Remove empty class Merge_map.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   if (this->object_merge_map_ == NULL)
289     {
290       this->object_merge_map_ =  new Object_merge_map();
291     }
292
293   this->object_merge_map_->add_mapping(output_data, shndx, offset, length,
294                                        output_offset);
295 }
296
297 bool
298 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
299                             section_offset_type *poutput) const {
300   Object_merge_map* object_merge_map = this->object_merge_map_;
301   if (object_merge_map == NULL)
302     return false;
303   return object_merge_map->get_output_offset(shndx, offset, poutput);
304 }
305
306 bool
307 Relobj::is_merge_section_for(const Output_section_data* output_data,
308                              unsigned int shndx) const {
309   Object_merge_map* object_merge_map = this->object_merge_map_;
310   if (object_merge_map == NULL)
311     return false;
312   return object_merge_map->is_merge_section_for(output_data, shndx);
313
314 }
315
316 // To copy the symbols data read from the file to a local data structure.
317 // This function is called from do_layout only while doing garbage
318 // collection.
319
320 void
321 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
322                           unsigned int section_header_size)
323 {
324   gc_sd->section_headers_data =
325          new unsigned char[(section_header_size)];
326   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
327          section_header_size);
328   gc_sd->section_names_data =
329          new unsigned char[sd->section_names_size];
330   memcpy(gc_sd->section_names_data, sd->section_names->data(),
331          sd->section_names_size);
332   gc_sd->section_names_size = sd->section_names_size;
333   if (sd->symbols != NULL)
334     {
335       gc_sd->symbols_data =
336              new unsigned char[sd->symbols_size];
337       memcpy(gc_sd->symbols_data, sd->symbols->data(),
338             sd->symbols_size);
339     }
340   else
341     {
342       gc_sd->symbols_data = NULL;
343     }
344   gc_sd->symbols_size = sd->symbols_size;
345   gc_sd->external_symbols_offset = sd->external_symbols_offset;
346   if (sd->symbol_names != NULL)
347     {
348       gc_sd->symbol_names_data =
349              new unsigned char[sd->symbol_names_size];
350       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
351             sd->symbol_names_size);
352     }
353   else
354     {
355       gc_sd->symbol_names_data = NULL;
356     }
357   gc_sd->symbol_names_size = sd->symbol_names_size;
358 }
359
360 // This function determines if a particular section name must be included
361 // in the link.  This is used during garbage collection to determine the
362 // roots of the worklist.
363
364 bool
365 Relobj::is_section_name_included(const char* name)
366 {
367   if (is_prefix_of(".ctors", name)
368       || is_prefix_of(".dtors", name)
369       || is_prefix_of(".note", name)
370       || is_prefix_of(".init", name)
371       || is_prefix_of(".fini", name)
372       || is_prefix_of(".gcc_except_table", name)
373       || is_prefix_of(".jcr", name)
374       || is_prefix_of(".preinit_array", name)
375       || (is_prefix_of(".text", name)
376           && strstr(name, "personality"))
377       || (is_prefix_of(".data", name)
378           && strstr(name, "personality"))
379       || (is_prefix_of(".sdata", name)
380           && strstr(name, "personality"))
381       || (is_prefix_of(".gnu.linkonce.d", name)
382           && strstr(name, "personality"))
383       || (is_prefix_of(".rodata", name)
384           && strstr(name, "nptl_version")))
385     {
386       return true;
387     }
388   return false;
389 }
390
391 // Finalize the incremental relocation information.  Allocates a block
392 // of relocation entries for each symbol, and sets the reloc_bases_
393 // array to point to the first entry in each block.  If CLEAR_COUNTS
394 // is TRUE, also clear the per-symbol relocation counters.
395
396 void
397 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
398 {
399   unsigned int nsyms = this->get_global_symbols()->size();
400   this->reloc_bases_ = new unsigned int[nsyms];
401
402   gold_assert(this->reloc_bases_ != NULL);
403   gold_assert(layout->incremental_inputs() != NULL);
404
405   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
406   for (unsigned int i = 0; i < nsyms; ++i)
407     {
408       this->reloc_bases_[i] = rindex;
409       rindex += this->reloc_counts_[i];
410       if (clear_counts)
411         this->reloc_counts_[i] = 0;
412     }
413   layout->incremental_inputs()->set_reloc_count(rindex);
414 }
415
416 // Class Sized_relobj.
417
418 // Iterate over local symbols, calling a visitor class V for each GOT offset
419 // associated with a local symbol.
420
421 template<int size, bool big_endian>
422 void
423 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
424     Got_offset_list::Visitor* v) const
425 {
426   unsigned int nsyms = this->local_symbol_count();
427   for (unsigned int i = 0; i < nsyms; i++)
428     {
429       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
430       if (p != this->local_got_offsets_.end())
431         {
432           const Got_offset_list* got_offsets = p->second;
433           got_offsets->for_all_got_offsets(v);
434         }
435     }
436 }
437
438 // Get the address of an output section.
439
440 template<int size, bool big_endian>
441 uint64_t
442 Sized_relobj<size, big_endian>::do_output_section_address(
443     unsigned int shndx)
444 {
445   // If the input file is linked as --just-symbols, the output
446   // section address is the input section address.
447   if (this->just_symbols())
448     return this->section_address(shndx);
449
450   const Output_section* os = this->do_output_section(shndx);
451   gold_assert(os != NULL);
452   return os->address();
453 }
454
455 // Class Sized_relobj_file.
456
457 template<int size, bool big_endian>
458 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
459     const std::string& name,
460     Input_file* input_file,
461     off_t offset,
462     const elfcpp::Ehdr<size, big_endian>& ehdr)
463   : Sized_relobj<size, big_endian>(name, input_file, offset),
464     elf_file_(this, ehdr),
465     symtab_shndx_(-1U),
466     local_symbol_count_(0),
467     output_local_symbol_count_(0),
468     output_local_dynsym_count_(0),
469     symbols_(),
470     defined_count_(0),
471     local_symbol_offset_(0),
472     local_dynsym_offset_(0),
473     local_values_(),
474     local_plt_offsets_(),
475     kept_comdat_sections_(),
476     has_eh_frame_(false),
477     discarded_eh_frame_shndx_(-1U),
478     is_deferred_layout_(false),
479     deferred_layout_(),
480     deferred_layout_relocs_(),
481     compressed_sections_()
482 {
483   this->e_type_ = ehdr.get_e_type();
484 }
485
486 template<int size, bool big_endian>
487 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
488 {
489 }
490
491 // Set up an object file based on the file header.  This sets up the
492 // section information.
493
494 template<int size, bool big_endian>
495 void
496 Sized_relobj_file<size, big_endian>::do_setup()
497 {
498   const unsigned int shnum = this->elf_file_.shnum();
499   this->set_shnum(shnum);
500 }
501
502 // Find the SHT_SYMTAB section, given the section headers.  The ELF
503 // standard says that maybe in the future there can be more than one
504 // SHT_SYMTAB section.  Until somebody figures out how that could
505 // work, we assume there is only one.
506
507 template<int size, bool big_endian>
508 void
509 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
510 {
511   const unsigned int shnum = this->shnum();
512   this->symtab_shndx_ = 0;
513   if (shnum > 0)
514     {
515       // Look through the sections in reverse order, since gas tends
516       // to put the symbol table at the end.
517       const unsigned char* p = pshdrs + shnum * This::shdr_size;
518       unsigned int i = shnum;
519       unsigned int xindex_shndx = 0;
520       unsigned int xindex_link = 0;
521       while (i > 0)
522         {
523           --i;
524           p -= This::shdr_size;
525           typename This::Shdr shdr(p);
526           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
527             {
528               this->symtab_shndx_ = i;
529               if (xindex_shndx > 0 && xindex_link == i)
530                 {
531                   Xindex* xindex =
532                     new Xindex(this->elf_file_.large_shndx_offset());
533                   xindex->read_symtab_xindex<size, big_endian>(this,
534                                                                xindex_shndx,
535                                                                pshdrs);
536                   this->set_xindex(xindex);
537                 }
538               break;
539             }
540
541           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
542           // one.  This will work if it follows the SHT_SYMTAB
543           // section.
544           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
545             {
546               xindex_shndx = i;
547               xindex_link = this->adjust_shndx(shdr.get_sh_link());
548             }
549         }
550     }
551 }
552
553 // Return the Xindex structure to use for object with lots of
554 // sections.
555
556 template<int size, bool big_endian>
557 Xindex*
558 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
559 {
560   gold_assert(this->symtab_shndx_ != -1U);
561   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
562   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
563   return xindex;
564 }
565
566 // Return whether SHDR has the right type and flags to be a GNU
567 // .eh_frame section.
568
569 template<int size, bool big_endian>
570 bool
571 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
572     const elfcpp::Shdr<size, big_endian>* shdr) const
573 {
574   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
575   return ((sh_type == elfcpp::SHT_PROGBITS
576            || sh_type == elfcpp::SHT_X86_64_UNWIND)
577           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
578 }
579
580 // Find the section header with the given name.
581
582 template<int size, bool big_endian>
583 const unsigned char*
584 Object::find_shdr(
585     const unsigned char* pshdrs,
586     const char* name,
587     const char* names,
588     section_size_type names_size,
589     const unsigned char* hdr) const
590 {
591   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
592   const unsigned int shnum = this->shnum();
593   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
594   size_t sh_name = 0;
595
596   while (1)
597     {
598       if (hdr)
599         {
600           // We found HDR last time we were called, continue looking.
601           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
602           sh_name = shdr.get_sh_name();
603         }
604       else
605         {
606           // Look for the next occurrence of NAME in NAMES.
607           // The fact that .shstrtab produced by current GNU tools is
608           // string merged means we shouldn't have both .not.foo and
609           // .foo in .shstrtab, and multiple .foo sections should all
610           // have the same sh_name.  However, this is not guaranteed
611           // by the ELF spec and not all ELF object file producers may
612           // be so clever.
613           size_t len = strlen(name) + 1;
614           const char *p = sh_name ? names + sh_name + len : names;
615           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
616                                                    name, len));
617           if (p == NULL)
618             return NULL;
619           sh_name = p - names;
620           hdr = pshdrs;
621           if (sh_name == 0)
622             return hdr;
623         }
624
625       hdr += shdr_size;
626       while (hdr < hdr_end)
627         {
628           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
629           if (shdr.get_sh_name() == sh_name)
630             return hdr;
631           hdr += shdr_size;
632         }
633       hdr = NULL;
634       if (sh_name == 0)
635         return hdr;
636     }
637 }
638
639 // Return whether there is a GNU .eh_frame section, given the section
640 // headers and the section names.
641
642 template<int size, bool big_endian>
643 bool
644 Sized_relobj_file<size, big_endian>::find_eh_frame(
645     const unsigned char* pshdrs,
646     const char* names,
647     section_size_type names_size) const
648 {
649   const unsigned char* s = NULL;
650
651   while (1)
652     {
653       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
654                                                      names, names_size, s);
655       if (s == NULL)
656         return false;
657
658       typename This::Shdr shdr(s);
659       if (this->check_eh_frame_flags(&shdr))
660         return true;
661     }
662 }
663
664 // Return TRUE if this is a section whose contents will be needed in the
665 // Add_symbols task.  This function is only called for sections that have
666 // already passed the test in is_compressed_debug_section(), so we know
667 // that the section name begins with ".zdebug".
668
669 static bool
670 need_decompressed_section(const char* name)
671 {
672   // Skip over the ".zdebug" and a quick check for the "_".
673   name += 7;
674   if (*name++ != '_')
675     return false;
676
677 #ifdef ENABLE_THREADS
678   // Decompressing these sections now will help only if we're
679   // multithreaded.
680   if (parameters->options().threads())
681     {
682       // We will need .zdebug_str if this is not an incremental link
683       // (i.e., we are processing string merge sections) or if we need
684       // to build a gdb index.
685       if ((!parameters->incremental() || parameters->options().gdb_index())
686           && strcmp(name, "str") == 0)
687         return true;
688
689       // We will need these other sections when building a gdb index.
