* object.cc (need_decompressed_section): Add #ifdef ENABLE_THREADS.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424   this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header.  This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439   const unsigned int shnum = this->elf_file_.shnum();
440   this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers.  The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section.  Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452   const unsigned int shnum = this->shnum();
453   this->symtab_shndx_ = 0;
454   if (shnum > 0)
455     {
456       // Look through the sections in reverse order, since gas tends
457       // to put the symbol table at the end.
458       const unsigned char* p = pshdrs + shnum * This::shdr_size;
459       unsigned int i = shnum;
460       unsigned int xindex_shndx = 0;
461       unsigned int xindex_link = 0;
462       while (i > 0)
463         {
464           --i;
465           p -= This::shdr_size;
466           typename This::Shdr shdr(p);
467           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468             {
469               this->symtab_shndx_ = i;
470               if (xindex_shndx > 0 && xindex_link == i)
471                 {
472                   Xindex* xindex =
473                     new Xindex(this->elf_file_.large_shndx_offset());
474                   xindex->read_symtab_xindex<size, big_endian>(this,
475                                                                xindex_shndx,
476                                                                pshdrs);
477                   this->set_xindex(xindex);
478                 }
479               break;
480             }
481
482           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483           // one.  This will work if it follows the SHT_SYMTAB
484           // section.
485           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486             {
487               xindex_shndx = i;
488               xindex_link = this->adjust_shndx(shdr.get_sh_link());
489             }
490         }
491     }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501   gold_assert(this->symtab_shndx_ != -1U);
502   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504   return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513     const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516   return ((sh_type == elfcpp::SHT_PROGBITS
517            || sh_type == elfcpp::SHT_X86_64_UNWIND)
518           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527     const unsigned char* pshdrs,
528     const char* names,
529     section_size_type names_size) const
530 {
531   const unsigned int shnum = this->shnum();
532   const unsigned char* p = pshdrs + This::shdr_size;
533   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534     {
535       typename This::Shdr shdr(p);
536       if (this->check_eh_frame_flags(&shdr))
537         {
538           if (shdr.get_sh_name() >= names_size)
539             {
540               this->error(_("bad section name offset for section %u: %lu"),
541                           i, static_cast<unsigned long>(shdr.get_sh_name()));
542               continue;
543             }
544
545           const char* name = names + shdr.get_sh_name();
546           if (strcmp(name, ".eh_frame") == 0)
547             return true;
548         }
549     }
550   return false;
551 }
552
553 #ifdef ENABLE_THREADS
554
555 // Return TRUE if this is a section whose contents will be needed in the
556 // Add_symbols task.
557
558 static bool
559 need_decompressed_section(const char* name)
560 {
561   // We will need .zdebug_str if this is not an incremental link
562   // (i.e., we are processing string merge sections).
563   if (!parameters->incremental() && strcmp(name, ".zdebug_str") == 0)
564     return true;
565
566   return false;
567 }
568
569 #endif
570
571 // Build a table for any compressed debug sections, mapping each section index
572 // to the uncompressed size and (if needed) the decompressed contents.
573
574 template<int size, bool big_endian>
575 Compressed_section_map*
576 build_compressed_section_map(
577     const unsigned char* pshdrs,
578     unsigned int shnum,
579     const char* names,
580     section_size_type names_size,
581     Sized_relobj_file<size, big_endian>* obj)
582 {
583   Compressed_section_map* uncompressed_map = new Compressed_section_map();
584   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
585   const unsigned char* p = pshdrs + shdr_size;
586
587   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
588     {
589       typename elfcpp::Shdr<size, big_endian> shdr(p);
590       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
591           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
592         {
593           if (shdr.get_sh_name() >= names_size)
594             {
595               obj->error(_("bad section name offset for section %u: %lu"),
596                          i, static_cast<unsigned long>(shdr.get_sh_name()));
597               continue;
598             }
599
600           const char* name = names + shdr.get_sh_name();
601           if (is_compressed_debug_section(name))
602             {
603               section_size_type len;
604               const unsigned char* contents =
605                   obj->section_contents(i, &len, false);
606               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
607               if (uncompressed_size != -1ULL)
608                 {
609                   Compressed_section_info info;
610                   info.size = convert_to_section_size_type(uncompressed_size);
611                   info.contents = NULL;
612
613 #ifdef ENABLE_THREADS
614                   // If we're multi-threaded, it will help to decompress
615                   // any sections that will be needed during the Add_symbols
616                   // task, so that several decompressions can run in
617                   // parallel.
