Use @acronym{MIPS} where appropriate.
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate.  Here we just set
116 // the file size and hope that there is enough disk space.  FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
119 static int
120 posix_fallocate(int o, off_t offset, off_t len)
121 {
122   if (ftruncate(o, offset + len) < 0)
123     return errno;
124   return 0;
125 }
126 #endif // !defined(HAVE_POSIX_FALLOCATE)
127
128 // Mingw does not have S_ISLNK.
129 #ifndef S_ISLNK
130 # define S_ISLNK(mode) 0
131 #endif
132
133 namespace gold
134 {
135
136 // Output_data variables.
137
138 bool Output_data::allocated_sizes_are_fixed;
139
140 // Output_data methods.
141
142 Output_data::~Output_data()
143 {
144 }
145
146 // Return the default alignment for the target size.
147
148 uint64_t
149 Output_data::default_alignment()
150 {
151   return Output_data::default_alignment_for_size(
152       parameters->target().get_size());
153 }
154
155 // Return the default alignment for a size--32 or 64.
156
157 uint64_t
158 Output_data::default_alignment_for_size(int size)
159 {
160   if (size == 32)
161     return 4;
162   else if (size == 64)
163     return 8;
164   else
165     gold_unreachable();
166 }
167
168 // Output_section_header methods.  This currently assumes that the
169 // segment and section lists are complete at construction time.
170
171 Output_section_headers::Output_section_headers(
172     const Layout* layout,
173     const Layout::Segment_list* segment_list,
174     const Layout::Section_list* section_list,
175     const Layout::Section_list* unattached_section_list,
176     const Stringpool* secnamepool,
177     const Output_section* shstrtab_section)
178   : layout_(layout),
179     segment_list_(segment_list),
180     section_list_(section_list),
181     unattached_section_list_(unattached_section_list),
182     secnamepool_(secnamepool),
183     shstrtab_section_(shstrtab_section)
184 {
185 }
186
187 // Compute the current data size.
188
189 off_t
190 Output_section_headers::do_size() const
191 {
192   // Count all the sections.  Start with 1 for the null section.
193   off_t count = 1;
194   if (!parameters->options().relocatable())
195     {
196       for (Layout::Segment_list::const_iterator p =
197              this->segment_list_->begin();
198            p != this->segment_list_->end();
199            ++p)
200         if ((*p)->type() == elfcpp::PT_LOAD)
201           count += (*p)->output_section_count();
202     }
203   else
204     {
205       for (Layout::Section_list::const_iterator p =
206              this->section_list_->begin();
207            p != this->section_list_->end();
208            ++p)
209         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
210           ++count;
211     }
212   count += this->unattached_section_list_->size();
213
214   const int size = parameters->target().get_size();
215   int shdr_size;
216   if (size == 32)
217     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
218   else if (size == 64)
219     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
220   else
221     gold_unreachable();
222
223   return count * shdr_size;
224 }
225
226 // Write out the section headers.
227
228 void
229 Output_section_headers::do_write(Output_file* of)
230 {
231   switch (parameters->size_and_endianness())
232     {
233 #ifdef HAVE_TARGET_32_LITTLE
234     case Parameters::TARGET_32_LITTLE:
235       this->do_sized_write<32, false>(of);
236       break;
237 #endif
238 #ifdef HAVE_TARGET_32_BIG
239     case Parameters::TARGET_32_BIG:
240       this->do_sized_write<32, true>(of);
241       break;
242 #endif
243 #ifdef HAVE_TARGET_64_LITTLE
244     case Parameters::TARGET_64_LITTLE:
245       this->do_sized_write<64, false>(of);
246       break;
247 #endif
248 #ifdef HAVE_TARGET_64_BIG
249     case Parameters::TARGET_64_BIG:
250       this->do_sized_write<64, true>(of);
251       break;
252 #endif
253     default:
254       gold_unreachable();
255     }
256 }
257
258 template<int size, bool big_endian>
259 void
260 Output_section_headers::do_sized_write(Output_file* of)
261 {
262   off_t all_shdrs_size = this->data_size();
263   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
264
265   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
266   unsigned char* v = view;
267
268   {
269     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
270     oshdr.put_sh_name(0);
271     oshdr.put_sh_type(elfcpp::SHT_NULL);
272     oshdr.put_sh_flags(0);
273     oshdr.put_sh_addr(0);
274     oshdr.put_sh_offset(0);
275
276     size_t section_count = (this->data_size()
277                             / elfcpp::Elf_sizes<size>::shdr_size);
278     if (section_count < elfcpp::SHN_LORESERVE)
279       oshdr.put_sh_size(0);
280     else
281       oshdr.put_sh_size(section_count);
282
283     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
284     if (shstrndx < elfcpp::SHN_LORESERVE)
285       oshdr.put_sh_link(0);
286     else
287       oshdr.put_sh_link(shstrndx);
288
289     size_t segment_count = this->segment_list_->size();
290     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
291
292     oshdr.put_sh_addralign(0);
293     oshdr.put_sh_entsize(0);
294   }
295
296   v += shdr_size;
297
298   unsigned int shndx = 1;
299   if (!parameters->options().relocatable())
300     {
301       for (Layout::Segment_list::const_iterator p =
302              this->segment_list_->begin();
303            p != this->segment_list_->end();
304            ++p)
305         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
306                                                           this->secnamepool_,
307                                                           v,
308                                                           &shndx);
309     }
310   else
311     {
312       for (Layout::Section_list::const_iterator p =
313              this->section_list_->begin();
314            p != this->section_list_->end();
315            ++p)
316         {
317           // We do unallocated sections below, except that group
318           // sections have to come first.
319           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
320               && (*p)->type() != elfcpp::SHT_GROUP)
321             continue;
322           gold_assert(shndx == (*p)->out_shndx());
323           elfcpp::Shdr_write<size, big_endian> oshdr(v);
324           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
325           v += shdr_size;
326           ++shndx;
327         }
328     }
329
330   for (Layout::Section_list::const_iterator p =
331          this->unattached_section_list_->begin();
332        p != this->unattached_section_list_->end();
333        ++p)
334     {
335       // For a relocatable link, we did unallocated group sections
336       // above, since they have to come first.
337       if ((*p)->type() == elfcpp::SHT_GROUP
338           && parameters->options().relocatable())
339         continue;
340       gold_assert(shndx == (*p)->out_shndx());
341       elfcpp::Shdr_write<size, big_endian> oshdr(v);
342       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
343       v += shdr_size;
344       ++shndx;
345     }
346
347   of->write_output_view(this->offset(), all_shdrs_size, view);
348 }
349
350 // Output_segment_header methods.
351
352 Output_segment_headers::Output_segment_headers(
353     const Layout::Segment_list& segment_list)
354   : segment_list_(segment_list)
355 {
356   this->set_current_data_size_for_child(this->do_size());
357 }
358
359 void
360 Output_segment_headers::do_write(Output_file* of)
361 {
362   switch (parameters->size_and_endianness())
363     {
364 #ifdef HAVE_TARGET_32_LITTLE
365     case Parameters::TARGET_32_LITTLE:
366       this->do_sized_write<32, false>(of);
367       break;
368 #endif
369 #ifdef HAVE_TARGET_32_BIG
370     case Parameters::TARGET_32_BIG:
371       this->do_sized_write<32, true>(of);
372       break;
373 #endif
374 #ifdef HAVE_TARGET_64_LITTLE
375     case Parameters::TARGET_64_LITTLE:
376       this->do_sized_write<64, false>(of);
377       break;
378 #endif
379 #ifdef HAVE_TARGET_64_BIG
380     case Parameters::TARGET_64_BIG:
381       this->do_sized_write<64, true>(of);
382       break;
383 #endif
384     default:
385       gold_unreachable();
386     }
387 }
388
389 template<int size, bool big_endian>
390 void
391 Output_segment_headers::do_sized_write(Output_file* of)
392 {
393   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
394   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
395   gold_assert(all_phdrs_size == this->data_size());
396   unsigned char* view = of->get_output_view(this->offset(),
397                                             all_phdrs_size);
398   unsigned char* v = view;
399   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
400        p != this->segment_list_.end();
401        ++p)
402     {
403       elfcpp::Phdr_write<size, big_endian> ophdr(v);
404       (*p)->write_header(&ophdr);
405       v += phdr_size;
406     }
407
408   gold_assert(v - view == all_phdrs_size);
409
410   of->write_output_view(this->offset(), all_phdrs_size, view);
411 }
412
413 off_t
414 Output_segment_headers::do_size() const
415 {
416   const int size = parameters->target().get_size();
417   int phdr_size;
418   if (size == 32)
419     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
420   else if (size == 64)
421     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
422   else
423     gold_unreachable();
424
425   return this->segment_list_.size() * phdr_size;
426 }
427
428 // Output_file_header methods.
429
430 Output_file_header::Output_file_header(const Target* target,
431                                        const Symbol_table* symtab,
432                                        const Output_segment_headers* osh)
433   : target_(target),
434     symtab_(symtab),
435     segment_header_(osh),
436     section_header_(NULL),
437     shstrtab_(NULL)
438 {
439   this->set_data_size(this->do_size());
440 }
441
442 // Set the section table information for a file header.
443
444 void
445 Output_file_header::set_section_info(const Output_section_headers* shdrs,
446                                      const Output_section* shstrtab)
447 {
448   this->section_header_ = shdrs;
449   this->shstrtab_ = shstrtab;
450 }
451
452 // Write out the file header.
453
454 void
455 Output_file_header::do_write(Output_file* of)
456 {
457   gold_assert(this->offset() == 0);
458
459   switch (parameters->size_and_endianness())
460     {
461 #ifdef HAVE_TARGET_32_LITTLE
462     case Parameters::TARGET_32_LITTLE:
463       this->do_sized_write<32, false>(of);
464       break;
465 #endif
466 #ifdef HAVE_TARGET_32_BIG
467     case Parameters::TARGET_32_BIG:
468       this->do_sized_write<32, true>(of);
469       break;
470 #endif
471 #ifdef HAVE_TARGET_64_LITTLE
472     case Parameters::TARGET_64_LITTLE:
473       this->do_sized_write<64, false>(of);
474       break;
475 #endif
476 #ifdef HAVE_TARGET_64_BIG
477     case Parameters::TARGET_64_BIG:
478       this->do_sized_write<64, true>(of);
479       break;
480 #endif
481     default:
482       gold_unreachable();
483     }
484 }
485
486 // Write out the file header with appropriate size and endianness.
487
488 template<int size, bool big_endian>
489 void
490 Output_file_header::do_sized_write(Output_file* of)
491 {
492   gold_assert(this->offset() == 0);
493
494   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
495   unsigned char* view = of->get_output_view(0, ehdr_size);
496   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
497
498   unsigned char e_ident[elfcpp::EI_NIDENT];
499   memset(e_ident, 0, elfcpp::EI_NIDENT);
500   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
501   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
502   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
503   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
504   if (size == 32)
505     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
506   else if (size == 64)
507     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
508   else
509     gold_unreachable();
510   e_ident[elfcpp::EI_DATA] = (big_endian
511                               ? elfcpp::ELFDATA2MSB
512                               : elfcpp::ELFDATA2LSB);
513   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
514   oehdr.put_e_ident(e_ident);
515
516   elfcpp::ET e_type;
517   if (parameters->options().relocatable())
518     e_type = elfcpp::ET_REL;
519   else if (parameters->options().output_is_position_independent())
520     e_type = elfcpp::ET_DYN;
521   else
522     e_type = elfcpp::ET_EXEC;
523   oehdr.put_e_type(e_type);
524
525   oehdr.put_e_machine(this->target_->machine_code());
526   oehdr.put_e_version(elfcpp::EV_CURRENT);
527
528   oehdr.put_e_entry(this->entry<size>());
529
530   if (this->segment_header_ == NULL)
531     oehdr.put_e_phoff(0);
532   else
533     oehdr.put_e_phoff(this->segment_header_->offset());
534
535   oehdr.put_e_shoff(this->section_header_->offset());
536   oehdr.put_e_flags(this->target_->processor_specific_flags());
537   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
538
539   if (this->segment_header_ == NULL)
540     {
541       oehdr.put_e_phentsize(0);
542       oehdr.put_e_phnum(0);
543     }
544   else
545     {
546       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
547       size_t phnum = (this->segment_header_->data_size()
548                       / elfcpp::Elf_sizes<size>::phdr_size);
549       if (phnum > elfcpp::PN_XNUM)
550         phnum = elfcpp::PN_XNUM;
551       oehdr.put_e_phnum(phnum);
552     }
553
554   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
555   size_t section_count = (this->section_header_->data_size()
556                           / elfcpp::Elf_sizes<size>::shdr_size);
557
558   if (section_count < elfcpp::SHN_LORESERVE)
559     oehdr.put_e_shnum(this->section_header_->data_size()
560                       / elfcpp::Elf_sizes<size>::shdr_size);
561   else
562     oehdr.put_e_shnum(0);
563
564   unsigned int shstrndx = this->shstrtab_->out_shndx();
565   if (shstrndx < elfcpp::SHN_LORESERVE)
566     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
567   else
568     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
569
570   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
571   // the e_ident field.
572   parameters->target().adjust_elf_header(view, ehdr_size);
573
574   of->write_output_view(0, ehdr_size, view);
575 }
576
577 // Return the value to use for the entry address.
578
579 template<int size>
580 typename elfcpp::Elf_types<size>::Elf_Addr
581 Output_file_header::entry()
582 {
583   const bool should_issue_warning = (parameters->options().entry() != NULL
584                                      && !parameters->options().relocatable()
585                                      && !parameters->options().shared());
586   const char* entry = parameters->entry();
587   Symbol* sym = this->symtab_->lookup(entry);
588
589   typename Sized_symbol<size>::Value_type v;
590   if (sym != NULL)
591     {
592       Sized_symbol<size>* ssym;
593       ssym = this->symtab_->get_sized_symbol<size>(sym);
594       if (!ssym->is_defined() && should_issue_warning)
595         gold_warning("entry symbol '%s' exists but is not defined", entry);
596       v = ssym->value();
597     }
598   else
599     {
600       // We couldn't find the entry symbol.  See if we can parse it as
601       // a number.  This supports, e.g., -e 0x1000.
602       char* endptr;
603       v = strtoull(entry, &endptr, 0);
604       if (*endptr != '\0')
605         {
606           if (should_issue_warning)
607             gold_warning("cannot find entry symbol '%s'", entry);
608           v = 0;
609         }
610     }
611
612   return v;
613 }
614
615 // Compute the current data size.
616
617 off_t
618 Output_file_header::do_size() const
619 {
620   const int size = parameters->target().get_size();
621   if (size == 32)
622     return elfcpp::Elf_sizes<32>::ehdr_size;
623   else if (size == 64)
624     return elfcpp::Elf_sizes<64>::ehdr_size;
625   else
626     gold_unreachable();
627 }
628
629 // Output_data_const methods.
630
631 void
632 Output_data_const::do_write(Output_file* of)
633 {
634   of->write(this->offset(), this->data_.data(), this->data_.size());
635 }
636
637 // Output_data_const_buffer methods.
638
639 void
640 Output_data_const_buffer::do_write(Output_file* of)
641 {
642   of->write(this->offset(), this->p_, this->data_size());
643 }
644
645 // Output_section_data methods.
646
647 // Record the output section, and set the entry size and such.
648
649 void
650 Output_section_data::set_output_section(Output_section* os)
651 {
652   gold_assert(this->output_section_ == NULL);
653   this->output_section_ = os;
654   this->do_adjust_output_section(os);
655 }
656
657 // Return the section index of the output section.
658
659 unsigned int
660 Output_section_data::do_out_shndx() const
661 {
662   gold_assert(this->output_section_ != NULL);
663   return this->output_section_->out_shndx();
664 }
665
666 // Set the alignment, which means we may need to update the alignment
667 // of the output section.
668
669 void
670 Output_section_data::set_addralign(uint64_t addralign)
671 {
672   this->addralign_ = addralign;
673   if (this->output_section_ != NULL
674       && this->output_section_->addralign() < addralign)
675     this->output_section_->set_addralign(addralign);
676 }
677
678 // Output_data_strtab methods.
679
680 // Set the final data size.
681
682 void
683 Output_data_strtab::set_final_data_size()
684 {
685   this->strtab_->set_string_offsets();
686   this->set_data_size(this->strtab_->get_strtab_size());
687 }
688
689 // Write out a string table.
690
691 void
692 Output_data_strtab::do_write(Output_file* of)
693 {
694   this->strtab_->write(of, this->offset());
695 }
696
697 // Output_reloc methods.
698
699 // A reloc against a global symbol.
700
701 template<bool dynamic, int size, bool big_endian>
702 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
703     Symbol* gsym,
704     unsigned int type,
705     Output_data* od,
706     Address address,
707     bool is_relative,
708     bool is_symbolless,
709     bool use_plt_offset)
710   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
711     is_relative_(is_relative), is_symbolless_(is_symbolless),
712     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
713 {
714   // this->type_ is a bitfield; make sure TYPE fits.
715   gold_assert(this->type_ == type);
716   this->u1_.gsym = gsym;
717   this->u2_.od = od;
718   if (dynamic)
719     this->set_needs_dynsym_index();
720 }
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724     Symbol* gsym,
725     unsigned int type,
726     Sized_relobj<size, big_endian>* relobj,
727     unsigned int shndx,
728     Address address,
729     bool is_relative,
730     bool is_symbolless,
731     bool use_plt_offset)
732   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
733     is_relative_(is_relative), is_symbolless_(is_symbolless),
734     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
735 {
736   gold_assert(shndx != INVALID_CODE);
737   // this->type_ is a bitfield; make sure TYPE fits.
738   gold_assert(this->type_ == type);
739   this->u1_.gsym = gsym;
740   this->u2_.relobj = relobj;
741   if (dynamic)
742     this->set_needs_dynsym_index();
743 }
744
745 // A reloc against a local symbol.
746
747 template<bool dynamic, int size, bool big_endian>
748 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
749     Sized_relobj<size, big_endian>* relobj,
750     unsigned int local_sym_index,
751     unsigned int type,
752     Output_data* od,
753     Address address,
754     bool is_relative,
755     bool is_symbolless,
756     bool is_section_symbol,
757     bool use_plt_offset)
758   : address_(address), local_sym_index_(local_sym_index), type_(type),
759     is_relative_(is_relative), is_symbolless_(is_symbolless),
760     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
761     shndx_(INVALID_CODE)
762 {
763   gold_assert(local_sym_index != GSYM_CODE
764               && local_sym_index != INVALID_CODE);
765   // this->type_ is a bitfield; make sure TYPE fits.
766   gold_assert(this->type_ == type);
767   this->u1_.relobj = relobj;
768   this->u2_.od = od;
769   if (dynamic)
770     this->set_needs_dynsym_index();
771 }
772
773 template<bool dynamic, int size, bool big_endian>
774 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
775     Sized_relobj<size, big_endian>* relobj,
776     unsigned int local_sym_index,
777     unsigned int type,
778     unsigned int shndx,
779     Address address,
780     bool is_relative,
781     bool is_symbolless,
782     bool is_section_symbol,
783     bool use_plt_offset)
784   : address_(address), local_sym_index_(local_sym_index), type_(type),
785     is_relative_(is_relative), is_symbolless_(is_symbolless),
786     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
787     shndx_(shndx)
788 {
789   gold_assert(local_sym_index != GSYM_CODE
790               && local_sym_index != INVALID_CODE);
791   gold_assert(shndx != INVALID_CODE);
792   // this->type_ is a bitfield; make sure TYPE fits.
793   gold_assert(this->type_ == type);
794   this->u1_.relobj = relobj;
795   this->u2_.relobj = relobj;
796   if (dynamic)
797     this->set_needs_dynsym_index();
798 }
799
800 // A reloc against the STT_SECTION symbol of an output section.
801
802 template<bool dynamic, int size, bool big_endian>
803 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
804     Output_section* os,
805     unsigned int type,
806     Output_data* od,
807     Address address)
808   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
809     is_relative_(false), is_symbolless_(false),
810     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
811 {
812   // this->type_ is a bitfield; make sure TYPE fits.