690       if (parameters->options().gdb_index()
691           && (strcmp(name, "info") == 0
692               || strcmp(name, "types") == 0
693               || strcmp(name, "pubnames") == 0
694               || strcmp(name, "pubtypes") == 0
695               || strcmp(name, "ranges") == 0
696               || strcmp(name, "abbrev") == 0))
697         return true;
698     }
699 #endif
700
701   // Even when single-threaded, we will need .zdebug_str if this is
702   // not an incremental link and we are building a gdb index.
703   // Otherwise, we would decompress the section twice: once for
704   // string merge processing, and once for building the gdb index.
705   if (!parameters->incremental()
706       && parameters->options().gdb_index()
707       && strcmp(name, "str") == 0)
708     return true;
709
710   return false;
711 }
712
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719     const unsigned char* pshdrs,
720     unsigned int shnum,
721     const char* names,
722     section_size_type names_size,
723     Sized_relobj_file<size, big_endian>* obj)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734         {
735           if (shdr.get_sh_name() >= names_size)
736             {
737               obj->error(_("bad section name offset for section %u: %lu"),
738                          i, static_cast<unsigned long>(shdr.get_sh_name()));
739               continue;
740             }
741
742           const char* name = names + shdr.get_sh_name();
743           if (is_compressed_debug_section(name))
744             {
745               section_size_type len;
746               const unsigned char* contents =
747                   obj->section_contents(i, &len, false);
748               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
749               Compressed_section_info info;
750               info.size = convert_to_section_size_type(uncompressed_size);
751               info.contents = NULL;
752               if (uncompressed_size != -1ULL)
753                 {
754                   unsigned char* uncompressed_data = NULL;
755                   if (need_decompressed_section(name))
756                     {
757                       uncompressed_data = new unsigned char[uncompressed_size];
758                       if (decompress_input_section(contents, len,
759                                                    uncompressed_data,
760                                                    uncompressed_size))
761                         info.contents = uncompressed_data;
762                       else
763                         delete[] uncompressed_data;
764                     }
765                   (*uncompressed_map)[i] = info;
766                 }
767             }
768         }
769     }
770   return uncompressed_map;
771 }
772
773 // Stash away info for a number of special sections.
774 // Return true if any of the sections found require local symbols to be read.
775
776 template<int size, bool big_endian>
777 bool
778 Sized_relobj_file<size, big_endian>::do_find_special_sections(
779     Read_symbols_data* sd)
780 {
781   const unsigned char* const pshdrs = sd->section_headers->data();
782   const unsigned char* namesu = sd->section_names->data();
783   const char* names = reinterpret_cast<const char*>(namesu);
784
785   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
786     this->has_eh_frame_ = true;
787
788   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
789     this->compressed_sections_
790       = build_compressed_section_map(pshdrs, this->shnum(), names,
791                                      sd->section_names_size, this);
792   return (this->has_eh_frame_
793           || (!parameters->options().relocatable()
794               && parameters->options().gdb_index()
795               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
796                   || memmem(names, sd->section_names_size, "debug_types",
797                             13) == 0)));
798 }
799
800 // Read the sections and symbols from an object file.
801
802 template<int size, bool big_endian>
803 void
804 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
805 {
806   this->base_read_symbols(sd);
807 }
808
809 // Read the sections and symbols from an object file.  This is common
810 // code for all target-specific overrides of do_read_symbols().
811
812 template<int size, bool big_endian>
813 void
814 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
815 {
816   this->read_section_data(&this->elf_file_, sd);
817
818   const unsigned char* const pshdrs = sd->section_headers->data();
819
820   this->find_symtab(pshdrs);
821
822   bool need_local_symbols = this->do_find_special_sections(sd);
823
824   sd->symbols = NULL;
825   sd->symbols_size = 0;
826   sd->external_symbols_offset = 0;
827   sd->symbol_names = NULL;
828   sd->symbol_names_size = 0;
829
830   if (this->symtab_shndx_ == 0)
831     {
832       // No symbol table.  Weird but legal.
833       return;
834     }
835
836   // Get the symbol table section header.
837   typename This::Shdr symtabshdr(pshdrs
838                                  + this->symtab_shndx_ * This::shdr_size);
839   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
840
841   // If this object has a .eh_frame section, or if building a .gdb_index
842   // section and there is debug info, we need all the symbols.
843   // Otherwise we only need the external symbols.  While it would be
844   // simpler to just always read all the symbols, I've seen object
845   // files with well over 2000 local symbols, which for a 64-bit
846   // object file format is over 5 pages that we don't need to read
847   // now.
848
849   const int sym_size = This::sym_size;
850   const unsigned int loccount = symtabshdr.get_sh_info();
851   this->local_symbol_count_ = loccount;
852   this->local_values_.resize(loccount);
853   section_offset_type locsize = loccount * sym_size;
854   off_t dataoff = symtabshdr.get_sh_offset();
855   section_size_type datasize =
856     convert_to_section_size_type(symtabshdr.get_sh_size());
857   off_t extoff = dataoff + locsize;
858   section_size_type extsize = datasize - locsize;
859
860   off_t readoff = need_local_symbols ? dataoff : extoff;
861   section_size_type readsize = need_local_symbols ? datasize : extsize;
862
863   if (readsize == 0)
864     {
865       // No external symbols.  Also weird but also legal.
866       return;
867     }
868
869   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
870
871   // Read the section header for the symbol names.
872   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
873   if (strtab_shndx >= this->shnum())
874     {
875       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
876       return;
877     }
878   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
879   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
880     {
881       this->error(_("symbol table name section has wrong type: %u"),
882                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
883       return;
884     }
885
886   // Read the symbol names.
887   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
888                                                strtabshdr.get_sh_size(),
889                                                false, true);
890
891   sd->symbols = fvsymtab;
892   sd->symbols_size = readsize;
893   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
894   sd->symbol_names = fvstrtab;
895   sd->symbol_names_size =
896     convert_to_section_size_type(strtabshdr.get_sh_size());
897 }
898
899 // Return the section index of symbol SYM.  Set *VALUE to its value in
900 // the object file.  Set *IS_ORDINARY if this is an ordinary section
901 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
902 // Note that for a symbol which is not defined in this object file,
903 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
904 // the final value of the symbol in the link.
905
906 template<int size, bool big_endian>
907 unsigned int
908 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
909                                                               Address* value,
910                                                               bool* is_ordinary)
911 {
912   section_size_type symbols_size;
913   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
914                                                         &symbols_size,
915                                                         false);
916
917   const size_t count = symbols_size / This::sym_size;
918   gold_assert(sym < count);
919
920   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
921   *value = elfsym.get_st_value();
922
923   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
924 }
925
926 // Return whether to include a section group in the link.  LAYOUT is
927 // used to keep track of which section groups we have already seen.
928 // INDEX is the index of the section group and SHDR is the section
929 // header.  If we do not want to include this group, we set bits in
930 // OMIT for each section which should be discarded.
931
932 template<int size, bool big_endian>
933 bool
934 Sized_relobj_file<size, big_endian>::include_section_group(
935     Symbol_table* symtab,
936     Layout* layout,
937     unsigned int index,
938     const char* name,
939     const unsigned char* shdrs,
940     const char* section_names,
941     section_size_type section_names_size,
942     std::vector<bool>* omit)
943 {
944   // Read the section contents.
945   typename This::Shdr shdr(shdrs + index * This::shdr_size);
946   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
947                                              shdr.get_sh_size(), true, false);
948   const elfcpp::Elf_Word* pword =
949     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
950
951   // The first word contains flags.  We only care about COMDAT section
952   // groups.  Other section groups are always included in the link
953   // just like ordinary sections.
954   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
955
956   // Look up the group signature, which is the name of a symbol.  ELF
957   // uses a symbol name because some group signatures are long, and
958   // the name is generally already in the symbol table, so it makes
959   // sense to put the long string just once in .strtab rather than in
960   // both .strtab and .shstrtab.
961
962   // Get the appropriate symbol table header (this will normally be
963   // the single SHT_SYMTAB section, but in principle it need not be).
964   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
965   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
966
967   // Read the symbol table entry.
968   unsigned int symndx = shdr.get_sh_info();
969   if (symndx >= symshdr.get_sh_size() / This::sym_size)
970     {
971       this->error(_("section group %u info %u out of range"),
972                   index, symndx);
973       return false;
974     }
975   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
976   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
977                                              false);
978   elfcpp::Sym<size, big_endian> sym(psym);
979
980   // Read the symbol table names.
981   section_size_type symnamelen;
982   const unsigned char* psymnamesu;
983   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
984                                       &symnamelen, true);
985   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
986
987   // Get the section group signature.
988   if (sym.get_st_name() >= symnamelen)
989     {
990       this->error(_("symbol %u name offset %u out of range"),
991                   symndx, sym.get_st_name());
992       return false;
993     }
994
995   std::string signature(psymnames + sym.get_st_name());
996
997   // It seems that some versions of gas will create a section group
998   // associated with a section symbol, and then fail to give a name to
999   // the section symbol.  In such a case, use the name of the section.
1000   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1001     {
1002       bool is_ordinary;
1003       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1004                                                       sym.get_st_shndx(),
1005                                                       &is_ordinary);
1006       if (!is_ordinary || sym_shndx >= this->shnum())
1007         {
1008           this->error(_("symbol %u invalid section index %u"),
1009                       symndx, sym_shndx);
1010           return false;
1011         }
1012       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1013       if (member_shdr.get_sh_name() < section_names_size)
1014         signature = section_names + member_shdr.get_sh_name();
1015     }
1016
1017   // Record this section group in the layout, and see whether we've already
1018   // seen one with the same signature.
1019   bool include_group;
1020   bool is_comdat;
1021   Kept_section* kept_section = NULL;
1022
1023   if ((flags & elfcpp::GRP_COMDAT) == 0)
1024     {
1025       include_group = true;
1026       is_comdat = false;
1027     }
1028   else
1029     {
1030       include_group = layout->find_or_add_kept_section(signature,
1031                                                        this, index, true,
1032                                                        true, &kept_section);
1033       is_comdat = true;
1034     }
1035
1036   if (is_comdat && include_group)
1037     {
1038       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1039       if (incremental_inputs != NULL)
1040         incremental_inputs->report_comdat_group(this, signature.c_str());
1041     }
1042
1043   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1044
1045   std::vector<unsigned int> shndxes;
1046   bool relocate_group = include_group && parameters->options().relocatable();
1047   if (relocate_group)
1048     shndxes.reserve(count - 1);
1049
1050   for (size_t i = 1; i < count; ++i)
1051     {
1052       elfcpp::Elf_Word shndx =
1053         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1054
1055       if (relocate_group)
1056         shndxes.push_back(shndx);
1057
1058       if (shndx >= this->shnum())
1059         {
1060           this->error(_("section %u in section group %u out of range"),
1061                       shndx, index);
1062           continue;
1063         }
1064
1065       // Check for an earlier section number, since we're going to get
1066       // it wrong--we may have already decided to include the section.
1067       if (shndx < index)
1068         this->error(_("invalid section group %u refers to earlier section %u"),
1069                     index, shndx);
1070
1071       // Get the name of the member section.
1072       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1073       if (member_shdr.get_sh_name() >= section_names_size)
1074         {
1075           // This is an error, but it will be diagnosed eventually
1076           // in do_layout, so we don't need to do anything here but
1077           // ignore it.
1078           continue;
1079         }
1080       std::string mname(section_names + member_shdr.get_sh_name());
1081
1082       if (include_group)
1083         {
1084           if (is_comdat)
1085             kept_section->add_comdat_section(mname, shndx,
1086                                              member_shdr.get_sh_size());
1087         }
1088       else
1089         {
1090           (*omit)[shndx] = true;
1091
1092           if (is_comdat)
1093             {
1094               Relobj* kept_object = kept_section->object();
1095               if (kept_section->is_comdat())
1096                 {
1097                   // Find the corresponding kept section, and store
1098                   // that info in the discarded section table.
