1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate. Here we just set
116 // the file size and hope that there is enough disk space. FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
120 posix_fallocate(int o, off_t offset, off_t len)
122 if (ftruncate(o, offset + len) < 0)
126 #endif // !defined(HAVE_POSIX_FALLOCATE)
128 // Mingw does not have S_ISLNK.
130 # define S_ISLNK(mode) 0
136 // Output_data variables.
138 bool Output_data::allocated_sizes_are_fixed;
140 // Output_data methods.
142 Output_data::~Output_data()
146 // Return the default alignment for the target size.
149 Output_data::default_alignment()
151 return Output_data::default_alignment_for_size(
152 parameters->target().get_size());
155 // Return the default alignment for a size--32 or 64.
158 Output_data::default_alignment_for_size(int size)
168 // Output_section_header methods. This currently assumes that the
169 // segment and section lists are complete at construction time.
171 Output_section_headers::Output_section_headers(
172 const Layout* layout,
173 const Layout::Segment_list* segment_list,
174 const Layout::Section_list* section_list,
175 const Layout::Section_list* unattached_section_list,
176 const Stringpool* secnamepool,
177 const Output_section* shstrtab_section)
179 segment_list_(segment_list),
180 section_list_(section_list),
181 unattached_section_list_(unattached_section_list),
182 secnamepool_(secnamepool),
183 shstrtab_section_(shstrtab_section)
187 // Compute the current data size.
190 Output_section_headers::do_size() const
192 // Count all the sections. Start with 1 for the null section.
194 if (!parameters->options().relocatable())
196 for (Layout::Segment_list::const_iterator p =
197 this->segment_list_->begin();
198 p != this->segment_list_->end();
200 if ((*p)->type() == elfcpp::PT_LOAD)
201 count += (*p)->output_section_count();
205 for (Layout::Section_list::const_iterator p =
206 this->section_list_->begin();
207 p != this->section_list_->end();
209 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
212 count += this->unattached_section_list_->size();
214 const int size = parameters->target().get_size();
217 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
219 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
223 return count * shdr_size;
226 // Write out the section headers.
229 Output_section_headers::do_write(Output_file* of)
231 switch (parameters->size_and_endianness())
233 #ifdef HAVE_TARGET_32_LITTLE
234 case Parameters::TARGET_32_LITTLE:
235 this->do_sized_write<32, false>(of);
238 #ifdef HAVE_TARGET_32_BIG
239 case Parameters::TARGET_32_BIG:
240 this->do_sized_write<32, true>(of);
243 #ifdef HAVE_TARGET_64_LITTLE
244 case Parameters::TARGET_64_LITTLE:
245 this->do_sized_write<64, false>(of);
248 #ifdef HAVE_TARGET_64_BIG
249 case Parameters::TARGET_64_BIG:
250 this->do_sized_write<64, true>(of);
258 template<int size, bool big_endian>
260 Output_section_headers::do_sized_write(Output_file* of)
262 off_t all_shdrs_size = this->data_size();
263 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
265 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
266 unsigned char* v = view;
269 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
270 oshdr.put_sh_name(0);
271 oshdr.put_sh_type(elfcpp::SHT_NULL);
272 oshdr.put_sh_flags(0);
273 oshdr.put_sh_addr(0);
274 oshdr.put_sh_offset(0);
276 size_t section_count = (this->data_size()
277 / elfcpp::Elf_sizes<size>::shdr_size);
278 if (section_count < elfcpp::SHN_LORESERVE)
279 oshdr.put_sh_size(0);
281 oshdr.put_sh_size(section_count);
283 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
284 if (shstrndx < elfcpp::SHN_LORESERVE)
285 oshdr.put_sh_link(0);
287 oshdr.put_sh_link(shstrndx);
289 size_t segment_count = this->segment_list_->size();
290 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
292 oshdr.put_sh_addralign(0);
293 oshdr.put_sh_entsize(0);
298 unsigned int shndx = 1;
299 if (!parameters->options().relocatable())
301 for (Layout::Segment_list::const_iterator p =
302 this->segment_list_->begin();
303 p != this->segment_list_->end();
305 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
312 for (Layout::Section_list::const_iterator p =
313 this->section_list_->begin();
314 p != this->section_list_->end();
317 // We do unallocated sections below, except that group
318 // sections have to come first.
319 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
320 && (*p)->type() != elfcpp::SHT_GROUP)
322 gold_assert(shndx == (*p)->out_shndx());
323 elfcpp::Shdr_write<size, big_endian> oshdr(v);
324 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
330 for (Layout::Section_list::const_iterator p =
331 this->unattached_section_list_->begin();
332 p != this->unattached_section_list_->end();
335 // For a relocatable link, we did unallocated group sections
336 // above, since they have to come first.
337 if ((*p)->type() == elfcpp::SHT_GROUP
338 && parameters->options().relocatable())
340 gold_assert(shndx == (*p)->out_shndx());
341 elfcpp::Shdr_write<size, big_endian> oshdr(v);
342 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
347 of->write_output_view(this->offset(), all_shdrs_size, view);
350 // Output_segment_header methods.
352 Output_segment_headers::Output_segment_headers(
353 const Layout::Segment_list& segment_list)
354 : segment_list_(segment_list)
356 this->set_current_data_size_for_child(this->do_size());
360 Output_segment_headers::do_write(Output_file* of)
362 switch (parameters->size_and_endianness())
364 #ifdef HAVE_TARGET_32_LITTLE
365 case Parameters::TARGET_32_LITTLE:
366 this->do_sized_write<32, false>(of);
369 #ifdef HAVE_TARGET_32_BIG
370 case Parameters::TARGET_32_BIG:
371 this->do_sized_write<32, true>(of);
374 #ifdef HAVE_TARGET_64_LITTLE
375 case Parameters::TARGET_64_LITTLE:
376 this->do_sized_write<64, false>(of);
379 #ifdef HAVE_TARGET_64_BIG
380 case Parameters::TARGET_64_BIG:
381 this->do_sized_write<64, true>(of);
389 template<int size, bool big_endian>
391 Output_segment_headers::do_sized_write(Output_file* of)
393 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
394 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
395 gold_assert(all_phdrs_size == this->data_size());
396 unsigned char* view = of->get_output_view(this->offset(),
398 unsigned char* v = view;
399 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
400 p != this->segment_list_.end();
403 elfcpp::Phdr_write<size, big_endian> ophdr(v);
404 (*p)->write_header(&ophdr);
408 gold_assert(v - view == all_phdrs_size);
410 of->write_output_view(this->offset(), all_phdrs_size, view);
414 Output_segment_headers::do_size() const
416 const int size = parameters->target().get_size();
419 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
421 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
425 return this->segment_list_.size() * phdr_size;
428 // Output_file_header methods.
430 Output_file_header::Output_file_header(const Target* target,
431 const Symbol_table* symtab,
432 const Output_segment_headers* osh)
435 segment_header_(osh),
436 section_header_(NULL),
439 this->set_data_size(this->do_size());
442 // Set the section table information for a file header.
445 Output_file_header::set_section_info(const Output_section_headers* shdrs,
446 const Output_section* shstrtab)
448 this->section_header_ = shdrs;
449 this->shstrtab_ = shstrtab;
452 // Write out the file header.
455 Output_file_header::do_write(Output_file* of)
457 gold_assert(this->offset() == 0);
459 switch (parameters->size_and_endianness())
461 #ifdef HAVE_TARGET_32_LITTLE
462 case Parameters::TARGET_32_LITTLE:
463 this->do_sized_write<32, false>(of);
466 #ifdef HAVE_TARGET_32_BIG
467 case Parameters::TARGET_32_BIG:
468 this->do_sized_write<32, true>(of);
471 #ifdef HAVE_TARGET_64_LITTLE
472 case Parameters::TARGET_64_LITTLE:
473 this->do_sized_write<64, false>(of);
476 #ifdef HAVE_TARGET_64_BIG
477 case Parameters::TARGET_64_BIG:
478 this->do_sized_write<64, true>(of);
486 // Write out the file header with appropriate size and endianness.
488 template<int size, bool big_endian>
490 Output_file_header::do_sized_write(Output_file* of)
492 gold_assert(this->offset() == 0);
494 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
495 unsigned char* view = of->get_output_view(0, ehdr_size);
496 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
498 unsigned char e_ident[elfcpp::EI_NIDENT];
499 memset(e_ident, 0, elfcpp::EI_NIDENT);
500 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
501 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
502 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
503 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
505 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
507 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
510 e_ident[elfcpp::EI_DATA] = (big_endian
511 ? elfcpp::ELFDATA2MSB
512 : elfcpp::ELFDATA2LSB);
513 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
514 oehdr.put_e_ident(e_ident);
517 if (parameters->options().relocatable())
518 e_type = elfcpp::ET_REL;
519 else if (parameters->options().output_is_position_independent())
520 e_type = elfcpp::ET_DYN;
522 e_type = elfcpp::ET_EXEC;
523 oehdr.put_e_type(e_type);
525 oehdr.put_e_machine(this->target_->machine_code());
526 oehdr.put_e_version(elfcpp::EV_CURRENT);
528 oehdr.put_e_entry(this->entry<size>());
530 if (this->segment_header_ == NULL)
531 oehdr.put_e_phoff(0);
533 oehdr.put_e_phoff(this->segment_header_->offset());
535 oehdr.put_e_shoff(this->section_header_->offset());
536 oehdr.put_e_flags(this->target_->processor_specific_flags());
537 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
539 if (this->segment_header_ == NULL)
541 oehdr.put_e_phentsize(0);
542 oehdr.put_e_phnum(0);
546 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
547 size_t phnum = (this->segment_header_->data_size()
548 / elfcpp::Elf_sizes<size>::phdr_size);
549 if (phnum > elfcpp::PN_XNUM)
550 phnum = elfcpp::PN_XNUM;
551 oehdr.put_e_phnum(phnum);
554 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
555 size_t section_count = (this->section_header_->data_size()
556 / elfcpp::Elf_sizes<size>::shdr_size);
558 if (section_count < elfcpp::SHN_LORESERVE)
559 oehdr.put_e_shnum(this->section_header_->data_size()
560 / elfcpp::Elf_sizes<size>::shdr_size);
562 oehdr.put_e_shnum(0);
564 unsigned int shstrndx = this->shstrtab_->out_shndx();
565 if (shstrndx < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
568 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
570 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
571 // the e_ident field.
572 parameters->target().adjust_elf_header(view, ehdr_size);
574 of->write_output_view(0, ehdr_size, view);
577 // Return the value to use for the entry address.
580 typename elfcpp::Elf_types<size>::Elf_Addr
581 Output_file_header::entry()
583 const bool should_issue_warning = (parameters->options().entry() != NULL
584 && !parameters->options().relocatable()
585 && !parameters->options().shared());
586 const char* entry = parameters->entry();
587 Symbol* sym = this->symtab_->lookup(entry);
589 typename Sized_symbol<size>::Value_type v;
592 Sized_symbol<size>* ssym;
593 ssym = this->symtab_->get_sized_symbol<size>(sym);
594 if (!ssym->is_defined() && should_issue_warning)
595 gold_warning("entry symbol '%s' exists but is not defined", entry);
600 // We couldn't find the entry symbol. See if we can parse it as
601 // a number. This supports, e.g., -e 0x1000.
603 v = strtoull(entry, &endptr, 0);
606 if (should_issue_warning)
607 gold_warning("cannot find entry symbol '%s'", entry);
615 // Compute the current data size.
618 Output_file_header::do_size() const
620 const int size = parameters->target().get_size();
622 return elfcpp::Elf_sizes<32>::ehdr_size;
624 return elfcpp::Elf_sizes<64>::ehdr_size;
629 // Output_data_const methods.
632 Output_data_const::do_write(Output_file* of)
634 of->write(this->offset(), this->data_.data(), this->data_.size());
637 // Output_data_const_buffer methods.
640 Output_data_const_buffer::do_write(Output_file* of)
642 of->write(this->offset(), this->p_, this->data_size());
645 // Output_section_data methods.
647 // Record the output section, and set the entry size and such.
650 Output_section_data::set_output_section(Output_section* os)
652 gold_assert(this->output_section_ == NULL);
653 this->output_section_ = os;
654 this->do_adjust_output_section(os);
657 // Return the section index of the output section.
660 Output_section_data::do_out_shndx() const
662 gold_assert(this->output_section_ != NULL);
663 return this->output_section_->out_shndx();
666 // Set the alignment, which means we may need to update the alignment
667 // of the output section.
670 Output_section_data::set_addralign(uint64_t addralign)
672 this->addralign_ = addralign;
673 if (this->output_section_ != NULL
674 && this->output_section_->addralign() < addralign)
675 this->output_section_->set_addralign(addralign);
678 // Output_data_strtab methods.
680 // Set the final data size.
683 Output_data_strtab::set_final_data_size()
685 this->strtab_->set_string_offsets();
686 this->set_data_size(this->strtab_->get_strtab_size());
689 // Write out a string table.
692 Output_data_strtab::do_write(Output_file* of)
694 this->strtab_->write(of, this->offset());
697 // Output_reloc methods.
699 // A reloc against a global symbol.
701 template<bool dynamic, int size, bool big_endian>
702 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
711 is_relative_(is_relative), is_symbolless_(is_symbolless),
712 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
714 // this->type_ is a bitfield; make sure TYPE fits.
715 gold_assert(this->type_ == type);
716 this->u1_.gsym = gsym;
719 this->set_needs_dynsym_index();
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
726 Sized_relobj<size, big_endian>* relobj,
732 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
733 is_relative_(is_relative), is_symbolless_(is_symbolless),
734 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
736 gold_assert(shndx != INVALID_CODE);
737 // this->type_ is a bitfield; make sure TYPE fits.
738 gold_assert(this->type_ == type);
739 this->u1_.gsym = gsym;
740 this->u2_.relobj = relobj;
742 this->set_needs_dynsym_index();
745 // A reloc against a local symbol.
747 template<bool dynamic, int size, bool big_endian>
748 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
749 Sized_relobj<size, big_endian>* relobj,
750 unsigned int local_sym_index,
756 bool is_section_symbol,
758 : address_(address), local_sym_index_(local_sym_index), type_(type),
759 is_relative_(is_relative), is_symbolless_(is_symbolless),
760 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
763 gold_assert(local_sym_index != GSYM_CODE
764 && local_sym_index != INVALID_CODE);
765 // this->type_ is a bitfield; make sure TYPE fits.
766 gold_assert(this->type_ == type);
767 this->u1_.relobj = relobj;
770 this->set_needs_dynsym_index();
773 template<bool dynamic, int size, bool big_endian>
774 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
775 Sized_relobj<size, big_endian>* relobj,
776 unsigned int local_sym_index,
782 bool is_section_symbol,
784 : address_(address), local_sym_index_(local_sym_index), type_(type),
785 is_relative_(is_relative), is_symbolless_(is_symbolless),
786 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
789 gold_assert(local_sym_index != GSYM_CODE
790 && local_sym_index != INVALID_CODE);
791 gold_assert(shndx != INVALID_CODE);
792 // this->type_ is a bitfield; make sure TYPE fits.
793 gold_assert(this->type_ == type);
794 this->u1_.relobj = relobj;
795 this->u2_.relobj = relobj;
797 this->set_needs_dynsym_index();
800 // A reloc against the STT_SECTION symbol of an output section.
802 template<bool dynamic, int size, bool big_endian>
803 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
808 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
809 is_relative_(false), is_symbolless_(false),
810 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
812 // this->type_ is a bitfield; make sure TYPE fits.
