Combine read-only .eh_frame sections with read-write .eh_frame
[external/binutils.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h"   // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS  MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64   return Output_data::default_alignment_for_size(
65       parameters->target().get_size());
66 }
67
68 // Return the default alignment for a size--32 or 64.
69
70 uint64_t
71 Output_data::default_alignment_for_size(int size)
72 {
73   if (size == 32)
74     return 4;
75   else if (size == 64)
76     return 8;
77   else
78     gold_unreachable();
79 }
80
81 // Output_section_header methods.  This currently assumes that the
82 // segment and section lists are complete at construction time.
83
84 Output_section_headers::Output_section_headers(
85     const Layout* layout,
86     const Layout::Segment_list* segment_list,
87     const Layout::Section_list* section_list,
88     const Layout::Section_list* unattached_section_list,
89     const Stringpool* secnamepool)
90   : layout_(layout),
91     segment_list_(segment_list),
92     section_list_(section_list),
93     unattached_section_list_(unattached_section_list),
94     secnamepool_(secnamepool)
95 {
96   // Count all the sections.  Start with 1 for the null section.
97   off_t count = 1;
98   if (!parameters->options().relocatable())
99     {
100       for (Layout::Segment_list::const_iterator p = segment_list->begin();
101            p != segment_list->end();
102            ++p)
103         if ((*p)->type() == elfcpp::PT_LOAD)
104           count += (*p)->output_section_count();
105     }
106   else
107     {
108       for (Layout::Section_list::const_iterator p = section_list->begin();
109            p != section_list->end();
110            ++p)
111         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
112           ++count;
113     }
114   count += unattached_section_list->size();
115
116   const int size = parameters->target().get_size();
117   int shdr_size;
118   if (size == 32)
119     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
120   else if (size == 64)
121     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
122   else
123     gold_unreachable();
124
125   this->set_data_size(count * shdr_size);
126 }
127
128 // Write out the section headers.
129
130 void
131 Output_section_headers::do_write(Output_file* of)
132 {
133   switch (parameters->size_and_endianness())
134     {
135 #ifdef HAVE_TARGET_32_LITTLE
136     case Parameters::TARGET_32_LITTLE:
137       this->do_sized_write<32, false>(of);
138       break;
139 #endif
140 #ifdef HAVE_TARGET_32_BIG
141     case Parameters::TARGET_32_BIG:
142       this->do_sized_write<32, true>(of);
143       break;
144 #endif
145 #ifdef HAVE_TARGET_64_LITTLE
146     case Parameters::TARGET_64_LITTLE:
147       this->do_sized_write<64, false>(of);
148       break;
149 #endif
150 #ifdef HAVE_TARGET_64_BIG
151     case Parameters::TARGET_64_BIG:
152       this->do_sized_write<64, true>(of);
153       break;
154 #endif
155     default:
156       gold_unreachable();
157     }
158 }
159
160 template<int size, bool big_endian>
161 void
162 Output_section_headers::do_sized_write(Output_file* of)
163 {
164   off_t all_shdrs_size = this->data_size();
165   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
166
167   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
168   unsigned char* v = view;
169
170   {
171     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
172     oshdr.put_sh_name(0);
173     oshdr.put_sh_type(elfcpp::SHT_NULL);
174     oshdr.put_sh_flags(0);
175     oshdr.put_sh_addr(0);
176     oshdr.put_sh_offset(0);
177     oshdr.put_sh_size(0);
178     oshdr.put_sh_link(0);
179     oshdr.put_sh_info(0);
180     oshdr.put_sh_addralign(0);
181     oshdr.put_sh_entsize(0);
182   }
183
184   v += shdr_size;
185
186   unsigned int shndx = 1;
187   if (!parameters->options().relocatable())
188     {
189       for (Layout::Segment_list::const_iterator p =
190              this->segment_list_->begin();
191            p != this->segment_list_->end();
192            ++p)
193         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
194                                                           this->secnamepool_,
195                                                           v,
196                                                           &shndx);
197     }
198   else
199     {
200       for (Layout::Section_list::const_iterator p =
201              this->section_list_->begin();
202            p != this->section_list_->end();
203            ++p)
204         {
205           // We do unallocated sections below, except that group
206           // sections have to come first.
207           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
208               && (*p)->type() != elfcpp::SHT_GROUP)
209             continue;
210           gold_assert(shndx == (*p)->out_shndx());
211           elfcpp::Shdr_write<size, big_endian> oshdr(v);
212           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
213           v += shdr_size;
214           ++shndx;
215         }
216     }
217
218   for (Layout::Section_list::const_iterator p =
219          this->unattached_section_list_->begin();
220        p != this->unattached_section_list_->end();
221        ++p)
222     {
223       // For a relocatable link, we did unallocated group sections
224       // above, since they have to come first.
225       if ((*p)->type() == elfcpp::SHT_GROUP
226           && parameters->options().relocatable())
227         continue;
228       gold_assert(shndx == (*p)->out_shndx());
229       elfcpp::Shdr_write<size, big_endian> oshdr(v);
230       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
231       v += shdr_size;
232       ++shndx;
233     }
234
235   of->write_output_view(this->offset(), all_shdrs_size, view);
236 }
237
238 // Output_segment_header methods.
239
240 Output_segment_headers::Output_segment_headers(
241     const Layout::Segment_list& segment_list)
242   : segment_list_(segment_list)
243 {
244   const int size = parameters->target().get_size();
245   int phdr_size;
246   if (size == 32)
247     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
248   else if (size == 64)
249     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
250   else
251     gold_unreachable();
252
253   this->set_data_size(segment_list.size() * phdr_size);
254 }
255
256 void
257 Output_segment_headers::do_write(Output_file* of)
258 {
259   switch (parameters->size_and_endianness())
260     {
261 #ifdef HAVE_TARGET_32_LITTLE
262     case Parameters::TARGET_32_LITTLE:
263       this->do_sized_write<32, false>(of);
264       break;
265 #endif
266 #ifdef HAVE_TARGET_32_BIG
267     case Parameters::TARGET_32_BIG:
268       this->do_sized_write<32, true>(of);
269       break;
270 #endif
271 #ifdef HAVE_TARGET_64_LITTLE
272     case Parameters::TARGET_64_LITTLE:
273       this->do_sized_write<64, false>(of);
274       break;
275 #endif
276 #ifdef HAVE_TARGET_64_BIG
277     case Parameters::TARGET_64_BIG:
278       this->do_sized_write<64, true>(of);
279       break;
280 #endif
281     default:
282       gold_unreachable();
283     }
284 }
285
286 template<int size, bool big_endian>
287 void
288 Output_segment_headers::do_sized_write(Output_file* of)
289 {
290   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
291   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
292   gold_assert(all_phdrs_size == this->data_size());
293   unsigned char* view = of->get_output_view(this->offset(),
294                                             all_phdrs_size);
295   unsigned char* v = view;
296   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
297        p != this->segment_list_.end();
298        ++p)
299     {
300       elfcpp::Phdr_write<size, big_endian> ophdr(v);
301       (*p)->write_header(&ophdr);
302       v += phdr_size;
303     }
304
305   gold_assert(v - view == all_phdrs_size);
306
307   of->write_output_view(this->offset(), all_phdrs_size, view);
308 }
309
310 // Output_file_header methods.
311
312 Output_file_header::Output_file_header(const Target* target,
313                                        const Symbol_table* symtab,
314                                        const Output_segment_headers* osh,
315                                        const char* entry)
316   : target_(target),
317     symtab_(symtab),
318     segment_header_(osh),
319     section_header_(NULL),
320     shstrtab_(NULL),
321     entry_(entry)
322 {
323   const int size = parameters->target().get_size();
324   int ehdr_size;
325   if (size == 32)
326     ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
327   else if (size == 64)
328     ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
329   else
330     gold_unreachable();
331
332   this->set_data_size(ehdr_size);
333 }
334
335 // Set the section table information for a file header.
336
337 void
338 Output_file_header::set_section_info(const Output_section_headers* shdrs,
339                                      const Output_section* shstrtab)
340 {
341   this->section_header_ = shdrs;
342   this->shstrtab_ = shstrtab;
343 }
344
345 // Write out the file header.
346
347 void
348 Output_file_header::do_write(Output_file* of)
349 {
350   gold_assert(this->offset() == 0);
351
352   switch (parameters->size_and_endianness())
353     {
354 #ifdef HAVE_TARGET_32_LITTLE
355     case Parameters::TARGET_32_LITTLE:
356       this->do_sized_write<32, false>(of);
357       break;
358 #endif
359 #ifdef HAVE_TARGET_32_BIG
360     case Parameters::TARGET_32_BIG:
361       this->do_sized_write<32, true>(of);
362       break;
363 #endif
364 #ifdef HAVE_TARGET_64_LITTLE
365     case Parameters::TARGET_64_LITTLE:
366       this->do_sized_write<64, false>(of);
367       break;
368 #endif
369 #ifdef HAVE_TARGET_64_BIG
370     case Parameters::TARGET_64_BIG:
371       this->do_sized_write<64, true>(of);
372       break;
373 #endif
374     default:
375       gold_unreachable();
376     }
377 }
378
379 // Write out the file header with appropriate size and endianess.
380
381 template<int size, bool big_endian>
382 void
383 Output_file_header::do_sized_write(Output_file* of)
384 {
385   gold_assert(this->offset() == 0);
386
387   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
388   unsigned char* view = of->get_output_view(0, ehdr_size);
389   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
390
391   unsigned char e_ident[elfcpp::EI_NIDENT];
392   memset(e_ident, 0, elfcpp::EI_NIDENT);
393   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
394   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
395   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
396   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
397   if (size == 32)
398     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
399   else if (size == 64)
400     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
401   else
402     gold_unreachable();
403   e_ident[elfcpp::EI_DATA] = (big_endian
404                               ? elfcpp::ELFDATA2MSB
405                               : elfcpp::ELFDATA2LSB);
406   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
407   // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
408   oehdr.put_e_ident(e_ident);
409
410   elfcpp::ET e_type;
411   if (parameters->options().relocatable())
412     e_type = elfcpp::ET_REL;
413   else if (parameters->options().shared())
414     e_type = elfcpp::ET_DYN;
415   else
416     e_type = elfcpp::ET_EXEC;
417   oehdr.put_e_type(e_type);
418
419   oehdr.put_e_machine(this->target_->machine_code());
420   oehdr.put_e_version(elfcpp::EV_CURRENT);
421
422   oehdr.put_e_entry(this->entry<size>());
423
424   if (this->segment_header_ == NULL)
425     oehdr.put_e_phoff(0);
426   else
427     oehdr.put_e_phoff(this->segment_header_->offset());
428
429   oehdr.put_e_shoff(this->section_header_->offset());
430
431   // FIXME: The target needs to set the flags.
432   oehdr.put_e_flags(0);
433
434   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
435
436   if (this->segment_header_ == NULL)
437     {
438       oehdr.put_e_phentsize(0);
439       oehdr.put_e_phnum(0);
440     }
441   else
442     {
443       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
444       oehdr.put_e_phnum(this->segment_header_->data_size()
445                         / elfcpp::Elf_sizes<size>::phdr_size);
446     }
447
448   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
449   oehdr.put_e_shnum(this->section_header_->data_size()
450                      / elfcpp::Elf_sizes<size>::shdr_size);
451   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
452
453   of->write_output_view(0, ehdr_size, view);
454 }
455
456 // Return the value to use for the entry address.  THIS->ENTRY_ is the
457 // symbol specified on the command line, if any.
