* object.cc (Sized_relobj_file::do_layout): Keep warning sections
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header.  This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438   const unsigned int shnum = this->elf_file_.shnum();
439   this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers.  The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section.  Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451   const unsigned int shnum = this->shnum();
452   this->symtab_shndx_ = 0;
453   if (shnum > 0)
454     {
455       // Look through the sections in reverse order, since gas tends
456       // to put the symbol table at the end.
457       const unsigned char* p = pshdrs + shnum * This::shdr_size;
458       unsigned int i = shnum;
459       unsigned int xindex_shndx = 0;
460       unsigned int xindex_link = 0;
461       while (i > 0)
462         {
463           --i;
464           p -= This::shdr_size;
465           typename This::Shdr shdr(p);
466           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467             {
468               this->symtab_shndx_ = i;
469               if (xindex_shndx > 0 && xindex_link == i)
470                 {
471                   Xindex* xindex =
472                     new Xindex(this->elf_file_.large_shndx_offset());
473                   xindex->read_symtab_xindex<size, big_endian>(this,
474                                                                xindex_shndx,
475                                                                pshdrs);
476                   this->set_xindex(xindex);
477                 }
478               break;
479             }
480
481           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482           // one.  This will work if it follows the SHT_SYMTAB
483           // section.
484           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485             {
486               xindex_shndx = i;
487               xindex_link = this->adjust_shndx(shdr.get_sh_link());
488             }
489         }
490     }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500   gold_assert(this->symtab_shndx_ != -1U);
501   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503   return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512     const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
515           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
516 }
517
518 // Return whether there is a GNU .eh_frame section, given the section
519 // headers and the section names.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::find_eh_frame(
524     const unsigned char* pshdrs,
525     const char* names,
526     section_size_type names_size) const
527 {
528   const unsigned int shnum = this->shnum();
529   const unsigned char* p = pshdrs + This::shdr_size;
530   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
531     {
532       typename This::Shdr shdr(p);
533       if (this->check_eh_frame_flags(&shdr))
534         {
535           if (shdr.get_sh_name() >= names_size)
536             {
537               this->error(_("bad section name offset for section %u: %lu"),
538                           i, static_cast<unsigned long>(shdr.get_sh_name()));
539               continue;
540             }
541
542           const char* name = names + shdr.get_sh_name();
543           if (strcmp(name, ".eh_frame") == 0)
544             return true;
545         }
546     }
547   return false;
548 }
549
550 // Build a table for any compressed debug sections, mapping each section index
551 // to the uncompressed size.
552
553 template<int size, bool big_endian>
554 Compressed_section_map*
555 build_compressed_section_map(
556     const unsigned char* pshdrs,
557     unsigned int shnum,
558     const char* names,
559     section_size_type names_size,
560     Sized_relobj_file<size, big_endian>* obj)
561 {
562   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
563   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
564   const unsigned char* p = pshdrs + shdr_size;
565   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
566     {
567       typename elfcpp::Shdr<size, big_endian> shdr(p);
568       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
569           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570         {
571           if (shdr.get_sh_name() >= names_size)
572             {
573               obj->error(_("bad section name offset for section %u: %lu"),
574                          i, static_cast<unsigned long>(shdr.get_sh_name()));
575               continue;
576             }
577
578           const char* name = names + shdr.get_sh_name();
579           if (is_compressed_debug_section(name))
580             {
581               section_size_type len;
582               const unsigned char* contents =
583                   obj->section_contents(i, &len, false);
584               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
585               if (uncompressed_size != -1ULL)
586                 (*uncompressed_sizes)[i] =
587                     convert_to_section_size_type(uncompressed_size);
588             }
589         }
590     }
591   return uncompressed_sizes;
592 }
593
594 // Read the sections and symbols from an object file.
595
596 template<int size, bool big_endian>
597 void
598 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
599 {
600   this->read_section_data(&this->elf_file_, sd);
601
602   const unsigned char* const pshdrs = sd->section_headers->data();
603
604   this->find_symtab(pshdrs);
605
606   const unsigned char* namesu = sd->section_names->data();
607   const char* names = reinterpret_cast<const char*>(namesu);
608   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
609     {
610       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
611         this->has_eh_frame_ = true;
612     }
613   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
614     this->compressed_sections_ =
615         build_compressed_section_map(pshdrs, this->shnum(), names,
616                                      sd->section_names_size, this);
617
618   sd->symbols = NULL;
619   sd->symbols_size = 0;
620   sd->external_symbols_offset = 0;
621   sd->symbol_names = NULL;
622   sd->symbol_names_size = 0;
623
624   if (this->symtab_shndx_ == 0)
625     {
626       // No symbol table.  Weird but legal.
627       return;
628     }
629
630   // Get the symbol table section header.
631   typename This::Shdr symtabshdr(pshdrs
632                                  + this->symtab_shndx_ * This::shdr_size);
633   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
634
635   // If this object has a .eh_frame section, we need all the symbols.
636   // Otherwise we only need the external symbols.  While it would be
637   // simpler to just always read all the symbols, I've seen object
638   // files with well over 2000 local symbols, which for a 64-bit
639   // object file format is over 5 pages that we don't need to read
640   // now.
641
642   const int sym_size = This::sym_size;
643   const unsigned int loccount = symtabshdr.get_sh_info();
644   this->local_symbol_count_ = loccount;
645   this->local_values_.resize(loccount);
646   section_offset_type locsize = loccount * sym_size;
647   off_t dataoff = symtabshdr.get_sh_offset();
648   section_size_type datasize =
649     convert_to_section_size_type(symtabshdr.get_sh_size());
650   off_t extoff = dataoff + locsize;
651   section_size_type extsize = datasize - locsize;
652
653   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
654   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
655
656   if (readsize == 0)
657     {
658       // No external symbols.  Also weird but also legal.
659       return;
660     }
661
662   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
663
664   // Read the section header for the symbol names.
665   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
666   if (strtab_shndx >= this->shnum())
667     {
668       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
669       return;
670     }
671   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
672   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
673     {
674       this->error(_("symbol table name section has wrong type: %u"),
675                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
676       return;
677     }
678
679   // Read the symbol names.
680   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
681                                                strtabshdr.get_sh_size(),
682                                                false, true);
683
684   sd->symbols = fvsymtab;
685   sd->symbols_size = readsize;
686   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
687   sd->symbol_names = fvstrtab;
688   sd->symbol_names_size =
689     convert_to_section_size_type(strtabshdr.get_sh_size());
690 }
691
692 // Return the section index of symbol SYM.  Set *VALUE to its value in
693 // the object file.  Set *IS_ORDINARY if this is an ordinary section
694 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
695 // Note that for a symbol which is not defined in this object file,
696 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
697 // the final value of the symbol in the link.
698
699 template<int size, bool big_endian>
700 unsigned int
701 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
702                                                               Address* value,
703                                                               bool* is_ordinary)
704 {
705   section_size_type symbols_size;
706   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
707                                                         &symbols_size,
708                                                         false);
709
710   const size_t count = symbols_size / This::sym_size;
711   gold_assert(sym < count);
712
713   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
714   *value = elfsym.get_st_value();
715
716   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
717 }
718
719 // Return whether to include a section group in the link.  LAYOUT is
720 // used to keep track of which section groups we have already seen.
721 // INDEX is the index of the section group and SHDR is the section
722 // header.  If we do not want to include this group, we set bits in
723 // OMIT for each section which should be discarded.
724
725 template<int size, bool big_endian>
726 bool
727 Sized_relobj_file<size, big_endian>::include_section_group(
728     Symbol_table* symtab,
729     Layout* layout,
730     unsigned int index,
731     const char* name,
732     const unsigned char* shdrs,
733     const char* section_names,
734     section_size_type section_names_size,
735     std::vector<bool>* omit)
736 {
737   // Read the section contents.
738   typename This::Shdr shdr(shdrs + index * This::shdr_size);
739   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
740                                              shdr.get_sh_size(), true, false);
741   const elfcpp::Elf_Word* pword =
742     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
743
744   // The first word contains flags.  We only care about COMDAT section
745   // groups.  Other section groups are always included in the link
746   // just like ordinary sections.
747   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
748
749   // Look up the group signature, which is the name of a symbol.  This
750   // is a lot of effort to go to to read a string.  Why didn't they
751   // just have the group signature point into the string table, rather
752   // than indirect through a symbol?
753
754   // Get the appropriate symbol table header (this will normally be
755   // the single SHT_SYMTAB section, but in principle it need not be).
756   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
757   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
758
759   // Read the symbol table entry.
760   unsigned int symndx = shdr.get_sh_info();
761   if (symndx >= symshdr.get_sh_size() / This::sym_size)
762     {
763       this->error(_("section group %u info %u out of range"),
764                   index, symndx);
765       return false;
766     }
767   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
768   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
769                                              false);
770   elfcpp::Sym<size, big_endian> sym(psym);
771
772   // Read the symbol table names.
773   section_size_type symnamelen;
774   const unsigned char* psymnamesu;
775   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
776                                       &symnamelen, true);
777   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
778
779   // Get the section group signature.
780   if (sym.get_st_name() >= symnamelen)
781     {
782       this->error(_("symbol %u name offset %u out of range"),
783                   symndx, sym.get_st_name());
784       return false;
785     }
786
787   std::string signature(psymnames + sym.get_st_name());
788
789   // It seems that some versions of gas will create a section group
790   // associated with a section symbol, and then fail to give a name to
791   // the section symbol.  In such a case, use the name of the section.