618                   if (parameters->options().threads())
619                     {
620                       unsigned char* uncompressed_data = NULL;
621                       if (need_decompressed_section(name))
622                         {
623                           uncompressed_data = new unsigned char[uncompressed_size];
624                           if (decompress_input_section(contents, len,
625                                                        uncompressed_data,
626                                                        uncompressed_size))
627                             info.contents = uncompressed_data;
628                           else
629                             delete[] uncompressed_data;
630                         }
631                     }
632 #endif
633
634                   (*uncompressed_map)[i] = info;
635                 }
636             }
637         }
638     }
639   return uncompressed_map;
640 }
641
642 // Read the sections and symbols from an object file.
643
644 template<int size, bool big_endian>
645 void
646 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
647 {
648   this->read_section_data(&this->elf_file_, sd);
649
650   const unsigned char* const pshdrs = sd->section_headers->data();
651
652   this->find_symtab(pshdrs);
653
654   const unsigned char* namesu = sd->section_names->data();
655   const char* names = reinterpret_cast<const char*>(namesu);
656   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
657     {
658       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
659         this->has_eh_frame_ = true;
660     }
661   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
662     this->compressed_sections_ =
663         build_compressed_section_map(pshdrs, this->shnum(), names,
664                                      sd->section_names_size, this);
665
666   sd->symbols = NULL;
667   sd->symbols_size = 0;
668   sd->external_symbols_offset = 0;
669   sd->symbol_names = NULL;
670   sd->symbol_names_size = 0;
671
672   if (this->symtab_shndx_ == 0)
673     {
674       // No symbol table.  Weird but legal.
675       return;
676     }
677
678   // Get the symbol table section header.
679   typename This::Shdr symtabshdr(pshdrs
680                                  + this->symtab_shndx_ * This::shdr_size);
681   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
682
683   // If this object has a .eh_frame section, we need all the symbols.
684   // Otherwise we only need the external symbols.  While it would be
685   // simpler to just always read all the symbols, I've seen object
686   // files with well over 2000 local symbols, which for a 64-bit
687   // object file format is over 5 pages that we don't need to read
688   // now.
689
690   const int sym_size = This::sym_size;
691   const unsigned int loccount = symtabshdr.get_sh_info();
692   this->local_symbol_count_ = loccount;
693   this->local_values_.resize(loccount);
694   section_offset_type locsize = loccount * sym_size;
695   off_t dataoff = symtabshdr.get_sh_offset();
696   section_size_type datasize =
697     convert_to_section_size_type(symtabshdr.get_sh_size());
698   off_t extoff = dataoff + locsize;
699   section_size_type extsize = datasize - locsize;
700
701   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
702   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
703
704   if (readsize == 0)
705     {
706       // No external symbols.  Also weird but also legal.
707       return;
708     }
709
710   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
711
712   // Read the section header for the symbol names.
713   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
714   if (strtab_shndx >= this->shnum())
715     {
716       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
717       return;
718     }
719   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
720   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
721     {
722       this->error(_("symbol table name section has wrong type: %u"),
723                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
724       return;
725     }
726
727   // Read the symbol names.
728   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
729                                                strtabshdr.get_sh_size(),
730                                                false, true);
731
732   sd->symbols = fvsymtab;
733   sd->symbols_size = readsize;
734   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
735   sd->symbol_names = fvstrtab;
736   sd->symbol_names_size =
737     convert_to_section_size_type(strtabshdr.get_sh_size());
738 }
739
740 // Return the section index of symbol SYM.  Set *VALUE to its value in
741 // the object file.  Set *IS_ORDINARY if this is an ordinary section
742 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
743 // Note that for a symbol which is not defined in this object file,
744 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
745 // the final value of the symbol in the link.
746
747 template<int size, bool big_endian>
748 unsigned int
749 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
750                                                               Address* value,
751                                                               bool* is_ordinary)
752 {
753   section_size_type symbols_size;
754   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
755                                                         &symbols_size,
756                                                         false);
757
758   const size_t count = symbols_size / This::sym_size;
759   gold_assert(sym < count);
760
761   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
762   *value = elfsym.get_st_value();
763
764   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
765 }
766
767 // Return whether to include a section group in the link.  LAYOUT is
768 // used to keep track of which section groups we have already seen.
769 // INDEX is the index of the section group and SHDR is the section
770 // header.  If we do not want to include this group, we set bits in
771 // OMIT for each section which should be discarded.
772
773 template<int size, bool big_endian>
774 bool
775 Sized_relobj_file<size, big_endian>::include_section_group(
776     Symbol_table* symtab,
777     Layout* layout,
778     unsigned int index,
779     const char* name,
780     const unsigned char* shdrs,
781     const char* section_names,
782     section_size_type section_names_size,
783     std::vector<bool>* omit)
784 {
785   // Read the section contents.
786   typename This::Shdr shdr(shdrs + index * This::shdr_size);
787   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
788                                              shdr.get_sh_size(), true, false);
789   const elfcpp::Elf_Word* pword =
790     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
791
792   // The first word contains flags.  We only care about COMDAT section
793   // groups.  Other section groups are always included in the link
794   // just like ordinary sections.