458
459 template<int size>
460 typename elfcpp::Elf_types<size>::Elf_Addr
461 Output_file_header::entry()
462 {
463   const bool should_issue_warning = (this->entry_ != NULL
464                                      && !parameters->options().relocatable()
465                                      && !parameters->options().shared());
466
467   // FIXME: Need to support target specific entry symbol.
468   const char* entry = this->entry_;
469   if (entry == NULL)
470     entry = "_start";
471
472   Symbol* sym = this->symtab_->lookup(entry);
473
474   typename Sized_symbol<size>::Value_type v;
475   if (sym != NULL)
476     {
477       Sized_symbol<size>* ssym;
478       ssym = this->symtab_->get_sized_symbol<size>(sym);
479       if (!ssym->is_defined() && should_issue_warning)
480         gold_warning("entry symbol '%s' exists but is not defined", entry);
481       v = ssym->value();
482     }
483   else
484     {
485       // We couldn't find the entry symbol.  See if we can parse it as
486       // a number.  This supports, e.g., -e 0x1000.
487       char* endptr;
488       v = strtoull(entry, &endptr, 0);
489       if (*endptr != '\0')
490         {
491           if (should_issue_warning)
492             gold_warning("cannot find entry symbol '%s'", entry);
493           v = 0;
494         }
495     }
496
497   return v;
498 }
499
500 // Output_data_const methods.
501
502 void
503 Output_data_const::do_write(Output_file* of)
504 {
505   of->write(this->offset(), this->data_.data(), this->data_.size());
506 }
507
508 // Output_data_const_buffer methods.
509
510 void
511 Output_data_const_buffer::do_write(Output_file* of)
512 {
513   of->write(this->offset(), this->p_, this->data_size());
514 }
515
516 // Output_section_data methods.
517
518 // Record the output section, and set the entry size and such.
519
520 void
521 Output_section_data::set_output_section(Output_section* os)
522 {
523   gold_assert(this->output_section_ == NULL);
524   this->output_section_ = os;
525   this->do_adjust_output_section(os);
526 }
527
528 // Return the section index of the output section.
529
530 unsigned int
531 Output_section_data::do_out_shndx() const
532 {
533   gold_assert(this->output_section_ != NULL);
534   return this->output_section_->out_shndx();
535 }
536
537 // Output_data_strtab methods.
538
539 // Set the final data size.
540
541 void
542 Output_data_strtab::set_final_data_size()
543 {
544   this->strtab_->set_string_offsets();
545   this->set_data_size(this->strtab_->get_strtab_size());
546 }
547
548 // Write out a string table.
549
550 void
551 Output_data_strtab::do_write(Output_file* of)
552 {
553   this->strtab_->write(of, this->offset());
554 }
555
556 // Output_reloc methods.
557
558 // A reloc against a global symbol.
559
560 template<bool dynamic, int size, bool big_endian>
561 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
562     Symbol* gsym,
563     unsigned int type,
564     Output_data* od,
565     Address address,
566     bool is_relative)
567   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
568     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
569 {
570   // this->type_ is a bitfield; make sure TYPE fits.
571   gold_assert(this->type_ == type);
572   this->u1_.gsym = gsym;
573   this->u2_.od = od;
574   if (dynamic)
575     this->set_needs_dynsym_index();
576 }
577
578 template<bool dynamic, int size, bool big_endian>
579 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
580     Symbol* gsym,
581     unsigned int type,
582     Relobj* relobj,
583     unsigned int shndx,
584     Address address,
585     bool is_relative)
586   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
587     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
588 {
589   gold_assert(shndx != INVALID_CODE);
590   // this->type_ is a bitfield; make sure TYPE fits.
591   gold_assert(this->type_ == type);
592   this->u1_.gsym = gsym;
593   this->u2_.relobj = relobj;
594   if (dynamic)
595     this->set_needs_dynsym_index();
596 }
597
598 // A reloc against a local symbol.
599
600 template<bool dynamic, int size, bool big_endian>
601 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
602     Sized_relobj<size, big_endian>* relobj,
603     unsigned int local_sym_index,
604     unsigned int type,
605     Output_data* od,
606     Address address,
607     bool is_relative,
608     bool is_section_symbol)
609   : address_(address), local_sym_index_(local_sym_index), type_(type),
610     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
611     shndx_(INVALID_CODE)
612 {
613   gold_assert(local_sym_index != GSYM_CODE
614               && local_sym_index != INVALID_CODE);
615   // this->type_ is a bitfield; make sure TYPE fits.
616   gold_assert(this->type_ == type);
617   this->u1_.relobj = relobj;
618   this->u2_.od = od;
619   if (dynamic)
620     this->set_needs_dynsym_index();
621 }
622
623 template<bool dynamic, int size, bool big_endian>
624 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
625     Sized_relobj<size, big_endian>* relobj,
626     unsigned int local_sym_index,
627     unsigned int type,
628     unsigned int shndx,
629     Address address,
630     bool is_relative,
631     bool is_section_symbol)
632   : address_(address), local_sym_index_(local_sym_index), type_(type),
633     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
634     shndx_(shndx)
635 {
636   gold_assert(local_sym_index != GSYM_CODE
637               && local_sym_index != INVALID_CODE);
638   gold_assert(shndx != INVALID_CODE);
639   // this->type_ is a bitfield; make sure TYPE fits.
640   gold_assert(this->type_ == type);
641   this->u1_.relobj = relobj;
642   this->u2_.relobj = relobj;
643   if (dynamic)
644     this->set_needs_dynsym_index();
645 }
646
647 // A reloc against the STT_SECTION symbol of an output section.
648
649 template<bool dynamic, int size, bool big_endian>
650 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
651     Output_section* os,
652     unsigned int type,
653     Output_data* od,
654     Address address)
655   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
656     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
657 {
658   // this->type_ is a bitfield; make sure TYPE fits.
659   gold_assert(this->type_ == type);
660   this->u1_.os = os;
661   this->u2_.od = od;
662   if (dynamic)
663     this->set_needs_dynsym_index();
664   else
665     os->set_needs_symtab_index();
666 }
667
668 template<bool dynamic, int size, bool big_endian>
669 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
670     Output_section* os,
671     unsigned int type,
672     Relobj* relobj,
673     unsigned int shndx,
674     Address address)
675   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
676     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
677 {
678   gold_assert(shndx != INVALID_CODE);
679   // this->type_ is a bitfield; make sure TYPE fits.
680   gold_assert(this->type_ == type);
681   this->u1_.os = os;
682   this->u2_.relobj = relobj;
683   if (dynamic)
684     this->set_needs_dynsym_index();
685   else
686     os->set_needs_symtab_index();
687 }
688
689 // Record that we need a dynamic symbol index for this relocation.
690
691 template<bool dynamic, int size, bool big_endian>
692 void
693 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
694 set_needs_dynsym_index()
695 {
696   if (this->is_relative_)
697     return;
698   switch (this->local_sym_index_)
699     {
700     case INVALID_CODE:
701       gold_unreachable();
702
703     case GSYM_CODE:
704       this->u1_.gsym->set_needs_dynsym_entry();
705       break;
706
707     case SECTION_CODE:
708       this->u1_.os->set_needs_dynsym_index();
709       break;
710
711     case 0:
712       break;
713
714     default:
715       {
716         const unsigned int lsi = this->local_sym_index_;
717         if (!this->is_section_symbol_)
718           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
719         else
720           {
721             section_offset_type dummy;
722             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
723             gold_assert(os != NULL);
724             os->set_needs_dynsym_index();
725           }
726       }
727       break;
728     }
729 }
730
731 // Get the symbol index of a relocation.
732
733 template<bool dynamic, int size, bool big_endian>
734 unsigned int
735 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
736   const
737 {
738   unsigned int index;
739   switch (this->local_sym_index_)
740     {
741     case INVALID_CODE:
742       gold_unreachable();
743
744     case GSYM_CODE:
745       if (this->u1_.gsym == NULL)
746         index = 0;
747       else if (dynamic)
748         index = this->u1_.gsym->dynsym_index();
749       else
750         index = this->u1_.gsym->symtab_index();
751       break;
752
753     case SECTION_CODE:
754       if (dynamic)
755         index = this->u1_.os->dynsym_index();
756       else
757         index = this->u1_.os->symtab_index();
758       break;
759
760     case 0:
761       // Relocations without symbols use a symbol index of 0.
762       index = 0;
763       break;
764
765     default:
766       {
767         const unsigned int lsi = this->local_sym_index_;
768         if (!this->is_section_symbol_)
769           {
770             if (dynamic)
771               index = this->u1_.relobj->dynsym_index(lsi);
772             else
773               index = this->u1_.relobj->symtab_index(lsi);
774           }
775         else
776           {
777             section_offset_type dummy;
778             Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
779             gold_assert(os != NULL);
780             if (dynamic)
781               index = os->dynsym_index();
782             else
783               index = os->symtab_index();
784           }
785       }
786       break;
787     }
788   gold_assert(index != -1U);
789   return index;
790 }
791
792 // For a local section symbol, get the section offset of the input
793 // section within the output section.
794
795 template<bool dynamic, int size, bool big_endian>
796 section_offset_type
797 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
798   local_section_offset() const
799 {
800   const unsigned int lsi = this->local_sym_index_;
801   section_offset_type offset;
802   Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
803   gold_assert(os != NULL);
804   return offset;
805 }
806
807 // Write out the offset and info fields of a Rel or Rela relocation
808 // entry.
809
810 template<bool dynamic, int size, bool big_endian>
811 template<typename Write_rel>
812 void
813 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
814     Write_rel* wr) const
815 {
816   Address address = this->address_;
817   if (this->shndx_ != INVALID_CODE)
818     {
819       section_offset_type off;
820       Output_section* os = this->u2_.relobj->output_section(this->shndx_,
821                                                             &off);
822       gold_assert(os != NULL);
823       if (off != -1)
824         address += os->address() + off;
825       else
826         {
827           address = os->output_address(this->u2_.relobj, this->shndx_,
828                                        address);
829           gold_assert(address != -1U);
830         }
831     }
832   else if (this->u2_.od != NULL)
833     address += this->u2_.od->address();
834   wr->put_r_offset(address);
835   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
836   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
837 }
838
839 // Write out a Rel relocation.
840
841 template<bool dynamic, int size, bool big_endian>
842 void
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
844     unsigned char* pov) const
845 {
846   elfcpp::Rel_write<size, big_endian> orel(pov);
847   this->write_rel(&orel);
848 }
849
850 // Get the value of the symbol referred to by a Rel relocation.
851
852 template<bool dynamic, int size, bool big_endian>
853 typename elfcpp::Elf_types<size>::Elf_Addr
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
855 {
856   if (this->local_sym_index_ == GSYM_CODE)
857     {
858       const Sized_symbol<size>* sym;
859       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
860       return sym->value();
861     }
862   gold_assert(this->local_sym_index_ != SECTION_CODE
863               && this->local_sym_index_ != INVALID_CODE);
864   const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
865   return relobj->local_symbol_value(this->local_sym_index_);
866 }
867
868 // Write out a Rela relocation.
869
870 template<bool dynamic, int size, bool big_endian>
871 void
872 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
873     unsigned char* pov) const
874 {
875   elfcpp::Rela_write<size, big_endian> orel(pov);
876   this->rel_.write_rel(&orel);
877   Addend addend = this->addend_;
878   if (this->rel_.is_relative())
879     addend += this->rel_.symbol_value();
880   if (this->rel_.is_local_section_symbol())
881     addend += this->rel_.local_section_offset();
882   orel.put_r_addend(addend);
883 }
884
885 // Output_data_reloc_base methods.