792   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
793     {
794       bool is_ordinary;
795       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
796                                                       sym.get_st_shndx(),
797                                                       &is_ordinary);
798       if (!is_ordinary || sym_shndx >= this->shnum())
799         {
800           this->error(_("symbol %u invalid section index %u"),
801                       symndx, sym_shndx);
802           return false;
803         }
804       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
805       if (member_shdr.get_sh_name() < section_names_size)
806         signature = section_names + member_shdr.get_sh_name();
807     }
808
809   // Record this section group in the layout, and see whether we've already
810   // seen one with the same signature.
811   bool include_group;
812   bool is_comdat;
813   Kept_section* kept_section = NULL;
814
815   if ((flags & elfcpp::GRP_COMDAT) == 0)
816     {
817       include_group = true;
818       is_comdat = false;
819     }
820   else
821     {
822       include_group = layout->find_or_add_kept_section(signature,
823                                                        this, index, true,
824                                                        true, &kept_section);
825       is_comdat = true;
826     }
827
828   if (is_comdat && include_group)
829     {
830       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
831       if (incremental_inputs != NULL)
832         incremental_inputs->report_comdat_group(this, signature.c_str());
833     }
834
835   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
836
837   std::vector<unsigned int> shndxes;
838   bool relocate_group = include_group && parameters->options().relocatable();
839   if (relocate_group)
840     shndxes.reserve(count - 1);
841
842   for (size_t i = 1; i < count; ++i)
843     {
844       elfcpp::Elf_Word shndx =
845         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
846
847       if (relocate_group)
848         shndxes.push_back(shndx);
849
850       if (shndx >= this->shnum())
851         {
852           this->error(_("section %u in section group %u out of range"),
853                       shndx, index);
854           continue;
855         }
856
857       // Check for an earlier section number, since we're going to get
858       // it wrong--we may have already decided to include the section.
859       if (shndx < index)
860         this->error(_("invalid section group %u refers to earlier section %u"),
861                     index, shndx);
862
863       // Get the name of the member section.
864       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
865       if (member_shdr.get_sh_name() >= section_names_size)
866         {
867           // This is an error, but it will be diagnosed eventually
868           // in do_layout, so we don't need to do anything here but
869           // ignore it.
870           continue;
871         }
872       std::string mname(section_names + member_shdr.get_sh_name());
873
874       if (include_group)
875         {
876           if (is_comdat)
877             kept_section->add_comdat_section(mname, shndx,
878                                              member_shdr.get_sh_size());
879         }
880       else
881         {
882           (*omit)[shndx] = true;
883
884           if (is_comdat)
885             {
886               Relobj* kept_object = kept_section->object();
887               if (kept_section->is_comdat())
888                 {
889                   // Find the corresponding kept section, and store
890                   // that info in the discarded section table.
891                   unsigned int kept_shndx;
892                   uint64_t kept_size;
893                   if (kept_section->find_comdat_section(mname, &kept_shndx,
894                                                         &kept_size))
895                     {
896                       // We don't keep a mapping for this section if
897                       // it has a different size.  The mapping is only
898                       // used for relocation processing, and we don't
899                       // want to treat the sections as similar if the
900                       // sizes are different.  Checking the section
901                       // size is the approach used by the GNU linker.
902                       if (kept_size == member_shdr.get_sh_size())
903                         this->set_kept_comdat_section(shndx, kept_object,
904                                                       kept_shndx);
905                     }
906                 }
907               else
908                 {
909                   // The existing section is a linkonce section.  Add
910                   // a mapping if there is exactly one section in the
911                   // group (which is true when COUNT == 2) and if it
912                   // is the same size.
913                   if (count == 2
914                       && (kept_section->linkonce_size()
915                           == member_shdr.get_sh_size()))
916                     this->set_kept_comdat_section(shndx, kept_object,
917                                                   kept_section->shndx());
918                 }
919             }
920         }
921     }
922
923   if (relocate_group)
924     layout->layout_group(symtab, this, index, name, signature.c_str(),
925                          shdr, flags, &shndxes);
926
927   return include_group;
928 }
929
930 // Whether to include a linkonce section in the link.  NAME is the
931 // name of the section and SHDR is the section header.
932
933 // Linkonce sections are a GNU extension implemented in the original
934 // GNU linker before section groups were defined.  The semantics are
935 // that we only include one linkonce section with a given name.  The
936 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
937 // where T is the type of section and SYMNAME is the name of a symbol.
938 // In an attempt to make linkonce sections interact well with section
939 // groups, we try to identify SYMNAME and use it like a section group
940 // signature.  We want to block section groups with that signature,
941 // but not other linkonce sections with that signature.  We also use
942 // the full name of the linkonce section as a normal section group
943 // signature.
944
945 template<int size, bool big_endian>
946 bool
947 Sized_relobj_file<size, big_endian>::include_linkonce_section(
948     Layout* layout,
949     unsigned int index,
950     const char* name,
951     const elfcpp::Shdr<size, big_endian>& shdr)
952 {
953   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
954   // In general the symbol name we want will be the string following
955   // the last '.'.  However, we have to handle the case of
956   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
957   // some versions of gcc.  So we use a heuristic: if the name starts
958   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
959   // we look for the last '.'.  We can't always simply skip
960   // ".gnu.linkonce.X", because we have to deal with cases like
961   // ".gnu.linkonce.d.rel.ro.local".
962   const char* const linkonce_t = ".gnu.linkonce.t.";
963   const char* symname;
964   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
965     symname = name + strlen(linkonce_t);
966   else
967     symname = strrchr(name, '.') + 1;
968   std::string sig1(symname);
969   std::string sig2(name);
970   Kept_section* kept1;
971   Kept_section* kept2;
972   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
973                                                    false, &kept1);
974   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
975                                                    true, &kept2);
976
977   if (!include2)
978     {
979       // We are not including this section because we already saw the
980       // name of the section as a signature.  This normally implies
981       // that the kept section is another linkonce section.  If it is
982       // the same size, record it as the section which corresponds to
983       // this one.
984       if (kept2->object() != NULL
985           && !kept2->is_comdat()
986           && kept2->linkonce_size() == sh_size)
987         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
988     }
989   else if (!include1)
990     {
991       // The section is being discarded on the basis of its symbol
992       // name.  This means that the corresponding kept section was
993       // part of a comdat group, and it will be difficult to identify
994       // the specific section within that group that corresponds to
995       // this linkonce section.  We'll handle the simple case where
996       // the group has only one member section.  Otherwise, it's not
997       // worth the effort.
998       unsigned int kept_shndx;
999       uint64_t kept_size;
1000       if (kept1->object() != NULL
1001           && kept1->is_comdat()
1002           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1003           && kept_size == sh_size)
1004         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1005     }
1006   else
1007     {
1008       kept1->set_linkonce_size(sh_size);
1009       kept2->set_linkonce_size(sh_size);
1010     }
1011
1012   return include1 && include2;
1013 }
1014
1015 // Layout an input section.
1016
1017 template<int size, bool big_endian>
1018 inline void
1019 Sized_relobj_file<size, big_endian>::layout_section(Layout* layout,
1020                                                     unsigned int shndx,
1021                                                     const char* name,
1022                                                     typename This::Shdr& shdr,
1023                                                     unsigned int reloc_shndx,
1024                                                     unsigned int reloc_type)
1025 {
1026   off_t offset;
1027   Output_section* os = layout->layout(this, shndx, name, shdr,
1028                                           reloc_shndx, reloc_type, &offset);
1029
1030   this->output_sections()[shndx] = os;
1031   if (offset == -1)
1032     this->section_offsets()[shndx] = invalid_address;
1033   else
1034     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1035
1036   // If this section requires special handling, and if there are
1037   // relocs that apply to it, then we must do the special handling
1038   // before we apply the relocs.
1039   if (offset == -1 && reloc_shndx != 0)
1040     this->set_relocs_must_follow_section_writes();
1041 }
1042
1043 // Lay out the input sections.  We walk through the sections and check
1044 // whether they should be included in the link.  If they should, we
1045 // pass them to the Layout object, which will return an output section
1046 // and an offset.  
1047 // During garbage collection (--gc-sections) and identical code folding 
1048 // (--icf), this function is called twice.  When it is called the first 
1049 // time, it is for setting up some sections as roots to a work-list for
1050 // --gc-sections and to do comdat processing.  Actual layout happens the 
1051 // second time around after all the relevant sections have been determined.  
1052 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1053 // set to true after the garbage collection worklist or identical code 
1054 // folding is processed and the relevant sections to be kept are 
1055 // determined.  Then, this function is called again to layout the sections.
1056
1057 template<int size, bool big_endian>
1058 void
1059 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1060                                                Layout* layout,
1061                                                Read_symbols_data* sd)
1062 {
1063   const unsigned int shnum = this->shnum();
1064   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1065                           && !symtab->gc()->is_worklist_ready())
1066                          || (parameters->options().icf_enabled()
1067                              && !symtab->icf()->is_icf_ready()));
1068  
1069   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1070                           && symtab->gc()->is_worklist_ready())
1071                          || (parameters->options().icf_enabled()
1072                              && symtab->icf()->is_icf_ready()));
1073
1074   bool is_gc_or_icf = (parameters->options().gc_sections()
1075                        || parameters->options().icf_enabled()); 
1076
1077   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1078   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1079
1080   if (shnum == 0)
1081     return;
1082   Symbols_data* gc_sd = NULL;
1083   if (is_gc_pass_one)
1084     {
1085       // During garbage collection save the symbols data to use it when 
1086       // re-entering this function.   
