*** empty log message ***
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42
43 namespace gold
44 {
45
46 // Class Xindex.
47
48 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
49 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
50 // table we care about.
51
52 template<int size, bool big_endian>
53 void
54 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
55 {
56   if (!this->symtab_xindex_.empty())
57     return;
58
59   gold_assert(symtab_shndx != 0);
60
61   // Look through the sections in reverse order, on the theory that it
62   // is more likely to be near the end than the beginning.
63   unsigned int i = object->shnum();
64   while (i > 0)
65     {
66       --i;
67       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
68           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
69         {
70           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
71           return;
72         }
73     }
74
75   object->error(_("missing SHT_SYMTAB_SHNDX section"));
76 }
77
78 // Read in the symtab_xindex_ array, given the section index of the
79 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
80 // section headers.
81
82 template<int size, bool big_endian>
83 void
84 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
85                            const unsigned char* pshdrs)
86 {
87   section_size_type bytecount;
88   const unsigned char* contents;
89   if (pshdrs == NULL)
90     contents = object->section_contents(xindex_shndx, &bytecount, false);
91   else
92     {
93       const unsigned char* p = (pshdrs
94                                 + (xindex_shndx
95                                    * elfcpp::Elf_sizes<size>::shdr_size));
96       typename elfcpp::Shdr<size, big_endian> shdr(p);
97       bytecount = convert_to_section_size_type(shdr.get_sh_size());
98       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
99     }
100
101   gold_assert(this->symtab_xindex_.empty());
102   this->symtab_xindex_.reserve(bytecount / 4);
103   for (section_size_type i = 0; i < bytecount; i += 4)
104     {
105       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
106       // We preadjust the section indexes we save.
107       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
108     }
109 }
110
111 // Symbol symndx has a section of SHN_XINDEX; return the real section
112 // index.
113
114 unsigned int
115 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
116 {
117   if (symndx >= this->symtab_xindex_.size())
118     {
119       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
120                     symndx);
121       return elfcpp::SHN_UNDEF;
122     }
123   unsigned int shndx = this->symtab_xindex_[symndx];
124   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
125     {
126       object->error(_("extended index for symbol %u out of range: %u"),
127                     symndx, shndx);
128       return elfcpp::SHN_UNDEF;
129     }
130   return shndx;
131 }
132
133 // Class Object.
134
135 // Set the target based on fields in the ELF file header.
136
137 void
138 Object::set_target(int machine, int size, bool big_endian, int osabi,
139                    int abiversion)
140 {
141   Target* target = select_target(machine, size, big_endian, osabi, abiversion);
142   if (target == NULL)
143     gold_fatal(_("%s: unsupported ELF machine number %d"),
144                this->name().c_str(), machine);
145   this->target_ = target;
146 }
147
148 // Report an error for this object file.  This is used by the
149 // elfcpp::Elf_file interface, and also called by the Object code
150 // itself.
151
152 void
153 Object::error(const char* format, ...) const
154 {
155   va_list args;
156   va_start(args, format);
157   char* buf = NULL;
158   if (vasprintf(&buf, format, args) < 0)
159     gold_nomem();
160   va_end(args);
161   gold_error(_("%s: %s"), this->name().c_str(), buf);
162   free(buf);
163 }
164
165 // Return a view of the contents of a section.
166
167 const unsigned char*
168 Object::section_contents(unsigned int shndx, section_size_type* plen,
169                          bool cache)
170 {
171   Location loc(this->do_section_contents(shndx));
172   *plen = convert_to_section_size_type(loc.data_size);
173   if (*plen == 0)
174     {
175       static const unsigned char empty[1] = { '\0' };
176       return empty;
177     }
178   return this->get_view(loc.file_offset, *plen, true, cache);
179 }
180
181 // Read the section data into SD.  This is code common to Sized_relobj
182 // and Sized_dynobj, so we put it into Object.
183
184 template<int size, bool big_endian>
185 void
186 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
187                           Read_symbols_data* sd)
188 {
189   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
190
191   // Read the section headers.
192   const off_t shoff = elf_file->shoff();
193   const unsigned int shnum = this->shnum();
194   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
195                                                true, true);
196
197   // Read the section names.
198   const unsigned char* pshdrs = sd->section_headers->data();
199   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
200   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
201
202   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
203     this->error(_("section name section has wrong type: %u"),
204                 static_cast<unsigned int>(shdrnames.get_sh_type()));
205
206   sd->section_names_size =
207     convert_to_section_size_type(shdrnames.get_sh_size());
208   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
209                                              sd->section_names_size, false,
210                                              false);
211 }
212
213 // If NAME is the name of a special .gnu.warning section, arrange for
214 // the warning to be issued.  SHNDX is the section index.  Return
215 // whether it is a warning section.
216
217 bool
218 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
219                                    Symbol_table* symtab)
220 {
221   const char warn_prefix[] = ".gnu.warning.";
222   const int warn_prefix_len = sizeof warn_prefix - 1;
223   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
224     {
225       // Read the section contents to get the warning text.  It would
226       // be nicer if we only did this if we have to actually issue a
227       // warning.  Unfortunately, warnings are issued as we relocate
228       // sections.  That means that we can not lock the object then,
229       // as we might try to issue the same warning multiple times
230       // simultaneously.
231       section_size_type len;
232       const unsigned char* contents = this->section_contents(shndx, &len,
233                                                              false);
234       if (len == 0)
235         {
236           const char* warning = name + warn_prefix_len;
237           contents = reinterpret_cast<const unsigned char*>(warning);
238           len = strlen(warning);
239         }
240       std::string warning(reinterpret_cast<const char*>(contents), len);
241       symtab->add_warning(name + warn_prefix_len, this, warning);
242       return true;
243     }
244   return false;
245 }
246
247 // Class Relobj
248
249 // To copy the symbols data read from the file to a local data structure.
250 // This function is called from do_layout only while doing garbage 
251 // collection.
252
253 void
254 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
255                           unsigned int section_header_size)
256 {
257   gc_sd->section_headers_data = 
258          new unsigned char[(section_header_size)];
259   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
260          section_header_size);
261   gc_sd->section_names_data = 
262          new unsigned char[sd->section_names_size];
263   memcpy(gc_sd->section_names_data, sd->section_names->data(),
264          sd->section_names_size);
265   gc_sd->section_names_size = sd->section_names_size;
266   if (sd->symbols != NULL)
267     {
268       gc_sd->symbols_data = 
269              new unsigned char[sd->symbols_size];
270       memcpy(gc_sd->symbols_data, sd->symbols->data(),
271             sd->symbols_size);
272     }
273   else
274     {
275       gc_sd->symbols_data = NULL;
276     }
277   gc_sd->symbols_size = sd->symbols_size;
278   gc_sd->external_symbols_offset = sd->external_symbols_offset;
279   if (sd->symbol_names != NULL)
280     {
281       gc_sd->symbol_names_data =
282              new unsigned char[sd->symbol_names_size];
283       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
284             sd->symbol_names_size);
285     }
286   else
287     {
288       gc_sd->symbol_names_data = NULL;
289     }
290   gc_sd->symbol_names_size = sd->symbol_names_size;
291 }
292
293 // This function determines if a particular section name must be included
294 // in the link.  This is used during garbage collection to determine the
295 // roots of the worklist.
296
297 bool
298 Relobj::is_section_name_included(const char* name)
299 {
300   if (is_prefix_of(".ctors", name) 
301       || is_prefix_of(".dtors", name) 
302       || is_prefix_of(".note", name) 
303       || is_prefix_of(".init", name) 
304       || is_prefix_of(".fini", name) 
305       || is_prefix_of(".gcc_except_table", name) 
306       || is_prefix_of(".jcr", name) 
307       || is_prefix_of(".preinit_array", name) 
308       || (is_prefix_of(".text", name) 
309           && strstr(name, "personality")) 
310       || (is_prefix_of(".data", name) 
311           &&  strstr(name, "personality")) 
312       || (is_prefix_of(".gnu.linkonce.d", name) && 
313             strstr(name, "personality")))
314     {
315       return true; 
316     }
317   return false;
318 }
319
320 // Class Sized_relobj.
321
322 template<int size, bool big_endian>
323 Sized_relobj<size, big_endian>::Sized_relobj(
324     const std::string& name,
325     Input_file* input_file,
326     off_t offset,
327     const elfcpp::Ehdr<size, big_endian>& ehdr)
328   : Relobj(name, input_file, offset),
329     elf_file_(this, ehdr),
330     symtab_shndx_(-1U),
331     local_symbol_count_(0),
332     output_local_symbol_count_(0),
333     output_local_dynsym_count_(0),
334     symbols_(),
335     defined_count_(0),
336     local_symbol_offset_(0),
337     local_dynsym_offset_(0),
338     local_values_(),
339     local_got_offsets_(),
340     kept_comdat_sections_(),
341     has_eh_frame_(false),
342     discarded_eh_frame_shndx_(-1U)
343 {
344 }
345
346 template<int size, bool big_endian>
347 Sized_relobj<size, big_endian>::~Sized_relobj()
348 {
349 }
350
351 // Set up an object file based on the file header.  This sets up the
352 // target and reads the section information.
353
354 template<int size, bool big_endian>
355 void
356 Sized_relobj<size, big_endian>::setup(
357     const elfcpp::Ehdr<size, big_endian>& ehdr)
358 {
359   this->set_target(ehdr.get_e_machine(), size, big_endian,
360                    ehdr.get_e_ident()[elfcpp::EI_OSABI],
361                    ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
362
363   const unsigned int shnum = this->elf_file_.shnum();
364   this->set_shnum(shnum);
365 }
366
367 // Find the SHT_SYMTAB section, given the section headers.  The ELF
368 // standard says that maybe in the future there can be more than one
369 // SHT_SYMTAB section.  Until somebody figures out how that could
370 // work, we assume there is only one.