813   gold_assert(this->type_ == type);
814   this->u1_.os = os;
815   this->u2_.od = od;
816   if (dynamic)
817     this->set_needs_dynsym_index();
818   else
819     os->set_needs_symtab_index();
820 }
821
822 template<bool dynamic, int size, bool big_endian>
823 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
824     Output_section* os,
825     unsigned int type,
826     Sized_relobj<size, big_endian>* relobj,
827     unsigned int shndx,
828     Address address)
829   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
830     is_relative_(false), is_symbolless_(false),
831     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
832 {
833   gold_assert(shndx != INVALID_CODE);
834   // this->type_ is a bitfield; make sure TYPE fits.
835   gold_assert(this->type_ == type);
836   this->u1_.os = os;
837   this->u2_.relobj = relobj;
838   if (dynamic)
839     this->set_needs_dynsym_index();
840   else
841     os->set_needs_symtab_index();
842 }
843
844 // An absolute relocation.
845
846 template<bool dynamic, int size, bool big_endian>
847 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
848     unsigned int type,
849     Output_data* od,
850     Address address)
851   : address_(address), local_sym_index_(0), type_(type),
852     is_relative_(false), is_symbolless_(false),
853     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
854 {
855   // this->type_ is a bitfield; make sure TYPE fits.
856   gold_assert(this->type_ == type);
857   this->u1_.relobj = NULL;
858   this->u2_.od = od;
859 }
860
861 template<bool dynamic, int size, bool big_endian>
862 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
863     unsigned int type,
864     Sized_relobj<size, big_endian>* relobj,
865     unsigned int shndx,
866     Address address)
867   : address_(address), local_sym_index_(0), type_(type),
868     is_relative_(false), is_symbolless_(false),
869     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
870 {
871   gold_assert(shndx != INVALID_CODE);
872   // this->type_ is a bitfield; make sure TYPE fits.
873   gold_assert(this->type_ == type);
874   this->u1_.relobj = NULL;
875   this->u2_.relobj = relobj;
876 }
877
878 // A target specific relocation.
879
880 template<bool dynamic, int size, bool big_endian>
881 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
882     unsigned int type,
883     void* arg,
884     Output_data* od,
885     Address address)
886   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
887     is_relative_(false), is_symbolless_(false),
888     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
889 {
890   // this->type_ is a bitfield; make sure TYPE fits.
891   gold_assert(this->type_ == type);
892   this->u1_.arg = arg;
893   this->u2_.od = od;
894 }
895
896 template<bool dynamic, int size, bool big_endian>
897 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
898     unsigned int type,
899     void* arg,
900     Sized_relobj<size, big_endian>* relobj,
901     unsigned int shndx,
902     Address address)
903   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
904     is_relative_(false), is_symbolless_(false),
905     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
906 {
907   gold_assert(shndx != INVALID_CODE);
908   // this->type_ is a bitfield; make sure TYPE fits.
909   gold_assert(this->type_ == type);
910   this->u1_.arg = arg;
911   this->u2_.relobj = relobj;
912 }
913
914 // Record that we need a dynamic symbol index for this relocation.
915
916 template<bool dynamic, int size, bool big_endian>
917 void
918 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
919 set_needs_dynsym_index()
920 {
921   if (this->is_symbolless_)
922     return;
923   switch (this->local_sym_index_)
924     {
925     case INVALID_CODE:
926       gold_unreachable();
927
928     case GSYM_CODE:
929       this->u1_.gsym->set_needs_dynsym_entry();
930       break;
931
932     case SECTION_CODE:
933       this->u1_.os->set_needs_dynsym_index();
934       break;
935
936     case TARGET_CODE:
937       // The target must take care of this if necessary.
938       break;
939
940     case 0:
941       break;
942
943     default:
944       {
945         const unsigned int lsi = this->local_sym_index_;
946         Sized_relobj_file<size, big_endian>* relobj =
947             this->u1_.relobj->sized_relobj();
948         gold_assert(relobj != NULL);
949         if (!this->is_section_symbol_)
950           relobj->set_needs_output_dynsym_entry(lsi);
951         else
952           relobj->output_section(lsi)->set_needs_dynsym_index();
953       }
954       break;
955     }
956 }
957
958 // Get the symbol index of a relocation.
959
960 template<bool dynamic, int size, bool big_endian>
961 unsigned int
962 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
963   const
964 {
965   unsigned int index;
966   if (this->is_symbolless_)
967     return 0;
968   switch (this->local_sym_index_)
969     {
970     case INVALID_CODE:
971       gold_unreachable();
972
973     case GSYM_CODE:
974       if (this->u1_.gsym == NULL)
975         index = 0;
976       else if (dynamic)
977         index = this->u1_.gsym->dynsym_index();
978       else
979         index = this->u1_.gsym->symtab_index();
980       break;
981
982     case SECTION_CODE:
983       if (dynamic)
984         index = this->u1_.os->dynsym_index();
985       else
986         index = this->u1_.os->symtab_index();
987       break;
988
989     case TARGET_CODE:
990       index = parameters->target().reloc_symbol_index(this->u1_.arg,
991                                                       this->type_);
992       break;
993
994     case 0:
995       // Relocations without symbols use a symbol index of 0.
996       index = 0;
997       break;
998
999     default:
1000       {
1001         const unsigned int lsi = this->local_sym_index_;
1002         Sized_relobj_file<size, big_endian>* relobj =
1003             this->u1_.relobj->sized_relobj();
1004         gold_assert(relobj != NULL);
1005         if (!this->is_section_symbol_)
1006           {
1007             if (dynamic)
1008               index = relobj->dynsym_index(lsi);
1009             else
1010               index = relobj->symtab_index(lsi);
1011           }
1012         else
1013           {
1014             Output_section* os = relobj->output_section(lsi);
1015             gold_assert(os != NULL);
1016             if (dynamic)
1017               index = os->dynsym_index();
1018             else
1019               index = os->symtab_index();
1020           }
1021       }
1022       break;
1023     }
1024   gold_assert(index != -1U);
1025   return index;
1026 }
1027
1028 // For a local section symbol, get the address of the offset ADDEND
1029 // within the input section.
1030
1031 template<bool dynamic, int size, bool big_endian>
1032 typename elfcpp::Elf_types<size>::Elf_Addr
1033 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1034   local_section_offset(Addend addend) const
1035 {
1036   gold_assert(this->local_sym_index_ != GSYM_CODE
1037               && this->local_sym_index_ != SECTION_CODE
1038               && this->local_sym_index_ != TARGET_CODE
1039               && this->local_sym_index_ != INVALID_CODE
1040               && this->local_sym_index_ != 0
1041               && this->is_section_symbol_);
1042   const unsigned int lsi = this->local_sym_index_;
1043   Output_section* os = this->u1_.relobj->output_section(lsi);
1044   gold_assert(os != NULL);
1045   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1046   if (offset != invalid_address)
1047     return offset + addend;
1048   // This is a merge section.
1049   Sized_relobj_file<size, big_endian>* relobj =
1050       this->u1_.relobj->sized_relobj();
1051   gold_assert(relobj != NULL);
1052   offset = os->output_address(relobj, lsi, addend);
1053   gold_assert(offset != invalid_address);
1054   return offset;
1055 }
1056
1057 // Get the output address of a relocation.
1058
1059 template<bool dynamic, int size, bool big_endian>
1060 typename elfcpp::Elf_types<size>::Elf_Addr
1061 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1062 {
1063   Address address = this->address_;
1064   if (this->shndx_ != INVALID_CODE)
1065     {
1066       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1067       gold_assert(os != NULL);
1068       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1069       if (off != invalid_address)
1070         address += os->address() + off;
1071       else
1072         {
1073           Sized_relobj_file<size, big_endian>* relobj =
1074               this->u2_.relobj->sized_relobj();
1075           gold_assert(relobj != NULL);
1076           address = os->output_address(relobj, this->shndx_, address);
1077           gold_assert(address != invalid_address);
1078         }
1079     }
1080   else if (this->u2_.od != NULL)
1081     address += this->u2_.od->address();
1082   return address;
1083 }
1084
1085 // Write out the offset and info fields of a Rel or Rela relocation
1086 // entry.
1087
1088 template<bool dynamic, int size, bool big_endian>
1089 template<typename Write_rel>
1090 void
1091 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1092     Write_rel* wr) const
1093 {
1094   wr->put_r_offset(this->get_address());
1095   unsigned int sym_index = this->get_symbol_index();
1096   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1097 }
1098
1099 // Write out a Rel relocation.
1100
1101 template<bool dynamic, int size, bool big_endian>
1102 void
1103 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1104     unsigned char* pov) const
1105 {
1106   elfcpp::Rel_write<size, big_endian> orel(pov);
1107   this->write_rel(&orel);
1108 }
1109
1110 // Get the value of the symbol referred to by a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 typename elfcpp::Elf_types<size>::Elf_Addr
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1115     Addend addend) const
1116 {
1117   if (this->local_sym_index_ == GSYM_CODE)
1118     {
1119       const Sized_symbol<size>* sym;
1120       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1121       if (this->use_plt_offset_ && sym->has_plt_offset())
1122         {
1123           uint64_t plt_address =
1124             parameters->target().plt_address_for_global(sym);
1125           return plt_address + sym->plt_offset();
1126         }
1127       else
1128         return sym->value() + addend;
1129     }
1130   gold_assert(this->local_sym_index_ != SECTION_CODE
1131               && this->local_sym_index_ != TARGET_CODE
1132               && this->local_sym_index_ != INVALID_CODE
1133               && this->local_sym_index_ != 0
1134               && !this->is_section_symbol_);
1135   const unsigned int lsi = this->local_sym_index_;
1136   Sized_relobj_file<size, big_endian>* relobj =
1137       this->u1_.relobj->sized_relobj();
1138   gold_assert(relobj != NULL);
1139   if (this->use_plt_offset_)
1140     {
1141       uint64_t plt_address =
1142           parameters->target().plt_address_for_local(relobj, lsi);
1143       return plt_address + relobj->local_plt_offset(lsi);
1144     }
1145   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1146   return symval->value(relobj, addend);
1147 }
1148
1149 // Reloc comparison.  This function sorts the dynamic relocs for the
1150 // benefit of the dynamic linker.  First we sort all relative relocs
1151 // to the front.  Among relative relocs, we sort by output address.
1152 // Among non-relative relocs, we sort by symbol index, then by output
1153 // address.
1154
1155 template<bool dynamic, int size, bool big_endian>
1156 int
1157 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1158   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1159     const
1160 {
1161   if (this->is_relative_)
1162     {
1163       if (!r2.is_relative_)
1164         return -1;
1165       // Otherwise sort by reloc address below.
1166     }
1167   else if (r2.is_relative_)
1168     return 1;
1169   else
1170     {
1171       unsigned int sym1 = this->get_symbol_index();
1172       unsigned int sym2 = r2.get_symbol_index();
1173       if (sym1 < sym2)
1174         return -1;
1175       else if (sym1 > sym2)
1176         return 1;
1177       // Otherwise sort by reloc address.
1178     }
1179
1180   section_offset_type addr1 = this->get_address();
1181   section_offset_type addr2 = r2.get_address();
1182   if (addr1 < addr2)
1183     return -1;
1184   else if (addr1 > addr2)
1185     return 1;
1186
1187   // Final tie breaker, in order to generate the same output on any
1188   // host: reloc type.
1189   unsigned int type1 = this->type_;
1190   unsigned int type2 = r2.type_;
1191   if (type1 < type2)
1192     return -1;
1193   else if (type1 > type2)
1194     return 1;
1195
1196   // These relocs appear to be exactly the same.
1197   return 0;
1198 }
1199
1200 // Write out a Rela relocation.
1201
1202 template<bool dynamic, int size, bool big_endian>
1203 void
1204 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1205     unsigned char* pov) const
1206 {
1207   elfcpp::Rela_write<size, big_endian> orel(pov);
1208   this->rel_.write_rel(&orel);
1209   Addend addend = this->addend_;
1210   if (this->rel_.is_target_specific())
1211     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1212                                                this->rel_.type(), addend);
1213   else if (this->rel_.is_symbolless())
1214     addend = this->rel_.symbol_value(addend);
1215   else if (this->rel_.is_local_section_symbol())
1216     addend = this->rel_.local_section_offset(addend);
1217   orel.put_r_addend(addend);
1218 }
1219
1220 // Output_data_reloc_base methods.
1221
1222 // Adjust the output section.
1223
1224 template<int sh_type, bool dynamic, int size, bool big_endian>
1225 void
1226 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1227     ::do_adjust_output_section(Output_section* os)
1228 {
1229   if (sh_type == elfcpp::SHT_REL)
1230     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1231   else if (sh_type == elfcpp::SHT_RELA)
1232     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1233   else
1234     gold_unreachable();
1235
1236   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1237   // static link.  The backends will generate a dynamic reloc section
1238   // to hold this.  In that case we don't want to link to the dynsym
1239   // section, because there isn't one.
1240   if (!dynamic)
1241     os->set_should_link_to_symtab();
1242   else if (parameters->doing_static_link())
1243     ;
1244   else
1245     os->set_should_link_to_dynsym();
1246 }
1247
1248 // Write out relocation data.
1249
1250 template<int sh_type, bool dynamic, int size, bool big_endian>
1251 void
1252 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1253     Output_file* of)
1254 {
1255   const off_t off = this->offset();
1256   const off_t oview_size = this->data_size();
1257   unsigned char* const oview = of->get_output_view(off, oview_size);
1258
1259   if (this->sort_relocs())
1260     {
1261       gold_assert(dynamic);
1262       std::sort(this->relocs_.begin(), this->relocs_.end(),
1263                 Sort_relocs_comparison());
1264     }
1265
1266   unsigned char* pov = oview;
1267   for (typename Relocs::const_iterator p = this->relocs_.begin();
1268        p != this->relocs_.end();
1269        ++p)
1270     {
1271       p->write(pov);
1272       pov += reloc_size;
1273     }
1274
1275   gold_assert(pov - oview == oview_size);
1276
1277   of->write_output_view(off, oview_size, oview);
1278
1279   // We no longer need the relocation entries.
1280   this->relocs_.clear();
1281 }
1282
1283 // Class Output_relocatable_relocs.
1284
1285 template<int sh_type, int size, bool big_endian>
1286 void
1287 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1288 {
1289   this->set_data_size(this->rr_->output_reloc_count()
1290                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1291 }
1292
1293 // class Output_data_group.
1294
1295 template<int size, bool big_endian>
1296 Output_data_group<size, big_endian>::Output_data_group(
1297     Sized_relobj_file<size, big_endian>* relobj,
1298     section_size_type entry_count,
1299     elfcpp::Elf_Word flags,
1300     std::vector<unsigned int>* input_shndxes)
1301   : Output_section_data(entry_count * 4, 4, false),
1302     relobj_(relobj),
1303     flags_(flags)
1304 {
1305   this->input_shndxes_.swap(*input_shndxes);
1306 }
1307
1308 // Write out the section group, which means translating the section
1309 // indexes to apply to the output file.
1310
1311 template<int size, bool big_endian>
1312 void
1313 Output_data_group<size, big_endian>::do_write(Output_file* of)
1314 {
1315   const off_t off = this->offset();
1316   const section_size_type oview_size =
1317     convert_to_section_size_type(this->data_size());
1318   unsigned char* const oview = of->get_output_view(off, oview_size);
1319
1320   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1321   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1322   ++contents;
1323
1324   for (std::vector<unsigned int>::const_iterator p =
1325          this->input_shndxes_.begin();
1326        p != this->input_shndxes_.end();
1327        ++p, ++contents)
1328     {
1329       Output_section* os = this->relobj_->output_section(*p);
1330
1331       unsigned int output_shndx;
1332       if (os != NULL)
1333         output_shndx = os->out_shndx();
1334       else
1335         {
1336           this->relobj_->error(_("section group retained but "
1337                                  "group element discarded"));
1338           output_shndx = 0;
1339         }
1340
1341       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1342     }
1343
1344   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1345   gold_assert(wrote == oview_size);
1346
1347   of->write_output_view(off, oview_size, oview);
1348
1349   // We no longer need this information.
1350   this->input_shndxes_.clear();
1351 }
1352
1353 // Output_data_got::Got_entry methods.
1354
1355 // Write out the entry.
1356
1357 template<int size, bool big_endian>
1358 void
1359 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1360 {
1361   Valtype val = 0;
1362
1363   switch (this->local_sym_index_)
1364     {
1365     case GSYM_CODE:
1366       {
1367         // If the symbol is resolved locally, we need to write out the
1368         // link-time value, which will be relocated dynamically by a
1369         // RELATIVE relocation.
1370         Symbol* gsym = this->u_.gsym;
1371         if (this->use_plt_offset_ && gsym->has_plt_offset())
1372           val = (parameters->target().plt_address_for_global(gsym)
1373                  + gsym->plt_offset());
1374         else
1375           {
1376             Sized_symbol<size>* sgsym;
1377             // This cast is a bit ugly.  We don't want to put a
1378             // virtual method in Symbol, because we want Symbol to be
1379             // as small as possible.
1380             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1381             val = sgsym->value();
1382           }
1383       }
1384       break;
1385
1386     case CONSTANT_CODE:
1387       val = this->u_.constant;
1388       break;
1389
1390     case RESERVED_CODE:
1391       // If we're doing an incremental update, don't touch this GOT entry.
1392       if (parameters->incremental_update())
1393         return;
1394       val = this->u_.constant;
1395       break;
1396
1397     default:
1398       {
1399         const Relobj* object = this->u_.object;
1400         const unsigned int lsi = this->local_sym_index_;
1401         if (!this->use_plt_offset_)
1402           {
1403             uint64_t lval = object->local_symbol_value(lsi, 0);
1404             val = convert_types<Valtype, uint64_t>(lval);
1405           }
1406         else
1407           {
1408             uint64_t plt_address =
1409               parameters->target().plt_address_for_local(object, lsi);
1410             val = plt_address + object->local_plt_offset(lsi);
1411           }
1412       }
1413       break;
1414     }
1415
1416   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1417 }
1418
1419 // Output_data_got methods.
1420
1421 // Add an entry for a global symbol to the GOT.  This returns true if
1422 // this is a new GOT entry, false if the symbol already had a GOT
1423 // entry.
1424
1425 template<int size, bool big_endian>
1426 bool
1427 Output_data_got<size, big_endian>::add_global(
1428     Symbol* gsym,
1429     unsigned int got_type)
1430 {
1431   if (gsym->has_got_offset(got_type))
1432     return false;
1433
1434   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1435   gsym->set_got_offset(got_type, got_offset);
1436   return true;
1437 }
1438
1439 // Like add_global, but use the PLT offset.
1440
1441 template<int size, bool big_endian>
1442 bool
1443 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1444                                                   unsigned int got_type)
1445 {
1446   if (gsym->has_got_offset(got_type))
1447     return false;
1448
1449   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1450   gsym->set_got_offset(got_type, got_offset);
1451   return true;
1452 }
1453
1454 // Add an entry for a global symbol to the GOT, and add a dynamic
1455 // relocation of type R_TYPE for the GOT entry.
1456
1457 template<int size, bool big_endian>
1458 void
1459 Output_data_got<size, big_endian>::add_global_with_rel(
1460     Symbol* gsym,
1461     unsigned int got_type,
1462     Output_data_reloc_generic* rel_dyn,
1463     unsigned int r_type)
1464 {
1465   if (gsym->has_got_offset(got_type))
1466     return;
1467
1468   unsigned int got_offset = this->add_got_entry(Got_entry());
1469   gsym->set_got_offset(got_type, got_offset);
1470   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1471 }
1472
1473 // Add a pair of entries for a global symbol to the GOT, and add
1474 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1475 // If R_TYPE_2 == 0, add the second entry with no relocation.
1476 template<int size, bool big_endian>
1477 void
1478 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1479     Symbol* gsym,
1480     unsigned int got_type,
1481     Output_data_reloc_generic* rel_dyn,
1482     unsigned int r_type_1,
1483     unsigned int r_type_2)
1484 {
1485   if (gsym->has_got_offset(got_type))
1486     return;
1487
1488   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1489   gsym->set_got_offset(got_type, got_offset);
1490   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1491
1492   if (r_type_2 != 0)
1493     rel_dyn->add_global_generic(gsym, r_type_2, this,
1494                                 got_offset + size / 8, 0);
1495 }
1496
1497 // Add an entry for a local symbol to the GOT.  This returns true if
1498 // this is a new GOT entry, false if the symbol already has a GOT
1499 // entry.