1087       gc_sd = new Symbols_data;
1088       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1089       this->set_symbols_data(gc_sd);
1090     }
1091   else if (is_gc_pass_two)
1092     {
1093       gc_sd = this->get_symbols_data();
1094     }
1095
1096   const unsigned char* section_headers_data = NULL;
1097   section_size_type section_names_size;
1098   const unsigned char* symbols_data = NULL;
1099   section_size_type symbols_size;
1100   section_offset_type external_symbols_offset;
1101   const unsigned char* symbol_names_data = NULL;
1102   section_size_type symbol_names_size;
1103  
1104   if (is_gc_or_icf)
1105     {
1106       section_headers_data = gc_sd->section_headers_data;
1107       section_names_size = gc_sd->section_names_size;
1108       symbols_data = gc_sd->symbols_data;
1109       symbols_size = gc_sd->symbols_size;
1110       external_symbols_offset = gc_sd->external_symbols_offset;
1111       symbol_names_data = gc_sd->symbol_names_data;
1112       symbol_names_size = gc_sd->symbol_names_size;
1113     }
1114   else
1115     {
1116       section_headers_data = sd->section_headers->data();
1117       section_names_size = sd->section_names_size;
1118       if (sd->symbols != NULL)
1119         symbols_data = sd->symbols->data();
1120       symbols_size = sd->symbols_size;
1121       external_symbols_offset = sd->external_symbols_offset;
1122       if (sd->symbol_names != NULL)
1123         symbol_names_data = sd->symbol_names->data();
1124       symbol_names_size = sd->symbol_names_size;
1125     }
1126
1127   // Get the section headers.
1128   const unsigned char* shdrs = section_headers_data;
1129   const unsigned char* pshdrs;
1130
1131   // Get the section names.
1132   const unsigned char* pnamesu = (is_gc_or_icf) 
1133                                  ? gc_sd->section_names_data
1134                                  : sd->section_names->data();
1135
1136   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1137
1138   // If any input files have been claimed by plugins, we need to defer
1139   // actual layout until the replacement files have arrived.
1140   const bool should_defer_layout =
1141       (parameters->options().has_plugins()
1142        && parameters->options().plugins()->should_defer_layout());
1143   unsigned int num_sections_to_defer = 0;
1144
1145   // For each section, record the index of the reloc section if any.
1146   // Use 0 to mean that there is no reloc section, -1U to mean that
1147   // there is more than one.
1148   std::vector<unsigned int> reloc_shndx(shnum, 0);
1149   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1150   // Skip the first, dummy, section.
1151   pshdrs = shdrs + This::shdr_size;
1152   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1153     {
1154       typename This::Shdr shdr(pshdrs);
1155
1156       // Count the number of sections whose layout will be deferred.
1157       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1158         ++num_sections_to_defer;
1159
1160       unsigned int sh_type = shdr.get_sh_type();
1161       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1162         {
1163           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1164           if (target_shndx == 0 || target_shndx >= shnum)
1165             {
1166               this->error(_("relocation section %u has bad info %u"),
1167                           i, target_shndx);
1168               continue;
1169             }
1170
1171           if (reloc_shndx[target_shndx] != 0)
1172             reloc_shndx[target_shndx] = -1U;
1173           else
1174             {
1175               reloc_shndx[target_shndx] = i;
1176               reloc_type[target_shndx] = sh_type;
1177             }
1178         }
1179     }
1180
1181   Output_sections& out_sections(this->output_sections());
1182   std::vector<Address>& out_section_offsets(this->section_offsets());
1183
1184   if (!is_gc_pass_two)
1185     {
1186       out_sections.resize(shnum);
1187       out_section_offsets.resize(shnum);
1188     }
1189
1190   // If we are only linking for symbols, then there is nothing else to
1191   // do here.
1192   if (this->input_file()->just_symbols())
1193     {
1194       if (!is_gc_pass_two)
1195         {
1196           delete sd->section_headers;
1197           sd->section_headers = NULL;
1198           delete sd->section_names;
1199           sd->section_names = NULL;
1200         }
1201       return;
1202     }
1203
1204   if (num_sections_to_defer > 0)
1205     {
1206       parameters->options().plugins()->add_deferred_layout_object(this);
1207       this->deferred_layout_.reserve(num_sections_to_defer);
1208     }
1209
1210   // Whether we've seen a .note.GNU-stack section.
1211   bool seen_gnu_stack = false;
1212   // The flags of a .note.GNU-stack section.
1213   uint64_t gnu_stack_flags = 0;
1214
1215   // Keep track of which sections to omit.
1216   std::vector<bool> omit(shnum, false);
1217
1218   // Keep track of reloc sections when emitting relocations.
1219   const bool relocatable = parameters->options().relocatable();
1220   const bool emit_relocs = (relocatable
1221                             || parameters->options().emit_relocs());
1222   std::vector<unsigned int> reloc_sections;
1223
1224   // Keep track of .eh_frame sections.
1225   std::vector<unsigned int> eh_frame_sections;
1226
1227   // Skip the first, dummy, section.
1228   pshdrs = shdrs + This::shdr_size;
1229   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1230     {
1231       typename This::Shdr shdr(pshdrs);
1232
1233       if (shdr.get_sh_name() >= section_names_size)
1234         {
1235           this->error(_("bad section name offset for section %u: %lu"),
1236                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1237           return;
1238         }
1239
1240       const char* name = pnames + shdr.get_sh_name();
1241
1242       if (!is_gc_pass_two)
1243         { 
1244           if (this->handle_gnu_warning_section(name, i, symtab))
1245             { 
1246               if (!relocatable && !parameters->options().shared())
1247                 omit[i] = true;
1248             }
1249
1250           // The .note.GNU-stack section is special.  It gives the
1251           // protection flags that this object file requires for the stack
1252           // in memory.
1253           if (strcmp(name, ".note.GNU-stack") == 0)
1254             {
1255               seen_gnu_stack = true;
1256               gnu_stack_flags |= shdr.get_sh_flags();
1257               omit[i] = true;
1258             }
1259
1260           // The .note.GNU-split-stack section is also special.  It
1261           // indicates that the object was compiled with
1262           // -fsplit-stack.
1263           if (this->handle_split_stack_section(name))
1264             {
1265               if (!relocatable && !parameters->options().shared())
1266                 omit[i] = true;
1267             }
1268
1269           // Skip attributes section.
1270           if (parameters->target().is_attributes_section(name))
1271             {
1272               omit[i] = true;
1273             }
1274
1275           bool discard = omit[i];
1276           if (!discard)
1277             {
1278               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1279                 {
1280                   if (!this->include_section_group(symtab, layout, i, name, 
1281                                                    shdrs, pnames, 
1282                                                    section_names_size,
1283                                                    &omit))
1284                     discard = true;
1285                 }
1286               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1287                        && Layout::is_linkonce(name))
1288                 {
1289                   if (!this->include_linkonce_section(layout, i, name, shdr))
1290                     discard = true;
1291                 }
1292             }
1293
1294           // Add the section to the incremental inputs layout.
1295           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1296           if (incremental_inputs != NULL
1297               && !discard
1298               && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1299                   || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1300                   || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1301             {
1302               off_t sh_size = shdr.get_sh_size();
1303               section_size_type uncompressed_size;
1304               if (this->section_is_compressed(i, &uncompressed_size))
1305                 sh_size = uncompressed_size;
1306               incremental_inputs->report_input_section(this, i, name, sh_size);
1307             }
1308
1309           if (discard)
1310             {
1311               // Do not include this section in the link.
1312               out_sections[i] = NULL;
1313               out_section_offsets[i] = invalid_address;
1314               continue;
1315             }
1316         }
1317  
1318       if (is_gc_pass_one && parameters->options().gc_sections())
1319         {
1320           if (this->is_section_name_included(name)
1321               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1322               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1323             {
1324               symtab->gc()->worklist().push(Section_id(this, i)); 
1325             }
1326           // If the section name XXX can be represented as a C identifier
1327           // it cannot be discarded if there are references to
1328           // __start_XXX and __stop_XXX symbols.  These need to be
1329           // specially handled.
1330           if (is_cident(name))
1331             {
1332               symtab->gc()->add_cident_section(name, Section_id(this, i));
1333             }
1334         }
1335
1336       // When doing a relocatable link we are going to copy input
1337       // reloc sections into the output.  We only want to copy the
1338       // ones associated with sections which are not being discarded.
1339       // However, we don't know that yet for all sections.  So save
1340       // reloc sections and process them later. Garbage collection is
1341       // not triggered when relocatable code is desired.
1342       if (emit_relocs
1343           && (shdr.get_sh_type() == elfcpp::SHT_REL
1344               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1345         {
1346           reloc_sections.push_back(i);
1347           continue;
1348         }
1349
1350       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1351         continue;
1352
1353       // The .eh_frame section is special.  It holds exception frame
1354       // information that we need to read in order to generate the
1355       // exception frame header.  We process these after all the other
1356       // sections so that the exception frame reader can reliably
1357       // determine which sections are being discarded, and discard the
1358       // corresponding information.
1359       if (!relocatable
1360           && strcmp(name, ".eh_frame") == 0
1361           && this->check_eh_frame_flags(&shdr))
1362         {
1363           if (is_gc_pass_one)
1364             {
1365               out_sections[i] = reinterpret_cast<Output_section*>(1);
1366               out_section_offsets[i] = invalid_address;
1367             }
1368           else
1369             eh_frame_sections.push_back(i);
1370           continue;
1371         }
1372
1373       if (is_gc_pass_two && parameters->options().gc_sections())
1374         {
1375           // This is executed during the second pass of garbage 
1376           // collection. do_layout has been called before and some 
1377           // sections have been already discarded. Simply ignore 
1378           // such sections this time around.