886
887 // Adjust the output section.
888
889 template<int sh_type, bool dynamic, int size, bool big_endian>
890 void
891 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
892     ::do_adjust_output_section(Output_section* os)
893 {
894   if (sh_type == elfcpp::SHT_REL)
895     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
896   else if (sh_type == elfcpp::SHT_RELA)
897     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
898   else
899     gold_unreachable();
900   if (dynamic)
901     os->set_should_link_to_dynsym();
902   else
903     os->set_should_link_to_symtab();
904 }
905
906 // Write out relocation data.
907
908 template<int sh_type, bool dynamic, int size, bool big_endian>
909 void
910 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
911     Output_file* of)
912 {
913   const off_t off = this->offset();
914   const off_t oview_size = this->data_size();
915   unsigned char* const oview = of->get_output_view(off, oview_size);
916
917   unsigned char* pov = oview;
918   for (typename Relocs::const_iterator p = this->relocs_.begin();
919        p != this->relocs_.end();
920        ++p)
921     {
922       p->write(pov);
923       pov += reloc_size;
924     }
925
926   gold_assert(pov - oview == oview_size);
927
928   of->write_output_view(off, oview_size, oview);
929
930   // We no longer need the relocation entries.
931   this->relocs_.clear();
932 }
933
934 // Class Output_relocatable_relocs.
935
936 template<int sh_type, int size, bool big_endian>
937 void
938 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
939 {
940   this->set_data_size(this->rr_->output_reloc_count()
941                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
942 }
943
944 // class Output_data_group.
945
946 template<int size, bool big_endian>
947 Output_data_group<size, big_endian>::Output_data_group(
948     Sized_relobj<size, big_endian>* relobj,
949     section_size_type entry_count,
950     const elfcpp::Elf_Word* contents)
951   : Output_section_data(entry_count * 4, 4),
952     relobj_(relobj)
953 {
954   this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
955   for (section_size_type i = 1; i < entry_count; ++i)
956     {
957       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
958       this->input_sections_.push_back(shndx);
959     }
960 }
961
962 // Write out the section group, which means translating the section
963 // indexes to apply to the output file.
964
965 template<int size, bool big_endian>
966 void
967 Output_data_group<size, big_endian>::do_write(Output_file* of)
968 {
969   const off_t off = this->offset();
970   const section_size_type oview_size =
971     convert_to_section_size_type(this->data_size());
972   unsigned char* const oview = of->get_output_view(off, oview_size);
973
974   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
975   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
976   ++contents;
977
978   for (std::vector<unsigned int>::const_iterator p =
979          this->input_sections_.begin();
980        p != this->input_sections_.end();
981        ++p, ++contents)
982     {
983       section_offset_type dummy;
984       Output_section* os = this->relobj_->output_section(*p, &dummy);
985
986       unsigned int output_shndx;
987       if (os != NULL)
988         output_shndx = os->out_shndx();
989       else
990         {
991           this->relobj_->error(_("section group retained but "
992                                  "group element discarded"));
993           output_shndx = 0;
994         }
995
996       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
997     }
998
999   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1000   gold_assert(wrote == oview_size);
1001
1002   of->write_output_view(off, oview_size, oview);
1003
1004   // We no longer need this information.
1005   this->input_sections_.clear();
1006 }
1007
1008 // Output_data_got::Got_entry methods.
1009
1010 // Write out the entry.
1011
1012 template<int size, bool big_endian>
1013 void
1014 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1015 {
1016   Valtype val = 0;
1017
1018   switch (this->local_sym_index_)
1019     {
1020     case GSYM_CODE:
1021       {
1022         // If the symbol is resolved locally, we need to write out the
1023         // link-time value, which will be relocated dynamically by a
1024         // RELATIVE relocation.
1025         Symbol* gsym = this->u_.gsym;
1026         Sized_symbol<size>* sgsym;
1027         // This cast is a bit ugly.  We don't want to put a
1028         // virtual method in Symbol, because we want Symbol to be
1029         // as small as possible.
1030         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1031         val = sgsym->value();
1032       }
1033       break;
1034
1035     case CONSTANT_CODE:
1036       val = this->u_.constant;
1037       break;
1038
1039     default:
1040       val = this->u_.object->local_symbol_value(this->local_sym_index_);
1041       break;
1042     }
1043
1044   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1045 }
1046
1047 // Output_data_got methods.
1048
1049 // Add an entry for a global symbol to the GOT.  This returns true if
1050 // this is a new GOT entry, false if the symbol already had a GOT
1051 // entry.
1052
1053 template<int size, bool big_endian>
1054 bool
1055 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
1056 {
1057   if (gsym->has_got_offset())
1058     return false;
1059
1060   this->entries_.push_back(Got_entry(gsym));
1061   this->set_got_size();
1062   gsym->set_got_offset(this->last_got_offset());
1063   return true;
1064 }
1065
1066 // Add an entry for a global symbol to the GOT, and add a dynamic
1067 // relocation of type R_TYPE for the GOT entry.
1068 template<int size, bool big_endian>
1069 void
1070 Output_data_got<size, big_endian>::add_global_with_rel(
1071     Symbol* gsym,
1072     Rel_dyn* rel_dyn,
1073     unsigned int r_type)
1074 {
1075   if (gsym->has_got_offset())
1076     return;
1077
1078   this->entries_.push_back(Got_entry());
1079   this->set_got_size();
1080   unsigned int got_offset = this->last_got_offset();
1081   gsym->set_got_offset(got_offset);
1082   rel_dyn->add_global(gsym, r_type, this, got_offset);
1083 }
1084
1085 template<int size, bool big_endian>
1086 void
1087 Output_data_got<size, big_endian>::add_global_with_rela(
1088     Symbol* gsym,
1089     Rela_dyn* rela_dyn,
1090     unsigned int r_type)
1091 {
1092   if (gsym->has_got_offset())
1093     return;
1094
1095   this->entries_.push_back(Got_entry());
1096   this->set_got_size();
1097   unsigned int got_offset = this->last_got_offset();
1098   gsym->set_got_offset(got_offset);
1099   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1100 }
1101
1102 // Add an entry for a local symbol to the GOT.  This returns true if
1103 // this is a new GOT entry, false if the symbol already has a GOT
1104 // entry.
1105
1106 template<int size, bool big_endian>
1107 bool
1108 Output_data_got<size, big_endian>::add_local(
1109     Sized_relobj<size, big_endian>* object,
1110     unsigned int symndx)
1111 {
1112   if (object->local_has_got_offset(symndx))
1113     return false;
1114
1115   this->entries_.push_back(Got_entry(object, symndx));
1116   this->set_got_size();
1117   object->set_local_got_offset(symndx, this->last_got_offset());
1118   return true;
1119 }
1120
1121 // Add an entry for a local symbol to the GOT, and add a dynamic
1122 // relocation of type R_TYPE for the GOT entry.
1123 template<int size, bool big_endian>
1124 void
1125 Output_data_got<size, big_endian>::add_local_with_rel(
1126     Sized_relobj<size, big_endian>* object,
1127     unsigned int symndx,
1128     Rel_dyn* rel_dyn,
1129     unsigned int r_type)
1130 {
1131   if (object->local_has_got_offset(symndx))
1132     return;
1133
1134   this->entries_.push_back(Got_entry());
1135   this->set_got_size();
1136   unsigned int got_offset = this->last_got_offset();
1137   object->set_local_got_offset(symndx, got_offset);
1138   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1139 }
1140
1141 template<int size, bool big_endian>
1142 void
1143 Output_data_got<size, big_endian>::add_local_with_rela(
1144     Sized_relobj<size, big_endian>* object,
1145     unsigned int symndx,
1146     Rela_dyn* rela_dyn,
1147     unsigned int r_type)
1148 {
1149   if (object->local_has_got_offset(symndx))
1150     return;
1151
1152   this->entries_.push_back(Got_entry());
1153   this->set_got_size();
1154   unsigned int got_offset = this->last_got_offset();
1155   object->set_local_got_offset(symndx, got_offset);
1156   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1157 }
1158
1159 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
1160 // In a pair of entries, the first value in the pair will be used for the
1161 // module index, and the second value will be used for the dtv-relative
1162 // offset. This returns true if this is a new GOT entry, false if the symbol
1163 // already has a GOT entry.
1164
1165 template<int size, bool big_endian>
1166 bool
1167 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
1168 {
1169   if (gsym->has_tls_got_offset(need_pair))
1170     return false;
1171
1172   this->entries_.push_back(Got_entry(gsym));
1173   gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
1174   if (need_pair)
1175     this->entries_.push_back(Got_entry(gsym));
1176   this->set_got_size();
1177   return true;
1178 }
1179
1180 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1181 // relocation of type R_TYPE.
1182 template<int size, bool big_endian>
1183 void
1184 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1185     Symbol* gsym,
1186     Rel_dyn* rel_dyn,
1187     unsigned int r_type)
1188 {
1189   if (gsym->has_tls_got_offset(false))
1190     return;
1191
1192   this->entries_.push_back(Got_entry());
1193   this->set_got_size();
1194   unsigned int got_offset = this->last_got_offset();
1195   gsym->set_tls_got_offset(got_offset, false);
1196   rel_dyn->add_global(gsym, r_type, this, got_offset);
1197 }
1198
1199 template<int size, bool big_endian>
1200 void
1201 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1202     Symbol* gsym,
1203     Rela_dyn* rela_dyn,
1204     unsigned int r_type)
1205 {
1206   if (gsym->has_tls_got_offset(false))
1207     return;
1208
1209   this->entries_.push_back(Got_entry());
1210   this->set_got_size();
1211   unsigned int got_offset = this->last_got_offset();
1212   gsym->set_tls_got_offset(got_offset, false);
1213   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1214 }
1215
1216 // Add a pair of entries for a global TLS symbol to the GOT, and add
1217 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1218 template<int size, bool big_endian>
1219 void
1220 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1221     Symbol* gsym,
1222     Rel_dyn* rel_dyn,
1223     unsigned int mod_r_type,
1224     unsigned int dtv_r_type)
1225 {
1226   if (gsym->has_tls_got_offset(true))
1227     return;
1228
1229   this->entries_.push_back(Got_entry());
1230   unsigned int got_offset = this->last_got_offset();
1231   gsym->set_tls_got_offset(got_offset, true);
1232   rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1233
1234   this->entries_.push_back(Got_entry());
1235   this->set_got_size();
1236   got_offset = this->last_got_offset();
1237   rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1238 }
1239
1240 template<int size, bool big_endian>
1241 void
1242 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1243     Symbol* gsym,
1244     Rela_dyn* rela_dyn,
1245     unsigned int mod_r_type,
1246     unsigned int dtv_r_type)
1247 {
1248   if (gsym->has_tls_got_offset(true))
1249     return;
1250
1251   this->entries_.push_back(Got_entry());
1252   unsigned int got_offset = this->last_got_offset();
1253   gsym->set_tls_got_offset(got_offset, true);
1254   rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1255
1256   this->entries_.push_back(Got_entry());
1257   this->set_got_size();
1258   got_offset = this->last_got_offset();
1259   rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1260 }
1261
1262 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1263 // In a pair of entries, the first value in the pair will be used for the
1264 // module index, and the second value will be used for the dtv-relative
1265 // offset. This returns true if this is a new GOT entry, false if the symbol
1266 // already has a GOT entry.