1500
1501 template<int size, bool big_endian>
1502 bool
1503 Output_data_got<size, big_endian>::add_local(
1504     Relobj* object,
1505     unsigned int symndx,
1506     unsigned int got_type)
1507 {
1508   if (object->local_has_got_offset(symndx, got_type))
1509     return false;
1510
1511   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1512                                                           false));
1513   object->set_local_got_offset(symndx, got_type, got_offset);
1514   return true;
1515 }
1516
1517 // Like add_local, but use the PLT offset.
1518
1519 template<int size, bool big_endian>
1520 bool
1521 Output_data_got<size, big_endian>::add_local_plt(
1522     Relobj* object,
1523     unsigned int symndx,
1524     unsigned int got_type)
1525 {
1526   if (object->local_has_got_offset(symndx, got_type))
1527     return false;
1528
1529   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1530                                                           true));
1531   object->set_local_got_offset(symndx, got_type, got_offset);
1532   return true;
1533 }
1534
1535 // Add an entry for a local symbol to the GOT, and add a dynamic
1536 // relocation of type R_TYPE for the GOT entry.
1537
1538 template<int size, bool big_endian>
1539 void
1540 Output_data_got<size, big_endian>::add_local_with_rel(
1541     Relobj* object,
1542     unsigned int symndx,
1543     unsigned int got_type,
1544     Output_data_reloc_generic* rel_dyn,
1545     unsigned int r_type)
1546 {
1547   if (object->local_has_got_offset(symndx, got_type))
1548     return;
1549
1550   unsigned int got_offset = this->add_got_entry(Got_entry());
1551   object->set_local_got_offset(symndx, got_type, got_offset);
1552   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1553 }
1554
1555 // Add a pair of entries for a local symbol to the GOT, and add
1556 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1557 // If R_TYPE_2 == 0, add the second entry with no relocation.
1558 template<int size, bool big_endian>
1559 void
1560 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1561     Relobj* object,
1562     unsigned int symndx,
1563     unsigned int shndx,
1564     unsigned int got_type,
1565     Output_data_reloc_generic* rel_dyn,
1566     unsigned int r_type_1,
1567     unsigned int r_type_2)
1568 {
1569   if (object->local_has_got_offset(symndx, got_type))
1570     return;
1571
1572   unsigned int got_offset =
1573       this->add_got_entry_pair(Got_entry(),
1574                                Got_entry(object, symndx, false));
1575   object->set_local_got_offset(symndx, got_type, got_offset);
1576   Output_section* os = object->output_section(shndx);
1577   rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1578
1579   if (r_type_2 != 0)
1580     rel_dyn->add_output_section_generic(os, r_type_2, this,
1581                                         got_offset + size / 8, 0);
1582 }
1583
1584 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1585
1586 template<int size, bool big_endian>
1587 void
1588 Output_data_got<size, big_endian>::reserve_local(
1589     unsigned int i,
1590     Relobj* object,
1591     unsigned int sym_index,
1592     unsigned int got_type)
1593 {
1594   this->do_reserve_slot(i);
1595   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1596 }
1597
1598 // Reserve a slot in the GOT for a global symbol.
1599
1600 template<int size, bool big_endian>
1601 void
1602 Output_data_got<size, big_endian>::reserve_global(
1603     unsigned int i,
1604     Symbol* gsym,
1605     unsigned int got_type)
1606 {
1607   this->do_reserve_slot(i);
1608   gsym->set_got_offset(got_type, this->got_offset(i));
1609 }
1610
1611 // Write out the GOT.
1612
1613 template<int size, bool big_endian>
1614 void
1615 Output_data_got<size, big_endian>::do_write(Output_file* of)
1616 {
1617   const int add = size / 8;
1618
1619   const off_t off = this->offset();
1620   const off_t oview_size = this->data_size();
1621   unsigned char* const oview = of->get_output_view(off, oview_size);
1622
1623   unsigned char* pov = oview;
1624   for (typename Got_entries::const_iterator p = this->entries_.begin();
1625        p != this->entries_.end();
1626        ++p)
1627     {
1628       p->write(pov);
1629       pov += add;
1630     }
1631
1632   gold_assert(pov - oview == oview_size);
1633
1634   of->write_output_view(off, oview_size, oview);
1635
1636   // We no longer need the GOT entries.
1637   this->entries_.clear();
1638 }
1639
1640 // Create a new GOT entry and return its offset.
1641
1642 template<int size, bool big_endian>
1643 unsigned int
1644 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1645 {
1646   if (!this->is_data_size_valid())
1647     {
1648       this->entries_.push_back(got_entry);
1649       this->set_got_size();
1650       return this->last_got_offset();
1651     }
1652   else
1653     {
1654       // For an incremental update, find an available slot.
1655       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1656       if (got_offset == -1)
1657         gold_fallback(_("out of patch space (GOT);"
1658                         " relink with --incremental-full"));
1659       unsigned int got_index = got_offset / (size / 8);
1660       gold_assert(got_index < this->entries_.size());
1661       this->entries_[got_index] = got_entry;
1662       return static_cast<unsigned int>(got_offset);
1663     }
1664 }
1665
1666 // Create a pair of new GOT entries and return the offset of the first.
1667
1668 template<int size, bool big_endian>
1669 unsigned int
1670 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1671                                                       Got_entry got_entry_2)
1672 {
1673   if (!this->is_data_size_valid())
1674     {
1675       unsigned int got_offset;
1676       this->entries_.push_back(got_entry_1);
1677       got_offset = this->last_got_offset();
1678       this->entries_.push_back(got_entry_2);
1679       this->set_got_size();
1680       return got_offset;
1681     }
1682   else
1683     {
1684       // For an incremental update, find an available pair of slots.
1685       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1686       if (got_offset == -1)
1687         gold_fallback(_("out of patch space (GOT);"
1688                         " relink with --incremental-full"));
1689       unsigned int got_index = got_offset / (size / 8);
1690       gold_assert(got_index < this->entries_.size());
1691       this->entries_[got_index] = got_entry_1;
1692       this->entries_[got_index + 1] = got_entry_2;
1693       return static_cast<unsigned int>(got_offset);
1694     }
1695 }
1696
1697 // Output_data_dynamic::Dynamic_entry methods.
1698
1699 // Write out the entry.
1700
1701 template<int size, bool big_endian>
1702 void
1703 Output_data_dynamic::Dynamic_entry::write(
1704     unsigned char* pov,
1705     const Stringpool* pool) const
1706 {
1707   typename elfcpp::Elf_types<size>::Elf_WXword val;
1708   switch (this->offset_)
1709     {
1710     case DYNAMIC_NUMBER:
1711       val = this->u_.val;
1712       break;
1713
1714     case DYNAMIC_SECTION_SIZE:
1715       val = this->u_.od->data_size();
1716       if (this->od2 != NULL)
1717         val += this->od2->data_size();
1718       break;
1719
1720     case DYNAMIC_SYMBOL:
1721       {
1722         const Sized_symbol<size>* s =
1723           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1724         val = s->value();
1725       }
1726       break;
1727
1728     case DYNAMIC_STRING:
1729       val = pool->get_offset(this->u_.str);
1730       break;
1731
1732     default:
1733       val = this->u_.od->address() + this->offset_;
1734       break;
1735     }
1736
1737   elfcpp::Dyn_write<size, big_endian> dw(pov);
1738   dw.put_d_tag(this->tag_);
1739   dw.put_d_val(val);
1740 }
1741
1742 // Output_data_dynamic methods.
1743
1744 // Adjust the output section to set the entry size.
1745
1746 void
1747 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1748 {
1749   if (parameters->target().get_size() == 32)
1750     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1751   else if (parameters->target().get_size() == 64)
1752     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1753   else
1754     gold_unreachable();
1755 }
1756
1757 // Set the final data size.
1758
1759 void
1760 Output_data_dynamic::set_final_data_size()
1761 {
1762   // Add the terminating entry if it hasn't been added.
1763   // Because of relaxation, we can run this multiple times.
1764   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1765     {
1766       int extra = parameters->options().spare_dynamic_tags();
1767       for (int i = 0; i < extra; ++i)
1768         this->add_constant(elfcpp::DT_NULL, 0);
1769       this->add_constant(elfcpp::DT_NULL, 0);
1770     }
1771
1772   int dyn_size;
1773   if (parameters->target().get_size() == 32)
1774     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1775   else if (parameters->target().get_size() == 64)
1776     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1777   else
1778     gold_unreachable();
1779   this->set_data_size(this->entries_.size() * dyn_size);
1780 }
1781
1782 // Write out the dynamic entries.
1783
1784 void
1785 Output_data_dynamic::do_write(Output_file* of)
1786 {
1787   switch (parameters->size_and_endianness())
1788     {
1789 #ifdef HAVE_TARGET_32_LITTLE
1790     case Parameters::TARGET_32_LITTLE:
1791       this->sized_write<32, false>(of);
1792       break;
1793 #endif
1794 #ifdef HAVE_TARGET_32_BIG
1795     case Parameters::TARGET_32_BIG:
1796       this->sized_write<32, true>(of);
1797       break;
1798 #endif
1799 #ifdef HAVE_TARGET_64_LITTLE
1800     case Parameters::TARGET_64_LITTLE:
1801       this->sized_write<64, false>(of);
1802       break;
1803 #endif
1804 #ifdef HAVE_TARGET_64_BIG
1805     case Parameters::TARGET_64_BIG:
1806       this->sized_write<64, true>(of);
1807       break;
1808 #endif
1809     default:
1810       gold_unreachable();
1811     }
1812 }
1813
1814 template<int size, bool big_endian>
1815 void
1816 Output_data_dynamic::sized_write(Output_file* of)
1817 {
1818   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1819
1820   const off_t offset = this->offset();
1821   const off_t oview_size = this->data_size();
1822   unsigned char* const oview = of->get_output_view(offset, oview_size);
1823
1824   unsigned char* pov = oview;
1825   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1826        p != this->entries_.end();
1827        ++p)
1828     {
1829       p->write<size, big_endian>(pov, this->pool_);
1830       pov += dyn_size;
1831     }
1832
1833   gold_assert(pov - oview == oview_size);
1834
1835   of->write_output_view(offset, oview_size, oview);
1836
1837   // We no longer need the dynamic entries.
1838   this->entries_.clear();
1839 }
1840
1841 // Class Output_symtab_xindex.
1842
1843 void
1844 Output_symtab_xindex::do_write(Output_file* of)
1845 {
1846   const off_t offset = this->offset();
1847   const off_t oview_size = this->data_size();
1848   unsigned char* const oview = of->get_output_view(offset, oview_size);
1849
1850   memset(oview, 0, oview_size);
1851
1852   if (parameters->target().is_big_endian())
1853     this->endian_do_write<true>(oview);
1854   else
1855     this->endian_do_write<false>(oview);
1856
1857   of->write_output_view(offset, oview_size, oview);
1858
1859   // We no longer need the data.
1860   this->entries_.clear();
1861 }
1862
1863 template<bool big_endian>
1864 void
1865 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1866 {
1867   for (Xindex_entries::const_iterator p = this->entries_.begin();
1868        p != this->entries_.end();
1869        ++p)
1870     {
1871       unsigned int symndx = p->first;
1872       gold_assert(symndx * 4 < this->data_size());
1873       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1874     }
1875 }
1876
1877 // Output_fill_debug_info methods.
1878
1879 // Return the minimum size needed for a dummy compilation unit header.
1880
1881 size_t
1882 Output_fill_debug_info::do_minimum_hole_size() const
1883 {
1884   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1885   // address_size.
1886   const size_t len = 4 + 2 + 4 + 1;
1887   // For type units, add type_signature, type_offset.
1888   if (this->is_debug_types_)
1889     return len + 8 + 4;
1890   return len;
1891 }
1892
1893 // Write a dummy compilation unit header to fill a hole in the
1894 // .debug_info or .debug_types section.
1895
1896 void
1897 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1898 {
1899   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1900              static_cast<long>(off), static_cast<long>(len));
1901
1902   gold_assert(len >= this->do_minimum_hole_size());
1903
1904   unsigned char* const oview = of->get_output_view(off, len);
1905   unsigned char* pov = oview;
1906
1907   // Write header fields: unit_length, version, debug_abbrev_offset,
1908   // address_size.
1909   if (this->is_big_endian())
1910     {
1911       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1912       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1913       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1914     }
1915   else
1916     {
1917       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1918       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1919       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1920     }
1921   pov += 4 + 2 + 4;
1922   *pov++ = 4;
1923
1924   // For type units, the additional header fields -- type_signature,
1925   // type_offset -- can be filled with zeroes.
1926
1927   // Fill the remainder of the free space with zeroes.  The first
1928   // zero should tell the consumer there are no DIEs to read in this
1929   // compilation unit.
1930   if (pov < oview + len)
1931     memset(pov, 0, oview + len - pov);
1932
1933   of->write_output_view(off, len, oview);
1934 }
1935
1936 // Output_fill_debug_line methods.
1937
1938 // Return the minimum size needed for a dummy line number program header.
1939
1940 size_t
1941 Output_fill_debug_line::do_minimum_hole_size() const
1942 {
1943   // Line number program header fields: unit_length, version, header_length,
1944   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1945   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1946   const size_t len = 4 + 2 + 4 + this->header_length;
1947   return len;
1948 }
1949
1950 // Write a dummy line number program header to fill a hole in the
1951 // .debug_line section.
1952
1953 void
1954 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1955 {
1956   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1957              static_cast<long>(off), static_cast<long>(len));
1958
1959   gold_assert(len >= this->do_minimum_hole_size());
1960
1961   unsigned char* const oview = of->get_output_view(off, len);
1962   unsigned char* pov = oview;
1963
1964   // Write header fields: unit_length, version, header_length,
1965   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1966   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1967   // We set the header_length field to cover the entire hole, so the
1968   // line number program is empty.
1969   if (this->is_big_endian())
1970     {
1971       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1972       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1973       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1974     }
1975   else
1976     {
1977       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1978       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1979       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1980     }
1981   pov += 4 + 2 + 4;
1982   *pov++ = 1;   // minimum_instruction_length
1983   *pov++ = 0;   // default_is_stmt
1984   *pov++ = 0;   // line_base
1985   *pov++ = 5;   // line_range
1986   *pov++ = 13;  // opcode_base
1987   *pov++ = 0;   // standard_opcode_lengths[1]
1988   *pov++ = 1;   // standard_opcode_lengths[2]
1989   *pov++ = 1;   // standard_opcode_lengths[3]
1990   *pov++ = 1;   // standard_opcode_lengths[4]
1991   *pov++ = 1;   // standard_opcode_lengths[5]
1992   *pov++ = 0;   // standard_opcode_lengths[6]
1993   *pov++ = 0;   // standard_opcode_lengths[7]
1994   *pov++ = 0;   // standard_opcode_lengths[8]
1995   *pov++ = 1;   // standard_opcode_lengths[9]
1996   *pov++ = 0;   // standard_opcode_lengths[10]
1997   *pov++ = 0;   // standard_opcode_lengths[11]
1998   *pov++ = 1;   // standard_opcode_lengths[12]
1999   *pov++ = 0;   // include_directories (empty)
2000   *pov++ = 0;   // filenames (empty)
2001
2002   // Some consumers don't check the header_length field, and simply
2003   // start reading the line number program immediately following the
2004   // header.  For those consumers, we fill the remainder of the free
2005   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2006   // no-ops: the resulting line table program will not create any rows.
2007   if (pov < oview + len)
2008     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2009
2010   of->write_output_view(off, len, oview);
2011 }
2012
2013 // Output_section::Input_section methods.
2014
2015 // Return the current data size.  For an input section we store the size here.
2016 // For an Output_section_data, we have to ask it for the size.
2017
2018 off_t
2019 Output_section::Input_section::current_data_size() const
2020 {
2021   if (this->is_input_section())
2022     return this->u1_.data_size;
2023   else
2024     {
2025       this->u2_.posd->pre_finalize_data_size();
2026       return this->u2_.posd->current_data_size();
2027     }
2028 }
2029
2030 // Return the data size.  For an input section we store the size here.
2031 // For an Output_section_data, we have to ask it for the size.
2032
2033 off_t
2034 Output_section::Input_section::data_size() const
2035 {
2036   if (this->is_input_section())
2037     return this->u1_.data_size;
2038   else
2039     return this->u2_.posd->data_size();
2040 }
2041
2042 // Return the object for an input section.
2043
2044 Relobj*
2045 Output_section::Input_section::relobj() const
2046 {
2047   if (this->is_input_section())
2048     return this->u2_.object;
2049   else if (this->is_merge_section())
2050     {
2051       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2052       return this->u2_.pomb->first_relobj();
2053     }
2054   else if (this->is_relaxed_input_section())
2055     return this->u2_.poris->relobj();
2056   else
2057     gold_unreachable();
2058 }
2059
2060 // Return the input section index for an input section.
2061
2062 unsigned int
2063 Output_section::Input_section::shndx() const
2064 {
2065   if (this->is_input_section())
2066     return this->shndx_;
2067   else if (this->is_merge_section())
2068     {
2069       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2070       return this->u2_.pomb->first_shndx();
2071     }
2072   else if (this->is_relaxed_input_section())
2073     return this->u2_.poris->shndx();
2074   else
2075     gold_unreachable();
2076 }
2077
2078 // Set the address and file offset.
2079
2080 void
2081 Output_section::Input_section::set_address_and_file_offset(
2082     uint64_t address,
2083     off_t file_offset,
2084     off_t section_file_offset)
2085 {
2086   if (this->is_input_section())
2087     this->u2_.object->set_section_offset(this->shndx_,
2088                                          file_offset - section_file_offset);
2089   else
2090     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2091 }
2092
2093 // Reset the address and file offset.
2094
2095 void
2096 Output_section::Input_section::reset_address_and_file_offset()
2097 {
2098   if (!this->is_input_section())
2099     this->u2_.posd->reset_address_and_file_offset();
2100 }
2101
2102 // Finalize the data size.
2103
2104 void
2105 Output_section::Input_section::finalize_data_size()
2106 {
2107   if (!this->is_input_section())
2108     this->u2_.posd->finalize_data_size();
2109 }
2110
2111 // Try to turn an input offset into an output offset.  We want to
2112 // return the output offset relative to the start of this
2113 // Input_section in the output section.
2114
2115 inline bool
2116 Output_section::Input_section::output_offset(
2117     const Relobj* object,
2118     unsigned int shndx,
2119     section_offset_type offset,
2120     section_offset_type* poutput) const
2121 {
2122   if (!this->is_input_section())
2123     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2124   else
2125     {
2126       if (this->shndx_ != shndx || this->u2_.object != object)
2127         return false;
2128       *poutput = offset;
2129       return true;
2130     }
2131 }
2132
2133 // Return whether this is the merge section for the input section
2134 // SHNDX in OBJECT.
2135
2136 inline bool
2137 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2138                                                     unsigned int shndx) const
2139 {
2140   if (this->is_input_section())
2141     return false;
2142   return this->u2_.posd->is_merge_section_for(object, shndx);
2143 }
2144
2145 // Write out the data.  We don't have to do anything for an input
2146 // section--they are handled via Object::relocate--but this is where
2147 // we write out the data for an Output_section_data.
2148
2149 void
2150 Output_section::Input_section::write(Output_file* of)
2151 {
2152   if (!this->is_input_section())
2153     this->u2_.posd->write(of);
2154 }
2155
2156 // Write the data to a buffer.  As for write(), we don't have to do
2157 // anything for an input section.
2158
2159 void
2160 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2161 {
2162   if (!this->is_input_section())
2163     this->u2_.posd->write_to_buffer(buffer);
2164 }
2165
2166 // Print to a map file.