1379           if (out_sections[i] == NULL)
1380             {
1381               gold_assert(out_section_offsets[i] == invalid_address);
1382               continue; 
1383             }
1384           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1385               && symtab->gc()->is_section_garbage(this, i))
1386               {
1387                 if (parameters->options().print_gc_sections())
1388                   gold_info(_("%s: removing unused section from '%s'" 
1389                               " in file '%s'"),
1390                             program_name, this->section_name(i).c_str(), 
1391                             this->name().c_str());
1392                 out_sections[i] = NULL;
1393                 out_section_offsets[i] = invalid_address;
1394                 continue;
1395               }
1396         }
1397
1398       if (is_gc_pass_two && parameters->options().icf_enabled())
1399         {
1400           if (out_sections[i] == NULL)
1401             {
1402               gold_assert(out_section_offsets[i] == invalid_address);
1403               continue;
1404             }
1405           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1406               && symtab->icf()->is_section_folded(this, i))
1407               {
1408                 if (parameters->options().print_icf_sections())
1409                   {
1410                     Section_id folded =
1411                                 symtab->icf()->get_folded_section(this, i);
1412                     Relobj* folded_obj =
1413                                 reinterpret_cast<Relobj*>(folded.first);
1414                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1415                                 "into '%s' in file '%s'"),
1416                               program_name, this->section_name(i).c_str(),
1417                               this->name().c_str(),
1418                               folded_obj->section_name(folded.second).c_str(),
1419                               folded_obj->name().c_str());
1420                   }
1421                 out_sections[i] = NULL;
1422                 out_section_offsets[i] = invalid_address;
1423                 continue;
1424               }
1425         }
1426
1427       // Defer layout here if input files are claimed by plugins.  When gc
1428       // is turned on this function is called twice.  For the second call
1429       // should_defer_layout should be false.
1430       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1431         {
1432           gold_assert(!is_gc_pass_two);
1433           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1434                                                            pshdrs,
1435                                                            reloc_shndx[i],
1436                                                            reloc_type[i]));
1437           // Put dummy values here; real values will be supplied by
1438           // do_layout_deferred_sections.
1439           out_sections[i] = reinterpret_cast<Output_section*>(2);
1440           out_section_offsets[i] = invalid_address;
1441           continue;
1442         }
1443
1444       // During gc_pass_two if a section that was previously deferred is
1445       // found, do not layout the section as layout_deferred_sections will
1446       // do it later from gold.cc.
1447       if (is_gc_pass_two 
1448           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1449         continue;
1450
1451       if (is_gc_pass_one)
1452         {
1453           // This is during garbage collection. The out_sections are 
1454           // assigned in the second call to this function. 
1455           out_sections[i] = reinterpret_cast<Output_section*>(1);
1456           out_section_offsets[i] = invalid_address;
1457         }
1458       else
1459         {
1460           // When garbage collection is switched on the actual layout
1461           // only happens in the second call.
1462           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1463                                reloc_type[i]);
1464         }
1465     }
1466
1467   if (!is_gc_pass_two)
1468     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1469
1470   // When doing a relocatable link handle the reloc sections at the
1471   // end.  Garbage collection  and Identical Code Folding is not 
1472   // turned on for relocatable code. 
1473   if (emit_relocs)
1474     this->size_relocatable_relocs();
1475
1476   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1477
1478   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1479        p != reloc_sections.end();
1480        ++p)
1481     {
1482       unsigned int i = *p;
1483       const unsigned char* pshdr;
1484       pshdr = section_headers_data + i * This::shdr_size;
1485       typename This::Shdr shdr(pshdr);
1486
1487       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1488       if (data_shndx >= shnum)
1489         {
1490           // We already warned about this above.
1491           continue;
1492         }
1493
1494       Output_section* data_section = out_sections[data_shndx];
1495       if (data_section == reinterpret_cast<Output_section*>(2))
1496         {
1497           // The layout for the data section was deferred, so we need
1498           // to defer the relocation section, too.
1499           const char* name = pnames + shdr.get_sh_name();
1500           this->deferred_layout_relocs_.push_back(
1501               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1502           out_sections[i] = reinterpret_cast<Output_section*>(2);
1503           out_section_offsets[i] = invalid_address;
1504           continue;
1505         }
1506       if (data_section == NULL)
1507         {
1508           out_sections[i] = NULL;
1509           out_section_offsets[i] = invalid_address;
1510           continue;
1511         }
1512
1513       Relocatable_relocs* rr = new Relocatable_relocs();
1514       this->set_relocatable_relocs(i, rr);
1515
1516       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1517                                                 rr);
1518       out_sections[i] = os;
1519       out_section_offsets[i] = invalid_address;
1520     }
1521
1522   // Handle the .eh_frame sections at the end.
1523   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1524   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1525        p != eh_frame_sections.end();
1526        ++p)
1527     {
1528       gold_assert(this->has_eh_frame_);
1529       gold_assert(external_symbols_offset != 0);
1530
1531       unsigned int i = *p;
1532       const unsigned char* pshdr;
1533       pshdr = section_headers_data + i * This::shdr_size;
1534       typename This::Shdr shdr(pshdr);
1535
1536       off_t offset;
1537       Output_section* os = layout->layout_eh_frame(this,
1538                                                    symbols_data,
1539                                                    symbols_size,
1540                                                    symbol_names_data,
1541                                                    symbol_names_size,
1542                                                    i, shdr,
1543                                                    reloc_shndx[i],
1544                                                    reloc_type[i],
1545                                                    &offset);
1546       out_sections[i] = os;
1547       if (os == NULL || offset == -1)
1548         {
1549           // An object can contain at most one section holding exception
1550           // frame information.
1551           gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1552           this->discarded_eh_frame_shndx_ = i;
1553           out_section_offsets[i] = invalid_address;
1554         }
1555       else
1556         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1557
1558       // If this section requires special handling, and if there are
1559       // relocs that apply to it, then we must do the special handling
1560       // before we apply the relocs.
1561       if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1562         this->set_relocs_must_follow_section_writes();
1563     }
1564
1565   if (is_gc_pass_two)
1566     {
1567       delete[] gc_sd->section_headers_data;
1568       delete[] gc_sd->section_names_data;
1569       delete[] gc_sd->symbols_data;
1570       delete[] gc_sd->symbol_names_data;
1571       this->set_symbols_data(NULL);
1572     }
1573   else
1574     {
1575       delete sd->section_headers;
1576       sd->section_headers = NULL;
1577       delete sd->section_names;
1578       sd->section_names = NULL;
1579     }
1580 }
1581
1582 // Layout sections whose layout was deferred while waiting for
1583 // input files from a plugin.
1584
1585 template<int size, bool big_endian>
1586 void
1587 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1588 {
1589   typename std::vector<Deferred_layout>::iterator deferred;
1590
1591   for (deferred = this->deferred_layout_.begin();
1592        deferred != this->deferred_layout_.end();
1593        ++deferred)
1594     {
1595       typename This::Shdr shdr(deferred->shdr_data_);
1596       // If the section is not included, it is because the garbage collector
1597       // decided it is not needed.  Avoid reverting that decision.
1598       if (!this->is_section_included(deferred->shndx_))
1599         continue;
1600
1601       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1602                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1603     }
1604
1605   this->deferred_layout_.clear();
1606
1607   // Now handle the deferred relocation sections.
1608
1609   Output_sections& out_sections(this->output_sections());
1610   std::vector<Address>& out_section_offsets(this->section_offsets());
1611
1612   for (deferred = this->deferred_layout_relocs_.begin();
1613        deferred != this->deferred_layout_relocs_.end();
1614        ++deferred)
1615     {
1616       unsigned int shndx = deferred->shndx_;
1617       typename This::Shdr shdr(deferred->shdr_data_);
1618       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1619
1620       Output_section* data_section = out_sections[data_shndx];
1621       if (data_section == NULL)
1622         {
1623           out_sections[shndx] = NULL;
1624           out_section_offsets[shndx] = invalid_address;
1625           continue;
1626         }
1627
1628       Relocatable_relocs* rr = new Relocatable_relocs();
1629       this->set_relocatable_relocs(shndx, rr);
1630
1631       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1632                                                 data_section, rr);
1633       out_sections[shndx] = os;
1634       out_section_offsets[shndx] = invalid_address;
1635     }
1636 }
1637
1638 // Add the symbols to the symbol table.
1639
1640 template<int size, bool big_endian>
1641 void
1642 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1643                                                     Read_symbols_data* sd,
1644                                                     Layout*)
1645 {
1646   if (sd->symbols == NULL)
1647     {
1648       gold_assert(sd->symbol_names == NULL);
1649       return;
1650     }
1651
1652   const int sym_size = This::sym_size;
1653   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1654                      / sym_size);
1655   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1656     {
1657       this->error(_("size of symbols is not multiple of symbol size"));
1658       return;
1659     }
1660
1661   this->symbols_.resize(symcount);
1662
1663   const char* sym_names =
1664     reinterpret_cast<const char*>(sd->symbol_names->data());
1665   symtab->add_from_relobj(this,
1666                           sd->symbols->data() + sd->external_symbols_offset,
1667                           symcount, this->local_symbol_count_,
1668                           sym_names, sd->symbol_names_size,
1669                           &this->symbols_,
1670                           &this->defined_count_);
1671
1672   delete sd->symbols;
1673   sd->symbols = NULL;
1674   delete sd->symbol_names;
1675   sd->symbol_names = NULL;
1676 }
1677
1678 // Find out if this object, that is a member of a lib group, should be included
1679 // in the link. We check every symbol defined by this object. If the symbol
1680 // table has a strong undefined reference to that symbol, we have to include
1681 // the object.