813 gold_assert(this->type_ == type);
817 this->set_needs_dynsym_index();
819 os->set_needs_symtab_index();
822 template<bool dynamic, int size, bool big_endian>
823 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 Sized_relobj<size, big_endian>* relobj,
829 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
830 is_relative_(false), is_symbolless_(false),
831 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
833 gold_assert(shndx != INVALID_CODE);
834 // this->type_ is a bitfield; make sure TYPE fits.
835 gold_assert(this->type_ == type);
837 this->u2_.relobj = relobj;
839 this->set_needs_dynsym_index();
841 os->set_needs_symtab_index();
844 // An absolute relocation.
846 template<bool dynamic, int size, bool big_endian>
847 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
851 : address_(address), local_sym_index_(0), type_(type),
852 is_relative_(false), is_symbolless_(false),
853 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
855 // this->type_ is a bitfield; make sure TYPE fits.
856 gold_assert(this->type_ == type);
857 this->u1_.relobj = NULL;
861 template<bool dynamic, int size, bool big_endian>
862 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
864 Sized_relobj<size, big_endian>* relobj,
867 : address_(address), local_sym_index_(0), type_(type),
868 is_relative_(false), is_symbolless_(false),
869 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
871 gold_assert(shndx != INVALID_CODE);
872 // this->type_ is a bitfield; make sure TYPE fits.
873 gold_assert(this->type_ == type);
874 this->u1_.relobj = NULL;
875 this->u2_.relobj = relobj;
878 // A target specific relocation.
880 template<bool dynamic, int size, bool big_endian>
881 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
886 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
887 is_relative_(false), is_symbolless_(false),
888 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
890 // this->type_ is a bitfield; make sure TYPE fits.
891 gold_assert(this->type_ == type);
896 template<bool dynamic, int size, bool big_endian>
897 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
900 Sized_relobj<size, big_endian>* relobj,
903 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
904 is_relative_(false), is_symbolless_(false),
905 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
907 gold_assert(shndx != INVALID_CODE);
908 // this->type_ is a bitfield; make sure TYPE fits.
909 gold_assert(this->type_ == type);
911 this->u2_.relobj = relobj;
914 // Record that we need a dynamic symbol index for this relocation.
916 template<bool dynamic, int size, bool big_endian>
918 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
919 set_needs_dynsym_index()
921 if (this->is_symbolless_)
923 switch (this->local_sym_index_)
929 this->u1_.gsym->set_needs_dynsym_entry();
933 this->u1_.os->set_needs_dynsym_index();
937 // The target must take care of this if necessary.
945 const unsigned int lsi = this->local_sym_index_;
946 Sized_relobj_file<size, big_endian>* relobj =
947 this->u1_.relobj->sized_relobj();
948 gold_assert(relobj != NULL);
949 if (!this->is_section_symbol_)
950 relobj->set_needs_output_dynsym_entry(lsi);
952 relobj->output_section(lsi)->set_needs_dynsym_index();
958 // Get the symbol index of a relocation.
960 template<bool dynamic, int size, bool big_endian>
962 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
966 if (this->is_symbolless_)
968 switch (this->local_sym_index_)
974 if (this->u1_.gsym == NULL)
977 index = this->u1_.gsym->dynsym_index();
979 index = this->u1_.gsym->symtab_index();
984 index = this->u1_.os->dynsym_index();
986 index = this->u1_.os->symtab_index();
990 index = parameters->target().reloc_symbol_index(this->u1_.arg,
995 // Relocations without symbols use a symbol index of 0.
1001 const unsigned int lsi = this->local_sym_index_;
1002 Sized_relobj_file<size, big_endian>* relobj =
1003 this->u1_.relobj->sized_relobj();
1004 gold_assert(relobj != NULL);
1005 if (!this->is_section_symbol_)
1008 index = relobj->dynsym_index(lsi);
1010 index = relobj->symtab_index(lsi);
1014 Output_section* os = relobj->output_section(lsi);
1015 gold_assert(os != NULL);
1017 index = os->dynsym_index();
1019 index = os->symtab_index();
1024 gold_assert(index != -1U);
1028 // For a local section symbol, get the address of the offset ADDEND
1029 // within the input section.
1031 template<bool dynamic, int size, bool big_endian>
1032 typename elfcpp::Elf_types<size>::Elf_Addr
1033 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1034 local_section_offset(Addend addend) const
1036 gold_assert(this->local_sym_index_ != GSYM_CODE
1037 && this->local_sym_index_ != SECTION_CODE
1038 && this->local_sym_index_ != TARGET_CODE
1039 && this->local_sym_index_ != INVALID_CODE
1040 && this->local_sym_index_ != 0
1041 && this->is_section_symbol_);
1042 const unsigned int lsi = this->local_sym_index_;
1043 Output_section* os = this->u1_.relobj->output_section(lsi);
1044 gold_assert(os != NULL);
1045 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1046 if (offset != invalid_address)
1047 return offset + addend;
1048 // This is a merge section.
1049 Sized_relobj_file<size, big_endian>* relobj =
1050 this->u1_.relobj->sized_relobj();
1051 gold_assert(relobj != NULL);
1052 offset = os->output_address(relobj, lsi, addend);
1053 gold_assert(offset != invalid_address);
1057 // Get the output address of a relocation.
1059 template<bool dynamic, int size, bool big_endian>
1060 typename elfcpp::Elf_types<size>::Elf_Addr
1061 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1063 Address address = this->address_;
1064 if (this->shndx_ != INVALID_CODE)
1066 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1067 gold_assert(os != NULL);
1068 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1069 if (off != invalid_address)
1070 address += os->address() + off;
1073 Sized_relobj_file<size, big_endian>* relobj =
1074 this->u2_.relobj->sized_relobj();
1075 gold_assert(relobj != NULL);
1076 address = os->output_address(relobj, this->shndx_, address);
1077 gold_assert(address != invalid_address);
1080 else if (this->u2_.od != NULL)
1081 address += this->u2_.od->address();
1085 // Write out the offset and info fields of a Rel or Rela relocation
1088 template<bool dynamic, int size, bool big_endian>
1089 template<typename Write_rel>
1091 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1092 Write_rel* wr) const
1094 wr->put_r_offset(this->get_address());
1095 unsigned int sym_index = this->get_symbol_index();
1096 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1099 // Write out a Rel relocation.
1101 template<bool dynamic, int size, bool big_endian>
1103 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1104 unsigned char* pov) const
1106 elfcpp::Rel_write<size, big_endian> orel(pov);
1107 this->write_rel(&orel);
1110 // Get the value of the symbol referred to by a Rel relocation.
1112 template<bool dynamic, int size, bool big_endian>
1113 typename elfcpp::Elf_types<size>::Elf_Addr
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1115 Addend addend) const
1117 if (this->local_sym_index_ == GSYM_CODE)
1119 const Sized_symbol<size>* sym;
1120 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1121 if (this->use_plt_offset_ && sym->has_plt_offset())
1123 uint64_t plt_address =
1124 parameters->target().plt_address_for_global(sym);
1125 return plt_address + sym->plt_offset();
1128 return sym->value() + addend;
1130 gold_assert(this->local_sym_index_ != SECTION_CODE
1131 && this->local_sym_index_ != TARGET_CODE
1132 && this->local_sym_index_ != INVALID_CODE
1133 && this->local_sym_index_ != 0
1134 && !this->is_section_symbol_);
1135 const unsigned int lsi = this->local_sym_index_;
1136 Sized_relobj_file<size, big_endian>* relobj =
1137 this->u1_.relobj->sized_relobj();
1138 gold_assert(relobj != NULL);
1139 if (this->use_plt_offset_)
1141 uint64_t plt_address =
1142 parameters->target().plt_address_for_local(relobj, lsi);
1143 return plt_address + relobj->local_plt_offset(lsi);
1145 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1146 return symval->value(relobj, addend);
1149 // Reloc comparison. This function sorts the dynamic relocs for the
1150 // benefit of the dynamic linker. First we sort all relative relocs
1151 // to the front. Among relative relocs, we sort by output address.
1152 // Among non-relative relocs, we sort by symbol index, then by output
1155 template<bool dynamic, int size, bool big_endian>
1157 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1158 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1161 if (this->is_relative_)
1163 if (!r2.is_relative_)
1165 // Otherwise sort by reloc address below.
1167 else if (r2.is_relative_)
1171 unsigned int sym1 = this->get_symbol_index();
1172 unsigned int sym2 = r2.get_symbol_index();
1175 else if (sym1 > sym2)
1177 // Otherwise sort by reloc address.
1180 section_offset_type addr1 = this->get_address();
1181 section_offset_type addr2 = r2.get_address();
1184 else if (addr1 > addr2)
1187 // Final tie breaker, in order to generate the same output on any
1188 // host: reloc type.
1189 unsigned int type1 = this->type_;
1190 unsigned int type2 = r2.type_;
1193 else if (type1 > type2)
1196 // These relocs appear to be exactly the same.
1200 // Write out a Rela relocation.
1202 template<bool dynamic, int size, bool big_endian>
1204 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1205 unsigned char* pov) const
1207 elfcpp::Rela_write<size, big_endian> orel(pov);
1208 this->rel_.write_rel(&orel);
1209 Addend addend = this->addend_;
1210 if (this->rel_.is_target_specific())
1211 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1212 this->rel_.type(), addend);
1213 else if (this->rel_.is_symbolless())
1214 addend = this->rel_.symbol_value(addend);
1215 else if (this->rel_.is_local_section_symbol())
1216 addend = this->rel_.local_section_offset(addend);
1217 orel.put_r_addend(addend);
1220 // Output_data_reloc_base methods.
1222 // Adjust the output section.
1224 template<int sh_type, bool dynamic, int size, bool big_endian>
1226 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1227 ::do_adjust_output_section(Output_section* os)
1229 if (sh_type == elfcpp::SHT_REL)
1230 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1231 else if (sh_type == elfcpp::SHT_RELA)
1232 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1236 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1237 // static link. The backends will generate a dynamic reloc section
1238 // to hold this. In that case we don't want to link to the dynsym
1239 // section, because there isn't one.
1241 os->set_should_link_to_symtab();
1242 else if (parameters->doing_static_link())
1245 os->set_should_link_to_dynsym();
1248 // Write out relocation data.
1250 template<int sh_type, bool dynamic, int size, bool big_endian>
1252 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1255 const off_t off = this->offset();
1256 const off_t oview_size = this->data_size();
1257 unsigned char* const oview = of->get_output_view(off, oview_size);
1259 if (this->sort_relocs())
1261 gold_assert(dynamic);
1262 std::sort(this->relocs_.begin(), this->relocs_.end(),
1263 Sort_relocs_comparison());
1266 unsigned char* pov = oview;
1267 for (typename Relocs::const_iterator p = this->relocs_.begin();
1268 p != this->relocs_.end();
1275 gold_assert(pov - oview == oview_size);
1277 of->write_output_view(off, oview_size, oview);
1279 // We no longer need the relocation entries.
1280 this->relocs_.clear();
1283 // Class Output_relocatable_relocs.
1285 template<int sh_type, int size, bool big_endian>
1287 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1289 this->set_data_size(this->rr_->output_reloc_count()
1290 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1293 // class Output_data_group.
1295 template<int size, bool big_endian>
1296 Output_data_group<size, big_endian>::Output_data_group(
1297 Sized_relobj_file<size, big_endian>* relobj,
1298 section_size_type entry_count,
1299 elfcpp::Elf_Word flags,
1300 std::vector<unsigned int>* input_shndxes)
1301 : Output_section_data(entry_count * 4, 4, false),
1305 this->input_shndxes_.swap(*input_shndxes);
1308 // Write out the section group, which means translating the section
1309 // indexes to apply to the output file.
1311 template<int size, bool big_endian>
1313 Output_data_group<size, big_endian>::do_write(Output_file* of)
1315 const off_t off = this->offset();
1316 const section_size_type oview_size =
1317 convert_to_section_size_type(this->data_size());
1318 unsigned char* const oview = of->get_output_view(off, oview_size);
1320 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1321 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1324 for (std::vector<unsigned int>::const_iterator p =
1325 this->input_shndxes_.begin();
1326 p != this->input_shndxes_.end();
1329 Output_section* os = this->relobj_->output_section(*p);
1331 unsigned int output_shndx;
1333 output_shndx = os->out_shndx();
1336 this->relobj_->error(_("section group retained but "
1337 "group element discarded"));
1341 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1344 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1345 gold_assert(wrote == oview_size);
1347 of->write_output_view(off, oview_size, oview);
1349 // We no longer need this information.
1350 this->input_shndxes_.clear();
1353 // Output_data_got::Got_entry methods.
1355 // Write out the entry.
1357 template<int size, bool big_endian>
1359 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1363 switch (this->local_sym_index_)
1367 // If the symbol is resolved locally, we need to write out the
1368 // link-time value, which will be relocated dynamically by a
1369 // RELATIVE relocation.
1370 Symbol* gsym = this->u_.gsym;
1371 if (this->use_plt_offset_ && gsym->has_plt_offset())
1372 val = (parameters->target().plt_address_for_global(gsym)
1373 + gsym->plt_offset());
1376 Sized_symbol<size>* sgsym;
1377 // This cast is a bit ugly. We don't want to put a
1378 // virtual method in Symbol, because we want Symbol to be
1379 // as small as possible.
1380 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1381 val = sgsym->value();
1387 val = this->u_.constant;
1391 // If we're doing an incremental update, don't touch this GOT entry.
1392 if (parameters->incremental_update())
1394 val = this->u_.constant;
1399 const Relobj* object = this->u_.object;
1400 const unsigned int lsi = this->local_sym_index_;
1401 if (!this->use_plt_offset_)
1403 uint64_t lval = object->local_symbol_value(lsi, 0);
1404 val = convert_types<Valtype, uint64_t>(lval);
1408 uint64_t plt_address =
1409 parameters->target().plt_address_for_local(object, lsi);
1410 val = plt_address + object->local_plt_offset(lsi);
1416 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1419 // Output_data_got methods.
1421 // Add an entry for a global symbol to the GOT. This returns true if
1422 // this is a new GOT entry, false if the symbol already had a GOT
1425 template<int size, bool big_endian>
1427 Output_data_got<size, big_endian>::add_global(
1429 unsigned int got_type)
1431 if (gsym->has_got_offset(got_type))
1434 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1435 gsym->set_got_offset(got_type, got_offset);
1439 // Like add_global, but use the PLT offset.
1441 template<int size, bool big_endian>
1443 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1444 unsigned int got_type)
1446 if (gsym->has_got_offset(got_type))
1449 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1450 gsym->set_got_offset(got_type, got_offset);
1454 // Add an entry for a global symbol to the GOT, and add a dynamic
1455 // relocation of type R_TYPE for the GOT entry.
1457 template<int size, bool big_endian>
1459 Output_data_got<size, big_endian>::add_global_with_rel(
1461 unsigned int got_type,
1462 Output_data_reloc_generic* rel_dyn,
1463 unsigned int r_type)
1465 if (gsym->has_got_offset(got_type))
1468 unsigned int got_offset = this->add_got_entry(Got_entry());
1469 gsym->set_got_offset(got_type, got_offset);
1470 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1473 // Add a pair of entries for a global symbol to the GOT, and add
1474 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1475 // If R_TYPE_2 == 0, add the second entry with no relocation.
1476 template<int size, bool big_endian>
1478 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1480 unsigned int got_type,
1481 Output_data_reloc_generic* rel_dyn,
1482 unsigned int r_type_1,
1483 unsigned int r_type_2)
1485 if (gsym->has_got_offset(got_type))
1488 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1489 gsym->set_got_offset(got_type, got_offset);
1490 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1493 rel_dyn->add_global_generic(gsym, r_type_2, this,
1494 got_offset + size / 8, 0);
1497 // Add an entry for a local symbol to the GOT. This returns true if
1498 // this is a new GOT entry, false if the symbol already has a GOT
1501 template<int size, bool big_endian>
1503 Output_data_got<size, big_endian>::add_local(
1505 unsigned int symndx,
1506 unsigned int got_type)
1508 if (object->local_has_got_offset(symndx, got_type))
1511 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1513 object->set_local_got_offset(symndx, got_type, got_offset);
1517 // Like add_local, but use the PLT offset.
