section(object, shndx);
2976 posd = this->find_relaxed_input_section(object, shndx);
2980 section_offset_type output_offset;
2981 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2982 // By default we assume that the address is mapped. See comment at the
2986 return output_offset != -1;
2989 // Fall back to the slow look-up.
2990 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2991 p != this->input_sections_.end();
2994 section_offset_type output_offset;
2995 if (p->output_offset(object, shndx, offset, &output_offset))
2996 return output_offset != -1;
2999 // By default we assume that the address is mapped. This should
3000 // only be called after we have passed all sections to Layout. At
3001 // that point we should know what we are discarding.
3005 // Given an address OFFSET relative to the start of input section
3006 // SHNDX in object OBJECT, return the output offset relative to the
3007 // start of the input section in the output section. This should only
3008 // be called if SHNDX in OBJECT has a special mapping.
3011 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3012 section_offset_type offset) const
3014 // This can only be called meaningfully when we know the data size
3016 gold_assert(this->is_data_size_valid());
3018 // Look at the Output_section_data_maps first.
3019 const Output_section_data* posd = this->find_merge_section(object, shndx);
3021 posd = this->find_relaxed_input_section(object, shndx);
3024 section_offset_type output_offset;
3025 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3027 return output_offset;
3030 // Fall back to the slow look-up.
3031 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3032 p != this->input_sections_.end();
3035 section_offset_type output_offset;
3036 if (p->output_offset(object, shndx, offset, &output_offset))
3037 return output_offset;
3042 // Return the output virtual address of OFFSET relative to the start
3043 // of input section SHNDX in object OBJECT.
3046 Output_section::output_address(const Relobj* object, unsigned int shndx,
3049 uint64_t addr = this->address() + this->first_input_offset_;
3051 // Look at the Output_section_data_maps first.
3052 const Output_section_data* posd = this->find_merge_section(object, shndx);
3054 posd = this->find_relaxed_input_section(object, shndx);
3055 if (posd != NULL && posd->is_address_valid())
3057 section_offset_type output_offset;
3058 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3060 return posd->address() + output_offset;
3063 // Fall back to the slow look-up.
3064 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3065 p != this->input_sections_.end();
3068 addr = align_address(addr, p->addralign());
3069 section_offset_type output_offset;
3070 if (p->output_offset(object, shndx, offset, &output_offset))
3072 if (output_offset == -1)
3074 return addr + output_offset;
3076 addr += p->data_size();
3079 // If we get here, it means that we don't know the mapping for this
3080 // input section. This might happen in principle if
3081 // add_input_section were called before add_output_section_data.
3082 // But it should never actually happen.
3087 // Find the output address of the start of the merged section for
3088 // input section SHNDX in object OBJECT.
3091 Output_section::find_starting_output_address(const Relobj* object,
3093 uint64_t* paddr) const
3095 const Output_section_data* data = this->find_merge_section(object, shndx);
3099 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3100 // Looking up the merge section map does not always work as we sometimes
3101 // find a merge section without its address set.
3102 uint64_t addr = this->address() + this->first_input_offset_;
3103 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3104 p != this->input_sections_.end();
3107 addr = align_address(addr, p->addralign());
3109 // It would be nice if we could use the existing output_offset
3110 // method to get the output offset of input offset 0.
3111 // Unfortunately we don't know for sure that input offset 0 is
3113 if (!p->is_input_section() && p->output_section_data() == data)
3119 addr += p->data_size();
3122 // We couldn't find a merge output section for this input section.
3126 // Update the data size of an Output_section.
3129 Output_section::update_data_size()
3131 if (this->input_sections_.empty())
3134 if (this->must_sort_attached_input_sections()
3135 || this->input_section_order_specified())
3136 this->sort_attached_input_sections();
3138 off_t off = this->first_input_offset_;
3139 for (Input_section_list::iterator p = this->input_sections_.begin();
3140 p != this->input_sections_.end();
3143 off = align_address(off, p->addralign());
3144 off += p->current_data_size();
3147 this->set_current_data_size_for_child(off);
3150 // Set the data size of an Output_section. This is where we handle
3151 // setting the addresses of any Output_section_data objects.
3154 Output_section::set_final_data_size()
3158 if (this->input_sections_.empty())
3159 data_size = this->current_data_size_for_child();
3162 if (this->must_sort_attached_input_sections()
3163 || this->input_section_order_specified())
3164 this->sort_attached_input_sections();
3166 uint64_t address = this->address();
3167 off_t startoff = this->offset();
3168 off_t off = this->first_input_offset_;
3169 for (Input_section_list::iterator p = this->input_sections_.begin();
3170 p != this->input_sections_.end();
3173 off = align_address(off, p->addralign());
3174 p->set_address_and_file_offset(address + off, startoff + off,
3176 off += p->data_size();
3181 // For full incremental links, we want to allocate some patch space
3182 // in most sections for subsequent incremental updates.
3183 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3185 double pct = parameters->options().incremental_patch();
3186 size_t extra = static_cast<size_t>(data_size * pct);
3187 if (this->free_space_fill_ != NULL
3188 && this->free_space_fill_->minimum_hole_size() > extra)
3189 extra = this->free_space_fill_->minimum_hole_size();
3190 off_t new_size = align_address(data_size + extra, this->addralign());
3191 this->patch_space_ = new_size - data_size;
3192 gold_debug(DEBUG_INCREMENTAL,
3193 "set_final_data_size: %08lx + %08lx: section %s",
3194 static_cast<long>(data_size),
3195 static_cast<long>(this->patch_space_),
3197 data_size = new_size;
3200 this->set_data_size(data_size);
3203 // Reset the address and file offset.
3206 Output_section::do_reset_address_and_file_offset()
3208 // An unallocated section has no address. Forcing this means that
3209 // we don't need special treatment for symbols defined in debug
3210 // sections. We do the same in the constructor. This does not
3211 // apply to NOLOAD sections though.
3212 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3213 this->set_address(0);
3215 for (Input_section_list::iterator p = this->input_sections_.begin();
3216 p != this->input_sections_.end();
3218 p->reset_address_and_file_offset();
3220 // Remove any patch space that was added in set_final_data_size.
3221 if (this->patch_space_ > 0)
3223 this->set_current_data_size_for_child(this->current_data_size_for_child()
3224 - this->patch_space_);
3225 this->patch_space_ = 0;
3229 // Return true if address and file offset have the values after reset.
3232 Output_section::do_address_and_file_offset_have_reset_values() const
3234 if (this->is_offset_valid())
3237 // An unallocated section has address 0 after its construction or a reset.
3238 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3239 return this->is_address_valid() && this->address() == 0;
3241 return !this->is_address_valid();
3244 // Set the TLS offset. Called only for SHT_TLS sections.
3247 Output_section::do_set_tls_offset(uint64_t tls_base)
3249 this->tls_offset_ = this->address() - tls_base;
3252 // In a few cases we need to sort the input sections attached to an
3253 // output section. This is used to implement the type of constructor
3254 // priority ordering implemented by the GNU linker, in which the
3255 // priority becomes part of the section name and the sections are
3256 // sorted by name. We only do this for an output section if we see an
3257 // attached input section matching ".ctors.*", ".dtors.*",
3258 // ".init_array.*" or ".fini_array.*".
3260 class Output_section::Input_section_sort_entry
3263 Input_section_sort_entry()
3264 : input_section_(), index_(-1U), section_name_()
3267 Input_section_sort_entry(const Input_section& input_section,
3269 bool must_sort_attached_input_sections,
3270 const char* output_section_name)
3271 : input_section_(input_section), index_(index), section_name_()
3273 if ((input_section.is_input_section()
3274 || input_section.is_relaxed_input_section())
3275 && must_sort_attached_input_sections)
3277 // This is only called single-threaded from Layout::finalize,
3278 // so it is OK to lock. Unfortunately we have no way to pass
3280 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3281 Object* obj = (input_section.is_input_section()
3282 ? input_section.relobj()
3283 : input_section.relaxed_input_section()->relobj());
3284 Task_lock_obj<Object> tl(dummy_task, obj);
3286 // This is a slow operation, which should be cached in
3287 // Layout::layout if this becomes a speed problem.