1099                   unsigned int kept_shndx;
1100                   uint64_t kept_size;
1101                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1102                                                         &kept_size))
1103                     {
1104                       // We don't keep a mapping for this section if
1105                       // it has a different size.  The mapping is only
1106                       // used for relocation processing, and we don't
1107                       // want to treat the sections as similar if the
1108                       // sizes are different.  Checking the section
1109                       // size is the approach used by the GNU linker.
1110                       if (kept_size == member_shdr.get_sh_size())
1111                         this->set_kept_comdat_section(shndx, kept_object,
1112                                                       kept_shndx);
1113                     }
1114                 }
1115               else
1116                 {
1117                   // The existing section is a linkonce section.  Add
1118                   // a mapping if there is exactly one section in the
1119                   // group (which is true when COUNT == 2) and if it
1120                   // is the same size.
1121                   if (count == 2
1122                       && (kept_section->linkonce_size()
1123                           == member_shdr.get_sh_size()))
1124                     this->set_kept_comdat_section(shndx, kept_object,
1125                                                   kept_section->shndx());
1126                 }
1127             }
1128         }
1129     }
1130
1131   if (relocate_group)
1132     layout->layout_group(symtab, this, index, name, signature.c_str(),
1133                          shdr, flags, &shndxes);
1134
1135   return include_group;
1136 }
1137
1138 // Whether to include a linkonce section in the link.  NAME is the
1139 // name of the section and SHDR is the section header.
1140
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined.  The semantics are
1143 // that we only include one linkonce section with a given name.  The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature.  We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature.  We also use
1150 // the full name of the linkonce section as a normal section group
1151 // signature.
1152
1153 template<int size, bool big_endian>
1154 bool
1155 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156     Layout* layout,
1157     unsigned int index,
1158     const char* name,
1159     const elfcpp::Shdr<size, big_endian>& shdr)
1160 {
1161   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162   // In general the symbol name we want will be the string following
1163   // the last '.'.  However, we have to handle the case of
1164   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165   // some versions of gcc.  So we use a heuristic: if the name starts
1166   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1167   // we look for the last '.'.  We can't always simply skip
1168   // ".gnu.linkonce.X", because we have to deal with cases like
1169   // ".gnu.linkonce.d.rel.ro.local".
1170   const char* const linkonce_t = ".gnu.linkonce.t.";
1171   const char* symname;
1172   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173     symname = name + strlen(linkonce_t);
1174   else
1175     symname = strrchr(name, '.') + 1;
1176   std::string sig1(symname);
1177   std::string sig2(name);
1178   Kept_section* kept1;
1179   Kept_section* kept2;
1180   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181                                                    false, &kept1);
1182   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183                                                    true, &kept2);
1184
1185   if (!include2)
1186     {
1187       // We are not including this section because we already saw the
1188       // name of the section as a signature.  This normally implies
1189       // that the kept section is another linkonce section.  If it is
1190       // the same size, record it as the section which corresponds to
1191       // this one.
1192       if (kept2->object() != NULL
1193           && !kept2->is_comdat()
1194           && kept2->linkonce_size() == sh_size)
1195         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1196     }
1197   else if (!include1)
1198     {
1199       // The section is being discarded on the basis of its symbol
1200       // name.  This means that the corresponding kept section was
1201       // part of a comdat group, and it will be difficult to identify
1202       // the specific section within that group that corresponds to
1203       // this linkonce section.  We'll handle the simple case where
1204       // the group has only one member section.  Otherwise, it's not
1205       // worth the effort.
1206       unsigned int kept_shndx;
1207       uint64_t kept_size;
1208       if (kept1->object() != NULL
1209           && kept1->is_comdat()
1210           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1211           && kept_size == sh_size)
1212         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1213     }
1214   else
1215     {
1216       kept1->set_linkonce_size(sh_size);
1217       kept2->set_linkonce_size(sh_size);
1218     }
1219
1220   return include1 && include2;
1221 }
1222
1223 // Layout an input section.
1224
1225 template<int size, bool big_endian>
1226 inline void
1227 Sized_relobj_file<size, big_endian>::layout_section(
1228     Layout* layout,
1229     unsigned int shndx,
1230     const char* name,
1231     const typename This::Shdr& shdr,
1232     unsigned int reloc_shndx,
1233     unsigned int reloc_type)
1234 {
1235   off_t offset;
1236   Output_section* os = layout->layout(this, shndx, name, shdr,
1237                                           reloc_shndx, reloc_type, &offset);
1238
1239   this->output_sections()[shndx] = os;
1240   if (offset == -1)
1241     this->section_offsets()[shndx] = invalid_address;
1242   else
1243     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1244
1245   // If this section requires special handling, and if there are
1246   // relocs that apply to it, then we must do the special handling
1247   // before we apply the relocs.
1248   if (offset == -1 && reloc_shndx != 0)
1249     this->set_relocs_must_follow_section_writes();
1250 }
1251
1252 // Layout an input .eh_frame section.
1253
1254 template<int size, bool big_endian>
1255 void
1256 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1257     Layout* layout,
1258     const unsigned char* symbols_data,
1259     section_size_type symbols_size,
1260     const unsigned char* symbol_names_data,
1261     section_size_type symbol_names_size,
1262     unsigned int shndx,
1263     const typename This::Shdr& shdr,
1264     unsigned int reloc_shndx,
1265     unsigned int reloc_type)
1266 {
1267   gold_assert(this->has_eh_frame_);
1268
1269   off_t offset;
1270   Output_section* os = layout->layout_eh_frame(this,
1271                                                symbols_data,
1272                                                symbols_size,
1273                                                symbol_names_data,
1274                                                symbol_names_size,
1275                                                shndx,
1276                                                shdr,
1277                                                reloc_shndx,
1278                                                reloc_type,
1279                                                &offset);
1280   this->output_sections()[shndx] = os;
1281   if (os == NULL || offset == -1)
1282     {
1283       // An object can contain at most one section holding exception
1284       // frame information.
1285       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1286       this->discarded_eh_frame_shndx_ = shndx;
1287       this->section_offsets()[shndx] = invalid_address;
1288     }
1289   else
1290     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1291
1292   // If this section requires special handling, and if there are
1293   // relocs that aply to it, then we must do the special handling
1294   // before we apply the relocs.
1295   if (os != NULL && offset == -1 && reloc_shndx != 0)
1296     this->set_relocs_must_follow_section_writes();
1297 }
1298
1299 // Lay out the input sections.  We walk through the sections and check
1300 // whether they should be included in the link.  If they should, we
1301 // pass them to the Layout object, which will return an output section
1302 // and an offset.
1303 // This function is called twice sometimes, two passes, when mapping
1304 // of input sections to output sections must be delayed.
1305 // This is true for the following :
1306 // * Garbage collection (--gc-sections): Some input sections will be
1307 // discarded and hence the assignment must wait until the second pass.
1308 // In the first pass,  it is for setting up some sections as roots to
1309 // a work-list for --gc-sections and to do comdat processing.
1310 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1311 // will be folded and hence the assignment must wait.
1312 // * Using plugins to map some sections to unique segments: Mapping
1313 // some sections to unique segments requires mapping them to unique
1314 // output sections too.  This can be done via plugins now and this
1315 // information is not available in the first pass.
1316
1317 template<int size, bool big_endian>
1318 void
1319 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1320                                                Layout* layout,
1321                                                Read_symbols_data* sd)
1322 {
1323   const unsigned int shnum = this->shnum();
1324
1325   /* Should this function be called twice?  */
1326   bool is_two_pass = (parameters->options().gc_sections()
1327                       || parameters->options().icf_enabled()
1328                       || layout->is_unique_segment_for_sections_specified());
1329
1330   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1331      a two-pass approach is not needed.  */
1332   bool is_pass_one = false;
1333   bool is_pass_two = false;
1334
1335   Symbols_data* gc_sd = NULL;
1336
1337   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1338      should happen.  In the first pass, the data in sd is saved to be used
1339      later in the second pass.  */
1340   if (is_two_pass)
1341     {
1342       gc_sd = this->get_symbols_data();
1343       if (gc_sd == NULL)
1344         {
1345           gold_assert(sd != NULL);
1346           is_pass_one = true;
1347         }
1348       else
1349         {
1350           if (parameters->options().gc_sections())
1351             gold_assert(symtab->gc()->is_worklist_ready());
1352           if (parameters->options().icf_enabled())
1353             gold_assert(symtab->icf()->is_icf_ready()); 
1354           is_pass_two = true;
1355         }
1356     }
1357     
1358   if (shnum == 0)
1359     return;
1360
1361   if (is_pass_one)
1362     {
1363       // During garbage collection save the symbols data to use it when
1364       // re-entering this function.
1365       gc_sd = new Symbols_data;
1366       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1367       this->set_symbols_data(gc_sd);
1368     }
1369
1370   const unsigned char* section_headers_data = NULL;
1371   section_size_type section_names_size;
1372   const unsigned char* symbols_data = NULL;
1373   section_size_type symbols_size;
1374   const unsigned char* symbol_names_data = NULL;
1375   section_size_type symbol_names_size;
1376
1377   if (is_two_pass)
1378     {
1379       section_headers_data = gc_sd->section_headers_data;
1380       section_names_size = gc_sd->section_names_size;
1381       symbols_data = gc_sd->symbols_data;
1382       symbols_size = gc_sd->symbols_size;
1383       symbol_names_data = gc_sd->symbol_names_data;
1384       symbol_names_size = gc_sd->symbol_names_size;
1385     }
1386   else
1387     {
1388       section_headers_data = sd->section_headers->data();
1389       section_names_size = sd->section_names_size;
1390       if (sd->symbols != NULL)
1391         symbols_data = sd->symbols->data();
1392       symbols_size = sd->symbols_size;
1393       if (sd->symbol_names != NULL)
1394         symbol_names_data = sd->symbol_names->data();
1395       symbol_names_size = sd->symbol_names_size;
1396     }
1397
1398   // Get the section headers.
1399   const unsigned char* shdrs = section_headers_data;
1400   const unsigned char* pshdrs;
1401
1402   // Get the section names.
1403   const unsigned char* pnamesu = (is_two_pass
1404                                   ? gc_sd->section_names_data
1405                                   : sd->section_names->data());
1406
1407   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1408
1409   // If any input files have been claimed by plugins, we need to defer
1410   // actual layout until the replacement files have arrived.
1411   const bool should_defer_layout =
1412       (parameters->options().has_plugins()
1413        && parameters->options().plugins()->should_defer_layout());
1414   unsigned int num_sections_to_defer = 0;
1415
1416   // For each section, record the index of the reloc section if any.
1417   // Use 0 to mean that there is no reloc section, -1U to mean that
1418   // there is more than one.
1419   std::vector<unsigned int> reloc_shndx(shnum, 0);
1420   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1421   // Skip the first, dummy, section.
1422   pshdrs = shdrs + This::shdr_size;
1423   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1424     {
1425       typename This::Shdr shdr(pshdrs);
1426
1427       // Count the number of sections whose layout will be deferred.
1428       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1429         ++num_sections_to_defer;
1430
1431       unsigned int sh_type = shdr.get_sh_type();
1432       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1433         {
1434           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1435           if (target_shndx == 0 || target_shndx >= shnum)
1436             {
1437               this->error(_("relocation section %u has bad info %u"),
1438                           i, target_shndx);
1439               continue;
1440             }
1441
1442           if (reloc_shndx[target_shndx] != 0)
1443             reloc_shndx[target_shndx] = -1U;
1444           else
1445             {
1446               reloc_shndx[target_shndx] = i;
1447               reloc_type[target_shndx] = sh_type;
1448             }
1449         }
1450     }
1451
1452   Output_sections& out_sections(this->output_sections());
1453   std::vector<Address>& out_section_offsets(this->section_offsets());
1454
1455   if (!is_pass_two)
1456     {
1457       out_sections.resize(shnum);
1458       out_section_offsets.resize(shnum);
1459     }
1460
1461   // If we are only linking for symbols, then there is nothing else to
1462   // do here.