371
372 template<int size, bool big_endian>
373 void
374 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
375 {
376   const unsigned int shnum = this->shnum();
377   this->symtab_shndx_ = 0;
378   if (shnum > 0)
379     {
380       // Look through the sections in reverse order, since gas tends
381       // to put the symbol table at the end.
382       const unsigned char* p = pshdrs + shnum * This::shdr_size;
383       unsigned int i = shnum;
384       unsigned int xindex_shndx = 0;
385       unsigned int xindex_link = 0;
386       while (i > 0)
387         {
388           --i;
389           p -= This::shdr_size;
390           typename This::Shdr shdr(p);
391           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
392             {
393               this->symtab_shndx_ = i;
394               if (xindex_shndx > 0 && xindex_link == i)
395                 {
396                   Xindex* xindex =
397                     new Xindex(this->elf_file_.large_shndx_offset());
398                   xindex->read_symtab_xindex<size, big_endian>(this,
399                                                                xindex_shndx,
400                                                                pshdrs);
401                   this->set_xindex(xindex);
402                 }
403               break;
404             }
405
406           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
407           // one.  This will work if it follows the SHT_SYMTAB
408           // section.
409           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
410             {
411               xindex_shndx = i;
412               xindex_link = this->adjust_shndx(shdr.get_sh_link());
413             }
414         }
415     }
416 }
417
418 // Return the Xindex structure to use for object with lots of
419 // sections.
420
421 template<int size, bool big_endian>
422 Xindex*
423 Sized_relobj<size, big_endian>::do_initialize_xindex()
424 {
425   gold_assert(this->symtab_shndx_ != -1U);
426   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
427   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
428   return xindex;
429 }
430
431 // Return whether SHDR has the right type and flags to be a GNU
432 // .eh_frame section.
433
434 template<int size, bool big_endian>
435 bool
436 Sized_relobj<size, big_endian>::check_eh_frame_flags(
437     const elfcpp::Shdr<size, big_endian>* shdr) const
438 {
439   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
440           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
441 }
442
443 // Return whether there is a GNU .eh_frame section, given the section
444 // headers and the section names.
445
446 template<int size, bool big_endian>
447 bool
448 Sized_relobj<size, big_endian>::find_eh_frame(
449     const unsigned char* pshdrs,
450     const char* names,
451     section_size_type names_size) const
452 {
453   const unsigned int shnum = this->shnum();
454   const unsigned char* p = pshdrs + This::shdr_size;
455   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
456     {
457       typename This::Shdr shdr(p);
458       if (this->check_eh_frame_flags(&shdr))
459         {
460           if (shdr.get_sh_name() >= names_size)
461             {
462               this->error(_("bad section name offset for section %u: %lu"),
463                           i, static_cast<unsigned long>(shdr.get_sh_name()));
464               continue;
465             }
466
467           const char* name = names + shdr.get_sh_name();
468           if (strcmp(name, ".eh_frame") == 0)
469             return true;
470         }
471     }
472   return false;
473 }
474
475 // Read the sections and symbols from an object file.
476
477 template<int size, bool big_endian>
478 void
479 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
480 {
481   this->read_section_data(&this->elf_file_, sd);
482
483   const unsigned char* const pshdrs = sd->section_headers->data();
484
485   this->find_symtab(pshdrs);
486
487   const unsigned char* namesu = sd->section_names->data();
488   const char* names = reinterpret_cast<const char*>(namesu);
489   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
490     {
491       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
492         this->has_eh_frame_ = true;
493     }
494
495   sd->symbols = NULL;
496   sd->symbols_size = 0;
497   sd->external_symbols_offset = 0;
498   sd->symbol_names = NULL;
499   sd->symbol_names_size = 0;
500
501   if (this->symtab_shndx_ == 0)
502     {
503       // No symbol table.  Weird but legal.
504       return;
505     }
506
507   // Get the symbol table section header.
508   typename This::Shdr symtabshdr(pshdrs
509                                  + this->symtab_shndx_ * This::shdr_size);
510   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
511
512   // If this object has a .eh_frame section, we need all the symbols.
513   // Otherwise we only need the external symbols.  While it would be
514   // simpler to just always read all the symbols, I've seen object
515   // files with well over 2000 local symbols, which for a 64-bit
516   // object file format is over 5 pages that we don't need to read
517   // now.
518
519   const int sym_size = This::sym_size;
520   const unsigned int loccount = symtabshdr.get_sh_info();
521   this->local_symbol_count_ = loccount;
522   this->local_values_.resize(loccount);
523   section_offset_type locsize = loccount * sym_size;
524   off_t dataoff = symtabshdr.get_sh_offset();
525   section_size_type datasize =
526     convert_to_section_size_type(symtabshdr.get_sh_size());
527   off_t extoff = dataoff + locsize;
528   section_size_type extsize = datasize - locsize;
529
530   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
531   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
532
533   if (readsize == 0)
534     {
535       // No external symbols.  Also weird but also legal.
536       return;
537     }
538
539   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
540
541   // Read the section header for the symbol names.
542   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
543   if (strtab_shndx >= this->shnum())
544     {
545       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
546       return;
547     }
548   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
549   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
550     {
551       this->error(_("symbol table name section has wrong type: %u"),
552                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
553       return;
554     }
555
556   // Read the symbol names.
557   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
558                                                strtabshdr.get_sh_size(),
559                                                false, true);
560
561   sd->symbols = fvsymtab;
562   sd->symbols_size = readsize;
563   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
564   sd->symbol_names = fvstrtab;
565   sd->symbol_names_size =
566     convert_to_section_size_type(strtabshdr.get_sh_size());
567 }
568
569 // Return the section index of symbol SYM.  Set *VALUE to its value in
570 // the object file.  Set *IS_ORDINARY if this is an ordinary section
571 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
572 // Note that for a symbol which is not defined in this object file,
573 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
574 // the final value of the symbol in the link.
575
576 template<int size, bool big_endian>
577 unsigned int
578 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
579                                                          Address* value,
580                                                          bool* is_ordinary)
581 {
582   section_size_type symbols_size;
583   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
584                                                         &symbols_size,
585                                                         false);
586
587   const size_t count = symbols_size / This::sym_size;
588   gold_assert(sym < count);
589
590   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
591   *value = elfsym.get_st_value();
592
593   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
594 }
595
596 // Return whether to include a section group in the link.  LAYOUT is
597 // used to keep track of which section groups we have already seen.
598 // INDEX is the index of the section group and SHDR is the section
599 // header.  If we do not want to include this group, we set bits in
600 // OMIT for each section which should be discarded.
601
602 template<int size, bool big_endian>
603 bool
604 Sized_relobj<size, big_endian>::include_section_group(
605     Symbol_table* symtab,
606     Layout* layout,
607     unsigned int index,
608     const char* name,
609     const unsigned char* shdrs,
610     const char* section_names,
611     section_size_type section_names_size,
612     std::vector<bool>* omit)
613 {
614   // Read the section contents.
615   typename This::Shdr shdr(shdrs + index * This::shdr_size);
616   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
617                                              shdr.get_sh_size(), true, false);
618   const elfcpp::Elf_Word* pword =
619     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
620
621   // The first word contains flags.  We only care about COMDAT section
622   // groups.  Other section groups are always included in the link
623   // just like ordinary sections.
624   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
625
626   // Look up the group signature, which is the name of a symbol.  This
627   // is a lot of effort to go to to read a string.  Why didn't they
628   // just have the group signature point into the string table, rather
629   // than indirect through a symbol?
630
631   // Get the appropriate symbol table header (this will normally be
632   // the single SHT_SYMTAB section, but in principle it need not be).
633   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
634   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
635
636   // Read the symbol table entry.
637   unsigned int symndx = shdr.get_sh_info();
638   if (symndx >= symshdr.get_sh_size() / This::sym_size)
639     {
640       this->error(_("section group %u info %u out of range"),
641                   index, symndx);
642       return false;
643     }
644   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
645   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
646                                              false);
647   elfcpp::Sym<size, big_endian> sym(psym);
648
649   // Read the symbol table names.
650   section_size_type symnamelen;
651   const unsigned char* psymnamesu;
652   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
653                                       &symnamelen, true);
654   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
655
656   // Get the section group signature.
657   if (sym.get_st_name() >= symnamelen)
658     {
659       this->error(_("symbol %u name offset %u out of range"),
660                   symndx, sym.get_st_name());
661       return false;
662     }
663
664   std::string signature(psymnames + sym.get_st_name());
665
666   // It seems that some versions of gas will create a section group
667   // associated with a section symbol, and then fail to give a name to
668   // the section symbol.  In such a case, use the name of the section.
669   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
670     {
671       bool is_ordinary;
672       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
673                                                       sym.get_st_shndx(),
674                                                       &is_ordinary);
675       if (!is_ordinary || sym_shndx >= this->shnum())
676         {
677           this->error(_("symbol %u invalid section index %u"),
678                       symndx, sym_shndx);
679           return false;
680         }
681       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
682       if (member_shdr.get_sh_name() < section_names_size)
683         signature = section_names + member_shdr.get_sh_name();
684     }
685
686   // Record this section group in the layout, and see whether we've already
687   // seen one with the same signature.