3288 this->section_name_ = obj->section_name(input_section.shndx());
3290 else if (input_section.is_output_section_data()
3291 && must_sort_attached_input_sections)
3293 // For linker-generated sections, use the output section name.
3294 this->section_name_.assign(output_section_name);
3298 // Return the Input_section.
3299 const Input_section&
3300 input_section() const
3302 gold_assert(this->index_ != -1U);
3303 return this->input_section_;
3306 // The index of this entry in the original list. This is used to
3307 // make the sort stable.
3311 gold_assert(this->index_ != -1U);
3312 return this->index_;
3315 // The section name.
3317 section_name() const
3319 return this->section_name_;
3322 // Return true if the section name has a priority. This is assumed
3323 // to be true if it has a dot after the initial dot.
3325 has_priority() const
3327 return this->section_name_.find('.', 1) != std::string::npos;
3330 // Return the priority. Believe it or not, gcc encodes the priority
3331 // differently for .ctors/.dtors and .init_array/.fini_array
3334 get_priority() const
3337 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3338 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3340 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3341 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3346 unsigned long prio = strtoul((this->section_name_.c_str()
3347 + (is_ctors ? 7 : 12)),
3352 return 65535 - prio;
3357 // Return true if this an input file whose base name matches
3358 // FILE_NAME. The base name must have an extension of ".o", and
3359 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3360 // This is to match crtbegin.o as well as crtbeginS.o without
3361 // getting confused by other possibilities. Overall matching the
3362 // file name this way is a dreadful hack, but the GNU linker does it
3363 // in order to better support gcc, and we need to be compatible.
3365 match_file_name(const char* file_name) const
3367 if (this->input_section_.is_output_section_data())
3369 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3372 // Returns 1 if THIS should appear before S in section order, -1 if S
3373 // appears before THIS and 0 if they are not comparable.
3375 compare_section_ordering(const Input_section_sort_entry& s) const
3377 unsigned int this_secn_index = this->input_section_.section_order_index();
3378 unsigned int s_secn_index = s.input_section().section_order_index();
3379 if (this_secn_index > 0 && s_secn_index > 0)
3381 if (this_secn_index < s_secn_index)
3383 else if (this_secn_index > s_secn_index)
3390 // The Input_section we are sorting.
3391 Input_section input_section_;
3392 // The index of this Input_section in the original list.
3393 unsigned int index_;
3394 // The section name if there is one.
3395 std::string section_name_;
3398 // Return true if S1 should come before S2 in the output section.
3401 Output_section::Input_section_sort_compare::operator()(
3402 const Output_section::Input_section_sort_entry& s1,
3403 const Output_section::Input_section_sort_entry& s2) const
3405 // crtbegin.o must come first.
3406 bool s1_begin = s1.match_file_name("crtbegin");
3407 bool s2_begin = s2.match_file_name("crtbegin");
3408 if (s1_begin || s2_begin)
3414 return s1.index() < s2.index();
3417 // crtend.o must come last.
3418 bool s1_end = s1.match_file_name("crtend");
3419 bool s2_end = s2.match_file_name("crtend");
3420 if (s1_end || s2_end)
3426 return s1.index() < s2.index();
3429 // A section with a priority follows a section without a priority.
3430 bool s1_has_priority = s1.has_priority();
3431 bool s2_has_priority = s2.has_priority();
3432 if (s1_has_priority && !s2_has_priority)
3434 if (!s1_has_priority && s2_has_priority)
3437 // Check if a section order exists for these sections through a section
3438 // ordering file. If sequence_num is 0, an order does not exist.
3439 int sequence_num = s1.compare_section_ordering(s2);
3440 if (sequence_num != 0)
3441 return sequence_num == 1;
3443 // Otherwise we sort by name.
3444 int compare = s1.section_name().compare(s2.section_name());
3448 // Otherwise we keep the input order.
3449 return s1.index() < s2.index();
3452 // Return true if S1 should come before S2 in an .init_array or .fini_array
3456 Output_section::Input_section_sort_init_fini_compare::operator()(
3457 const Output_section::Input_section_sort_entry& s1,
3458 const Output_section::Input_section_sort_entry& s2) const
3460 // A section without a priority follows a section with a priority.
3461 // This is the reverse of .ctors and .dtors sections.
3462 bool s1_has_priority = s1.has_priority();
3463 bool s2_has_priority = s2.has_priority();
3464 if (s1_has_priority && !s2_has_priority)
3466 if (!s1_has_priority && s2_has_priority)
3469 // .ctors and .dtors sections without priority come after
3470 // .init_array and .fini_array sections without priority.
3471 if (!s1_has_priority
3472 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3473 && s1.section_name() != s2.section_name())
3475 if (!s2_has_priority
3476 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3477 && s2.section_name() != s1.section_name())
3480 // Sort by priority if we can.
3481 if (s1_has_priority)
3483 unsigned int s1_prio = s1.get_priority();
3484 unsigned int s2_prio = s2.get_priority();
3485 if (s1_prio < s2_prio)
3487 else if (s1_prio > s2_prio)
3491 // Check if a section order exists for these sections through a section
3492 // ordering file. If sequence_num is 0, an order does not exist.
3493 int sequence_num = s1.compare_section_ordering(s2);
3494 if (sequence_num != 0)
3495 return sequence_num == 1;
3497 // Otherwise we sort by name.
3498 int compare = s1.section_name().compare(s2.section_name());
3502 // Otherwise we keep the input order.
3503 return s1.index() < s2.index();
3506 // Return true if S1 should come before S2. Sections that do not match
3507 // any pattern in the section ordering file are placed ahead of the sections
3508 // that match some pattern.
3511 Output_section::Input_section_sort_section_order_index_compare::operator()(
3512 const Output_section::Input_section_sort_entry& s1,
3513 const Output_section::Input_section_sort_entry& s2) const
3515 unsigned int s1_secn_index = s1.input_section().section_order_index();
3516 unsigned int s2_secn_index = s2.input_section().section_order_index();
3518 // Keep input order if section ordering cannot determine order.
3519 if (s1_secn_index == s2_secn_index)
3520 return s1.index() < s2.index();
3522 return s1_secn_index < s2_secn_index;
3525 // Return true if S1 should come before S2. This is the sort comparison
3526 // function for .text to sort sections with prefixes
3527 // .text.{unlikely,exit,startup,hot} before other sections.
3530 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3532 const Output_section::Input_section_sort_entry& s1,
3533 const Output_section::Input_section_sort_entry& s2) const
3535 // Some input section names have special ordering requirements.
3536 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3537 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3548 // Keep input order otherwise.
3549 return s1.index() < s2.index();
3552 // Return true if S1 should come before S2. This is the sort comparison
3553 // function for sections to sort them by name.
3556 Output_section::Input_section_sort_section_name_compare
3558 const Output_section::Input_section_sort_entry& s1,
3559 const Output_section::Input_section_sort_entry& s2) const
3562 int compare = s1.section_name().compare(s2.section_name());
3566 // Keep input order otherwise.
3567 return s1.index() < s2.index();
3570 // This updates the section order index of input sections according to the
3571 // the order specified in the mapping from Section id to order index.