1463   if (this->input_file()->just_symbols())
1464     {
1465       if (!is_pass_two)
1466         {
1467           delete sd->section_headers;
1468           sd->section_headers = NULL;
1469           delete sd->section_names;
1470           sd->section_names = NULL;
1471         }
1472       return;
1473     }
1474
1475   if (num_sections_to_defer > 0)
1476     {
1477       parameters->options().plugins()->add_deferred_layout_object(this);
1478       this->deferred_layout_.reserve(num_sections_to_defer);
1479       this->is_deferred_layout_ = true;
1480     }
1481
1482   // Whether we've seen a .note.GNU-stack section.
1483   bool seen_gnu_stack = false;
1484   // The flags of a .note.GNU-stack section.
1485   uint64_t gnu_stack_flags = 0;
1486
1487   // Keep track of which sections to omit.
1488   std::vector<bool> omit(shnum, false);
1489
1490   // Keep track of reloc sections when emitting relocations.
1491   const bool relocatable = parameters->options().relocatable();
1492   const bool emit_relocs = (relocatable
1493                             || parameters->options().emit_relocs());
1494   std::vector<unsigned int> reloc_sections;
1495
1496   // Keep track of .eh_frame sections.
1497   std::vector<unsigned int> eh_frame_sections;
1498
1499   // Keep track of .debug_info and .debug_types sections.
1500   std::vector<unsigned int> debug_info_sections;
1501   std::vector<unsigned int> debug_types_sections;
1502
1503   // Skip the first, dummy, section.
1504   pshdrs = shdrs + This::shdr_size;
1505   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1506     {
1507       typename This::Shdr shdr(pshdrs);
1508
1509       if (shdr.get_sh_name() >= section_names_size)
1510         {
1511           this->error(_("bad section name offset for section %u: %lu"),
1512                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1513           return;
1514         }
1515
1516       const char* name = pnames + shdr.get_sh_name();
1517
1518       if (!is_pass_two)
1519         {
1520           if (this->handle_gnu_warning_section(name, i, symtab))
1521             {
1522               if (!relocatable && !parameters->options().shared())
1523                 omit[i] = true;
1524             }
1525
1526           // The .note.GNU-stack section is special.  It gives the
1527           // protection flags that this object file requires for the stack
1528           // in memory.
1529           if (strcmp(name, ".note.GNU-stack") == 0)
1530             {
1531               seen_gnu_stack = true;
1532               gnu_stack_flags |= shdr.get_sh_flags();
1533               omit[i] = true;
1534             }
1535
1536           // The .note.GNU-split-stack section is also special.  It
1537           // indicates that the object was compiled with
1538           // -fsplit-stack.
1539           if (this->handle_split_stack_section(name))
1540             {
1541               if (!relocatable && !parameters->options().shared())
1542                 omit[i] = true;
1543             }
1544
1545           // Skip attributes section.
1546           if (parameters->target().is_attributes_section(name))
1547             {
1548               omit[i] = true;
1549             }
1550
1551           bool discard = omit[i];
1552           if (!discard)
1553             {
1554               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1555                 {
1556                   if (!this->include_section_group(symtab, layout, i, name,
1557                                                    shdrs, pnames,
1558                                                    section_names_size,
1559                                                    &omit))
1560                     discard = true;
1561                 }
1562               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1563                        && Layout::is_linkonce(name))
1564                 {
1565                   if (!this->include_linkonce_section(layout, i, name, shdr))
1566                     discard = true;
1567                 }
1568             }
1569
1570           // Add the section to the incremental inputs layout.
1571           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1572           if (incremental_inputs != NULL
1573               && !discard
1574               && can_incremental_update(shdr.get_sh_type()))
1575             {
1576               off_t sh_size = shdr.get_sh_size();
1577               section_size_type uncompressed_size;
1578               if (this->section_is_compressed(i, &uncompressed_size))
1579                 sh_size = uncompressed_size;
1580               incremental_inputs->report_input_section(this, i, name, sh_size);
1581             }
1582
1583           if (discard)
1584             {
1585               // Do not include this section in the link.
1586               out_sections[i] = NULL;
1587               out_section_offsets[i] = invalid_address;
1588               continue;
1589             }
1590         }
1591
1592       if (is_pass_one && parameters->options().gc_sections())
1593         {
1594           if (this->is_section_name_included(name)
1595               || layout->keep_input_section (this, name)
1596               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1597               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1598             {
1599               symtab->gc()->worklist().push(Section_id(this, i));
1600             }
1601           // If the section name XXX can be represented as a C identifier
1602           // it cannot be discarded if there are references to
1603           // __start_XXX and __stop_XXX symbols.  These need to be
1604           // specially handled.
1605           if (is_cident(name))
1606             {
1607               symtab->gc()->add_cident_section(name, Section_id(this, i));
1608             }
1609         }
1610
1611       // When doing a relocatable link we are going to copy input
1612       // reloc sections into the output.  We only want to copy the
1613       // ones associated with sections which are not being discarded.
1614       // However, we don't know that yet for all sections.  So save
1615       // reloc sections and process them later. Garbage collection is
1616       // not triggered when relocatable code is desired.
1617       if (emit_relocs
1618           && (shdr.get_sh_type() == elfcpp::SHT_REL
1619               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1620         {
1621           reloc_sections.push_back(i);
1622           continue;
1623         }
1624
1625       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1626         continue;
1627
1628       // The .eh_frame section is special.  It holds exception frame
1629       // information that we need to read in order to generate the
1630       // exception frame header.  We process these after all the other
1631       // sections so that the exception frame reader can reliably
1632       // determine which sections are being discarded, and discard the
1633       // corresponding information.
1634       if (!relocatable
1635           && strcmp(name, ".eh_frame") == 0
1636           && this->check_eh_frame_flags(&shdr))
1637         {
1638           if (is_pass_one)
1639             {
1640               if (this->is_deferred_layout())
1641                 out_sections[i] = reinterpret_cast<Output_section*>(2);
1642               else
1643                 out_sections[i] = reinterpret_cast<Output_section*>(1);
1644               out_section_offsets[i] = invalid_address;
1645             }
1646           else if (this->is_deferred_layout())
1647             this->deferred_layout_.push_back(Deferred_layout(i, name,
1648                                                              pshdrs,
1649                                                              reloc_shndx[i],
1650                                                              reloc_type[i]));
1651           else
1652             eh_frame_sections.push_back(i);
1653           continue;
1654         }
1655
1656       if (is_pass_two && parameters->options().gc_sections())
1657         {
1658           // This is executed during the second pass of garbage
1659           // collection. do_layout has been called before and some
1660           // sections have been already discarded. Simply ignore
1661           // such sections this time around.
1662           if (out_sections[i] == NULL)
1663             {
1664               gold_assert(out_section_offsets[i] == invalid_address);
1665               continue;
1666             }
1667           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1668               && symtab->gc()->is_section_garbage(this, i))
1669               {
1670                 if (parameters->options().print_gc_sections())
1671                   gold_info(_("%s: removing unused section from '%s'"
1672                               " in file '%s'"),
1673                             program_name, this->section_name(i).c_str(),
1674                             this->name().c_str());
1675                 out_sections[i] = NULL;
1676                 out_section_offsets[i] = invalid_address;
1677                 continue;
1678               }
1679         }
1680
1681       if (is_pass_two && parameters->options().icf_enabled())
1682         {
1683           if (out_sections[i] == NULL)
1684             {
1685               gold_assert(out_section_offsets[i] == invalid_address);
1686               continue;
1687             }
1688           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1689               && symtab->icf()->is_section_folded(this, i))
1690               {
1691                 if (parameters->options().print_icf_sections())
1692                   {
1693                     Section_id folded =
1694                                 symtab->icf()->get_folded_section(this, i);
1695                     Relobj* folded_obj =
1696                                 reinterpret_cast<Relobj*>(folded.first);
1697                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1698                                 "into '%s' in file '%s'"),
1699                               program_name, this->section_name(i).c_str(),
1700                               this->name().c_str(),
1701                               folded_obj->section_name(folded.second).c_str(),
1702                               folded_obj->name().c_str());
1703                   }
1704                 out_sections[i] = NULL;
1705                 out_section_offsets[i] = invalid_address;
1706                 continue;
1707               }
1708         }
1709
1710       // Defer layout here if input files are claimed by plugins.  When gc
1711       // is turned on this function is called twice; we only want to do this
1712       // on the first pass.
1713       if (!is_pass_two
1714           && this->is_deferred_layout()
1715           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1716         {
1717           this->deferred_layout_.push_back(Deferred_layout(i, name,
1718                                                            pshdrs,
1719                                                            reloc_shndx[i],
1720                                                            reloc_type[i]));
1721           // Put dummy values here; real values will be supplied by
1722           // do_layout_deferred_sections.
1723           out_sections[i] = reinterpret_cast<Output_section*>(2);
1724           out_section_offsets[i] = invalid_address;
1725           continue;
1726         }
1727
1728       // During gc_pass_two if a section that was previously deferred is
1729       // found, do not layout the section as layout_deferred_sections will
1730       // do it later from gold.cc.
1731       if (is_pass_two
1732           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1733         continue;
1734
1735       if (is_pass_one)
1736         {
1737           // This is during garbage collection. The out_sections are
1738           // assigned in the second call to this function.
1739           out_sections[i] = reinterpret_cast<Output_section*>(1);
1740           out_section_offsets[i] = invalid_address;
1741         }
1742       else
1743         {
1744           // When garbage collection is switched on the actual layout
1745           // only happens in the second call.
1746           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1747                                reloc_type[i]);
1748
1749           // When generating a .gdb_index section, we do additional
1750           // processing of .debug_info and .debug_types sections after all
1751           // the other sections for the same reason as above.
1752           if (!relocatable
1753               && parameters->options().gdb_index()
1754               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1755             {
1756               if (strcmp(name, ".debug_info") == 0
1757                   || strcmp(name, ".zdebug_info") == 0)
1758                 debug_info_sections.push_back(i);
1759               else if (strcmp(name, ".debug_types") == 0
1760                        || strcmp(name, ".zdebug_types") == 0)
1761                 debug_types_sections.push_back(i);
1762             }
1763         }
1764     }
1765
1766   if (!is_pass_two)
1767     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1768
1769   // Handle the .eh_frame sections after the other sections.
1770   gold_assert(!is_pass_one || eh_frame_sections.empty());
1771   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1772        p != eh_frame_sections.end();
1773        ++p)
1774     {
1775       unsigned int i = *p;
1776       const unsigned char* pshdr;
1777       pshdr = section_headers_data + i * This::shdr_size;
1778       typename This::Shdr shdr(pshdr);
1779
1780       this->layout_eh_frame_section(layout,
1781                                     symbols_data,
1782                                     symbols_size,
1783                                     symbol_names_data,
1784                                     symbol_names_size,
1785                                     i,
1786                                     shdr,
1787                                     reloc_shndx[i],
1788                                     reloc_type[i]);
1789     }
1790
1791   // When doing a relocatable link handle the reloc sections at the
1792   // end.  Garbage collection  and Identical Code Folding is not
1793   // turned on for relocatable code.
1794   if (emit_relocs)
1795     this->size_relocatable_relocs();
1796
1797   gold_assert(!is_two_pass || reloc_sections.empty());
1798
1799   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1800        p != reloc_sections.end();
1801        ++p)
1802     {
1803       unsigned int i = *p;
1804       const unsigned char* pshdr;
1805       pshdr = section_headers_data + i * This::shdr_size;
1806       typename This::Shdr shdr(pshdr);
1807
1808       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1809       if (data_shndx >= shnum)
1810         {
1811           // We already warned about this above.
1812           continue;
1813         }
1814
1815       Output_section* data_section = out_sections[data_shndx];
1816       if (data_section == reinterpret_cast<Output_section*>(2))
1817         {
1818           if (is_pass_two)
1819             continue;
1820           // The layout for the data section was deferred, so we need
1821           // to defer the relocation section, too.
1822           const char* name = pnames + shdr.get_sh_name();
1823           this->deferred_layout_relocs_.push_back(
1824               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1825           out_sections[i] = reinterpret_cast<Output_section*>(2);
1826           out_section_offsets[i] = invalid_address;
1827           continue;
1828         }
1829       if (data_section == NULL)
1830         {
1831           out_sections[i] = NULL;
1832           out_section_offsets[i] = invalid_address;
1833           continue;
1834         }
1835
1836       Relocatable_relocs* rr = new Relocatable_relocs();
1837       this->set_relocatable_relocs(i, rr);
1838
1839       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1840                                                 rr);
1841       out_sections[i] = os;
1842       out_section_offsets[i] = invalid_address;
1843     }
1844
1845   // When building a .gdb_index section, scan the .debug_info and
1846   // .debug_types sections.