1519 template<int size, bool big_endian>
1521 Output_data_got<size, big_endian>::add_local_plt(
1523 unsigned int symndx,
1524 unsigned int got_type)
1526 if (object->local_has_got_offset(symndx, got_type))
1529 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1531 object->set_local_got_offset(symndx, got_type, got_offset);
1535 // Add an entry for a local symbol to the GOT, and add a dynamic
1536 // relocation of type R_TYPE for the GOT entry.
1538 template<int size, bool big_endian>
1540 Output_data_got<size, big_endian>::add_local_with_rel(
1542 unsigned int symndx,
1543 unsigned int got_type,
1544 Output_data_reloc_generic* rel_dyn,
1545 unsigned int r_type)
1547 if (object->local_has_got_offset(symndx, got_type))
1550 unsigned int got_offset = this->add_got_entry(Got_entry());
1551 object->set_local_got_offset(symndx, got_type, got_offset);
1552 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1555 // Add a pair of entries for a local symbol to the GOT, and add
1556 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1557 // If R_TYPE_2 == 0, add the second entry with no relocation.
1558 template<int size, bool big_endian>
1560 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1562 unsigned int symndx,
1564 unsigned int got_type,
1565 Output_data_reloc_generic* rel_dyn,
1566 unsigned int r_type_1,
1567 unsigned int r_type_2)
1569 if (object->local_has_got_offset(symndx, got_type))
1572 unsigned int got_offset =
1573 this->add_got_entry_pair(Got_entry(),
1574 Got_entry(object, symndx, false));
1575 object->set_local_got_offset(symndx, got_type, got_offset);
1576 Output_section* os = object->output_section(shndx);
1577 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1580 rel_dyn->add_output_section_generic(os, r_type_2, this,
1581 got_offset + size / 8, 0);
1584 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1586 template<int size, bool big_endian>
1588 Output_data_got<size, big_endian>::reserve_local(
1591 unsigned int sym_index,
1592 unsigned int got_type)
1594 this->do_reserve_slot(i);
1595 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1598 // Reserve a slot in the GOT for a global symbol.
1600 template<int size, bool big_endian>
1602 Output_data_got<size, big_endian>::reserve_global(
1605 unsigned int got_type)
1607 this->do_reserve_slot(i);
1608 gsym->set_got_offset(got_type, this->got_offset(i));
1611 // Write out the GOT.
1613 template<int size, bool big_endian>
1615 Output_data_got<size, big_endian>::do_write(Output_file* of)
1617 const int add = size / 8;
1619 const off_t off = this->offset();
1620 const off_t oview_size = this->data_size();
1621 unsigned char* const oview = of->get_output_view(off, oview_size);
1623 unsigned char* pov = oview;
1624 for (typename Got_entries::const_iterator p = this->entries_.begin();
1625 p != this->entries_.end();
1632 gold_assert(pov - oview == oview_size);
1634 of->write_output_view(off, oview_size, oview);
1636 // We no longer need the GOT entries.
1637 this->entries_.clear();
1640 // Create a new GOT entry and return its offset.
1642 template<int size, bool big_endian>
1644 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1646 if (!this->is_data_size_valid())
1648 this->entries_.push_back(got_entry);
1649 this->set_got_size();
1650 return this->last_got_offset();
1654 // For an incremental update, find an available slot.
1655 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1656 if (got_offset == -1)
1657 gold_fallback(_("out of patch space (GOT);"
1658 " relink with --incremental-full"));
1659 unsigned int got_index = got_offset / (size / 8);
1660 gold_assert(got_index < this->entries_.size());
1661 this->entries_[got_index] = got_entry;
1662 return static_cast<unsigned int>(got_offset);
1666 // Create a pair of new GOT entries and return the offset of the first.
1668 template<int size, bool big_endian>
1670 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1671 Got_entry got_entry_2)
1673 if (!this->is_data_size_valid())
1675 unsigned int got_offset;
1676 this->entries_.push_back(got_entry_1);
1677 got_offset = this->last_got_offset();
1678 this->entries_.push_back(got_entry_2);
1679 this->set_got_size();
1684 // For an incremental update, find an available pair of slots.
1685 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1686 if (got_offset == -1)
1687 gold_fallback(_("out of patch space (GOT);"
1688 " relink with --incremental-full"));
1689 unsigned int got_index = got_offset / (size / 8);
1690 gold_assert(got_index < this->entries_.size());
1691 this->entries_[got_index] = got_entry_1;
1692 this->entries_[got_index + 1] = got_entry_2;
1693 return static_cast<unsigned int>(got_offset);
1697 // Output_data_dynamic::Dynamic_entry methods.
1699 // Write out the entry.
1701 template<int size, bool big_endian>
1703 Output_data_dynamic::Dynamic_entry::write(
1705 const Stringpool* pool) const
1707 typename elfcpp::Elf_types<size>::Elf_WXword val;
1708 switch (this->offset_)
1710 case DYNAMIC_NUMBER:
1714 case DYNAMIC_SECTION_SIZE:
1715 val = this->u_.od->data_size();
1716 if (this->od2 != NULL)
1717 val += this->od2->data_size();
1720 case DYNAMIC_SYMBOL:
1722 const Sized_symbol<size>* s =
1723 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1728 case DYNAMIC_STRING:
1729 val = pool->get_offset(this->u_.str);
1733 val = this->u_.od->address() + this->offset_;
1737 elfcpp::Dyn_write<size, big_endian> dw(pov);
1738 dw.put_d_tag(this->tag_);
1742 // Output_data_dynamic methods.
1744 // Adjust the output section to set the entry size.
1747 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1749 if (parameters->target().get_size() == 32)
1750 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1751 else if (parameters->target().get_size() == 64)
1752 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1757 // Set the final data size.
1760 Output_data_dynamic::set_final_data_size()
1762 // Add the terminating entry if it hasn't been added.
1763 // Because of relaxation, we can run this multiple times.
1764 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1766 int extra = parameters->options().spare_dynamic_tags();
1767 for (int i = 0; i < extra; ++i)
1768 this->add_constant(elfcpp::DT_NULL, 0);
1769 this->add_constant(elfcpp::DT_NULL, 0);
1773 if (parameters->target().get_size() == 32)
1774 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1775 else if (parameters->target().get_size() == 64)
1776 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1779 this->set_data_size(this->entries_.size() * dyn_size);
1782 // Write out the dynamic entries.
1785 Output_data_dynamic::do_write(Output_file* of)
1787 switch (parameters->size_and_endianness())
1789 #ifdef HAVE_TARGET_32_LITTLE
1790 case Parameters::TARGET_32_LITTLE:
1791 this->sized_write<32, false>(of);
1794 #ifdef HAVE_TARGET_32_BIG
1795 case Parameters::TARGET_32_BIG:
1796 this->sized_write<32, true>(of);
1799 #ifdef HAVE_TARGET_64_LITTLE
1800 case Parameters::TARGET_64_LITTLE:
1801 this->sized_write<64, false>(of);
1804 #ifdef HAVE_TARGET_64_BIG
1805 case Parameters::TARGET_64_BIG:
1806 this->sized_write<64, true>(of);
1814 template<int size, bool big_endian>
1816 Output_data_dynamic::sized_write(Output_file* of)
1818 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1820 const off_t offset = this->offset();
1821 const off_t oview_size = this->data_size();
1822 unsigned char* const oview = of->get_output_view(offset, oview_size);
1824 unsigned char* pov = oview;
1825 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1826 p != this->entries_.end();
1829 p->write<size, big_endian>(pov, this->pool_);
1833 gold_assert(pov - oview == oview_size);
1835 of->write_output_view(offset, oview_size, oview);
1837 // We no longer need the dynamic entries.
1838 this->entries_.clear();
1841 // Class Output_symtab_xindex.
1844 Output_symtab_xindex::do_write(Output_file* of)
1846 const off_t offset = this->offset();
1847 const off_t oview_size = this->data_size();
1848 unsigned char* const oview = of->get_output_view(offset, oview_size);
1850 memset(oview, 0, oview_size);
1852 if (parameters->target().is_big_endian())
1853 this->endian_do_write<true>(oview);
1855 this->endian_do_write<false>(oview);
1857 of->write_output_view(offset, oview_size, oview);
1859 // We no longer need the data.
1860 this->entries_.clear();
1863 template<bool big_endian>
1865 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1867 for (Xindex_entries::const_iterator p = this->entries_.begin();
1868 p != this->entries_.end();
1871 unsigned int symndx = p->first;
1872 gold_assert(symndx * 4 < this->data_size());
1873 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1877 // Output_fill_debug_info methods.
1879 // Return the minimum size needed for a dummy compilation unit header.
1882 Output_fill_debug_info::do_minimum_hole_size() const
1884 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1886 const size_t len = 4 + 2 + 4 + 1;
1887 // For type units, add type_signature, type_offset.
1888 if (this->is_debug_types_)
1893 // Write a dummy compilation unit header to fill a hole in the
1894 // .debug_info or .debug_types section.
1897 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1899 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1900 static_cast<long>(off), static_cast<long>(len));
1902 gold_assert(len >= this->do_minimum_hole_size());
1904 unsigned char* const oview = of->get_output_view(off, len);
1905 unsigned char* pov = oview;
1907 // Write header fields: unit_length, version, debug_abbrev_offset,
1909 if (this->is_big_endian())
1911 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1912 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1913 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1917 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1918 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1919 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1924 // For type units, the additional header fields -- type_signature,
1925 // type_offset -- can be filled with zeroes.
1927 // Fill the remainder of the free space with zeroes. The first
1928 // zero should tell the consumer there are no DIEs to read in this
1929 // compilation unit.
1930 if (pov < oview + len)
1931 memset(pov, 0, oview + len - pov);
1933 of->write_output_view(off, len, oview);
1936 // Output_fill_debug_line methods.
1938 // Return the minimum size needed for a dummy line number program header.
1941 Output_fill_debug_line::do_minimum_hole_size() const
1943 // Line number program header fields: unit_length, version, header_length,
1944 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1945 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1946 const size_t len = 4 + 2 + 4 + this->header_length;
1950 // Write a dummy line number program header to fill a hole in the
1951 // .debug_line section.
1954 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1956 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1957 static_cast<long>(off), static_cast<long>(len));
1959 gold_assert(len >= this->do_minimum_hole_size());
1961 unsigned char* const oview = of->get_output_view(off, len);
1962 unsigned char* pov = oview;
1964 // Write header fields: unit_length, version, header_length,
1965 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1966 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1967 // We set the header_length field to cover the entire hole, so the
1968 // line number program is empty.
1969 if (this->is_big_endian())
1971 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1972 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1973 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1977 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1978 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1979 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1982 *pov++ = 1; // minimum_instruction_length
1983 *pov++ = 0; // default_is_stmt
1984 *pov++ = 0; // line_base
1985 *pov++ = 5; // line_range
1986 *pov++ = 13; // opcode_base
1987 *pov++ = 0; // standard_opcode_lengths[1]
1988 *pov++ = 1; // standard_opcode_lengths[2]
1989 *pov++ = 1; // standard_opcode_lengths[3]
1990 *pov++ = 1; // standard_opcode_lengths[4]
1991 *pov++ = 1; // standard_opcode_lengths[5]
1992 *pov++ = 0; // standard_opcode_lengths[6]
1993 *pov++ = 0; // standard_opcode_lengths[7]
1994 *pov++ = 0; // standard_opcode_lengths[8]
1995 *pov++ = 1; // standard_opcode_lengths[9]
1996 *pov++ = 0; // standard_opcode_lengths[10]
1997 *pov++ = 0; // standard_opcode_lengths[11]
1998 *pov++ = 1; // standard_opcode_lengths[12]
1999 *pov++ = 0; // include_directories (empty)
2000 *pov++ = 0; // filenames (empty)
2002 // Some consumers don't check the header_length field, and simply
2003 // start reading the line number program immediately following the
2004 // header. For those consumers, we fill the remainder of the free
2005 // space with DW_LNS_set_basic_block opcodes. These are effectively
2006 // no-ops: the resulting line table program will not create any rows.
2007 if (pov < oview + len)
2008 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2010 of->write_output_view(off, len, oview);
2013 // Output_section::Input_section methods.
2015 // Return the current data size. For an input section we store the size here.
2016 // For an Output_section_data, we have to ask it for the size.
2019 Output_section::Input_section::current_data_size() const
2021 if (this->is_input_section())
2022 return this->u1_.data_size;
2025 this->u2_.posd->pre_finalize_data_size();
2026 return this->u2_.posd->current_data_size();
2030 // Return the data size. For an input section we store the size here.
2031 // For an Output_section_data, we have to ask it for the size.
2034 Output_section::Input_section::data_size() const
2036 if (this->is_input_section())
2037 return this->u1_.data_size;
2039 return this->u2_.posd->data_size();
2042 // Return the object for an input section.
2045 Output_section::Input_section::relobj() const
2047 if (this->is_input_section())
2048 return this->u2_.object;
2049 else if (this->is_merge_section())
2051 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2052 return this->u2_.pomb->first_relobj();
2054 else if (this->is_relaxed_input_section())
2055 return this->u2_.poris->relobj();
2060 // Return the input section index for an input section.
2063 Output_section::Input_section::shndx() const
2065 if (this->is_input_section())
2066 return this->shndx_;
2067 else if (this->is_merge_section())
2069 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2070 return this->u2_.pomb->first_shndx();
2072 else if (this->is_relaxed_input_section())
2073 return this->u2_.poris->shndx();
2078 // Set the address and file offset.
2081 Output_section::Input_section::set_address_and_file_offset(
2084 off_t section_file_offset)
2086 if (this->is_input_section())
2087 this->u2_.object->set_section_offset(this->shndx_,
2088 file_offset - section_file_offset);
2090 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2093 // Reset the address and file offset.
2096 Output_section::Input_section::reset_address_and_file_offset()
2098 if (!this->is_input_section())
2099 this->u2_.posd->reset_address_and_file_offset();
2102 // Finalize the data size.
2105 Output_section::Input_section::finalize_data_size()
2107 if (!this->is_input_section())
2108 this->u2_.posd->finalize_data_size();
2111 // Try to turn an input offset into an output offset. We want to
2112 // return the output offset relative to the start of this
2113 // Input_section in the output section.
2116 Output_section::Input_section::output_offset(
2117 const Relobj* object,
2119 section_offset_type offset,
2120 section_offset_type* poutput) const
2122 if (!this->is_input_section())
2123 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2126 if (this->shndx_ != shndx || this->u2_.object != object)
2133 // Return whether this is the merge section for the input section
2137 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2138 unsigned int shndx) const
2140 if (this->is_input_section())
2142 return this->u2_.posd->is_merge_section_for(object, shndx);
2145 // Write out the data. We don't have to do anything for an input
2146 // section--they are handled via Object::relocate--but this is where
2147 // we write out the data for an Output_section_data.
2150 Output_section::Input_section::write(Output_file* of)
2152 if (!this->is_input_section())
2153 this->u2_.posd->write(of);
2156 // Write the data to a buffer. As for write(), we don't have to do
2157 // anything for an input section.
2160 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2162 if (!this->is_input_section())
2163 this->u2_.posd->write_to_buffer(buffer);
2166 // Print to a map file.