1682
1683 template<int size, bool big_endian>
1684 Archive::Should_include
1685 Sized_relobj_file<size, big_endian>::do_should_include_member(
1686     Symbol_table* symtab,
1687     Layout* layout,
1688     Read_symbols_data* sd,
1689     std::string* why)
1690 {
1691   char* tmpbuf = NULL;
1692   size_t tmpbuflen = 0;
1693   const char* sym_names =
1694       reinterpret_cast<const char*>(sd->symbol_names->data());
1695   const unsigned char* syms =
1696       sd->symbols->data() + sd->external_symbols_offset;
1697   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1698   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1699                          / sym_size);
1700
1701   const unsigned char* p = syms;
1702
1703   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1704     {
1705       elfcpp::Sym<size, big_endian> sym(p);
1706       unsigned int st_shndx = sym.get_st_shndx();
1707       if (st_shndx == elfcpp::SHN_UNDEF)
1708         continue;
1709
1710       unsigned int st_name = sym.get_st_name();
1711       const char* name = sym_names + st_name;
1712       Symbol* symbol;
1713       Archive::Should_include t = Archive::should_include_member(symtab,
1714                                                                  layout,
1715                                                                  name,
1716                                                                  &symbol, why,
1717                                                                  &tmpbuf,
1718                                                                  &tmpbuflen);
1719       if (t == Archive::SHOULD_INCLUDE_YES)
1720         {
1721           if (tmpbuf != NULL)
1722             free(tmpbuf);
1723           return t;
1724         }
1725     }
1726   if (tmpbuf != NULL)
1727     free(tmpbuf);
1728   return Archive::SHOULD_INCLUDE_UNKNOWN;
1729 }
1730
1731 // Iterate over global defined symbols, calling a visitor class V for each.
1732
1733 template<int size, bool big_endian>
1734 void
1735 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1736     Read_symbols_data* sd,
1737     Library_base::Symbol_visitor_base* v)
1738 {
1739   const char* sym_names =
1740       reinterpret_cast<const char*>(sd->symbol_names->data());
1741   const unsigned char* syms =
1742       sd->symbols->data() + sd->external_symbols_offset;
1743   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1744   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1745                      / sym_size);
1746   const unsigned char* p = syms;
1747
1748   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1749     {
1750       elfcpp::Sym<size, big_endian> sym(p);
1751       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1752         v->visit(sym_names + sym.get_st_name());
1753     }
1754 }
1755
1756 // Return whether the local symbol SYMNDX has a PLT offset.
1757
1758 template<int size, bool big_endian>
1759 bool
1760 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1761     unsigned int symndx) const
1762 {
1763   typename Local_plt_offsets::const_iterator p =
1764     this->local_plt_offsets_.find(symndx);
1765   return p != this->local_plt_offsets_.end();
1766 }
1767
1768 // Get the PLT offset of a local symbol.
1769
1770 template<int size, bool big_endian>
1771 unsigned int
1772 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1773 {
1774   typename Local_plt_offsets::const_iterator p =
1775     this->local_plt_offsets_.find(symndx);
1776   gold_assert(p != this->local_plt_offsets_.end());
1777   return p->second;
1778 }
1779
1780 // Set the PLT offset of a local symbol.
1781
1782 template<int size, bool big_endian>
1783 void
1784 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1785     unsigned int symndx, unsigned int plt_offset)
1786 {
1787   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1788     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1789   gold_assert(ins.second);
1790 }
1791
1792 // First pass over the local symbols.  Here we add their names to
1793 // *POOL and *DYNPOOL, and we store the symbol value in
1794 // THIS->LOCAL_VALUES_.  This function is always called from a
1795 // singleton thread.  This is followed by a call to
1796 // finalize_local_symbols.
1797
1798 template<int size, bool big_endian>
1799 void
1800 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1801                                                             Stringpool* dynpool)
1802 {
1803   gold_assert(this->symtab_shndx_ != -1U);
1804   if (this->symtab_shndx_ == 0)
1805     {
1806       // This object has no symbols.  Weird but legal.
1807       return;
1808     }
1809
1810   // Read the symbol table section header.
1811   const unsigned int symtab_shndx = this->symtab_shndx_;
1812   typename This::Shdr symtabshdr(this,
1813                                  this->elf_file_.section_header(symtab_shndx));
1814   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1815
1816   // Read the local symbols.
1817   const int sym_size = This::sym_size;
1818   const unsigned int loccount = this->local_symbol_count_;
1819   gold_assert(loccount == symtabshdr.get_sh_info());
1820   off_t locsize = loccount * sym_size;
1821   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1822                                               locsize, true, true);
1823
1824   // Read the symbol names.
1825   const unsigned int strtab_shndx =
1826     this->adjust_shndx(symtabshdr.get_sh_link());
1827   section_size_type strtab_size;
1828   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1829                                                         &strtab_size,
1830                                                         true);
1831   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1832
1833   // Loop over the local symbols.
1834
1835   const Output_sections& out_sections(this->output_sections());
1836   unsigned int shnum = this->shnum();
1837   unsigned int count = 0;
1838   unsigned int dyncount = 0;
1839   // Skip the first, dummy, symbol.
1840   psyms += sym_size;
1841   bool strip_all = parameters->options().strip_all();
1842   bool discard_all = parameters->options().discard_all();
1843   bool discard_locals = parameters->options().discard_locals();
1844   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1845     {
1846       elfcpp::Sym<size, big_endian> sym(psyms);
1847
1848       Symbol_value<size>& lv(this->local_values_[i]);
1849
1850       bool is_ordinary;
1851       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1852                                                   &is_ordinary);
1853       lv.set_input_shndx(shndx, is_ordinary);
1854
1855       if (sym.get_st_type() == elfcpp::STT_SECTION)
1856         lv.set_is_section_symbol();
1857       else if (sym.get_st_type() == elfcpp::STT_TLS)
1858         lv.set_is_tls_symbol();
1859       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1860         lv.set_is_ifunc_symbol();
1861
1862       // Save the input symbol value for use in do_finalize_local_symbols().
1863       lv.set_input_value(sym.get_st_value());
1864
1865       // Decide whether this symbol should go into the output file.
1866
1867       if ((shndx < shnum && out_sections[shndx] == NULL)
1868           || shndx == this->discarded_eh_frame_shndx_)
1869         {
1870           lv.set_no_output_symtab_entry();
1871           gold_assert(!lv.needs_output_dynsym_entry());
1872           continue;
1873         }
1874
1875       if (sym.get_st_type() == elfcpp::STT_SECTION)
1876         {
1877           lv.set_no_output_symtab_entry();
1878           gold_assert(!lv.needs_output_dynsym_entry());
1879           continue;
1880         }
1881
1882       if (sym.get_st_name() >= strtab_size)
1883         {
1884           this->error(_("local symbol %u section name out of range: %u >= %u"),
1885                       i, sym.get_st_name(),
1886                       static_cast<unsigned int>(strtab_size));
1887           lv.set_no_output_symtab_entry();
1888           continue;
1889         }
1890
1891       const char* name = pnames + sym.get_st_name();
1892
1893       // If needed, add the symbol to the dynamic symbol table string pool.
1894       if (lv.needs_output_dynsym_entry())
1895         {
1896           dynpool->add(name, true, NULL);
1897           ++dyncount;
1898         }
1899
1900       if (strip_all
1901           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1902         {
1903           lv.set_no_output_symtab_entry();
1904           continue;
1905         }
1906
1907       // If --discard-locals option is used, discard all temporary local
1908       // symbols.  These symbols start with system-specific local label
1909       // prefixes, typically .L for ELF system.  We want to be compatible
1910       // with GNU ld so here we essentially use the same check in
1911       // bfd_is_local_label().  The code is different because we already
1912       // know that:
1913       //
1914       //   - the symbol is local and thus cannot have global or weak binding.
1915       //   - the symbol is not a section symbol.
1916       //   - the symbol has a name.
1917       //
1918       // We do not discard a symbol if it needs a dynamic symbol entry.
1919       if (discard_locals
1920           && sym.get_st_type() != elfcpp::STT_FILE
1921           && !lv.needs_output_dynsym_entry()
1922           && lv.may_be_discarded_from_output_symtab()
1923           && parameters->target().is_local_label_name(name))
1924         {
1925           lv.set_no_output_symtab_entry();
1926           continue;
1927         }
1928
1929       // Discard the local symbol if -retain_symbols_file is specified
1930       // and the local symbol is not in that file.
1931       if (!parameters->options().should_retain_symbol(name))
1932         {
1933           lv.set_no_output_symtab_entry();
1934           continue;
1935         }
1936
1937       // Add the symbol to the symbol table string pool.
1938       pool->add(name, true, NULL);
1939       ++count;
1940     }
1941
1942   this->output_local_symbol_count_ = count;
1943   this->output_local_dynsym_count_ = dyncount;
1944 }
1945
1946 // Compute the final value of a local symbol.
1947
1948 template<int size, bool big_endian>
1949 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
1950 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
1951     unsigned int r_sym,
1952     const Symbol_value<size>* lv_in,
1953     Symbol_value<size>* lv_out,
1954     bool relocatable,
1955     const Output_sections& out_sections,
1956     const std::vector<Address>& out_offsets,
1957     const Symbol_table* symtab)
1958 {
1959   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1960   // we may have a memory leak.
1961   gold_assert(lv_out->has_output_value());
1962
1963   bool is_ordinary;
1964   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1965   
1966   // Set the output symbol value.
1967   
1968   if (!is_ordinary)
1969     {
1970       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1971         lv_out->set_output_value(lv_in->input_value());
1972       else
1973         {
1974           this->error(_("unknown section index %u for local symbol %u"),
1975                       shndx, r_sym);
1976           lv_out->set_output_value(0);
1977           return This::CFLV_ERROR;
1978         }
1979     }
1980   else
1981     {
1982       if (shndx >= this->shnum())
1983         {
1984           this->error(_("local symbol %u section index %u out of range"),
1985                       r_sym, shndx);
1986           lv_out->set_output_value(0);
1987           return This::CFLV_ERROR;
1988         }
1989       
1990       Output_section* os = out_sections[shndx];
1991       Address secoffset = out_offsets[shndx];
1992       if (symtab->is_section_folded(this, shndx))
1993         {
1994           gold_assert(os == NULL && secoffset == invalid_address);
1995           // Get the os of the section it is folded onto.