3574 Output_section::update_section_layout(
3575 const Section_layout_order* order_map)
3577 for (Input_section_list::iterator p = this->input_sections_.begin();
3578 p != this->input_sections_.end();
3581 if (p->is_input_section()
3582 || p->is_relaxed_input_section())
3584 Relobj* obj = (p->is_input_section()
3586 : p->relaxed_input_section()->relobj());
3587 unsigned int shndx = p->shndx();
3588 Section_layout_order::const_iterator it
3589 = order_map->find(Section_id(obj, shndx));
3590 if (it == order_map->end())
3592 unsigned int section_order_index = it->second;
3593 if (section_order_index != 0)
3595 p->set_section_order_index(section_order_index);
3596 this->set_input_section_order_specified();
3602 // Sort the input sections attached to an output section.
3605 Output_section::sort_attached_input_sections()
3607 if (this->attached_input_sections_are_sorted_)
3610 if (this->checkpoint_ != NULL
3611 && !this->checkpoint_->input_sections_saved())
3612 this->checkpoint_->save_input_sections();
3614 // The only thing we know about an input section is the object and
3615 // the section index. We need the section name. Recomputing this
3616 // is slow but this is an unusual case. If this becomes a speed
3617 // problem we can cache the names as required in Layout::layout.
3619 // We start by building a larger vector holding a copy of each
3620 // Input_section, plus its current index in the list and its name.
3621 std::vector<Input_section_sort_entry> sort_list;
3624 for (Input_section_list::iterator p = this->input_sections_.begin();
3625 p != this->input_sections_.end();
3627 sort_list.push_back(Input_section_sort_entry(*p, i,
3628 this->must_sort_attached_input_sections(),
3631 // Sort the input sections.
3632 if (this->must_sort_attached_input_sections())
3634 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3635 || this->type() == elfcpp::SHT_INIT_ARRAY
3636 || this->type() == elfcpp::SHT_FINI_ARRAY)
3637 std::sort(sort_list.begin(), sort_list.end(),
3638 Input_section_sort_init_fini_compare());
3639 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3640 std::sort(sort_list.begin(), sort_list.end(),
3641 Input_section_sort_section_name_compare());
3642 else if (strcmp(this->name(), ".text") == 0)
3643 std::sort(sort_list.begin(), sort_list.end(),
3644 Input_section_sort_section_prefix_special_ordering_compare());
3646 std::sort(sort_list.begin(), sort_list.end(),
3647 Input_section_sort_compare());
3651 gold_assert(this->input_section_order_specified());
3652 std::sort(sort_list.begin(), sort_list.end(),
3653 Input_section_sort_section_order_index_compare());
3656 // Copy the sorted input sections back to our list.
3657 this->input_sections_.clear();
3658 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3659 p != sort_list.end();
3661 this->input_sections_.push_back(p->input_section());
3664 // Remember that we sorted the input sections, since we might get
3666 this->attached_input_sections_are_sorted_ = true;
3669 // Write the section header to *OSHDR.
3671 template<int size, bool big_endian>
3673 Output_section::write_header(const Layout* layout,
3674 const Stringpool* secnamepool,
3675 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3677 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3678 oshdr->put_sh_type(this->type_);
3680 elfcpp::Elf_Xword flags = this->flags_;
3681 if (this->info_section_ != NULL && this->info_uses_section_index_)
3682 flags |= elfcpp::SHF_INFO_LINK;
3683 oshdr->put_sh_flags(flags);
3685 oshdr->put_sh_addr(this->address());
3686 oshdr->put_sh_offset(this->offset());
3687 oshdr->put_sh_size(this->data_size());
3688 if (this->link_section_ != NULL)
3689 oshdr->put_sh_link(this->link_section_->out_shndx());
3690 else if (this->should_link_to_symtab_)
3691 oshdr->put_sh_link(layout->symtab_section_shndx());
3692 else if (this->should_link_to_dynsym_)
3693 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3695 oshdr->put_sh_link(this->link_);
3697 elfcpp::Elf_Word info;
3698 if (this->info_section_ != NULL)
3700 if (this->info_uses_section_index_)
3701 info = this->info_section_->out_shndx();
3703 info = this->info_section_->symtab_index();
3705 else if (this->info_symndx_ != NULL)
3706 info = this->info_symndx_->symtab_index();
3709 oshdr->put_sh_info(info);
3711 oshdr->put_sh_addralign(this->addralign_);
3712 oshdr->put_sh_entsize(this->entsize_);
3715 // Write out the data. For input sections the data is written out by
3716 // Object::relocate, but we have to handle Output_section_data objects
3720 Output_section::do_write(Output_file* of)
3722 gold_assert(!this->requires_postprocessing());
3724 // If the target performs relaxation, we delay filler generation until now.
3725 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3727 off_t output_section_file_offset = this->offset();
3728 for (Fill_list::iterator p = this->fills_.begin();
3729 p != this->fills_.end();
3732 std::string fill_data(parameters->target().code_fill(p->length()));
3733 of->write(output_section_file_offset + p->section_offset(),
3734 fill_data.data(), fill_data.size());
3737 off_t off = this->offset() + this->first_input_offset_;
3738 for (Input_section_list::iterator p = this->input_sections_.begin();
3739 p != this->input_sections_.end();
3742 off_t aligned_off = align_address(off, p->addralign());
3743 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3745 size_t fill_len = aligned_off - off;
3746 std::string fill_data(parameters->target().code_fill(fill_len));
3747 of->write(off, fill_data.data(), fill_data.size());
3751 off = aligned_off + p->data_size();
3754 // For incremental links, fill in unused chunks in debug sections
3755 // with dummy compilation unit headers.
3756 if (this->free_space_fill_ != NULL)
3758 for (Free_list::Const_iterator p = this->free_list_.begin();
3759 p != this->free_list_.end();
3762 off_t off = p->start_;
3763 size_t len = p->end_ - off;
3764 this->free_space_fill_->write(of, this->offset() + off, len);
3766 if (this->patch_space_ > 0)
3768 off_t off = this->current_data_size_for_child() - this->patch_space_;
3769 this->free_space_fill_->write(of, this->offset() + off,
3770 this->patch_space_);
3775 // If a section requires postprocessing, create the buffer to use.
3778 Output_section::create_postprocessing_buffer()
3780 gold_assert(this->requires_postprocessing());
3782 if (this->postprocessing_buffer_ != NULL)
3785 if (!this->input_sections_.empty())
3787 off_t off = this->first_input_offset_;
3788 for (Input_section_list::iterator p = this->input_sections_.begin();
3789 p != this->input_sections_.end();
3792 off = align_address(off, p->addralign());
3793 p->finalize_data_size();
3794 off += p->data_size();
3796 this->set_current_data_size_for_child(off);
3799 off_t buffer_size = this->current_data_size_for_child();
3800 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3803 // Write all the data of an Output_section into the postprocessing
3804 // buffer. This is used for sections which require postprocessing,
3805 // such as compression. Input sections are handled by
3806 // Object::Relocate.
3809 Output_section::write_to_postprocessing_buffer()
3811 gold_assert(this->requires_postprocessing());
3813 // If the target performs relaxation, we delay filler generation until now.
3814 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3816 unsigned char* buffer = this->postprocessing_buffer();
3817 for (Fill_list::iterator p = this->fills_.begin();
3818 p != this->fills_.end();
3821 std::string fill_data(parameters->target().code_fill(p->length()));
3822 memcpy(buffer + p->section_offset(), fill_data.data(),
3826 off_t off = this->first_input_offset_;
3827 for (Input_section_list::iterator p = this->input_sections_.begin();
3828 p != this->input_sections_.end();
3831 off_t aligned_off = align_address(off, p->addralign());
3832 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3834 size_t fill_len = aligned_off - off;
3835 std::string fill_data(parameters->target().code_fill(fill_len));
3836 memcpy(buffer + off, fill_data.data(), fill_data.size());
3839 p->write_to_buffer(buffer + aligned_off);
3840 off = aligned_off + p->data_size();
3844 // Get the input sections for linker script processing. We leave
3845 // behind the Output_section_data entries. Note that this may be
3846 // slightly incorrect for merge sections. We will leave them behind,
3847 // but it is possible that the script says that they should follow
3848 // some other input sections, as in:
3849 // .rodata { *(.rodata) *(.rodata.cst*) }
3850 // For that matter, we don't handle this correctly:
3851 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3852 // With luck this will never matter.
