Handle output sections with more than 0x7fffffff bytes.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
39
40 namespace gold
41 {
42
43 // Class Xindex.
44
45 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
46 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
47 // table we care about.
48
49 template<int size, bool big_endian>
50 void
51 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
52 {
53   if (!this->symtab_xindex_.empty())
54     return;
55
56   gold_assert(symtab_shndx != 0);
57
58   // Look through the sections in reverse order, on the theory that it
59   // is more likely to be near the end than the beginning.
60   unsigned int i = object->shnum();
61   while (i > 0)
62     {
63       --i;
64       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
65           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
66         {
67           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
68           return;
69         }
70     }
71
72   object->error(_("missing SHT_SYMTAB_SHNDX section"));
73 }
74
75 // Read in the symtab_xindex_ array, given the section index of the
76 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
77 // section headers.
78
79 template<int size, bool big_endian>
80 void
81 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
82                            const unsigned char* pshdrs)
83 {
84   section_size_type bytecount;
85   const unsigned char* contents;
86   if (pshdrs == NULL)
87     contents = object->section_contents(xindex_shndx, &bytecount, false);
88   else
89     {
90       const unsigned char* p = (pshdrs
91                                 + (xindex_shndx
92                                    * elfcpp::Elf_sizes<size>::shdr_size));
93       typename elfcpp::Shdr<size, big_endian> shdr(p);
94       bytecount = convert_to_section_size_type(shdr.get_sh_size());
95       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
96     }
97
98   gold_assert(this->symtab_xindex_.empty());
99   this->symtab_xindex_.reserve(bytecount / 4);
100   for (section_size_type i = 0; i < bytecount; i += 4)
101     {
102       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
103       // We preadjust the section indexes we save.
104       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
105     }
106 }
107
108 // Symbol symndx has a section of SHN_XINDEX; return the real section
109 // index.
110
111 unsigned int
112 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
113 {
114   if (symndx >= this->symtab_xindex_.size())
115     {
116       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
117                     symndx);
118       return elfcpp::SHN_UNDEF;
119     }
120   unsigned int shndx = this->symtab_xindex_[symndx];
121   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
122     {
123       object->error(_("extended index for symbol %u out of range: %u"),
124                     symndx, shndx);
125       return elfcpp::SHN_UNDEF;
126     }
127   return shndx;
128 }
129
130 // Class Object.
131
132 // Set the target based on fields in the ELF file header.
133
134 void
135 Object::set_target(int machine, int size, bool big_endian, int osabi,
136                    int abiversion)
137 {
138   Target* target = select_target(machine, size, big_endian, osabi, abiversion);
139   if (target == NULL)
140     gold_fatal(_("%s: unsupported ELF machine number %d"),
141                this->name().c_str(), machine);
142   this->target_ = target;
143 }
144
145 // Report an error for this object file.  This is used by the
146 // elfcpp::Elf_file interface, and also called by the Object code
147 // itself.
148
149 void
150 Object::error(const char* format, ...) const
151 {
152   va_list args;
153   va_start(args, format);
154   char* buf = NULL;
155   if (vasprintf(&buf, format, args) < 0)
156     gold_nomem();
157   va_end(args);
158   gold_error(_("%s: %s"), this->name().c_str(), buf);
159   free(buf);
160 }
161
162 // Return a view of the contents of a section.
163
164 const unsigned char*
165 Object::section_contents(unsigned int shndx, section_size_type* plen,
166                          bool cache)
167 {
168   Location loc(this->do_section_contents(shndx));
169   *plen = convert_to_section_size_type(loc.data_size);
170   return this->get_view(loc.file_offset, *plen, true, cache);
171 }
172
173 // Read the section data into SD.  This is code common to Sized_relobj
174 // and Sized_dynobj, so we put it into Object.
175
176 template<int size, bool big_endian>
177 void
178 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
179                           Read_symbols_data* sd)
180 {
181   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182
183   // Read the section headers.
184   const off_t shoff = elf_file->shoff();
185   const unsigned int shnum = this->shnum();
186   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
187                                                true, true);
188
189   // Read the section names.
190   const unsigned char* pshdrs = sd->section_headers->data();
191   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
192   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
193
194   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
195     this->error(_("section name section has wrong type: %u"),
196                 static_cast<unsigned int>(shdrnames.get_sh_type()));
197
198   sd->section_names_size =
199     convert_to_section_size_type(shdrnames.get_sh_size());
200   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
201                                              sd->section_names_size, false,
202                                              false);
203 }
204
205 // If NAME is the name of a special .gnu.warning section, arrange for
206 // the warning to be issued.  SHNDX is the section index.  Return
207 // whether it is a warning section.
208
209 bool
210 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
211                                    Symbol_table* symtab)
212 {
213   const char warn_prefix[] = ".gnu.warning.";
214   const int warn_prefix_len = sizeof warn_prefix - 1;
215   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
216     {
217       // Read the section contents to get the warning text.  It would
218       // be nicer if we only did this if we have to actually issue a
219       // warning.  Unfortunately, warnings are issued as we relocate
220       // sections.  That means that we can not lock the object then,
221       // as we might try to issue the same warning multiple times
222       // simultaneously.
223       section_size_type len;
224       const unsigned char* contents = this->section_contents(shndx, &len,
225                                                              false);
226       std::string warning(reinterpret_cast<const char*>(contents), len);
227       symtab->add_warning(name + warn_prefix_len, this, warning);
228       return true;
229     }
230   return false;
231 }
232
233 // Class Sized_relobj.
234
235 template<int size, bool big_endian>
236 Sized_relobj<size, big_endian>::Sized_relobj(
237     const std::string& name,
238     Input_file* input_file,
239     off_t offset,
240     const elfcpp::Ehdr<size, big_endian>& ehdr)
241   : Relobj(name, input_file, offset),
242     elf_file_(this, ehdr),
243     symtab_shndx_(-1U),
244     local_symbol_count_(0),
245     output_local_symbol_count_(0),
246     output_local_dynsym_count_(0),
247     symbols_(),
248     local_symbol_offset_(0),
249     local_dynsym_offset_(0),
250     local_values_(),
251     local_got_offsets_(),
252     kept_comdat_sections_(),
253     comdat_groups_(),
254     has_eh_frame_(false)
255 {
256 }
257
258 template<int size, bool big_endian>
259 Sized_relobj<size, big_endian>::~Sized_relobj()
260 {
261 }
262
263 // Set up an object file based on the file header.  This sets up the
264 // target and reads the section information.
265
266 template<int size, bool big_endian>
267 void
268 Sized_relobj<size, big_endian>::setup(
269     const elfcpp::Ehdr<size, big_endian>& ehdr)
270 {
271   this->set_target(ehdr.get_e_machine(), size, big_endian,
272                    ehdr.get_e_ident()[elfcpp::EI_OSABI],
273                    ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
274
275   const unsigned int shnum = this->elf_file_.shnum();
276   this->set_shnum(shnum);
277 }
278
279 // Find the SHT_SYMTAB section, given the section headers.  The ELF
280 // standard says that maybe in the future there can be more than one
281 // SHT_SYMTAB section.  Until somebody figures out how that could
282 // work, we assume there is only one.
283
284 template<int size, bool big_endian>
285 void
286 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
287 {
288   const unsigned int shnum = this->shnum();
289   this->symtab_shndx_ = 0;
290   if (shnum > 0)
291     {
292       // Look through the sections in reverse order, since gas tends
293       // to put the symbol table at the end.