2169 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2171 switch (this->shndx_)
2173 case OUTPUT_SECTION_CODE:
2174 case MERGE_DATA_SECTION_CODE:
2175 case MERGE_STRING_SECTION_CODE:
2176 this->u2_.posd->print_to_mapfile(mapfile);
2179 case RELAXED_INPUT_SECTION_CODE:
2181 Output_relaxed_input_section* relaxed_section =
2182 this->relaxed_input_section();
2183 mapfile->print_input_section(relaxed_section->relobj(),
2184 relaxed_section->shndx());
2188 mapfile->print_input_section(this->u2_.object, this->shndx_);
2193 // Output_section methods.
2195 // Construct an Output_section. NAME will point into a Stringpool.
2197 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2198 elfcpp::Elf_Xword flags)
2203 link_section_(NULL),
2205 info_section_(NULL),
2210 order_(ORDER_INVALID),
2215 first_input_offset_(0),
2217 postprocessing_buffer_(NULL),
2218 needs_symtab_index_(false),
2219 needs_dynsym_index_(false),
2220 should_link_to_symtab_(false),
2221 should_link_to_dynsym_(false),
2222 after_input_sections_(false),
2223 requires_postprocessing_(false),
2224 found_in_sections_clause_(false),
2225 has_load_address_(false),
2226 info_uses_section_index_(false),
2227 input_section_order_specified_(false),
2228 may_sort_attached_input_sections_(false),
2229 must_sort_attached_input_sections_(false),
2230 attached_input_sections_are_sorted_(false),
2232 is_small_section_(false),
2233 is_large_section_(false),
2234 generate_code_fills_at_write_(false),
2235 is_entsize_zero_(false),
2236 section_offsets_need_adjustment_(false),
2238 always_keeps_input_sections_(false),
2239 has_fixed_layout_(false),
2240 is_patch_space_allowed_(false),
2243 lookup_maps_(new Output_section_lookup_maps),
2245 free_space_fill_(NULL),
2248 // An unallocated section has no address. Forcing this means that
2249 // we don't need special treatment for symbols defined in debug
2251 if ((flags & elfcpp::SHF_ALLOC) == 0)
2252 this->set_address(0);
2255 Output_section::~Output_section()
2257 delete this->checkpoint_;
2260 // Set the entry size.
2263 Output_section::set_entsize(uint64_t v)
2265 if (this->is_entsize_zero_)
2267 else if (this->entsize_ == 0)
2269 else if (this->entsize_ != v)
2272 this->is_entsize_zero_ = 1;
2276 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2277 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2278 // relocation section which applies to this section, or 0 if none, or
2279 // -1U if more than one. Return the offset of the input section
2280 // within the output section. Return -1 if the input section will
2281 // receive special handling. In the normal case we don't always keep
2282 // track of input sections for an Output_section. Instead, each
2283 // Object keeps track of the Output_section for each of its input
2284 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2285 // track of input sections here; this is used when SECTIONS appears in
2288 template<int size, bool big_endian>
2290 Output_section::add_input_section(Layout* layout,
2291 Sized_relobj_file<size, big_endian>* object,
2293 const char* secname,
2294 const elfcpp::Shdr<size, big_endian>& shdr,
2295 unsigned int reloc_shndx,
2296 bool have_sections_script)
2298 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2299 if ((addralign & (addralign - 1)) != 0)
2301 object->error(_("invalid alignment %lu for section \"%s\""),
2302 static_cast<unsigned long>(addralign), secname);
2306 if (addralign > this->addralign_)
2307 this->addralign_ = addralign;
2309 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2310 uint64_t entsize = shdr.get_sh_entsize();
2312 // .debug_str is a mergeable string section, but is not always so
2313 // marked by compilers. Mark manually here so we can optimize.
2314 if (strcmp(secname, ".debug_str") == 0)
2316 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2320 this->update_flags_for_input_section(sh_flags);
2321 this->set_entsize(entsize);
2323 // If this is a SHF_MERGE section, we pass all the input sections to
2324 // a Output_data_merge. We don't try to handle relocations for such
2325 // a section. We don't try to handle empty merge sections--they
2326 // mess up the mappings, and are useless anyhow.
2327 // FIXME: Need to handle merge sections during incremental update.
2328 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2330 && shdr.get_sh_size() > 0
2331 && !parameters->incremental())
2333 // Keep information about merged input sections for rebuilding fast
2334 // lookup maps if we have sections-script or we do relaxation.
2335 bool keeps_input_sections = (this->always_keeps_input_sections_
2336 || have_sections_script
2337 || parameters->target().may_relax());
2339 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2340 addralign, keeps_input_sections))
2342 // Tell the relocation routines that they need to call the
2343 // output_offset method to determine the final address.
2348 section_size_type input_section_size = shdr.get_sh_size();
2349 section_size_type uncompressed_size;
2350 if (object->section_is_compressed(shndx, &uncompressed_size))
2351 input_section_size = uncompressed_size;
2353 off_t offset_in_section;
2354 off_t aligned_offset_in_section;
2355 if (this->has_fixed_layout())
2357 // For incremental updates, find a chunk of unused space in the section.
2358 offset_in_section = this->free_list_.allocate(input_section_size,
2360 if (offset_in_section == -1)
2361 gold_fallback(_("out of patch space in section %s; "
2362 "relink with --incremental-full"),
2364 aligned_offset_in_section = offset_in_section;
2368 offset_in_section = this->current_data_size_for_child();
2369 aligned_offset_in_section = align_address(offset_in_section,
2371 this->set_current_data_size_for_child(aligned_offset_in_section
2372 + input_section_size);
2375 // Determine if we want to delay code-fill generation until the output
2376 // section is written. When the target is relaxing, we want to delay fill
2377 // generating to avoid adjusting them during relaxation. Also, if we are
2378 // sorting input sections we must delay fill generation.
2379 if (!this->generate_code_fills_at_write_
2380 && !have_sections_script
2381 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2382 && parameters->target().has_code_fill()
2383 && (parameters->target().may_relax()
2384 || layout->is_section_ordering_specified()))
2386 gold_assert(this->fills_.empty());
2387 this->generate_code_fills_at_write_ = true;
2390 if (aligned_offset_in_section > offset_in_section
2391 && !this->generate_code_fills_at_write_
2392 && !have_sections_script
2393 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2394 && parameters->target().has_code_fill())
2396 // We need to add some fill data. Using fill_list_ when
2397 // possible is an optimization, since we will often have fill
2398 // sections without input sections.
2399 off_t fill_len = aligned_offset_in_section - offset_in_section;
2400 if (this->input_sections_.empty())
2401 this->fills_.push_back(Fill(offset_in_section, fill_len));
2404 std::string fill_data(parameters->target().code_fill(fill_len));
2405 Output_data_const* odc = new Output_data_const(fill_data, 1);
2406 this->input_sections_.push_back(Input_section(odc));
2410 // We need to keep track of this section if we are already keeping
2411 // track of sections, or if we are relaxing. Also, if this is a
2412 // section which requires sorting, or which may require sorting in
2413 // the future, we keep track of the sections. If the
2414 // --section-ordering-file option is used to specify the order of
2415 // sections, we need to keep track of sections.
2416 if (this->always_keeps_input_sections_
2417 || have_sections_script
2418 || !this->input_sections_.empty()
2419 || this->may_sort_attached_input_sections()
2420 || this->must_sort_attached_input_sections()
2421 || parameters->options().user_set_Map()
2422 || parameters->target().may_relax()
2423 || layout->is_section_ordering_specified())
2425 Input_section isecn(object, shndx, input_section_size, addralign);
2426 /* If section ordering is requested by specifying a ordering file,
2427 using --section-ordering-file, match the section name with
2429 if (parameters->options().section_ordering_file())
2431 unsigned int section_order_index =
2432 layout->find_section_order_index(std::string(secname));
2433 if (section_order_index != 0)
2435 isecn.set_section_order_index(section_order_index);
2436 this->set_input_section_order_specified();
2439 if (this->has_fixed_layout())
2441 // For incremental updates, finalize the address and offset now.
2442 uint64_t addr = this->address();
2443 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2444 aligned_offset_in_section,
2447 this->input_sections_.push_back(isecn);
2450 return aligned_offset_in_section;
2453 // Add arbitrary data to an output section.
2456 Output_section::add_output_section_data(Output_section_data* posd)
2458 Input_section inp(posd);
2459 this->add_output_section_data(&inp);
2461 if (posd->is_data_size_valid())
2463 off_t offset_in_section;
2464 if (this->has_fixed_layout())
2466 // For incremental updates, find a chunk of unused space.
2467 offset_in_section = this->free_list_.allocate(posd->data_size(),
2468 posd->addralign(), 0);
2469 if (offset_in_section == -1)
2470 gold_fallback(_("out of patch space in section %s; "
2471 "relink with --incremental-full"),
2473 // Finalize the address and offset now.
2474 uint64_t addr = this->address();
2475 off_t offset = this->offset();
2476 posd->set_address_and_file_offset(addr + offset_in_section,
2477 offset + offset_in_section);
2481 offset_in_section = this->current_data_size_for_child();
2482 off_t aligned_offset_in_section = align_address(offset_in_section,
2484 this->set_current_data_size_for_child(aligned_offset_in_section
2485 + posd->data_size());
2488 else if (this->has_fixed_layout())
2490 // For incremental updates, arrange for the data to have a fixed layout.
2491 // This will mean that additions to the data must be allocated from
2492 // free space within the containing output section.
2493 uint64_t addr = this->address();
2494 posd->set_address(addr);
2495 posd->set_file_offset(0);
2496 // FIXME: This should eventually be unreachable.
2497 // gold_unreachable();
2501 // Add a relaxed input section.
2504 Output_section::add_relaxed_input_section(Layout* layout,
2505 Output_relaxed_input_section* poris,
2506 const std::string& name)
2508 Input_section inp(poris);
2510 // If the --section-ordering-file option is used to specify the order of
2511 // sections, we need to keep track of sections.
2512 if (layout->is_section_ordering_specified())
2514 unsigned int section_order_index =
2515 layout->find_section_order_index(name);
2516 if (section_order_index != 0)
2518 inp.set_section_order_index(section_order_index);
2519 this->set_input_section_order_specified();
2523 this->add_output_section_data(&inp);
2524 if (this->lookup_maps_->is_valid())
2525 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2526 poris->shndx(), poris);
2528 // For a relaxed section, we use the current data size. Linker scripts
2529 // get all the input sections, including relaxed one from an output
2530 // section and add them back to them same output section to compute the
2531 // output section size. If we do not account for sizes of relaxed input
2532 // sections, an output section would be incorrectly sized.
2533 off_t offset_in_section = this->current_data_size_for_child();
2534 off_t aligned_offset_in_section = align_address(offset_in_section,
2535 poris->addralign());
2536 this->set_current_data_size_for_child(aligned_offset_in_section
2537 + poris->current_data_size());
2540 // Add arbitrary data to an output section by Input_section.
2543 Output_section::add_output_section_data(Input_section* inp)
2545 if (this->input_sections_.empty())
2546 this->first_input_offset_ = this->current_data_size_for_child();
2548 this->input_sections_.push_back(*inp);
2550 uint64_t addralign = inp->addralign();
2551 if (addralign > this->addralign_)
2552 this->addralign_ = addralign;
2554 inp->set_output_section(this);
2557 // Add a merge section to an output section.
2560 Output_section::add_output_merge_section(Output_section_data* posd,
2561 bool is_string, uint64_t entsize)
2563 Input_section inp(posd, is_string, entsize);
2564 this->add_output_section_data(&inp);
2567 // Add an input section to a SHF_MERGE section.
2570 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2571 uint64_t flags, uint64_t entsize,
2573 bool keeps_input_sections)
2575 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2577 // We only merge strings if the alignment is not more than the
2578 // character size. This could be handled, but it's unusual.
2579 if (is_string && addralign > entsize)
2582 // We cannot restore merged input section states.
2583 gold_assert(this->checkpoint_ == NULL);
2585 // Look up merge sections by required properties.
2586 // Currently, we only invalidate the lookup maps in script processing
2587 // and relaxation. We should not have done either when we reach here.
2588 // So we assume that the lookup maps are valid to simply code.
2589 gold_assert(this->lookup_maps_->is_valid());
2590 Merge_section_properties msp(is_string, entsize, addralign);
2591 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2592 bool is_new = false;
2595 gold_assert(pomb->is_string() == is_string
2596 && pomb->entsize() == entsize
2597 && pomb->addralign() == addralign);
2601 // Create a new Output_merge_data or Output_merge_string_data.
2603 pomb = new Output_merge_data(entsize, addralign);
2609 pomb = new Output_merge_string<char>(addralign);
2612 pomb = new Output_merge_string<uint16_t>(addralign);
2615 pomb = new Output_merge_string<uint32_t>(addralign);
2621 // If we need to do script processing or relaxation, we need to keep
2622 // the original input sections to rebuild the fast lookup maps.
2623 if (keeps_input_sections)
2624 pomb->set_keeps_input_sections();
2628 if (pomb->add_input_section(object, shndx))
2630 // Add new merge section to this output section and link merge
2631 // section properties to new merge section in map.
2634 this->add_output_merge_section(pomb, is_string, entsize);
2635 this->lookup_maps_->add_merge_section(msp, pomb);
2638 // Add input section to new merge section and link input section to new
2639 // merge section in map.
2640 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2645 // If add_input_section failed, delete new merge section to avoid
2646 // exporting empty merge sections in Output_section::get_input_section.
2653 // Build a relaxation map to speed up relaxation of existing input sections.
2654 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2657 Output_section::build_relaxation_map(
2658 const Input_section_list& input_sections,
2660 Relaxation_map* relaxation_map) const
2662 for (size_t i = 0; i < limit; ++i)
2664 const Input_section& is(input_sections[i]);
2665 if (is.is_input_section() || is.is_relaxed_input_section())
2667 Section_id sid(is.relobj(), is.shndx());
2668 (*relaxation_map)[sid] = i;
2673 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2674 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2675 // indices of INPUT_SECTIONS.
2678 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2679 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2680 const Relaxation_map& map,
2681 Input_section_list* input_sections)
2683 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2685 Output_relaxed_input_section* poris = relaxed_sections[i];
2686 Section_id sid(poris->relobj(), poris->shndx());
2687 Relaxation_map::const_iterator p = map.find(sid);
2688 gold_assert(p != map.end());
2689 gold_assert((*input_sections)[p->second].is_input_section());
2691 // Remember section order index of original input section
2692 // if it is set. Copy it to the relaxed input section.
2694 (*input_sections)[p->second].section_order_index();
2695 (*input_sections)[p->second] = Input_section(poris);
2696 (*input_sections)[p->second].set_section_order_index(soi);
2700 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2701 // is a vector of pointers to Output_relaxed_input_section or its derived
2702 // classes. The relaxed sections must correspond to existing input sections.
2705 Output_section::convert_input_sections_to_relaxed_sections(
2706 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2708 gold_assert(parameters->target().may_relax());
2710 // We want to make sure that restore_states does not undo the effect of
2711 // this. If there is no checkpoint active, just search the current
2712 // input section list and replace the sections there. If there is
2713 // a checkpoint, also replace the sections there.
2715 // By default, we look at the whole list.
2716 size_t limit = this->input_sections_.size();
2718 if (this->checkpoint_ != NULL)
2720 // Replace input sections with relaxed input section in the saved
2721 // copy of the input section list.
2722 if (this->checkpoint_->input_sections_saved())
2725 this->build_relaxation_map(
2726 *(this->checkpoint_->input_sections()),
2727 this->checkpoint_->input_sections()->size(),
2729 this->convert_input_sections_in_list_to_relaxed_sections(
2732 this->checkpoint_->input_sections());
2736 // We have not copied the input section list yet. Instead, just
2737 // look at the portion that would be saved.
2738 limit = this->checkpoint_->input_sections_size();
2742 // Convert input sections in input_section_list.