3855 Output_section::get_input_sections(
3857 const std::string& fill,
3858 std::list<Input_section>* input_sections)
3860 if (this->checkpoint_ != NULL
3861 && !this->checkpoint_->input_sections_saved())
3862 this->checkpoint_->save_input_sections();
3864 // Invalidate fast look-up maps.
3865 this->lookup_maps_->invalidate();
3867 uint64_t orig_address = address;
3869 address = align_address(address, this->addralign());
3871 Input_section_list remaining;
3872 for (Input_section_list::iterator p = this->input_sections_.begin();
3873 p != this->input_sections_.end();
3876 if (p->is_input_section()
3877 || p->is_relaxed_input_section()
3878 || p->is_merge_section())
3879 input_sections->push_back(*p);
3882 uint64_t aligned_address = align_address(address, p->addralign());
3883 if (aligned_address != address && !fill.empty())
3885 section_size_type length =
3886 convert_to_section_size_type(aligned_address - address);
3887 std::string this_fill;
3888 this_fill.reserve(length);
3889 while (this_fill.length() + fill.length() <= length)
3891 if (this_fill.length() < length)
3892 this_fill.append(fill, 0, length - this_fill.length());
3894 Output_section_data* posd = new Output_data_const(this_fill, 0);
3895 remaining.push_back(Input_section(posd));
3897 address = aligned_address;
3899 remaining.push_back(*p);
3901 p->finalize_data_size();
3902 address += p->data_size();
3906 this->input_sections_.swap(remaining);
3907 this->first_input_offset_ = 0;
3909 uint64_t data_size = address - orig_address;
3910 this->set_current_data_size_for_child(data_size);
3914 // Add a script input section. SIS is an Output_section::Input_section,
3915 // which can be either a plain input section or a special input section like
3916 // a relaxed input section. For a special input section, its size must be
3920 Output_section::add_script_input_section(const Input_section& sis)
3922 uint64_t data_size = sis.data_size();
3923 uint64_t addralign = sis.addralign();
3924 if (addralign > this->addralign_)
3925 this->addralign_ = addralign;
3927 off_t offset_in_section = this->current_data_size_for_child();
3928 off_t aligned_offset_in_section = align_address(offset_in_section,
3931 this->set_current_data_size_for_child(aligned_offset_in_section
3934 this->input_sections_.push_back(sis);
3936 // Update fast lookup maps if necessary.
3937 if (this->lookup_maps_->is_valid())
3939 if (sis.is_relaxed_input_section())
3941 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3942 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3943 poris->shndx(), poris);
3948 // Save states for relaxation.
3951 Output_section::save_states()
3953 gold_assert(this->checkpoint_ == NULL);
3954 Checkpoint_output_section* checkpoint =
3955 new Checkpoint_output_section(this->addralign_, this->flags_,
3956 this->input_sections_,
3957 this->first_input_offset_,
3958 this->attached_input_sections_are_sorted_);
3959 this->checkpoint_ = checkpoint;
3960 gold_assert(this->fills_.empty());
3964 Output_section::discard_states()
3966 gold_assert(this->checkpoint_ != NULL);
3967 delete this->checkpoint_;
3968 this->checkpoint_ = NULL;
3969 gold_assert(this->fills_.empty());
3971 // Simply invalidate the fast lookup maps since we do not keep
3973 this->lookup_maps_->invalidate();
3977 Output_section::restore_states()
3979 gold_assert(this->checkpoint_ != NULL);
3980 Checkpoint_output_section* checkpoint = this->checkpoint_;
3982 this->addralign_ = checkpoint->addralign();
3983 this->flags_ = checkpoint->flags();
3984 this->first_input_offset_ = checkpoint->first_input_offset();
3986 if (!checkpoint->input_sections_saved())
3988 // If we have not copied the input sections, just resize it.
3989 size_t old_size = checkpoint->input_sections_size();
3990 gold_assert(this->input_sections_.size() >= old_size);
3991 this->input_sections_.resize(old_size);
3995 // We need to copy the whole list. This is not efficient for
3996 // extremely large output with hundreads of thousands of input
3997 // objects. We may need to re-think how we should pass sections
3999 this->input_sections_ = *checkpoint->input_sections();
4002 this->attached_input_sections_are_sorted_ =
4003 checkpoint->attached_input_sections_are_sorted();
4005 // Simply invalidate the fast lookup maps since we do not keep
4007 this->lookup_maps_->invalidate();
4010 // Update the section offsets of input sections in this. This is required if
4011 // relaxation causes some input sections to change sizes.
4014 Output_section::adjust_section_offsets()
4016 if (!this->section_offsets_need_adjustment_)
4020 for (Input_section_list::iterator p = this->input_sections_.begin();
4021 p != this->input_sections_.end();
4024 off = align_address(off, p->addralign());
4025 if (p->is_input_section())
4026 p->relobj()->set_section_offset(p->shndx(), off);
4027 off += p->data_size();
4030 this->section_offsets_need_adjustment_ = false;
4033 // Print to the map file.
4036 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4038 mapfile->print_output_section(this);
4040 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4041 p != this->input_sections_.end();
4043 p->print_to_mapfile(mapfile);
4046 // Print stats for merge sections to stderr.
4049 Output_section::print_merge_stats()
4051 Input_section_list::iterator p;
4052 for (p = this->input_sections_.begin();
4053 p != this->input_sections_.end();
4055 p->print_merge_stats(this->name_);
4058 // Set a fixed layout for the section. Used for incremental update links.
4061 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4062 off_t sh_size, uint64_t sh_addralign)
4064 this->addralign_ = sh_addralign;
4065 this->set_current_data_size(sh_size);
4066 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4067 this->set_address(sh_addr);
4068 this->set_file_offset(sh_offset);
4069 this->finalize_data_size();
4070 this->free_list_.init(sh_size, false);
4071 this->has_fixed_layout_ = true;
4074 // Reserve space within the fixed layout for the section. Used for
4075 // incremental update links.
4078 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4080 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4083 // Allocate space from the free list for the section. Used for
4084 // incremental update links.
4087 Output_section::allocate(off_t len, uint64_t addralign)
4089 return this->free_list_.allocate(len, addralign, 0);
4092 // Output segment methods.
4094 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4104 is_max_align_known_(false),
4105 are_addresses_set_(false),
4106 is_large_data_segment_(false),
4107 is_unique_segment_(false)
4109 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4111 if (type == elfcpp::PT_TLS)
4112 this->flags_ = elfcpp::PF_R;
4115 // Add an Output_section to a PT_LOAD Output_segment.
4118 Output_segment::add_output_section_to_load(Layout* layout,
4120 elfcpp::Elf_Word seg_flags)
4122 gold_assert(this->type() == elfcpp::PT_LOAD);
4123 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4124 gold_assert(!this->is_max_align_known_);
4125 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4127 this->update_flags_for_output_section(seg_flags);
4129 // We don't want to change the ordering if we have a linker script
4130 // with a SECTIONS clause.
4131 Output_section_order order = os->order();
4132 if (layout->script_options()->saw_sections_clause())
4133 order = static_cast<Output_section_order>(0);
4135 gold_assert(order != ORDER_INVALID);
4137 this->output_lists_[order].push_back(os);
4140 // Add an Output_section to a non-PT_LOAD Output_segment.