294       const unsigned char* p = pshdrs + shnum * This::shdr_size;
295       unsigned int i = shnum;
296       unsigned int xindex_shndx = 0;
297       unsigned int xindex_link = 0;
298       while (i > 0)
299         {
300           --i;
301           p -= This::shdr_size;
302           typename This::Shdr shdr(p);
303           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
304             {
305               this->symtab_shndx_ = i;
306               if (xindex_shndx > 0 && xindex_link == i)
307                 {
308                   Xindex* xindex =
309                     new Xindex(this->elf_file_.large_shndx_offset());
310                   xindex->read_symtab_xindex<size, big_endian>(this,
311                                                                xindex_shndx,
312                                                                pshdrs);
313                   this->set_xindex(xindex);
314                 }
315               break;
316             }
317
318           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
319           // one.  This will work if it follows the SHT_SYMTAB
320           // section.
321           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
322             {
323               xindex_shndx = i;
324               xindex_link = this->adjust_shndx(shdr.get_sh_link());
325             }
326         }
327     }
328 }
329
330 // Return the Xindex structure to use for object with lots of
331 // sections.
332
333 template<int size, bool big_endian>
334 Xindex*
335 Sized_relobj<size, big_endian>::do_initialize_xindex()
336 {
337   gold_assert(this->symtab_shndx_ != -1U);
338   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
339   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
340   return xindex;
341 }
342
343 // Return whether SHDR has the right type and flags to be a GNU
344 // .eh_frame section.
345
346 template<int size, bool big_endian>
347 bool
348 Sized_relobj<size, big_endian>::check_eh_frame_flags(
349     const elfcpp::Shdr<size, big_endian>* shdr) const
350 {
351   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
352           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
353 }
354
355 // Return whether there is a GNU .eh_frame section, given the section
356 // headers and the section names.
357
358 template<int size, bool big_endian>
359 bool
360 Sized_relobj<size, big_endian>::find_eh_frame(
361     const unsigned char* pshdrs,
362     const char* names,
363     section_size_type names_size) const
364 {
365   const unsigned int shnum = this->shnum();
366   const unsigned char* p = pshdrs + This::shdr_size;
367   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
368     {
369       typename This::Shdr shdr(p);
370       if (this->check_eh_frame_flags(&shdr))
371         {
372           if (shdr.get_sh_name() >= names_size)
373             {
374               this->error(_("bad section name offset for section %u: %lu"),
375                           i, static_cast<unsigned long>(shdr.get_sh_name()));
376               continue;
377             }
378
379           const char* name = names + shdr.get_sh_name();
380           if (strcmp(name, ".eh_frame") == 0)
381             return true;
382         }
383     }
384   return false;
385 }
386
387 // Read the sections and symbols from an object file.
388
389 template<int size, bool big_endian>
390 void
391 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
392 {
393   this->read_section_data(&this->elf_file_, sd);
394
395   const unsigned char* const pshdrs = sd->section_headers->data();
396
397   this->find_symtab(pshdrs);
398
399   const unsigned char* namesu = sd->section_names->data();
400   const char* names = reinterpret_cast<const char*>(namesu);
401   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
402     {
403       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
404         this->has_eh_frame_ = true;
405     }
406
407   sd->symbols = NULL;
408   sd->symbols_size = 0;
409   sd->external_symbols_offset = 0;
410   sd->symbol_names = NULL;
411   sd->symbol_names_size = 0;
412
413   if (this->symtab_shndx_ == 0)
414     {
415       // No symbol table.  Weird but legal.
416       return;
417     }
418
419   // Get the symbol table section header.
420   typename This::Shdr symtabshdr(pshdrs
421                                  + this->symtab_shndx_ * This::shdr_size);
422   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
423
424   // If this object has a .eh_frame section, we need all the symbols.
425   // Otherwise we only need the external symbols.  While it would be
426   // simpler to just always read all the symbols, I've seen object
427   // files with well over 2000 local symbols, which for a 64-bit
428   // object file format is over 5 pages that we don't need to read
429   // now.
430
431   const int sym_size = This::sym_size;
432   const unsigned int loccount = symtabshdr.get_sh_info();
433   this->local_symbol_count_ = loccount;
434   this->local_values_.resize(loccount);
435   section_offset_type locsize = loccount * sym_size;
436   off_t dataoff = symtabshdr.get_sh_offset();
437   section_size_type datasize =
438     convert_to_section_size_type(symtabshdr.get_sh_size());
439   off_t extoff = dataoff + locsize;
440   section_size_type extsize = datasize - locsize;
441
442   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
443   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
444
445   if (readsize == 0)
446     {
447       // No external symbols.  Also weird but also legal.
448       return;
449     }
450
451   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
452
453   // Read the section header for the symbol names.
454   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
455   if (strtab_shndx >= this->shnum())
456     {
457       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
458       return;
459     }
460   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
461   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
462     {
463       this->error(_("symbol table name section has wrong type: %u"),
464                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
465       return;
466     }
467
468   // Read the symbol names.
469   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
470                                                strtabshdr.get_sh_size(),
471                                                false, true);
472
473   sd->symbols = fvsymtab;
474   sd->symbols_size = readsize;
475   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
476   sd->symbol_names = fvstrtab;
477   sd->symbol_names_size =
478     convert_to_section_size_type(strtabshdr.get_sh_size());
479 }
480
481 // Return the section index of symbol SYM.  Set *VALUE to its value in
482 // the object file.  Set *IS_ORDINARY if this is an ordinary section
483 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
484 // Note that for a symbol which is not defined in this object file,
485 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
486 // the final value of the symbol in the link.
487
488 template<int size, bool big_endian>
489 unsigned int
490 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
491                                                          Address* value,
492                                                          bool* is_ordinary)
493 {
494   section_size_type symbols_size;
495   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
496                                                         &symbols_size,
497                                                         false);
498
499   const size_t count = symbols_size / This::sym_size;
500   gold_assert(sym < count);
501
502   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
503   *value = elfsym.get_st_value();
504
505   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
506 }
507
508 // Return whether to include a section group in the link.  LAYOUT is
509 // used to keep track of which section groups we have already seen.
510 // INDEX is the index of the section group and SHDR is the section
511 // header.  If we do not want to include this group, we set bits in
512 // OMIT for each section which should be discarded.
513
514 template<int size, bool big_endian>
515 bool
516 Sized_relobj<size, big_endian>::include_section_group(
517     Symbol_table* symtab,
518     Layout* layout,
519     unsigned int index,
520     const char* name,
521     const unsigned char* shdrs,
522     const char* section_names,
523     section_size_type section_names_size,
524     std::vector<bool>* omit)
525 {
526   // Read the section contents.
527   typename This::Shdr shdr(shdrs + index * This::shdr_size);
528   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
529                                              shdr.get_sh_size(), true, false);
530   const elfcpp::Elf_Word* pword =
531     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
532
533   // The first word contains flags.  We only care about COMDAT section
534   // groups.  Other section groups are always included in the link
535   // just like ordinary sections.
536   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
537
538   // Look up the group signature, which is the name of a symbol.  This
539   // is a lot of effort to go to to read a string.  Why didn't they
540   // just have the group signature point into the string table, rather
541   // than indirect through a symbol?
542
543   // Get the appropriate symbol table header (this will normally be
544   // the single SHT_SYMTAB section, but in principle it need not be).
545   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
546   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
547
548   // Read the symbol table entry.