2744 this->build_relaxation_map(this->input_sections_, limit, &map);
2745 this->convert_input_sections_in_list_to_relaxed_sections(
2748 &this->input_sections_);
2750 // Update fast look-up map.
2751 if (this->lookup_maps_->is_valid())
2752 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2754 Output_relaxed_input_section* poris = relaxed_sections[i];
2755 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2756 poris->shndx(), poris);
2760 // Update the output section flags based on input section flags.
2763 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2765 // If we created the section with SHF_ALLOC clear, we set the
2766 // address. If we are now setting the SHF_ALLOC flag, we need to
2768 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2769 && (flags & elfcpp::SHF_ALLOC) != 0)
2770 this->mark_address_invalid();
2772 this->flags_ |= (flags
2773 & (elfcpp::SHF_WRITE
2775 | elfcpp::SHF_EXECINSTR));
2777 if ((flags & elfcpp::SHF_MERGE) == 0)
2778 this->flags_ &=~ elfcpp::SHF_MERGE;
2781 if (this->current_data_size_for_child() == 0)
2782 this->flags_ |= elfcpp::SHF_MERGE;
2785 if ((flags & elfcpp::SHF_STRINGS) == 0)
2786 this->flags_ &=~ elfcpp::SHF_STRINGS;
2789 if (this->current_data_size_for_child() == 0)
2790 this->flags_ |= elfcpp::SHF_STRINGS;
2794 // Find the merge section into which an input section with index SHNDX in
2795 // OBJECT has been added. Return NULL if none found.
2797 Output_section_data*
2798 Output_section::find_merge_section(const Relobj* object,
2799 unsigned int shndx) const
2801 if (!this->lookup_maps_->is_valid())
2802 this->build_lookup_maps();
2803 return this->lookup_maps_->find_merge_section(object, shndx);
2806 // Build the lookup maps for merge and relaxed sections. This is needs
2807 // to be declared as a const methods so that it is callable with a const
2808 // Output_section pointer. The method only updates states of the maps.
2811 Output_section::build_lookup_maps() const
2813 this->lookup_maps_->clear();
2814 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2815 p != this->input_sections_.end();
2818 if (p->is_merge_section())
2820 Output_merge_base* pomb = p->output_merge_base();
2821 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2823 this->lookup_maps_->add_merge_section(msp, pomb);
2824 for (Output_merge_base::Input_sections::const_iterator is =
2825 pomb->input_sections_begin();
2826 is != pomb->input_sections_end();
2829 const Const_section_id& csid = *is;
2830 this->lookup_maps_->add_merge_input_section(csid.first,
2835 else if (p->is_relaxed_input_section())
2837 Output_relaxed_input_section* poris = p->relaxed_input_section();
2838 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2839 poris->shndx(), poris);
2844 // Find an relaxed input section corresponding to an input section
2845 // in OBJECT with index SHNDX.
2847 const Output_relaxed_input_section*
2848 Output_section::find_relaxed_input_section(const Relobj* object,
2849 unsigned int shndx) const
2851 if (!this->lookup_maps_->is_valid())
2852 this->build_lookup_maps();
2853 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2856 // Given an address OFFSET relative to the start of input section
2857 // SHNDX in OBJECT, return whether this address is being included in
2858 // the final link. This should only be called if SHNDX in OBJECT has
2859 // a special mapping.
2862 Output_section::is_input_address_mapped(const Relobj* object,
2866 // Look at the Output_section_data_maps first.
2867 const Output_section_data* posd = this->find_merge_section(object, shndx);
2869 posd = this->find_relaxed_input_section(object, shndx);
2873 section_offset_type output_offset;
2874 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2876 return output_offset != -1;
2879 // Fall back to the slow look-up.
2880 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2881 p != this->input_sections_.end();
2884 section_offset_type output_offset;
2885 if (p->output_offset(object, shndx, offset, &output_offset))
2886 return output_offset != -1;
2889 // By default we assume that the address is mapped. This should
2890 // only be called after we have passed all sections to Layout. At
2891 // that point we should know what we are discarding.
2895 // Given an address OFFSET relative to the start of input section
2896 // SHNDX in object OBJECT, return the output offset relative to the
2897 // start of the input section in the output section. This should only
2898 // be called if SHNDX in OBJECT has a special mapping.
2901 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2902 section_offset_type offset) const
2904 // This can only be called meaningfully when we know the data size
2906 gold_assert(this->is_data_size_valid());
2908 // Look at the Output_section_data_maps first.
2909 const Output_section_data* posd = this->find_merge_section(object, shndx);
2911 posd = this->find_relaxed_input_section(object, shndx);
2914 section_offset_type output_offset;
2915 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2917 return output_offset;
2920 // Fall back to the slow look-up.
2921 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2922 p != this->input_sections_.end();
2925 section_offset_type output_offset;
2926 if (p->output_offset(object, shndx, offset, &output_offset))
2927 return output_offset;
2932 // Return the output virtual address of OFFSET relative to the start
2933 // of input section SHNDX in object OBJECT.
2936 Output_section::output_address(const Relobj* object, unsigned int shndx,
2939 uint64_t addr = this->address() + this->first_input_offset_;
2941 // Look at the Output_section_data_maps first.
2942 const Output_section_data* posd = this->find_merge_section(object, shndx);
2944 posd = this->find_relaxed_input_section(object, shndx);
2945 if (posd != NULL && posd->is_address_valid())
2947 section_offset_type output_offset;
2948 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2950 return posd->address() + output_offset;
2953 // Fall back to the slow look-up.
2954 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2955 p != this->input_sections_.end();
2958 addr = align_address(addr, p->addralign());
2959 section_offset_type output_offset;
2960 if (p->output_offset(object, shndx, offset, &output_offset))
2962 if (output_offset == -1)
2964 return addr + output_offset;
2966 addr += p->data_size();
2969 // If we get here, it means that we don't know the mapping for this
2970 // input section. This might happen in principle if
2971 // add_input_section were called before add_output_section_data.
2972 // But it should never actually happen.
2977 // Find the output address of the start of the merged section for
2978 // input section SHNDX in object OBJECT.
2981 Output_section::find_starting_output_address(const Relobj* object,
2983 uint64_t* paddr) const
2985 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2986 // Looking up the merge section map does not always work as we sometimes
2987 // find a merge section without its address set.
2988 uint64_t addr = this->address() + this->first_input_offset_;
2989 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2990 p != this->input_sections_.end();
2993 addr = align_address(addr, p->addralign());
2995 // It would be nice if we could use the existing output_offset
2996 // method to get the output offset of input offset 0.
2997 // Unfortunately we don't know for sure that input offset 0 is
2999 if (p->is_merge_section_for(object, shndx))
3005 addr += p->data_size();
3008 // We couldn't find a merge output section for this input section.
3012 // Update the data size of an Output_section.
3015 Output_section::update_data_size()
3017 if (this->input_sections_.empty())
3020 if (this->must_sort_attached_input_sections()
3021 || this->input_section_order_specified())
3022 this->sort_attached_input_sections();
3024 off_t off = this->first_input_offset_;
3025 for (Input_section_list::iterator p = this->input_sections_.begin();
3026 p != this->input_sections_.end();
3029 off = align_address(off, p->addralign());
3030 off += p->current_data_size();
3033 this->set_current_data_size_for_child(off);
3036 // Set the data size of an Output_section. This is where we handle
3037 // setting the addresses of any Output_section_data objects.
3040 Output_section::set_final_data_size()
3044 if (this->input_sections_.empty())
3045 data_size = this->current_data_size_for_child();
3048 if (this->must_sort_attached_input_sections()
3049 || this->input_section_order_specified())
3050 this->sort_attached_input_sections();
3052 uint64_t address = this->address();
3053 off_t startoff = this->offset();
3054 off_t off = startoff + this->first_input_offset_;
3055 for (Input_section_list::iterator p = this->input_sections_.begin();
3056 p != this->input_sections_.end();
3059 off = align_address(off, p->addralign());
3060 p->set_address_and_file_offset(address + (off - startoff), off,
3062 off += p->data_size();
3064 data_size = off - startoff;
3067 // For full incremental links, we want to allocate some patch space
3068 // in most sections for subsequent incremental updates.
3069 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3071 double pct = parameters->options().incremental_patch();
3072 size_t extra = static_cast<size_t>(data_size * pct);
3073 if (this->free_space_fill_ != NULL
3074 && this->free_space_fill_->minimum_hole_size() > extra)
3075 extra = this->free_space_fill_->minimum_hole_size();
3076 off_t new_size = align_address(data_size + extra, this->addralign());
3077 this->patch_space_ = new_size - data_size;
3078 gold_debug(DEBUG_INCREMENTAL,
3079 "set_final_data_size: %08lx + %08lx: section %s",
3080 static_cast<long>(data_size),
3081 static_cast<long>(this->patch_space_),
3083 data_size = new_size;
3086 this->set_data_size(data_size);
3089 // Reset the address and file offset.
3092 Output_section::do_reset_address_and_file_offset()
3094 // An unallocated section has no address. Forcing this means that
3095 // we don't need special treatment for symbols defined in debug
3096 // sections. We do the same in the constructor. This does not
3097 // apply to NOLOAD sections though.
3098 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3099 this->set_address(0);
3101 for (Input_section_list::iterator p = this->input_sections_.begin();
3102 p != this->input_sections_.end();
3104 p->reset_address_and_file_offset();
3106 // Remove any patch space that was added in set_final_data_size.
3107 if (this->patch_space_ > 0)
3109 this->set_current_data_size_for_child(this->current_data_size_for_child()
3110 - this->patch_space_);
3111 this->patch_space_ = 0;
3115 // Return true if address and file offset have the values after reset.
3118 Output_section::do_address_and_file_offset_have_reset_values() const
3120 if (this->is_offset_valid())
3123 // An unallocated section has address 0 after its construction or a reset.
3124 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3125 return this->is_address_valid() && this->address() == 0;
3127 return !this->is_address_valid();
3130 // Set the TLS offset. Called only for SHT_TLS sections.
3133 Output_section::do_set_tls_offset(uint64_t tls_base)
3135 this->tls_offset_ = this->address() - tls_base;
3138 // In a few cases we need to sort the input sections attached to an
3139 // output section. This is used to implement the type of constructor
3140 // priority ordering implemented by the GNU linker, in which the
3141 // priority becomes part of the section name and the sections are
3142 // sorted by name. We only do this for an output section if we see an
3143 // attached input section matching ".ctors.*", ".dtors.*",
3144 // ".init_array.*" or ".fini_array.*".
3146 class Output_section::Input_section_sort_entry
3149 Input_section_sort_entry()
3150 : input_section_(), index_(-1U), section_has_name_(false),
3154 Input_section_sort_entry(const Input_section& input_section,
3156 bool must_sort_attached_input_sections)
3157 : input_section_(input_section), index_(index),
3158 section_has_name_(input_section.is_input_section()
3159 || input_section.is_relaxed_input_section())
3161 if (this->section_has_name_
3162 && must_sort_attached_input_sections)
3164 // This is only called single-threaded from Layout::finalize,
3165 // so it is OK to lock. Unfortunately we have no way to pass
3167 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3168 Object* obj = (input_section.is_input_section()
3169 ? input_section.relobj()
3170 : input_section.relaxed_input_section()->relobj());
3171 Task_lock_obj<Object> tl(dummy_task, obj);
3173 // This is a slow operation, which should be cached in
3174 // Layout::layout if this becomes a speed problem.
3175 this->section_name_ = obj->section_name(input_section.shndx());
3179 // Return the Input_section.
3180 const Input_section&
3181 input_section() const
3183 gold_assert(this->index_ != -1U);
3184 return this->input_section_;
3187 // The index of this entry in the original list. This is used to
3188 // make the sort stable.
3192 gold_assert(this->index_ != -1U);
3193 return this->index_;
3196 // Whether there is a section name.
3198 section_has_name() const
3199 { return this->section_has_name_; }
3201 // The section name.
3203 section_name() const
3205 gold_assert(this->section_has_name_);
3206 return this->section_name_;
3209 // Return true if the section name has a priority. This is assumed
3210 // to be true if it has a dot after the initial dot.
3212 has_priority() const
3214 gold_assert(this->section_has_name_);
3215 return this->section_name_.find('.', 1) != std::string::npos;
3218 // Return the priority. Believe it or not, gcc encodes the priority
3219 // differently for .ctors/.dtors and .init_array/.fini_array
3222 get_priority() const
3224 gold_assert(this->section_has_name_);
3226 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3227 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3229 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3230 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3235 unsigned long prio = strtoul((this->section_name_.c_str()
3236 + (is_ctors ? 7 : 12)),
3241 return 65535 - prio;
3246 // Return true if this an input file whose base name matches
3247 // FILE_NAME. The base name must have an extension of ".o", and
3248 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3249 // This is to match crtbegin.o as well as crtbeginS.o without
3250 // getting confused by other possibilities. Overall matching the
3251 // file name this way is a dreadful hack, but the GNU linker does it
3252 // in order to better support gcc, and we need to be compatible.
3254 match_file_name(const char* file_name) const
3255 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3257 // Returns 1 if THIS should appear before S in section order, -1 if S
3258 // appears before THIS and 0 if they are not comparable.
3260 compare_section_ordering(const Input_section_sort_entry& s) const
3262 unsigned int this_secn_index = this->input_section_.section_order_index();
3263 unsigned int s_secn_index = s.input_section().section_order_index();
3264 if (this_secn_index > 0 && s_secn_index > 0)
3266 if (this_secn_index < s_secn_index)
3268 else if (this_secn_index > s_secn_index)
3275 // The Input_section we are sorting.
3276 Input_section input_section_;
3277 // The index of this Input_section in the original list.
3278 unsigned int index_;
3279 // Whether this Input_section has a section name--it won't if this
3280 // is some random Output_section_data.
3281 bool section_has_name_;
3282 // The section name if there is one.
3283 std::string section_name_;
3286 // Return true if S1 should come before S2 in the output section.
3289 Output_section::Input_section_sort_compare::operator()(
3290 const Output_section::Input_section_sort_entry& s1,
3291 const Output_section::Input_section_sort_entry& s2) const
3293 // crtbegin.o must come first.
3294 bool s1_begin = s1.match_file_name("crtbegin");
3295 bool s2_begin = s2.match_file_name("crtbegin");
3296 if (s1_begin || s2_begin)
3302 return s1.index() < s2.index();
3305 // crtend.o must come last.
3306 bool s1_end = s1.match_file_name("crtend");
3307 bool s2_end = s2.match_file_name("crtend");
3308 if (s1_end || s2_end)
3314 return s1.index() < s2.index();
3317 // We sort all the sections with no names to the end.
3318 if (!s1.section_has_name() || !s2.section_has_name())
3320 if (s1.section_has_name())
3322 if (s2.section_has_name())
3324 return s1.index() < s2.index();
3327 // A section with a priority follows a section without a priority.
3328 bool s1_has_priority = s1.has_priority();
3329 bool s2_has_priority = s2.has_priority();
3330 if (s1_has_priority && !s2_has_priority)
3332 if (!s1_has_priority && s2_has_priority)
3335 // Check if a section order exists for these sections through a section
3336 // ordering file. If sequence_num is 0, an order does not exist.
3337 int sequence_num = s1.compare_section_ordering(s2);
3338 if (sequence_num != 0)
3339 return sequence_num == 1;
3341 // Otherwise we sort by name.
3342 int compare = s1.section_name().compare(s2.section_name());
3346 // Otherwise we keep the input order.
3347 return s1.index() < s2.index();
3350 // Return true if S1 should come before S2 in an .init_array or .fini_array
3354 Output_section::Input_section_sort_init_fini_compare::operator()(
3355 const Output_section::Input_section_sort_entry& s1,
3356 const Output_section::Input_section_sort_entry& s2) const
3358 // We sort all the sections with no names to the end.