688   bool include_group;
689   bool is_comdat;
690   Kept_section* kept_section = NULL;
691
692   if ((flags & elfcpp::GRP_COMDAT) == 0)
693     {
694       include_group = true;
695       is_comdat = false;
696     }
697   else
698     {
699       include_group = layout->find_or_add_kept_section(signature,
700                                                        this, index, true,
701                                                        true, &kept_section);
702       is_comdat = true;
703     }
704
705   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
706
707   std::vector<unsigned int> shndxes;
708   bool relocate_group = include_group && parameters->options().relocatable();
709   if (relocate_group)
710     shndxes.reserve(count - 1);
711
712   for (size_t i = 1; i < count; ++i)
713     {
714       elfcpp::Elf_Word shndx =
715         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
716
717       if (relocate_group)
718         shndxes.push_back(shndx);
719
720       if (shndx >= this->shnum())
721         {
722           this->error(_("section %u in section group %u out of range"),
723                       shndx, index);
724           continue;
725         }
726
727       // Check for an earlier section number, since we're going to get
728       // it wrong--we may have already decided to include the section.
729       if (shndx < index)
730         this->error(_("invalid section group %u refers to earlier section %u"),
731                     index, shndx);
732
733       // Get the name of the member section.
734       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
735       if (member_shdr.get_sh_name() >= section_names_size)
736         {
737           // This is an error, but it will be diagnosed eventually
738           // in do_layout, so we don't need to do anything here but
739           // ignore it.
740           continue;
741         }
742       std::string mname(section_names + member_shdr.get_sh_name());
743
744       if (include_group)
745         {
746           if (is_comdat)
747             kept_section->add_comdat_section(mname, shndx,
748                                              member_shdr.get_sh_size());
749         }
750       else
751         {
752           (*omit)[shndx] = true;
753
754           if (is_comdat)
755             {
756               Relobj* kept_object = kept_section->object();
757               if (kept_section->is_comdat())
758                 {
759                   // Find the corresponding kept section, and store
760                   // that info in the discarded section table.
761                   unsigned int kept_shndx;
762                   uint64_t kept_size;
763                   if (kept_section->find_comdat_section(mname, &kept_shndx,
764                                                         &kept_size))
765                     {
766                       // We don't keep a mapping for this section if
767                       // it has a different size.  The mapping is only
768                       // used for relocation processing, and we don't
769                       // want to treat the sections as similar if the
770                       // sizes are different.  Checking the section
771                       // size is the approach used by the GNU linker.
772                       if (kept_size == member_shdr.get_sh_size())
773                         this->set_kept_comdat_section(shndx, kept_object,
774                                                       kept_shndx);
775                     }
776                 }
777               else
778                 {
779                   // The existing section is a linkonce section.  Add
780                   // a mapping if there is exactly one section in the
781                   // group (which is true when COUNT == 2) and if it
782                   // is the same size.
783                   if (count == 2
784                       && (kept_section->linkonce_size()
785                           == member_shdr.get_sh_size()))
786                     this->set_kept_comdat_section(shndx, kept_object,
787                                                   kept_section->shndx());
788                 }
789             }
790         }
791     }
792
793   if (relocate_group)
794     layout->layout_group(symtab, this, index, name, signature.c_str(),
795                          shdr, flags, &shndxes);
796
797   return include_group;
798 }
799
800 // Whether to include a linkonce section in the link.  NAME is the
801 // name of the section and SHDR is the section header.
802
803 // Linkonce sections are a GNU extension implemented in the original
804 // GNU linker before section groups were defined.  The semantics are
805 // that we only include one linkonce section with a given name.  The
806 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
807 // where T is the type of section and SYMNAME is the name of a symbol.
808 // In an attempt to make linkonce sections interact well with section
809 // groups, we try to identify SYMNAME and use it like a section group
810 // signature.  We want to block section groups with that signature,
811 // but not other linkonce sections with that signature.  We also use
812 // the full name of the linkonce section as a normal section group
813 // signature.
814
815 template<int size, bool big_endian>
816 bool
817 Sized_relobj<size, big_endian>::include_linkonce_section(
818     Layout* layout,
819     unsigned int index,
820     const char* name,
821     const elfcpp::Shdr<size, big_endian>& shdr)
822 {
823   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
824   // In general the symbol name we want will be the string following
825   // the last '.'.  However, we have to handle the case of
826   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
827   // some versions of gcc.  So we use a heuristic: if the name starts
828   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
829   // we look for the last '.'.  We can't always simply skip
830   // ".gnu.linkonce.X", because we have to deal with cases like
831   // ".gnu.linkonce.d.rel.ro.local".
832   const char* const linkonce_t = ".gnu.linkonce.t.";
833   const char* symname;
834   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
835     symname = name + strlen(linkonce_t);
836   else
837     symname = strrchr(name, '.') + 1;
838   std::string sig1(symname);
839   std::string sig2(name);
840   Kept_section* kept1;
841   Kept_section* kept2;
842   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
843                                                    false, &kept1);
844   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
845                                                    true, &kept2);
846
847   if (!include2)
848     {
849       // We are not including this section because we already saw the
850       // name of the section as a signature.  This normally implies
851       // that the kept section is another linkonce section.  If it is
852       // the same size, record it as the section which corresponds to
853       // this one.
854       if (kept2->object() != NULL
855           && !kept2->is_comdat()
856           && kept2->linkonce_size() == sh_size)
857         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
858     }
859   else if (!include1)
860     {
861       // The section is being discarded on the basis of its symbol
862       // name.  This means that the corresponding kept section was
863       // part of a comdat group, and it will be difficult to identify
864       // the specific section within that group that corresponds to
865       // this linkonce section.  We'll handle the simple case where
866       // the group has only one member section.  Otherwise, it's not
867       // worth the effort.
868       unsigned int kept_shndx;
869       uint64_t kept_size;
870       if (kept1->object() != NULL
871           && kept1->is_comdat()
872           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
873           && kept_size == sh_size)
874         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
875     }
876   else
877     {
878       kept1->set_linkonce_size(sh_size);
879       kept2->set_linkonce_size(sh_size);
880     }
881
882   return include1 && include2;
883 }
884
885 // Layout an input section.
886
887 template<int size, bool big_endian>
888 inline void
889 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
890                                                unsigned int shndx,
891                                                const char* name,
892                                                typename This::Shdr& shdr,
893                                                unsigned int reloc_shndx,
894                                                unsigned int reloc_type)
895 {
896   off_t offset;
897   Output_section* os = layout->layout(this, shndx, name, shdr,
898                                           reloc_shndx, reloc_type, &offset);
899
900   this->output_sections()[shndx] = os;
901   if (offset == -1)
902     this->section_offsets_[shndx] = invalid_address;
903   else
904     this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
905
906   // If this section requires special handling, and if there are
907   // relocs that apply to it, then we must do the special handling
908   // before we apply the relocs.
909   if (offset == -1 && reloc_shndx != 0)
910     this->set_relocs_must_follow_section_writes();
911 }
912
913 // Lay out the input sections.  We walk through the sections and check
914 // whether they should be included in the link.  If they should, we
915 // pass them to the Layout object, which will return an output section
916 // and an offset.  
917 // During garbage collection (--gc-sections) and identical code folding 
918 // (--icf), this function is called twice.  When it is called the first 
919 // time, it is for setting up some sections as roots to a work-list for
920 // --gc-sections and to do comdat processing.  Actual layout happens the 
921 // second time around after all the relevant sections have been determined.  
922 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
923 // set to true after the garbage collection worklist or identical code 
924 // folding is processed and the relevant sections to be kept are 
925 // determined.  Then, this function is called again to layout the sections.
926
927 template<int size, bool big_endian>
928 void
929 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
930                                           Layout* layout,
931                                           Read_symbols_data* sd)
932 {
933   const unsigned int shnum = this->shnum();
934   bool is_gc_pass_one = ((parameters->options().gc_sections() 
935                           && !symtab->gc()->is_worklist_ready())
936                          || (parameters->options().icf()
937                              && !symtab->icf()->is_icf_ready()));
938  
939   bool is_gc_pass_two = ((parameters->options().gc_sections() 
940                           && symtab->gc()->is_worklist_ready())
941                          || (parameters->options().icf()
942                              && symtab->icf()->is_icf_ready()));
943
944   bool is_gc_or_icf = (parameters->options().gc_sections()
945                        || parameters->options().icf()); 
946
947   // Both is_gc_pass_one and is_gc_pass_two should not be true.
948   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
949
950   if (shnum == 0)
951     return;
952   Symbols_data* gc_sd = NULL;
953   if (is_gc_pass_one)
954     {
955       // During garbage collection save the symbols data to use it when 
956       // re-entering this function.   
957       gc_sd = new Symbols_data;
958       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
959       this->set_symbols_data(gc_sd);
960     }
961   else if (is_gc_pass_two)
962     {
963       gc_sd = this->get_symbols_data();
964     }
965
966   const unsigned char* section_headers_data = NULL;
967   section_size_type section_names_size;
968   const unsigned char* symbols_data = NULL;
969   section_size_type symbols_size;
970   section_offset_type external_symbols_offset;
971   const unsigned char* symbol_names_data = NULL;
972   section_size_type symbol_names_size;
973  
974   if (is_gc_or_icf)
975     {
976       section_headers_data = gc_sd->section_headers_data;
977       section_names_size = gc_sd->section_names_size;
978       symbols_data = gc_sd->symbols_data;
979       symbols_size = gc_sd->symbols_size;
980       external_symbols_offset = gc_sd->external_symbols_offset;
981       symbol_names_data = gc_sd->symbol_names_data;
982       symbol_names_size = gc_sd->symbol_names_size;
983     }
984   else
985     {
986       section_headers_data = sd->section_headers->data();
987       section_names_size = sd->section_names_size;
988       if (sd->symbols != NULL)
989         symbols_data = sd->symbols->data();
990       symbols_size = sd->symbols_size;
991       external_symbols_offset = sd->external_symbols_offset;
992       if (sd->symbol_names != NULL)
993         symbol_names_data = sd->symbol_names->data();
994       symbol_names_size = sd->symbol_names_size;
995     }
996
997   // Get the section headers.