1847   gold_assert(!is_pass_one
1848               || (debug_info_sections.empty() && debug_types_sections.empty()));
1849   for (std::vector<unsigned int>::const_iterator p
1850            = debug_info_sections.begin();
1851        p != debug_info_sections.end();
1852        ++p)
1853     {
1854       unsigned int i = *p;
1855       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1856                                i, reloc_shndx[i], reloc_type[i]);
1857     }
1858   for (std::vector<unsigned int>::const_iterator p
1859            = debug_types_sections.begin();
1860        p != debug_types_sections.end();
1861        ++p)
1862     {
1863       unsigned int i = *p;
1864       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1865                                i, reloc_shndx[i], reloc_type[i]);
1866     }
1867
1868   if (is_pass_two)
1869     {
1870       delete[] gc_sd->section_headers_data;
1871       delete[] gc_sd->section_names_data;
1872       delete[] gc_sd->symbols_data;
1873       delete[] gc_sd->symbol_names_data;
1874       this->set_symbols_data(NULL);
1875     }
1876   else
1877     {
1878       delete sd->section_headers;
1879       sd->section_headers = NULL;
1880       delete sd->section_names;
1881       sd->section_names = NULL;
1882     }
1883 }
1884
1885 // Layout sections whose layout was deferred while waiting for
1886 // input files from a plugin.
1887
1888 template<int size, bool big_endian>
1889 void
1890 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1891 {
1892   typename std::vector<Deferred_layout>::iterator deferred;
1893
1894   for (deferred = this->deferred_layout_.begin();
1895        deferred != this->deferred_layout_.end();
1896        ++deferred)
1897     {
1898       typename This::Shdr shdr(deferred->shdr_data_);
1899
1900       if (!parameters->options().relocatable()
1901           && deferred->name_ == ".eh_frame"
1902           && this->check_eh_frame_flags(&shdr))
1903         {
1904           // Checking is_section_included is not reliable for
1905           // .eh_frame sections, because they do not have an output
1906           // section.  This is not a problem normally because we call
1907           // layout_eh_frame_section unconditionally, but when
1908           // deferring sections that is not true.  We don't want to
1909           // keep all .eh_frame sections because that will cause us to
1910           // keep all sections that they refer to, which is the wrong
1911           // way around.  Instead, the eh_frame code will discard
1912           // .eh_frame sections that refer to discarded sections.
1913
1914           // Reading the symbols again here may be slow.
1915           Read_symbols_data sd;
1916           this->base_read_symbols(&sd);
1917           this->layout_eh_frame_section(layout,
1918                                         sd.symbols->data(),
1919                                         sd.symbols_size,
1920                                         sd.symbol_names->data(),
1921                                         sd.symbol_names_size,
1922                                         deferred->shndx_,
1923                                         shdr,
1924                                         deferred->reloc_shndx_,
1925                                         deferred->reloc_type_);
1926           continue;
1927         }
1928
1929       // If the section is not included, it is because the garbage collector
1930       // decided it is not needed.  Avoid reverting that decision.
1931       if (!this->is_section_included(deferred->shndx_))
1932         continue;
1933
1934       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1935                            shdr, deferred->reloc_shndx_,
1936                            deferred->reloc_type_);
1937     }
1938
1939   this->deferred_layout_.clear();
1940
1941   // Now handle the deferred relocation sections.
1942
1943   Output_sections& out_sections(this->output_sections());
1944   std::vector<Address>& out_section_offsets(this->section_offsets());
1945
1946   for (deferred = this->deferred_layout_relocs_.begin();
1947        deferred != this->deferred_layout_relocs_.end();
1948        ++deferred)
1949     {
1950       unsigned int shndx = deferred->shndx_;
1951       typename This::Shdr shdr(deferred->shdr_data_);
1952       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1953
1954       Output_section* data_section = out_sections[data_shndx];
1955       if (data_section == NULL)
1956         {
1957           out_sections[shndx] = NULL;
1958           out_section_offsets[shndx] = invalid_address;
1959           continue;
1960         }
1961
1962       Relocatable_relocs* rr = new Relocatable_relocs();
1963       this->set_relocatable_relocs(shndx, rr);
1964
1965       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1966                                                 data_section, rr);
1967       out_sections[shndx] = os;
1968       out_section_offsets[shndx] = invalid_address;
1969     }
1970 }
1971
1972 // Add the symbols to the symbol table.
1973
1974 template<int size, bool big_endian>
1975 void
1976 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1977                                                     Read_symbols_data* sd,
1978                                                     Layout*)
1979 {
1980   if (sd->symbols == NULL)
1981     {
1982       gold_assert(sd->symbol_names == NULL);
1983       return;
1984     }
1985
1986   const int sym_size = This::sym_size;
1987   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1988                      / sym_size);
1989   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1990     {
1991       this->error(_("size of symbols is not multiple of symbol size"));
1992       return;
1993     }
1994
1995   this->symbols_.resize(symcount);
1996
1997   const char* sym_names =
1998     reinterpret_cast<const char*>(sd->symbol_names->data());
1999   symtab->add_from_relobj(this,
2000                           sd->symbols->data() + sd->external_symbols_offset,
2001                           symcount, this->local_symbol_count_,
2002                           sym_names, sd->symbol_names_size,
2003                           &this->symbols_,
2004                           &this->defined_count_);
2005
2006   delete sd->symbols;
2007   sd->symbols = NULL;
2008   delete sd->symbol_names;
2009   sd->symbol_names = NULL;
2010 }
2011
2012 // Find out if this object, that is a member of a lib group, should be included
2013 // in the link. We check every symbol defined by this object. If the symbol
2014 // table has a strong undefined reference to that symbol, we have to include
2015 // the object.
2016
2017 template<int size, bool big_endian>
2018 Archive::Should_include
2019 Sized_relobj_file<size, big_endian>::do_should_include_member(
2020     Symbol_table* symtab,
2021     Layout* layout,
2022     Read_symbols_data* sd,
2023     std::string* why)
2024 {
2025   char* tmpbuf = NULL;
2026   size_t tmpbuflen = 0;
2027   const char* sym_names =
2028       reinterpret_cast<const char*>(sd->symbol_names->data());
2029   const unsigned char* syms =
2030       sd->symbols->data() + sd->external_symbols_offset;
2031   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2032   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2033                          / sym_size);
2034
2035   const unsigned char* p = syms;
2036
2037   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2038     {
2039       elfcpp::Sym<size, big_endian> sym(p);
2040       unsigned int st_shndx = sym.get_st_shndx();
2041       if (st_shndx == elfcpp::SHN_UNDEF)
2042         continue;
2043
2044       unsigned int st_name = sym.get_st_name();
2045       const char* name = sym_names + st_name;
2046       Symbol* symbol;
2047       Archive::Should_include t = Archive::should_include_member(symtab,
2048                                                                  layout,
2049                                                                  name,
2050                                                                  &symbol, why,
2051                                                                  &tmpbuf,
2052                                                                  &tmpbuflen);
2053       if (t == Archive::SHOULD_INCLUDE_YES)
2054         {
2055           if (tmpbuf != NULL)
2056             free(tmpbuf);
2057           return t;
2058         }
2059     }
2060   if (tmpbuf != NULL)
2061     free(tmpbuf);
2062   return Archive::SHOULD_INCLUDE_UNKNOWN;
2063 }
2064
2065 // Iterate over global defined symbols, calling a visitor class V for each.
2066
2067 template<int size, bool big_endian>
2068 void
2069 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2070     Read_symbols_data* sd,
2071     Library_base::Symbol_visitor_base* v)
2072 {
2073   const char* sym_names =
2074       reinterpret_cast<const char*>(sd->symbol_names->data());
2075   const unsigned char* syms =
2076       sd->symbols->data() + sd->external_symbols_offset;
2077   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2078   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2079                      / sym_size);
2080   const unsigned char* p = syms;
2081
2082   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2083     {
2084       elfcpp::Sym<size, big_endian> sym(p);
2085       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2086         v->visit(sym_names + sym.get_st_name());
2087     }
2088 }
2089
2090 // Return whether the local symbol SYMNDX has a PLT offset.
2091
2092 template<int size, bool big_endian>
2093 bool
2094 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2095     unsigned int symndx) const
2096 {
2097   typename Local_plt_offsets::const_iterator p =
2098     this->local_plt_offsets_.find(symndx);
2099   return p != this->local_plt_offsets_.end();
2100 }
2101
2102 // Get the PLT offset of a local symbol.
2103
2104 template<int size, bool big_endian>
2105 unsigned int
2106 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2107     unsigned int symndx) const
2108 {
2109   typename Local_plt_offsets::const_iterator p =
2110     this->local_plt_offsets_.find(symndx);
2111   gold_assert(p != this->local_plt_offsets_.end());
2112   return p->second;
2113 }
2114
2115 // Set the PLT offset of a local symbol.
2116
2117 template<int size, bool big_endian>
2118 void
2119 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2120     unsigned int symndx, unsigned int plt_offset)
2121 {
2122   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2123     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2124   gold_assert(ins.second);
2125 }
2126
2127 // First pass over the local symbols.  Here we add their names to
2128 // *POOL and *DYNPOOL, and we store the symbol value in
2129 // THIS->LOCAL_VALUES_.  This function is always called from a
2130 // singleton thread.  This is followed by a call to
2131 // finalize_local_symbols.
2132
2133 template<int size, bool big_endian>
2134 void
2135 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2136                                                             Stringpool* dynpool)
2137 {
2138   gold_assert(this->symtab_shndx_ != -1U);
2139   if (this->symtab_shndx_ == 0)
2140     {
2141       // This object has no symbols.  Weird but legal.
2142       return;
2143     }
2144
2145   // Read the symbol table section header.
2146   const unsigned int symtab_shndx = this->symtab_shndx_;
2147   typename This::Shdr symtabshdr(this,
2148                                  this->elf_file_.section_header(symtab_shndx));
2149   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2150
2151   // Read the local symbols.
2152   const int sym_size = This::sym_size;
2153   const unsigned int loccount = this->local_symbol_count_;
2154   gold_assert(loccount == symtabshdr.get_sh_info());
2155   off_t locsize = loccount * sym_size;
2156   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2157                                               locsize, true, true);
2158
2159   // Read the symbol names.
2160   const unsigned int strtab_shndx =
2161     this->adjust_shndx(symtabshdr.get_sh_link());
2162   section_size_type strtab_size;
2163   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2164                                                         &strtab_size,
2165                                                         true);
2166   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2167
2168   // Loop over the local symbols.
2169
2170   const Output_sections& out_sections(this->output_sections());
2171   unsigned int shnum = this->shnum();
2172   unsigned int count = 0;
2173   unsigned int dyncount = 0;
2174   // Skip the first, dummy, symbol.
2175   psyms += sym_size;
2176   bool strip_all = parameters->options().strip_all();
2177   bool discard_all = parameters->options().discard_all();
2178   bool discard_locals = parameters->options().discard_locals();
2179   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2180     {
2181       elfcpp::Sym<size, big_endian> sym(psyms);
2182
2183       Symbol_value<size>& lv(this->local_values_[i]);
2184
2185       bool is_ordinary;
2186       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2187                                                   &is_ordinary);
2188       lv.set_input_shndx(shndx, is_ordinary);
2189
2190       if (sym.get_st_type() == elfcpp::STT_SECTION)
2191         lv.set_is_section_symbol();
2192       else if (sym.get_st_type() == elfcpp::STT_TLS)
2193         lv.set_is_tls_symbol();
2194       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2195         lv.set_is_ifunc_symbol();
2196
2197       // Save the input symbol value for use in do_finalize_local_symbols().
2198       lv.set_input_value(sym.get_st_value());
2199
2200       // Decide whether this symbol should go into the output file.