1267
1268 template<int size, bool big_endian>
1269 bool
1270 Output_data_got<size, big_endian>::add_local_tls(
1271     Sized_relobj<size, big_endian>* object,
1272     unsigned int symndx,
1273     bool need_pair)
1274 {
1275   if (object->local_has_tls_got_offset(symndx, need_pair))
1276     return false;
1277
1278   this->entries_.push_back(Got_entry(object, symndx));
1279   object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1280   if (need_pair)
1281     this->entries_.push_back(Got_entry(object, symndx));
1282   this->set_got_size();
1283   return true;
1284 }
1285
1286 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1287 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1288 // Because this is a local symbol, the first GOT entry can be relocated
1289 // relative to a section symbol, and the second GOT entry will have an
1290 // dtv-relative value that can be computed at link time.
1291 template<int size, bool big_endian>
1292 void
1293 Output_data_got<size, big_endian>::add_local_tls_with_rel(
1294     Sized_relobj<size, big_endian>* object,
1295     unsigned int symndx,
1296     unsigned int shndx,
1297     bool need_pair,
1298     Rel_dyn* rel_dyn,
1299     unsigned int r_type)
1300 {
1301   if (object->local_has_tls_got_offset(symndx, need_pair))
1302     return;
1303
1304   this->entries_.push_back(Got_entry());
1305   unsigned int got_offset = this->last_got_offset();
1306   object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1307   section_offset_type off;
1308   Output_section* os = object->output_section(shndx, &off);
1309   rel_dyn->add_output_section(os, r_type, this, got_offset);
1310
1311   // The second entry of the pair will be statically initialized
1312   // with the TLS offset of the symbol.
1313   if (need_pair)
1314     this->entries_.push_back(Got_entry(object, symndx));
1315
1316   this->set_got_size();
1317 }
1318
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_got<size, big_endian>::add_local_tls_with_rela(
1322     Sized_relobj<size, big_endian>* object,
1323     unsigned int symndx,
1324     unsigned int shndx,
1325     bool need_pair,
1326     Rela_dyn* rela_dyn,
1327     unsigned int r_type)
1328 {
1329   if (object->local_has_tls_got_offset(symndx, need_pair))
1330     return;
1331
1332   this->entries_.push_back(Got_entry());
1333   unsigned int got_offset = this->last_got_offset();
1334   object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1335   section_offset_type off;
1336   Output_section* os = object->output_section(shndx, &off);
1337   rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1338
1339   // The second entry of the pair will be statically initialized
1340   // with the TLS offset of the symbol.
1341   if (need_pair)
1342     this->entries_.push_back(Got_entry(object, symndx));
1343
1344   this->set_got_size();
1345 }
1346
1347 // Write out the GOT.
1348
1349 template<int size, bool big_endian>
1350 void
1351 Output_data_got<size, big_endian>::do_write(Output_file* of)
1352 {
1353   const int add = size / 8;
1354
1355   const off_t off = this->offset();
1356   const off_t oview_size = this->data_size();
1357   unsigned char* const oview = of->get_output_view(off, oview_size);
1358
1359   unsigned char* pov = oview;
1360   for (typename Got_entries::const_iterator p = this->entries_.begin();
1361        p != this->entries_.end();
1362        ++p)
1363     {
1364       p->write(pov);
1365       pov += add;
1366     }
1367
1368   gold_assert(pov - oview == oview_size);
1369
1370   of->write_output_view(off, oview_size, oview);
1371
1372   // We no longer need the GOT entries.
1373   this->entries_.clear();
1374 }
1375
1376 // Output_data_dynamic::Dynamic_entry methods.
1377
1378 // Write out the entry.
1379
1380 template<int size, bool big_endian>
1381 void
1382 Output_data_dynamic::Dynamic_entry::write(
1383     unsigned char* pov,
1384     const Stringpool* pool) const
1385 {
1386   typename elfcpp::Elf_types<size>::Elf_WXword val;
1387   switch (this->classification_)
1388     {
1389     case DYNAMIC_NUMBER:
1390       val = this->u_.val;
1391       break;
1392
1393     case DYNAMIC_SECTION_ADDRESS:
1394       val = this->u_.od->address();
1395       break;
1396
1397     case DYNAMIC_SECTION_SIZE:
1398       val = this->u_.od->data_size();
1399       break;
1400
1401     case DYNAMIC_SYMBOL:
1402       {
1403         const Sized_symbol<size>* s =
1404           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1405         val = s->value();
1406       }
1407       break;
1408
1409     case DYNAMIC_STRING:
1410       val = pool->get_offset(this->u_.str);
1411       break;
1412
1413     default:
1414       gold_unreachable();
1415     }
1416
1417   elfcpp::Dyn_write<size, big_endian> dw(pov);
1418   dw.put_d_tag(this->tag_);
1419   dw.put_d_val(val);
1420 }
1421
1422 // Output_data_dynamic methods.
1423
1424 // Adjust the output section to set the entry size.
1425
1426 void
1427 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1428 {
1429   if (parameters->target().get_size() == 32)
1430     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1431   else if (parameters->target().get_size() == 64)
1432     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1433   else
1434     gold_unreachable();
1435 }
1436
1437 // Set the final data size.
1438
1439 void
1440 Output_data_dynamic::set_final_data_size()
1441 {
1442   // Add the terminating entry.
1443   this->add_constant(elfcpp::DT_NULL, 0);
1444
1445   int dyn_size;
1446   if (parameters->target().get_size() == 32)
1447     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1448   else if (parameters->target().get_size() == 64)
1449     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1450   else
1451     gold_unreachable();
1452   this->set_data_size(this->entries_.size() * dyn_size);
1453 }
1454
1455 // Write out the dynamic entries.
1456
1457 void
1458 Output_data_dynamic::do_write(Output_file* of)
1459 {
1460   switch (parameters->size_and_endianness())
1461     {
1462 #ifdef HAVE_TARGET_32_LITTLE
1463     case Parameters::TARGET_32_LITTLE:
1464       this->sized_write<32, false>(of);
1465       break;
1466 #endif
1467 #ifdef HAVE_TARGET_32_BIG
1468     case Parameters::TARGET_32_BIG:
1469       this->sized_write<32, true>(of);
1470       break;
1471 #endif
1472 #ifdef HAVE_TARGET_64_LITTLE
1473     case Parameters::TARGET_64_LITTLE:
1474       this->sized_write<64, false>(of);
1475       break;
1476 #endif
1477 #ifdef HAVE_TARGET_64_BIG
1478     case Parameters::TARGET_64_BIG:
1479       this->sized_write<64, true>(of);
1480       break;
1481 #endif
1482     default:
1483       gold_unreachable();
1484     }
1485 }
1486
1487 template<int size, bool big_endian>
1488 void
1489 Output_data_dynamic::sized_write(Output_file* of)
1490 {
1491   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1492
1493   const off_t offset = this->offset();
1494   const off_t oview_size = this->data_size();
1495   unsigned char* const oview = of->get_output_view(offset, oview_size);
1496
1497   unsigned char* pov = oview;
1498   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1499        p != this->entries_.end();
1500        ++p)
1501     {
1502       p->write<size, big_endian>(pov, this->pool_);
1503       pov += dyn_size;
1504     }
1505
1506   gold_assert(pov - oview == oview_size);
1507
1508   of->write_output_view(offset, oview_size, oview);
1509
1510   // We no longer need the dynamic entries.
1511   this->entries_.clear();
1512 }
1513
1514 // Output_section::Input_section methods.
1515
1516 // Return the data size.  For an input section we store the size here.
1517 // For an Output_section_data, we have to ask it for the size.
1518
1519 off_t
1520 Output_section::Input_section::data_size() const
1521 {
1522   if (this->is_input_section())
1523     return this->u1_.data_size;
1524   else
1525     return this->u2_.posd->data_size();
1526 }
1527
1528 // Set the address and file offset.
1529
1530 void
1531 Output_section::Input_section::set_address_and_file_offset(
1532     uint64_t address,
1533     off_t file_offset,
1534     off_t section_file_offset)
1535 {
1536   if (this->is_input_section())
1537     this->u2_.object->set_section_offset(this->shndx_,
1538                                          file_offset - section_file_offset);
1539   else
1540     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1541 }
1542
1543 // Reset the address and file offset.
1544
1545 void
1546 Output_section::Input_section::reset_address_and_file_offset()
1547 {
1548   if (!this->is_input_section())
1549     this->u2_.posd->reset_address_and_file_offset();
1550 }
1551
1552 // Finalize the data size.
1553
1554 void
1555 Output_section::Input_section::finalize_data_size()
1556 {
1557   if (!this->is_input_section())
1558     this->u2_.posd->finalize_data_size();
1559 }
1560
1561 // Try to turn an input offset into an output offset.  We want to
1562 // return the output offset relative to the start of this
1563 // Input_section in the output section.
1564
1565 inline bool
1566 Output_section::Input_section::output_offset(
1567     const Relobj* object,
1568     unsigned int shndx,
1569     section_offset_type offset,
1570     section_offset_type *poutput) const
1571 {
1572   if (!this->is_input_section())
1573     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1574   else
1575     {
1576       if (this->shndx_ != shndx || this->u2_.object != object)
1577         return false;
1578       *poutput = offset;
1579       return true;
1580     }
1581 }
1582
1583 // Return whether this is the merge section for the input section
1584 // SHNDX in OBJECT.
1585
1586 inline bool
1587 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1588                                                     unsigned int shndx) const
1589 {
1590   if (this->is_input_section())
1591     return false;
1592   return this->u2_.posd->is_merge_section_for(object, shndx);
1593 }
1594
1595 // Write out the data.  We don't have to do anything for an input
1596 // section--they are handled via Object::relocate--but this is where
1597 // we write out the data for an Output_section_data.
1598
1599 void
1600 Output_section::Input_section::write(Output_file* of)
1601 {
1602   if (!this->is_input_section())
1603     this->u2_.posd->write(of);
1604 }
1605
1606 // Write the data to a buffer.  As for write(), we don't have to do
1607 // anything for an input section.
1608
1609 void
1610 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1611 {
1612   if (!this->is_input_section())
1613     this->u2_.posd->write_to_buffer(buffer);
1614 }
1615
1616 // Output_section methods.
1617
1618 // Construct an Output_section.  NAME will point into a Stringpool.
1619
1620 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1621                                elfcpp::Elf_Xword flags)
1622   : name_(name),
1623     addralign_(0),
1624     entsize_(0),
1625     load_address_(0),
1626     link_section_(NULL),
1627     link_(0),
1628     info_section_(NULL),
1629     info_symndx_(NULL),
1630     info_(0),
1631     type_(type),
1632     flags_(flags),
1633     out_shndx_(-1U),
1634     symtab_index_(0),
1635     dynsym_index_(0),
1636     input_sections_(),
1637     first_input_offset_(0),
1638     fills_(),
1639     postprocessing_buffer_(NULL),
1640     needs_symtab_index_(false),
1641     needs_dynsym_index_(false),
1642     should_link_to_symtab_(false),
1643     should_link_to_dynsym_(false),
1644     after_input_sections_(false),
1645     requires_postprocessing_(false),
1646     found_in_sections_clause_(false),
1647     has_load_address_(false),
1648     info_uses_section_index_(false),
1649     tls_offset_(0)
1650 {
1651   // An unallocated section has no address.  Forcing this means that
1652   // we don't need special treatment for symbols defined in debug
1653   // sections.