998   const unsigned char* shdrs = section_headers_data;
999   const unsigned char* pshdrs;
1000
1001   // Get the section names.
1002   const unsigned char* pnamesu = (is_gc_or_icf) 
1003                                  ? gc_sd->section_names_data
1004                                  : sd->section_names->data();
1005
1006   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1007
1008   // If any input files have been claimed by plugins, we need to defer
1009   // actual layout until the replacement files have arrived.
1010   const bool should_defer_layout =
1011       (parameters->options().has_plugins()
1012        && parameters->options().plugins()->should_defer_layout());
1013   unsigned int num_sections_to_defer = 0;
1014
1015   // For each section, record the index of the reloc section if any.
1016   // Use 0 to mean that there is no reloc section, -1U to mean that
1017   // there is more than one.
1018   std::vector<unsigned int> reloc_shndx(shnum, 0);
1019   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1020   // Skip the first, dummy, section.
1021   pshdrs = shdrs + This::shdr_size;
1022   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1023     {
1024       typename This::Shdr shdr(pshdrs);
1025
1026       // Count the number of sections whose layout will be deferred.
1027       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1028         ++num_sections_to_defer;
1029
1030       unsigned int sh_type = shdr.get_sh_type();
1031       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1032         {
1033           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1034           if (target_shndx == 0 || target_shndx >= shnum)
1035             {
1036               this->error(_("relocation section %u has bad info %u"),
1037                           i, target_shndx);
1038               continue;
1039             }
1040
1041           if (reloc_shndx[target_shndx] != 0)
1042             reloc_shndx[target_shndx] = -1U;
1043           else
1044             {
1045               reloc_shndx[target_shndx] = i;
1046               reloc_type[target_shndx] = sh_type;
1047             }
1048         }
1049     }
1050
1051   Output_sections& out_sections(this->output_sections());
1052   std::vector<Address>& out_section_offsets(this->section_offsets_);
1053
1054   if (!is_gc_pass_two)
1055     {
1056       out_sections.resize(shnum);
1057       out_section_offsets.resize(shnum);
1058     }
1059
1060   // If we are only linking for symbols, then there is nothing else to
1061   // do here.
1062   if (this->input_file()->just_symbols())
1063     {
1064       if (!is_gc_pass_two)
1065         {
1066           delete sd->section_headers;
1067           sd->section_headers = NULL;
1068           delete sd->section_names;
1069           sd->section_names = NULL;
1070         }
1071       return;
1072     }
1073
1074   if (num_sections_to_defer > 0)
1075     {
1076       parameters->options().plugins()->add_deferred_layout_object(this);
1077       this->deferred_layout_.reserve(num_sections_to_defer);
1078     }
1079
1080   // Whether we've seen a .note.GNU-stack section.
1081   bool seen_gnu_stack = false;
1082   // The flags of a .note.GNU-stack section.
1083   uint64_t gnu_stack_flags = 0;
1084
1085   // Keep track of which sections to omit.
1086   std::vector<bool> omit(shnum, false);
1087
1088   // Keep track of reloc sections when emitting relocations.
1089   const bool relocatable = parameters->options().relocatable();
1090   const bool emit_relocs = (relocatable
1091                             || parameters->options().emit_relocs());
1092   std::vector<unsigned int> reloc_sections;
1093
1094   // Keep track of .eh_frame sections.
1095   std::vector<unsigned int> eh_frame_sections;
1096
1097   // Skip the first, dummy, section.
1098   pshdrs = shdrs + This::shdr_size;
1099   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1100     {
1101       typename This::Shdr shdr(pshdrs);
1102
1103       if (shdr.get_sh_name() >= section_names_size)
1104         {
1105           this->error(_("bad section name offset for section %u: %lu"),
1106                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1107           return;
1108         }
1109
1110       const char* name = pnames + shdr.get_sh_name();
1111
1112       if (!is_gc_pass_two)
1113         { 
1114           if (this->handle_gnu_warning_section(name, i, symtab))
1115             { 
1116               if (!relocatable)
1117                 omit[i] = true;
1118             }
1119
1120           // The .note.GNU-stack section is special.  It gives the
1121           // protection flags that this object file requires for the stack
1122           // in memory.
1123           if (strcmp(name, ".note.GNU-stack") == 0)
1124             {
1125               seen_gnu_stack = true;
1126               gnu_stack_flags |= shdr.get_sh_flags();
1127               omit[i] = true;
1128             }
1129
1130           bool discard = omit[i];
1131           if (!discard)
1132             {
1133               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1134                 {
1135                   if (!this->include_section_group(symtab, layout, i, name, 
1136                                                    shdrs, pnames, 
1137                                                    section_names_size,
1138                                                    &omit))
1139                     discard = true;
1140                 }
1141               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1142                        && Layout::is_linkonce(name))
1143                 {
1144                   if (!this->include_linkonce_section(layout, i, name, shdr))
1145                     discard = true;
1146                 }
1147             }
1148
1149           if (discard)
1150             {
1151               // Do not include this section in the link.
1152               out_sections[i] = NULL;
1153               out_section_offsets[i] = invalid_address;
1154               continue;
1155             }
1156         }
1157  
1158       if (is_gc_pass_one && parameters->options().gc_sections())
1159         {
1160           if (is_section_name_included(name)
1161               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1162               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1163             {
1164               symtab->gc()->worklist().push(Section_id(this, i)); 
1165             }
1166         }
1167
1168       // When doing a relocatable link we are going to copy input
1169       // reloc sections into the output.  We only want to copy the
1170       // ones associated with sections which are not being discarded.
1171       // However, we don't know that yet for all sections.  So save
1172       // reloc sections and process them later. Garbage collection is
1173       // not triggered when relocatable code is desired.
1174       if (emit_relocs
1175           && (shdr.get_sh_type() == elfcpp::SHT_REL
1176               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1177         {
1178           reloc_sections.push_back(i);
1179           continue;
1180         }
1181
1182       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1183         continue;
1184
1185       // The .eh_frame section is special.  It holds exception frame
1186       // information that we need to read in order to generate the
1187       // exception frame header.  We process these after all the other
1188       // sections so that the exception frame reader can reliably
1189       // determine which sections are being discarded, and discard the
1190       // corresponding information.
1191       if (!relocatable
1192           && strcmp(name, ".eh_frame") == 0
1193           && this->check_eh_frame_flags(&shdr))
1194         {
1195           if (is_gc_pass_one)
1196             {
1197               out_sections[i] = reinterpret_cast<Output_section*>(1);
1198               out_section_offsets[i] = invalid_address;
1199             }
1200           else
1201             eh_frame_sections.push_back(i);
1202           continue;
1203         }
1204
1205       if (is_gc_pass_two && parameters->options().gc_sections())
1206         {
1207           // This is executed during the second pass of garbage 
1208           // collection. do_layout has been called before and some 
1209           // sections have been already discarded. Simply ignore 
1210           // such sections this time around.
1211           if (out_sections[i] == NULL)
1212             {
1213               gold_assert(out_section_offsets[i] == invalid_address);
1214               continue; 
1215             }
1216           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1217               && symtab->gc()->is_section_garbage(this, i))
1218               {
1219                 if (parameters->options().print_gc_sections())
1220                   gold_info(_("%s: removing unused section from '%s'" 
1221                               " in file '%s'"),
1222                             program_name, this->section_name(i).c_str(), 
1223                             this->name().c_str());
1224                 out_sections[i] = NULL;
1225                 out_section_offsets[i] = invalid_address;
1226                 continue;
1227               }
1228         }
1229
1230       if (is_gc_pass_two && parameters->options().icf())
1231         {
1232           if (out_sections[i] == NULL)
1233             {
1234               gold_assert(out_section_offsets[i] == invalid_address);
1235               continue;
1236             }
1237           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1238               && symtab->icf()->is_section_folded(this, i))
1239               {
1240                 if (parameters->options().print_icf_sections())
1241                   {
1242                     Section_id folded =
1243                                 symtab->icf()->get_folded_section(this, i);
1244                     Relobj* folded_obj =
1245                                 reinterpret_cast<Relobj*>(folded.first);
1246                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1247                                 "into '%s' in file '%s'"),
1248                               program_name, this->section_name(i).c_str(),
1249                               this->name().c_str(),
1250                               folded_obj->section_name(folded.second).c_str(),
1251                               folded_obj->name().c_str());
1252                   }
1253                 out_sections[i] = NULL;
1254                 out_section_offsets[i] = invalid_address;
1255                 continue;
1256               }
1257         }
1258
1259       // Defer layout here if input files are claimed by plugins.  When gc
1260       // is turned on this function is called twice.  For the second call
1261       // should_defer_layout should be false.
1262       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1263         {
1264           gold_assert(!is_gc_pass_two);
1265           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1266                                                            pshdrs,
1267                                                            reloc_shndx[i],
1268                                                            reloc_type[i]));
1269           // Put dummy values here; real values will be supplied by
1270           // do_layout_deferred_sections.