549   unsigned int symndx = shdr.get_sh_info();
550   if (symndx >= symshdr.get_sh_size() / This::sym_size)
551     {
552       this->error(_("section group %u info %u out of range"),
553                   index, symndx);
554       return false;
555     }
556   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
557   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
558                                              false);
559   elfcpp::Sym<size, big_endian> sym(psym);
560
561   // Read the symbol table names.
562   section_size_type symnamelen;
563   const unsigned char* psymnamesu;
564   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
565                                       &symnamelen, true);
566   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
567
568   // Get the section group signature.
569   if (sym.get_st_name() >= symnamelen)
570     {
571       this->error(_("symbol %u name offset %u out of range"),
572                   symndx, sym.get_st_name());
573       return false;
574     }
575
576   std::string signature(psymnames + sym.get_st_name());
577
578   // It seems that some versions of gas will create a section group
579   // associated with a section symbol, and then fail to give a name to
580   // the section symbol.  In such a case, use the name of the section.
581   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
582     {
583       bool is_ordinary;
584       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
585                                                       sym.get_st_shndx(),
586                                                       &is_ordinary);
587       if (!is_ordinary || sym_shndx >= this->shnum())
588         {
589           this->error(_("symbol %u invalid section index %u"),
590                       symndx, sym_shndx);
591           return false;
592         }
593       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
594       if (member_shdr.get_sh_name() < section_names_size)
595         signature = section_names + member_shdr.get_sh_name();
596     }
597
598   // Record this section group in the layout, and see whether we've already
599   // seen one with the same signature.
600   bool include_group = ((flags & elfcpp::GRP_COMDAT) == 0
601                         || layout->add_comdat(this, index, signature, true));
602
603   Sized_relobj<size, big_endian>* kept_object = NULL;
604   Comdat_group* kept_group = NULL;
605
606   if (!include_group)
607     {
608       // This group is being discarded.  Find the object and group
609       // that was kept in its place.
610       unsigned int kept_group_index = 0;
611       Relobj* kept_relobj = layout->find_kept_object(signature,
612                                                      &kept_group_index);
613       kept_object = static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
614       if (kept_object != NULL)
615         kept_group = kept_object->find_comdat_group(kept_group_index);
616     }
617   else if (flags & elfcpp::GRP_COMDAT)
618     {
619       // This group is being kept.  Create the table to map section names
620       // to section indexes and add it to the table of groups.
621       kept_group = new Comdat_group();
622       this->add_comdat_group(index, kept_group);
623     }
624
625   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
626
627   std::vector<unsigned int> shndxes;
628   bool relocate_group = include_group && parameters->options().relocatable();
629   if (relocate_group)
630     shndxes.reserve(count - 1);
631
632   for (size_t i = 1; i < count; ++i)
633     {
634       elfcpp::Elf_Word secnum =
635         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
636
637       if (relocate_group)
638         shndxes.push_back(secnum);
639
640       if (secnum >= this->shnum())
641         {
642           this->error(_("section %u in section group %u out of range"),
643                       secnum, index);
644           continue;
645         }
646
647       // Check for an earlier section number, since we're going to get
648       // it wrong--we may have already decided to include the section.
649       if (secnum < index)
650         this->error(_("invalid section group %u refers to earlier section %u"),
651                     index, secnum);
652
653       // Get the name of the member section.
654       typename This::Shdr member_shdr(shdrs + secnum * This::shdr_size);
655       if (member_shdr.get_sh_name() >= section_names_size)
656         {
657           // This is an error, but it will be diagnosed eventually
658           // in do_layout, so we don't need to do anything here but
659           // ignore it.
660           continue;
661         }
662       std::string mname(section_names + member_shdr.get_sh_name());
663
664       if (!include_group)
665         {
666           (*omit)[secnum] = true;
667           if (kept_group != NULL)
668             {
669               // Find the corresponding kept section, and store that info
670               // in the discarded section table.
671               Comdat_group::const_iterator p = kept_group->find(mname);
672               if (p != kept_group->end())
673                 {
674                   Kept_comdat_section* kept =
675                     new Kept_comdat_section(kept_object, p->second);
676                   this->set_kept_comdat_section(secnum, kept);
677                 }
678             }
679         }
680       else if (flags & elfcpp::GRP_COMDAT)
681         {
682           // Add the section to the kept group table.
683           gold_assert(kept_group != NULL);
684           kept_group->insert(std::make_pair(mname, secnum));
685         }
686     }
687
688   if (relocate_group)
689     layout->layout_group(symtab, this, index, name, signature.c_str(),
690                          shdr, flags, &shndxes);
691
692   return include_group;
693 }
694
695 // Whether to include a linkonce section in the link.  NAME is the
696 // name of the section and SHDR is the section header.
697
698 // Linkonce sections are a GNU extension implemented in the original
699 // GNU linker before section groups were defined.  The semantics are
700 // that we only include one linkonce section with a given name.  The
701 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
702 // where T is the type of section and SYMNAME is the name of a symbol.
703 // In an attempt to make linkonce sections interact well with section
704 // groups, we try to identify SYMNAME and use it like a section group
705 // signature.  We want to block section groups with that signature,
706 // but not other linkonce sections with that signature.  We also use
707 // the full name of the linkonce section as a normal section group
708 // signature.
709
710 template<int size, bool big_endian>
711 bool
712 Sized_relobj<size, big_endian>::include_linkonce_section(
713     Layout* layout,
714     unsigned int index,
715     const char* name,
716     const elfcpp::Shdr<size, big_endian>&)
717 {
718   // In general the symbol name we want will be the string following
719   // the last '.'.  However, we have to handle the case of
720   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
721   // some versions of gcc.  So we use a heuristic: if the name starts
722   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
723   // we look for the last '.'.  We can't always simply skip
724   // ".gnu.linkonce.X", because we have to deal with cases like
725   // ".gnu.linkonce.d.rel.ro.local".
726   const char* const linkonce_t = ".gnu.linkonce.t.";
727   const char* symname;
728   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
729     symname = name + strlen(linkonce_t);
730   else
731     symname = strrchr(name, '.') + 1;
732   std::string sig1(symname);
733   std::string sig2(name);
734   bool include1 = layout->add_comdat(this, index, sig1, false);
735   bool include2 = layout->add_comdat(this, index, sig2, true);
736
737   if (!include2)
738     {
739       // The section is being discarded on the basis of its section
740       // name (i.e., the kept section was also a linkonce section).
741       // In this case, the section index stored with the layout object
742       // is the linkonce section that was kept.
743       unsigned int kept_group_index = 0;
744       Relobj* kept_relobj = layout->find_kept_object(sig2, &kept_group_index);
745       if (kept_relobj != NULL)
746         {
747           Sized_relobj<size, big_endian>* kept_object
748               = static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
749           Kept_comdat_section* kept =
750             new Kept_comdat_section(kept_object, kept_group_index);
751           this->set_kept_comdat_section(index, kept);
752         }
753     }
754   else if (!include1)
755     {
756       // The section is being discarded on the basis of its symbol
757       // name.  This means that the corresponding kept section was
758       // part of a comdat group, and it will be difficult to identify
759       // the specific section within that group that corresponds to
760       // this linkonce section.  We'll handle the simple case where
761       // the group has only one member section.  Otherwise, it's not
762       // worth the effort.