1654   if ((flags & elfcpp::SHF_ALLOC) == 0)
1655     this->set_address(0);
1656 }
1657
1658 Output_section::~Output_section()
1659 {
1660 }
1661
1662 // Set the entry size.
1663
1664 void
1665 Output_section::set_entsize(uint64_t v)
1666 {
1667   if (this->entsize_ == 0)
1668     this->entsize_ = v;
1669   else
1670     gold_assert(this->entsize_ == v);
1671 }
1672
1673 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1674 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1675 // relocation section which applies to this section, or 0 if none, or
1676 // -1U if more than one.  Return the offset of the input section
1677 // within the output section.  Return -1 if the input section will
1678 // receive special handling.  In the normal case we don't always keep
1679 // track of input sections for an Output_section.  Instead, each
1680 // Object keeps track of the Output_section for each of its input
1681 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1682 // track of input sections here; this is used when SECTIONS appears in
1683 // a linker script.
1684
1685 template<int size, bool big_endian>
1686 off_t
1687 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1688                                   unsigned int shndx,
1689                                   const char* secname,
1690                                   const elfcpp::Shdr<size, big_endian>& shdr,
1691                                   unsigned int reloc_shndx,
1692                                   bool have_sections_script)
1693 {
1694   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1695   if ((addralign & (addralign - 1)) != 0)
1696     {
1697       object->error(_("invalid alignment %lu for section \"%s\""),
1698                     static_cast<unsigned long>(addralign), secname);
1699       addralign = 1;
1700     }
1701
1702   if (addralign > this->addralign_)
1703     this->addralign_ = addralign;
1704
1705   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1706   this->flags_ |= (sh_flags
1707                    & (elfcpp::SHF_WRITE
1708                       | elfcpp::SHF_ALLOC
1709                       | elfcpp::SHF_EXECINSTR));
1710
1711   uint64_t entsize = shdr.get_sh_entsize();
1712
1713   // .debug_str is a mergeable string section, but is not always so
1714   // marked by compilers.  Mark manually here so we can optimize.
1715   if (strcmp(secname, ".debug_str") == 0)
1716     {
1717       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1718       entsize = 1;
1719     }
1720
1721   // If this is a SHF_MERGE section, we pass all the input sections to
1722   // a Output_data_merge.  We don't try to handle relocations for such
1723   // a section.
1724   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1725       && reloc_shndx == 0)
1726     {
1727       if (this->add_merge_input_section(object, shndx, sh_flags,
1728                                         entsize, addralign))
1729         {
1730           // Tell the relocation routines that they need to call the
1731           // output_offset method to determine the final address.
1732           return -1;
1733         }
1734     }
1735
1736   off_t offset_in_section = this->current_data_size_for_child();
1737   off_t aligned_offset_in_section = align_address(offset_in_section,
1738                                                   addralign);
1739
1740   if (aligned_offset_in_section > offset_in_section
1741       && !have_sections_script
1742       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1743       && object->target()->has_code_fill())
1744     {
1745       // We need to add some fill data.  Using fill_list_ when
1746       // possible is an optimization, since we will often have fill
1747       // sections without input sections.
1748       off_t fill_len = aligned_offset_in_section - offset_in_section;
1749       if (this->input_sections_.empty())
1750         this->fills_.push_back(Fill(offset_in_section, fill_len));
1751       else
1752         {
1753           // FIXME: When relaxing, the size needs to adjust to
1754           // maintain a constant alignment.
1755           std::string fill_data(object->target()->code_fill(fill_len));
1756           Output_data_const* odc = new Output_data_const(fill_data, 1);
1757           this->input_sections_.push_back(Input_section(odc));
1758         }
1759     }
1760
1761   this->set_current_data_size_for_child(aligned_offset_in_section
1762                                         + shdr.get_sh_size());
1763
1764   // We need to keep track of this section if we are already keeping
1765   // track of sections, or if we are relaxing.  FIXME: Add test for
1766   // relaxing.
1767   if (have_sections_script || !this->input_sections_.empty())
1768     this->input_sections_.push_back(Input_section(object, shndx,
1769                                                   shdr.get_sh_size(),
1770                                                   addralign));
1771
1772   return aligned_offset_in_section;
1773 }
1774
1775 // Add arbitrary data to an output section.
1776
1777 void
1778 Output_section::add_output_section_data(Output_section_data* posd)
1779 {
1780   Input_section inp(posd);
1781   this->add_output_section_data(&inp);
1782
1783   if (posd->is_data_size_valid())
1784     {
1785       off_t offset_in_section = this->current_data_size_for_child();
1786       off_t aligned_offset_in_section = align_address(offset_in_section,
1787                                                       posd->addralign());
1788       this->set_current_data_size_for_child(aligned_offset_in_section
1789                                             + posd->data_size());
1790     }
1791 }
1792
1793 // Add arbitrary data to an output section by Input_section.
1794
1795 void
1796 Output_section::add_output_section_data(Input_section* inp)
1797 {
1798   if (this->input_sections_.empty())
1799     this->first_input_offset_ = this->current_data_size_for_child();
1800
1801   this->input_sections_.push_back(*inp);
1802
1803   uint64_t addralign = inp->addralign();
1804   if (addralign > this->addralign_)
1805     this->addralign_ = addralign;
1806
1807   inp->set_output_section(this);
1808 }
1809
1810 // Add a merge section to an output section.
1811
1812 void
1813 Output_section::add_output_merge_section(Output_section_data* posd,
1814                                          bool is_string, uint64_t entsize)
1815 {
1816   Input_section inp(posd, is_string, entsize);
1817   this->add_output_section_data(&inp);
1818 }
1819
1820 // Add an input section to a SHF_MERGE section.
1821
1822 bool
1823 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1824                                         uint64_t flags, uint64_t entsize,
1825                                         uint64_t addralign)
1826 {
1827   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1828
1829   // We only merge strings if the alignment is not more than the
1830   // character size.  This could be handled, but it's unusual.
1831   if (is_string && addralign > entsize)
1832     return false;
1833
1834   Input_section_list::iterator p;
1835   for (p = this->input_sections_.begin();
1836        p != this->input_sections_.end();
1837        ++p)
1838     if (p->is_merge_section(is_string, entsize, addralign))
1839       {
1840         p->add_input_section(object, shndx);
1841         return true;
1842       }
1843
1844   // We handle the actual constant merging in Output_merge_data or
1845   // Output_merge_string_data.
1846   Output_section_data* posd;
1847   if (!is_string)
1848     posd = new Output_merge_data(entsize, addralign);
1849   else
1850     {
1851       switch (entsize)
1852         {
1853         case 1:
1854           posd = new Output_merge_string<char>(addralign);
1855           break;
1856         case 2:
1857           posd = new Output_merge_string<uint16_t>(addralign);
1858           break;
1859         case 4:
1860           posd = new Output_merge_string<uint32_t>(addralign);
1861           break;
1862         default:
1863           return false;
1864         }
1865     }
1866
1867   this->add_output_merge_section(posd, is_string, entsize);
1868   posd->add_input_section(object, shndx);
1869
1870   return true;
1871 }
1872
1873 // Given an address OFFSET relative to the start of input section
1874 // SHNDX in OBJECT, return whether this address is being included in
1875 // the final link.  This should only be called if SHNDX in OBJECT has
1876 // a special mapping.
1877
1878 bool
1879 Output_section::is_input_address_mapped(const Relobj* object,
1880                                         unsigned int shndx,
1881                                         off_t offset) const
1882 {
1883   gold_assert(object->is_section_specially_mapped(shndx));
1884
1885   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1886        p != this->input_sections_.end();
1887        ++p)
1888     {
1889       section_offset_type output_offset;
1890       if (p->output_offset(object, shndx, offset, &output_offset))
1891         return output_offset != -1;
1892     }
1893
1894   // By default we assume that the address is mapped.  This should
1895   // only be called after we have passed all sections to Layout.  At
1896   // that point we should know what we are discarding.
1897   return true;
1898 }
1899
1900 // Given an address OFFSET relative to the start of input section
1901 // SHNDX in object OBJECT, return the output offset relative to the
1902 // start of the input section in the output section.  This should only
1903 // be called if SHNDX in OBJECT has a special mapping.
1904
1905 section_offset_type
1906 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1907                               section_offset_type offset) const
1908 {
1909   gold_assert(object->is_section_specially_mapped(shndx));
1910   // This can only be called meaningfully when layout is complete.
1911   gold_assert(Output_data::is_layout_complete());
1912
1913   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1914        p != this->input_sections_.end();
1915        ++p)
1916     {
1917       section_offset_type output_offset;
1918       if (p->output_offset(object, shndx, offset, &output_offset))
1919         return output_offset;
1920     }
1921   gold_unreachable();
1922 }
1923
1924 // Return the output virtual address of OFFSET relative to the start
1925 // of input section SHNDX in object OBJECT.
1926
1927 uint64_t
1928 Output_section::output_address(const Relobj* object, unsigned int shndx,
1929                                off_t offset) const
1930 {
1931   gold_assert(object->is_section_specially_mapped(shndx));
1932
1933   uint64_t addr = this->address() + this->first_input_offset_;
1934   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1935        p != this->input_sections_.end();
1936        ++p)
1937     {
1938       addr = align_address(addr, p->addralign());
1939       section_offset_type output_offset;
1940       if (p->output_offset(object, shndx, offset, &output_offset))
1941         {
1942           if (output_offset == -1)
1943             return -1U;
1944           return addr + output_offset;
1945         }
1946       addr += p->data_size();
1947     }
1948
1949   // If we get here, it means that we don't know the mapping for this
1950   // input section.  This might happen in principle if
1951   // add_input_section were called before add_output_section_data.
1952   // But it should never actually happen.
1953
1954   gold_unreachable();
1955 }
1956
1957 // Return the output address of the start of the merged section for
1958 // input section SHNDX in object OBJECT.
1959
1960 uint64_t
1961 Output_section::starting_output_address(const Relobj* object,
1962                                         unsigned int shndx) const
1963 {
1964   gold_assert(object->is_section_specially_mapped(shndx));
1965
1966   uint64_t addr = this->address() + this->first_input_offset_;
1967   for (Input_section_list::const_iterator p = this->input_sections_.begin();
1968        p != this->input_sections_.end();
1969        ++p)
1970     {
1971       addr = align_address(addr, p->addralign());
1972
1973       // It would be nice if we could use the existing output_offset
1974       // method to get the output offset of input offset 0.
1975       // Unfortunately we don't know for sure that input offset 0 is
1976       // mapped at all.
1977       if (p->is_merge_section_for(object, shndx))
1978         return addr;
1979
1980       addr += p->data_size();
1981     }
1982   gold_unreachable();
1983 }
1984
1985 // Set the data size of an Output_section.  This is where we handle
1986 // setting the addresses of any Output_section_data objects.
1987
1988 void
1989 Output_section::set_final_data_size()
1990 {
1991   if (this->input_sections_.empty())
1992     {
1993       this->set_data_size(this->current_data_size_for_child());
1994       return;
1995     }
1996
1997   uint64_t address = this->address();
1998   off_t startoff = this->offset();
1999   off_t off = startoff + this->first_input_offset_;
2000   for (Input_section_list::iterator p = this->input_sections_.begin();
2001        p != this->input_sections_.end();
2002        ++p)
2003     {
2004       off = align_address(off, p->addralign());
2005       p->set_address_and_file_offset(address + (off - startoff), off,
2006                                      startoff);
2007       off += p->data_size();
2008     }
2009
2010   this->set_data_size(off - startoff);
2011 }
2012
2013 // Reset the address and file offset.