1271           out_sections[i] = reinterpret_cast<Output_section*>(2);
1272           out_section_offsets[i] = invalid_address;
1273           continue;
1274         }
1275
1276       // During gc_pass_two if a section that was previously deferred is
1277       // found, do not layout the section as layout_deferred_sections will
1278       // do it later from gold.cc.
1279       if (is_gc_pass_two 
1280           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1281         continue;
1282
1283       if (is_gc_pass_one)
1284         {
1285           // This is during garbage collection. The out_sections are 
1286           // assigned in the second call to this function. 
1287           out_sections[i] = reinterpret_cast<Output_section*>(1);
1288           out_section_offsets[i] = invalid_address;
1289         }
1290       else
1291         {
1292           // When garbage collection is switched on the actual layout
1293           // only happens in the second call.
1294           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1295                                reloc_type[i]);
1296         }
1297     }
1298
1299   if (!is_gc_pass_one)
1300     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1301
1302   // When doing a relocatable link handle the reloc sections at the
1303   // end.  Garbage collection  and Identical Code Folding is not 
1304   // turned on for relocatable code. 
1305   if (emit_relocs)
1306     this->size_relocatable_relocs();
1307
1308   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1309
1310   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1311        p != reloc_sections.end();
1312        ++p)
1313     {
1314       unsigned int i = *p;
1315       const unsigned char* pshdr;
1316       pshdr = section_headers_data + i * This::shdr_size;
1317       typename This::Shdr shdr(pshdr);
1318
1319       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1320       if (data_shndx >= shnum)
1321         {
1322           // We already warned about this above.
1323           continue;
1324         }
1325
1326       Output_section* data_section = out_sections[data_shndx];
1327       if (data_section == NULL)
1328         {
1329           out_sections[i] = NULL;
1330           out_section_offsets[i] = invalid_address;
1331           continue;
1332         }
1333
1334       Relocatable_relocs* rr = new Relocatable_relocs();
1335       this->set_relocatable_relocs(i, rr);
1336
1337       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1338                                                 rr);
1339       out_sections[i] = os;
1340       out_section_offsets[i] = invalid_address;
1341     }
1342
1343   // Handle the .eh_frame sections at the end.
1344   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1345   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1346        p != eh_frame_sections.end();
1347        ++p)
1348     {
1349       gold_assert(this->has_eh_frame_);
1350       gold_assert(external_symbols_offset != 0);
1351
1352       unsigned int i = *p;
1353       const unsigned char *pshdr;
1354       pshdr = section_headers_data + i * This::shdr_size;
1355       typename This::Shdr shdr(pshdr);
1356
1357       off_t offset;
1358       Output_section* os = layout->layout_eh_frame(this,
1359                                                    symbols_data,
1360                                                    symbols_size,
1361                                                    symbol_names_data,
1362                                                    symbol_names_size,
1363                                                    i, shdr,
1364                                                    reloc_shndx[i],
1365                                                    reloc_type[i],
1366                                                    &offset);
1367       out_sections[i] = os;
1368       if (offset == -1)
1369         {
1370           // An object can contain at most one section holding exception
1371           // frame information.
1372           gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1373           this->discarded_eh_frame_shndx_ = i;
1374           out_section_offsets[i] = invalid_address;
1375         }
1376       else
1377         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1378
1379       // If this section requires special handling, and if there are
1380       // relocs that apply to it, then we must do the special handling
1381       // before we apply the relocs.
1382       if (offset == -1 && reloc_shndx[i] != 0)
1383         this->set_relocs_must_follow_section_writes();
1384     }
1385
1386   if (is_gc_pass_two)
1387     {
1388       delete[] gc_sd->section_headers_data;
1389       delete[] gc_sd->section_names_data;
1390       delete[] gc_sd->symbols_data;
1391       delete[] gc_sd->symbol_names_data;
1392       this->set_symbols_data(NULL);
1393     }
1394   else
1395     {
1396       delete sd->section_headers;
1397       sd->section_headers = NULL;
1398       delete sd->section_names;
1399       sd->section_names = NULL;
1400     }
1401 }
1402
1403 // Layout sections whose layout was deferred while waiting for
1404 // input files from a plugin.
1405
1406 template<int size, bool big_endian>
1407 void
1408 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1409 {
1410   typename std::vector<Deferred_layout>::iterator deferred;
1411
1412   for (deferred = this->deferred_layout_.begin();
1413        deferred != this->deferred_layout_.end();
1414        ++deferred)
1415     {
1416       typename This::Shdr shdr(deferred->shdr_data_);
1417       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1418                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1419     }
1420
1421   this->deferred_layout_.clear();
1422 }
1423
1424 // Add the symbols to the symbol table.
1425
1426 template<int size, bool big_endian>
1427 void
1428 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1429                                                Read_symbols_data* sd,
1430                                                Layout*)
1431 {
1432   if (sd->symbols == NULL)
1433     {
1434       gold_assert(sd->symbol_names == NULL);
1435       return;
1436     }
1437
1438   const int sym_size = This::sym_size;
1439   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1440                      / sym_size);
1441   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1442     {
1443       this->error(_("size of symbols is not multiple of symbol size"));
1444       return;
1445     }
1446
1447   this->symbols_.resize(symcount);
1448
1449   const char* sym_names =
1450     reinterpret_cast<const char*>(sd->symbol_names->data());
1451   symtab->add_from_relobj(this,
1452                           sd->symbols->data() + sd->external_symbols_offset,
1453                           symcount, this->local_symbol_count_,
1454                           sym_names, sd->symbol_names_size,
1455                           &this->symbols_,
1456                           &this->defined_count_);
1457
1458   delete sd->symbols;
1459   sd->symbols = NULL;
1460   delete sd->symbol_names;
1461   sd->symbol_names = NULL;
1462 }
1463
1464 // First pass over the local symbols.  Here we add their names to
1465 // *POOL and *DYNPOOL, and we store the symbol value in
1466 // THIS->LOCAL_VALUES_.  This function is always called from a
1467 // singleton thread.  This is followed by a call to
1468 // finalize_local_symbols.
1469
1470 template<int size, bool big_endian>
1471 void
1472 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1473                                                        Stringpool* dynpool)
1474 {
1475   gold_assert(this->symtab_shndx_ != -1U);
1476   if (this->symtab_shndx_ == 0)
1477     {
1478       // This object has no symbols.  Weird but legal.
1479       return;
1480     }
1481
1482   // Read the symbol table section header.
1483   const unsigned int symtab_shndx = this->symtab_shndx_;
1484   typename This::Shdr symtabshdr(this,
1485                                  this->elf_file_.section_header(symtab_shndx));
1486   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1487
1488   // Read the local symbols.
1489   const int sym_size = This::sym_size;
1490   const unsigned int loccount = this->local_symbol_count_;
1491   gold_assert(loccount == symtabshdr.get_sh_info());
1492   off_t locsize = loccount * sym_size;
1493   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1494                                               locsize, true, true);
1495
1496   // Read the symbol names.
1497   const unsigned int strtab_shndx =
1498     this->adjust_shndx(symtabshdr.get_sh_link());
1499   section_size_type strtab_size;
1500   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1501                                                         &strtab_size,
1502                                                         true);
1503   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1504
1505   // Loop over the local symbols.
1506
1507   const Output_sections& out_sections(this->output_sections());
1508   unsigned int shnum = this->shnum();
1509   unsigned int count = 0;
1510   unsigned int dyncount = 0;
1511   // Skip the first, dummy, symbol.
1512   psyms += sym_size;
1513   bool discard_locals = parameters->options().discard_locals();
1514   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1515     {
1516       elfcpp::Sym<size, big_endian> sym(psyms);
1517
1518       Symbol_value<size>& lv(this->local_values_[i]);
1519
1520       bool is_ordinary;
1521       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1522                                                   &is_ordinary);
1523       lv.set_input_shndx(shndx, is_ordinary);
1524
1525       if (sym.get_st_type() == elfcpp::STT_SECTION)
1526         lv.set_is_section_symbol();
1527       else if (sym.get_st_type() == elfcpp::STT_TLS)
1528         lv.set_is_tls_symbol();
1529
1530       // Save the input symbol value for use in do_finalize_local_symbols().
1531       lv.set_input_value(sym.get_st_value());
1532
1533       // Decide whether this symbol should go into the output file.
1534
1535       if ((shndx < shnum && out_sections[shndx] == NULL)
1536           || (shndx == this->discarded_eh_frame_shndx_))
1537         {
1538           lv.set_no_output_symtab_entry();
1539           gold_assert(!lv.needs_output_dynsym_entry());
1540           continue;
1541         }
1542
1543       if (sym.get_st_type() == elfcpp::STT_SECTION)
1544         {
1545           lv.set_no_output_symtab_entry();
1546           gold_assert(!lv.needs_output_dynsym_entry());
1547           continue;
1548         }
1549
1550       if (sym.get_st_name() >= strtab_size)
1551         {
1552           this->error(_("local symbol %u section name out of range: %u >= %u"),
1553                       i, sym.get_st_name(),
1554                       static_cast<unsigned int>(strtab_size));
1555           lv.set_no_output_symtab_entry();
1556           continue;
1557         }
1558
1559       // If --discard-locals option is used, discard all temporary local
1560       // symbols.  These symbols start with system-specific local label
1561       // prefixes, typically .L for ELF system.  We want to be compatible
1562       // with GNU ld so here we essentially use the same check in
1563       // bfd_is_local_label().  The code is different because we already
1564       // know that:
1565       //
1566       //   - the symbol is local and thus cannot have global or weak binding.
1567       //   - the symbol is not a section symbol.
1568       //   - the symbol has a name.