763       unsigned int kept_group_index = 0;
764       Relobj* kept_relobj = layout->find_kept_object(sig1, &kept_group_index);
765       if (kept_relobj != NULL)
766         {
767           Sized_relobj<size, big_endian>* kept_object =
768               static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
769           Comdat_group* kept_group =
770             kept_object->find_comdat_group(kept_group_index);
771           if (kept_group != NULL && kept_group->size() == 1)
772             {
773               Comdat_group::const_iterator p = kept_group->begin();
774               gold_assert(p != kept_group->end());
775               Kept_comdat_section* kept =
776                 new Kept_comdat_section(kept_object, p->second);
777               this->set_kept_comdat_section(index, kept);
778             }
779         }
780     }
781
782   return include1 && include2;
783 }
784
785 // Lay out the input sections.  We walk through the sections and check
786 // whether they should be included in the link.  If they should, we
787 // pass them to the Layout object, which will return an output section
788 // and an offset.
789
790 template<int size, bool big_endian>
791 void
792 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
793                                           Layout* layout,
794                                           Read_symbols_data* sd)
795 {
796   const unsigned int shnum = this->shnum();
797   if (shnum == 0)
798     return;
799
800   // Get the section headers.
801   const unsigned char* shdrs = sd->section_headers->data();
802   const unsigned char* pshdrs;
803
804   // Get the section names.
805   const unsigned char* pnamesu = sd->section_names->data();
806   const char* pnames = reinterpret_cast<const char*>(pnamesu);
807
808   // For each section, record the index of the reloc section if any.
809   // Use 0 to mean that there is no reloc section, -1U to mean that
810   // there is more than one.
811   std::vector<unsigned int> reloc_shndx(shnum, 0);
812   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
813   // Skip the first, dummy, section.
814   pshdrs = shdrs + This::shdr_size;
815   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
816     {
817       typename This::Shdr shdr(pshdrs);
818
819       unsigned int sh_type = shdr.get_sh_type();
820       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
821         {
822           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
823           if (target_shndx == 0 || target_shndx >= shnum)
824             {
825               this->error(_("relocation section %u has bad info %u"),
826                           i, target_shndx);
827               continue;
828             }
829
830           if (reloc_shndx[target_shndx] != 0)
831             reloc_shndx[target_shndx] = -1U;
832           else
833             {
834               reloc_shndx[target_shndx] = i;
835               reloc_type[target_shndx] = sh_type;
836             }
837         }
838     }
839
840   Output_sections& out_sections(this->output_sections());
841   std::vector<Address>& out_section_offsets(this->section_offsets_);
842
843   out_sections.resize(shnum);
844   out_section_offsets.resize(shnum);
845
846   // If we are only linking for symbols, then there is nothing else to
847   // do here.
848   if (this->input_file()->just_symbols())
849     {
850       delete sd->section_headers;
851       sd->section_headers = NULL;
852       delete sd->section_names;
853       sd->section_names = NULL;
854       return;
855     }
856
857   // Whether we've seen a .note.GNU-stack section.
858   bool seen_gnu_stack = false;
859   // The flags of a .note.GNU-stack section.
860   uint64_t gnu_stack_flags = 0;
861
862   // Keep track of which sections to omit.
863   std::vector<bool> omit(shnum, false);
864
865   // Keep track of reloc sections when emitting relocations.
866   const bool relocatable = parameters->options().relocatable();
867   const bool emit_relocs = (relocatable
868                             || parameters->options().emit_relocs());
869   std::vector<unsigned int> reloc_sections;
870
871   // Keep track of .eh_frame sections.
872   std::vector<unsigned int> eh_frame_sections;
873
874   // Skip the first, dummy, section.
875   pshdrs = shdrs + This::shdr_size;
876   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
877     {
878       typename This::Shdr shdr(pshdrs);
879
880       if (shdr.get_sh_name() >= sd->section_names_size)
881         {
882           this->error(_("bad section name offset for section %u: %lu"),
883                       i, static_cast<unsigned long>(shdr.get_sh_name()));
884           return;
885         }
886
887       const char* name = pnames + shdr.get_sh_name();
888
889       if (this->handle_gnu_warning_section(name, i, symtab))
890         {
891           if (!relocatable)
892             omit[i] = true;
893         }
894
895       // The .note.GNU-stack section is special.  It gives the
896       // protection flags that this object file requires for the stack
897       // in memory.
898       if (strcmp(name, ".note.GNU-stack") == 0)
899         {
900           seen_gnu_stack = true;
901           gnu_stack_flags |= shdr.get_sh_flags();
902           omit[i] = true;
903         }
904
905       bool discard = omit[i];
906       if (!discard)
907         {
908           if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
909             {
910               if (!this->include_section_group(symtab, layout, i, name, shdrs,
911                                                pnames, sd->section_names_size,
912                                                &omit))
913                 discard = true;
914             }
915           else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
916                    && Layout::is_linkonce(name))
917             {
918               if (!this->include_linkonce_section(layout, i, name, shdr))
919                 discard = true;
920             }
921         }
922
923       if (discard)
924         {
925           // Do not include this section in the link.
926           out_sections[i] = NULL;
927           out_section_offsets[i] = -1U;
928           continue;
929         }
930
931       // When doing a relocatable link we are going to copy input
932       // reloc sections into the output.  We only want to copy the
933       // ones associated with sections which are not being discarded.
934       // However, we don't know that yet for all sections.  So save
935       // reloc sections and process them later.
936       if (emit_relocs
937           && (shdr.get_sh_type() == elfcpp::SHT_REL
938               || shdr.get_sh_type() == elfcpp::SHT_RELA))
939         {
940           reloc_sections.push_back(i);
941           continue;
942         }
943
944       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
945         continue;
946
947       // The .eh_frame section is special.  It holds exception frame
948       // information that we need to read in order to generate the
949       // exception frame header.  We process these after all the other
950       // sections so that the exception frame reader can reliably
951       // determine which sections are being discarded, and discard the
952       // corresponding information.
953       if (!relocatable
954           && strcmp(name, ".eh_frame") == 0
955           && this->check_eh_frame_flags(&shdr))
956         {
957           eh_frame_sections.push_back(i);
958           continue;
959         }
960
961       off_t offset;
962       Output_section* os = layout->layout(this, i, name, shdr,
963                                           reloc_shndx[i], reloc_type[i],
964                                           &offset);
965
966       out_sections[i] = os;
967       if (offset == -1)
968         out_section_offsets[i] = -1U;
969       else
970         out_section_offsets[i] = convert_types<Address, off_t>(offset);
971
972       // If this section requires special handling, and if there are
973       // relocs that apply to it, then we must do the special handling
974       // before we apply the relocs.
975       if (offset == -1 && reloc_shndx[i] != 0)
976         this->set_relocs_must_follow_section_writes();
977     }
978
979   layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
980
981   // When doing a relocatable link handle the reloc sections at the
982   // end.
983   if (emit_relocs)
984     this->size_relocatable_relocs();
985   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
986        p != reloc_sections.end();
987        ++p)
988     {
989       unsigned int i = *p;
990       const unsigned char* pshdr;
991       pshdr = sd->section_headers->data() + i * This::shdr_size;
992       typename This::Shdr shdr(pshdr);
993
994       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
995       if (data_shndx >= shnum)
996         {
997           // We already warned about this above.