1996           Section_id folded = symtab->icf()->get_folded_section(this,
1997                                                                 shndx);
1998           gold_assert(folded.first != NULL);
1999           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2000             <Sized_relobj_file<size, big_endian>*>(folded.first);
2001           os = folded_obj->output_section(folded.second);
2002           gold_assert(os != NULL);
2003           secoffset = folded_obj->get_output_section_offset(folded.second);
2004           
2005           // This could be a relaxed input section.
2006           if (secoffset == invalid_address)
2007             {
2008               const Output_relaxed_input_section* relaxed_section =
2009                 os->find_relaxed_input_section(folded_obj, folded.second);
2010               gold_assert(relaxed_section != NULL);
2011               secoffset = relaxed_section->address() - os->address();
2012             }
2013         }
2014       
2015       if (os == NULL)
2016         {
2017           // This local symbol belongs to a section we are discarding.
2018           // In some cases when applying relocations later, we will
2019           // attempt to match it to the corresponding kept section,
2020           // so we leave the input value unchanged here.
2021           return This::CFLV_DISCARDED;
2022         }
2023       else if (secoffset == invalid_address)
2024         {
2025           uint64_t start;
2026           
2027           // This is a SHF_MERGE section or one which otherwise
2028           // requires special handling.
2029           if (shndx == this->discarded_eh_frame_shndx_)
2030             {
2031               // This local symbol belongs to a discarded .eh_frame
2032               // section.  Just treat it like the case in which
2033               // os == NULL above.
2034               gold_assert(this->has_eh_frame_);
2035               return This::CFLV_DISCARDED;
2036             }
2037           else if (!lv_in->is_section_symbol())
2038             {
2039               // This is not a section symbol.  We can determine
2040               // the final value now.
2041               lv_out->set_output_value(
2042                   os->output_address(this, shndx, lv_in->input_value()));
2043             }
2044           else if (!os->find_starting_output_address(this, shndx, &start))
2045             {
2046               // This is a section symbol, but apparently not one in a
2047               // merged section.  First check to see if this is a relaxed
2048               // input section.  If so, use its address.  Otherwise just
2049               // use the start of the output section.  This happens with
2050               // relocatable links when the input object has section
2051               // symbols for arbitrary non-merge sections.
2052               const Output_section_data* posd =
2053                 os->find_relaxed_input_section(this, shndx);
2054               if (posd != NULL)
2055                 {
2056                   Address relocatable_link_adjustment =
2057                     relocatable ? os->address() : 0;
2058                   lv_out->set_output_value(posd->address()
2059                                            - relocatable_link_adjustment);
2060                 }
2061               else
2062                 lv_out->set_output_value(os->address());
2063             }
2064           else
2065             {
2066               // We have to consider the addend to determine the
2067               // value to use in a relocation.  START is the start
2068               // of this input section.  If we are doing a relocatable
2069               // link, use offset from start output section instead of
2070               // address.
2071               Address adjusted_start =
2072                 relocatable ? start - os->address() : start;
2073               Merged_symbol_value<size>* msv =
2074                 new Merged_symbol_value<size>(lv_in->input_value(),
2075                                               adjusted_start);
2076               lv_out->set_merged_symbol_value(msv);
2077             }
2078         }
2079       else if (lv_in->is_tls_symbol())
2080         lv_out->set_output_value(os->tls_offset()
2081                                  + secoffset
2082                                  + lv_in->input_value());
2083       else
2084         lv_out->set_output_value((relocatable ? 0 : os->address())
2085                                  + secoffset
2086                                  + lv_in->input_value());
2087     }
2088   return This::CFLV_OK;
2089 }
2090
2091 // Compute final local symbol value.  R_SYM is the index of a local
2092 // symbol in symbol table.  LV points to a symbol value, which is
2093 // expected to hold the input value and to be over-written by the
2094 // final value.  SYMTAB points to a symbol table.  Some targets may want
2095 // to know would-be-finalized local symbol values in relaxation.
2096 // Hence we provide this method.  Since this method updates *LV, a
2097 // callee should make a copy of the original local symbol value and
2098 // use the copy instead of modifying an object's local symbols before
2099 // everything is finalized.  The caller should also free up any allocated
2100 // memory in the return value in *LV.
2101 template<int size, bool big_endian>
2102 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2103 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2104     unsigned int r_sym,
2105     const Symbol_value<size>* lv_in,
2106     Symbol_value<size>* lv_out,
2107     const Symbol_table* symtab)
2108 {
2109   // This is just a wrapper of compute_final_local_value_internal.
2110   const bool relocatable = parameters->options().relocatable();
2111   const Output_sections& out_sections(this->output_sections());
2112   const std::vector<Address>& out_offsets(this->section_offsets());
2113   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2114                                                   relocatable, out_sections,
2115                                                   out_offsets, symtab);
2116 }
2117
2118 // Finalize the local symbols.  Here we set the final value in
2119 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2120 // This function is always called from a singleton thread.  The actual
2121 // output of the local symbols will occur in a separate task.
2122
2123 template<int size, bool big_endian>
2124 unsigned int
2125 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2126     unsigned int index,
2127     off_t off,
2128     Symbol_table* symtab)
2129 {
2130   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2131
2132   const unsigned int loccount = this->local_symbol_count_;
2133   this->local_symbol_offset_ = off;
2134
2135   const bool relocatable = parameters->options().relocatable();
2136   const Output_sections& out_sections(this->output_sections());
2137   const std::vector<Address>& out_offsets(this->section_offsets());
2138
2139   for (unsigned int i = 1; i < loccount; ++i)
2140     {
2141       Symbol_value<size>* lv = &this->local_values_[i];
2142
2143       Compute_final_local_value_status cflv_status =
2144         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2145                                                  out_sections, out_offsets,
2146                                                  symtab);
2147       switch (cflv_status)
2148         {
2149         case CFLV_OK:
2150           if (!lv->is_output_symtab_index_set())
2151             {
2152               lv->set_output_symtab_index(index);
2153               ++index;
2154             }
2155           break;
2156         case CFLV_DISCARDED:
2157         case CFLV_ERROR:
2158           // Do nothing.
2159           break;
2160         default:
2161           gold_unreachable();
2162         }
2163     }
2164   return index;
2165 }
2166
2167 // Set the output dynamic symbol table indexes for the local variables.
2168
2169 template<int size, bool big_endian>
2170 unsigned int
2171 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2172     unsigned int index)
2173 {
2174   const unsigned int loccount = this->local_symbol_count_;
2175   for (unsigned int i = 1; i < loccount; ++i)
2176     {
2177       Symbol_value<size>& lv(this->local_values_[i]);
2178       if (lv.needs_output_dynsym_entry())
2179         {
2180           lv.set_output_dynsym_index(index);
2181           ++index;
2182         }
2183     }
2184   return index;
2185 }
2186
2187 // Set the offset where local dynamic symbol information will be stored.
2188 // Returns the count of local symbols contributed to the symbol table by
2189 // this object.
2190
2191 template<int size, bool big_endian>
2192 unsigned int
2193 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2194 {
2195   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2196   this->local_dynsym_offset_ = off;
2197   return this->output_local_dynsym_count_;
2198 }
2199
2200 // If Symbols_data is not NULL get the section flags from here otherwise
2201 // get it from the file.
2202
2203 template<int size, bool big_endian>
2204 uint64_t
2205 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2206 {
2207   Symbols_data* sd = this->get_symbols_data();
2208   if (sd != NULL)
2209     {
2210       const unsigned char* pshdrs = sd->section_headers_data
2211                                     + This::shdr_size * shndx;
2212       typename This::Shdr shdr(pshdrs);
2213       return shdr.get_sh_flags(); 
2214     }
2215   // If sd is NULL, read the section header from the file.
2216   return this->elf_file_.section_flags(shndx); 
2217 }
2218
2219 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2220 // in icf.cc
2221
2222 template<int size, bool big_endian>
2223 uint64_t
2224 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2225 {
2226   Symbols_data* sd = this->get_symbols_data();
2227   gold_assert(sd != NULL);
2228
2229   const unsigned char* pshdrs = sd->section_headers_data
2230                                 + This::shdr_size * shndx;
2231   typename This::Shdr shdr(pshdrs);
2232   return shdr.get_sh_entsize(); 
2233 }
2234
2235 // Write out the local symbols.
2236
2237 template<int size, bool big_endian>
2238 void
2239 Sized_relobj_file<size, big_endian>::write_local_symbols(
2240     Output_file* of,
2241     const Stringpool* sympool,
2242     const Stringpool* dynpool,
2243     Output_symtab_xindex* symtab_xindex,
2244     Output_symtab_xindex* dynsym_xindex,
2245     off_t symtab_off)
2246 {
2247   const bool strip_all = parameters->options().strip_all();
2248   if (strip_all)
2249     {
2250       if (this->output_local_dynsym_count_ == 0)
2251         return;
2252       this->output_local_symbol_count_ = 0;
2253     }
2254
2255   gold_assert(this->symtab_shndx_ != -1U);
2256   if (this->symtab_shndx_ == 0)
2257     {
2258       // This object has no symbols.  Weird but legal.
2259       return;
2260     }
2261
2262   // Read the symbol table section header.