1569       //
1570       // We do not discard a symbol if it needs a dynamic symbol entry.
1571       const char* name = pnames + sym.get_st_name();
1572       if (discard_locals
1573           && sym.get_st_type() != elfcpp::STT_FILE
1574           && !lv.needs_output_dynsym_entry()
1575           && parameters->target().is_local_label_name(name))
1576         {
1577           lv.set_no_output_symtab_entry();
1578           continue;
1579         }
1580
1581       // Add the symbol to the symbol table string pool.
1582       pool->add(name, true, NULL);
1583       ++count;
1584
1585       // If needed, add the symbol to the dynamic symbol table string pool.
1586       if (lv.needs_output_dynsym_entry())
1587         {
1588           dynpool->add(name, true, NULL);
1589           ++dyncount;
1590         }
1591     }
1592
1593   this->output_local_symbol_count_ = count;
1594   this->output_local_dynsym_count_ = dyncount;
1595 }
1596
1597 // Finalize the local symbols.  Here we set the final value in
1598 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1599 // This function is always called from a singleton thread.  The actual
1600 // output of the local symbols will occur in a separate task.
1601
1602 template<int size, bool big_endian>
1603 unsigned int
1604 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1605                                                           off_t off,
1606                                                           Symbol_table* symtab)
1607 {
1608   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1609
1610   const unsigned int loccount = this->local_symbol_count_;
1611   this->local_symbol_offset_ = off;
1612
1613   const bool relocatable = parameters->options().relocatable();
1614   const Output_sections& out_sections(this->output_sections());
1615   const std::vector<Address>& out_offsets(this->section_offsets_);
1616   unsigned int shnum = this->shnum();
1617
1618   for (unsigned int i = 1; i < loccount; ++i)
1619     {
1620       Symbol_value<size>& lv(this->local_values_[i]);
1621
1622       bool is_ordinary;
1623       unsigned int shndx = lv.input_shndx(&is_ordinary);
1624
1625       // Set the output symbol value.
1626
1627       if (!is_ordinary)
1628         {
1629           if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1630             lv.set_output_value(lv.input_value());
1631           else
1632             {
1633               this->error(_("unknown section index %u for local symbol %u"),
1634                           shndx, i);
1635               lv.set_output_value(0);
1636             }
1637         }
1638       else
1639         {
1640           if (shndx >= shnum)
1641             {
1642               this->error(_("local symbol %u section index %u out of range"),
1643                           i, shndx);
1644               shndx = 0;
1645             }
1646
1647           Output_section* os = out_sections[shndx];
1648           Address secoffset = out_offsets[shndx];
1649           if (symtab->is_section_folded(this, shndx))
1650             {
1651               gold_assert (os == NULL && secoffset == invalid_address);
1652               // Get the os of the section it is folded onto.
1653               Section_id folded = symtab->icf()->get_folded_section(this,
1654                                                                     shndx);
1655               gold_assert(folded.first != NULL);
1656               Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1657                 <Sized_relobj<size, big_endian>*>(folded.first);
1658               os = folded_obj->output_section(folded.second);
1659               gold_assert(os != NULL);
1660               secoffset = folded_obj->get_output_section_offset(folded.second);
1661               gold_assert(secoffset != invalid_address);
1662             }
1663
1664           if (os == NULL)
1665             {
1666               // This local symbol belongs to a section we are discarding.
1667               // In some cases when applying relocations later, we will
1668               // attempt to match it to the corresponding kept section,
1669               // so we leave the input value unchanged here.
1670               continue;
1671             }
1672           else if (secoffset == invalid_address)
1673             {
1674               uint64_t start;
1675
1676               // This is a SHF_MERGE section or one which otherwise
1677               // requires special handling.
1678               if (shndx == this->discarded_eh_frame_shndx_)
1679                 {
1680                   // This local symbol belongs to a discarded .eh_frame
1681                   // section.  Just treat it like the case in which
1682                   // os == NULL above.
1683                   gold_assert(this->has_eh_frame_);
1684                   continue;
1685                 }
1686               else if (!lv.is_section_symbol())
1687                 {
1688                   // This is not a section symbol.  We can determine
1689                   // the final value now.
1690                   lv.set_output_value(os->output_address(this, shndx,
1691                                                          lv.input_value()));
1692                 }
1693               else if (!os->find_starting_output_address(this, shndx, &start))
1694                 {
1695                   // This is a section symbol, but apparently not one
1696                   // in a merged section.  Just use the start of the
1697                   // output section.  This happens with relocatable
1698                   // links when the input object has section symbols
1699                   // for arbitrary non-merge sections.
1700                   lv.set_output_value(os->address());
1701                 }
1702               else
1703                 {
1704                   // We have to consider the addend to determine the
1705                   // value to use in a relocation.  START is the start
1706                   // of this input section.
1707                   Merged_symbol_value<size>* msv =
1708                     new Merged_symbol_value<size>(lv.input_value(), start);
1709                   lv.set_merged_symbol_value(msv);
1710                 }
1711             }
1712           else if (lv.is_tls_symbol())
1713             lv.set_output_value(os->tls_offset()
1714                                 + secoffset
1715                                 + lv.input_value());
1716           else
1717             lv.set_output_value((relocatable ? 0 : os->address())
1718                                 + secoffset
1719                                 + lv.input_value());
1720         }
1721
1722       if (lv.needs_output_symtab_entry())
1723         {
1724           lv.set_output_symtab_index(index);
1725           ++index;
1726         }
1727     }
1728   return index;
1729 }
1730
1731 // Set the output dynamic symbol table indexes for the local variables.
1732
1733 template<int size, bool big_endian>
1734 unsigned int
1735 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1736 {
1737   const unsigned int loccount = this->local_symbol_count_;
1738   for (unsigned int i = 1; i < loccount; ++i)
1739     {
1740       Symbol_value<size>& lv(this->local_values_[i]);
1741       if (lv.needs_output_dynsym_entry())
1742         {
1743           lv.set_output_dynsym_index(index);
1744           ++index;
1745         }
1746     }
1747   return index;
1748 }
1749
1750 // Set the offset where local dynamic symbol information will be stored.
1751 // Returns the count of local symbols contributed to the symbol table by
1752 // this object.
1753
1754 template<int size, bool big_endian>
1755 unsigned int
1756 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1757 {
1758   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1759   this->local_dynsym_offset_ = off;
1760   return this->output_local_dynsym_count_;
1761 }
1762
1763 // If Symbols_data is not NULL get the section flags from here otherwise
1764 // get it from the file.
1765
1766 template<int size, bool big_endian>
1767 uint64_t
1768 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
1769 {
1770   Symbols_data* sd = this->get_symbols_data();
1771   if (sd != NULL)
1772     {
1773       const unsigned char* pshdrs = sd->section_headers_data
1774                                     + This::shdr_size * shndx;
1775       typename This::Shdr shdr(pshdrs);
1776       return shdr.get_sh_flags(); 
1777     }
1778   // If sd is NULL, read the section header from the file.
1779   return this->elf_file_.section_flags(shndx); 
1780 }
1781
1782 // Get the section's ent size from Symbols_data.  Called by get_section_contents
1783 // in icf.cc
1784
1785 template<int size, bool big_endian>
1786 uint64_t
1787 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
1788 {
1789   Symbols_data* sd = this->get_symbols_data();
1790   gold_assert (sd != NULL);
1791
1792   const unsigned char* pshdrs = sd->section_headers_data
1793                                 + This::shdr_size * shndx;
1794   typename This::Shdr shdr(pshdrs);
1795   return shdr.get_sh_entsize(); 
1796 }
1797
1798
1799 // Write out the local symbols.
1800
1801 template<int size, bool big_endian>
1802 void
1803 Sized_relobj<size, big_endian>::write_local_symbols(
1804     Output_file* of,
1805     const Stringpool* sympool,
1806     const Stringpool* dynpool,
1807     Output_symtab_xindex* symtab_xindex,
1808     Output_symtab_xindex* dynsym_xindex)
1809 {
1810   const bool strip_all = parameters->options().strip_all();
1811   if (strip_all)
1812     {
1813       if (this->output_local_dynsym_count_ == 0)
1814         return;
1815       this->output_local_symbol_count_ = 0;
1816     }
1817
1818   gold_assert(this->symtab_shndx_ != -1U);
1819   if (this->symtab_shndx_ == 0)
1820     {
1821       // This object has no symbols.  Weird but legal.
1822       return;
1823     }
1824
1825   // Read the symbol table section header.
1826   const unsigned int symtab_shndx = this->symtab_shndx_;
1827   typename This::Shdr symtabshdr(this,
1828                                  this->elf_file_.section_header(symtab_shndx));
1829   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1830   const unsigned int loccount = this->local_symbol_count_;
1831   gold_assert(loccount == symtabshdr.get_sh_info());
1832
1833   // Read the local symbols.
1834   const int sym_size = This::sym_size;
1835   off_t locsize = loccount * sym_size;
1836   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1837                                               locsize, true, false);
1838
1839   // Read the symbol names.
1840   const unsigned int strtab_shndx =
1841     this->adjust_shndx(symtabshdr.get_sh_link());
1842   section_size_type strtab_size;
1843   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1844                                                         &strtab_size,
1845                                                         false);
1846   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1847
1848   // Get views into the output file for the portions of the symbol table
1849   // and the dynamic symbol table that we will be writing.