998           continue;
999         }
1000
1001       Output_section* data_section = out_sections[data_shndx];
1002       if (data_section == NULL)
1003         {
1004           out_sections[i] = NULL;
1005           out_section_offsets[i] = -1U;
1006           continue;
1007         }
1008
1009       Relocatable_relocs* rr = new Relocatable_relocs();
1010       this->set_relocatable_relocs(i, rr);
1011
1012       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1013                                                 rr);
1014       out_sections[i] = os;
1015       out_section_offsets[i] = -1U;
1016     }
1017
1018   // Handle the .eh_frame sections at the end.
1019   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1020        p != eh_frame_sections.end();
1021        ++p)
1022     {
1023       gold_assert(this->has_eh_frame_);
1024       gold_assert(sd->external_symbols_offset != 0);
1025
1026       unsigned int i = *p;
1027       const unsigned char *pshdr;
1028       pshdr = sd->section_headers->data() + i * This::shdr_size;
1029       typename This::Shdr shdr(pshdr);
1030
1031       off_t offset;
1032       Output_section* os = layout->layout_eh_frame(this,
1033                                                    sd->symbols->data(),
1034                                                    sd->symbols_size,
1035                                                    sd->symbol_names->data(),
1036                                                    sd->symbol_names_size,
1037                                                    i, shdr,
1038                                                    reloc_shndx[i],
1039                                                    reloc_type[i],
1040                                                    &offset);
1041       out_sections[i] = os;
1042       if (offset == -1)
1043         out_section_offsets[i] = -1U;
1044       else
1045         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1046
1047       // If this section requires special handling, and if there are
1048       // relocs that apply to it, then we must do the special handling
1049       // before we apply the relocs.
1050       if (offset == -1 && reloc_shndx[i] != 0)
1051         this->set_relocs_must_follow_section_writes();
1052     }
1053
1054   delete sd->section_headers;
1055   sd->section_headers = NULL;
1056   delete sd->section_names;
1057   sd->section_names = NULL;
1058 }
1059
1060 // Add the symbols to the symbol table.
1061
1062 template<int size, bool big_endian>
1063 void
1064 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1065                                                Read_symbols_data* sd)
1066 {
1067   if (sd->symbols == NULL)
1068     {
1069       gold_assert(sd->symbol_names == NULL);
1070       return;
1071     }
1072
1073   const int sym_size = This::sym_size;
1074   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1075                      / sym_size);
1076   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1077     {
1078       this->error(_("size of symbols is not multiple of symbol size"));
1079       return;
1080     }
1081
1082   this->symbols_.resize(symcount);
1083
1084   const char* sym_names =
1085     reinterpret_cast<const char*>(sd->symbol_names->data());
1086   symtab->add_from_relobj(this,
1087                           sd->symbols->data() + sd->external_symbols_offset,
1088                           symcount, this->local_symbol_count_,
1089                           sym_names, sd->symbol_names_size,
1090                           &this->symbols_);
1091
1092   delete sd->symbols;
1093   sd->symbols = NULL;
1094   delete sd->symbol_names;
1095   sd->symbol_names = NULL;
1096 }
1097
1098 // First pass over the local symbols.  Here we add their names to
1099 // *POOL and *DYNPOOL, and we store the symbol value in
1100 // THIS->LOCAL_VALUES_.  This function is always called from a
1101 // singleton thread.  This is followed by a call to
1102 // finalize_local_symbols.
1103
1104 template<int size, bool big_endian>
1105 void
1106 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1107                                                        Stringpool* dynpool)
1108 {
1109   gold_assert(this->symtab_shndx_ != -1U);
1110   if (this->symtab_shndx_ == 0)
1111     {
1112       // This object has no symbols.  Weird but legal.
1113       return;
1114     }
1115
1116   // Read the symbol table section header.
1117   const unsigned int symtab_shndx = this->symtab_shndx_;
1118   typename This::Shdr symtabshdr(this,
1119                                  this->elf_file_.section_header(symtab_shndx));
1120   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1121
1122   // Read the local symbols.
1123   const int sym_size = This::sym_size;
1124   const unsigned int loccount = this->local_symbol_count_;
1125   gold_assert(loccount == symtabshdr.get_sh_info());
1126   off_t locsize = loccount * sym_size;
1127   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1128                                               locsize, true, true);
1129
1130   // Read the symbol names.
1131   const unsigned int strtab_shndx =
1132     this->adjust_shndx(symtabshdr.get_sh_link());
1133   section_size_type strtab_size;
1134   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1135                                                         &strtab_size,
1136                                                         true);
1137   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1138
1139   // Loop over the local symbols.
1140
1141   const Output_sections& out_sections(this->output_sections());
1142   unsigned int shnum = this->shnum();
1143   unsigned int count = 0;
1144   unsigned int dyncount = 0;
1145   // Skip the first, dummy, symbol.
1146   psyms += sym_size;
1147   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1148     {
1149       elfcpp::Sym<size, big_endian> sym(psyms);
1150
1151       Symbol_value<size>& lv(this->local_values_[i]);
1152
1153       bool is_ordinary;
1154       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1155                                                   &is_ordinary);
1156       lv.set_input_shndx(shndx, is_ordinary);
1157
1158       if (sym.get_st_type() == elfcpp::STT_SECTION)
1159         lv.set_is_section_symbol();
1160       else if (sym.get_st_type() == elfcpp::STT_TLS)
1161         lv.set_is_tls_symbol();
1162
1163       // Save the input symbol value for use in do_finalize_local_symbols().
1164       lv.set_input_value(sym.get_st_value());
1165
1166       // Decide whether this symbol should go into the output file.
1167
1168       if (shndx < shnum && out_sections[shndx] == NULL)
1169         {
1170           lv.set_no_output_symtab_entry();
1171           gold_assert(!lv.needs_output_dynsym_entry());
1172           continue;
1173         }
1174
1175       if (sym.get_st_type() == elfcpp::STT_SECTION)
1176         {
1177           lv.set_no_output_symtab_entry();
1178           gold_assert(!lv.needs_output_dynsym_entry());
1179           continue;
1180         }
1181
1182       if (sym.get_st_name() >= strtab_size)
1183         {
1184           this->error(_("local symbol %u section name out of range: %u >= %u"),
1185                       i, sym.get_st_name(),
1186                       static_cast<unsigned int>(strtab_size));
1187           lv.set_no_output_symtab_entry();
1188           continue;
1189         }
1190
1191       // Add the symbol to the symbol table string pool.
1192       const char* name = pnames + sym.get_st_name();
1193       pool->add(name, true, NULL);
1194       ++count;
1195
1196       // If needed, add the symbol to the dynamic symbol table string pool.
1197       if (lv.needs_output_dynsym_entry())
1198         {
1199           dynpool->add(name, true, NULL);
1200           ++dyncount;
1201         }
1202     }
1203
1204   this->output_local_symbol_count_ = count;
1205   this->output_local_dynsym_count_ = dyncount;
1206 }
1207
1208 // Finalize the local symbols.  Here we set the final value in
1209 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1210 // This function is always called from a singleton thread.  The actual
1211 // output of the local symbols will occur in a separate task.
1212
1213 template<int size, bool big_endian>
1214 unsigned int
1215 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1216                                                           off_t off)
1217 {
1218   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1219
1220   const unsigned int loccount = this->local_symbol_count_;
1221   this->local_symbol_offset_ = off;
1222
1223   const Output_sections& out_sections(this->output_sections());
1224   const std::vector<Address>& out_offsets(this->section_offsets_);
1225   unsigned int shnum = this->shnum();
1226
1227   for (unsigned int i = 1; i < loccount; ++i)
1228     {
1229       Symbol_value<size>& lv(this->local_values_[i]);
1230
1231       bool is_ordinary;
1232       unsigned int shndx = lv.input_shndx(&is_ordinary);
1233
1234       // Set the output symbol value.