3359 if (!s1.section_has_name() || !s2.section_has_name())
3361 if (s1.section_has_name())
3363 if (s2.section_has_name())
3365 return s1.index() < s2.index();
3368 // A section without a priority follows a section with a priority.
3369 // This is the reverse of .ctors and .dtors sections.
3370 bool s1_has_priority = s1.has_priority();
3371 bool s2_has_priority = s2.has_priority();
3372 if (s1_has_priority && !s2_has_priority)
3374 if (!s1_has_priority && s2_has_priority)
3377 // .ctors and .dtors sections without priority come after
3378 // .init_array and .fini_array sections without priority.
3379 if (!s1_has_priority
3380 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3381 && s1.section_name() != s2.section_name())
3383 if (!s2_has_priority
3384 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3385 && s2.section_name() != s1.section_name())
3388 // Sort by priority if we can.
3389 if (s1_has_priority)
3391 unsigned int s1_prio = s1.get_priority();
3392 unsigned int s2_prio = s2.get_priority();
3393 if (s1_prio < s2_prio)
3395 else if (s1_prio > s2_prio)
3399 // Check if a section order exists for these sections through a section
3400 // ordering file. If sequence_num is 0, an order does not exist.
3401 int sequence_num = s1.compare_section_ordering(s2);
3402 if (sequence_num != 0)
3403 return sequence_num == 1;
3405 // Otherwise we sort by name.
3406 int compare = s1.section_name().compare(s2.section_name());
3410 // Otherwise we keep the input order.
3411 return s1.index() < s2.index();
3414 // Return true if S1 should come before S2. Sections that do not match
3415 // any pattern in the section ordering file are placed ahead of the sections
3416 // that match some pattern.
3419 Output_section::Input_section_sort_section_order_index_compare::operator()(
3420 const Output_section::Input_section_sort_entry& s1,
3421 const Output_section::Input_section_sort_entry& s2) const
3423 unsigned int s1_secn_index = s1.input_section().section_order_index();
3424 unsigned int s2_secn_index = s2.input_section().section_order_index();
3426 // Keep input order if section ordering cannot determine order.
3427 if (s1_secn_index == s2_secn_index)
3428 return s1.index() < s2.index();
3430 return s1_secn_index < s2_secn_index;
3433 // This updates the section order index of input sections according to the
3434 // the order specified in the mapping from Section id to order index.
3437 Output_section::update_section_layout(
3438 const Section_layout_order* order_map)
3440 for (Input_section_list::iterator p = this->input_sections_.begin();
3441 p != this->input_sections_.end();
3444 if (p->is_input_section()
3445 || p->is_relaxed_input_section())
3447 Object* obj = (p->is_input_section()
3449 : p->relaxed_input_section()->relobj());
3450 unsigned int shndx = p->shndx();
3451 Section_layout_order::const_iterator it
3452 = order_map->find(Section_id(obj, shndx));
3453 if (it == order_map->end())
3455 unsigned int section_order_index = it->second;
3456 if (section_order_index != 0)
3458 p->set_section_order_index(section_order_index);
3459 this->set_input_section_order_specified();
3465 // Sort the input sections attached to an output section.
3468 Output_section::sort_attached_input_sections()
3470 if (this->attached_input_sections_are_sorted_)
3473 if (this->checkpoint_ != NULL
3474 && !this->checkpoint_->input_sections_saved())
3475 this->checkpoint_->save_input_sections();
3477 // The only thing we know about an input section is the object and
3478 // the section index. We need the section name. Recomputing this
3479 // is slow but this is an unusual case. If this becomes a speed
3480 // problem we can cache the names as required in Layout::layout.
3482 // We start by building a larger vector holding a copy of each
3483 // Input_section, plus its current index in the list and its name.
3484 std::vector<Input_section_sort_entry> sort_list;
3487 for (Input_section_list::iterator p = this->input_sections_.begin();
3488 p != this->input_sections_.end();
3490 sort_list.push_back(Input_section_sort_entry(*p, i,
3491 this->must_sort_attached_input_sections()));
3493 // Sort the input sections.
3494 if (this->must_sort_attached_input_sections())
3496 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3497 || this->type() == elfcpp::SHT_INIT_ARRAY
3498 || this->type() == elfcpp::SHT_FINI_ARRAY)
3499 std::sort(sort_list.begin(), sort_list.end(),
3500 Input_section_sort_init_fini_compare());
3502 std::sort(sort_list.begin(), sort_list.end(),
3503 Input_section_sort_compare());
3507 gold_assert(this->input_section_order_specified());
3508 std::sort(sort_list.begin(), sort_list.end(),
3509 Input_section_sort_section_order_index_compare());
3512 // Copy the sorted input sections back to our list.
3513 this->input_sections_.clear();
3514 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3515 p != sort_list.end();
3517 this->input_sections_.push_back(p->input_section());
3520 // Remember that we sorted the input sections, since we might get
3522 this->attached_input_sections_are_sorted_ = true;
3525 // Write the section header to *OSHDR.
3527 template<int size, bool big_endian>
3529 Output_section::write_header(const Layout* layout,
3530 const Stringpool* secnamepool,
3531 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3533 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3534 oshdr->put_sh_type(this->type_);
3536 elfcpp::Elf_Xword flags = this->flags_;
3537 if (this->info_section_ != NULL && this->info_uses_section_index_)
3538 flags |= elfcpp::SHF_INFO_LINK;
3539 oshdr->put_sh_flags(flags);
3541 oshdr->put_sh_addr(this->address());
3542 oshdr->put_sh_offset(this->offset());
3543 oshdr->put_sh_size(this->data_size());
3544 if (this->link_section_ != NULL)
3545 oshdr->put_sh_link(this->link_section_->out_shndx());
3546 else if (this->should_link_to_symtab_)
3547 oshdr->put_sh_link(layout->symtab_section_shndx());
3548 else if (this->should_link_to_dynsym_)
3549 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3551 oshdr->put_sh_link(this->link_);
3553 elfcpp::Elf_Word info;
3554 if (this->info_section_ != NULL)
3556 if (this->info_uses_section_index_)
3557 info = this->info_section_->out_shndx();
3559 info = this->info_section_->symtab_index();
3561 else if (this->info_symndx_ != NULL)
3562 info = this->info_symndx_->symtab_index();
3565 oshdr->put_sh_info(info);
3567 oshdr->put_sh_addralign(this->addralign_);
3568 oshdr->put_sh_entsize(this->entsize_);
3571 // Write out the data. For input sections the data is written out by
3572 // Object::relocate, but we have to handle Output_section_data objects
3576 Output_section::do_write(Output_file* of)
3578 gold_assert(!this->requires_postprocessing());
3580 // If the target performs relaxation, we delay filler generation until now.
3581 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3583 off_t output_section_file_offset = this->offset();
3584 for (Fill_list::iterator p = this->fills_.begin();
3585 p != this->fills_.end();
3588 std::string fill_data(parameters->target().code_fill(p->length()));
3589 of->write(output_section_file_offset + p->section_offset(),
3590 fill_data.data(), fill_data.size());
3593 off_t off = this->offset() + this->first_input_offset_;
3594 for (Input_section_list::iterator p = this->input_sections_.begin();
3595 p != this->input_sections_.end();
3598 off_t aligned_off = align_address(off, p->addralign());
3599 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3601 size_t fill_len = aligned_off - off;
3602 std::string fill_data(parameters->target().code_fill(fill_len));
3603 of->write(off, fill_data.data(), fill_data.size());
3607 off = aligned_off + p->data_size();
3610 // For incremental links, fill in unused chunks in debug sections
3611 // with dummy compilation unit headers.
3612 if (this->free_space_fill_ != NULL)
3614 for (Free_list::Const_iterator p = this->free_list_.begin();
3615 p != this->free_list_.end();
3618 off_t off = p->start_;
3619 size_t len = p->end_ - off;
3620 this->free_space_fill_->write(of, this->offset() + off, len);
3622 if (this->patch_space_ > 0)
3624 off_t off = this->current_data_size_for_child() - this->patch_space_;
3625 this->free_space_fill_->write(of, this->offset() + off,
3626 this->patch_space_);
3631 // If a section requires postprocessing, create the buffer to use.
3634 Output_section::create_postprocessing_buffer()
3636 gold_assert(this->requires_postprocessing());
3638 if (this->postprocessing_buffer_ != NULL)
3641 if (!this->input_sections_.empty())
3643 off_t off = this->first_input_offset_;
3644 for (Input_section_list::iterator p = this->input_sections_.begin();
3645 p != this->input_sections_.end();
3648 off = align_address(off, p->addralign());
3649 p->finalize_data_size();
3650 off += p->data_size();
3652 this->set_current_data_size_for_child(off);
3655 off_t buffer_size = this->current_data_size_for_child();
3656 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3659 // Write all the data of an Output_section into the postprocessing
3660 // buffer. This is used for sections which require postprocessing,
3661 // such as compression. Input sections are handled by
3662 // Object::Relocate.
3665 Output_section::write_to_postprocessing_buffer()
3667 gold_assert(this->requires_postprocessing());
3669 // If the target performs relaxation, we delay filler generation until now.
3670 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3672 unsigned char* buffer = this->postprocessing_buffer();
3673 for (Fill_list::iterator p = this->fills_.begin();
3674 p != this->fills_.end();
3677 std::string fill_data(parameters->target().code_fill(p->length()));
3678 memcpy(buffer + p->section_offset(), fill_data.data(),
3682 off_t off = this->first_input_offset_;
3683 for (Input_section_list::iterator p = this->input_sections_.begin();
3684 p != this->input_sections_.end();
3687 off_t aligned_off = align_address(off, p->addralign());
3688 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3690 size_t fill_len = aligned_off - off;
3691 std::string fill_data(parameters->target().code_fill(fill_len));
3692 memcpy(buffer + off, fill_data.data(), fill_data.size());
3695 p->write_to_buffer(buffer + aligned_off);
3696 off = aligned_off + p->data_size();
3700 // Get the input sections for linker script processing. We leave
3701 // behind the Output_section_data entries. Note that this may be
3702 // slightly incorrect for merge sections. We will leave them behind,
3703 // but it is possible that the script says that they should follow
3704 // some other input sections, as in:
3705 // .rodata { *(.rodata) *(.rodata.cst*) }
3706 // For that matter, we don't handle this correctly:
3707 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3708 // With luck this will never matter.
3711 Output_section::get_input_sections(
3713 const std::string& fill,
3714 std::list<Input_section>* input_sections)
3716 if (this->checkpoint_ != NULL
3717 && !this->checkpoint_->input_sections_saved())
3718 this->checkpoint_->save_input_sections();
3720 // Invalidate fast look-up maps.
3721 this->lookup_maps_->invalidate();
3723 uint64_t orig_address = address;
3725 address = align_address(address, this->addralign());
3727 Input_section_list remaining;
3728 for (Input_section_list::iterator p = this->input_sections_.begin();
3729 p != this->input_sections_.end();
3732 if (p->is_input_section()
3733 || p->is_relaxed_input_section()
3734 || p->is_merge_section())
3735 input_sections->push_back(*p);
3738 uint64_t aligned_address = align_address(address, p->addralign());
3739 if (aligned_address != address && !fill.empty())
3741 section_size_type length =
3742 convert_to_section_size_type(aligned_address - address);
3743 std::string this_fill;
3744 this_fill.reserve(length);
3745 while (this_fill.length() + fill.length() <= length)
3747 if (this_fill.length() < length)
3748 this_fill.append(fill, 0, length - this_fill.length());
3750 Output_section_data* posd = new Output_data_const(this_fill, 0);
3751 remaining.push_back(Input_section(posd));
3753 address = aligned_address;
3755 remaining.push_back(*p);
3757 p->finalize_data_size();
3758 address += p->data_size();
3762 this->input_sections_.swap(remaining);
3763 this->first_input_offset_ = 0;
3765 uint64_t data_size = address - orig_address;
3766 this->set_current_data_size_for_child(data_size);
3770 // Add a script input section. SIS is an Output_section::Input_section,
3771 // which can be either a plain input section or a special input section like
3772 // a relaxed input section. For a special input section, its size must be
3776 Output_section::add_script_input_section(const Input_section& sis)
3778 uint64_t data_size = sis.data_size();
3779 uint64_t addralign = sis.addralign();
3780 if (addralign > this->addralign_)
3781 this->addralign_ = addralign;
3783 off_t offset_in_section = this->current_data_size_for_child();
3784 off_t aligned_offset_in_section = align_address(offset_in_section,
3787 this->set_current_data_size_for_child(aligned_offset_in_section
3790 this->input_sections_.push_back(sis);
3792 // Update fast lookup maps if necessary.
3793 if (this->lookup_maps_->is_valid())
3795 if (sis.is_merge_section())
3797 Output_merge_base* pomb = sis.output_merge_base();
3798 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3800 this->lookup_maps_->add_merge_section(msp, pomb);
3801 for (Output_merge_base::Input_sections::const_iterator p =
3802 pomb->input_sections_begin();
3803 p != pomb->input_sections_end();
3805 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3808 else if (sis.is_relaxed_input_section())
3810 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3811 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3812 poris->shndx(), poris);
3817 // Save states for relaxation.
3820 Output_section::save_states()
3822 gold_assert(this->checkpoint_ == NULL);
3823 Checkpoint_output_section* checkpoint =
3824 new Checkpoint_output_section(this->addralign_, this->flags_,
3825 this->input_sections_,
3826 this->first_input_offset_,
3827 this->attached_input_sections_are_sorted_);
3828 this->checkpoint_ = checkpoint;
3829 gold_assert(this->fills_.empty());
3833 Output_section::discard_states()
3835 gold_assert(this->checkpoint_ != NULL);
3836 delete this->checkpoint_;
3837 this->checkpoint_ = NULL;
3838 gold_assert(this->fills_.empty());
3840 // Simply invalidate the fast lookup maps since we do not keep
3842 this->lookup_maps_->invalidate();
3846 Output_section::restore_states()
3848 gold_assert(this->checkpoint_ != NULL);
3849 Checkpoint_output_section* checkpoint = this->checkpoint_;
3851 this->addralign_ = checkpoint->addralign();
3852 this->flags_ = checkpoint->flags();
3853 this->first_input_offset_ = checkpoint->first_input_offset();
3855 if (!checkpoint->input_sections_saved())
3857 // If we have not copied the input sections, just resize it.
3858 size_t old_size = checkpoint->input_sections_size();
3859 gold_assert(this->input_sections_.size() >= old_size);
3860 this->input_sections_.resize(old_size);
3864 // We need to copy the whole list. This is not efficient for
3865 // extremely large output with hundreads of thousands of input
3866 // objects. We may need to re-think how we should pass sections
3868 this->input_sections_ = *checkpoint->input_sections();
3871 this->attached_input_sections_are_sorted_ =
3872 checkpoint->attached_input_sections_are_sorted();
3874 // Simply invalidate the fast lookup maps since we do not keep
3876 this->lookup_maps_->invalidate();
3879 // Update the section offsets of input sections in this. This is required if
3880 // relaxation causes some input sections to change sizes.
3883 Output_section::adjust_section_offsets()
3885 if (!this->section_offsets_need_adjustment_)
3889 for (Input_section_list::iterator p = this->input_sections_.begin();
3890 p != this->input_sections_.end();
3893 off = align_address(off, p->addralign());
3894 if (p->is_input_section())
3895 p->relobj()->set_section_offset(p->shndx(), off);
3896 off += p->data_size();
3899 this->section_offsets_need_adjustment_ = false;
3902 // Print to the map file.