1850   off_t output_size = this->output_local_symbol_count_ * sym_size;
1851   unsigned char* oview = NULL;
1852   if (output_size > 0)
1853     oview = of->get_output_view(this->local_symbol_offset_, output_size);
1854
1855   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1856   unsigned char* dyn_oview = NULL;
1857   if (dyn_output_size > 0)
1858     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1859                                     dyn_output_size);
1860
1861   const Output_sections out_sections(this->output_sections());
1862
1863   gold_assert(this->local_values_.size() == loccount);
1864
1865   unsigned char* ov = oview;
1866   unsigned char* dyn_ov = dyn_oview;
1867   psyms += sym_size;
1868   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1869     {
1870       elfcpp::Sym<size, big_endian> isym(psyms);
1871
1872       Symbol_value<size>& lv(this->local_values_[i]);
1873
1874       bool is_ordinary;
1875       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1876                                                      &is_ordinary);
1877       if (is_ordinary)
1878         {
1879           gold_assert(st_shndx < out_sections.size());
1880           if (out_sections[st_shndx] == NULL)
1881             continue;
1882           st_shndx = out_sections[st_shndx]->out_shndx();
1883           if (st_shndx >= elfcpp::SHN_LORESERVE)
1884             {
1885               if (lv.needs_output_symtab_entry() && !strip_all)
1886                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1887               if (lv.needs_output_dynsym_entry())
1888                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1889               st_shndx = elfcpp::SHN_XINDEX;
1890             }
1891         }
1892
1893       // Write the symbol to the output symbol table.
1894       if (!strip_all && lv.needs_output_symtab_entry())
1895         {
1896           elfcpp::Sym_write<size, big_endian> osym(ov);
1897
1898           gold_assert(isym.get_st_name() < strtab_size);
1899           const char* name = pnames + isym.get_st_name();
1900           osym.put_st_name(sympool->get_offset(name));
1901           osym.put_st_value(this->local_values_[i].value(this, 0));
1902           osym.put_st_size(isym.get_st_size());
1903           osym.put_st_info(isym.get_st_info());
1904           osym.put_st_other(isym.get_st_other());
1905           osym.put_st_shndx(st_shndx);
1906
1907           ov += sym_size;
1908         }
1909
1910       // Write the symbol to the output dynamic symbol table.
1911       if (lv.needs_output_dynsym_entry())
1912         {
1913           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1914           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1915
1916           gold_assert(isym.get_st_name() < strtab_size);
1917           const char* name = pnames + isym.get_st_name();
1918           osym.put_st_name(dynpool->get_offset(name));
1919           osym.put_st_value(this->local_values_[i].value(this, 0));
1920           osym.put_st_size(isym.get_st_size());
1921           osym.put_st_info(isym.get_st_info());
1922           osym.put_st_other(isym.get_st_other());
1923           osym.put_st_shndx(st_shndx);
1924
1925           dyn_ov += sym_size;
1926         }
1927     }
1928
1929
1930   if (output_size > 0)
1931     {
1932       gold_assert(ov - oview == output_size);
1933       of->write_output_view(this->local_symbol_offset_, output_size, oview);
1934     }
1935
1936   if (dyn_output_size > 0)
1937     {
1938       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1939       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1940                             dyn_oview);
1941     }
1942 }
1943
1944 // Set *INFO to symbolic information about the offset OFFSET in the
1945 // section SHNDX.  Return true if we found something, false if we
1946 // found nothing.
1947
1948 template<int size, bool big_endian>
1949 bool
1950 Sized_relobj<size, big_endian>::get_symbol_location_info(
1951     unsigned int shndx,
1952     off_t offset,
1953     Symbol_location_info* info)
1954 {
1955   if (this->symtab_shndx_ == 0)
1956     return false;
1957
1958   section_size_type symbols_size;
1959   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1960                                                         &symbols_size,
1961                                                         false);
1962
1963   unsigned int symbol_names_shndx =
1964     this->adjust_shndx(this->section_link(this->symtab_shndx_));
1965   section_size_type names_size;
1966   const unsigned char* symbol_names_u =
1967     this->section_contents(symbol_names_shndx, &names_size, false);
1968   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1969
1970   const int sym_size = This::sym_size;
1971   const size_t count = symbols_size / sym_size;
1972
1973   const unsigned char* p = symbols;
1974   for (size_t i = 0; i < count; ++i, p += sym_size)
1975     {
1976       elfcpp::Sym<size, big_endian> sym(p);
1977
1978       if (sym.get_st_type() == elfcpp::STT_FILE)
1979         {
1980           if (sym.get_st_name() >= names_size)
1981             info->source_file = "(invalid)";
1982           else
1983             info->source_file = symbol_names + sym.get_st_name();
1984           continue;
1985         }
1986
1987       bool is_ordinary;
1988       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1989                                                      &is_ordinary);
1990       if (is_ordinary
1991           && st_shndx == shndx
1992           && static_cast<off_t>(sym.get_st_value()) <= offset
1993           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1994               > offset))
1995         {
1996           if (sym.get_st_name() > names_size)
1997             info->enclosing_symbol_name = "(invalid)";
1998           else
1999             {
2000               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2001               if (parameters->options().do_demangle())
2002                 {
2003                   char* demangled_name = cplus_demangle(
2004                       info->enclosing_symbol_name.c_str(),
2005                       DMGL_ANSI | DMGL_PARAMS);
2006                   if (demangled_name != NULL)
2007                     {
2008                       info->enclosing_symbol_name.assign(demangled_name);
2009                       free(demangled_name);
2010                     }
2011                 }
2012             }
2013           return true;
2014         }
2015     }
2016
2017   return false;
2018 }
2019
2020 // Look for a kept section corresponding to the given discarded section,
2021 // and return its output address.  This is used only for relocations in
2022 // debugging sections.  If we can't find the kept section, return 0.
2023
2024 template<int size, bool big_endian>
2025 typename Sized_relobj<size, big_endian>::Address
2026 Sized_relobj<size, big_endian>::map_to_kept_section(
2027     unsigned int shndx,
2028     bool* found) const
2029 {
2030   Relobj* kept_object;
2031   unsigned int kept_shndx;
2032   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2033     {
2034       Sized_relobj<size, big_endian>* kept_relobj =
2035         static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2036       Output_section* os = kept_relobj->output_section(kept_shndx);
2037       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2038       if (os != NULL && offset != invalid_address)
2039         {
2040           *found = true;
2041           return os->address() + offset;
2042         }
2043     }
2044   *found = false;
2045   return 0;
2046 }
2047
2048 // Get symbol counts.
2049
2050 template<int size, bool big_endian>
2051 void
2052 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2053     const Symbol_table*,
2054     size_t* defined,
2055     size_t* used) const
2056 {
2057   *defined = this->defined_count_;
2058   size_t count = 0;
2059   for (Symbols::const_iterator p = this->symbols_.begin();
2060        p != this->symbols_.end();
2061        ++p)
2062     if (*p != NULL
2063         && (*p)->source() == Symbol::FROM_OBJECT
2064         && (*p)->object() == this
2065         && (*p)->is_defined())
2066       ++count;
2067   *used = count;
2068 }
2069
2070 // Input_objects methods.
2071
2072 // Add a regular relocatable object to the list.  Return false if this
2073 // object should be ignored.
2074
2075 bool
2076 Input_objects::add_object(Object* obj)
2077 {
2078   // Set the global target from the first object file we recognize.
2079   Target* target = obj->target();
2080   if (!parameters->target_valid())
2081     set_parameters_target(target);
2082   else if (target != &parameters->target())
2083     {
2084       obj->error(_("incompatible target"));
2085       return false;
2086     }
2087
2088   // Print the filename if the -t/--trace option is selected.
2089   if (parameters->options().trace())
2090     gold_info("%s", obj->name().c_str());
2091
2092   if (!obj->is_dynamic())
2093     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2094   else
2095     {
2096       // See if this is a duplicate SONAME.
2097       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2098       const char* soname = dynobj->soname();
2099
2100       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2101         this->sonames_.insert(soname);
2102       if (!ins.second)
2103         {
2104           // We have already seen a dynamic object with this soname.
2105           return false;
2106         }
2107
2108       this->dynobj_list_.push_back(dynobj);
2109     }
2110
2111   // Add this object to the cross-referencer if requested.
2112   if (parameters->options().user_set_print_symbol_counts())
2113     {
2114       if (this->cref_ == NULL)
2115         this->cref_ = new Cref();
2116       this->cref_->add_object(obj);
2117     }
2118
2119   return true;
2120 }
2121
2122 // For each dynamic object, record whether we've seen all of its
2123 // explicit dependencies.
2124
2125 void
2126 Input_objects::check_dynamic_dependencies() const
2127 {
2128   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2129        p != this->dynobj_list_.end();
2130        ++p)
2131     {
2132       const Dynobj::Needed& needed((*p)->needed());
2133       bool found_all = true;
2134       for (Dynobj::Needed::const_iterator pneeded = needed.begin();
2135            pneeded != needed.end();
2136            ++pneeded)
2137         {
2138           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2139             {
2140               found_all = false;
2141               break;
2142             }
2143         }
2144       (*p)->set_has_unknown_needed_entries(!found_all);
2145     }
2146 }
2147
2148 // Start processing an archive.
2149
2150 void
2151 Input_objects::archive_start(Archive* archive)
2152 {
2153   if (parameters->options().user_set_print_symbol_counts())
2154     {
2155       if (this->cref_ == NULL)
2156         this->cref_ = new Cref();
2157       this->cref_->add_archive_start(archive);
2158     }
2159 }
2160
2161 // Stop processing an archive.