1235
1236       if (!is_ordinary)
1237         {
1238           if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1239             lv.set_output_value(lv.input_value());
1240           else
1241             {
1242               this->error(_("unknown section index %u for local symbol %u"),
1243                           shndx, i);
1244               lv.set_output_value(0);
1245             }
1246         }
1247       else
1248         {
1249           if (shndx >= shnum)
1250             {
1251               this->error(_("local symbol %u section index %u out of range"),
1252                           i, shndx);
1253               shndx = 0;
1254             }
1255
1256           Output_section* os = out_sections[shndx];
1257
1258           if (os == NULL)
1259             {
1260               // This local symbol belongs to a section we are discarding.
1261               // In some cases when applying relocations later, we will
1262               // attempt to match it to the corresponding kept section,
1263               // so we leave the input value unchanged here.
1264               continue;
1265             }
1266           else if (out_offsets[shndx] == -1U)
1267             {
1268               // This is a SHF_MERGE section or one which otherwise
1269               // requires special handling.  We get the output address
1270               // of the start of the merged section.  If this is not a
1271               // section symbol, we can then determine the final
1272               // value.  If it is a section symbol, we can not, as in
1273               // that case we have to consider the addend to determine
1274               // the value to use in a relocation.
1275               if (!lv.is_section_symbol())
1276                 lv.set_output_value(os->output_address(this, shndx,
1277                                                        lv.input_value()));
1278               else
1279                 {
1280                   section_offset_type start =
1281                     os->starting_output_address(this, shndx);
1282                   Merged_symbol_value<size>* msv =
1283                     new Merged_symbol_value<size>(lv.input_value(), start);
1284                   lv.set_merged_symbol_value(msv);
1285                 }
1286             }
1287           else if (lv.is_tls_symbol())
1288             lv.set_output_value(os->tls_offset()
1289                                 + out_offsets[shndx]
1290                                 + lv.input_value());
1291           else
1292             lv.set_output_value(os->address()
1293                                 + out_offsets[shndx]
1294                                 + lv.input_value());
1295         }
1296
1297       if (lv.needs_output_symtab_entry())
1298         {
1299           lv.set_output_symtab_index(index);
1300           ++index;
1301         }
1302     }
1303   return index;
1304 }
1305
1306 // Set the output dynamic symbol table indexes for the local variables.
1307
1308 template<int size, bool big_endian>
1309 unsigned int
1310 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1311 {
1312   const unsigned int loccount = this->local_symbol_count_;
1313   for (unsigned int i = 1; i < loccount; ++i)
1314     {
1315       Symbol_value<size>& lv(this->local_values_[i]);
1316       if (lv.needs_output_dynsym_entry())
1317         {
1318           lv.set_output_dynsym_index(index);
1319           ++index;
1320         }
1321     }
1322   return index;
1323 }
1324
1325 // Set the offset where local dynamic symbol information will be stored.
1326 // Returns the count of local symbols contributed to the symbol table by
1327 // this object.
1328
1329 template<int size, bool big_endian>
1330 unsigned int
1331 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1332 {
1333   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1334   this->local_dynsym_offset_ = off;
1335   return this->output_local_dynsym_count_;
1336 }
1337
1338 // Write out the local symbols.
1339
1340 template<int size, bool big_endian>
1341 void
1342 Sized_relobj<size, big_endian>::write_local_symbols(
1343     Output_file* of,
1344     const Stringpool* sympool,
1345     const Stringpool* dynpool,
1346     Output_symtab_xindex* symtab_xindex,
1347     Output_symtab_xindex* dynsym_xindex)
1348 {
1349   if (parameters->options().strip_all()
1350       && this->output_local_dynsym_count_ == 0)
1351     return;
1352
1353   gold_assert(this->symtab_shndx_ != -1U);
1354   if (this->symtab_shndx_ == 0)
1355     {
1356       // This object has no symbols.  Weird but legal.
1357       return;
1358     }
1359
1360   // Read the symbol table section header.
1361   const unsigned int symtab_shndx = this->symtab_shndx_;
1362   typename This::Shdr symtabshdr(this,
1363                                  this->elf_file_.section_header(symtab_shndx));
1364   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1365   const unsigned int loccount = this->local_symbol_count_;
1366   gold_assert(loccount == symtabshdr.get_sh_info());
1367
1368   // Read the local symbols.
1369   const int sym_size = This::sym_size;
1370   off_t locsize = loccount * sym_size;
1371   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1372                                               locsize, true, false);
1373
1374   // Read the symbol names.
1375   const unsigned int strtab_shndx =
1376     this->adjust_shndx(symtabshdr.get_sh_link());
1377   section_size_type strtab_size;
1378   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1379                                                         &strtab_size,
1380                                                         false);
1381   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1382
1383   // Get views into the output file for the portions of the symbol table
1384   // and the dynamic symbol table that we will be writing.
1385   off_t output_size = this->output_local_symbol_count_ * sym_size;
1386   unsigned char* oview = NULL;
1387   if (output_size > 0)
1388     oview = of->get_output_view(this->local_symbol_offset_, output_size);
1389
1390   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1391   unsigned char* dyn_oview = NULL;
1392   if (dyn_output_size > 0)
1393     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1394                                     dyn_output_size);
1395
1396   const Output_sections out_sections(this->output_sections());
1397
1398   gold_assert(this->local_values_.size() == loccount);
1399
1400   unsigned char* ov = oview;
1401   unsigned char* dyn_ov = dyn_oview;
1402   psyms += sym_size;
1403   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1404     {
1405       elfcpp::Sym<size, big_endian> isym(psyms);
1406
1407       Symbol_value<size>& lv(this->local_values_[i]);
1408
1409       bool is_ordinary;
1410       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1411                                                      &is_ordinary);
1412       if (is_ordinary)
1413         {
1414           gold_assert(st_shndx < out_sections.size());
1415           if (out_sections[st_shndx] == NULL)
1416             continue;
1417           st_shndx = out_sections[st_shndx]->out_shndx();
1418           if (st_shndx >= elfcpp::SHN_LORESERVE)
1419             {
1420               if (lv.needs_output_symtab_entry())
1421                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1422               if (lv.needs_output_dynsym_entry())
1423                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1424               st_shndx = elfcpp::SHN_XINDEX;
1425             }
1426         }
1427
1428       // Write the symbol to the output symbol table.
1429       if (!parameters->options().strip_all()
1430           && lv.needs_output_symtab_entry())
1431         {
1432           elfcpp::Sym_write<size, big_endian> osym(ov);
1433
1434           gold_assert(isym.get_st_name() < strtab_size);
1435           const char* name = pnames + isym.get_st_name();
1436           osym.put_st_name(sympool->get_offset(name));
1437           osym.put_st_value(this->local_values_[i].value(this, 0));
1438           osym.put_st_size(isym.get_st_size());
1439           osym.put_st_info(isym.get_st_info());
1440           osym.put_st_other(isym.get_st_other());
1441           osym.put_st_shndx(st_shndx);
1442
1443           ov += sym_size;
1444         }
1445
1446       // Write the symbol to the output dynamic symbol table.