2167
2168 void
2169 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2170 {
2171   switch (this->shndx_)
2172     {
2173     case OUTPUT_SECTION_CODE:
2174     case MERGE_DATA_SECTION_CODE:
2175     case MERGE_STRING_SECTION_CODE:
2176       this->u2_.posd->print_to_mapfile(mapfile);
2177       break;
2178
2179     case RELAXED_INPUT_SECTION_CODE:
2180       {
2181         Output_relaxed_input_section* relaxed_section =
2182           this->relaxed_input_section();
2183         mapfile->print_input_section(relaxed_section->relobj(),
2184                                      relaxed_section->shndx());
2185       }
2186       break;
2187     default:
2188       mapfile->print_input_section(this->u2_.object, this->shndx_);
2189       break;
2190     }
2191 }
2192
2193 // Output_section methods.
2194
2195 // Construct an Output_section.  NAME will point into a Stringpool.
2196
2197 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2198                                elfcpp::Elf_Xword flags)
2199   : name_(name),
2200     addralign_(0),
2201     entsize_(0),
2202     load_address_(0),
2203     link_section_(NULL),
2204     link_(0),
2205     info_section_(NULL),
2206     info_symndx_(NULL),
2207     info_(0),
2208     type_(type),
2209     flags_(flags),
2210     order_(ORDER_INVALID),
2211     out_shndx_(-1U),
2212     symtab_index_(0),
2213     dynsym_index_(0),
2214     input_sections_(),
2215     first_input_offset_(0),
2216     fills_(),
2217     postprocessing_buffer_(NULL),
2218     needs_symtab_index_(false),
2219     needs_dynsym_index_(false),
2220     should_link_to_symtab_(false),
2221     should_link_to_dynsym_(false),
2222     after_input_sections_(false),
2223     requires_postprocessing_(false),
2224     found_in_sections_clause_(false),
2225     has_load_address_(false),
2226     info_uses_section_index_(false),
2227     input_section_order_specified_(false),
2228     may_sort_attached_input_sections_(false),
2229     must_sort_attached_input_sections_(false),
2230     attached_input_sections_are_sorted_(false),
2231     is_relro_(false),
2232     is_small_section_(false),
2233     is_large_section_(false),
2234     generate_code_fills_at_write_(false),
2235     is_entsize_zero_(false),
2236     section_offsets_need_adjustment_(false),
2237     is_noload_(false),
2238     always_keeps_input_sections_(false),
2239     has_fixed_layout_(false),
2240     is_patch_space_allowed_(false),
2241     tls_offset_(0),
2242     checkpoint_(NULL),
2243     lookup_maps_(new Output_section_lookup_maps),
2244     free_list_(),
2245     free_space_fill_(NULL),
2246     patch_space_(0)
2247 {
2248   // An unallocated section has no address.  Forcing this means that
2249   // we don't need special treatment for symbols defined in debug
2250   // sections.
2251   if ((flags & elfcpp::SHF_ALLOC) == 0)
2252     this->set_address(0);
2253 }
2254
2255 Output_section::~Output_section()
2256 {
2257   delete this->checkpoint_;
2258 }
2259
2260 // Set the entry size.
2261
2262 void
2263 Output_section::set_entsize(uint64_t v)
2264 {
2265   if (this->is_entsize_zero_)
2266     ;
2267   else if (this->entsize_ == 0)
2268     this->entsize_ = v;
2269   else if (this->entsize_ != v)
2270     {
2271       this->entsize_ = 0;
2272       this->is_entsize_zero_ = 1;
2273     }
2274 }
2275
2276 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2277 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2278 // relocation section which applies to this section, or 0 if none, or
2279 // -1U if more than one.  Return the offset of the input section
2280 // within the output section.  Return -1 if the input section will
2281 // receive special handling.  In the normal case we don't always keep
2282 // track of input sections for an Output_section.  Instead, each
2283 // Object keeps track of the Output_section for each of its input
2284 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2285 // track of input sections here; this is used when SECTIONS appears in
2286 // a linker script.
2287
2288 template<int size, bool big_endian>
2289 off_t
2290 Output_section::add_input_section(Layout* layout,
2291                                   Sized_relobj_file<size, big_endian>* object,
2292                                   unsigned int shndx,
2293                                   const char* secname,
2294                                   const elfcpp::Shdr<size, big_endian>& shdr,
2295                                   unsigned int reloc_shndx,
2296                                   bool have_sections_script)
2297 {
2298   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2299   if ((addralign & (addralign - 1)) != 0)
2300     {
2301       object->error(_("invalid alignment %lu for section \"%s\""),
2302                     static_cast<unsigned long>(addralign), secname);
2303       addralign = 1;
2304     }
2305
2306   if (addralign > this->addralign_)
2307     this->addralign_ = addralign;
2308
2309   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2310   uint64_t entsize = shdr.get_sh_entsize();
2311
2312   // .debug_str is a mergeable string section, but is not always so
2313   // marked by compilers.  Mark manually here so we can optimize.
2314   if (strcmp(secname, ".debug_str") == 0)
2315     {
2316       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2317       entsize = 1;
2318     }
2319
2320   this->update_flags_for_input_section(sh_flags);
2321   this->set_entsize(entsize);
2322
2323   // If this is a SHF_MERGE section, we pass all the input sections to
2324   // a Output_data_merge.  We don't try to handle relocations for such
2325   // a section.  We don't try to handle empty merge sections--they
2326   // mess up the mappings, and are useless anyhow.
2327   // FIXME: Need to handle merge sections during incremental update.
2328   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2329       && reloc_shndx == 0
2330       && shdr.get_sh_size() > 0
2331       && !parameters->incremental())
2332     {
2333       // Keep information about merged input sections for rebuilding fast
2334       // lookup maps if we have sections-script or we do relaxation.
2335       bool keeps_input_sections = (this->always_keeps_input_sections_
2336                                    || have_sections_script
2337                                    || parameters->target().may_relax());
2338
2339       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2340                                         addralign, keeps_input_sections))
2341         {
2342           // Tell the relocation routines that they need to call the
2343           // output_offset method to determine the final address.
2344           return -1;
2345         }
2346     }
2347
2348   section_size_type input_section_size = shdr.get_sh_size();
2349   section_size_type uncompressed_size;
2350   if (object->section_is_compressed(shndx, &uncompressed_size))
2351     input_section_size = uncompressed_size;
2352
2353   off_t offset_in_section;
2354   off_t aligned_offset_in_section;
2355   if (this->has_fixed_layout())
2356     {
2357       // For incremental updates, find a chunk of unused space in the section.
2358       offset_in_section = this->free_list_.allocate(input_section_size,
2359                                                     addralign, 0);
2360       if (offset_in_section == -1)
2361         gold_fallback(_("out of patch space in section %s; "
2362                         "relink with --incremental-full"),
2363                       this->name());
2364       aligned_offset_in_section = offset_in_section;
2365     }
2366   else
2367     {
2368       offset_in_section = this->current_data_size_for_child();
2369       aligned_offset_in_section = align_address(offset_in_section,
2370                                                 addralign);
2371       this->set_current_data_size_for_child(aligned_offset_in_section
2372                                             + input_section_size);
2373     }
2374
2375   // Determine if we want to delay code-fill generation until the output
2376   // section is written.  When the target is relaxing, we want to delay fill
2377   // generating to avoid adjusting them during relaxation.  Also, if we are
2378   // sorting input sections we must delay fill generation.
2379   if (!this->generate_code_fills_at_write_
2380       && !have_sections_script
2381       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2382       && parameters->target().has_code_fill()
2383       && (parameters->target().may_relax()
2384           || layout->is_section_ordering_specified()))
2385     {
2386       gold_assert(this->fills_.empty());
2387       this->generate_code_fills_at_write_ = true;
2388     }
2389
2390   if (aligned_offset_in_section > offset_in_section
2391       && !this->generate_code_fills_at_write_
2392       && !have_sections_script
2393       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2394       && parameters->target().has_code_fill())
2395     {
2396       // We need to add some fill data.  Using fill_list_ when
2397       // possible is an optimization, since we will often have fill
2398       // sections without input sections.
2399       off_t fill_len = aligned_offset_in_section - offset_in_section;
2400       if (this->input_sections_.empty())
2401         this->fills_.push_back(Fill(offset_in_section, fill_len));
2402       else
2403         {
2404           std::string fill_data(parameters->target().code_fill(fill_len));
2405           Output_data_const* odc = new Output_data_const(fill_data, 1);
2406           this->input_sections_.push_back(Input_section(odc));
2407         }
2408     }
2409
2410   // We need to keep track of this section if we are already keeping
2411   // track of sections, or if we are relaxing.  Also, if this is a
2412   // section which requires sorting, or which may require sorting in
2413   // the future, we keep track of the sections.  If the
2414   // --section-ordering-file option is used to specify the order of
2415   // sections, we need to keep track of sections.
2416   if (this->always_keeps_input_sections_
2417       || have_sections_script
2418       || !this->input_sections_.empty()
2419       || this->may_sort_attached_input_sections()
2420       || this->must_sort_attached_input_sections()
2421       || parameters->options().user_set_Map()
2422       || parameters->target().may_relax()
2423       || layout->is_section_ordering_specified())
2424     {
2425       Input_section isecn(object, shndx, input_section_size, addralign);
2426       /* If section ordering is requested by specifying a ordering file,
2427          using --section-ordering-file, match the section name with
2428          a pattern.  */
2429       if (parameters->options().section_ordering_file())
2430         {
2431           unsigned int section_order_index =
2432             layout->find_section_order_index(std::string(secname));
2433           if (section_order_index != 0)
2434             {
2435               isecn.set_section_order_index(section_order_index);
2436               this->set_input_section_order_specified();
2437             }
2438         }
2439       if (this->has_fixed_layout())
2440         {
2441           // For incremental updates, finalize the address and offset now.
2442           uint64_t addr = this->address();
2443           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2444                                             aligned_offset_in_section,
2445                                             this->offset());
2446         }
2447       this->input_sections_.push_back(isecn);
2448     }
2449
2450   return aligned_offset_in_section;
2451 }
2452
2453 // Add arbitrary data to an output section.
2454
2455 void
2456 Output_section::add_output_section_data(Output_section_data* posd)
2457 {
2458   Input_section inp(posd);
2459   this->add_output_section_data(&inp);
2460
2461   if (posd->is_data_size_valid())
2462     {
2463       off_t offset_in_section;
2464       if (this->has_fixed_layout())
2465         {
2466           // For incremental updates, find a chunk of unused space.
2467           offset_in_section = this->free_list_.allocate(posd->data_size(),
2468                                                         posd->addralign(), 0);
2469           if (offset_in_section == -1)
2470             gold_fallback(_("out of patch space in section %s; "
2471                             "relink with --incremental-full"),
2472                           this->name());
2473           // Finalize the address and offset now.
2474           uint64_t addr = this->address();
2475           off_t offset = this->offset();
2476           posd->set_address_and_file_offset(addr + offset_in_section,
2477                                             offset + offset_in_section);
2478         }
2479       else
2480         {
2481           offset_in_section = this->current_data_size_for_child();
2482           off_t aligned_offset_in_section = align_address(offset_in_section,
2483                                                           posd->addralign());
2484           this->set_current_data_size_for_child(aligned_offset_in_section
2485                                                 + posd->data_size());
2486         }
2487     }
2488   else if (this->has_fixed_layout())
2489     {
2490       // For incremental updates, arrange for the data to have a fixed layout.
2491       // This will mean that additions to the data must be allocated from
2492       // free space within the containing output section.
2493       uint64_t addr = this->address();
2494       posd->set_address(addr);
2495       posd->set_file_offset(0);
2496       // FIXME: This should eventually be unreachable.
2497       // gold_unreachable();
2498     }
2499 }
2500
2501 // Add a relaxed input section.
2502
2503 void
2504 Output_section::add_relaxed_input_section(Layout* layout,
2505                                           Output_relaxed_input_section* poris,
2506                                           const std::string& name)
2507 {
2508   Input_section inp(poris);
2509
2510   // If the --section-ordering-file option is used to specify the order of
2511   // sections, we need to keep track of sections.
2512   if (layout->is_section_ordering_specified())
2513     {
2514       unsigned int section_order_index =
2515         layout->find_section_order_index(name);
2516       if (section_order_index != 0)
2517         {
2518           inp.set_section_order_index(section_order_index);
2519           this->set_input_section_order_specified();
2520         }
2521     }
2522
2523   this->add_output_section_data(&inp);
2524   if (this->lookup_maps_->is_valid())
2525     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2526                                                   poris->shndx(), poris);
2527
2528   // For a relaxed section, we use the current data size.  Linker scripts
2529   // get all the input sections, including relaxed one from an output
2530   // section and add them back to them same output section to compute the
2531   // output section size.  If we do not account for sizes of relaxed input
2532   // sections,  an output section would be incorrectly sized.
2533   off_t offset_in_section = this->current_data_size_for_child();
2534   off_t aligned_offset_in_section = align_address(offset_in_section,
2535                                                   poris->addralign());
2536   this->set_current_data_size_for_child(aligned_offset_in_section
2537                                         + poris->current_data_size());
2538 }
2539
2540 // Add arbitrary data to an output section by Input_section.
2541
2542 void
2543 Output_section::add_output_section_data(Input_section* inp)
2544 {
2545   if (this->input_sections_.empty())
2546     this->first_input_offset_ = this->current_data_size_for_child();
2547
2548   this->input_sections_.push_back(*inp);
2549
2550   uint64_t addralign = inp->addralign();
2551   if (addralign > this->addralign_)
2552     this->addralign_ = addralign;
2553
2554   inp->set_output_section(this);
2555 }
2556
2557 // Add a merge section to an output section.
2558
2559 void
2560 Output_section::add_output_merge_section(Output_section_data* posd,
2561                                          bool is_string, uint64_t entsize)
2562 {
2563   Input_section inp(posd, is_string, entsize);
2564   this->add_output_section_data(&inp);
2565 }
2566
2567 // Add an input section to a SHF_MERGE section.
2568
2569 bool
2570 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2571                                         uint64_t flags, uint64_t entsize,
2572                                         uint64_t addralign,
2573                                         bool keeps_input_sections)
2574 {
2575   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2576
2577   // We only merge strings if the alignment is not more than the
2578   // character size.  This could be handled, but it's unusual.
2579   if (is_string && addralign > entsize)
2580     return false;
2581
2582   // We cannot restore merged input section states.
2583   gold_assert(this->checkpoint_ == NULL);
2584
2585   // Look up merge sections by required properties.
2586   // Currently, we only invalidate the lookup maps in script processing
2587   // and relaxation.  We should not have done either when we reach here.
2588   // So we assume that the lookup maps are valid to simply code.
2589   gold_assert(this->lookup_maps_->is_valid());
2590   Merge_section_properties msp(is_string, entsize, addralign);
2591   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2592   bool is_new = false;
2593   if (pomb != NULL)
2594     {
2595       gold_assert(pomb->is_string() == is_string
2596                   && pomb->entsize() == entsize
2597                   && pomb->addralign() == addralign);
2598     }
2599   else
2600     {
2601       // Create a new Output_merge_data or Output_merge_string_data.
2602       if (!is_string)
2603         pomb = new Output_merge_data(entsize, addralign);
2604       else
2605         {
2606           switch (entsize)
2607             {
2608             case 1:
2609               pomb = new Output_merge_string<char>(addralign);
2610               break;
2611             case 2:
2612               pomb = new Output_merge_string<uint16_t>(addralign);
2613               break;
2614             case 4:
2615               pomb = new Output_merge_string<uint32_t>(addralign);
2616               break;
2617             default:
2618               return false;
2619             }
2620         }
2621       // If we need to do script processing or relaxation, we need to keep
2622       // the original input sections to rebuild the fast lookup maps.
2623       if (keeps_input_sections)
2624         pomb->set_keeps_input_sections();
2625       is_new = true;
2626     }
2627
2628   if (pomb->add_input_section(object, shndx))
2629     {
2630       // Add new merge section to this output section and link merge
2631       // section properties to new merge section in map.
2632       if (is_new)
2633         {
2634           this->add_output_merge_section(pomb, is_string, entsize);
2635           this->lookup_maps_->add_merge_section(msp, pomb);
2636         }
2637
2638       // Add input section to new merge section and link input section to new
2639       // merge section in map.
2640       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2641       return true;
2642     }
2643   else
2644     {
2645       // If add_input_section failed, delete new merge section to avoid
2646       // exporting empty merge sections in Output_section::get_input_section.
2647       if (is_new)
2648         delete pomb;
2649       return false;
2650     }
2651 }
2652
2653 // Build a relaxation map to speed up relaxation of existing input sections.
2654 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2655
2656 void
2657 Output_section::build_relaxation_map(
2658   const Input_section_list& input_sections,
2659   size_t limit,
2660   Relaxation_map* relaxation_map) const
2661 {
2662   for (size_t i = 0; i < limit; ++i)
2663     {
2664       const Input_section& is(input_sections[i]);
2665       if (is.is_input_section() || is.is_relaxed_input_section())
2666         {
2667           Section_id sid(is.relobj(), is.shndx());
2668           (*relaxation_map)[sid] = i;
2669         }
2670     }
2671 }
2672
2673 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2674 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2675 // indices of INPUT_SECTIONS.
2676
2677 void
2678 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2679   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2680   const Relaxation_map& map,
2681   Input_section_list* input_sections)
2682 {
2683   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2684     {
2685       Output_relaxed_input_section* poris = relaxed_sections[i];
2686       Section_id sid(poris->relobj(), poris->shndx());
2687       Relaxation_map::const_iterator p = map.find(sid);
2688       gold_assert(p != map.end());
2689       gold_assert((*input_sections)[p->second].is_input_section());
2690
2691       // Remember section order index of original input section
2692       // if it is set.  Copy it to the relaxed input section.
2693       unsigned int soi =
2694         (*input_sections)[p->second].section_order_index();
2695       (*input_sections)[p->second] = Input_section(poris);
2696       (*input_sections)[p->second].set_section_order_index(soi);
2697     }
2698 }
2699   
2700 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2701 // is a vector of pointers to Output_relaxed_input_section or its derived
2702 // classes.  The relaxed sections must correspond to existing input sections.
2703
2704 void
2705 Output_section::convert_input_sections_to_relaxed_sections(
2706   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2707 {
2708   gold_assert(parameters->target().may_relax());
2709
2710   // We want to make sure that restore_states does not undo the effect of
2711   // this.  If there is no checkpoint active, just search the current
2712   // input section list and replace the sections there.  If there is
2713   // a checkpoint, also replace the sections there.
2714   
2715   // By default, we look at the whole list.
2716   size_t limit = this->input_sections_.size();
2717
2718   if (this->checkpoint_ != NULL)
2719     {
2720       // Replace input sections with relaxed input section in the saved
2721       // copy of the input section list.
2722       if (this->checkpoint_->input_sections_saved())
2723         {
2724           Relaxation_map map;
2725           this->build_relaxation_map(
2726                     *(this->checkpoint_->input_sections()),
2727                     this->checkpoint_->input_sections()->size(),
2728                     &map);
2729           this->convert_input_sections_in_list_to_relaxed_sections(
2730                     relaxed_sections,
2731                     map,
2732                     this->checkpoint_->input_sections());
2733         }
2734       else
2735         {
2736           // We have not copied the input section list yet.  Instead, just
2737           // look at the portion that would be saved.
2738           limit = this->checkpoint_->input_sections_size();
2739         }
2740     }
2741
2742   // Convert input sections in input_section_list.
2743   Relaxation_map map;
2744   this->build_relaxation_map(this->input_sections_, limit, &map);
2745   this->convert_input_sections_in_list_to_relaxed_sections(
2746             relaxed_sections,
2747             map,
2748             &this->input_sections_);
2749
2750   // Update fast look-up map.
2751   if (this->lookup_maps_->is_valid())
2752     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2753       {
2754         Output_relaxed_input_section* poris = relaxed_sections[i];
2755         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2756                                                       poris->shndx(), poris);
2757       }
2758 }
2759
2760 // Update the output section flags based on input section flags.
2761
2762 void
2763 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2764 {
2765   // If we created the section with SHF_ALLOC clear, we set the
2766   // address.  If we are now setting the SHF_ALLOC flag, we need to
2767   // undo that.