4143 Output_segment::add_output_section_to_nonload(Output_section* os,
4144 elfcpp::Elf_Word seg_flags)
4146 gold_assert(this->type() != elfcpp::PT_LOAD);
4147 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4148 gold_assert(!this->is_max_align_known_);
4150 this->update_flags_for_output_section(seg_flags);
4152 this->output_lists_[0].push_back(os);
4155 // Remove an Output_section from this segment. It is an error if it
4159 Output_segment::remove_output_section(Output_section* os)
4161 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4163 Output_data_list* pdl = &this->output_lists_[i];
4164 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4176 // Add an Output_data (which need not be an Output_section) to the
4177 // start of a segment.
4180 Output_segment::add_initial_output_data(Output_data* od)
4182 gold_assert(!this->is_max_align_known_);
4183 Output_data_list::iterator p = this->output_lists_[0].begin();
4184 this->output_lists_[0].insert(p, od);
4187 // Return true if this segment has any sections which hold actual
4188 // data, rather than being a BSS section.
4191 Output_segment::has_any_data_sections() const
4193 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4195 const Output_data_list* pdl = &this->output_lists_[i];
4196 for (Output_data_list::const_iterator p = pdl->begin();
4200 if (!(*p)->is_section())
4202 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4209 // Return whether the first data section (not counting TLS sections)
4210 // is a relro section.
4213 Output_segment::is_first_section_relro() const
4215 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4217 if (i == static_cast<int>(ORDER_TLS_BSS))
4219 const Output_data_list* pdl = &this->output_lists_[i];
4222 Output_data* p = pdl->front();
4223 return p->is_section() && p->output_section()->is_relro();
4229 // Return the maximum alignment of the Output_data in Output_segment.
4232 Output_segment::maximum_alignment()
4234 if (!this->is_max_align_known_)
4236 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4238 const Output_data_list* pdl = &this->output_lists_[i];
4239 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4240 if (addralign > this->max_align_)
4241 this->max_align_ = addralign;
4243 this->is_max_align_known_ = true;
4246 return this->max_align_;
4249 // Return the maximum alignment of a list of Output_data.
4252 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4255 for (Output_data_list::const_iterator p = pdl->begin();
4259 uint64_t addralign = (*p)->addralign();
4260 if (addralign > ret)
4266 // Return whether this segment has any dynamic relocs.
4269 Output_segment::has_dynamic_reloc() const
4271 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4272 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4277 // Return whether this Output_data_list has any dynamic relocs.
4280 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4282 for (Output_data_list::const_iterator p = pdl->begin();
4285 if ((*p)->has_dynamic_reloc())
4290 // Set the section addresses for an Output_segment. If RESET is true,
4291 // reset the addresses first. ADDR is the address and *POFF is the
4292 // file offset. Set the section indexes starting with *PSHNDX.
4293 // INCREASE_RELRO is the size of the portion of the first non-relro
4294 // section that should be included in the PT_GNU_RELRO segment.
4295 // If this segment has relro sections, and has been aligned for
4296 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4297 // the immediately following segment. Update *HAS_RELRO, *POFF,
4301 Output_segment::set_section_addresses(const Target* target,
4302 Layout* layout, bool reset,
4304 unsigned int* increase_relro,
4307 unsigned int* pshndx)
4309 gold_assert(this->type_ == elfcpp::PT_LOAD);
4311 uint64_t last_relro_pad = 0;
4312 off_t orig_off = *poff;
4314 bool in_tls = false;
4316 // If we have relro sections, we need to pad forward now so that the
4317 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4318 if (parameters->options().relro()
4319 && this->is_first_section_relro()
4320 && (!this->are_addresses_set_ || reset))
4322 uint64_t relro_size = 0;
4324 uint64_t max_align = 0;
4325 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4327 Output_data_list* pdl = &this->output_lists_[i];
4328 Output_data_list::iterator p;
4329 for (p = pdl->begin(); p != pdl->end(); ++p)
4331 if (!(*p)->is_section())
4333 uint64_t align = (*p)->addralign();
4334 if (align > max_align)
4336 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4340 // Align the first non-TLS section to the alignment
4341 // of the TLS segment.
4345 // Ignore the size of the .tbss section.
4346 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4347 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4349 relro_size = align_address(relro_size, align);
4350 if ((*p)->is_address_valid())
4351 relro_size += (*p)->data_size();
4354 // FIXME: This could be faster.
4355 (*p)->set_address_and_file_offset(relro_size,
4357 relro_size += (*p)->data_size();
4358 (*p)->reset_address_and_file_offset();
4361 if (p != pdl->end())
4364 relro_size += *increase_relro;
4365 // Pad the total relro size to a multiple of the maximum
4366 // section alignment seen.
4367 uint64_t aligned_size = align_address(relro_size, max_align);
4368 // Note the amount of padding added after the last relro section.
4369 last_relro_pad = aligned_size - relro_size;
4372 uint64_t page_align = parameters->target().abi_pagesize();
4374 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4375 uint64_t desired_align = page_align - (aligned_size % page_align);
4376 if (desired_align < off % page_align)
4378 off += desired_align - off % page_align;
4379 addr += off - orig_off;
4384 if (!reset && this->are_addresses_set_)
4386 gold_assert(this->paddr_ == addr);
4387 addr = this->vaddr_;
4391 this->vaddr_ = addr;
4392 this->paddr_ = addr;
4393 this->are_addresses_set_ = true;
4398 this->offset_ = orig_off;
4403 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4405 if (i == static_cast<int>(ORDER_RELRO_LAST))
4407 *poff += last_relro_pad;
4408 foff += last_relro_pad;
4409 addr += last_relro_pad;
4410 if (this->output_lists_[i].empty())
4412 // If there is nothing in the ORDER_RELRO_LAST list,
4413 // the padding will occur at the end of the relro
4414 // segment, and we need to add it to *INCREASE_RELRO.
4415 *increase_relro += last_relro_pad;
4418 addr = this->set_section_list_addresses(layout, reset,
4419 &this->output_lists_[i],
4420 addr, poff, &foff, pshndx,
4423 // FOFF tracks the last offset used for the file image,
4424 // and *POFF tracks the last offset used for the memory image.
4425 // When not using a linker script, bss sections should all
4426 // be processed in the ORDER_SMALL_BSS and later buckets.
4427 gold_assert(*poff == foff
4428 || i == static_cast<int>(ORDER_TLS_BSS)
4429 || i >= static_cast<int>(ORDER_SMALL_BSS)
4430 || layout->script_options()->saw_sections_clause());
4432 this->filesz_ = foff - orig_off;
4438 // If the last section was a TLS section, align upward to the
4439 // alignment of the TLS segment, so that the overall size of the TLS
4440 // segment is aligned.
4443 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4444 *poff = align_address(*poff, segment_align);
4447 this->memsz_ = *poff - orig_off;
4449 // Ignore the file offset adjustments made by the BSS Output_data
4453 // If code segments must contain only code, and this code segment is
4454 // page-aligned in the file, then fill it out to a whole page with
4455 // code fill (the tail of the segment will not be within any section).
4456 // Thus the entire code segment can be mapped from the file as whole
4457 // pages and that mapping will contain only valid instructions.
4458 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4460 uint64_t abi_pagesize = target->abi_pagesize();
4461 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4463 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4465 std::string fill_data;
4466 if (target->has_code_fill())
4467 fill_data = target->code_fill(fill_size);
4469 fill_data.resize(fill_size); // Zero fill.
4471 Output_data_const* fill = new Output_data_const(fill_data, 0);
4472 fill->set_address(this->vaddr_ + this->memsz_);
4473 fill->set_file_offset(off);
4474 layout->add_relax_output(fill);
4477 gold_assert(off % abi_pagesize == 0);
4479 gold_assert(ret % abi_pagesize == 0);
4481 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4482 this->memsz_ = this->filesz_ += fill_size;
4491 // Set the addresses and file offsets in a list of Output_data
4495 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4496 Output_data_list* pdl,
4497 uint64_t addr, off_t* poff,
4499 unsigned int* pshndx,
4502 off_t startoff = *poff;
4503 // For incremental updates, we may allocate non-fixed sections from
4504 // free space in the file. This keeps track of the high-water mark.