1447       if (lv.needs_output_dynsym_entry())
1448         {
1449           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1450           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1451
1452           gold_assert(isym.get_st_name() < strtab_size);
1453           const char* name = pnames + isym.get_st_name();
1454           osym.put_st_name(dynpool->get_offset(name));
1455           osym.put_st_value(this->local_values_[i].value(this, 0));
1456           osym.put_st_size(isym.get_st_size());
1457           osym.put_st_info(isym.get_st_info());
1458           osym.put_st_other(isym.get_st_other());
1459           osym.put_st_shndx(st_shndx);
1460
1461           dyn_ov += sym_size;
1462         }
1463     }
1464
1465
1466   if (output_size > 0)
1467     {
1468       gold_assert(ov - oview == output_size);
1469       of->write_output_view(this->local_symbol_offset_, output_size, oview);
1470     }
1471
1472   if (dyn_output_size > 0)
1473     {
1474       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1475       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1476                             dyn_oview);
1477     }
1478 }
1479
1480 // Set *INFO to symbolic information about the offset OFFSET in the
1481 // section SHNDX.  Return true if we found something, false if we
1482 // found nothing.
1483
1484 template<int size, bool big_endian>
1485 bool
1486 Sized_relobj<size, big_endian>::get_symbol_location_info(
1487     unsigned int shndx,
1488     off_t offset,
1489     Symbol_location_info* info)
1490 {
1491   if (this->symtab_shndx_ == 0)
1492     return false;
1493
1494   section_size_type symbols_size;
1495   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1496                                                         &symbols_size,
1497                                                         false);
1498
1499   unsigned int symbol_names_shndx =
1500     this->adjust_shndx(this->section_link(this->symtab_shndx_));
1501   section_size_type names_size;
1502   const unsigned char* symbol_names_u =
1503     this->section_contents(symbol_names_shndx, &names_size, false);
1504   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1505
1506   const int sym_size = This::sym_size;
1507   const size_t count = symbols_size / sym_size;
1508
1509   const unsigned char* p = symbols;
1510   for (size_t i = 0; i < count; ++i, p += sym_size)
1511     {
1512       elfcpp::Sym<size, big_endian> sym(p);
1513
1514       if (sym.get_st_type() == elfcpp::STT_FILE)
1515         {
1516           if (sym.get_st_name() >= names_size)
1517             info->source_file = "(invalid)";
1518           else
1519             info->source_file = symbol_names + sym.get_st_name();
1520           continue;
1521         }
1522
1523       bool is_ordinary;
1524       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1525                                                      &is_ordinary);
1526       if (is_ordinary
1527           && st_shndx == shndx
1528           && static_cast<off_t>(sym.get_st_value()) <= offset
1529           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1530               > offset))
1531         {
1532           if (sym.get_st_name() > names_size)
1533             info->enclosing_symbol_name = "(invalid)";
1534           else
1535             {
1536               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1537               if (parameters->options().do_demangle())
1538                 {
1539                   char* demangled_name = cplus_demangle(
1540                       info->enclosing_symbol_name.c_str(),
1541                       DMGL_ANSI | DMGL_PARAMS);
1542                   if (demangled_name != NULL)
1543                     {
1544                       info->enclosing_symbol_name.assign(demangled_name);
1545                       free(demangled_name);
1546                     }
1547                 }
1548             }
1549           return true;
1550         }
1551     }
1552
1553   return false;
1554 }
1555
1556 // Look for a kept section corresponding to the given discarded section,
1557 // and return its output address.  This is used only for relocations in
1558 // debugging sections.  If we can't find the kept section, return 0.
1559
1560 template<int size, bool big_endian>
1561 typename Sized_relobj<size, big_endian>::Address
1562 Sized_relobj<size, big_endian>::map_to_kept_section(
1563     unsigned int shndx,
1564     bool* found) const
1565 {
1566   Kept_comdat_section *kept = this->get_kept_comdat_section(shndx);
1567   if (kept != NULL)
1568     {
1569       gold_assert(kept->object_ != NULL);
1570       *found = true;
1571       Output_section* os = kept->object_->output_section(kept->shndx_);
1572       Address offset = kept->object_->get_output_section_offset(kept->shndx_);
1573       gold_assert(os != NULL && offset != -1U);
1574       return os->address() + offset;
1575     }
1576   *found = false;
1577   return 0;
1578 }
1579
1580 // Input_objects methods.
1581
1582 // Add a regular relocatable object to the list.  Return false if this
1583 // object should be ignored.
1584
1585 bool
1586 Input_objects::add_object(Object* obj)
1587 {
1588   // Set the global target from the first object file we recognize.
1589   Target* target = obj->target();
1590   if (!parameters->target_valid())
1591     set_parameters_target(target);
1592   else if (target != &parameters->target())
1593     {
1594       obj->error(_("incompatible target"));
1595       return false;
1596     }
1597
1598   // Print the filename if the -t/--trace option is selected.
1599   if (parameters->options().trace())
1600     gold_info("%s", obj->name().c_str());
1601
1602   if (!obj->is_dynamic())
1603     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1604   else
1605     {
1606       // See if this is a duplicate SONAME.
1607       Dynobj* dynobj = static_cast<Dynobj*>(obj);
1608       const char* soname = dynobj->soname();
1609
1610       std::pair<Unordered_set<std::string>::iterator, bool> ins =
1611         this->sonames_.insert(soname);
1612       if (!ins.second)
1613         {
1614           // We have already seen a dynamic object with this soname.
1615           return false;
1616         }
1617
1618       this->dynobj_list_.push_back(dynobj);
1619
1620       // If this is -lc, remember the directory in which we found it.
1621       // We use this when issuing warnings about undefined symbols: as
1622       // a heuristic, we don't warn about system libraries found in
1623       // the same directory as -lc.
1624       if (strncmp(soname, "libc.so", 7) == 0)
1625         {
1626           const char* object_name = dynobj->name().c_str();
1627           const char* base = lbasename(object_name);
1628           if (base != object_name)
1629             this->system_library_directory_.assign(object_name,
1630                                                    base - 1 - object_name);
1631         }
1632     }
1633
1634   return true;
1635 }
1636
1637 // Return whether an object was found in the system library directory.
1638
1639 bool
1640 Input_objects::found_in_system_library_directory(const Object* object) const
1641 {
1642   return (!this->system_library_directory_.empty()
1643           && object->name().compare(0,
1644                                     this->system_library_directory_.size(),
1645                                     this->system_library_directory_) == 0);
1646 }
1647
1648 // For each dynamic object, record whether we've seen all of its
1649 // explicit dependencies.
1650
1651 void
1652 Input_objects::check_dynamic_dependencies() const
1653 {
1654   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1655        p != this->dynobj_list_.end();
1656        ++p)
1657     {
1658       const Dynobj::Needed& needed((*p)->needed());
1659       bool found_all = true;
1660       for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1661            pneeded != needed.end();
1662            ++pneeded)
1663         {
1664           if (this->sonames_.find(*pneeded) == this->sonames_.end())
1665             {
1666               found_all = false;
1667               break;
1668             }
1669         }
1670       (*p)->set_has_unknown_needed_entries(!found_all);
1671     }
1672 }
1673
1674 // Relocate_info methods.
1675
1676 // Return a string describing the location of a relocation.  This is
1677 // only used in error messages.
1678
1679 template<int size, bool big_endian>
1680 std::string
1681 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1682 {
1683   // See if we can get line-number information from debugging sections.
1684   std::string filename;
1685   std::string file_and_lineno;   // Better than filename-only, if available.
1686
1687   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1688   // This will be "" if we failed to parse the debug info for any reason.