2201
2202       if ((shndx < shnum && out_sections[shndx] == NULL)
2203           || shndx == this->discarded_eh_frame_shndx_)
2204         {
2205           lv.set_no_output_symtab_entry();
2206           gold_assert(!lv.needs_output_dynsym_entry());
2207           continue;
2208         }
2209
2210       if (sym.get_st_type() == elfcpp::STT_SECTION
2211           || !this->adjust_local_symbol(&lv))
2212         {
2213           lv.set_no_output_symtab_entry();
2214           gold_assert(!lv.needs_output_dynsym_entry());
2215           continue;
2216         }
2217
2218       if (sym.get_st_name() >= strtab_size)
2219         {
2220           this->error(_("local symbol %u section name out of range: %u >= %u"),
2221                       i, sym.get_st_name(),
2222                       static_cast<unsigned int>(strtab_size));
2223           lv.set_no_output_symtab_entry();
2224           continue;
2225         }
2226
2227       const char* name = pnames + sym.get_st_name();
2228
2229       // If needed, add the symbol to the dynamic symbol table string pool.
2230       if (lv.needs_output_dynsym_entry())
2231         {
2232           dynpool->add(name, true, NULL);
2233           ++dyncount;
2234         }
2235
2236       if (strip_all
2237           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2238         {
2239           lv.set_no_output_symtab_entry();
2240           continue;
2241         }
2242
2243       // If --discard-locals option is used, discard all temporary local
2244       // symbols.  These symbols start with system-specific local label
2245       // prefixes, typically .L for ELF system.  We want to be compatible
2246       // with GNU ld so here we essentially use the same check in
2247       // bfd_is_local_label().  The code is different because we already
2248       // know that:
2249       //
2250       //   - the symbol is local and thus cannot have global or weak binding.
2251       //   - the symbol is not a section symbol.
2252       //   - the symbol has a name.
2253       //
2254       // We do not discard a symbol if it needs a dynamic symbol entry.
2255       if (discard_locals
2256           && sym.get_st_type() != elfcpp::STT_FILE
2257           && !lv.needs_output_dynsym_entry()
2258           && lv.may_be_discarded_from_output_symtab()
2259           && parameters->target().is_local_label_name(name))
2260         {
2261           lv.set_no_output_symtab_entry();
2262           continue;
2263         }
2264
2265       // Discard the local symbol if -retain_symbols_file is specified
2266       // and the local symbol is not in that file.
2267       if (!parameters->options().should_retain_symbol(name))
2268         {
2269           lv.set_no_output_symtab_entry();
2270           continue;
2271         }
2272
2273       // Add the symbol to the symbol table string pool.
2274       pool->add(name, true, NULL);
2275       ++count;
2276     }
2277
2278   this->output_local_symbol_count_ = count;
2279   this->output_local_dynsym_count_ = dyncount;
2280 }
2281
2282 // Compute the final value of a local symbol.
2283
2284 template<int size, bool big_endian>
2285 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2286 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2287     unsigned int r_sym,
2288     const Symbol_value<size>* lv_in,
2289     Symbol_value<size>* lv_out,
2290     bool relocatable,
2291     const Output_sections& out_sections,
2292     const std::vector<Address>& out_offsets,
2293     const Symbol_table* symtab)
2294 {
2295   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2296   // we may have a memory leak.
2297   gold_assert(lv_out->has_output_value());
2298
2299   bool is_ordinary;
2300   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2301
2302   // Set the output symbol value.
2303
2304   if (!is_ordinary)
2305     {
2306       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2307         lv_out->set_output_value(lv_in->input_value());
2308       else
2309         {
2310           this->error(_("unknown section index %u for local symbol %u"),
2311                       shndx, r_sym);
2312           lv_out->set_output_value(0);
2313           return This::CFLV_ERROR;
2314         }
2315     }
2316   else
2317     {
2318       if (shndx >= this->shnum())
2319         {
2320           this->error(_("local symbol %u section index %u out of range"),
2321                       r_sym, shndx);
2322           lv_out->set_output_value(0);
2323           return This::CFLV_ERROR;
2324         }
2325
2326       Output_section* os = out_sections[shndx];
2327       Address secoffset = out_offsets[shndx];
2328       if (symtab->is_section_folded(this, shndx))
2329         {
2330           gold_assert(os == NULL && secoffset == invalid_address);
2331           // Get the os of the section it is folded onto.
2332           Section_id folded = symtab->icf()->get_folded_section(this,
2333                                                                 shndx);
2334           gold_assert(folded.first != NULL);
2335           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2336             <Sized_relobj_file<size, big_endian>*>(folded.first);
2337           os = folded_obj->output_section(folded.second);
2338           gold_assert(os != NULL);
2339           secoffset = folded_obj->get_output_section_offset(folded.second);
2340
2341           // This could be a relaxed input section.
2342           if (secoffset == invalid_address)
2343             {
2344               const Output_relaxed_input_section* relaxed_section =
2345                 os->find_relaxed_input_section(folded_obj, folded.second);
2346               gold_assert(relaxed_section != NULL);
2347               secoffset = relaxed_section->address() - os->address();
2348             }
2349         }
2350
2351       if (os == NULL)
2352         {
2353           // This local symbol belongs to a section we are discarding.
2354           // In some cases when applying relocations later, we will
2355           // attempt to match it to the corresponding kept section,
2356           // so we leave the input value unchanged here.
2357           return This::CFLV_DISCARDED;
2358         }
2359       else if (secoffset == invalid_address)
2360         {
2361           uint64_t start;
2362
2363           // This is a SHF_MERGE section or one which otherwise
2364           // requires special handling.
2365           if (shndx == this->discarded_eh_frame_shndx_)
2366             {
2367               // This local symbol belongs to a discarded .eh_frame
2368               // section.  Just treat it like the case in which
2369               // os == NULL above.
2370               gold_assert(this->has_eh_frame_);
2371               return This::CFLV_DISCARDED;
2372             }
2373           else if (!lv_in->is_section_symbol())
2374             {
2375               // This is not a section symbol.  We can determine
2376               // the final value now.
2377               lv_out->set_output_value(
2378                   os->output_address(this, shndx, lv_in->input_value()));
2379             }
2380           else if (!os->find_starting_output_address(this, shndx, &start))
2381             {
2382               // This is a section symbol, but apparently not one in a
2383               // merged section.  First check to see if this is a relaxed
2384               // input section.  If so, use its address.  Otherwise just
2385               // use the start of the output section.  This happens with
2386               // relocatable links when the input object has section
2387               // symbols for arbitrary non-merge sections.
2388               const Output_section_data* posd =
2389                 os->find_relaxed_input_section(this, shndx);
2390               if (posd != NULL)
2391                 {
2392                   Address relocatable_link_adjustment =
2393                     relocatable ? os->address() : 0;
2394                   lv_out->set_output_value(posd->address()
2395                                            - relocatable_link_adjustment);
2396                 }
2397               else
2398                 lv_out->set_output_value(os->address());
2399             }
2400           else
2401             {
2402               // We have to consider the addend to determine the
2403               // value to use in a relocation.  START is the start
2404               // of this input section.  If we are doing a relocatable
2405               // link, use offset from start output section instead of
2406               // address.
2407               Address adjusted_start =
2408                 relocatable ? start - os->address() : start;
2409               Merged_symbol_value<size>* msv =
2410                 new Merged_symbol_value<size>(lv_in->input_value(),
2411                                               adjusted_start);
2412               lv_out->set_merged_symbol_value(msv);
2413             }
2414         }
2415       else if (lv_in->is_tls_symbol()
2416                || (lv_in->is_section_symbol()
2417                    && (os->flags() & elfcpp::SHF_TLS)))
2418         lv_out->set_output_value(os->tls_offset()
2419                                  + secoffset
2420                                  + lv_in->input_value());
2421       else
2422         lv_out->set_output_value((relocatable ? 0 : os->address())
2423                                  + secoffset
2424                                  + lv_in->input_value());
2425     }
2426   return This::CFLV_OK;
2427 }
2428
2429 // Compute final local symbol value.  R_SYM is the index of a local
2430 // symbol in symbol table.  LV points to a symbol value, which is
2431 // expected to hold the input value and to be over-written by the
2432 // final value.  SYMTAB points to a symbol table.  Some targets may want
2433 // to know would-be-finalized local symbol values in relaxation.
2434 // Hence we provide this method.  Since this method updates *LV, a
2435 // callee should make a copy of the original local symbol value and
2436 // use the copy instead of modifying an object's local symbols before
2437 // everything is finalized.  The caller should also free up any allocated
2438 // memory in the return value in *LV.
2439 template<int size, bool big_endian>
2440 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2441 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2442     unsigned int r_sym,
2443     const Symbol_value<size>* lv_in,
2444     Symbol_value<size>* lv_out,
2445     const Symbol_table* symtab)
2446 {
2447   // This is just a wrapper of compute_final_local_value_internal.
2448   const bool relocatable = parameters->options().relocatable();
2449   const Output_sections& out_sections(this->output_sections());
2450   const std::vector<Address>& out_offsets(this->section_offsets());
2451   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2452                                                   relocatable, out_sections,
2453                                                   out_offsets, symtab);
2454 }
2455
2456 // Finalize the local symbols.  Here we set the final value in
2457 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2458 // This function is always called from a singleton thread.  The actual
2459 // output of the local symbols will occur in a separate task.
2460
2461 template<int size, bool big_endian>
2462 unsigned int
2463 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2464     unsigned int index,
2465     off_t off,
2466     Symbol_table* symtab)
2467 {
2468   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2469
2470   const unsigned int loccount = this->local_symbol_count_;
2471   this->local_symbol_offset_ = off;
2472
2473   const bool relocatable = parameters->options().relocatable();
2474   const Output_sections& out_sections(this->output_sections());
2475   const std::vector<Address>& out_offsets(this->section_offsets());
2476
2477   for (unsigned int i = 1; i < loccount; ++i)
2478     {
2479       Symbol_value<size>* lv = &this->local_values_[i];
2480
2481       Compute_final_local_value_status cflv_status =
2482         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2483                                                  out_sections, out_offsets,
2484                                                  symtab);
2485       switch (cflv_status)
2486         {
2487         case CFLV_OK:
2488           if (!lv->is_output_symtab_index_set())
2489             {
2490               lv->set_output_symtab_index(index);
2491               ++index;
2492             }
2493           break;
2494         case CFLV_DISCARDED:
2495         case CFLV_ERROR:
2496           // Do nothing.
2497           break;
2498         default:
2499           gold_unreachable();
2500         }
2501     }
2502   return index;
2503 }
2504
2505 // Set the output dynamic symbol table indexes for the local variables.
2506
2507 template<int size, bool big_endian>
2508 unsigned int
2509 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2510     unsigned int index)
2511 {
2512   const unsigned int loccount = this->local_symbol_count_;
2513   for (unsigned int i = 1; i < loccount; ++i)
2514     {
2515       Symbol_value<size>& lv(this->local_values_[i]);
2516       if (lv.needs_output_dynsym_entry())
2517         {
2518           lv.set_output_dynsym_index(index);
2519           ++index;
2520         }
2521     }
2522   return index;
2523 }
2524
2525 // Set the offset where local dynamic symbol information will be stored.
2526 // Returns the count of local symbols contributed to the symbol table by
2527 // this object.
2528
2529 template<int size, bool big_endian>
2530 unsigned int
2531 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2532 {
2533   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2534   this->local_dynsym_offset_ = off;
2535   return this->output_local_dynsym_count_;
2536 }
2537
2538 // If Symbols_data is not NULL get the section flags from here otherwise
2539 // get it from the file.
2540
2541 template<int size, bool big_endian>
2542 uint64_t
2543 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2544 {
2545   Symbols_data* sd = this->get_symbols_data();
2546   if (sd != NULL)
2547     {
2548       const unsigned char* pshdrs = sd->section_headers_data
2549                                     + This::shdr_size * shndx;
2550       typename This::Shdr shdr(pshdrs);
2551       return shdr.get_sh_flags();
2552     }
2553   // If sd is NULL, read the section header from the file.