2263   const unsigned int symtab_shndx = this->symtab_shndx_;
2264   typename This::Shdr symtabshdr(this,
2265                                  this->elf_file_.section_header(symtab_shndx));
2266   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2267   const unsigned int loccount = this->local_symbol_count_;
2268   gold_assert(loccount == symtabshdr.get_sh_info());
2269
2270   // Read the local symbols.
2271   const int sym_size = This::sym_size;
2272   off_t locsize = loccount * sym_size;
2273   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2274                                               locsize, true, false);
2275
2276   // Read the symbol names.
2277   const unsigned int strtab_shndx =
2278     this->adjust_shndx(symtabshdr.get_sh_link());
2279   section_size_type strtab_size;
2280   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2281                                                         &strtab_size,
2282                                                         false);
2283   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2284
2285   // Get views into the output file for the portions of the symbol table
2286   // and the dynamic symbol table that we will be writing.
2287   off_t output_size = this->output_local_symbol_count_ * sym_size;
2288   unsigned char* oview = NULL;
2289   if (output_size > 0)
2290     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2291                                 output_size);
2292
2293   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2294   unsigned char* dyn_oview = NULL;
2295   if (dyn_output_size > 0)
2296     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2297                                     dyn_output_size);
2298
2299   const Output_sections out_sections(this->output_sections());
2300
2301   gold_assert(this->local_values_.size() == loccount);
2302
2303   unsigned char* ov = oview;
2304   unsigned char* dyn_ov = dyn_oview;
2305   psyms += sym_size;
2306   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2307     {
2308       elfcpp::Sym<size, big_endian> isym(psyms);
2309
2310       Symbol_value<size>& lv(this->local_values_[i]);
2311
2312       bool is_ordinary;
2313       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2314                                                      &is_ordinary);
2315       if (is_ordinary)
2316         {
2317           gold_assert(st_shndx < out_sections.size());
2318           if (out_sections[st_shndx] == NULL)
2319             continue;
2320           st_shndx = out_sections[st_shndx]->out_shndx();
2321           if (st_shndx >= elfcpp::SHN_LORESERVE)
2322             {
2323               if (lv.has_output_symtab_entry())
2324                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2325               if (lv.has_output_dynsym_entry())
2326                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2327               st_shndx = elfcpp::SHN_XINDEX;
2328             }
2329         }
2330
2331       // Write the symbol to the output symbol table.
2332       if (lv.has_output_symtab_entry())
2333         {
2334           elfcpp::Sym_write<size, big_endian> osym(ov);
2335
2336           gold_assert(isym.get_st_name() < strtab_size);
2337           const char* name = pnames + isym.get_st_name();
2338           osym.put_st_name(sympool->get_offset(name));
2339           osym.put_st_value(this->local_values_[i].value(this, 0));
2340           osym.put_st_size(isym.get_st_size());
2341           osym.put_st_info(isym.get_st_info());
2342           osym.put_st_other(isym.get_st_other());
2343           osym.put_st_shndx(st_shndx);
2344
2345           ov += sym_size;
2346         }
2347
2348       // Write the symbol to the output dynamic symbol table.
2349       if (lv.has_output_dynsym_entry())
2350         {
2351           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2352           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2353
2354           gold_assert(isym.get_st_name() < strtab_size);
2355           const char* name = pnames + isym.get_st_name();
2356           osym.put_st_name(dynpool->get_offset(name));
2357           osym.put_st_value(this->local_values_[i].value(this, 0));
2358           osym.put_st_size(isym.get_st_size());
2359           osym.put_st_info(isym.get_st_info());
2360           osym.put_st_other(isym.get_st_other());
2361           osym.put_st_shndx(st_shndx);
2362
2363           dyn_ov += sym_size;
2364         }
2365     }
2366
2367
2368   if (output_size > 0)
2369     {
2370       gold_assert(ov - oview == output_size);
2371       of->write_output_view(symtab_off + this->local_symbol_offset_,
2372                             output_size, oview);
2373     }
2374
2375   if (dyn_output_size > 0)
2376     {
2377       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2378       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2379                             dyn_oview);
2380     }
2381 }
2382
2383 // Set *INFO to symbolic information about the offset OFFSET in the
2384 // section SHNDX.  Return true if we found something, false if we
2385 // found nothing.
2386
2387 template<int size, bool big_endian>
2388 bool
2389 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2390     unsigned int shndx,
2391     off_t offset,
2392     Symbol_location_info* info)
2393 {
2394   if (this->symtab_shndx_ == 0)
2395     return false;
2396
2397   section_size_type symbols_size;
2398   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2399                                                         &symbols_size,
2400                                                         false);
2401
2402   unsigned int symbol_names_shndx =
2403     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2404   section_size_type names_size;
2405   const unsigned char* symbol_names_u =
2406     this->section_contents(symbol_names_shndx, &names_size, false);
2407   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2408
2409   const int sym_size = This::sym_size;
2410   const size_t count = symbols_size / sym_size;
2411
2412   const unsigned char* p = symbols;
2413   for (size_t i = 0; i < count; ++i, p += sym_size)
2414     {
2415       elfcpp::Sym<size, big_endian> sym(p);
2416
2417       if (sym.get_st_type() == elfcpp::STT_FILE)
2418         {
2419           if (sym.get_st_name() >= names_size)
2420             info->source_file = "(invalid)";
2421           else
2422             info->source_file = symbol_names + sym.get_st_name();
2423           continue;
2424         }
2425
2426       bool is_ordinary;
2427       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2428                                                      &is_ordinary);
2429       if (is_ordinary
2430           && st_shndx == shndx
2431           && static_cast<off_t>(sym.get_st_value()) <= offset
2432           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2433               > offset))
2434         {
2435           if (sym.get_st_name() > names_size)
2436             info->enclosing_symbol_name = "(invalid)";
2437           else
2438             {
2439               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2440               if (parameters->options().do_demangle())
2441                 {
2442                   char* demangled_name = cplus_demangle(
2443                       info->enclosing_symbol_name.c_str(),
2444                       DMGL_ANSI | DMGL_PARAMS);
2445                   if (demangled_name != NULL)
2446                     {
2447                       info->enclosing_symbol_name.assign(demangled_name);
2448                       free(demangled_name);
2449                     }
2450                 }
2451             }
2452           return true;
2453         }
2454     }
2455
2456   return false;
2457 }
2458
2459 // Look for a kept section corresponding to the given discarded section,
2460 // and return its output address.  This is used only for relocations in
2461 // debugging sections.  If we can't find the kept section, return 0.
2462
2463 template<int size, bool big_endian>
2464 typename Sized_relobj_file<size, big_endian>::Address
2465 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2466     unsigned int shndx,
2467     bool* found) const
2468 {
2469   Relobj* kept_object;
2470   unsigned int kept_shndx;
2471   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2472     {
2473       Sized_relobj_file<size, big_endian>* kept_relobj =
2474         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2475       Output_section* os = kept_relobj->output_section(kept_shndx);
2476       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2477       if (os != NULL && offset != invalid_address)
2478         {
2479           *found = true;
2480           return os->address() + offset;
2481         }
2482     }
2483   *found = false;
2484   return 0;
2485 }
2486
2487 // Get symbol counts.
2488
2489 template<int size, bool big_endian>
2490 void
2491 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2492     const Symbol_table*,
2493     size_t* defined,
2494     size_t* used) const
2495 {
2496   *defined = this->defined_count_;
2497   size_t count = 0;
2498   for (typename Symbols::const_iterator p = this->symbols_.begin();
2499        p != this->symbols_.end();
2500        ++p)
2501     if (*p != NULL
2502         && (*p)->source() == Symbol::FROM_OBJECT
2503         && (*p)->object() == this
2504         && (*p)->is_defined())
2505       ++count;
2506   *used = count;
2507 }
2508
2509 // Input_objects methods.
2510
2511 // Add a regular relocatable object to the list.  Return false if this
2512 // object should be ignored.
2513
2514 bool
2515 Input_objects::add_object(Object* obj)
2516 {
2517   // Print the filename if the -t/--trace option is selected.
2518   if (parameters->options().trace())
2519     gold_info("%s", obj->name().c_str());
2520
2521   if (!obj->is_dynamic())
2522     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2523   else
2524     {
2525       // See if this is a duplicate SONAME.
2526       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2527       const char* soname = dynobj->soname();
2528
2529       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2530         this->sonames_.insert(soname);
2531       if (!ins.second)
2532         {
2533           // We have already seen a dynamic object with this soname.
2534           return false;
2535         }
2536
2537       this->dynobj_list_.push_back(dynobj);
2538     }
2539
2540   // Add this object to the cross-referencer if requested.
2541   if (parameters->options().user_set_print_symbol_counts()
2542       || parameters->options().cref())
2543     {
2544       if (this->cref_ == NULL)
2545         this->cref_ = new Cref();
2546       this->cref_->add_object(obj);
2547     }
2548
2549   return true;
2550 }
2551
2552 // For each dynamic object, record whether we've seen all of its
2553 // explicit dependencies.
2554
2555 void
2556 Input_objects::check_dynamic_dependencies() const
2557 {
2558   bool issued_copy_dt_needed_error = false;
2559   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2560        p != this->dynobj_list_.end();
2561        ++p)
2562     {
2563       const Dynobj::Needed& needed((*p)->needed());
2564       bool found_all = true;
2565       Dynobj::Needed::const_iterator pneeded;
2566       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2567         {
2568           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2569             {
2570               found_all = false;
2571               break;
2572             }
2573         }
2574       (*p)->set_has_unknown_needed_entries(!found_all);
2575
2576       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2577       // that gold does not support.  However, they cause no trouble
2578       // unless there is a DT_NEEDED entry that we don't know about;
2579       // warn only in that case.