1689   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1690
1691   std::string ret(this->object->name());
1692   ret += ':';
1693   Symbol_location_info info;
1694   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1695     {
1696       ret += " in function ";
1697       ret += info.enclosing_symbol_name;
1698       ret += ":";
1699       filename = info.source_file;
1700     }
1701
1702   if (!file_and_lineno.empty())
1703     ret += file_and_lineno;
1704   else
1705     {
1706       if (!filename.empty())
1707         ret += filename;
1708       ret += "(";
1709       ret += this->object->section_name(this->data_shndx);
1710       char buf[100];
1711       // Offsets into sections have to be positive.
1712       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1713       ret += buf;
1714       ret += ")";
1715     }
1716   return ret;
1717 }
1718
1719 } // End namespace gold.
1720
1721 namespace
1722 {
1723
1724 using namespace gold;
1725
1726 // Read an ELF file with the header and return the appropriate
1727 // instance of Object.
1728
1729 template<int size, bool big_endian>
1730 Object*
1731 make_elf_sized_object(const std::string& name, Input_file* input_file,
1732                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1733 {
1734   int et = ehdr.get_e_type();
1735   if (et == elfcpp::ET_REL)
1736     {
1737       Sized_relobj<size, big_endian>* obj =
1738         new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1739       obj->setup(ehdr);
1740       return obj;
1741     }
1742   else if (et == elfcpp::ET_DYN)
1743     {
1744       Sized_dynobj<size, big_endian>* obj =
1745         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1746       obj->setup(ehdr);
1747       return obj;
1748     }
1749   else
1750     {
1751       gold_error(_("%s: unsupported ELF file type %d"),
1752                  name.c_str(), et);
1753       return NULL;
1754     }
1755 }
1756
1757 } // End anonymous namespace.
1758
1759 namespace gold
1760 {
1761
1762 // Read an ELF file and return the appropriate instance of Object.
1763
1764 Object*
1765 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1766                 const unsigned char* p, section_offset_type bytes)
1767 {
1768   if (bytes < elfcpp::EI_NIDENT)
1769     {
1770       gold_error(_("%s: ELF file too short"), name.c_str());
1771       return NULL;
1772     }
1773
1774   int v = p[elfcpp::EI_VERSION];
1775   if (v != elfcpp::EV_CURRENT)
1776     {
1777       if (v == elfcpp::EV_NONE)
1778         gold_error(_("%s: invalid ELF version 0"), name.c_str());
1779       else
1780         gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1781       return NULL;
1782     }
1783
1784   int c = p[elfcpp::EI_CLASS];
1785   if (c == elfcpp::ELFCLASSNONE)
1786     {
1787       gold_error(_("%s: invalid ELF class 0"), name.c_str());
1788       return NULL;
1789     }
1790   else if (c != elfcpp::ELFCLASS32
1791            && c != elfcpp::ELFCLASS64)
1792     {
1793       gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1794       return NULL;
1795     }
1796
1797   int d = p[elfcpp::EI_DATA];
1798   if (d == elfcpp::ELFDATANONE)
1799     {
1800       gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1801       return NULL;
1802     }
1803   else if (d != elfcpp::ELFDATA2LSB
1804            && d != elfcpp::ELFDATA2MSB)
1805     {
1806       gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1807       return NULL;
1808     }
1809
1810   bool big_endian = d == elfcpp::ELFDATA2MSB;
1811
1812   if (c == elfcpp::ELFCLASS32)
1813     {
1814       if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1815         {
1816           gold_error(_("%s: ELF file too short"), name.c_str());
1817           return NULL;
1818         }
1819       if (big_endian)
1820         {
1821 #ifdef HAVE_TARGET_32_BIG
1822           elfcpp::Ehdr<32, true> ehdr(p);
1823           return make_elf_sized_object<32, true>(name, input_file,
1824                                                  offset, ehdr);
1825 #else
1826           gold_error(_("%s: not configured to support "
1827                        "32-bit big-endian object"),
1828                      name.c_str());
1829           return NULL;
1830 #endif
1831         }
1832       else
1833         {
1834 #ifdef HAVE_TARGET_32_LITTLE
1835           elfcpp::Ehdr<32, false> ehdr(p);
1836           return make_elf_sized_object<32, false>(name, input_file,
1837                                                   offset, ehdr);
1838 #else
1839           gold_error(_("%s: not configured to support "
1840                        "32-bit little-endian object"),
1841                      name.c_str());
1842           return NULL;
1843 #endif
1844         }
1845     }
1846   else
1847     {
1848       if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
1849         {
1850           gold_error(_("%s: ELF file too short"), name.c_str());
1851           return NULL;
1852         }
1853       if (big_endian)
1854         {
1855 #ifdef HAVE_TARGET_64_BIG
1856           elfcpp::Ehdr<64, true> ehdr(p);
1857           return make_elf_sized_object<64, true>(name, input_file,
1858                                                  offset, ehdr);
1859 #else
1860           gold_error(_("%s: not configured to support "
1861                        "64-bit big-endian object"),
1862                      name.c_str());
1863           return NULL;
1864 #endif
1865         }
1866       else
1867         {
1868 #ifdef HAVE_TARGET_64_LITTLE
1869           elfcpp::Ehdr<64, false> ehdr(p);
1870           return make_elf_sized_object<64, false>(name, input_file,
1871                                                   offset, ehdr);
1872 #else
1873           gold_error(_("%s: not configured to support "
1874                        "64-bit little-endian object"),
1875                      name.c_str());
1876           return NULL;
1877 #endif
1878         }
1879     }
1880 }
1881
1882 // Instantiate the templates we need.
1883
1884 #ifdef HAVE_TARGET_32_LITTLE
1885 template
1886 void
1887 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
1888                                      Read_symbols_data*);
1889 #endif
1890
1891 #ifdef HAVE_TARGET_32_BIG
1892 template
1893 void
1894 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
1895                                     Read_symbols_data*);
1896 #endif
1897
1898 #ifdef HAVE_TARGET_64_LITTLE
1899 template
1900 void
1901 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
1902                                      Read_symbols_data*);
1903 #endif
1904
1905 #ifdef HAVE_TARGET_64_BIG
1906 template
1907 void
1908 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
1909                                     Read_symbols_data*);
1910 #endif
1911
1912 #ifdef HAVE_TARGET_32_LITTLE
1913 template
1914 class Sized_relobj<32, false>;
1915 #endif
1916
1917 #ifdef HAVE_TARGET_32_BIG
1918 template
1919 class Sized_relobj<32, true>;
1920 #endif
1921
1922 #ifdef HAVE_TARGET_64_LITTLE
1923 template
1924 class Sized_relobj<64, false>;
1925 #endif
1926
1927 #ifdef HAVE_TARGET_64_BIG
1928 template
1929 class Sized_relobj<64, true>;
1930 #endif
1931
1932 #ifdef HAVE_TARGET_32_LITTLE
1933 template
1934 struct Relocate_info<32, false>;
1935 #endif
1936
1937 #ifdef HAVE_TARGET_32_BIG
1938 template
1939 struct Relocate_info<32, true>;
1940 #endif
1941
1942 #ifdef HAVE_TARGET_64_LITTLE
1943 template
1944 struct Relocate_info<64, false>;
1945 #endif
1946
1947 #ifdef HAVE_TARGET_64_BIG
1948 template
1949 struct Relocate_info<64, true>;
1950 #endif
1951
1952 } // End namespace gold.