2162
2163 void
2164 Input_objects::archive_stop(Archive* archive)
2165 {
2166   if (parameters->options().user_set_print_symbol_counts())
2167     this->cref_->add_archive_stop(archive);
2168 }
2169
2170 // Print symbol counts
2171
2172 void
2173 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2174 {
2175   if (parameters->options().user_set_print_symbol_counts()
2176       && this->cref_ != NULL)
2177     this->cref_->print_symbol_counts(symtab);
2178 }
2179
2180 // Relocate_info methods.
2181
2182 // Return a string describing the location of a relocation.  This is
2183 // only used in error messages.
2184
2185 template<int size, bool big_endian>
2186 std::string
2187 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2188 {
2189   // See if we can get line-number information from debugging sections.
2190   std::string filename;
2191   std::string file_and_lineno;   // Better than filename-only, if available.
2192
2193   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2194   // This will be "" if we failed to parse the debug info for any reason.
2195   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2196
2197   std::string ret(this->object->name());
2198   ret += ':';
2199   Symbol_location_info info;
2200   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2201     {
2202       ret += " in function ";
2203       ret += info.enclosing_symbol_name;
2204       ret += ":";
2205       filename = info.source_file;
2206     }
2207
2208   if (!file_and_lineno.empty())
2209     ret += file_and_lineno;
2210   else
2211     {
2212       if (!filename.empty())
2213         ret += filename;
2214       ret += "(";
2215       ret += this->object->section_name(this->data_shndx);
2216       char buf[100];
2217       // Offsets into sections have to be positive.
2218       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2219       ret += buf;
2220       ret += ")";
2221     }
2222   return ret;
2223 }
2224
2225 } // End namespace gold.
2226
2227 namespace
2228 {
2229
2230 using namespace gold;
2231
2232 // Read an ELF file with the header and return the appropriate
2233 // instance of Object.
2234
2235 template<int size, bool big_endian>
2236 Object*
2237 make_elf_sized_object(const std::string& name, Input_file* input_file,
2238                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2239 {
2240   int et = ehdr.get_e_type();
2241   if (et == elfcpp::ET_REL)
2242     {
2243       Sized_relobj<size, big_endian>* obj =
2244         new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
2245       obj->setup(ehdr);
2246       return obj;
2247     }
2248   else if (et == elfcpp::ET_DYN)
2249     {
2250       Sized_dynobj<size, big_endian>* obj =
2251         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2252       obj->setup(ehdr);
2253       return obj;
2254     }
2255   else
2256     {
2257       gold_error(_("%s: unsupported ELF file type %d"),
2258                  name.c_str(), et);
2259       return NULL;
2260     }
2261 }
2262
2263 } // End anonymous namespace.
2264
2265 namespace gold
2266 {
2267
2268 // Return whether INPUT_FILE is an ELF object.
2269
2270 bool
2271 is_elf_object(Input_file* input_file, off_t offset,
2272               const unsigned char** start, int *read_size)
2273 {
2274   off_t filesize = input_file->file().filesize();
2275   int want = elfcpp::Elf_sizes<64>::ehdr_size;
2276   if (filesize - offset < want)
2277     want = filesize - offset;
2278
2279   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2280                                                        true, false);
2281   *start = p;
2282   *read_size = want;
2283
2284   if (want < 4)
2285     return false;
2286
2287   static unsigned char elfmagic[4] =
2288     {
2289       elfcpp::ELFMAG0, elfcpp::ELFMAG1,
2290       elfcpp::ELFMAG2, elfcpp::ELFMAG3
2291     };
2292   return memcmp(p, elfmagic, 4) == 0;
2293 }
2294
2295 // Read an ELF file and return the appropriate instance of Object.
2296
2297 Object*
2298 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2299                 const unsigned char* p, section_offset_type bytes,
2300                 bool* punconfigured)
2301 {
2302   if (punconfigured != NULL)
2303     *punconfigured = false;
2304
2305   if (bytes < elfcpp::EI_NIDENT)
2306     {
2307       gold_error(_("%s: ELF file too short"), name.c_str());
2308       return NULL;
2309     }
2310
2311   int v = p[elfcpp::EI_VERSION];
2312   if (v != elfcpp::EV_CURRENT)
2313     {
2314       if (v == elfcpp::EV_NONE)
2315         gold_error(_("%s: invalid ELF version 0"), name.c_str());
2316       else
2317         gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
2318       return NULL;
2319     }
2320
2321   int c = p[elfcpp::EI_CLASS];
2322   if (c == elfcpp::ELFCLASSNONE)
2323     {
2324       gold_error(_("%s: invalid ELF class 0"), name.c_str());
2325       return NULL;
2326     }
2327   else if (c != elfcpp::ELFCLASS32
2328            && c != elfcpp::ELFCLASS64)
2329     {
2330       gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
2331       return NULL;
2332     }
2333
2334   int d = p[elfcpp::EI_DATA];
2335   if (d == elfcpp::ELFDATANONE)
2336     {
2337       gold_error(_("%s: invalid ELF data encoding"), name.c_str());
2338       return NULL;
2339     }
2340   else if (d != elfcpp::ELFDATA2LSB
2341            && d != elfcpp::ELFDATA2MSB)
2342     {
2343       gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
2344       return NULL;
2345     }
2346
2347   bool big_endian = d == elfcpp::ELFDATA2MSB;
2348
2349   if (c == elfcpp::ELFCLASS32)
2350     {
2351       if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
2352         {
2353           gold_error(_("%s: ELF file too short"), name.c_str());
2354           return NULL;
2355         }
2356       if (big_endian)
2357         {
2358 #ifdef HAVE_TARGET_32_BIG
2359           elfcpp::Ehdr<32, true> ehdr(p);
2360           return make_elf_sized_object<32, true>(name, input_file,
2361                                                  offset, ehdr);
2362 #else
2363           if (punconfigured != NULL)
2364             *punconfigured = true;
2365           else
2366             gold_error(_("%s: not configured to support "
2367                          "32-bit big-endian object"),
2368                        name.c_str());
2369           return NULL;
2370 #endif
2371         }
2372       else
2373         {
2374 #ifdef HAVE_TARGET_32_LITTLE
2375           elfcpp::Ehdr<32, false> ehdr(p);
2376           return make_elf_sized_object<32, false>(name, input_file,
2377                                                   offset, ehdr);
2378 #else
2379           if (punconfigured != NULL)
2380             *punconfigured = true;
2381           else
2382             gold_error(_("%s: not configured to support "
2383                          "32-bit little-endian object"),
2384                        name.c_str());
2385           return NULL;
2386 #endif
2387         }
2388     }
2389   else
2390     {
2391       if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
2392         {
2393           gold_error(_("%s: ELF file too short"), name.c_str());
2394           return NULL;
2395         }
2396       if (big_endian)
2397         {
2398 #ifdef HAVE_TARGET_64_BIG
2399           elfcpp::Ehdr<64, true> ehdr(p);
2400           return make_elf_sized_object<64, true>(name, input_file,
2401                                                  offset, ehdr);
2402 #else
2403           if (punconfigured != NULL)
2404             *punconfigured = true;
2405           else
2406             gold_error(_("%s: not configured to support "
2407                          "64-bit big-endian object"),
2408                        name.c_str());
2409           return NULL;
2410 #endif
2411         }
2412       else
2413         {
2414 #ifdef HAVE_TARGET_64_LITTLE
2415           elfcpp::Ehdr<64, false> ehdr(p);
2416           return make_elf_sized_object<64, false>(name, input_file,
2417                                                   offset, ehdr);
2418 #else
2419           if (punconfigured != NULL)
2420             *punconfigured = true;
2421           else
2422             gold_error(_("%s: not configured to support "
2423                          "64-bit little-endian object"),
2424                        name.c_str());
2425           return NULL;
2426 #endif
2427         }
2428     }
2429 }
2430
2431 // Instantiate the templates we need.
2432
2433 #ifdef HAVE_TARGET_32_LITTLE
2434 template
2435 void
2436 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2437                                      Read_symbols_data*);
2438 #endif
2439
2440 #ifdef HAVE_TARGET_32_BIG
2441 template
2442 void
2443 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2444                                     Read_symbols_data*);
2445 #endif
2446
2447 #ifdef HAVE_TARGET_64_LITTLE
2448 template
2449 void
2450 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2451                                      Read_symbols_data*);
2452 #endif
2453
2454 #ifdef HAVE_TARGET_64_BIG
2455 template
2456 void
2457 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2458                                     Read_symbols_data*);
2459 #endif
2460
2461 #ifdef HAVE_TARGET_32_LITTLE
2462 template
2463 class Sized_relobj<32, false>;
2464 #endif
2465
2466 #ifdef HAVE_TARGET_32_BIG
2467 template
2468 class Sized_relobj<32, true>;
2469 #endif
2470
2471 #ifdef HAVE_TARGET_64_LITTLE
2472 template
2473 class Sized_relobj<64, false>;
2474 #endif
2475
2476 #ifdef HAVE_TARGET_64_BIG
2477 template
2478 class Sized_relobj<64, true>;
2479 #endif
2480
2481 #ifdef HAVE_TARGET_32_LITTLE
2482 template
2483 struct Relocate_info<32, false>;
2484 #endif
2485
2486 #ifdef HAVE_TARGET_32_BIG
2487 template
2488 struct Relocate_info<32, true>;
2489 #endif
2490
2491 #ifdef HAVE_TARGET_64_LITTLE
2492 template
2493 struct Relocate_info<64, false>;
2494 #endif
2495
2496 #ifdef HAVE_TARGET_64_BIG
2497 template
2498 struct Relocate_info<64, true>;
2499 #endif
2500
2501 } // End namespace gold.