2768   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2769       && (flags & elfcpp::SHF_ALLOC) != 0)
2770     this->mark_address_invalid();
2771
2772   this->flags_ |= (flags
2773                    & (elfcpp::SHF_WRITE
2774                       | elfcpp::SHF_ALLOC
2775                       | elfcpp::SHF_EXECINSTR));
2776
2777   if ((flags & elfcpp::SHF_MERGE) == 0)
2778     this->flags_ &=~ elfcpp::SHF_MERGE;
2779   else
2780     {
2781       if (this->current_data_size_for_child() == 0)
2782         this->flags_ |= elfcpp::SHF_MERGE;
2783     }
2784
2785   if ((flags & elfcpp::SHF_STRINGS) == 0)
2786     this->flags_ &=~ elfcpp::SHF_STRINGS;
2787   else
2788     {
2789       if (this->current_data_size_for_child() == 0)
2790         this->flags_ |= elfcpp::SHF_STRINGS;
2791     }
2792 }
2793
2794 // Find the merge section into which an input section with index SHNDX in
2795 // OBJECT has been added.  Return NULL if none found.
2796
2797 Output_section_data*
2798 Output_section::find_merge_section(const Relobj* object,
2799                                    unsigned int shndx) const
2800 {
2801   if (!this->lookup_maps_->is_valid())
2802     this->build_lookup_maps();
2803   return this->lookup_maps_->find_merge_section(object, shndx);
2804 }
2805
2806 // Build the lookup maps for merge and relaxed sections.  This is needs
2807 // to be declared as a const methods so that it is callable with a const
2808 // Output_section pointer.  The method only updates states of the maps.
2809
2810 void
2811 Output_section::build_lookup_maps() const
2812 {
2813   this->lookup_maps_->clear();
2814   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2815        p != this->input_sections_.end();
2816        ++p)
2817     {
2818       if (p->is_merge_section())
2819         {
2820           Output_merge_base* pomb = p->output_merge_base();
2821           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2822                                        pomb->addralign());
2823           this->lookup_maps_->add_merge_section(msp, pomb);
2824           for (Output_merge_base::Input_sections::const_iterator is =
2825                  pomb->input_sections_begin();
2826                is != pomb->input_sections_end();
2827                ++is) 
2828             {
2829               const Const_section_id& csid = *is;
2830             this->lookup_maps_->add_merge_input_section(csid.first,
2831                                                         csid.second, pomb);
2832             }
2833             
2834         }
2835       else if (p->is_relaxed_input_section())
2836         {
2837           Output_relaxed_input_section* poris = p->relaxed_input_section();
2838           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2839                                                         poris->shndx(), poris);
2840         }
2841     }
2842 }
2843
2844 // Find an relaxed input section corresponding to an input section
2845 // in OBJECT with index SHNDX.
2846
2847 const Output_relaxed_input_section*
2848 Output_section::find_relaxed_input_section(const Relobj* object,
2849                                            unsigned int shndx) const
2850 {
2851   if (!this->lookup_maps_->is_valid())
2852     this->build_lookup_maps();
2853   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2854 }
2855
2856 // Given an address OFFSET relative to the start of input section
2857 // SHNDX in OBJECT, return whether this address is being included in
2858 // the final link.  This should only be called if SHNDX in OBJECT has
2859 // a special mapping.
2860
2861 bool
2862 Output_section::is_input_address_mapped(const Relobj* object,
2863                                         unsigned int shndx,
2864                                         off_t offset) const
2865 {
2866   // Look at the Output_section_data_maps first.
2867   const Output_section_data* posd = this->find_merge_section(object, shndx);
2868   if (posd == NULL)
2869     posd = this->find_relaxed_input_section(object, shndx);
2870
2871   if (posd != NULL)
2872     {
2873       section_offset_type output_offset;
2874       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2875       gold_assert(found);   
2876       return output_offset != -1;
2877     }
2878
2879   // Fall back to the slow look-up.
2880   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2881        p != this->input_sections_.end();
2882        ++p)
2883     {
2884       section_offset_type output_offset;
2885       if (p->output_offset(object, shndx, offset, &output_offset))
2886         return output_offset != -1;
2887     }
2888
2889   // By default we assume that the address is mapped.  This should
2890   // only be called after we have passed all sections to Layout.  At
2891   // that point we should know what we are discarding.
2892   return true;
2893 }
2894
2895 // Given an address OFFSET relative to the start of input section
2896 // SHNDX in object OBJECT, return the output offset relative to the
2897 // start of the input section in the output section.  This should only
2898 // be called if SHNDX in OBJECT has a special mapping.
2899
2900 section_offset_type
2901 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2902                               section_offset_type offset) const
2903 {
2904   // This can only be called meaningfully when we know the data size
2905   // of this.
2906   gold_assert(this->is_data_size_valid());
2907
2908   // Look at the Output_section_data_maps first.
2909   const Output_section_data* posd = this->find_merge_section(object, shndx);
2910   if (posd == NULL) 
2911     posd = this->find_relaxed_input_section(object, shndx);
2912   if (posd != NULL)
2913     {
2914       section_offset_type output_offset;
2915       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2916       gold_assert(found);   
2917       return output_offset;
2918     }
2919
2920   // Fall back to the slow look-up.
2921   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2922        p != this->input_sections_.end();
2923        ++p)
2924     {
2925       section_offset_type output_offset;
2926       if (p->output_offset(object, shndx, offset, &output_offset))
2927         return output_offset;
2928     }
2929   gold_unreachable();
2930 }
2931
2932 // Return the output virtual address of OFFSET relative to the start
2933 // of input section SHNDX in object OBJECT.
2934
2935 uint64_t
2936 Output_section::output_address(const Relobj* object, unsigned int shndx,
2937                                off_t offset) const
2938 {
2939   uint64_t addr = this->address() + this->first_input_offset_;
2940
2941   // Look at the Output_section_data_maps first.
2942   const Output_section_data* posd = this->find_merge_section(object, shndx);
2943   if (posd == NULL) 
2944     posd = this->find_relaxed_input_section(object, shndx);
2945   if (posd != NULL && posd->is_address_valid())
2946     {
2947       section_offset_type output_offset;
2948       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2949       gold_assert(found);
2950       return posd->address() + output_offset;
2951     }
2952
2953   // Fall back to the slow look-up.
2954   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2955        p != this->input_sections_.end();
2956        ++p)
2957     {
2958       addr = align_address(addr, p->addralign());
2959       section_offset_type output_offset;
2960       if (p->output_offset(object, shndx, offset, &output_offset))
2961         {
2962           if (output_offset == -1)
2963             return -1ULL;
2964           return addr + output_offset;
2965         }
2966       addr += p->data_size();
2967     }
2968
2969   // If we get here, it means that we don't know the mapping for this
2970   // input section.  This might happen in principle if
2971   // add_input_section were called before add_output_section_data.
2972   // But it should never actually happen.
2973
2974   gold_unreachable();
2975 }
2976
2977 // Find the output address of the start of the merged section for
2978 // input section SHNDX in object OBJECT.
2979
2980 bool
2981 Output_section::find_starting_output_address(const Relobj* object,
2982                                              unsigned int shndx,
2983                                              uint64_t* paddr) const
2984 {
2985   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2986   // Looking up the merge section map does not always work as we sometimes
2987   // find a merge section without its address set.
2988   uint64_t addr = this->address() + this->first_input_offset_;
2989   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2990        p != this->input_sections_.end();
2991        ++p)
2992     {
2993       addr = align_address(addr, p->addralign());
2994
2995       // It would be nice if we could use the existing output_offset
2996       // method to get the output offset of input offset 0.
2997       // Unfortunately we don't know for sure that input offset 0 is
2998       // mapped at all.
2999       if (p->is_merge_section_for(object, shndx))
3000         {
3001           *paddr = addr;
3002           return true;
3003         }
3004
3005       addr += p->data_size();
3006     }
3007
3008   // We couldn't find a merge output section for this input section.
3009   return false;
3010 }
3011
3012 // Update the data size of an Output_section.
3013
3014 void
3015 Output_section::update_data_size()
3016 {
3017   if (this->input_sections_.empty())
3018       return;
3019
3020   if (this->must_sort_attached_input_sections()
3021       || this->input_section_order_specified())
3022     this->sort_attached_input_sections();
3023
3024   off_t off = this->first_input_offset_;
3025   for (Input_section_list::iterator p = this->input_sections_.begin();
3026        p != this->input_sections_.end();
3027        ++p)
3028     {
3029       off = align_address(off, p->addralign());
3030       off += p->current_data_size();
3031     }
3032
3033   this->set_current_data_size_for_child(off);
3034 }
3035
3036 // Set the data size of an Output_section.  This is where we handle
3037 // setting the addresses of any Output_section_data objects.
3038
3039 void
3040 Output_section::set_final_data_size()
3041 {
3042   off_t data_size;
3043
3044   if (this->input_sections_.empty())
3045     data_size = this->current_data_size_for_child();
3046   else
3047     {
3048       if (this->must_sort_attached_input_sections()
3049           || this->input_section_order_specified())
3050         this->sort_attached_input_sections();
3051
3052       uint64_t address = this->address();
3053       off_t startoff = this->offset();
3054       off_t off = startoff + this->first_input_offset_;
3055       for (Input_section_list::iterator p = this->input_sections_.begin();
3056            p != this->input_sections_.end();
3057            ++p)
3058         {
3059           off = align_address(off, p->addralign());
3060           p->set_address_and_file_offset(address + (off - startoff), off,
3061                                          startoff);
3062           off += p->data_size();
3063         }
3064       data_size = off - startoff;
3065     }
3066
3067   // For full incremental links, we want to allocate some patch space
3068   // in most sections for subsequent incremental updates.
3069   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3070     {
3071       double pct = parameters->options().incremental_patch();
3072       size_t extra = static_cast<size_t>(data_size * pct);
3073       if (this->free_space_fill_ != NULL
3074           && this->free_space_fill_->minimum_hole_size() > extra)
3075         extra = this->free_space_fill_->minimum_hole_size();
3076       off_t new_size = align_address(data_size + extra, this->addralign());
3077       this->patch_space_ = new_size - data_size;
3078       gold_debug(DEBUG_INCREMENTAL,
3079                  "set_final_data_size: %08lx + %08lx: section %s",
3080                  static_cast<long>(data_size),
3081                  static_cast<long>(this->patch_space_),
3082                  this->name());
3083       data_size = new_size;
3084     }
3085
3086   this->set_data_size(data_size);
3087 }
3088
3089 // Reset the address and file offset.
3090
3091 void
3092 Output_section::do_reset_address_and_file_offset()
3093 {
3094   // An unallocated section has no address.  Forcing this means that
3095   // we don't need special treatment for symbols defined in debug
3096   // sections.  We do the same in the constructor.  This does not
3097   // apply to NOLOAD sections though.
3098   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3099      this->set_address(0);
3100
3101   for (Input_section_list::iterator p = this->input_sections_.begin();
3102        p != this->input_sections_.end();
3103        ++p)
3104     p->reset_address_and_file_offset();
3105
3106   // Remove any patch space that was added in set_final_data_size.
3107   if (this->patch_space_ > 0)
3108     {
3109       this->set_current_data_size_for_child(this->current_data_size_for_child()
3110                                             - this->patch_space_);
3111       this->patch_space_ = 0;
3112     }
3113 }
3114
3115 // Return true if address and file offset have the values after reset.
3116
3117 bool
3118 Output_section::do_address_and_file_offset_have_reset_values() const
3119 {
3120   if (this->is_offset_valid())
3121     return false;
3122
3123   // An unallocated section has address 0 after its construction or a reset.
3124   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3125     return this->is_address_valid() && this->address() == 0;
3126   else
3127     return !this->is_address_valid();
3128 }
3129
3130 // Set the TLS offset.  Called only for SHT_TLS sections.
3131
3132 void
3133 Output_section::do_set_tls_offset(uint64_t tls_base)
3134 {
3135   this->tls_offset_ = this->address() - tls_base;
3136 }
3137
3138 // In a few cases we need to sort the input sections attached to an
3139 // output section.  This is used to implement the type of constructor
3140 // priority ordering implemented by the GNU linker, in which the
3141 // priority becomes part of the section name and the sections are
3142 // sorted by name.  We only do this for an output section if we see an
3143 // attached input section matching ".ctors.*", ".dtors.*",
3144 // ".init_array.*" or ".fini_array.*".
3145
3146 class Output_section::Input_section_sort_entry
3147 {
3148  public:
3149   Input_section_sort_entry()
3150     : input_section_(), index_(-1U), section_has_name_(false),
3151       section_name_()
3152   { }
3153
3154   Input_section_sort_entry(const Input_section& input_section,
3155                            unsigned int index,
3156                            bool must_sort_attached_input_sections)
3157     : input_section_(input_section), index_(index),
3158       section_has_name_(input_section.is_input_section()
3159                         || input_section.is_relaxed_input_section())
3160   {
3161     if (this->section_has_name_
3162         && must_sort_attached_input_sections)
3163       {
3164         // This is only called single-threaded from Layout::finalize,
3165         // so it is OK to lock.  Unfortunately we have no way to pass
3166         // in a Task token.
3167         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3168         Object* obj = (input_section.is_input_section()
3169                        ? input_section.relobj()
3170                        : input_section.relaxed_input_section()->relobj());
3171         Task_lock_obj<Object> tl(dummy_task, obj);
3172
3173         // This is a slow operation, which should be cached in
3174         // Layout::layout if this becomes a speed problem.
3175         this->section_name_ = obj->section_name(input_section.shndx());
3176       }
3177   }
3178
3179   // Return the Input_section.
3180   const Input_section&
3181   input_section() const
3182   {
3183     gold_assert(this->index_ != -1U);
3184     return this->input_section_;
3185   }
3186
3187   // The index of this entry in the original list.  This is used to
3188   // make the sort stable.
3189   unsigned int
3190   index() const
3191   {
3192     gold_assert(this->index_ != -1U);
3193     return this->index_;
3194   }
3195
3196   // Whether there is a section name.
3197   bool
3198   section_has_name() const
3199   { return this->section_has_name_; }
3200
3201   // The section name.
3202   const std::string&
3203   section_name() const
3204   {
3205     gold_assert(this->section_has_name_);
3206     return this->section_name_;
3207   }
3208
3209   // Return true if the section name has a priority.  This is assumed
3210   // to be true if it has a dot after the initial dot.
3211   bool
3212   has_priority() const
3213   {
3214     gold_assert(this->section_has_name_);
3215     return this->section_name_.find('.', 1) != std::string::npos;
3216   }
3217
3218   // Return the priority.  Believe it or not, gcc encodes the priority
3219   // differently for .ctors/.dtors and .init_array/.fini_array
3220   // sections.
3221   unsigned int
3222   get_priority() const
3223   {
3224     gold_assert(this->section_has_name_);
3225     bool is_ctors;
3226     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3227         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3228       is_ctors = true;
3229     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3230              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3231       is_ctors = false;
3232     else
3233       return 0;
3234     char* end;
3235     unsigned long prio = strtoul((this->section_name_.c_str()
3236                                   + (is_ctors ? 7 : 12)),
3237                                  &end, 10);
3238     if (*end != '\0')
3239       return 0;
3240     else if (is_ctors)
3241       return 65535 - prio;
3242     else
3243       return prio;
3244   }
3245
3246   // Return true if this an input file whose base name matches
3247   // FILE_NAME.  The base name must have an extension of ".o", and
3248   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3249   // This is to match crtbegin.o as well as crtbeginS.o without
3250   // getting confused by other possibilities.  Overall matching the
3251   // file name this way is a dreadful hack, but the GNU linker does it
3252   // in order to better support gcc, and we need to be compatible.
3253   bool
3254   match_file_name(const char* file_name) const
3255   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3256
3257   // Returns 1 if THIS should appear before S in section order, -1 if S
3258   // appears before THIS and 0 if they are not comparable.
3259   int
3260   compare_section_ordering(const Input_section_sort_entry& s) const
3261   {
3262     unsigned int this_secn_index = this->input_section_.section_order_index();
3263     unsigned int s_secn_index = s.input_section().section_order_index();
3264     if (this_secn_index > 0 && s_secn_index > 0)
3265       {
3266         if (this_secn_index < s_secn_index)
3267           return 1;
3268         else if (this_secn_index > s_secn_index)
3269           return -1;
3270       }
3271     return 0;
3272   }
3273
3274  private:
3275   // The Input_section we are sorting.
3276   Input_section input_section_;
3277   // The index of this Input_section in the original list.
3278   unsigned int index_;
3279   // Whether this Input_section has a section name--it won't if this
3280   // is some random Output_section_data.
3281   bool section_has_name_;
3282   // The section name if there is one.
3283   std::string section_name_;
3284 };
3285
3286 // Return true if S1 should come before S2 in the output section.
3287
3288 bool
3289 Output_section::Input_section_sort_compare::operator()(
3290     const Output_section::Input_section_sort_entry& s1,
3291     const Output_section::Input_section_sort_entry& s2) const
3292 {
3293   // crtbegin.o must come first.
3294   bool s1_begin = s1.match_file_name("crtbegin");
3295   bool s2_begin = s2.match_file_name("crtbegin");
3296   if (s1_begin || s2_begin)
3297     {
3298       if (!s1_begin)
3299         return false;
3300       if (!s2_begin)
3301         return true;
3302       return s1.index() < s2.index();
3303     }
3304
3305   // crtend.o must come last.
3306   bool s1_end = s1.match_file_name("crtend");
3307   bool s2_end = s2.match_file_name("crtend");
3308   if (s1_end || s2_end)
3309     {
3310       if (!s1_end)
3311         return true;
3312       if (!s2_end)
3313         return false;
3314       return s1.index() < s2.index();
3315     }
3316
3317   // We sort all the sections with no names to the end.
3318   if (!s1.section_has_name() || !s2.section_has_name())
3319     {
3320       if (s1.section_has_name())
3321         return true;
3322       if (s2.section_has_name())
3323         return false;
3324       return s1.index() < s2.index();
3325     }
3326
3327   // A section with a priority follows a section without a priority.
3328   bool s1_has_priority = s1.has_priority();
3329   bool s2_has_priority = s2.has_priority();
3330   if (s1_has_priority && !s2_has_priority)
3331     return false;
3332   if (!s1_has_priority && s2_has_priority)
3333     return true;
3334
3335   // Check if a section order exists for these sections through a section
3336   // ordering file.  If sequence_num is 0, an order does not exist.
3337   int sequence_num = s1.compare_section_ordering(s2);
3338   if (sequence_num != 0)
3339     return sequence_num == 1;
3340
3341   // Otherwise we sort by name.
3342   int compare = s1.section_name().compare(s2.section_name());
3343   if (compare != 0)
3344     return compare < 0;
3345
3346   // Otherwise we keep the input order.
3347   return s1.index() < s2.index();
3348 }
3349
3350 // Return true if S1 should come before S2 in an .init_array or .fini_array
3351 // output section.
3352
3353 bool
3354 Output_section::Input_section_sort_init_fini_compare::operator()(
3355     const Output_section::Input_section_sort_entry& s1,
3356     const Output_section::Input_section_sort_entry& s2) const
3357 {
3358   // We sort all the sections with no names to the end.
3359   if (!s1.section_has_name() || !s2.section_has_name())
3360     {
3361       if (s1.section_has_name())
3362         return true;
3363       if (s2.section_has_name())
3364         return false;
3365       return s1.index() < s2.index();
3366     }
3367
3368   // A section without a priority follows a section with a priority.
3369   // This is the reverse of .ctors and .dtors sections.
3370   bool s1_has_priority = s1.has_priority();
3371   bool s2_has_priority = s2.has_priority();
3372   if (s1_has_priority && !s2_has_priority)
3373     return true;
3374   if (!s1_has_priority && s2_has_priority)
3375     return false;
3376
3377   // .ctors and .dtors sections without priority come after
3378   // .init_array and .fini_array sections without priority.
3379   if (!s1_has_priority
3380       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3381       && s1.section_name() != s2.section_name())
3382     return false;
3383   if (!s2_has_priority
3384       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3385       && s2.section_name() != s1.section_name())
3386     return true;
3387
3388   // Sort by priority if we can.
3389   if (s1_has_priority)
3390     {
3391       unsigned int s1_prio = s1.get_priority();
3392       unsigned int s2_prio = s2.get_priority();
3393       if (s1_prio < s2_prio)
3394         return true;
3395       else if (s1_prio > s2_prio)
3396         return false;
3397     }
3398
3399   // Check if a section order exists for these sections through a section
3400   // ordering file.  If sequence_num is 0, an order does not exist.