2554   return this->elf_file_.section_flags(shndx);
2555 }
2556
2557 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2558 // in icf.cc
2559
2560 template<int size, bool big_endian>
2561 uint64_t
2562 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2563 {
2564   Symbols_data* sd = this->get_symbols_data();
2565   gold_assert(sd != NULL);
2566
2567   const unsigned char* pshdrs = sd->section_headers_data
2568                                 + This::shdr_size * shndx;
2569   typename This::Shdr shdr(pshdrs);
2570   return shdr.get_sh_entsize();
2571 }
2572
2573 // Write out the local symbols.
2574
2575 template<int size, bool big_endian>
2576 void
2577 Sized_relobj_file<size, big_endian>::write_local_symbols(
2578     Output_file* of,
2579     const Stringpool* sympool,
2580     const Stringpool* dynpool,
2581     Output_symtab_xindex* symtab_xindex,
2582     Output_symtab_xindex* dynsym_xindex,
2583     off_t symtab_off)
2584 {
2585   const bool strip_all = parameters->options().strip_all();
2586   if (strip_all)
2587     {
2588       if (this->output_local_dynsym_count_ == 0)
2589         return;
2590       this->output_local_symbol_count_ = 0;
2591     }
2592
2593   gold_assert(this->symtab_shndx_ != -1U);
2594   if (this->symtab_shndx_ == 0)
2595     {
2596       // This object has no symbols.  Weird but legal.
2597       return;
2598     }
2599
2600   // Read the symbol table section header.
2601   const unsigned int symtab_shndx = this->symtab_shndx_;
2602   typename This::Shdr symtabshdr(this,
2603                                  this->elf_file_.section_header(symtab_shndx));
2604   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2605   const unsigned int loccount = this->local_symbol_count_;
2606   gold_assert(loccount == symtabshdr.get_sh_info());
2607
2608   // Read the local symbols.
2609   const int sym_size = This::sym_size;
2610   off_t locsize = loccount * sym_size;
2611   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2612                                               locsize, true, false);
2613
2614   // Read the symbol names.
2615   const unsigned int strtab_shndx =
2616     this->adjust_shndx(symtabshdr.get_sh_link());
2617   section_size_type strtab_size;
2618   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2619                                                         &strtab_size,
2620                                                         false);
2621   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2622
2623   // Get views into the output file for the portions of the symbol table
2624   // and the dynamic symbol table that we will be writing.
2625   off_t output_size = this->output_local_symbol_count_ * sym_size;
2626   unsigned char* oview = NULL;
2627   if (output_size > 0)
2628     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2629                                 output_size);
2630
2631   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2632   unsigned char* dyn_oview = NULL;
2633   if (dyn_output_size > 0)
2634     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2635                                     dyn_output_size);
2636
2637   const Output_sections& out_sections(this->output_sections());
2638
2639   gold_assert(this->local_values_.size() == loccount);
2640
2641   unsigned char* ov = oview;
2642   unsigned char* dyn_ov = dyn_oview;
2643   psyms += sym_size;
2644   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2645     {
2646       elfcpp::Sym<size, big_endian> isym(psyms);
2647
2648       Symbol_value<size>& lv(this->local_values_[i]);
2649
2650       bool is_ordinary;
2651       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2652                                                      &is_ordinary);
2653       if (is_ordinary)
2654         {
2655           gold_assert(st_shndx < out_sections.size());
2656           if (out_sections[st_shndx] == NULL)
2657             continue;
2658           st_shndx = out_sections[st_shndx]->out_shndx();
2659           if (st_shndx >= elfcpp::SHN_LORESERVE)
2660             {
2661               if (lv.has_output_symtab_entry())
2662                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2663               if (lv.has_output_dynsym_entry())
2664                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2665               st_shndx = elfcpp::SHN_XINDEX;
2666             }
2667         }
2668
2669       // Write the symbol to the output symbol table.
2670       if (lv.has_output_symtab_entry())
2671         {
2672           elfcpp::Sym_write<size, big_endian> osym(ov);
2673
2674           gold_assert(isym.get_st_name() < strtab_size);
2675           const char* name = pnames + isym.get_st_name();
2676           osym.put_st_name(sympool->get_offset(name));
2677           osym.put_st_value(this->local_values_[i].value(this, 0));
2678           osym.put_st_size(isym.get_st_size());
2679           osym.put_st_info(isym.get_st_info());
2680           osym.put_st_other(isym.get_st_other());
2681           osym.put_st_shndx(st_shndx);
2682
2683           ov += sym_size;
2684         }
2685
2686       // Write the symbol to the output dynamic symbol table.
2687       if (lv.has_output_dynsym_entry())
2688         {
2689           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2690           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2691
2692           gold_assert(isym.get_st_name() < strtab_size);
2693           const char* name = pnames + isym.get_st_name();
2694           osym.put_st_name(dynpool->get_offset(name));
2695           osym.put_st_value(this->local_values_[i].value(this, 0));
2696           osym.put_st_size(isym.get_st_size());
2697           osym.put_st_info(isym.get_st_info());
2698           osym.put_st_other(isym.get_st_other());
2699           osym.put_st_shndx(st_shndx);
2700
2701           dyn_ov += sym_size;
2702         }
2703     }
2704
2705
2706   if (output_size > 0)
2707     {
2708       gold_assert(ov - oview == output_size);
2709       of->write_output_view(symtab_off + this->local_symbol_offset_,
2710                             output_size, oview);
2711     }
2712
2713   if (dyn_output_size > 0)
2714     {
2715       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2716       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2717                             dyn_oview);
2718     }
2719 }
2720
2721 // Set *INFO to symbolic information about the offset OFFSET in the
2722 // section SHNDX.  Return true if we found something, false if we
2723 // found nothing.
2724
2725 template<int size, bool big_endian>
2726 bool
2727 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2728     unsigned int shndx,
2729     off_t offset,
2730     Symbol_location_info* info)
2731 {
2732   if (this->symtab_shndx_ == 0)
2733     return false;
2734
2735   section_size_type symbols_size;
2736   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2737                                                         &symbols_size,
2738                                                         false);
2739
2740   unsigned int symbol_names_shndx =
2741     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2742   section_size_type names_size;
2743   const unsigned char* symbol_names_u =
2744     this->section_contents(symbol_names_shndx, &names_size, false);
2745   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2746
2747   const int sym_size = This::sym_size;
2748   const size_t count = symbols_size / sym_size;
2749
2750   const unsigned char* p = symbols;
2751   for (size_t i = 0; i < count; ++i, p += sym_size)
2752     {
2753       elfcpp::Sym<size, big_endian> sym(p);
2754
2755       if (sym.get_st_type() == elfcpp::STT_FILE)
2756         {
2757           if (sym.get_st_name() >= names_size)
2758             info->source_file = "(invalid)";
2759           else
2760             info->source_file = symbol_names + sym.get_st_name();
2761           continue;
2762         }
2763
2764       bool is_ordinary;
2765       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2766                                                      &is_ordinary);
2767       if (is_ordinary
2768           && st_shndx == shndx
2769           && static_cast<off_t>(sym.get_st_value()) <= offset
2770           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2771               > offset))
2772         {
2773           info->enclosing_symbol_type = sym.get_st_type();
2774           if (sym.get_st_name() > names_size)
2775             info->enclosing_symbol_name = "(invalid)";
2776           else
2777             {
2778               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2779               if (parameters->options().do_demangle())
2780                 {
2781                   char* demangled_name = cplus_demangle(
2782                       info->enclosing_symbol_name.c_str(),
2783                       DMGL_ANSI | DMGL_PARAMS);
2784                   if (demangled_name != NULL)
2785                     {
2786                       info->enclosing_symbol_name.assign(demangled_name);
2787                       free(demangled_name);
2788                     }
2789                 }
2790             }
2791           return true;
2792         }
2793     }
2794
2795   return false;
2796 }
2797
2798 // Look for a kept section corresponding to the given discarded section,
2799 // and return its output address.  This is used only for relocations in
2800 // debugging sections.  If we can't find the kept section, return 0.
2801
2802 template<int size, bool big_endian>
2803 typename Sized_relobj_file<size, big_endian>::Address
2804 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2805     unsigned int shndx,
2806     bool* found) const
2807 {
2808   Relobj* kept_object;
2809   unsigned int kept_shndx;
2810   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2811     {
2812       Sized_relobj_file<size, big_endian>* kept_relobj =
2813         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2814       Output_section* os = kept_relobj->output_section(kept_shndx);
2815       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2816       if (os != NULL && offset != invalid_address)
2817         {
2818           *found = true;
2819           return os->address() + offset;
2820         }
2821     }
2822   *found = false;
2823   return 0;
2824 }
2825
2826 // Get symbol counts.
2827
2828 template<int size, bool big_endian>
2829 void
2830 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2831     const Symbol_table*,
2832     size_t* defined,
2833     size_t* used) const
2834 {
2835   *defined = this->defined_count_;
2836   size_t count = 0;
2837   for (typename Symbols::const_iterator p = this->symbols_.begin();
2838        p != this->symbols_.end();
2839        ++p)
2840     if (*p != NULL
2841         && (*p)->source() == Symbol::FROM_OBJECT
2842         && (*p)->object() == this
2843         && (*p)->is_defined())
2844       ++count;
2845   *used = count;
2846 }
2847
2848 // Return a view of the decompressed contents of a section.  Set *PLEN
2849 // to the size.  Set *IS_NEW to true if the contents need to be freed
2850 // by the caller.
2851
2852 template<int size, bool big_endian>
2853 const unsigned char*
2854 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2855     unsigned int shndx,
2856     section_size_type* plen,
2857     bool* is_new)
2858 {
2859   section_size_type buffer_size;
2860   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2861                                                           false);
2862
2863   if (this->compressed_sections_ == NULL)
2864     {
2865       *plen = buffer_size;
2866       *is_new = false;
2867       return buffer;
2868     }
2869
2870   Compressed_section_map::const_iterator p =
2871       this->compressed_sections_->find(shndx);
2872   if (p == this->compressed_sections_->end())
2873     {
2874       *plen = buffer_size;
2875       *is_new = false;
2876       return buffer;
2877     }
2878
2879   section_size_type uncompressed_size = p->second.size;
2880   if (p->second.contents != NULL)
2881     {
2882       *plen = uncompressed_size;
2883       *is_new = false;
2884       return p->second.contents;
2885     }
2886
2887   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2888   if (!decompress_input_section(buffer,
2889                                 buffer_size,
2890                                 uncompressed_data,
2891                                 uncompressed_size))
2892     this->error(_("could not decompress section %s"),
2893                 this->do_section_name(shndx).c_str());
2894
2895   // We could cache the results in p->second.contents and store
2896   // false in *IS_NEW, but build_compressed_section_map() would
2897   // have done so if it had expected it to be profitable.  If
2898   // we reach this point, we expect to need the contents only
2899   // once in this pass.
2900   *plen = uncompressed_size;
2901   *is_new = true;
2902   return uncompressed_data;
2903 }
2904
2905 // Discard any buffers of uncompressed sections.  This is done
2906 // at the end of the Add_symbols task.
2907
2908 template<int size, bool big_endian>
2909 void
2910 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2911 {
2912   if (this->compressed_sections_ == NULL)
2913     return;
2914
2915   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2916        p != this->compressed_sections_->end();
2917        ++p)
2918     {
2919       if (p->second.contents != NULL)
2920         {
2921           delete[] p->second.contents;
2922           p->second.contents = NULL;
2923         }
2924     }
2925 }
2926
2927 // Input_objects methods.
2928
2929 // Add a regular relocatable object to the list.  Return false if this
2930 // object should be ignored.
2931
2932 bool
2933 Input_objects::add_object(Object* obj)
2934 {
2935   // Print the filename if the -t/--trace option is selected.
2936   if (parameters->options().trace())
2937     gold_info("%s", obj->name().c_str());
2938
2939   if (!obj->is_dynamic())
2940     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2941   else
2942     {
2943       // See if this is a duplicate SONAME.
2944       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2945       const char* soname = dynobj->soname();
2946
2947       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2948         this->sonames_.insert(soname);
2949       if (!ins.second)
2950         {
2951           // We have already seen a dynamic object with this soname.