2014
2015 void
2016 Output_section::do_reset_address_and_file_offset()
2017 {
2018   for (Input_section_list::iterator p = this->input_sections_.begin();
2019        p != this->input_sections_.end();
2020        ++p)
2021     p->reset_address_and_file_offset();
2022 }
2023
2024 // Set the TLS offset.  Called only for SHT_TLS sections.
2025
2026 void
2027 Output_section::do_set_tls_offset(uint64_t tls_base)
2028 {
2029   this->tls_offset_ = this->address() - tls_base;
2030 }
2031
2032 // Write the section header to *OSHDR.
2033
2034 template<int size, bool big_endian>
2035 void
2036 Output_section::write_header(const Layout* layout,
2037                              const Stringpool* secnamepool,
2038                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2039 {
2040   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2041   oshdr->put_sh_type(this->type_);
2042
2043   elfcpp::Elf_Xword flags = this->flags_;
2044   if (this->info_section_ != NULL && this->info_uses_section_index_)
2045     flags |= elfcpp::SHF_INFO_LINK;
2046   oshdr->put_sh_flags(flags);
2047
2048   oshdr->put_sh_addr(this->address());
2049   oshdr->put_sh_offset(this->offset());
2050   oshdr->put_sh_size(this->data_size());
2051   if (this->link_section_ != NULL)
2052     oshdr->put_sh_link(this->link_section_->out_shndx());
2053   else if (this->should_link_to_symtab_)
2054     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2055   else if (this->should_link_to_dynsym_)
2056     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2057   else
2058     oshdr->put_sh_link(this->link_);
2059
2060   elfcpp::Elf_Word info;
2061   if (this->info_section_ != NULL)
2062     {
2063       if (this->info_uses_section_index_)
2064         info = this->info_section_->out_shndx();
2065       else
2066         info = this->info_section_->symtab_index();
2067     }
2068   else if (this->info_symndx_ != NULL)
2069     info = this->info_symndx_->symtab_index();
2070   else
2071     info = this->info_;
2072   oshdr->put_sh_info(info);
2073
2074   oshdr->put_sh_addralign(this->addralign_);
2075   oshdr->put_sh_entsize(this->entsize_);
2076 }
2077
2078 // Write out the data.  For input sections the data is written out by
2079 // Object::relocate, but we have to handle Output_section_data objects
2080 // here.
2081
2082 void
2083 Output_section::do_write(Output_file* of)
2084 {
2085   gold_assert(!this->requires_postprocessing());
2086
2087   off_t output_section_file_offset = this->offset();
2088   for (Fill_list::iterator p = this->fills_.begin();
2089        p != this->fills_.end();
2090        ++p)
2091     {
2092       std::string fill_data(parameters->target().code_fill(p->length()));
2093       of->write(output_section_file_offset + p->section_offset(),
2094                 fill_data.data(), fill_data.size());
2095     }
2096
2097   for (Input_section_list::iterator p = this->input_sections_.begin();
2098        p != this->input_sections_.end();
2099        ++p)
2100     p->write(of);
2101 }
2102
2103 // If a section requires postprocessing, create the buffer to use.
2104
2105 void
2106 Output_section::create_postprocessing_buffer()
2107 {
2108   gold_assert(this->requires_postprocessing());
2109
2110   if (this->postprocessing_buffer_ != NULL)
2111     return;
2112
2113   if (!this->input_sections_.empty())
2114     {
2115       off_t off = this->first_input_offset_;
2116       for (Input_section_list::iterator p = this->input_sections_.begin();
2117            p != this->input_sections_.end();
2118            ++p)
2119         {
2120           off = align_address(off, p->addralign());
2121           p->finalize_data_size();
2122           off += p->data_size();
2123         }
2124       this->set_current_data_size_for_child(off);
2125     }
2126
2127   off_t buffer_size = this->current_data_size_for_child();
2128   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2129 }
2130
2131 // Write all the data of an Output_section into the postprocessing
2132 // buffer.  This is used for sections which require postprocessing,
2133 // such as compression.  Input sections are handled by
2134 // Object::Relocate.
2135
2136 void
2137 Output_section::write_to_postprocessing_buffer()
2138 {
2139   gold_assert(this->requires_postprocessing());
2140
2141   unsigned char* buffer = this->postprocessing_buffer();
2142   for (Fill_list::iterator p = this->fills_.begin();
2143        p != this->fills_.end();
2144        ++p)
2145     {
2146       std::string fill_data(parameters->target().code_fill(p->length()));
2147       memcpy(buffer + p->section_offset(), fill_data.data(),
2148              fill_data.size());
2149     }
2150
2151   off_t off = this->first_input_offset_;
2152   for (Input_section_list::iterator p = this->input_sections_.begin();
2153        p != this->input_sections_.end();
2154        ++p)
2155     {
2156       off = align_address(off, p->addralign());
2157       p->write_to_buffer(buffer + off);
2158       off += p->data_size();
2159     }
2160 }
2161
2162 // Get the input sections for linker script processing.  We leave
2163 // behind the Output_section_data entries.  Note that this may be
2164 // slightly incorrect for merge sections.  We will leave them behind,
2165 // but it is possible that the script says that they should follow
2166 // some other input sections, as in:
2167 //    .rodata { *(.rodata) *(.rodata.cst*) }
2168 // For that matter, we don't handle this correctly:
2169 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2170 // With luck this will never matter.
2171
2172 uint64_t
2173 Output_section::get_input_sections(
2174     uint64_t address,
2175     const std::string& fill,
2176     std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2177 {
2178   uint64_t orig_address = address;
2179
2180   address = align_address(address, this->addralign());
2181
2182   Input_section_list remaining;
2183   for (Input_section_list::iterator p = this->input_sections_.begin();
2184        p != this->input_sections_.end();
2185        ++p)
2186     {
2187       if (p->is_input_section())
2188         input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2189       else
2190         {
2191           uint64_t aligned_address = align_address(address, p->addralign());
2192           if (aligned_address != address && !fill.empty())
2193             {
2194               section_size_type length =
2195                 convert_to_section_size_type(aligned_address - address);
2196               std::string this_fill;
2197               this_fill.reserve(length);
2198               while (this_fill.length() + fill.length() <= length)
2199                 this_fill += fill;
2200               if (this_fill.length() < length)
2201                 this_fill.append(fill, 0, length - this_fill.length());
2202
2203               Output_section_data* posd = new Output_data_const(this_fill, 0);
2204               remaining.push_back(Input_section(posd));
2205             }
2206           address = aligned_address;
2207
2208           remaining.push_back(*p);
2209
2210           p->finalize_data_size();
2211           address += p->data_size();
2212         }
2213     }
2214
2215   this->input_sections_.swap(remaining);
2216   this->first_input_offset_ = 0;
2217
2218   uint64_t data_size = address - orig_address;
2219   this->set_current_data_size_for_child(data_size);
2220   return data_size;
2221 }
2222
2223 // Add an input section from a script.
2224
2225 void
2226 Output_section::add_input_section_for_script(Relobj* object,
2227                                              unsigned int shndx,
2228                                              off_t data_size,
2229                                              uint64_t addralign)
2230 {
2231   if (addralign > this->addralign_)
2232     this->addralign_ = addralign;
2233
2234   off_t offset_in_section = this->current_data_size_for_child();
2235   off_t aligned_offset_in_section = align_address(offset_in_section,
2236                                                   addralign);
2237
2238   this->set_current_data_size_for_child(aligned_offset_in_section
2239                                         + data_size);
2240
2241   this->input_sections_.push_back(Input_section(object, shndx,
2242                                                 data_size, addralign));
2243 }
2244
2245 // Print stats for merge sections to stderr.
2246
2247 void
2248 Output_section::print_merge_stats()
2249 {
2250   Input_section_list::iterator p;
2251   for (p = this->input_sections_.begin();
2252        p != this->input_sections_.end();
2253        ++p)
2254     p->print_merge_stats(this->name_);
2255 }
2256
2257 // Output segment methods.
2258
2259 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2260   : output_data_(),
2261     output_bss_(),
2262     vaddr_(0),
2263     paddr_(0),
2264     memsz_(0),
2265     max_align_(0),
2266     min_p_align_(0),
2267     offset_(0),
2268     filesz_(0),
2269     type_(type),
2270     flags_(flags),
2271     is_max_align_known_(false),
2272     are_addresses_set_(false)
2273 {
2274 }
2275
2276 // Add an Output_section to an Output_segment.
2277
2278 void
2279 Output_segment::add_output_section(Output_section* os,
2280                                    elfcpp::Elf_Word seg_flags,
2281                                    bool front)
2282 {
2283   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2284   gold_assert(!this->is_max_align_known_);
2285
2286   // Update the segment flags.
2287   this->flags_ |= seg_flags;
2288
2289   Output_segment::Output_data_list* pdl;
2290   if (os->type() == elfcpp::SHT_NOBITS)
2291     pdl = &this->output_bss_;
2292   else
2293     pdl = &this->output_data_;
2294
2295   // So that PT_NOTE segments will work correctly, we need to ensure
2296   // that all SHT_NOTE sections are adjacent.  This will normally
2297   // happen automatically, because all the SHT_NOTE input sections
2298   // will wind up in the same output section.  However, it is possible
2299   // for multiple SHT_NOTE input sections to have different section
2300   // flags, and thus be in different output sections, but for the
2301   // different section flags to map into the same segment flags and
2302   // thus the same output segment.
2303
2304   // Note that while there may be many input sections in an output
2305   // section, there are normally only a few output sections in an
2306   // output segment.  This loop is expected to be fast.
2307
2308   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2309     {
2310       Output_segment::Output_data_list::iterator p = pdl->end();
2311       do
2312         {
2313           --p;
2314           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2315             {
2316               // We don't worry about the FRONT parameter.
2317               ++p;
2318               pdl->insert(p, os);
2319               return;
2320             }
2321         }
2322       while (p != pdl->begin());
2323     }
2324
2325   // Similarly, so that PT_TLS segments will work, we need to group
2326   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
2327   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2328   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
2329   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
2330   // and the PT_TLS segment -- we do this grouping only for the
2331   // PT_LOAD segment.
2332   if (this->type_ != elfcpp::PT_TLS
2333       && (os->flags() & elfcpp::SHF_TLS) != 0
2334       && !this->output_data_.empty())
2335     {
2336       pdl = &this->output_data_;
2337       bool nobits = os->type() == elfcpp::SHT_NOBITS;
2338       bool sawtls = false;
2339       Output_segment::Output_data_list::iterator p = pdl->end();
2340       do
2341         {
2342           --p;
2343           bool insert;
2344           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2345             {
2346               sawtls = true;
2347               // Put a NOBITS section after the first TLS section.
2348               // But a PROGBITS section after the first TLS/PROGBITS
2349               // section.
2350               insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2351             }
2352           else
2353             {
2354               // If we've gone past the TLS sections, but we've seen a
2355               // TLS section, then we need to insert this section now.
2356               insert = sawtls;
2357             }
2358
2359           if (insert)
2360             {
2361               // We don't worry about the FRONT parameter.
2362               ++p;
2363               pdl->insert(p, os);
2364               return;
2365             }
2366         }
2367       while (p != pdl->begin());
2368
2369       // There are no TLS sections yet; put this one at the requested
2370       // location in the section list.