3401   int sequence_num = s1.compare_section_ordering(s2);
3402   if (sequence_num != 0)
3403     return sequence_num == 1;
3404
3405   // Otherwise we sort by name.
3406   int compare = s1.section_name().compare(s2.section_name());
3407   if (compare != 0)
3408     return compare < 0;
3409
3410   // Otherwise we keep the input order.
3411   return s1.index() < s2.index();
3412 }
3413
3414 // Return true if S1 should come before S2.  Sections that do not match
3415 // any pattern in the section ordering file are placed ahead of the sections
3416 // that match some pattern.
3417
3418 bool
3419 Output_section::Input_section_sort_section_order_index_compare::operator()(
3420     const Output_section::Input_section_sort_entry& s1,
3421     const Output_section::Input_section_sort_entry& s2) const
3422 {
3423   unsigned int s1_secn_index = s1.input_section().section_order_index();
3424   unsigned int s2_secn_index = s2.input_section().section_order_index();
3425
3426   // Keep input order if section ordering cannot determine order.
3427   if (s1_secn_index == s2_secn_index)
3428     return s1.index() < s2.index();
3429   
3430   return s1_secn_index < s2_secn_index;
3431 }
3432
3433 // This updates the section order index of input sections according to the
3434 // the order specified in the mapping from Section id to order index.
3435
3436 void
3437 Output_section::update_section_layout(
3438   const Section_layout_order* order_map)
3439 {
3440   for (Input_section_list::iterator p = this->input_sections_.begin();
3441        p != this->input_sections_.end();
3442        ++p)
3443     {
3444       if (p->is_input_section()
3445           || p->is_relaxed_input_section())
3446         {
3447           Object* obj = (p->is_input_section()
3448                          ? p->relobj()
3449                          : p->relaxed_input_section()->relobj());
3450           unsigned int shndx = p->shndx();
3451           Section_layout_order::const_iterator it
3452             = order_map->find(Section_id(obj, shndx));
3453           if (it == order_map->end())
3454             continue;
3455           unsigned int section_order_index = it->second;
3456           if (section_order_index != 0)
3457             {
3458               p->set_section_order_index(section_order_index);
3459               this->set_input_section_order_specified();
3460             }
3461         }
3462     }
3463 }
3464
3465 // Sort the input sections attached to an output section.
3466
3467 void
3468 Output_section::sort_attached_input_sections()
3469 {
3470   if (this->attached_input_sections_are_sorted_)
3471     return;
3472
3473   if (this->checkpoint_ != NULL
3474       && !this->checkpoint_->input_sections_saved())
3475     this->checkpoint_->save_input_sections();
3476
3477   // The only thing we know about an input section is the object and
3478   // the section index.  We need the section name.  Recomputing this
3479   // is slow but this is an unusual case.  If this becomes a speed
3480   // problem we can cache the names as required in Layout::layout.
3481
3482   // We start by building a larger vector holding a copy of each
3483   // Input_section, plus its current index in the list and its name.
3484   std::vector<Input_section_sort_entry> sort_list;
3485
3486   unsigned int i = 0;
3487   for (Input_section_list::iterator p = this->input_sections_.begin();
3488        p != this->input_sections_.end();
3489        ++p, ++i)
3490       sort_list.push_back(Input_section_sort_entry(*p, i,
3491                             this->must_sort_attached_input_sections()));
3492
3493   // Sort the input sections.
3494   if (this->must_sort_attached_input_sections())
3495     {
3496       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3497           || this->type() == elfcpp::SHT_INIT_ARRAY
3498           || this->type() == elfcpp::SHT_FINI_ARRAY)
3499         std::sort(sort_list.begin(), sort_list.end(),
3500                   Input_section_sort_init_fini_compare());
3501       else
3502         std::sort(sort_list.begin(), sort_list.end(),
3503                   Input_section_sort_compare());
3504     }
3505   else
3506     {
3507       gold_assert(this->input_section_order_specified());
3508       std::sort(sort_list.begin(), sort_list.end(),
3509                 Input_section_sort_section_order_index_compare());
3510     }
3511
3512   // Copy the sorted input sections back to our list.
3513   this->input_sections_.clear();
3514   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3515        p != sort_list.end();
3516        ++p)
3517     this->input_sections_.push_back(p->input_section());
3518   sort_list.clear();
3519
3520   // Remember that we sorted the input sections, since we might get
3521   // called again.
3522   this->attached_input_sections_are_sorted_ = true;
3523 }
3524
3525 // Write the section header to *OSHDR.
3526
3527 template<int size, bool big_endian>
3528 void
3529 Output_section::write_header(const Layout* layout,
3530                              const Stringpool* secnamepool,
3531                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3532 {
3533   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3534   oshdr->put_sh_type(this->type_);
3535
3536   elfcpp::Elf_Xword flags = this->flags_;
3537   if (this->info_section_ != NULL && this->info_uses_section_index_)
3538     flags |= elfcpp::SHF_INFO_LINK;
3539   oshdr->put_sh_flags(flags);
3540
3541   oshdr->put_sh_addr(this->address());
3542   oshdr->put_sh_offset(this->offset());
3543   oshdr->put_sh_size(this->data_size());
3544   if (this->link_section_ != NULL)
3545     oshdr->put_sh_link(this->link_section_->out_shndx());
3546   else if (this->should_link_to_symtab_)
3547     oshdr->put_sh_link(layout->symtab_section_shndx());
3548   else if (this->should_link_to_dynsym_)
3549     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3550   else
3551     oshdr->put_sh_link(this->link_);
3552
3553   elfcpp::Elf_Word info;
3554   if (this->info_section_ != NULL)
3555     {
3556       if (this->info_uses_section_index_)
3557         info = this->info_section_->out_shndx();
3558       else
3559         info = this->info_section_->symtab_index();
3560     }
3561   else if (this->info_symndx_ != NULL)
3562     info = this->info_symndx_->symtab_index();
3563   else
3564     info = this->info_;
3565   oshdr->put_sh_info(info);
3566
3567   oshdr->put_sh_addralign(this->addralign_);
3568   oshdr->put_sh_entsize(this->entsize_);
3569 }
3570
3571 // Write out the data.  For input sections the data is written out by
3572 // Object::relocate, but we have to handle Output_section_data objects
3573 // here.
3574
3575 void
3576 Output_section::do_write(Output_file* of)
3577 {
3578   gold_assert(!this->requires_postprocessing());
3579
3580   // If the target performs relaxation, we delay filler generation until now.
3581   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3582
3583   off_t output_section_file_offset = this->offset();
3584   for (Fill_list::iterator p = this->fills_.begin();
3585        p != this->fills_.end();
3586        ++p)
3587     {
3588       std::string fill_data(parameters->target().code_fill(p->length()));
3589       of->write(output_section_file_offset + p->section_offset(),
3590                 fill_data.data(), fill_data.size());
3591     }
3592
3593   off_t off = this->offset() + this->first_input_offset_;
3594   for (Input_section_list::iterator p = this->input_sections_.begin();
3595        p != this->input_sections_.end();
3596        ++p)
3597     {
3598       off_t aligned_off = align_address(off, p->addralign());
3599       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3600         {
3601           size_t fill_len = aligned_off - off;
3602           std::string fill_data(parameters->target().code_fill(fill_len));
3603           of->write(off, fill_data.data(), fill_data.size());
3604         }
3605
3606       p->write(of);
3607       off = aligned_off + p->data_size();
3608     }
3609
3610   // For incremental links, fill in unused chunks in debug sections
3611   // with dummy compilation unit headers.
3612   if (this->free_space_fill_ != NULL)
3613     {
3614       for (Free_list::Const_iterator p = this->free_list_.begin();
3615            p != this->free_list_.end();
3616            ++p)
3617         {
3618           off_t off = p->start_;
3619           size_t len = p->end_ - off;
3620           this->free_space_fill_->write(of, this->offset() + off, len);
3621         }
3622       if (this->patch_space_ > 0)
3623         {
3624           off_t off = this->current_data_size_for_child() - this->patch_space_;
3625           this->free_space_fill_->write(of, this->offset() + off,
3626                                         this->patch_space_);
3627         }
3628     }
3629 }
3630
3631 // If a section requires postprocessing, create the buffer to use.
3632
3633 void
3634 Output_section::create_postprocessing_buffer()
3635 {
3636   gold_assert(this->requires_postprocessing());
3637
3638   if (this->postprocessing_buffer_ != NULL)
3639     return;
3640
3641   if (!this->input_sections_.empty())
3642     {
3643       off_t off = this->first_input_offset_;
3644       for (Input_section_list::iterator p = this->input_sections_.begin();
3645            p != this->input_sections_.end();
3646            ++p)
3647         {
3648           off = align_address(off, p->addralign());
3649           p->finalize_data_size();
3650           off += p->data_size();
3651         }
3652       this->set_current_data_size_for_child(off);
3653     }
3654
3655   off_t buffer_size = this->current_data_size_for_child();
3656   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3657 }
3658
3659 // Write all the data of an Output_section into the postprocessing
3660 // buffer.  This is used for sections which require postprocessing,
3661 // such as compression.  Input sections are handled by
3662 // Object::Relocate.
3663
3664 void
3665 Output_section::write_to_postprocessing_buffer()
3666 {
3667   gold_assert(this->requires_postprocessing());
3668
3669   // If the target performs relaxation, we delay filler generation until now.
3670   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3671
3672   unsigned char* buffer = this->postprocessing_buffer();
3673   for (Fill_list::iterator p = this->fills_.begin();
3674        p != this->fills_.end();
3675        ++p)
3676     {
3677       std::string fill_data(parameters->target().code_fill(p->length()));
3678       memcpy(buffer + p->section_offset(), fill_data.data(),
3679              fill_data.size());
3680     }
3681
3682   off_t off = this->first_input_offset_;
3683   for (Input_section_list::iterator p = this->input_sections_.begin();
3684        p != this->input_sections_.end();
3685        ++p)
3686     {
3687       off_t aligned_off = align_address(off, p->addralign());
3688       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3689         {
3690           size_t fill_len = aligned_off - off;
3691           std::string fill_data(parameters->target().code_fill(fill_len));
3692           memcpy(buffer + off, fill_data.data(), fill_data.size());
3693         }
3694
3695       p->write_to_buffer(buffer + aligned_off);
3696       off = aligned_off + p->data_size();
3697     }
3698 }
3699
3700 // Get the input sections for linker script processing.  We leave
3701 // behind the Output_section_data entries.  Note that this may be
3702 // slightly incorrect for merge sections.  We will leave them behind,
3703 // but it is possible that the script says that they should follow
3704 // some other input sections, as in:
3705 //    .rodata { *(.rodata) *(.rodata.cst*) }
3706 // For that matter, we don't handle this correctly:
3707 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3708 // With luck this will never matter.
3709
3710 uint64_t
3711 Output_section::get_input_sections(
3712     uint64_t address,
3713     const std::string& fill,
3714     std::list<Input_section>* input_sections)
3715 {
3716   if (this->checkpoint_ != NULL
3717       && !this->checkpoint_->input_sections_saved())
3718     this->checkpoint_->save_input_sections();
3719
3720   // Invalidate fast look-up maps.
3721   this->lookup_maps_->invalidate();
3722
3723   uint64_t orig_address = address;
3724
3725   address = align_address(address, this->addralign());
3726
3727   Input_section_list remaining;
3728   for (Input_section_list::iterator p = this->input_sections_.begin();
3729        p != this->input_sections_.end();
3730        ++p)
3731     {
3732       if (p->is_input_section()
3733           || p->is_relaxed_input_section()
3734           || p->is_merge_section())
3735         input_sections->push_back(*p);
3736       else
3737         {
3738           uint64_t aligned_address = align_address(address, p->addralign());
3739           if (aligned_address != address && !fill.empty())
3740             {
3741               section_size_type length =
3742                 convert_to_section_size_type(aligned_address - address);
3743               std::string this_fill;
3744               this_fill.reserve(length);
3745               while (this_fill.length() + fill.length() <= length)
3746                 this_fill += fill;
3747               if (this_fill.length() < length)
3748                 this_fill.append(fill, 0, length - this_fill.length());
3749
3750               Output_section_data* posd = new Output_data_const(this_fill, 0);
3751               remaining.push_back(Input_section(posd));
3752             }
3753           address = aligned_address;
3754
3755           remaining.push_back(*p);
3756
3757           p->finalize_data_size();
3758           address += p->data_size();
3759         }
3760     }
3761
3762   this->input_sections_.swap(remaining);
3763   this->first_input_offset_ = 0;
3764
3765   uint64_t data_size = address - orig_address;
3766   this->set_current_data_size_for_child(data_size);
3767   return data_size;
3768 }
3769
3770 // Add a script input section.  SIS is an Output_section::Input_section,
3771 // which can be either a plain input section or a special input section like
3772 // a relaxed input section.  For a special input section, its size must be
3773 // finalized.
3774
3775 void
3776 Output_section::add_script_input_section(const Input_section& sis)
3777 {
3778   uint64_t data_size = sis.data_size();
3779   uint64_t addralign = sis.addralign();
3780   if (addralign > this->addralign_)
3781     this->addralign_ = addralign;
3782
3783   off_t offset_in_section = this->current_data_size_for_child();
3784   off_t aligned_offset_in_section = align_address(offset_in_section,
3785                                                   addralign);
3786
3787   this->set_current_data_size_for_child(aligned_offset_in_section
3788                                         + data_size);
3789
3790   this->input_sections_.push_back(sis);
3791
3792   // Update fast lookup maps if necessary. 
3793   if (this->lookup_maps_->is_valid())
3794     {
3795       if (sis.is_merge_section())
3796         {
3797           Output_merge_base* pomb = sis.output_merge_base();
3798           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3799                                        pomb->addralign());
3800           this->lookup_maps_->add_merge_section(msp, pomb);
3801           for (Output_merge_base::Input_sections::const_iterator p =
3802                  pomb->input_sections_begin();
3803                p != pomb->input_sections_end();
3804                ++p)
3805             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3806                                                         pomb);
3807         }
3808       else if (sis.is_relaxed_input_section())
3809         {
3810           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3811           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3812                                                         poris->shndx(), poris);
3813         }
3814     }
3815 }
3816
3817 // Save states for relaxation.
3818
3819 void
3820 Output_section::save_states()
3821 {
3822   gold_assert(this->checkpoint_ == NULL);
3823   Checkpoint_output_section* checkpoint =
3824     new Checkpoint_output_section(this->addralign_, this->flags_,
3825                                   this->input_sections_,
3826                                   this->first_input_offset_,
3827                                   this->attached_input_sections_are_sorted_);
3828   this->checkpoint_ = checkpoint;
3829   gold_assert(this->fills_.empty());
3830 }
3831
3832 void
3833 Output_section::discard_states()
3834 {
3835   gold_assert(this->checkpoint_ != NULL);
3836   delete this->checkpoint_;
3837   this->checkpoint_ = NULL;
3838   gold_assert(this->fills_.empty());
3839
3840   // Simply invalidate the fast lookup maps since we do not keep
3841   // track of them.
3842   this->lookup_maps_->invalidate();
3843 }
3844
3845 void
3846 Output_section::restore_states()
3847 {
3848   gold_assert(this->checkpoint_ != NULL);
3849   Checkpoint_output_section* checkpoint = this->checkpoint_;
3850
3851   this->addralign_ = checkpoint->addralign();
3852   this->flags_ = checkpoint->flags();
3853   this->first_input_offset_ = checkpoint->first_input_offset();
3854
3855   if (!checkpoint->input_sections_saved())
3856     {
3857       // If we have not copied the input sections, just resize it.
3858       size_t old_size = checkpoint->input_sections_size();
3859       gold_assert(this->input_sections_.size() >= old_size);
3860       this->input_sections_.resize(old_size);
3861     }
3862   else
3863     {
3864       // We need to copy the whole list.  This is not efficient for
3865       // extremely large output with hundreads of thousands of input
3866       // objects.  We may need to re-think how we should pass sections
3867       // to scripts.
3868       this->input_sections_ = *checkpoint->input_sections();
3869     }
3870
3871   this->attached_input_sections_are_sorted_ =
3872     checkpoint->attached_input_sections_are_sorted();
3873
3874   // Simply invalidate the fast lookup maps since we do not keep
3875   // track of them.
3876   this->lookup_maps_->invalidate();
3877 }
3878
3879 // Update the section offsets of input sections in this.  This is required if
3880 // relaxation causes some input sections to change sizes.
3881
3882 void
3883 Output_section::adjust_section_offsets()
3884 {
3885   if (!this->section_offsets_need_adjustment_)
3886     return;
3887
3888   off_t off = 0;
3889   for (Input_section_list::iterator p = this->input_sections_.begin();
3890        p != this->input_sections_.end();
3891        ++p)
3892     {
3893       off = align_address(off, p->addralign());
3894       if (p->is_input_section())
3895         p->relobj()->set_section_offset(p->shndx(), off);
3896       off += p->data_size();
3897     }
3898
3899   this->section_offsets_need_adjustment_ = false;
3900 }
3901
3902 // Print to the map file.
3903
3904 void
3905 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3906 {
3907   mapfile->print_output_section(this);
3908
3909   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3910        p != this->input_sections_.end();
3911        ++p)
3912     p->print_to_mapfile(mapfile);
3913 }
3914
3915 // Print stats for merge sections to stderr.
3916
3917 void
3918 Output_section::print_merge_stats()
3919 {
3920   Input_section_list::iterator p;
3921   for (p = this->input_sections_.begin();
3922        p != this->input_sections_.end();
3923        ++p)
3924     p->print_merge_stats(this->name_);
3925 }
3926
3927 // Set a fixed layout for the section.  Used for incremental update links.
3928
3929 void
3930 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3931                                  off_t sh_size, uint64_t sh_addralign)
3932 {
3933   this->addralign_ = sh_addralign;
3934   this->set_current_data_size(sh_size);
3935   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3936     this->set_address(sh_addr);
3937   this->set_file_offset(sh_offset);
3938   this->finalize_data_size();
3939   this->free_list_.init(sh_size, false);
3940   this->has_fixed_layout_ = true;
3941 }
3942
3943 // Reserve space within the fixed layout for the section.  Used for
3944 // incremental update links.
3945
3946 void
3947 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3948 {
3949   this->free_list_.remove(sh_offset, sh_offset + sh_size);
3950 }
3951
3952 // Allocate space from the free list for the section.  Used for
3953 // incremental update links.
3954
3955 off_t
3956 Output_section::allocate(off_t len, uint64_t addralign)
3957 {
3958   return this->free_list_.allocate(len, addralign, 0);
3959 }
3960
3961 // Output segment methods.
3962
3963 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3964   : vaddr_(0),
3965     paddr_(0),
3966     memsz_(0),
3967     max_align_(0),
3968     min_p_align_(0),
3969     offset_(0),
3970     filesz_(0),
3971     type_(type),
3972     flags_(flags),
3973     is_max_align_known_(false),
3974     are_addresses_set_(false),
3975     is_large_data_segment_(false)
3976 {
3977   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3978   // the flags.
3979   if (type == elfcpp::PT_TLS)
3980     this->flags_ = elfcpp::PF_R;
3981 }
3982
3983 // Add an Output_section to a PT_LOAD Output_segment.
3984
3985 void
3986 Output_segment::add_output_section_to_load(Layout* layout,
3987                                            Output_section* os,
3988                                            elfcpp::Elf_Word seg_flags)
3989 {
3990   gold_assert(this->type() == elfcpp::PT_LOAD);
3991   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3992   gold_assert(!this->is_max_align_known_);
3993   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3994
3995   this->update_flags_for_output_section(seg_flags);
3996
3997   // We don't want to change the ordering if we have a linker script
3998   // with a SECTIONS clause.
3999   Output_section_order order = os->order();
4000   if (layout->script_options()->saw_sections_clause())
4001     order = static_cast<Output_section_order>(0);
4002   else
4003     gold_assert(order != ORDER_INVALID);
4004
4005   this->output_lists_[order].push_back(os);
4006 }
4007
4008 // Add an Output_section to a non-PT_LOAD Output_segment.