2952           return false;
2953         }
2954
2955       this->dynobj_list_.push_back(dynobj);
2956     }
2957
2958   // Add this object to the cross-referencer if requested.
2959   if (parameters->options().user_set_print_symbol_counts()
2960       || parameters->options().cref())
2961     {
2962       if (this->cref_ == NULL)
2963         this->cref_ = new Cref();
2964       this->cref_->add_object(obj);
2965     }
2966
2967   return true;
2968 }
2969
2970 // For each dynamic object, record whether we've seen all of its
2971 // explicit dependencies.
2972
2973 void
2974 Input_objects::check_dynamic_dependencies() const
2975 {
2976   bool issued_copy_dt_needed_error = false;
2977   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2978        p != this->dynobj_list_.end();
2979        ++p)
2980     {
2981       const Dynobj::Needed& needed((*p)->needed());
2982       bool found_all = true;
2983       Dynobj::Needed::const_iterator pneeded;
2984       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2985         {
2986           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2987             {
2988               found_all = false;
2989               break;
2990             }
2991         }
2992       (*p)->set_has_unknown_needed_entries(!found_all);
2993
2994       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2995       // that gold does not support.  However, they cause no trouble
2996       // unless there is a DT_NEEDED entry that we don't know about;
2997       // warn only in that case.
2998       if (!found_all
2999           && !issued_copy_dt_needed_error
3000           && (parameters->options().copy_dt_needed_entries()
3001               || parameters->options().add_needed()))
3002         {
3003           const char* optname;
3004           if (parameters->options().copy_dt_needed_entries())
3005             optname = "--copy-dt-needed-entries";
3006           else
3007             optname = "--add-needed";
3008           gold_error(_("%s is not supported but is required for %s in %s"),
3009                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3010           issued_copy_dt_needed_error = true;
3011         }
3012     }
3013 }
3014
3015 // Start processing an archive.
3016
3017 void
3018 Input_objects::archive_start(Archive* archive)
3019 {
3020   if (parameters->options().user_set_print_symbol_counts()
3021       || parameters->options().cref())
3022     {
3023       if (this->cref_ == NULL)
3024         this->cref_ = new Cref();
3025       this->cref_->add_archive_start(archive);
3026     }
3027 }
3028
3029 // Stop processing an archive.
3030
3031 void
3032 Input_objects::archive_stop(Archive* archive)
3033 {
3034   if (parameters->options().user_set_print_symbol_counts()
3035       || parameters->options().cref())
3036     this->cref_->add_archive_stop(archive);
3037 }
3038
3039 // Print symbol counts
3040
3041 void
3042 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3043 {
3044   if (parameters->options().user_set_print_symbol_counts()
3045       && this->cref_ != NULL)
3046     this->cref_->print_symbol_counts(symtab);
3047 }
3048
3049 // Print a cross reference table.
3050
3051 void
3052 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3053 {
3054   if (parameters->options().cref() && this->cref_ != NULL)
3055     this->cref_->print_cref(symtab, f);
3056 }
3057
3058 // Relocate_info methods.
3059
3060 // Return a string describing the location of a relocation when file
3061 // and lineno information is not available.  This is only used in
3062 // error messages.
3063
3064 template<int size, bool big_endian>
3065 std::string
3066 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3067 {
3068   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3069   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3070   if (!ret.empty())
3071     return ret;
3072
3073   ret = this->object->name();
3074
3075   Symbol_location_info info;
3076   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3077     {
3078       if (!info.source_file.empty())
3079         {
3080           ret += ":";
3081           ret += info.source_file;
3082         }
3083       ret += ":";
3084       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3085         ret += _("function ");
3086       ret += info.enclosing_symbol_name;
3087       return ret;
3088     }
3089
3090   ret += "(";
3091   ret += this->object->section_name(this->data_shndx);
3092   char buf[100];
3093   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3094   ret += buf;
3095   return ret;
3096 }
3097
3098 } // End namespace gold.
3099
3100 namespace
3101 {
3102
3103 using namespace gold;
3104
3105 // Read an ELF file with the header and return the appropriate
3106 // instance of Object.
3107
3108 template<int size, bool big_endian>
3109 Object*
3110 make_elf_sized_object(const std::string& name, Input_file* input_file,
3111                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3112                       bool* punconfigured)
3113 {
3114   Target* target = select_target(input_file, offset,
3115                                  ehdr.get_e_machine(), size, big_endian,
3116                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3117                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3118   if (target == NULL)
3119     gold_fatal(_("%s: unsupported ELF machine number %d"),
3120                name.c_str(), ehdr.get_e_machine());
3121
3122   if (!parameters->target_valid())
3123     set_parameters_target(target);
3124   else if (target != &parameters->target())
3125     {
3126       if (punconfigured != NULL)
3127         *punconfigured = true;
3128       else
3129         gold_error(_("%s: incompatible target"), name.c_str());
3130       return NULL;
3131     }
3132
3133   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3134                                                    ehdr);
3135 }
3136
3137 } // End anonymous namespace.
3138
3139 namespace gold
3140 {
3141
3142 // Return whether INPUT_FILE is an ELF object.
3143
3144 bool
3145 is_elf_object(Input_file* input_file, off_t offset,
3146               const unsigned char** start, int* read_size)
3147 {
3148   off_t filesize = input_file->file().filesize();
3149   int want = elfcpp::Elf_recognizer::max_header_size;
3150   if (filesize - offset < want)
3151     want = filesize - offset;
3152
3153   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3154                                                        true, false);
3155   *start = p;
3156   *read_size = want;
3157
3158   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3159 }
3160
3161 // Read an ELF file and return the appropriate instance of Object.
3162
3163 Object*
3164 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3165                 const unsigned char* p, section_offset_type bytes,
3166                 bool* punconfigured)
3167 {
3168   if (punconfigured != NULL)
3169     *punconfigured = false;
3170
3171   std::string error;
3172   bool big_endian = false;
3173   int size = 0;
3174   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3175                                                &big_endian, &error))
3176     {
3177       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3178       return NULL;
3179     }
3180
3181   if (size == 32)
3182     {
3183       if (big_endian)
3184         {
3185 #ifdef HAVE_TARGET_32_BIG
3186           elfcpp::Ehdr<32, true> ehdr(p);
3187           return make_elf_sized_object<32, true>(name, input_file,
3188                                                  offset, ehdr, punconfigured);
3189 #else
3190           if (punconfigured != NULL)
3191             *punconfigured = true;
3192           else
3193             gold_error(_("%s: not configured to support "
3194                          "32-bit big-endian object"),
3195                        name.c_str());
3196           return NULL;
3197 #endif
3198         }
3199       else
3200         {
3201 #ifdef HAVE_TARGET_32_LITTLE
3202           elfcpp::Ehdr<32, false> ehdr(p);
3203           return make_elf_sized_object<32, false>(name, input_file,
3204                                                   offset, ehdr, punconfigured);
3205 #else
3206           if (punconfigured != NULL)
3207             *punconfigured = true;
3208           else
3209             gold_error(_("%s: not configured to support "
3210                          "32-bit little-endian object"),
3211                        name.c_str());
3212           return NULL;
3213 #endif
3214         }
3215     }
3216   else if (size == 64)
3217     {
3218       if (big_endian)
3219         {
3220 #ifdef HAVE_TARGET_64_BIG
3221           elfcpp::Ehdr<64, true> ehdr(p);
3222           return make_elf_sized_object<64, true>(name, input_file,
3223                                                  offset, ehdr, punconfigured);
3224 #else
3225           if (punconfigured != NULL)
3226             *punconfigured = true;
3227           else
3228             gold_error(_("%s: not configured to support "
3229                          "64-bit big-endian object"),
3230                        name.c_str());
3231           return NULL;
3232 #endif
3233         }
3234       else
3235         {
3236 #ifdef HAVE_TARGET_64_LITTLE
3237           elfcpp::Ehdr<64, false> ehdr(p);
3238           return make_elf_sized_object<64, false>(name, input_file,
3239                                                   offset, ehdr, punconfigured);
3240 #else
3241           if (punconfigured != NULL)
3242             *punconfigured = true;
3243           else
3244             gold_error(_("%s: not configured to support "
3245                          "64-bit little-endian object"),
3246                        name.c_str());
3247           return NULL;
3248 #endif
3249         }
3250     }
3251   else
3252     gold_unreachable();
3253 }
3254
3255 // Instantiate the templates we need.
3256
3257 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3258 template
3259 void
3260 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3261       typename elfcpp::Elf_types<64>::Elf_Addr starting_address,
3262       Unordered_map<section_offset_type,
3263       typename elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3264 #endif
3265
3266 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3267 template
3268 void
3269 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3270       typename elfcpp::Elf_types<32>::Elf_Addr starting_address,
3271       Unordered_map<section_offset_type,
3272       typename elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3273 #endif
3274
3275 #ifdef HAVE_TARGET_32_LITTLE
3276 template
3277 void
3278 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3279                                      Read_symbols_data*);
3280 template
3281 const unsigned char*
3282 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3283                             section_size_type, const unsigned char*) const;
3284 #endif
3285
3286 #ifdef HAVE_TARGET_32_BIG
3287 template
3288 void
3289 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3290                                     Read_symbols_data*);
3291 template
3292 const unsigned char*
3293 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3294                            section_size_type, const unsigned char*) const;
3295 #endif
3296
3297 #ifdef HAVE_TARGET_64_LITTLE
3298 template
3299 void
3300 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3301                                      Read_symbols_data*);
3302 template
3303 const unsigned char*
3304 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3305                             section_size_type, const unsigned char*) const;
3306 #endif
3307
3308 #ifdef HAVE_TARGET_64_BIG
3309 template
3310 void
3311 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3312                                     Read_symbols_data*);
3313 template
3314 const unsigned char*
3315 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3316                            section_size_type, const unsigned char*) const;
3317 #endif
3318
3319 #ifdef HAVE_TARGET_32_LITTLE
3320 template
3321 class Sized_relobj<32, false>;
3322
3323 template
3324 class Sized_relobj_file<32, false>;
3325 #endif
3326
3327 #ifdef HAVE_TARGET_32_BIG
3328 template
3329 class Sized_relobj<32, true>;
3330
3331 template
3332 class Sized_relobj_file<32, true>;
3333 #endif
3334
3335 #ifdef HAVE_TARGET_64_LITTLE
3336 template
3337 class Sized_relobj<64, false>;
3338
3339 template
3340 class Sized_relobj_file<64, false>;
3341 #endif
3342
3343 #ifdef HAVE_TARGET_64_BIG
3344 template
3345 class Sized_relobj<64, true>;
3346
3347 template
3348 class Sized_relobj_file<64, true>;
3349 #endif
3350
3351 #ifdef HAVE_TARGET_32_LITTLE
3352 template
3353 struct Relocate_info<32, false>;
3354 #endif
3355
3356 #ifdef HAVE_TARGET_32_BIG
3357 template
3358 struct Relocate_info<32, true>;
3359 #endif
3360
3361 #ifdef HAVE_TARGET_64_LITTLE
3362 template
3363 struct Relocate_info<64, false>;
3364 #endif
3365
3366 #ifdef HAVE_TARGET_64_BIG
3367 template
3368 struct Relocate_info<64, true>;
3369 #endif
3370
3371 #ifdef HAVE_TARGET_32_LITTLE
3372 template
3373 void
3374 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3375
3376 template
3377 void
3378 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3379                                       const unsigned char*);
3380 #endif
3381
3382 #ifdef HAVE_TARGET_32_BIG
3383 template
3384 void
3385 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3386
3387 template
3388 void
3389 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3390                                      const unsigned char*);
3391 #endif
3392
3393 #ifdef HAVE_TARGET_64_LITTLE
3394 template
3395 void
3396 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3397
3398 template
3399 void
3400 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3401                                       const unsigned char*);
3402 #endif
3403
3404 #ifdef HAVE_TARGET_64_BIG
3405 template
3406 void
3407 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3408
3409 template
3410 void
3411 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3412                                      const unsigned char*);
3413 #endif
3414
3415 } // End namespace gold.