3905 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3907 mapfile->print_output_section(this);
3909 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3910 p != this->input_sections_.end();
3912 p->print_to_mapfile(mapfile);
3915 // Print stats for merge sections to stderr.
3918 Output_section::print_merge_stats()
3920 Input_section_list::iterator p;
3921 for (p = this->input_sections_.begin();
3922 p != this->input_sections_.end();
3924 p->print_merge_stats(this->name_);
3927 // Set a fixed layout for the section. Used for incremental update links.
3930 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3931 off_t sh_size, uint64_t sh_addralign)
3933 this->addralign_ = sh_addralign;
3934 this->set_current_data_size(sh_size);
3935 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3936 this->set_address(sh_addr);
3937 this->set_file_offset(sh_offset);
3938 this->finalize_data_size();
3939 this->free_list_.init(sh_size, false);
3940 this->has_fixed_layout_ = true;
3943 // Reserve space within the fixed layout for the section. Used for
3944 // incremental update links.
3947 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3949 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3952 // Allocate space from the free list for the section. Used for
3953 // incremental update links.
3956 Output_section::allocate(off_t len, uint64_t addralign)
3958 return this->free_list_.allocate(len, addralign, 0);
3961 // Output segment methods.
3963 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3973 is_max_align_known_(false),
3974 are_addresses_set_(false),
3975 is_large_data_segment_(false)
3977 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3979 if (type == elfcpp::PT_TLS)
3980 this->flags_ = elfcpp::PF_R;
3983 // Add an Output_section to a PT_LOAD Output_segment.
3986 Output_segment::add_output_section_to_load(Layout* layout,
3988 elfcpp::Elf_Word seg_flags)
3990 gold_assert(this->type() == elfcpp::PT_LOAD);
3991 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3992 gold_assert(!this->is_max_align_known_);
3993 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3995 this->update_flags_for_output_section(seg_flags);
3997 // We don't want to change the ordering if we have a linker script
3998 // with a SECTIONS clause.
3999 Output_section_order order = os->order();
4000 if (layout->script_options()->saw_sections_clause())
4001 order = static_cast<Output_section_order>(0);
4003 gold_assert(order != ORDER_INVALID);
4005 this->output_lists_[order].push_back(os);
4008 // Add an Output_section to a non-PT_LOAD Output_segment.
4011 Output_segment::add_output_section_to_nonload(Output_section* os,
4012 elfcpp::Elf_Word seg_flags)
4014 gold_assert(this->type() != elfcpp::PT_LOAD);
4015 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4016 gold_assert(!this->is_max_align_known_);
4018 this->update_flags_for_output_section(seg_flags);
4020 this->output_lists_[0].push_back(os);
4023 // Remove an Output_section from this segment. It is an error if it
4027 Output_segment::remove_output_section(Output_section* os)
4029 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4031 Output_data_list* pdl = &this->output_lists_[i];
4032 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4044 // Add an Output_data (which need not be an Output_section) to the
4045 // start of a segment.
4048 Output_segment::add_initial_output_data(Output_data* od)
4050 gold_assert(!this->is_max_align_known_);
4051 Output_data_list::iterator p = this->output_lists_[0].begin();
4052 this->output_lists_[0].insert(p, od);
4055 // Return true if this segment has any sections which hold actual
4056 // data, rather than being a BSS section.
4059 Output_segment::has_any_data_sections() const
4061 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4063 const Output_data_list* pdl = &this->output_lists_[i];
4064 for (Output_data_list::const_iterator p = pdl->begin();
4068 if (!(*p)->is_section())
4070 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4077 // Return whether the first data section (not counting TLS sections)
4078 // is a relro section.
4081 Output_segment::is_first_section_relro() const
4083 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4085 if (i == static_cast<int>(ORDER_TLS_DATA)
4086 || i == static_cast<int>(ORDER_TLS_BSS))
4088 const Output_data_list* pdl = &this->output_lists_[i];
4091 Output_data* p = pdl->front();
4092 return p->is_section() && p->output_section()->is_relro();
4098 // Return the maximum alignment of the Output_data in Output_segment.
4101 Output_segment::maximum_alignment()
4103 if (!this->is_max_align_known_)
4105 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4107 const Output_data_list* pdl = &this->output_lists_[i];
4108 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4109 if (addralign > this->max_align_)
4110 this->max_align_ = addralign;
4112 this->is_max_align_known_ = true;
4115 return this->max_align_;
4118 // Return the maximum alignment of a list of Output_data.
4121 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4124 for (Output_data_list::const_iterator p = pdl->begin();
4128 uint64_t addralign = (*p)->addralign();
4129 if (addralign > ret)
4135 // Return whether this segment has any dynamic relocs.
4138 Output_segment::has_dynamic_reloc() const
4140 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4141 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4146 // Return whether this Output_data_list has any dynamic relocs.
4149 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4151 for (Output_data_list::const_iterator p = pdl->begin();
4154 if ((*p)->has_dynamic_reloc())
4159 // Set the section addresses for an Output_segment. If RESET is true,
4160 // reset the addresses first. ADDR is the address and *POFF is the
4161 // file offset. Set the section indexes starting with *PSHNDX.
4162 // INCREASE_RELRO is the size of the portion of the first non-relro
4163 // section that should be included in the PT_GNU_RELRO segment.
4164 // If this segment has relro sections, and has been aligned for
4165 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4166 // the immediately following segment. Update *HAS_RELRO, *POFF,
4170 Output_segment::set_section_addresses(Layout* layout, bool reset,
4172 unsigned int* increase_relro,
4175 unsigned int* pshndx)
4177 gold_assert(this->type_ == elfcpp::PT_LOAD);
4179 uint64_t last_relro_pad = 0;
4180 off_t orig_off = *poff;
4182 bool in_tls = false;
4184 // If we have relro sections, we need to pad forward now so that the
4185 // relro sections plus INCREASE_RELRO end on a common page boundary.
4186 if (parameters->options().relro()
4187 && this->is_first_section_relro()
4188 && (!this->are_addresses_set_ || reset))
4190 uint64_t relro_size = 0;
4192 uint64_t max_align = 0;
4193 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4195 Output_data_list* pdl = &this->output_lists_[i];
4196 Output_data_list::iterator p;
4197 for (p = pdl->begin(); p != pdl->end(); ++p)
4199 if (!(*p)->is_section())
4201 uint64_t align = (*p)->addralign();
4202 if (align > max_align)
4204 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4208 // Align the first non-TLS section to the alignment
4209 // of the TLS segment.
4213 relro_size = align_address(relro_size, align);
4214 // Ignore the size of the .tbss section.
4215 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4216 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4218 if ((*p)->is_address_valid())
4219 relro_size += (*p)->data_size();
4222 // FIXME: This could be faster.
4223 (*p)->set_address_and_file_offset(addr + relro_size,
4225 relro_size += (*p)->data_size();
4226 (*p)->reset_address_and_file_offset();
4229 if (p != pdl->end())
4232 relro_size += *increase_relro;
4233 // Pad the total relro size to a multiple of the maximum
4234 // section alignment seen.
4235 uint64_t aligned_size = align_address(relro_size, max_align);
4236 // Note the amount of padding added after the last relro section.
4237 last_relro_pad = aligned_size - relro_size;
4240 uint64_t page_align = parameters->target().common_pagesize();
4242 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4243 uint64_t desired_align = page_align - (aligned_size % page_align);
4244 if (desired_align < *poff % page_align)
4245 *poff += page_align - *poff % page_align;
4246 *poff += desired_align - *poff % page_align;
4247 addr += *poff - orig_off;
4251 if (!reset && this->are_addresses_set_)
4253 gold_assert(this->paddr_ == addr);
4254 addr = this->vaddr_;
4258 this->vaddr_ = addr;
4259 this->paddr_ = addr;
4260 this->are_addresses_set_ = true;
4265 this->offset_ = orig_off;
4269 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4271 if (i == static_cast<int>(ORDER_RELRO_LAST))
4273 *poff += last_relro_pad;
4274 addr += last_relro_pad;
4275 if (this->output_lists_[i].empty())
4277 // If there is nothing in the ORDER_RELRO_LAST list,
4278 // the padding will occur at the end of the relro
4279 // segment, and we need to add it to *INCREASE_RELRO.
4280 *increase_relro += last_relro_pad;
4283 addr = this->set_section_list_addresses(layout, reset,
4284 &this->output_lists_[i],
4285 addr, poff, pshndx, &in_tls);
4286 if (i < static_cast<int>(ORDER_SMALL_BSS))
4288 this->filesz_ = *poff - orig_off;
4295 // If the last section was a TLS section, align upward to the
4296 // alignment of the TLS segment, so that the overall size of the TLS
4297 // segment is aligned.
4300 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4301 *poff = align_address(*poff, segment_align);
4304 this->memsz_ = *poff - orig_off;
4306 // Ignore the file offset adjustments made by the BSS Output_data
4313 // Set the addresses and file offsets in a list of Output_data
4317 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4318 Output_data_list* pdl,
4319 uint64_t addr, off_t* poff,
4320 unsigned int* pshndx,
4323 off_t startoff = *poff;
4324 // For incremental updates, we may allocate non-fixed sections from
4325 // free space in the file. This keeps track of the high-water mark.
4326 off_t maxoff = startoff;
4328 off_t off = startoff;
4329 for (Output_data_list::iterator p = pdl->begin();
4334 (*p)->reset_address_and_file_offset();
4336 // When doing an incremental update or when using a linker script,
4337 // the section will most likely already have an address.
4338 if (!(*p)->is_address_valid())
4340 uint64_t align = (*p)->addralign();
4342 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4344 // Give the first TLS section the alignment of the
4345 // entire TLS segment. Otherwise the TLS segment as a
4346 // whole may be misaligned.
4349 Output_segment* tls_segment = layout->tls_segment();
4350 gold_assert(tls_segment != NULL);
4351 uint64_t segment_align = tls_segment->maximum_alignment();
4352 gold_assert(segment_align >= align);
4353 align = segment_align;
4360 // If this is the first section after the TLS segment,
4361 // align it to at least the alignment of the TLS
4362 // segment, so that the size of the overall TLS segment
4366 uint64_t segment_align =
4367 layout->tls_segment()->maximum_alignment();
4368 if (segment_align > align)
4369 align = segment_align;
4375 if (!parameters->incremental_update())
4377 off = align_address(off, align);
4378 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4382 // Incremental update: allocate file space from free list.
4383 (*p)->pre_finalize_data_size();
4384 off_t current_size = (*p)->current_data_size();
4385 off = layout->allocate(current_size, align, startoff);
4388 gold_assert((*p)->output_section() != NULL);
4389 gold_fallback(_("out of patch space for section %s; "
4390 "relink with --incremental-full"),
4391 (*p)->output_section()->name());
4393 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4394 if ((*p)->data_size() > current_size)
4396 gold_assert((*p)->output_section() != NULL);
4397 gold_fallback(_("%s: section changed size; "
4398 "relink with --incremental-full"),
4399 (*p)->output_section()->name());
4403 else if (parameters->incremental_update())
4405 // For incremental updates, use the fixed offset for the
4406 // high-water mark computation.
4407 off = (*p)->offset();
4411 // The script may have inserted a skip forward, but it
4412 // better not have moved backward.
4413 if ((*p)->address() >= addr + (off - startoff))
4414 off += (*p)->address() - (addr + (off - startoff));
4417 if (!layout->script_options()->saw_sections_clause())
4421 Output_section* os = (*p)->output_section();
4423 // Cast to unsigned long long to avoid format warnings.
4424 unsigned long long previous_dot =
4425 static_cast<unsigned long long>(addr + (off - startoff));
4426 unsigned long long dot =
4427 static_cast<unsigned long long>((*p)->address());
4430 gold_error(_("dot moves backward in linker script "
4431 "from 0x%llx to 0x%llx"), previous_dot, dot);
4433 gold_error(_("address of section '%s' moves backward "
4434 "from 0x%llx to 0x%llx"),
4435 os->name(), previous_dot, dot);
4438 (*p)->set_file_offset(off);
4439 (*p)->finalize_data_size();
4442 if (parameters->incremental_update())
4443 gold_debug(DEBUG_INCREMENTAL,
4444 "set_section_list_addresses: %08lx %08lx %s",
4445 static_cast<long>(off),
4446 static_cast<long>((*p)->data_size()),
4447 ((*p)->output_section() != NULL
4448 ? (*p)->output_section()->name() : "(special)"));
4450 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4451 // section. Such a section does not affect the size of a
4453 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4454 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4455 off += (*p)->data_size();
4460 if ((*p)->is_section())
4462 (*p)->set_out_shndx(*pshndx);
4468 return addr + (maxoff - startoff);
4471 // For a non-PT_LOAD segment, set the offset from the sections, if
4472 // any. Add INCREASE to the file size and the memory size.
4475 Output_segment::set_offset(unsigned int increase)
4477 gold_assert(this->type_ != elfcpp::PT_LOAD);
4479 gold_assert(!this->are_addresses_set_);
4481 // A non-load section only uses output_lists_[0].
4483 Output_data_list* pdl = &this->output_lists_[0];
4487 gold_assert(increase == 0);
4490 this->are_addresses_set_ = true;
4492 this->min_p_align_ = 0;
4498 // Find the first and last section by address.
4499 const Output_data* first = NULL;
4500 const Output_data* last_data = NULL;
4501 const Output_data* last_bss = NULL;
4502 for (Output_data_list::const_iterator p = pdl->begin();
4507 || (*p)->address() < first->address()
4508 || ((*p)->address() == first->address()
4509 && (*p)->data_size() < first->data_size()))
4511 const Output_data** plast;
4512 if ((*p)->is_section()
4513 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4518 || (*p)->address() > (*plast)->address()
4519 || ((*p)->address() == (*plast)->address()
4520 && (*p)->data_size() > (*plast)->data_size()))
4524 this->vaddr_ = first->address();
4525 this->paddr_ = (first->has_load_address()
4526 ? first->load_address()
4528 this->are_addresses_set_ = true;
4529 this->offset_ = first->offset();
4531 if (last_data == NULL)
4534 this->filesz_ = (last_data->address()
4535 + last_data->data_size()
4538 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4539 this->memsz_ = (last->address()
4543 this->filesz_ += increase;
4544 this->memsz_ += increase;
4546 // If this is a RELRO segment, verify that the segment ends at a
4548 if (this->type_ == elfcpp::PT_GNU_RELRO)
4550 uint64_t page_align = parameters->target().common_pagesize();
4551 uint64_t segment_end = this->vaddr_ + this->memsz_;
4552 if (parameters->incremental_update())
4554 // The INCREASE_RELRO calculation is bypassed for an incremental
4555 // update, so we need to adjust the segment size manually here.
4556 segment_end = align_address(segment_end, page_align);
4557 this->memsz_ = segment_end - this->vaddr_;
4560 gold_assert(segment_end == align_address(segment_end, page_align));
4563 // If this is a TLS segment, align the memory size. The code in
4564 // set_section_list ensures that the section after the TLS segment
4565 // is aligned to give us room.
4566 if (this->type_ == elfcpp::PT_TLS)
4568 uint64_t segment_align = this->maximum_alignment();
4569 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4570 this->memsz_ = align_address(this->memsz_, segment_align);
4574 // Set the TLS offsets of the sections in the PT_TLS segment.
4577 Output_segment::set_tls_offsets()
4579 gold_assert(this->type_ == elfcpp::PT_TLS);
4581 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4582 p != this->output_lists_[0].end();
4584 (*p)->set_tls_offset(this->vaddr_);
4587 // Return the load address of the first section.
4590 Output_segment::first_section_load_address() const
4592 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4594 const Output_data_list* pdl = &this->output_lists_[i];
4595 for (Output_data_list::const_iterator p = pdl->begin();
4599 if ((*p)->is_section())
4600 return ((*p)->has_load_address()
4601 ? (*p)->load_address()
4608 // Return the number of Output_sections in an Output_segment.