4009
4010 void
4011 Output_segment::add_output_section_to_nonload(Output_section* os,
4012                                               elfcpp::Elf_Word seg_flags)
4013 {
4014   gold_assert(this->type() != elfcpp::PT_LOAD);
4015   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4016   gold_assert(!this->is_max_align_known_);
4017
4018   this->update_flags_for_output_section(seg_flags);
4019
4020   this->output_lists_[0].push_back(os);
4021 }
4022
4023 // Remove an Output_section from this segment.  It is an error if it
4024 // is not present.
4025
4026 void
4027 Output_segment::remove_output_section(Output_section* os)
4028 {
4029   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4030     {
4031       Output_data_list* pdl = &this->output_lists_[i];
4032       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4033         {
4034           if (*p == os)
4035             {
4036               pdl->erase(p);
4037               return;
4038             }
4039         }
4040     }
4041   gold_unreachable();
4042 }
4043
4044 // Add an Output_data (which need not be an Output_section) to the
4045 // start of a segment.
4046
4047 void
4048 Output_segment::add_initial_output_data(Output_data* od)
4049 {
4050   gold_assert(!this->is_max_align_known_);
4051   Output_data_list::iterator p = this->output_lists_[0].begin();
4052   this->output_lists_[0].insert(p, od);
4053 }
4054
4055 // Return true if this segment has any sections which hold actual
4056 // data, rather than being a BSS section.
4057
4058 bool
4059 Output_segment::has_any_data_sections() const
4060 {
4061   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4062     {
4063       const Output_data_list* pdl = &this->output_lists_[i];
4064       for (Output_data_list::const_iterator p = pdl->begin();
4065            p != pdl->end();
4066            ++p)
4067         {
4068           if (!(*p)->is_section())
4069             return true;
4070           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4071             return true;
4072         }
4073     }
4074   return false;
4075 }
4076
4077 // Return whether the first data section (not counting TLS sections)
4078 // is a relro section.
4079
4080 bool
4081 Output_segment::is_first_section_relro() const
4082 {
4083   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4084     {
4085       if (i == static_cast<int>(ORDER_TLS_DATA)
4086           || i == static_cast<int>(ORDER_TLS_BSS))
4087         continue;
4088       const Output_data_list* pdl = &this->output_lists_[i];
4089       if (!pdl->empty())
4090         {
4091           Output_data* p = pdl->front();
4092           return p->is_section() && p->output_section()->is_relro();
4093         }
4094     }
4095   return false;
4096 }
4097
4098 // Return the maximum alignment of the Output_data in Output_segment.
4099
4100 uint64_t
4101 Output_segment::maximum_alignment()
4102 {
4103   if (!this->is_max_align_known_)
4104     {
4105       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4106         {       
4107           const Output_data_list* pdl = &this->output_lists_[i];
4108           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4109           if (addralign > this->max_align_)
4110             this->max_align_ = addralign;
4111         }
4112       this->is_max_align_known_ = true;
4113     }
4114
4115   return this->max_align_;
4116 }
4117
4118 // Return the maximum alignment of a list of Output_data.
4119
4120 uint64_t
4121 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4122 {
4123   uint64_t ret = 0;
4124   for (Output_data_list::const_iterator p = pdl->begin();
4125        p != pdl->end();
4126        ++p)
4127     {
4128       uint64_t addralign = (*p)->addralign();
4129       if (addralign > ret)
4130         ret = addralign;
4131     }
4132   return ret;
4133 }
4134
4135 // Return whether this segment has any dynamic relocs.
4136
4137 bool
4138 Output_segment::has_dynamic_reloc() const
4139 {
4140   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4141     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4142       return true;
4143   return false;
4144 }
4145
4146 // Return whether this Output_data_list has any dynamic relocs.
4147
4148 bool
4149 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4150 {
4151   for (Output_data_list::const_iterator p = pdl->begin();
4152        p != pdl->end();
4153        ++p)
4154     if ((*p)->has_dynamic_reloc())
4155       return true;
4156   return false;
4157 }
4158
4159 // Set the section addresses for an Output_segment.  If RESET is true,
4160 // reset the addresses first.  ADDR is the address and *POFF is the
4161 // file offset.  Set the section indexes starting with *PSHNDX.
4162 // INCREASE_RELRO is the size of the portion of the first non-relro
4163 // section that should be included in the PT_GNU_RELRO segment.
4164 // If this segment has relro sections, and has been aligned for
4165 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4166 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4167 // and *PSHNDX.
4168
4169 uint64_t
4170 Output_segment::set_section_addresses(Layout* layout, bool reset,
4171                                       uint64_t addr,
4172                                       unsigned int* increase_relro,
4173                                       bool* has_relro,
4174                                       off_t* poff,
4175                                       unsigned int* pshndx)
4176 {
4177   gold_assert(this->type_ == elfcpp::PT_LOAD);
4178
4179   uint64_t last_relro_pad = 0;
4180   off_t orig_off = *poff;
4181
4182   bool in_tls = false;
4183
4184   // If we have relro sections, we need to pad forward now so that the
4185   // relro sections plus INCREASE_RELRO end on a common page boundary.
4186   if (parameters->options().relro()
4187       && this->is_first_section_relro()
4188       && (!this->are_addresses_set_ || reset))
4189     {
4190       uint64_t relro_size = 0;
4191       off_t off = *poff;
4192       uint64_t max_align = 0;
4193       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4194         {
4195           Output_data_list* pdl = &this->output_lists_[i];
4196           Output_data_list::iterator p;
4197           for (p = pdl->begin(); p != pdl->end(); ++p)
4198             {
4199               if (!(*p)->is_section())
4200                 break;
4201               uint64_t align = (*p)->addralign();
4202               if (align > max_align)
4203                 max_align = align;
4204               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4205                 in_tls = true;
4206               else if (in_tls)
4207                 {
4208                   // Align the first non-TLS section to the alignment
4209                   // of the TLS segment.
4210                   align = max_align;
4211                   in_tls = false;
4212                 }
4213               relro_size = align_address(relro_size, align);
4214               // Ignore the size of the .tbss section.
4215               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4216                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4217                 continue;
4218               if ((*p)->is_address_valid())
4219                 relro_size += (*p)->data_size();
4220               else
4221                 {
4222                   // FIXME: This could be faster.
4223                   (*p)->set_address_and_file_offset(addr + relro_size,
4224                                                     off + relro_size);
4225                   relro_size += (*p)->data_size();
4226                   (*p)->reset_address_and_file_offset();
4227                 }
4228             }
4229           if (p != pdl->end())
4230             break;
4231         }
4232       relro_size += *increase_relro;
4233       // Pad the total relro size to a multiple of the maximum
4234       // section alignment seen.
4235       uint64_t aligned_size = align_address(relro_size, max_align);
4236       // Note the amount of padding added after the last relro section.
4237       last_relro_pad = aligned_size - relro_size;
4238       *has_relro = true;
4239
4240       uint64_t page_align = parameters->target().common_pagesize();
4241
4242       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4243       uint64_t desired_align = page_align - (aligned_size % page_align);
4244       if (desired_align < *poff % page_align)
4245         *poff += page_align - *poff % page_align;
4246       *poff += desired_align - *poff % page_align;
4247       addr += *poff - orig_off;
4248       orig_off = *poff;
4249     }
4250
4251   if (!reset && this->are_addresses_set_)
4252     {
4253       gold_assert(this->paddr_ == addr);
4254       addr = this->vaddr_;
4255     }
4256   else
4257     {
4258       this->vaddr_ = addr;
4259       this->paddr_ = addr;
4260       this->are_addresses_set_ = true;
4261     }
4262
4263   in_tls = false;
4264
4265   this->offset_ = orig_off;
4266
4267   off_t off = 0;
4268   uint64_t ret;
4269   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4270     {
4271       if (i == static_cast<int>(ORDER_RELRO_LAST))
4272         {
4273           *poff += last_relro_pad;
4274           addr += last_relro_pad;
4275           if (this->output_lists_[i].empty())
4276             {
4277               // If there is nothing in the ORDER_RELRO_LAST list,
4278               // the padding will occur at the end of the relro
4279               // segment, and we need to add it to *INCREASE_RELRO.
4280               *increase_relro += last_relro_pad;
4281             }
4282         }
4283       addr = this->set_section_list_addresses(layout, reset,
4284                                               &this->output_lists_[i],
4285                                               addr, poff, pshndx, &in_tls);
4286       if (i < static_cast<int>(ORDER_SMALL_BSS))
4287         {
4288           this->filesz_ = *poff - orig_off;
4289           off = *poff;
4290         }
4291
4292       ret = addr;
4293     }
4294
4295   // If the last section was a TLS section, align upward to the
4296   // alignment of the TLS segment, so that the overall size of the TLS
4297   // segment is aligned.
4298   if (in_tls)
4299     {
4300       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4301       *poff = align_address(*poff, segment_align);
4302     }
4303
4304   this->memsz_ = *poff - orig_off;
4305
4306   // Ignore the file offset adjustments made by the BSS Output_data
4307   // objects.
4308   *poff = off;
4309
4310   return ret;
4311 }
4312
4313 // Set the addresses and file offsets in a list of Output_data
4314 // structures.
4315
4316 uint64_t
4317 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4318                                            Output_data_list* pdl,
4319                                            uint64_t addr, off_t* poff,
4320                                            unsigned int* pshndx,
4321                                            bool* in_tls)
4322 {
4323   off_t startoff = *poff;
4324   // For incremental updates, we may allocate non-fixed sections from
4325   // free space in the file.  This keeps track of the high-water mark.
4326   off_t maxoff = startoff;
4327
4328   off_t off = startoff;
4329   for (Output_data_list::iterator p = pdl->begin();
4330        p != pdl->end();
4331        ++p)
4332     {
4333       if (reset)
4334         (*p)->reset_address_and_file_offset();
4335
4336       // When doing an incremental update or when using a linker script,
4337       // the section will most likely already have an address.
4338       if (!(*p)->is_address_valid())
4339         {
4340           uint64_t align = (*p)->addralign();
4341
4342           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4343             {
4344               // Give the first TLS section the alignment of the
4345               // entire TLS segment.  Otherwise the TLS segment as a
4346               // whole may be misaligned.
4347               if (!*in_tls)
4348                 {
4349                   Output_segment* tls_segment = layout->tls_segment();
4350                   gold_assert(tls_segment != NULL);
4351                   uint64_t segment_align = tls_segment->maximum_alignment();
4352                   gold_assert(segment_align >= align);
4353                   align = segment_align;
4354
4355                   *in_tls = true;
4356                 }
4357             }
4358           else
4359             {
4360               // If this is the first section after the TLS segment,
4361               // align it to at least the alignment of the TLS
4362               // segment, so that the size of the overall TLS segment
4363               // is aligned.
4364               if (*in_tls)
4365                 {
4366                   uint64_t segment_align =
4367                       layout->tls_segment()->maximum_alignment();
4368                   if (segment_align > align)
4369                     align = segment_align;
4370
4371                   *in_tls = false;
4372                 }
4373             }
4374
4375           if (!parameters->incremental_update())
4376             {
4377               off = align_address(off, align);
4378               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4379             }
4380           else
4381             {
4382               // Incremental update: allocate file space from free list.
4383               (*p)->pre_finalize_data_size();
4384               off_t current_size = (*p)->current_data_size();
4385               off = layout->allocate(current_size, align, startoff);
4386               if (off == -1)
4387                 {
4388                   gold_assert((*p)->output_section() != NULL);
4389                   gold_fallback(_("out of patch space for section %s; "
4390                                   "relink with --incremental-full"),
4391                                 (*p)->output_section()->name());
4392                 }
4393               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4394               if ((*p)->data_size() > current_size)
4395                 {
4396                   gold_assert((*p)->output_section() != NULL);
4397                   gold_fallback(_("%s: section changed size; "
4398                                   "relink with --incremental-full"),
4399                                 (*p)->output_section()->name());
4400                 }
4401             }
4402         }
4403       else if (parameters->incremental_update())
4404         {
4405           // For incremental updates, use the fixed offset for the
4406           // high-water mark computation.
4407           off = (*p)->offset();
4408         }
4409       else
4410         {
4411           // The script may have inserted a skip forward, but it
4412           // better not have moved backward.
4413           if ((*p)->address() >= addr + (off - startoff))
4414             off += (*p)->address() - (addr + (off - startoff));
4415           else
4416             {
4417               if (!layout->script_options()->saw_sections_clause())
4418                 gold_unreachable();
4419               else
4420                 {
4421                   Output_section* os = (*p)->output_section();
4422
4423                   // Cast to unsigned long long to avoid format warnings.
4424                   unsigned long long previous_dot =
4425                     static_cast<unsigned long long>(addr + (off - startoff));
4426                   unsigned long long dot =
4427                     static_cast<unsigned long long>((*p)->address());
4428
4429                   if (os == NULL)
4430                     gold_error(_("dot moves backward in linker script "
4431                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4432                   else
4433                     gold_error(_("address of section '%s' moves backward "
4434                                  "from 0x%llx to 0x%llx"),
4435                                os->name(), previous_dot, dot);
4436                 }
4437             }
4438           (*p)->set_file_offset(off);
4439           (*p)->finalize_data_size();
4440         }
4441
4442       if (parameters->incremental_update())
4443         gold_debug(DEBUG_INCREMENTAL,
4444                    "set_section_list_addresses: %08lx %08lx %s",
4445                    static_cast<long>(off),
4446                    static_cast<long>((*p)->data_size()),
4447                    ((*p)->output_section() != NULL
4448                     ? (*p)->output_section()->name() : "(special)"));
4449
4450       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4451       // section.  Such a section does not affect the size of a
4452       // PT_LOAD segment.
4453       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4454           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4455         off += (*p)->data_size();
4456
4457       if (off > maxoff)
4458         maxoff = off;
4459
4460       if ((*p)->is_section())
4461         {
4462           (*p)->set_out_shndx(*pshndx);
4463           ++*pshndx;
4464         }
4465     }
4466
4467   *poff = maxoff;
4468   return addr + (maxoff - startoff);
4469 }
4470
4471 // For a non-PT_LOAD segment, set the offset from the sections, if
4472 // any.  Add INCREASE to the file size and the memory size.
4473
4474 void
4475 Output_segment::set_offset(unsigned int increase)
4476 {
4477   gold_assert(this->type_ != elfcpp::PT_LOAD);
4478
4479   gold_assert(!this->are_addresses_set_);
4480
4481   // A non-load section only uses output_lists_[0].
4482
4483   Output_data_list* pdl = &this->output_lists_[0];
4484
4485   if (pdl->empty())
4486     {
4487       gold_assert(increase == 0);
4488       this->vaddr_ = 0;
4489       this->paddr_ = 0;
4490       this->are_addresses_set_ = true;
4491       this->memsz_ = 0;
4492       this->min_p_align_ = 0;
4493       this->offset_ = 0;
4494       this->filesz_ = 0;
4495       return;
4496     }
4497
4498   // Find the first and last section by address.
4499   const Output_data* first = NULL;
4500   const Output_data* last_data = NULL;
4501   const Output_data* last_bss = NULL;
4502   for (Output_data_list::const_iterator p = pdl->begin();
4503        p != pdl->end();
4504        ++p)
4505     {
4506       if (first == NULL
4507           || (*p)->address() < first->address()
4508           || ((*p)->address() == first->address()
4509               && (*p)->data_size() < first->data_size()))
4510         first = *p;
4511       const Output_data** plast;
4512       if ((*p)->is_section()
4513           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4514         plast = &last_bss;
4515       else
4516         plast = &last_data;
4517       if (*plast == NULL
4518           || (*p)->address() > (*plast)->address()
4519           || ((*p)->address() == (*plast)->address()
4520               && (*p)->data_size() > (*plast)->data_size()))
4521         *plast = *p;
4522     }
4523
4524   this->vaddr_ = first->address();
4525   this->paddr_ = (first->has_load_address()
4526                   ? first->load_address()
4527                   : this->vaddr_);
4528   this->are_addresses_set_ = true;
4529   this->offset_ = first->offset();
4530
4531   if (last_data == NULL)
4532     this->filesz_ = 0;
4533   else
4534     this->filesz_ = (last_data->address()
4535                      + last_data->data_size()
4536                      - this->vaddr_);
4537
4538   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4539   this->memsz_ = (last->address()
4540                   + last->data_size()
4541                   - this->vaddr_);
4542
4543   this->filesz_ += increase;
4544   this->memsz_ += increase;
4545
4546   // If this is a RELRO segment, verify that the segment ends at a
4547   // page boundary.
4548   if (this->type_ == elfcpp::PT_GNU_RELRO)
4549     {
4550       uint64_t page_align = parameters->target().common_pagesize();
4551       uint64_t segment_end = this->vaddr_ + this->memsz_;
4552       if (parameters->incremental_update())
4553         {
4554           // The INCREASE_RELRO calculation is bypassed for an incremental
4555           // update, so we need to adjust the segment size manually here.
4556           segment_end = align_address(segment_end, page_align);
4557           this->memsz_ = segment_end - this->vaddr_;
4558         }
4559       else
4560         gold_assert(segment_end == align_address(segment_end, page_align));
4561     }
4562
4563   // If this is a TLS segment, align the memory size.  The code in
4564   // set_section_list ensures that the section after the TLS segment
4565   // is aligned to give us room.
4566   if (this->type_ == elfcpp::PT_TLS)
4567     {
4568       uint64_t segment_align = this->maximum_alignment();
4569       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4570       this->memsz_ = align_address(this->memsz_, segment_align);
4571     }
4572 }
4573
4574 // Set the TLS offsets of the sections in the PT_TLS segment.
4575
4576 void
4577 Output_segment::set_tls_offsets()
4578 {
4579   gold_assert(this->type_ == elfcpp::PT_TLS);
4580
4581   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4582        p != this->output_lists_[0].end();
4583        ++p)
4584     (*p)->set_tls_offset(this->vaddr_);
4585 }
4586
4587 // Return the load address of the first section.
4588
4589 uint64_t
4590 Output_segment::first_section_load_address() const
4591 {
4592   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4593     {
4594       const Output_data_list* pdl = &this->output_lists_[i];
4595       for (Output_data_list::const_iterator p = pdl->begin();
4596            p != pdl->end();
4597            ++p)
4598         {
4599           if ((*p)->is_section())
4600             return ((*p)->has_load_address()
4601                     ? (*p)->load_address()
4602                     : (*p)->address());
4603         }
4604     }
4605   gold_unreachable();
4606 }
4607
4608 // Return the number of Output_sections in an Output_segment.
4609
4610 unsigned int
4611 Output_segment::output_section_count() const
4612 {
4613   unsigned int ret = 0;
4614   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4615     ret += this->output_section_count_list(&this->output_lists_[i]);
4616   return ret;
4617 }
4618
4619 // Return the number of Output_sections in an Output_data_list.
4620
4621 unsigned int
4622 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4623 {
4624   unsigned int count = 0;
4625   for (Output_data_list::const_iterator p = pdl->begin();
4626        p != pdl->end();
4627        ++p)
4628     {
4629       if ((*p)->is_section())
4630         ++count;
4631     }
4632   return count;
4633 }
4634
4635 // Return the section attached to the list segment with the lowest
4636 // load address.  This is used when handling a PHDRS clause in a
4637 // linker script.
4638
4639 Output_section*
4640 Output_segment::section_with_lowest_load_address() const
4641 {
4642   Output_section* found = NULL;
4643   uint64_t found_lma = 0;
4644   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4645     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4646                                       &found_lma);
4647   return found;
4648 }
4649
4650 // Look through a list for a section with a lower load address.
4651
4652 void
4653 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4654                                             Output_section** found,
4655                                             uint64_t* found_lma) const
4656 {
4657   for (Output_data_list::const_iterator p = pdl->begin();
4658        p != pdl->end();
4659        ++p)
4660     {
4661       if (!(*p)->is_section())
4662         continue;
4663       Output_section* os = static_cast<Output_section*>(*p);
4664       uint64_t lma = (os->has_load_address()
4665                       ? os->load_address()
4666                       : os->address());
4667       if (*found == NULL || lma < *found_lma)
4668         {
4669           *found = os;
4670           *found_lma = lma;
4671         }
4672     }
4673 }
4674
4675 // Write the segment data into *OPHDR.