2371     }
2372
2373   if (front)
2374     pdl->push_front(os);
2375   else
2376     pdl->push_back(os);
2377 }
2378
2379 // Remove an Output_section from this segment.  It is an error if it
2380 // is not present.
2381
2382 void
2383 Output_segment::remove_output_section(Output_section* os)
2384 {
2385   // We only need this for SHT_PROGBITS.
2386   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2387   for (Output_data_list::iterator p = this->output_data_.begin();
2388        p != this->output_data_.end();
2389        ++p)
2390    {
2391      if (*p == os)
2392        {
2393          this->output_data_.erase(p);
2394          return;
2395        }
2396    }
2397   gold_unreachable();
2398 }
2399
2400 // Add an Output_data (which is not an Output_section) to the start of
2401 // a segment.
2402
2403 void
2404 Output_segment::add_initial_output_data(Output_data* od)
2405 {
2406   gold_assert(!this->is_max_align_known_);
2407   this->output_data_.push_front(od);
2408 }
2409
2410 // Return the maximum alignment of the Output_data in Output_segment.
2411
2412 uint64_t
2413 Output_segment::maximum_alignment()
2414 {
2415   if (!this->is_max_align_known_)
2416     {
2417       uint64_t addralign;
2418
2419       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2420       if (addralign > this->max_align_)
2421         this->max_align_ = addralign;
2422
2423       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2424       if (addralign > this->max_align_)
2425         this->max_align_ = addralign;
2426
2427       this->is_max_align_known_ = true;
2428     }
2429
2430   return this->max_align_;
2431 }
2432
2433 // Return the maximum alignment of a list of Output_data.
2434
2435 uint64_t
2436 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2437 {
2438   uint64_t ret = 0;
2439   for (Output_data_list::const_iterator p = pdl->begin();
2440        p != pdl->end();
2441        ++p)
2442     {
2443       uint64_t addralign = (*p)->addralign();
2444       if (addralign > ret)
2445         ret = addralign;
2446     }
2447   return ret;
2448 }
2449
2450 // Return the number of dynamic relocs applied to this segment.
2451
2452 unsigned int
2453 Output_segment::dynamic_reloc_count() const
2454 {
2455   return (this->dynamic_reloc_count_list(&this->output_data_)
2456           + this->dynamic_reloc_count_list(&this->output_bss_));
2457 }
2458
2459 // Return the number of dynamic relocs applied to an Output_data_list.
2460
2461 unsigned int
2462 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2463 {
2464   unsigned int count = 0;
2465   for (Output_data_list::const_iterator p = pdl->begin();
2466        p != pdl->end();
2467        ++p)
2468     count += (*p)->dynamic_reloc_count();
2469   return count;
2470 }
2471
2472 // Set the section addresses for an Output_segment.  If RESET is true,
2473 // reset the addresses first.  ADDR is the address and *POFF is the
2474 // file offset.  Set the section indexes starting with *PSHNDX.
2475 // Return the address of the immediately following segment.  Update
2476 // *POFF and *PSHNDX.
2477
2478 uint64_t
2479 Output_segment::set_section_addresses(bool reset, uint64_t addr, off_t* poff,
2480                                       unsigned int* pshndx)
2481 {
2482   gold_assert(this->type_ == elfcpp::PT_LOAD);
2483
2484   if (!reset && this->are_addresses_set_)
2485     {
2486       gold_assert(this->paddr_ == addr);
2487       addr = this->vaddr_;
2488     }
2489   else
2490     {
2491       this->vaddr_ = addr;
2492       this->paddr_ = addr;
2493       this->are_addresses_set_ = true;
2494     }
2495
2496   off_t orig_off = *poff;
2497   this->offset_ = orig_off;
2498
2499   addr = this->set_section_list_addresses(reset, &this->output_data_,
2500                                           addr, poff, pshndx);
2501   this->filesz_ = *poff - orig_off;
2502
2503   off_t off = *poff;
2504
2505   uint64_t ret = this->set_section_list_addresses(reset, &this->output_bss_,
2506                                                   addr, poff, pshndx);
2507   this->memsz_ = *poff - orig_off;
2508
2509   // Ignore the file offset adjustments made by the BSS Output_data
2510   // objects.
2511   *poff = off;
2512
2513   return ret;
2514 }
2515
2516 // Set the addresses and file offsets in a list of Output_data
2517 // structures.
2518
2519 uint64_t
2520 Output_segment::set_section_list_addresses(bool reset, Output_data_list* pdl,
2521                                            uint64_t addr, off_t* poff,
2522                                            unsigned int* pshndx)
2523 {
2524   off_t startoff = *poff;
2525
2526   off_t off = startoff;
2527   for (Output_data_list::iterator p = pdl->begin();
2528        p != pdl->end();
2529        ++p)
2530     {
2531       if (reset)
2532         (*p)->reset_address_and_file_offset();
2533
2534       // When using a linker script the section will most likely
2535       // already have an address.
2536       if (!(*p)->is_address_valid())
2537         {
2538           off = align_address(off, (*p)->addralign());
2539           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2540         }
2541       else
2542         {
2543           // The script may have inserted a skip forward, but it
2544           // better not have moved backward.
2545           gold_assert((*p)->address() >= addr + (off - startoff));
2546           off += (*p)->address() - (addr + (off - startoff));
2547           (*p)->set_file_offset(off);
2548           (*p)->finalize_data_size();
2549         }
2550
2551       // Unless this is a PT_TLS segment, we want to ignore the size
2552       // of a SHF_TLS/SHT_NOBITS section.  Such a section does not
2553       // affect the size of a PT_LOAD segment.
2554       if (this->type_ == elfcpp::PT_TLS
2555           || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2556           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2557         off += (*p)->data_size();
2558
2559       if ((*p)->is_section())
2560         {
2561           (*p)->set_out_shndx(*pshndx);
2562           ++*pshndx;
2563         }
2564     }
2565
2566   *poff = off;
2567   return addr + (off - startoff);
2568 }
2569
2570 // For a non-PT_LOAD segment, set the offset from the sections, if
2571 // any.
2572
2573 void
2574 Output_segment::set_offset()
2575 {
2576   gold_assert(this->type_ != elfcpp::PT_LOAD);
2577
2578   gold_assert(!this->are_addresses_set_);
2579
2580   if (this->output_data_.empty() && this->output_bss_.empty())
2581     {
2582       this->vaddr_ = 0;
2583       this->paddr_ = 0;
2584       this->are_addresses_set_ = true;
2585       this->memsz_ = 0;
2586       this->min_p_align_ = 0;
2587       this->offset_ = 0;
2588       this->filesz_ = 0;
2589       return;
2590     }
2591
2592   const Output_data* first;
2593   if (this->output_data_.empty())
2594     first = this->output_bss_.front();
2595   else
2596     first = this->output_data_.front();
2597   this->vaddr_ = first->address();
2598   this->paddr_ = (first->has_load_address()
2599                   ? first->load_address()
2600                   : this->vaddr_);
2601   this->are_addresses_set_ = true;
2602   this->offset_ = first->offset();
2603
2604   if (this->output_data_.empty())
2605     this->filesz_ = 0;
2606   else
2607     {
2608       const Output_data* last_data = this->output_data_.back();
2609       this->filesz_ = (last_data->address()
2610                        + last_data->data_size()
2611                        - this->vaddr_);
2612     }
2613
2614   const Output_data* last;
2615   if (this->output_bss_.empty())
2616     last = this->output_data_.back();
2617   else
2618     last = this->output_bss_.back();
2619   this->memsz_ = (last->address()
2620                   + last->data_size()
2621                   - this->vaddr_);
2622 }
2623
2624 // Set the TLS offsets of the sections in the PT_TLS segment.
2625
2626 void
2627 Output_segment::set_tls_offsets()
2628 {
2629   gold_assert(this->type_ == elfcpp::PT_TLS);
2630
2631   for (Output_data_list::iterator p = this->output_data_.begin();
2632        p != this->output_data_.end();
2633        ++p)
2634     (*p)->set_tls_offset(this->vaddr_);
2635
2636   for (Output_data_list::iterator p = this->output_bss_.begin();
2637        p != this->output_bss_.end();
2638        ++p)
2639     (*p)->set_tls_offset(this->vaddr_);
2640 }
2641
2642 // Return the address of the first section.
2643
2644 uint64_t
2645 Output_segment::first_section_load_address() const
2646 {
2647   for (Output_data_list::const_iterator p = this->output_data_.begin();
2648        p != this->output_data_.end();
2649        ++p)
2650     if ((*p)->is_section())
2651       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2652
2653   for (Output_data_list::const_iterator p = this->output_bss_.begin();
2654        p != this->output_bss_.end();
2655        ++p)
2656     if ((*p)->is_section())
2657       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2658
2659   gold_unreachable();
2660 }
2661
2662 // Return the number of Output_sections in an Output_segment.
2663
2664 unsigned int
2665 Output_segment::output_section_count() const
2666 {
2667   return (this->output_section_count_list(&this->output_data_)
2668           + this->output_section_count_list(&this->output_bss_));
2669 }
2670
2671 // Return the number of Output_sections in an Output_data_list.
2672
2673 unsigned int
2674 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2675 {
2676   unsigned int count = 0;
2677   for (Output_data_list::const_iterator p = pdl->begin();
2678        p != pdl->end();
2679        ++p)
2680     {
2681       if ((*p)->is_section())
2682         ++count;
2683     }
2684   return count;
2685 }
2686
2687 // Return the section attached to the list segment with the lowest
2688 // load address.  This is used when handling a PHDRS clause in a
2689 // linker script.
2690
2691 Output_section*
2692 Output_segment::section_with_lowest_load_address() const
2693 {
2694   Output_section* found = NULL;
2695   uint64_t found_lma = 0;
2696   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2697
2698   Output_section* found_data = found;
2699   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2700   if (found != found_data && found_data != NULL)
2701     {
2702       gold_error(_("nobits section %s may not precede progbits section %s "
2703                    "in same segment"),
2704                  found->name(), found_data->name());
2705       return NULL;
2706     }
2707
2708   return found;
2709 }
2710
2711 // Look through a list for a section with a lower load address.
2712
2713 void
2714 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2715                                             Output_section** found,
2716                                             uint64_t* found_lma) const
2717 {
2718   for (Output_data_list::const_iterator p = pdl->begin();
2719        p != pdl->end();
2720        ++p)
2721     {
2722       if (!(*p)->is_section())
2723         continue;
2724       Output_section* os = static_cast<Output_section*>(*p);
2725       uint64_t lma = (os->has_load_address()
2726                       ? os->load_address()
2727                       : os->address());
2728       if (*found == NULL || lma < *found_lma)
2729         {
2730           *found = os;
2731           *found_lma = lma;
2732         }
2733     }
2734 }
2735
2736 // Write the segment data into *OPHDR.
2737
2738 template<int size, bool big_endian>
2739 void
2740 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2741 {
2742   ophdr->put_p_type(this->type_);
2743   ophdr->put_p_offset(this->offset_);
2744   ophdr->put_p_vaddr(this->vaddr_);
2745   ophdr->put_p_paddr(this->paddr_);
2746   ophdr->put_p_filesz(this->filesz_);
2747   ophdr->put_p_memsz(this->memsz_);
2748   ophdr->put_p_flags(this->flags_);
2749   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
2750 }
2751
2752 // Write the section headers into V.
2753
2754 template<int size, bool big_endian>
2755 unsigned char*
2756 Output_segment::write_section_headers(const Layout* layout,
2757                                       const Stringpool* secnamepool,
2758                                       unsigned char* v,
2759                                       unsigned int *pshndx) const
2760 {
2761   // Every section that is attached to a segment must be attached to a
2762   // PT_LOAD segment, so we only write out section headers for PT_LOAD
2763   // segments.