4505 off_t maxoff = startoff;
4507 off_t off = startoff;
4508 off_t foff = *pfoff;
4509 for (Output_data_list::iterator p = pdl->begin();
4513 bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4514 bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4517 (*p)->reset_address_and_file_offset();
4519 // When doing an incremental update or when using a linker script,
4520 // the section will most likely already have an address.
4521 if (!(*p)->is_address_valid())
4523 uint64_t align = (*p)->addralign();
4527 // Give the first TLS section the alignment of the
4528 // entire TLS segment. Otherwise the TLS segment as a
4529 // whole may be misaligned.
4532 Output_segment* tls_segment = layout->tls_segment();
4533 gold_assert(tls_segment != NULL);
4534 uint64_t segment_align = tls_segment->maximum_alignment();
4535 gold_assert(segment_align >= align);
4536 align = segment_align;
4543 // If this is the first section after the TLS segment,
4544 // align it to at least the alignment of the TLS
4545 // segment, so that the size of the overall TLS segment
4549 uint64_t segment_align =
4550 layout->tls_segment()->maximum_alignment();
4551 if (segment_align > align)
4552 align = segment_align;
4558 if (!parameters->incremental_update())
4560 gold_assert(off == foff || is_bss);
4561 off = align_address(off, align);
4562 if (is_tls || !is_bss)
4564 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4568 // Incremental update: allocate file space from free list.
4569 (*p)->pre_finalize_data_size();
4570 off_t current_size = (*p)->current_data_size();
4571 off = layout->allocate(current_size, align, startoff);
4575 gold_assert((*p)->output_section() != NULL);
4576 gold_fallback(_("out of patch space for section %s; "
4577 "relink with --incremental-full"),
4578 (*p)->output_section()->name());
4580 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4581 if ((*p)->data_size() > current_size)
4583 gold_assert((*p)->output_section() != NULL);
4584 gold_fallback(_("%s: section changed size; "
4585 "relink with --incremental-full"),
4586 (*p)->output_section()->name());
4590 else if (parameters->incremental_update())
4592 // For incremental updates, use the fixed offset for the
4593 // high-water mark computation.
4594 off = (*p)->offset();
4599 // The script may have inserted a skip forward, but it
4600 // better not have moved backward.
4601 if ((*p)->address() >= addr + (off - startoff))
4603 if (!is_bss && off > foff)
4604 gold_warning(_("script places BSS section in the middle "
4605 "of a LOAD segment; space will be allocated "
4607 off += (*p)->address() - (addr + (off - startoff));
4608 if (is_tls || !is_bss)
4613 if (!layout->script_options()->saw_sections_clause())
4617 Output_section* os = (*p)->output_section();
4619 // Cast to unsigned long long to avoid format warnings.
4620 unsigned long long previous_dot =
4621 static_cast<unsigned long long>(addr + (off - startoff));
4622 unsigned long long dot =
4623 static_cast<unsigned long long>((*p)->address());
4626 gold_error(_("dot moves backward in linker script "
4627 "from 0x%llx to 0x%llx"), previous_dot, dot);
4629 gold_error(_("address of section '%s' moves backward "
4630 "from 0x%llx to 0x%llx"),
4631 os->name(), previous_dot, dot);
4634 (*p)->set_file_offset(foff);
4635 (*p)->finalize_data_size();
4638 if (parameters->incremental_update())
4639 gold_debug(DEBUG_INCREMENTAL,
4640 "set_section_list_addresses: %08lx %08lx %s",
4641 static_cast<long>(off),
4642 static_cast<long>((*p)->data_size()),
4643 ((*p)->output_section() != NULL
4644 ? (*p)->output_section()->name() : "(special)"));
4646 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4647 // section. Such a section does not affect the size of a
4649 if (!is_tls || !is_bss)
4650 off += (*p)->data_size();
4652 // We don't allocate space in the file for SHT_NOBITS sections,
4653 // unless a script has force-placed one in the middle of a segment.
4660 if ((*p)->is_section())
4662 (*p)->set_out_shndx(*pshndx);
4669 return addr + (maxoff - startoff);
4672 // For a non-PT_LOAD segment, set the offset from the sections, if
4673 // any. Add INCREASE to the file size and the memory size.
4676 Output_segment::set_offset(unsigned int increase)
4678 gold_assert(this->type_ != elfcpp::PT_LOAD);
4680 gold_assert(!this->are_addresses_set_);
4682 // A non-load section only uses output_lists_[0].
4684 Output_data_list* pdl = &this->output_lists_[0];
4688 gold_assert(increase == 0);
4691 this->are_addresses_set_ = true;
4693 this->min_p_align_ = 0;
4699 // Find the first and last section by address.
4700 const Output_data* first = NULL;
4701 const Output_data* last_data = NULL;
4702 const Output_data* last_bss = NULL;
4703 for (Output_data_list::const_iterator p = pdl->begin();
4708 || (*p)->address() < first->address()
4709 || ((*p)->address() == first->address()
4710 && (*p)->data_size() < first->data_size()))
4712 const Output_data** plast;
4713 if ((*p)->is_section()
4714 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4719 || (*p)->address() > (*plast)->address()
4720 || ((*p)->address() == (*plast)->address()
4721 && (*p)->data_size() > (*plast)->data_size()))
4725 this->vaddr_ = first->address();
4726 this->paddr_ = (first->has_load_address()
4727 ? first->load_address()
4729 this->are_addresses_set_ = true;
4730 this->offset_ = first->offset();
4732 if (last_data == NULL)
4735 this->filesz_ = (last_data->address()
4736 + last_data->data_size()
4739 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4740 this->memsz_ = (last->address()
4744 this->filesz_ += increase;
4745 this->memsz_ += increase;
4747 // If this is a RELRO segment, verify that the segment ends at a
4749 if (this->type_ == elfcpp::PT_GNU_RELRO)
4751 uint64_t page_align = parameters->target().abi_pagesize();
4752 uint64_t segment_end = this->vaddr_ + this->memsz_;
4753 if (parameters->incremental_update())
4755 // The INCREASE_RELRO calculation is bypassed for an incremental
4756 // update, so we need to adjust the segment size manually here.
4757 segment_end = align_address(segment_end, page_align);
4758 this->memsz_ = segment_end - this->vaddr_;
4761 gold_assert(segment_end == align_address(segment_end, page_align));
4764 // If this is a TLS segment, align the memory size. The code in
4765 // set_section_list ensures that the section after the TLS segment
4766 // is aligned to give us room.
4767 if (this->type_ == elfcpp::PT_TLS)
4769 uint64_t segment_align = this->maximum_alignment();
4770 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4771 this->memsz_ = align_address(this->memsz_, segment_align);
4775 // Set the TLS offsets of the sections in the PT_TLS segment.
4778 Output_segment::set_tls_offsets()
4780 gold_assert(this->type_ == elfcpp::PT_TLS);
4782 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4783 p != this->output_lists_[0].end();
4785 (*p)->set_tls_offset(this->vaddr_);
4788 // Return the first section.
4791 Output_segment::first_section() const
4793 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4795 const Output_data_list* pdl = &this->output_lists_[i];
4796 for (Output_data_list::const_iterator p = pdl->begin();
4800 if ((*p)->is_section())
4801 return (*p)->output_section();
4807 // Return the number of Output_sections in an Output_segment.
4810 Output_segment::output_section_count() const
4812 unsigned int ret = 0;
4813 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4814 ret += this->output_section_count_list(&this->output_lists_[i]);
4818 // Return the number of Output_sections in an Output_data_list.