4611 Output_segment::output_section_count() const
4613 unsigned int ret = 0;
4614 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4615 ret += this->output_section_count_list(&this->output_lists_[i]);
4619 // Return the number of Output_sections in an Output_data_list.
4622 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4624 unsigned int count = 0;
4625 for (Output_data_list::const_iterator p = pdl->begin();
4629 if ((*p)->is_section())
4635 // Return the section attached to the list segment with the lowest
4636 // load address. This is used when handling a PHDRS clause in a
4640 Output_segment::section_with_lowest_load_address() const
4642 Output_section* found = NULL;
4643 uint64_t found_lma = 0;
4644 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4645 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4650 // Look through a list for a section with a lower load address.
4653 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4654 Output_section** found,
4655 uint64_t* found_lma) const
4657 for (Output_data_list::const_iterator p = pdl->begin();
4661 if (!(*p)->is_section())
4663 Output_section* os = static_cast<Output_section*>(*p);
4664 uint64_t lma = (os->has_load_address()
4665 ? os->load_address()
4667 if (*found == NULL || lma < *found_lma)
4675 // Write the segment data into *OPHDR.
4677 template<int size, bool big_endian>
4679 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4681 ophdr->put_p_type(this->type_);
4682 ophdr->put_p_offset(this->offset_);
4683 ophdr->put_p_vaddr(this->vaddr_);
4684 ophdr->put_p_paddr(this->paddr_);
4685 ophdr->put_p_filesz(this->filesz_);
4686 ophdr->put_p_memsz(this->memsz_);
4687 ophdr->put_p_flags(this->flags_);
4688 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4691 // Write the section headers into V.
4693 template<int size, bool big_endian>
4695 Output_segment::write_section_headers(const Layout* layout,
4696 const Stringpool* secnamepool,
4698 unsigned int* pshndx) const
4700 // Every section that is attached to a segment must be attached to a
4701 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4703 if (this->type_ != elfcpp::PT_LOAD)
4706 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4708 const Output_data_list* pdl = &this->output_lists_[i];
4709 v = this->write_section_headers_list<size, big_endian>(layout,
4718 template<int size, bool big_endian>
4720 Output_segment::write_section_headers_list(const Layout* layout,
4721 const Stringpool* secnamepool,
4722 const Output_data_list* pdl,
4724 unsigned int* pshndx) const
4726 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4727 for (Output_data_list::const_iterator p = pdl->begin();
4731 if ((*p)->is_section())
4733 const Output_section* ps = static_cast<const Output_section*>(*p);
4734 gold_assert(*pshndx == ps->out_shndx());
4735 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4736 ps->write_header(layout, secnamepool, &oshdr);
4744 // Print the output sections to the map file.
4747 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4749 if (this->type() != elfcpp::PT_LOAD)
4751 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4752 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4755 // Print an output section list to the map file.
4758 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4759 const Output_data_list* pdl) const
4761 for (Output_data_list::const_iterator p = pdl->begin();
4764 (*p)->print_to_mapfile(mapfile);
4767 // Output_file methods.
4769 Output_file::Output_file(const char* name)
4774 map_is_anonymous_(false),
4775 map_is_allocated_(false),
4776 is_temporary_(false)
4780 // Try to open an existing file. Returns false if the file doesn't
4781 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4782 // NULL, open that file as the base for incremental linking, and
4783 // copy its contents to the new output file. This routine can
4784 // be called for incremental updates, in which case WRITABLE should
4785 // be true, or by the incremental-dump utility, in which case
4786 // WRITABLE should be false.
4789 Output_file::open_base_file(const char* base_name, bool writable)
4791 // The name "-" means "stdout".
4792 if (strcmp(this->name_, "-") == 0)
4795 bool use_base_file = base_name != NULL;
4797 base_name = this->name_;
4798 else if (strcmp(base_name, this->name_) == 0)
4799 gold_fatal(_("%s: incremental base and output file name are the same"),
4802 // Don't bother opening files with a size of zero.
4804 if (::stat(base_name, &s) != 0)
4806 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4811 gold_info(_("%s: incremental base file is empty"), base_name);
4815 // If we're using a base file, we want to open it read-only.
4819 int oflags = writable ? O_RDWR : O_RDONLY;
4820 int o = open_descriptor(-1, base_name, oflags, 0);
4823 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4827 // If the base file and the output file are different, open a
4828 // new output file and read the contents from the base file into
4829 // the newly-mapped region.
4832 this->open(s.st_size);
4833 ssize_t bytes_to_read = s.st_size;
4834 unsigned char* p = this->base_;
4835 while (bytes_to_read > 0)
4837 ssize_t len = ::read(o, p, bytes_to_read);
4840 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4845 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4847 static_cast<long long>(s.st_size - bytes_to_read),
4848 static_cast<long long>(s.st_size));
4852 bytes_to_read -= len;
4859 this->file_size_ = s.st_size;
4861 if (!this->map_no_anonymous(writable))
4863 release_descriptor(o, true);
4865 this->file_size_ = 0;
4872 // Open the output file.
4875 Output_file::open(off_t file_size)
4877 this->file_size_ = file_size;
4879 // Unlink the file first; otherwise the open() may fail if the file
4880 // is busy (e.g. it's an executable that's currently being executed).
4882 // However, the linker may be part of a system where a zero-length
4883 // file is created for it to write to, with tight permissions (gcc
4884 // 2.95 did something like this). Unlinking the file would work
4885 // around those permission controls, so we only unlink if the file
4886 // has a non-zero size. We also unlink only regular files to avoid
4887 // trouble with directories/etc.
4889 // If we fail, continue; this command is merely a best-effort attempt
4890 // to improve the odds for open().
4892 // We let the name "-" mean "stdout"
4893 if (!this->is_temporary_)
4895 if (strcmp(this->name_, "-") == 0)
4896 this->o_ = STDOUT_FILENO;
4900 if (::stat(this->name_, &s) == 0
4901 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4904 ::unlink(this->name_);
4905 else if (!parameters->options().relocatable())
4907 // If we don't unlink the existing file, add execute
4908 // permission where read permissions already exist
4909 // and where the umask permits.
4910 int mask = ::umask(0);
4912 s.st_mode |= (s.st_mode & 0444) >> 2;
4913 ::chmod(this->name_, s.st_mode & ~mask);
4917 int mode = parameters->options().relocatable() ? 0666 : 0777;
4918 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4921 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4929 // Resize the output file.
4932 Output_file::resize(off_t file_size)
4934 // If the mmap is mapping an anonymous memory buffer, this is easy:
4935 // just mremap to the new size. If it's mapping to a file, we want
4936 // to unmap to flush to the file, then remap after growing the file.
4937 if (this->map_is_anonymous_)
4940 if (!this->map_is_allocated_)
4942 base = ::mremap(this->base_, this->file_size_, file_size,
4944 if (base == MAP_FAILED)
4945 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4949 base = realloc(this->base_, file_size);
4952 if (file_size > this->file_size_)
4953 memset(static_cast<char*>(base) + this->file_size_, 0,
4954 file_size - this->file_size_);
4956 this->base_ = static_cast<unsigned char*>(base);
4957 this->file_size_ = file_size;
4962 this->file_size_ = file_size;
4963 if (!this->map_no_anonymous(true))
4964 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4968 // Map an anonymous block of memory which will later be written to the
4969 // file. Return whether the map succeeded.
4972 Output_file::map_anonymous()
4974 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4975 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4976 if (base == MAP_FAILED)
4978 base = malloc(this->file_size_);
4981 memset(base, 0, this->file_size_);
4982 this->map_is_allocated_ = true;
4984 this->base_ = static_cast<unsigned char*>(base);
4985 this->map_is_anonymous_ = true;
4989 // Map the file into memory. Return whether the mapping succeeded.
4990 // If WRITABLE is true, map with write access.
4993 Output_file::map_no_anonymous(bool writable)
4995 const int o = this->o_;
4997 // If the output file is not a regular file, don't try to mmap it;
4998 // instead, we'll mmap a block of memory (an anonymous buffer), and
4999 // then later write the buffer to the file.
5001 struct stat statbuf;
5002 if (o == STDOUT_FILENO || o == STDERR_FILENO
5003 || ::fstat(o, &statbuf) != 0
5004 || !S_ISREG(statbuf.st_mode)
5005 || this->is_temporary_)
5008 // Ensure that we have disk space available for the file. If we
5009 // don't do this, it is possible that we will call munmap, close,
5010 // and exit with dirty buffers still in the cache with no assigned
5011 // disk blocks. If the disk is out of space at that point, the
5012 // output file will wind up incomplete, but we will have already
5013 // exited. The alternative to fallocate would be to use fdatasync,
5014 // but that would be a more significant performance hit.
5017 int err = ::posix_fallocate(o, 0, this->file_size_);
5019 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5022 // Map the file into memory.
5023 int prot = PROT_READ;
5026 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5028 // The mmap call might fail because of file system issues: the file
5029 // system might not support mmap at all, or it might not support
5030 // mmap with PROT_WRITE.
5031 if (base == MAP_FAILED)
5034 this->map_is_anonymous_ = false;
5035 this->base_ = static_cast<unsigned char*>(base);
5039 // Map the file into memory.
5044 if (this->map_no_anonymous(true))
5047 // The mmap call might fail because of file system issues: the file
5048 // system might not support mmap at all, or it might not support
5049 // mmap with PROT_WRITE. I'm not sure which errno values we will
5050 // see in all cases, so if the mmap fails for any reason and we
5051 // don't care about file contents, try for an anonymous map.
5052 if (this->map_anonymous())
5055 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5056 this->name_, static_cast<unsigned long>(this->file_size_),
5060 // Unmap the file from memory.
5063 Output_file::unmap()
5065 if (this->map_is_anonymous_)
5067 // We've already written out the data, so there is no reason to
5068 // waste time unmapping or freeing the memory.
5072 if (::munmap(this->base_, this->file_size_) < 0)
5073 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5078 // Close the output file.
5081 Output_file::close()
5083 // If the map isn't file-backed, we need to write it now.
5084 if (this->map_is_anonymous_ && !this->is_temporary_)
5086 size_t bytes_to_write = this->file_size_;
5088 while (bytes_to_write > 0)
5090 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5092 if (bytes_written == 0)
5093 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5094 else if (bytes_written < 0)
5095 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5098 bytes_to_write -= bytes_written;
5099 offset += bytes_written;
5105 // We don't close stdout or stderr
5106 if (this->o_ != STDOUT_FILENO
5107 && this->o_ != STDERR_FILENO
5108 && !this->is_temporary_)
5109 if (::close(this->o_) < 0)
5110 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5114 // Instantiate the templates we need. We could use the configure
5115 // script to restrict this to only the ones for implemented targets.
5117 #ifdef HAVE_TARGET_32_LITTLE
5120 Output_section::add_input_section<32, false>(
5122 Sized_relobj_file<32, false>* object,
5124 const char* secname,
5125 const elfcpp::Shdr<32, false>& shdr,
5126 unsigned int reloc_shndx,
5127 bool have_sections_script);
5130 #ifdef HAVE_TARGET_32_BIG
5133 Output_section::add_input_section<32, true>(
5135 Sized_relobj_file<32, true>* object,
5137 const char* secname,
5138 const elfcpp::Shdr<32, true>& shdr,
5139 unsigned int reloc_shndx,
5140 bool have_sections_script);
5143 #ifdef HAVE_TARGET_64_LITTLE
5146 Output_section::add_input_section<64, false>(
5148 Sized_relobj_file<64, false>* object,
5150 const char* secname,
5151 const elfcpp::Shdr<64, false>& shdr,
5152 unsigned int reloc_shndx,
5153 bool have_sections_script);
5156 #ifdef HAVE_TARGET_64_BIG
5159 Output_section::add_input_section<64, true>(
5161 Sized_relobj_file<64, true>* object,
5163 const char* secname,
5164 const elfcpp::Shdr<64, true>& shdr,
5165 unsigned int reloc_shndx,
5166 bool have_sections_script);
5169 #ifdef HAVE_TARGET_32_LITTLE
5171 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5174 #ifdef HAVE_TARGET_32_BIG
5176 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5179 #ifdef HAVE_TARGET_64_LITTLE
5181 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5184 #ifdef HAVE_TARGET_64_BIG
5186 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5189 #ifdef HAVE_TARGET_32_LITTLE
5191 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5194 #ifdef HAVE_TARGET_32_BIG
5196 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5199 #ifdef HAVE_TARGET_64_LITTLE
5201 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5204 #ifdef HAVE_TARGET_64_BIG
5206 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5209 #ifdef HAVE_TARGET_32_LITTLE
5211 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5214 #ifdef HAVE_TARGET_32_BIG
5216 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5219 #ifdef HAVE_TARGET_64_LITTLE
5221 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5224 #ifdef HAVE_TARGET_64_BIG
5226 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5229 #ifdef HAVE_TARGET_32_LITTLE
5231 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5234 #ifdef HAVE_TARGET_32_BIG
5236 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5239 #ifdef HAVE_TARGET_64_LITTLE
5241 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5244 #ifdef HAVE_TARGET_64_BIG
5246 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5249 #ifdef HAVE_TARGET_32_LITTLE
5251 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5254 #ifdef HAVE_TARGET_32_BIG
5256 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5259 #ifdef HAVE_TARGET_64_LITTLE
5261 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5264 #ifdef HAVE_TARGET_64_BIG
5266 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5269 #ifdef HAVE_TARGET_32_LITTLE
5271 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5274 #ifdef HAVE_TARGET_32_BIG
5276 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5279 #ifdef HAVE_TARGET_64_LITTLE
5281 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5284 #ifdef HAVE_TARGET_64_BIG
5286 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5289 #ifdef HAVE_TARGET_32_LITTLE
5291 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5294 #ifdef HAVE_TARGET_32_BIG
5296 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5299 #ifdef HAVE_TARGET_64_LITTLE
5301 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5304 #ifdef HAVE_TARGET_64_BIG
5306 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5309 #ifdef HAVE_TARGET_32_LITTLE
5311 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5314 #ifdef HAVE_TARGET_32_BIG
5316 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5319 #ifdef HAVE_TARGET_64_LITTLE
5321 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5324 #ifdef HAVE_TARGET_64_BIG
5326 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5329 #ifdef HAVE_TARGET_32_LITTLE
5331 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5334 #ifdef HAVE_TARGET_32_BIG
5336 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5339 #ifdef HAVE_TARGET_64_LITTLE
5341 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5344 #ifdef HAVE_TARGET_64_BIG
5346 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5349 #ifdef HAVE_TARGET_32_LITTLE
5351 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5354 #ifdef HAVE_TARGET_32_BIG
5356 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5359 #ifdef HAVE_TARGET_64_LITTLE
5361 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5364 #ifdef HAVE_TARGET_64_BIG
5366 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5369 #ifdef HAVE_TARGET_32_LITTLE
5371 class Output_data_group<32, false>;
5374 #ifdef HAVE_TARGET_32_BIG
5376 class Output_data_group<32, true>;
5379 #ifdef HAVE_TARGET_64_LITTLE
5381 class Output_data_group<64, false>;
5384 #ifdef HAVE_TARGET_64_BIG
5386 class Output_data_group<64, true>;
5389 #ifdef HAVE_TARGET_32_LITTLE
5391 class Output_data_got<32, false>;
5394 #ifdef HAVE_TARGET_32_BIG
5396 class Output_data_got<32, true>;
5399 #ifdef HAVE_TARGET_64_LITTLE
5401 class Output_data_got<64, false>;
5404 #ifdef HAVE_TARGET_64_BIG
5406 class Output_data_got<64, true>;
5409 } // End namespace gold.