2764   if (this->type_ != elfcpp::PT_LOAD)
2765     return v;
2766
2767   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2768                                                          &this->output_data_,
2769                                                          v, pshndx);
2770   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2771                                                          &this->output_bss_,
2772                                                          v, pshndx);
2773   return v;
2774 }
2775
2776 template<int size, bool big_endian>
2777 unsigned char*
2778 Output_segment::write_section_headers_list(const Layout* layout,
2779                                            const Stringpool* secnamepool,
2780                                            const Output_data_list* pdl,
2781                                            unsigned char* v,
2782                                            unsigned int* pshndx) const
2783 {
2784   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2785   for (Output_data_list::const_iterator p = pdl->begin();
2786        p != pdl->end();
2787        ++p)
2788     {
2789       if ((*p)->is_section())
2790         {
2791           const Output_section* ps = static_cast<const Output_section*>(*p);
2792           gold_assert(*pshndx == ps->out_shndx());
2793           elfcpp::Shdr_write<size, big_endian> oshdr(v);
2794           ps->write_header(layout, secnamepool, &oshdr);
2795           v += shdr_size;
2796           ++*pshndx;
2797         }
2798     }
2799   return v;
2800 }
2801
2802 // Output_file methods.
2803
2804 Output_file::Output_file(const char* name)
2805   : name_(name),
2806     o_(-1),
2807     file_size_(0),
2808     base_(NULL),
2809     map_is_anonymous_(false),
2810     is_temporary_(false)
2811 {
2812 }
2813
2814 // Open the output file.
2815
2816 void
2817 Output_file::open(off_t file_size)
2818 {
2819   this->file_size_ = file_size;
2820
2821   // Unlink the file first; otherwise the open() may fail if the file
2822   // is busy (e.g. it's an executable that's currently being executed).
2823   //
2824   // However, the linker may be part of a system where a zero-length
2825   // file is created for it to write to, with tight permissions (gcc
2826   // 2.95 did something like this).  Unlinking the file would work
2827   // around those permission controls, so we only unlink if the file
2828   // has a non-zero size.  We also unlink only regular files to avoid
2829   // trouble with directories/etc.
2830   //
2831   // If we fail, continue; this command is merely a best-effort attempt
2832   // to improve the odds for open().
2833
2834   // We let the name "-" mean "stdout"
2835   if (!this->is_temporary_)
2836     {
2837       if (strcmp(this->name_, "-") == 0)
2838         this->o_ = STDOUT_FILENO;
2839       else
2840         {
2841           struct stat s;
2842           if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2843             unlink_if_ordinary(this->name_);
2844
2845           int mode = parameters->options().relocatable() ? 0666 : 0777;
2846           int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2847           if (o < 0)
2848             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2849           this->o_ = o;
2850         }
2851     }
2852
2853   this->map();
2854 }
2855
2856 // Resize the output file.
2857
2858 void
2859 Output_file::resize(off_t file_size)
2860 {
2861   // If the mmap is mapping an anonymous memory buffer, this is easy:
2862   // just mremap to the new size.  If it's mapping to a file, we want
2863   // to unmap to flush to the file, then remap after growing the file.
2864   if (this->map_is_anonymous_)
2865     {
2866       void* base = ::mremap(this->base_, this->file_size_, file_size,
2867                             MREMAP_MAYMOVE);
2868       if (base == MAP_FAILED)
2869         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2870       this->base_ = static_cast<unsigned char*>(base);
2871       this->file_size_ = file_size;
2872     }
2873   else
2874     {
2875       this->unmap();
2876       this->file_size_ = file_size;
2877       this->map();
2878     }
2879 }
2880
2881 // Map the file into memory.
2882
2883 void
2884 Output_file::map()
2885 {
2886   const int o = this->o_;
2887
2888   // If the output file is not a regular file, don't try to mmap it;
2889   // instead, we'll mmap a block of memory (an anonymous buffer), and
2890   // then later write the buffer to the file.
2891   void* base;
2892   struct stat statbuf;
2893   if (o == STDOUT_FILENO || o == STDERR_FILENO
2894       || ::fstat(o, &statbuf) != 0
2895       || !S_ISREG(statbuf.st_mode)
2896       || this->is_temporary_)
2897     {
2898       this->map_is_anonymous_ = true;
2899       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2900                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2901     }
2902   else
2903     {
2904       // Write out one byte to make the file the right size.
2905       if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2906         gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2907       char b = 0;
2908       if (::write(o, &b, 1) != 1)
2909         gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2910
2911       // Map the file into memory.
2912       this->map_is_anonymous_ = false;
2913       base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2914                     MAP_SHARED, o, 0);
2915     }
2916   if (base == MAP_FAILED)
2917     gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2918   this->base_ = static_cast<unsigned char*>(base);
2919 }
2920
2921 // Unmap the file from memory.
2922
2923 void
2924 Output_file::unmap()
2925 {
2926   if (::munmap(this->base_, this->file_size_) < 0)
2927     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2928   this->base_ = NULL;
2929 }
2930
2931 // Close the output file.
2932
2933 void
2934 Output_file::close()
2935 {
2936   // If the map isn't file-backed, we need to write it now.
2937   if (this->map_is_anonymous_ && !this->is_temporary_)
2938     {
2939       size_t bytes_to_write = this->file_size_;
2940       while (bytes_to_write > 0)
2941         {
2942           ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2943           if (bytes_written == 0)
2944             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2945           else if (bytes_written < 0)
2946             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2947           else
2948             bytes_to_write -= bytes_written;
2949         }
2950     }
2951   this->unmap();
2952
2953   // We don't close stdout or stderr
2954   if (this->o_ != STDOUT_FILENO
2955       && this->o_ != STDERR_FILENO
2956       && !this->is_temporary_)
2957     if (::close(this->o_) < 0)
2958       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2959   this->o_ = -1;
2960 }
2961
2962 // Instantiate the templates we need.  We could use the configure
2963 // script to restrict this to only the ones for implemented targets.
2964
2965 #ifdef HAVE_TARGET_32_LITTLE
2966 template
2967 off_t
2968 Output_section::add_input_section<32, false>(
2969     Sized_relobj<32, false>* object,
2970     unsigned int shndx,
2971     const char* secname,
2972     const elfcpp::Shdr<32, false>& shdr,
2973     unsigned int reloc_shndx,
2974     bool have_sections_script);
2975 #endif
2976
2977 #ifdef HAVE_TARGET_32_BIG
2978 template
2979 off_t
2980 Output_section::add_input_section<32, true>(
2981     Sized_relobj<32, true>* object,
2982     unsigned int shndx,
2983     const char* secname,
2984     const elfcpp::Shdr<32, true>& shdr,
2985     unsigned int reloc_shndx,
2986     bool have_sections_script);
2987 #endif
2988
2989 #ifdef HAVE_TARGET_64_LITTLE
2990 template
2991 off_t
2992 Output_section::add_input_section<64, false>(
2993     Sized_relobj<64, false>* object,
2994     unsigned int shndx,
2995     const char* secname,
2996     const elfcpp::Shdr<64, false>& shdr,
2997     unsigned int reloc_shndx,
2998     bool have_sections_script);
2999 #endif
3000
3001 #ifdef HAVE_TARGET_64_BIG
3002 template
3003 off_t
3004 Output_section::add_input_section<64, true>(
3005     Sized_relobj<64, true>* object,
3006     unsigned int shndx,
3007     const char* secname,
3008     const elfcpp::Shdr<64, true>& shdr,
3009     unsigned int reloc_shndx,
3010     bool have_sections_script);
3011 #endif
3012
3013 #ifdef HAVE_TARGET_32_LITTLE
3014 template
3015 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3016 #endif
3017
3018 #ifdef HAVE_TARGET_32_BIG
3019 template
3020 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3021 #endif
3022
3023 #ifdef HAVE_TARGET_64_LITTLE
3024 template
3025 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3026 #endif
3027
3028 #ifdef HAVE_TARGET_64_BIG
3029 template
3030 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3031 #endif
3032
3033 #ifdef HAVE_TARGET_32_LITTLE
3034 template
3035 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3036 #endif
3037
3038 #ifdef HAVE_TARGET_32_BIG
3039 template
3040 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3041 #endif
3042
3043 #ifdef HAVE_TARGET_64_LITTLE
3044 template
3045 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3046 #endif
3047
3048 #ifdef HAVE_TARGET_64_BIG
3049 template
3050 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3051 #endif
3052
3053 #ifdef HAVE_TARGET_32_LITTLE
3054 template
3055 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3056 #endif
3057
3058 #ifdef HAVE_TARGET_32_BIG
3059 template
3060 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3061 #endif
3062
3063 #ifdef HAVE_TARGET_64_LITTLE
3064 template
3065 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3066 #endif
3067
3068 #ifdef HAVE_TARGET_64_BIG
3069 template
3070 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3071 #endif
3072
3073 #ifdef HAVE_TARGET_32_LITTLE
3074 template
3075 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3076 #endif
3077
3078 #ifdef HAVE_TARGET_32_BIG
3079 template
3080 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3081 #endif
3082
3083 #ifdef HAVE_TARGET_64_LITTLE
3084 template
3085 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3086 #endif
3087
3088 #ifdef HAVE_TARGET_64_BIG
3089 template
3090 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3091 #endif
3092
3093 #ifdef HAVE_TARGET_32_LITTLE
3094 template
3095 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3096 #endif
3097
3098 #ifdef HAVE_TARGET_32_BIG
3099 template
3100 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3101 #endif
3102
3103 #ifdef HAVE_TARGET_64_LITTLE
3104 template
3105 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3106 #endif
3107
3108 #ifdef HAVE_TARGET_64_BIG
3109 template
3110 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3111 #endif
3112
3113 #ifdef HAVE_TARGET_32_LITTLE
3114 template
3115 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3116 #endif
3117
3118 #ifdef HAVE_TARGET_32_BIG
3119 template
3120 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3121 #endif
3122
3123 #ifdef HAVE_TARGET_64_LITTLE
3124 template
3125 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3126 #endif
3127
3128 #ifdef HAVE_TARGET_64_BIG
3129 template
3130 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3131 #endif
3132
3133 #ifdef HAVE_TARGET_32_LITTLE
3134 template
3135 class Output_data_group<32, false>;
3136 #endif
3137
3138 #ifdef HAVE_TARGET_32_BIG
3139 template
3140 class Output_data_group<32, true>;
3141 #endif
3142
3143 #ifdef HAVE_TARGET_64_LITTLE
3144 template
3145 class Output_data_group<64, false>;
3146 #endif
3147
3148 #ifdef HAVE_TARGET_64_BIG
3149 template
3150 class Output_data_group<64, true>;
3151 #endif
3152
3153 #ifdef HAVE_TARGET_32_LITTLE
3154 template
3155 class Output_data_got<32, false>;
3156 #endif
3157
3158 #ifdef HAVE_TARGET_32_BIG
3159 template
3160 class Output_data_got<32, true>;
3161 #endif
3162
3163 #ifdef HAVE_TARGET_64_LITTLE
3164 template
3165 class Output_data_got<64, false>;
3166 #endif
3167
3168 #ifdef HAVE_TARGET_64_BIG
3169 template
3170 class Output_data_got<64, true>;
3171 #endif
3172
3173 } // End namespace gold.