2580       if (!found_all
2581           && !issued_copy_dt_needed_error
2582           && (parameters->options().copy_dt_needed_entries()
2583               || parameters->options().add_needed()))
2584         {
2585           const char* optname;
2586           if (parameters->options().copy_dt_needed_entries())
2587             optname = "--copy-dt-needed-entries";
2588           else
2589             optname = "--add-needed";
2590           gold_error(_("%s is not supported but is required for %s in %s"),
2591                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2592           issued_copy_dt_needed_error = true;
2593         }
2594     }
2595 }
2596
2597 // Start processing an archive.
2598
2599 void
2600 Input_objects::archive_start(Archive* archive)
2601 {
2602   if (parameters->options().user_set_print_symbol_counts()
2603       || parameters->options().cref())
2604     {
2605       if (this->cref_ == NULL)
2606         this->cref_ = new Cref();
2607       this->cref_->add_archive_start(archive);
2608     }
2609 }
2610
2611 // Stop processing an archive.
2612
2613 void
2614 Input_objects::archive_stop(Archive* archive)
2615 {
2616   if (parameters->options().user_set_print_symbol_counts()
2617       || parameters->options().cref())
2618     this->cref_->add_archive_stop(archive);
2619 }
2620
2621 // Print symbol counts
2622
2623 void
2624 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2625 {
2626   if (parameters->options().user_set_print_symbol_counts()
2627       && this->cref_ != NULL)
2628     this->cref_->print_symbol_counts(symtab);
2629 }
2630
2631 // Print a cross reference table.
2632
2633 void
2634 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2635 {
2636   if (parameters->options().cref() && this->cref_ != NULL)
2637     this->cref_->print_cref(symtab, f);
2638 }
2639
2640 // Relocate_info methods.
2641
2642 // Return a string describing the location of a relocation when file
2643 // and lineno information is not available.  This is only used in
2644 // error messages.
2645
2646 template<int size, bool big_endian>
2647 std::string
2648 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2649 {
2650   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2651   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2652   if (!ret.empty())
2653     return ret;
2654
2655   ret = this->object->name();
2656
2657   Symbol_location_info info;
2658   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2659     {
2660       if (!info.source_file.empty())
2661         {
2662           ret += ":";
2663           ret += info.source_file;
2664         }
2665       size_t len = info.enclosing_symbol_name.length() + 100;
2666       char* buf = new char[len];
2667       snprintf(buf, len, _(":function %s"),
2668                info.enclosing_symbol_name.c_str());
2669       ret += buf;
2670       delete[] buf;
2671       return ret;
2672     }
2673
2674   ret += "(";
2675   ret += this->object->section_name(this->data_shndx);
2676   char buf[100];
2677   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2678   ret += buf;
2679   return ret;
2680 }
2681
2682 } // End namespace gold.
2683
2684 namespace
2685 {
2686
2687 using namespace gold;
2688
2689 // Read an ELF file with the header and return the appropriate
2690 // instance of Object.
2691
2692 template<int size, bool big_endian>
2693 Object*
2694 make_elf_sized_object(const std::string& name, Input_file* input_file,
2695                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2696                       bool* punconfigured)
2697 {
2698   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2699                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2700                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2701   if (target == NULL)
2702     gold_fatal(_("%s: unsupported ELF machine number %d"),
2703                name.c_str(), ehdr.get_e_machine());
2704
2705   if (!parameters->target_valid())
2706     set_parameters_target(target);
2707   else if (target != &parameters->target())
2708     {
2709       if (punconfigured != NULL)
2710         *punconfigured = true;
2711       else
2712         gold_error(_("%s: incompatible target"), name.c_str());
2713       return NULL;
2714     }
2715
2716   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2717                                                    ehdr);
2718 }
2719
2720 } // End anonymous namespace.
2721
2722 namespace gold
2723 {
2724
2725 // Return whether INPUT_FILE is an ELF object.
2726
2727 bool
2728 is_elf_object(Input_file* input_file, off_t offset,
2729               const unsigned char** start, int* read_size)
2730 {
2731   off_t filesize = input_file->file().filesize();
2732   int want = elfcpp::Elf_recognizer::max_header_size;
2733   if (filesize - offset < want)
2734     want = filesize - offset;
2735
2736   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2737                                                        true, false);
2738   *start = p;
2739   *read_size = want;
2740
2741   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2742 }
2743
2744 // Read an ELF file and return the appropriate instance of Object.
2745
2746 Object*
2747 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2748                 const unsigned char* p, section_offset_type bytes,
2749                 bool* punconfigured)
2750 {
2751   if (punconfigured != NULL)
2752     *punconfigured = false;
2753
2754   std::string error;
2755   bool big_endian = false;
2756   int size = 0;
2757   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2758                                                &big_endian, &error))
2759     {
2760       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2761       return NULL;
2762     }
2763
2764   if (size == 32)
2765     {
2766       if (big_endian)
2767         {
2768 #ifdef HAVE_TARGET_32_BIG
2769           elfcpp::Ehdr<32, true> ehdr(p);
2770           return make_elf_sized_object<32, true>(name, input_file,
2771                                                  offset, ehdr, punconfigured);
2772 #else
2773           if (punconfigured != NULL)
2774             *punconfigured = true;
2775           else
2776             gold_error(_("%s: not configured to support "
2777                          "32-bit big-endian object"),
2778                        name.c_str());
2779           return NULL;
2780 #endif
2781         }
2782       else
2783         {
2784 #ifdef HAVE_TARGET_32_LITTLE
2785           elfcpp::Ehdr<32, false> ehdr(p);
2786           return make_elf_sized_object<32, false>(name, input_file,
2787                                                   offset, ehdr, punconfigured);
2788 #else
2789           if (punconfigured != NULL)
2790             *punconfigured = true;
2791           else
2792             gold_error(_("%s: not configured to support "
2793                          "32-bit little-endian object"),
2794                        name.c_str());
2795           return NULL;
2796 #endif
2797         }
2798     }
2799   else if (size == 64)
2800     {
2801       if (big_endian)
2802         {
2803 #ifdef HAVE_TARGET_64_BIG
2804           elfcpp::Ehdr<64, true> ehdr(p);
2805           return make_elf_sized_object<64, true>(name, input_file,
2806                                                  offset, ehdr, punconfigured);
2807 #else
2808           if (punconfigured != NULL)
2809             *punconfigured = true;
2810           else
2811             gold_error(_("%s: not configured to support "
2812                          "64-bit big-endian object"),
2813                        name.c_str());
2814           return NULL;
2815 #endif
2816         }
2817       else
2818         {
2819 #ifdef HAVE_TARGET_64_LITTLE
2820           elfcpp::Ehdr<64, false> ehdr(p);
2821           return make_elf_sized_object<64, false>(name, input_file,
2822                                                   offset, ehdr, punconfigured);
2823 #else
2824           if (punconfigured != NULL)
2825             *punconfigured = true;
2826           else
2827             gold_error(_("%s: not configured to support "
2828                          "64-bit little-endian object"),
2829                        name.c_str());
2830           return NULL;
2831 #endif
2832         }
2833     }
2834   else
2835     gold_unreachable();
2836 }
2837
2838 // Instantiate the templates we need.
2839
2840 #ifdef HAVE_TARGET_32_LITTLE
2841 template
2842 void
2843 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2844                                      Read_symbols_data*);
2845 #endif
2846
2847 #ifdef HAVE_TARGET_32_BIG
2848 template
2849 void
2850 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2851                                     Read_symbols_data*);
2852 #endif
2853
2854 #ifdef HAVE_TARGET_64_LITTLE
2855 template
2856 void
2857 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2858                                      Read_symbols_data*);
2859 #endif
2860
2861 #ifdef HAVE_TARGET_64_BIG
2862 template
2863 void
2864 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2865                                     Read_symbols_data*);
2866 #endif
2867
2868 #ifdef HAVE_TARGET_32_LITTLE
2869 template
2870 class Sized_relobj_file<32, false>;
2871 #endif
2872
2873 #ifdef HAVE_TARGET_32_BIG
2874 template
2875 class Sized_relobj_file<32, true>;
2876 #endif
2877
2878 #ifdef HAVE_TARGET_64_LITTLE
2879 template
2880 class Sized_relobj_file<64, false>;
2881 #endif
2882
2883 #ifdef HAVE_TARGET_64_BIG
2884 template
2885 class Sized_relobj_file<64, true>;
2886 #endif
2887
2888 #ifdef HAVE_TARGET_32_LITTLE
2889 template
2890 struct Relocate_info<32, false>;
2891 #endif
2892
2893 #ifdef HAVE_TARGET_32_BIG
2894 template
2895 struct Relocate_info<32, true>;
2896 #endif
2897
2898 #ifdef HAVE_TARGET_64_LITTLE
2899 template
2900 struct Relocate_info<64, false>;
2901 #endif
2902
2903 #ifdef HAVE_TARGET_64_BIG
2904 template
2905 struct Relocate_info<64, true>;
2906 #endif
2907
2908 #ifdef HAVE_TARGET_32_LITTLE
2909 template
2910 void
2911 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2912
2913 template
2914 void
2915 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2916                                       const unsigned char*);
2917 #endif
2918
2919 #ifdef HAVE_TARGET_32_BIG
2920 template
2921 void
2922 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2923
2924 template
2925 void
2926 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2927                                      const unsigned char*);
2928 #endif
2929
2930 #ifdef HAVE_TARGET_64_LITTLE
2931 template
2932 void
2933 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2934
2935 template
2936 void
2937 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2938                                       const unsigned char*);
2939 #endif
2940
2941 #ifdef HAVE_TARGET_64_BIG
2942 template
2943 void
2944 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2945
2946 template
2947 void
2948 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2949                                      const unsigned char*);
2950 #endif
2951
2952 } // End namespace gold.