4676
4677 template<int size, bool big_endian>
4678 void
4679 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4680 {
4681   ophdr->put_p_type(this->type_);
4682   ophdr->put_p_offset(this->offset_);
4683   ophdr->put_p_vaddr(this->vaddr_);
4684   ophdr->put_p_paddr(this->paddr_);
4685   ophdr->put_p_filesz(this->filesz_);
4686   ophdr->put_p_memsz(this->memsz_);
4687   ophdr->put_p_flags(this->flags_);
4688   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4689 }
4690
4691 // Write the section headers into V.
4692
4693 template<int size, bool big_endian>
4694 unsigned char*
4695 Output_segment::write_section_headers(const Layout* layout,
4696                                       const Stringpool* secnamepool,
4697                                       unsigned char* v,
4698                                       unsigned int* pshndx) const
4699 {
4700   // Every section that is attached to a segment must be attached to a
4701   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4702   // segments.
4703   if (this->type_ != elfcpp::PT_LOAD)
4704     return v;
4705
4706   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4707     {
4708       const Output_data_list* pdl = &this->output_lists_[i];
4709       v = this->write_section_headers_list<size, big_endian>(layout,
4710                                                              secnamepool,
4711                                                              pdl,
4712                                                              v, pshndx);
4713     }
4714
4715   return v;
4716 }
4717
4718 template<int size, bool big_endian>
4719 unsigned char*
4720 Output_segment::write_section_headers_list(const Layout* layout,
4721                                            const Stringpool* secnamepool,
4722                                            const Output_data_list* pdl,
4723                                            unsigned char* v,
4724                                            unsigned int* pshndx) const
4725 {
4726   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4727   for (Output_data_list::const_iterator p = pdl->begin();
4728        p != pdl->end();
4729        ++p)
4730     {
4731       if ((*p)->is_section())
4732         {
4733           const Output_section* ps = static_cast<const Output_section*>(*p);
4734           gold_assert(*pshndx == ps->out_shndx());
4735           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4736           ps->write_header(layout, secnamepool, &oshdr);
4737           v += shdr_size;
4738           ++*pshndx;
4739         }
4740     }
4741   return v;
4742 }
4743
4744 // Print the output sections to the map file.
4745
4746 void
4747 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4748 {
4749   if (this->type() != elfcpp::PT_LOAD)
4750     return;
4751   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4752     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4753 }
4754
4755 // Print an output section list to the map file.
4756
4757 void
4758 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4759                                               const Output_data_list* pdl) const
4760 {
4761   for (Output_data_list::const_iterator p = pdl->begin();
4762        p != pdl->end();
4763        ++p)
4764     (*p)->print_to_mapfile(mapfile);
4765 }
4766
4767 // Output_file methods.
4768
4769 Output_file::Output_file(const char* name)
4770   : name_(name),
4771     o_(-1),
4772     file_size_(0),
4773     base_(NULL),
4774     map_is_anonymous_(false),
4775     map_is_allocated_(false),
4776     is_temporary_(false)
4777 {
4778 }
4779
4780 // Try to open an existing file.  Returns false if the file doesn't
4781 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4782 // NULL, open that file as the base for incremental linking, and
4783 // copy its contents to the new output file.  This routine can
4784 // be called for incremental updates, in which case WRITABLE should
4785 // be true, or by the incremental-dump utility, in which case
4786 // WRITABLE should be false.
4787
4788 bool
4789 Output_file::open_base_file(const char* base_name, bool writable)
4790 {
4791   // The name "-" means "stdout".
4792   if (strcmp(this->name_, "-") == 0)
4793     return false;
4794
4795   bool use_base_file = base_name != NULL;
4796   if (!use_base_file)
4797     base_name = this->name_;
4798   else if (strcmp(base_name, this->name_) == 0)
4799     gold_fatal(_("%s: incremental base and output file name are the same"),
4800                base_name);
4801
4802   // Don't bother opening files with a size of zero.
4803   struct stat s;
4804   if (::stat(base_name, &s) != 0)
4805     {
4806       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4807       return false;
4808     }
4809   if (s.st_size == 0)
4810     {
4811       gold_info(_("%s: incremental base file is empty"), base_name);
4812       return false;
4813     }
4814
4815   // If we're using a base file, we want to open it read-only.
4816   if (use_base_file)
4817     writable = false;
4818
4819   int oflags = writable ? O_RDWR : O_RDONLY;
4820   int o = open_descriptor(-1, base_name, oflags, 0);
4821   if (o < 0)
4822     {
4823       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4824       return false;
4825     }
4826
4827   // If the base file and the output file are different, open a
4828   // new output file and read the contents from the base file into
4829   // the newly-mapped region.
4830   if (use_base_file)
4831     {
4832       this->open(s.st_size);
4833       ssize_t bytes_to_read = s.st_size;
4834       unsigned char* p = this->base_;
4835       while (bytes_to_read > 0)
4836         {
4837           ssize_t len = ::read(o, p, bytes_to_read);
4838           if (len < 0)
4839             {
4840               gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4841               return false;
4842             }
4843           if (len == 0)
4844             {
4845               gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4846                         base_name,
4847                         static_cast<long long>(s.st_size - bytes_to_read),
4848                         static_cast<long long>(s.st_size));
4849               return false;
4850             }
4851           p += len;
4852           bytes_to_read -= len;
4853         }
4854       ::close(o);
4855       return true;
4856     }
4857
4858   this->o_ = o;
4859   this->file_size_ = s.st_size;
4860
4861   if (!this->map_no_anonymous(writable))
4862     {
4863       release_descriptor(o, true);
4864       this->o_ = -1;
4865       this->file_size_ = 0;
4866       return false;
4867     }
4868
4869   return true;
4870 }
4871
4872 // Open the output file.
4873
4874 void
4875 Output_file::open(off_t file_size)
4876 {
4877   this->file_size_ = file_size;
4878
4879   // Unlink the file first; otherwise the open() may fail if the file
4880   // is busy (e.g. it's an executable that's currently being executed).
4881   //
4882   // However, the linker may be part of a system where a zero-length
4883   // file is created for it to write to, with tight permissions (gcc
4884   // 2.95 did something like this).  Unlinking the file would work
4885   // around those permission controls, so we only unlink if the file
4886   // has a non-zero size.  We also unlink only regular files to avoid
4887   // trouble with directories/etc.
4888   //
4889   // If we fail, continue; this command is merely a best-effort attempt
4890   // to improve the odds for open().
4891
4892   // We let the name "-" mean "stdout"
4893   if (!this->is_temporary_)
4894     {
4895       if (strcmp(this->name_, "-") == 0)
4896         this->o_ = STDOUT_FILENO;
4897       else
4898         {
4899           struct stat s;
4900           if (::stat(this->name_, &s) == 0
4901               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4902             {
4903               if (s.st_size != 0)
4904                 ::unlink(this->name_);
4905               else if (!parameters->options().relocatable())
4906                 {
4907                   // If we don't unlink the existing file, add execute
4908                   // permission where read permissions already exist
4909                   // and where the umask permits.
4910                   int mask = ::umask(0);
4911                   ::umask(mask);
4912                   s.st_mode |= (s.st_mode & 0444) >> 2;
4913                   ::chmod(this->name_, s.st_mode & ~mask);
4914                 }
4915             }
4916
4917           int mode = parameters->options().relocatable() ? 0666 : 0777;
4918           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4919                                   mode);
4920           if (o < 0)
4921             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4922           this->o_ = o;
4923         }
4924     }
4925
4926   this->map();
4927 }
4928
4929 // Resize the output file.
4930
4931 void
4932 Output_file::resize(off_t file_size)
4933 {
4934   // If the mmap is mapping an anonymous memory buffer, this is easy:
4935   // just mremap to the new size.  If it's mapping to a file, we want
4936   // to unmap to flush to the file, then remap after growing the file.
4937   if (this->map_is_anonymous_)
4938     {
4939       void* base;
4940       if (!this->map_is_allocated_)
4941         {
4942           base = ::mremap(this->base_, this->file_size_, file_size,
4943                           MREMAP_MAYMOVE);
4944           if (base == MAP_FAILED)
4945             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4946         }
4947       else
4948         {
4949           base = realloc(this->base_, file_size);
4950           if (base == NULL)
4951             gold_nomem();
4952           if (file_size > this->file_size_)
4953             memset(static_cast<char*>(base) + this->file_size_, 0,
4954                    file_size - this->file_size_);
4955         }
4956       this->base_ = static_cast<unsigned char*>(base);
4957       this->file_size_ = file_size;
4958     }
4959   else
4960     {
4961       this->unmap();
4962       this->file_size_ = file_size;
4963       if (!this->map_no_anonymous(true))
4964         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4965     }
4966 }
4967
4968 // Map an anonymous block of memory which will later be written to the
4969 // file.  Return whether the map succeeded.
4970
4971 bool
4972 Output_file::map_anonymous()
4973 {
4974   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4975                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4976   if (base == MAP_FAILED)
4977     {
4978       base = malloc(this->file_size_);
4979       if (base == NULL)
4980         return false;
4981       memset(base, 0, this->file_size_);
4982       this->map_is_allocated_ = true;
4983     }
4984   this->base_ = static_cast<unsigned char*>(base);
4985   this->map_is_anonymous_ = true;
4986   return true;
4987 }
4988
4989 // Map the file into memory.  Return whether the mapping succeeded.
4990 // If WRITABLE is true, map with write access.
4991
4992 bool
4993 Output_file::map_no_anonymous(bool writable)
4994 {
4995   const int o = this->o_;
4996
4997   // If the output file is not a regular file, don't try to mmap it;
4998   // instead, we'll mmap a block of memory (an anonymous buffer), and
4999   // then later write the buffer to the file.
5000   void* base;
5001   struct stat statbuf;
5002   if (o == STDOUT_FILENO || o == STDERR_FILENO
5003       || ::fstat(o, &statbuf) != 0
5004       || !S_ISREG(statbuf.st_mode)
5005       || this->is_temporary_)
5006     return false;
5007
5008   // Ensure that we have disk space available for the file.  If we
5009   // don't do this, it is possible that we will call munmap, close,
5010   // and exit with dirty buffers still in the cache with no assigned
5011   // disk blocks.  If the disk is out of space at that point, the
5012   // output file will wind up incomplete, but we will have already
5013   // exited.  The alternative to fallocate would be to use fdatasync,
5014   // but that would be a more significant performance hit.
5015   if (writable)
5016     {
5017       int err = ::posix_fallocate(o, 0, this->file_size_);
5018       if (err != 0)
5019        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5020     }
5021
5022   // Map the file into memory.
5023   int prot = PROT_READ;
5024   if (writable)
5025     prot |= PROT_WRITE;
5026   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5027
5028   // The mmap call might fail because of file system issues: the file
5029   // system might not support mmap at all, or it might not support
5030   // mmap with PROT_WRITE.
5031   if (base == MAP_FAILED)
5032     return false;
5033
5034   this->map_is_anonymous_ = false;
5035   this->base_ = static_cast<unsigned char*>(base);
5036   return true;
5037 }
5038
5039 // Map the file into memory.
5040
5041 void
5042 Output_file::map()
5043 {
5044   if (this->map_no_anonymous(true))
5045     return;
5046
5047   // The mmap call might fail because of file system issues: the file
5048   // system might not support mmap at all, or it might not support
5049   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5050   // see in all cases, so if the mmap fails for any reason and we
5051   // don't care about file contents, try for an anonymous map.
5052   if (this->map_anonymous())
5053     return;
5054
5055   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5056              this->name_, static_cast<unsigned long>(this->file_size_),
5057              strerror(errno));
5058 }
5059
5060 // Unmap the file from memory.
5061
5062 void
5063 Output_file::unmap()
5064 {
5065   if (this->map_is_anonymous_)
5066     {
5067       // We've already written out the data, so there is no reason to
5068       // waste time unmapping or freeing the memory.
5069     }
5070   else
5071     {
5072       if (::munmap(this->base_, this->file_size_) < 0)
5073         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5074     }
5075   this->base_ = NULL;
5076 }
5077
5078 // Close the output file.
5079
5080 void
5081 Output_file::close()
5082 {
5083   // If the map isn't file-backed, we need to write it now.
5084   if (this->map_is_anonymous_ && !this->is_temporary_)
5085     {
5086       size_t bytes_to_write = this->file_size_;
5087       size_t offset = 0;
5088       while (bytes_to_write > 0)
5089         {
5090           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5091                                           bytes_to_write);
5092           if (bytes_written == 0)
5093             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5094           else if (bytes_written < 0)
5095             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5096           else
5097             {
5098               bytes_to_write -= bytes_written;
5099               offset += bytes_written;
5100             }
5101         }
5102     }
5103   this->unmap();
5104
5105   // We don't close stdout or stderr
5106   if (this->o_ != STDOUT_FILENO
5107       && this->o_ != STDERR_FILENO
5108       && !this->is_temporary_)
5109     if (::close(this->o_) < 0)
5110       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5111   this->o_ = -1;
5112 }
5113
5114 // Instantiate the templates we need.  We could use the configure
5115 // script to restrict this to only the ones for implemented targets.
5116
5117 #ifdef HAVE_TARGET_32_LITTLE
5118 template
5119 off_t
5120 Output_section::add_input_section<32, false>(
5121     Layout* layout,
5122     Sized_relobj_file<32, false>* object,
5123     unsigned int shndx,
5124     const char* secname,
5125     const elfcpp::Shdr<32, false>& shdr,
5126     unsigned int reloc_shndx,
5127     bool have_sections_script);
5128 #endif
5129
5130 #ifdef HAVE_TARGET_32_BIG
5131 template
5132 off_t
5133 Output_section::add_input_section<32, true>(
5134     Layout* layout,
5135     Sized_relobj_file<32, true>* object,
5136     unsigned int shndx,
5137     const char* secname,
5138     const elfcpp::Shdr<32, true>& shdr,
5139     unsigned int reloc_shndx,
5140     bool have_sections_script);
5141 #endif
5142
5143 #ifdef HAVE_TARGET_64_LITTLE
5144 template
5145 off_t
5146 Output_section::add_input_section<64, false>(
5147     Layout* layout,
5148     Sized_relobj_file<64, false>* object,
5149     unsigned int shndx,
5150     const char* secname,
5151     const elfcpp::Shdr<64, false>& shdr,
5152     unsigned int reloc_shndx,
5153     bool have_sections_script);
5154 #endif
5155
5156 #ifdef HAVE_TARGET_64_BIG
5157 template
5158 off_t
5159 Output_section::add_input_section<64, true>(
5160     Layout* layout,
5161     Sized_relobj_file<64, true>* object,
5162     unsigned int shndx,
5163     const char* secname,
5164     const elfcpp::Shdr<64, true>& shdr,
5165     unsigned int reloc_shndx,
5166     bool have_sections_script);
5167 #endif
5168
5169 #ifdef HAVE_TARGET_32_LITTLE
5170 template
5171 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5172 #endif
5173
5174 #ifdef HAVE_TARGET_32_BIG
5175 template
5176 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5177 #endif
5178
5179 #ifdef HAVE_TARGET_64_LITTLE
5180 template
5181 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5182 #endif
5183
5184 #ifdef HAVE_TARGET_64_BIG
5185 template
5186 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5187 #endif
5188
5189 #ifdef HAVE_TARGET_32_LITTLE
5190 template
5191 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5192 #endif
5193
5194 #ifdef HAVE_TARGET_32_BIG
5195 template
5196 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5197 #endif
5198
5199 #ifdef HAVE_TARGET_64_LITTLE
5200 template
5201 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5202 #endif
5203
5204 #ifdef HAVE_TARGET_64_BIG
5205 template
5206 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5207 #endif
5208
5209 #ifdef HAVE_TARGET_32_LITTLE
5210 template
5211 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5212 #endif
5213
5214 #ifdef HAVE_TARGET_32_BIG
5215 template
5216 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5217 #endif
5218
5219 #ifdef HAVE_TARGET_64_LITTLE
5220 template
5221 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5222 #endif
5223
5224 #ifdef HAVE_TARGET_64_BIG
5225 template
5226 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5227 #endif
5228
5229 #ifdef HAVE_TARGET_32_LITTLE
5230 template
5231 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5232 #endif
5233
5234 #ifdef HAVE_TARGET_32_BIG
5235 template
5236 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5237 #endif
5238
5239 #ifdef HAVE_TARGET_64_LITTLE
5240 template
5241 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5242 #endif
5243
5244 #ifdef HAVE_TARGET_64_BIG
5245 template
5246 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5247 #endif
5248
5249 #ifdef HAVE_TARGET_32_LITTLE
5250 template
5251 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5252 #endif
5253
5254 #ifdef HAVE_TARGET_32_BIG
5255 template
5256 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5257 #endif
5258
5259 #ifdef HAVE_TARGET_64_LITTLE
5260 template
5261 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5262 #endif
5263
5264 #ifdef HAVE_TARGET_64_BIG
5265 template
5266 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5267 #endif
5268
5269 #ifdef HAVE_TARGET_32_LITTLE
5270 template
5271 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5272 #endif
5273
5274 #ifdef HAVE_TARGET_32_BIG
5275 template
5276 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5277 #endif
5278
5279 #ifdef HAVE_TARGET_64_LITTLE
5280 template
5281 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5282 #endif
5283
5284 #ifdef HAVE_TARGET_64_BIG
5285 template
5286 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5287 #endif
5288
5289 #ifdef HAVE_TARGET_32_LITTLE
5290 template
5291 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5292 #endif
5293
5294 #ifdef HAVE_TARGET_32_BIG
5295 template
5296 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5297 #endif
5298
5299 #ifdef HAVE_TARGET_64_LITTLE
5300 template
5301 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5302 #endif
5303
5304 #ifdef HAVE_TARGET_64_BIG
5305 template
5306 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5307 #endif
5308
5309 #ifdef HAVE_TARGET_32_LITTLE
5310 template
5311 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5312 #endif
5313
5314 #ifdef HAVE_TARGET_32_BIG
5315 template
5316 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5317 #endif
5318
5319 #ifdef HAVE_TARGET_64_LITTLE
5320 template
5321 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5322 #endif
5323
5324 #ifdef HAVE_TARGET_64_BIG
5325 template
5326 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5327 #endif
5328
5329 #ifdef HAVE_TARGET_32_LITTLE
5330 template
5331 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5332 #endif
5333
5334 #ifdef HAVE_TARGET_32_BIG
5335 template
5336 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5337 #endif
5338
5339 #ifdef HAVE_TARGET_64_LITTLE
5340 template
5341 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5342 #endif
5343
5344 #ifdef HAVE_TARGET_64_BIG
5345 template
5346 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5347 #endif
5348
5349 #ifdef HAVE_TARGET_32_LITTLE
5350 template
5351 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5352 #endif
5353
5354 #ifdef HAVE_TARGET_32_BIG
5355 template
5356 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5357 #endif
5358
5359 #ifdef HAVE_TARGET_64_LITTLE
5360 template
5361 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5362 #endif
5363
5364 #ifdef HAVE_TARGET_64_BIG
5365 template
5366 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5367 #endif
5368
5369 #ifdef HAVE_TARGET_32_LITTLE
5370 template
5371 class Output_data_group<32, false>;
5372 #endif
5373
5374 #ifdef HAVE_TARGET_32_BIG
5375 template
5376 class Output_data_group<32, true>;
5377 #endif
5378
5379 #ifdef HAVE_TARGET_64_LITTLE
5380 template
5381 class Output_data_group<64, false>;
5382 #endif
5383
5384 #ifdef HAVE_TARGET_64_BIG
5385 template
5386 class Output_data_group<64, true>;
5387 #endif
5388
5389 #ifdef HAVE_TARGET_32_LITTLE
5390 template
5391 class Output_data_got<32, false>;
5392 #endif
5393
5394 #ifdef HAVE_TARGET_32_BIG
5395 template
5396 class Output_data_got<32, true>;
5397 #endif
5398
5399 #ifdef HAVE_TARGET_64_LITTLE
5400 template
5401 class Output_data_got<64, false>;
5402 #endif
5403
5404 #ifdef HAVE_TARGET_64_BIG
5405 template
5406 class Output_data_got<64, true>;
5407 #endif
5408
5409 } // End namespace gold.