4821 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4823 unsigned int count = 0;
4824 for (Output_data_list::const_iterator p = pdl->begin();
4828 if ((*p)->is_section())
4834 // Return the section attached to the list segment with the lowest
4835 // load address. This is used when handling a PHDRS clause in a
4839 Output_segment::section_with_lowest_load_address() const
4841 Output_section* found = NULL;
4842 uint64_t found_lma = 0;
4843 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4844 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4849 // Look through a list for a section with a lower load address.
4852 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4853 Output_section** found,
4854 uint64_t* found_lma) const
4856 for (Output_data_list::const_iterator p = pdl->begin();
4860 if (!(*p)->is_section())
4862 Output_section* os = static_cast<Output_section*>(*p);
4863 uint64_t lma = (os->has_load_address()
4864 ? os->load_address()
4866 if (*found == NULL || lma < *found_lma)
4874 // Write the segment data into *OPHDR.
4876 template<int size, bool big_endian>
4878 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4880 ophdr->put_p_type(this->type_);
4881 ophdr->put_p_offset(this->offset_);
4882 ophdr->put_p_vaddr(this->vaddr_);
4883 ophdr->put_p_paddr(this->paddr_);
4884 ophdr->put_p_filesz(this->filesz_);
4885 ophdr->put_p_memsz(this->memsz_);
4886 ophdr->put_p_flags(this->flags_);
4887 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4890 // Write the section headers into V.
4892 template<int size, bool big_endian>
4894 Output_segment::write_section_headers(const Layout* layout,
4895 const Stringpool* secnamepool,
4897 unsigned int* pshndx) const
4899 // Every section that is attached to a segment must be attached to a
4900 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4902 if (this->type_ != elfcpp::PT_LOAD)
4905 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4907 const Output_data_list* pdl = &this->output_lists_[i];
4908 v = this->write_section_headers_list<size, big_endian>(layout,
4917 template<int size, bool big_endian>
4919 Output_segment::write_section_headers_list(const Layout* layout,
4920 const Stringpool* secnamepool,
4921 const Output_data_list* pdl,
4923 unsigned int* pshndx) const
4925 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4926 for (Output_data_list::const_iterator p = pdl->begin();
4930 if ((*p)->is_section())
4932 const Output_section* ps = static_cast<const Output_section*>(*p);
4933 gold_assert(*pshndx == ps->out_shndx());
4934 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4935 ps->write_header(layout, secnamepool, &oshdr);
4943 // Print the output sections to the map file.
4946 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4948 if (this->type() != elfcpp::PT_LOAD)
4950 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4951 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4954 // Print an output section list to the map file.
4957 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4958 const Output_data_list* pdl) const
4960 for (Output_data_list::const_iterator p = pdl->begin();
4963 (*p)->print_to_mapfile(mapfile);
4966 // Output_file methods.
4968 Output_file::Output_file(const char* name)
4973 map_is_anonymous_(false),
4974 map_is_allocated_(false),
4975 is_temporary_(false)
4979 // Try to open an existing file. Returns false if the file doesn't
4980 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4981 // NULL, open that file as the base for incremental linking, and
4982 // copy its contents to the new output file. This routine can
4983 // be called for incremental updates, in which case WRITABLE should
4984 // be true, or by the incremental-dump utility, in which case
4985 // WRITABLE should be false.
4988 Output_file::open_base_file(const char* base_name, bool writable)
4990 // The name "-" means "stdout".
4991 if (strcmp(this->name_, "-") == 0)
4994 bool use_base_file = base_name != NULL;
4996 base_name = this->name_;
4997 else if (strcmp(base_name, this->name_) == 0)
4998 gold_fatal(_("%s: incremental base and output file name are the same"),
5001 // Don't bother opening files with a size of zero.
5003 if (::stat(base_name, &s) != 0)
5005 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5010 gold_info(_("%s: incremental base file is empty"), base_name);
5014 // If we're using a base file, we want to open it read-only.
5018 int oflags = writable ? O_RDWR : O_RDONLY;
5019 int o = open_descriptor(-1, base_name, oflags, 0);
5022 gold_info(_("%s: open: %s"), base_name, strerror(errno));
5026 // If the base file and the output file are different, open a
5027 // new output file and read the contents from the base file into
5028 // the newly-mapped region.
5031 this->open(s.st_size);
5032 ssize_t bytes_to_read = s.st_size;
5033 unsigned char* p = this->base_;
5034 while (bytes_to_read > 0)
5036 ssize_t len = ::read(o, p, bytes_to_read);
5039 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5044 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5046 static_cast<long long>(s.st_size - bytes_to_read),
5047 static_cast<long long>(s.st_size));
5051 bytes_to_read -= len;
5058 this->file_size_ = s.st_size;
5060 if (!this->map_no_anonymous(writable))
5062 release_descriptor(o, true);
5064 this->file_size_ = 0;
5071 // Open the output file.
5074 Output_file::open(off_t file_size)
5076 this->file_size_ = file_size;
5078 // Unlink the file first; otherwise the open() may fail if the file
5079 // is busy (e.g. it's an executable that's currently being executed).
5081 // However, the linker may be part of a system where a zero-length
5082 // file is created for it to write to, with tight permissions (gcc
5083 // 2.95 did something like this). Unlinking the file would work
5084 // around those permission controls, so we only unlink if the file
5085 // has a non-zero size. We also unlink only regular files to avoid
5086 // trouble with directories/etc.
5088 // If we fail, continue; this command is merely a best-effort attempt
5089 // to improve the odds for open().
5091 // We let the name "-" mean "stdout"
5092 if (!this->is_temporary_)
5094 if (strcmp(this->name_, "-") == 0)
5095 this->o_ = STDOUT_FILENO;
5099 if (::stat(this->name_, &s) == 0
5100 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5103 ::unlink(this->name_);
5104 else if (!parameters->options().relocatable())
5106 // If we don't unlink the existing file, add execute
5107 // permission where read permissions already exist
5108 // and where the umask permits.
5109 int mask = ::umask(0);
5111 s.st_mode |= (s.st_mode & 0444) >> 2;
5112 ::chmod(this->name_, s.st_mode & ~mask);
5116 int mode = parameters->options().relocatable() ? 0666 : 0777;
5117 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5120 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5128 // Resize the output file.
5131 Output_file::resize(off_t file_size)
5133 // If the mmap is mapping an anonymous memory buffer, this is easy:
5134 // just mremap to the new size. If it's mapping to a file, we want
5135 // to unmap to flush to the file, then remap after growing the file.
5136 if (this->map_is_anonymous_)
5139 if (!this->map_is_allocated_)
5141 base = ::mremap(this->base_, this->file_size_, file_size,
5143 if (base == MAP_FAILED)
5144 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5148 base = realloc(this->base_, file_size);
5151 if (file_size > this->file_size_)
5152 memset(static_cast<char*>(base) + this->file_size_, 0,
5153 file_size - this->file_size_);
5155 this->base_ = static_cast<unsigned char*>(base);
5156 this->file_size_ = file_size;
5161 this->file_size_ = file_size;
5162 if (!this->map_no_anonymous(true))
5163 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5167 // Map an anonymous block of memory which will later be written to the
5168 // file. Return whether the map succeeded.
5171 Output_file::map_anonymous()
5173 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5174 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5175 if (base == MAP_FAILED)
5177 base = malloc(this->file_size_);
5180 memset(base, 0, this->file_size_);
5181 this->map_is_allocated_ = true;
5183 this->base_ = static_cast<unsigned char*>(base);
5184 this->map_is_anonymous_ = true;
5188 // Map the file into memory. Return whether the mapping succeeded.
5189 // If WRITABLE is true, map with write access.
5192 Output_file::map_no_anonymous(bool writable)
5194 const int o = this->o_;
5196 // If the output file is not a regular file, don't try to mmap it;
5197 // instead, we'll mmap a block of memory (an anonymous buffer), and
5198 // then later write the buffer to the file.
5200 struct stat statbuf;
5201 if (o == STDOUT_FILENO || o == STDERR_FILENO
5202 || ::fstat(o, &statbuf) != 0
5203 || !S_ISREG(statbuf.st_mode)
5204 || this->is_temporary_)
5207 // Ensure that we have disk space available for the file. If we
5208 // don't do this, it is possible that we will call munmap, close,
5209 // and exit with dirty buffers still in the cache with no assigned
5210 // disk blocks. If the disk is out of space at that point, the
5211 // output file will wind up incomplete, but we will have already
5212 // exited. The alternative to fallocate would be to use fdatasync,
5213 // but that would be a more significant performance hit.
5216 int err = gold_fallocate(o, 0, this->file_size_);
5218 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5221 // Map the file into memory.
5222 int prot = PROT_READ;
5225 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5227 // The mmap call might fail because of file system issues: the file
5228 // system might not support mmap at all, or it might not support
5229 // mmap with PROT_WRITE.
5230 if (base == MAP_FAILED)
5233 this->map_is_anonymous_ = false;
5234 this->base_ = static_cast<unsigned char*>(base);
5238 // Map the file into memory.
5243 if (parameters->options().mmap_output_file()
5244 && this->map_no_anonymous(true))
5247 // The mmap call might fail because of file system issues: the file
5248 // system might not support mmap at all, or it might not support
5249 // mmap with PROT_WRITE. I'm not sure which errno values we will
5250 // see in all cases, so if the mmap fails for any reason and we
5251 // don't care about file contents, try for an anonymous map.
5252 if (this->map_anonymous())
5255 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5256 this->name_, static_cast<unsigned long>(this->file_size_),
5260 // Unmap the file from memory.
5263 Output_file::unmap()
5265 if (this->map_is_anonymous_)
5267 // We've already written out the data, so there is no reason to
5268 // waste time unmapping or freeing the memory.
5272 if (::munmap(this->base_, this->file_size_) < 0)
5273 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5278 // Close the output file.
5281 Output_file::close()
5283 // If the map isn't file-backed, we need to write it now.
5284 if (this->map_is_anonymous_ && !this->is_temporary_)
5286 size_t bytes_to_write = this->file_size_;
5288 while (bytes_to_write > 0)
5290 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5292 if (bytes_written == 0)
5293 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5294 else if (bytes_written < 0)
5295 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5298 bytes_to_write -= bytes_written;
5299 offset += bytes_written;
5305 // We don't close stdout or stderr
5306 if (this->o_ != STDOUT_FILENO
5307 && this->o_ != STDERR_FILENO
5308 && !this->is_temporary_)
5309 if (::close(this->o_) < 0)
5310 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5314 // Instantiate the templates we need. We could use the configure
5315 // script to restrict this to only the ones for implemented targets.
5317 #ifdef HAVE_TARGET_32_LITTLE
5320 Output_section::add_input_section<32, false>(
5322 Sized_relobj_file<32, false>* object,
5324 const char* secname,
5325 const elfcpp::Shdr<32, false>& shdr,
5326 unsigned int reloc_shndx,
5327 bool have_sections_script);
5330 #ifdef HAVE_TARGET_32_BIG
5333 Output_section::add_input_section<32, true>(
5335 Sized_relobj_file<32, true>* object,
5337 const char* secname,
5338 const elfcpp::Shdr<32, true>& shdr,
5339 unsigned int reloc_shndx,
5340 bool have_sections_script);
5343 #ifdef HAVE_TARGET_64_LITTLE
5346 Output_section::add_input_section<64, false>(
5348 Sized_relobj_file<64, false>* object,
5350 const char* secname,
5351 const elfcpp::Shdr<64, false>& shdr,
5352 unsigned int reloc_shndx,
5353 bool have_sections_script);
5356 #ifdef HAVE_TARGET_64_BIG
5359 Output_section::add_input_section<64, true>(
5361 Sized_relobj_file<64, true>* object,
5363 const char* secname,
5364 const elfcpp::Shdr<64, true>& shdr,
5365 unsigned int reloc_shndx,
5366 bool have_sections_script);
5369 #ifdef HAVE_TARGET_32_LITTLE
5371 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5374 #ifdef HAVE_TARGET_32_BIG
5376 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5379 #ifdef HAVE_TARGET_64_LITTLE
5381 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5384 #ifdef HAVE_TARGET_64_BIG
5386 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5389 #ifdef HAVE_TARGET_32_LITTLE
5391 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5394 #ifdef HAVE_TARGET_32_BIG
5396 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5399 #ifdef HAVE_TARGET_64_LITTLE
5401 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5404 #ifdef HAVE_TARGET_64_BIG
5406 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5409 #ifdef HAVE_TARGET_32_LITTLE
5411 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5414 #ifdef HAVE_TARGET_32_BIG
5416 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5419 #ifdef HAVE_TARGET_64_LITTLE
5421 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5424 #ifdef HAVE_TARGET_64_BIG
5426 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5429 #ifdef HAVE_TARGET_32_LITTLE
5431 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5434 #ifdef HAVE_TARGET_32_BIG
5436 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5439 #ifdef HAVE_TARGET_64_LITTLE
5441 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5444 #ifdef HAVE_TARGET_64_BIG
5446 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5449 #ifdef HAVE_TARGET_32_LITTLE
5451 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5454 #ifdef HAVE_TARGET_32_BIG
5456 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5459 #ifdef HAVE_TARGET_64_LITTLE
5461 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5464 #ifdef HAVE_TARGET_64_BIG
5466 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5469 #ifdef HAVE_TARGET_32_LITTLE
5471 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5474 #ifdef HAVE_TARGET_32_BIG
5476 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5479 #ifdef HAVE_TARGET_64_LITTLE
5481 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5484 #ifdef HAVE_TARGET_64_BIG
5486 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5489 #ifdef HAVE_TARGET_32_LITTLE
5491 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5494 #ifdef HAVE_TARGET_32_BIG
5496 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5499 #ifdef HAVE_TARGET_64_LITTLE
5501 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5504 #ifdef HAVE_TARGET_64_BIG
5506 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5509 #ifdef HAVE_TARGET_32_LITTLE
5511 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5514 #ifdef HAVE_TARGET_32_BIG
5516 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5519 #ifdef HAVE_TARGET_64_LITTLE
5521 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5524 #ifdef HAVE_TARGET_64_BIG
5526 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5529 #ifdef HAVE_TARGET_32_LITTLE
5531 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5534 #ifdef HAVE_TARGET_32_BIG
5536 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5539 #ifdef HAVE_TARGET_64_LITTLE
5541 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5544 #ifdef HAVE_TARGET_64_BIG
5546 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5549 #ifdef HAVE_TARGET_32_LITTLE
5551 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5554 #ifdef HAVE_TARGET_32_BIG
5556 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5559 #ifdef HAVE_TARGET_64_LITTLE
5561 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5564 #ifdef HAVE_TARGET_64_BIG
5566 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5569 #ifdef HAVE_TARGET_32_LITTLE
5571 class Output_data_group<32, false>;
5574 #ifdef HAVE_TARGET_32_BIG
5576 class Output_data_group<32, true>;
5579 #ifdef HAVE_TARGET_64_LITTLE
5581 class Output_data_group<64, false>;
5584 #ifdef HAVE_TARGET_64_BIG
5586 class Output_data_group<64, true>;
5590 class Output_data_got<32, false>;
5593 class Output_data_got<32, true>;
5596 class Output_data_got<64, false>;
5599 class Output_data_got<64, true>;
5601 } // End namespace gold.