795   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
796
797   // Look up the group signature, which is the name of a symbol.  ELF
798   // uses a symbol name because some group signatures are long, and
799   // the name is generally already in the symbol table, so it makes
800   // sense to put the long string just once in .strtab rather than in
801   // both .strtab and .shstrtab.
802
803   // Get the appropriate symbol table header (this will normally be
804   // the single SHT_SYMTAB section, but in principle it need not be).
805   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
806   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
807
808   // Read the symbol table entry.
809   unsigned int symndx = shdr.get_sh_info();
810   if (symndx >= symshdr.get_sh_size() / This::sym_size)
811     {
812       this->error(_("section group %u info %u out of range"),
813                   index, symndx);
814       return false;
815     }
816   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
817   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
818                                              false);
819   elfcpp::Sym<size, big_endian> sym(psym);
820
821   // Read the symbol table names.
822   section_size_type symnamelen;
823   const unsigned char* psymnamesu;
824   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
825                                       &symnamelen, true);
826   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
827
828   // Get the section group signature.
829   if (sym.get_st_name() >= symnamelen)
830     {
831       this->error(_("symbol %u name offset %u out of range"),
832                   symndx, sym.get_st_name());
833       return false;
834     }
835
836   std::string signature(psymnames + sym.get_st_name());
837
838   // It seems that some versions of gas will create a section group
839   // associated with a section symbol, and then fail to give a name to
840   // the section symbol.  In such a case, use the name of the section.
841   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
842     {
843       bool is_ordinary;
844       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
845                                                       sym.get_st_shndx(),
846                                                       &is_ordinary);
847       if (!is_ordinary || sym_shndx >= this->shnum())
848         {
849           this->error(_("symbol %u invalid section index %u"),
850                       symndx, sym_shndx);
851           return false;
852         }
853       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
854       if (member_shdr.get_sh_name() < section_names_size)
855         signature = section_names + member_shdr.get_sh_name();
856     }
857
858   // Record this section group in the layout, and see whether we've already
859   // seen one with the same signature.
860   bool include_group;
861   bool is_comdat;
862   Kept_section* kept_section = NULL;
863
864   if ((flags & elfcpp::GRP_COMDAT) == 0)
865     {
866       include_group = true;
867       is_comdat = false;
868     }
869   else
870     {
871       include_group = layout->find_or_add_kept_section(signature,
872                                                        this, index, true,
873                                                        true, &kept_section);
874       is_comdat = true;
875     }
876
877   if (is_comdat && include_group)
878     {
879       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
880       if (incremental_inputs != NULL)
881         incremental_inputs->report_comdat_group(this, signature.c_str());
882     }
883
884   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
885
886   std::vector<unsigned int> shndxes;
887   bool relocate_group = include_group && parameters->options().relocatable();
888   if (relocate_group)
889     shndxes.reserve(count - 1);
890
891   for (size_t i = 1; i < count; ++i)
892     {
893       elfcpp::Elf_Word shndx =
894         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
895
896       if (relocate_group)
897         shndxes.push_back(shndx);
898
899       if (shndx >= this->shnum())
900         {
901           this->error(_("section %u in section group %u out of range"),
902                       shndx, index);
903           continue;
904         }
905
906       // Check for an earlier section number, since we're going to get
907       // it wrong--we may have already decided to include the section.
908       if (shndx < index)
909         this->error(_("invalid section group %u refers to earlier section %u"),
910                     index, shndx);
911
912       // Get the name of the member section.
913       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
914       if (member_shdr.get_sh_name() >= section_names_size)
915         {
916           // This is an error, but it will be diagnosed eventually
917           // in do_layout, so we don't need to do anything here but
918           // ignore it.
919           continue;
920         }
921       std::string mname(section_names + member_shdr.get_sh_name());
922
923       if (include_group)
924         {
925           if (is_comdat)
926             kept_section->add_comdat_section(mname, shndx,
927                                              member_shdr.get_sh_size());
928         }
929       else
930         {
931           (*omit)[shndx] = true;
932
933           if (is_comdat)
934             {
935               Relobj* kept_object = kept_section->object();
936               if (kept_section->is_comdat())
937                 {
938                   // Find the corresponding kept section, and store
939                   // that info in the discarded section table.
940                   unsigned int kept_shndx;
941                   uint64_t kept_size;
942                   if (kept_section->find_comdat_section(mname, &kept_shndx,
943                                                         &kept_size))
944                     {
945                       // We don't keep a mapping for this section if
946                       // it has a different size.  The mapping is only
947                       // used for relocation processing, and we don't
948                       // want to treat the sections as similar if the
949                       // sizes are different.  Checking the section
950                       // size is the approach used by the GNU linker.
951                       if (kept_size == member_shdr.get_sh_size())
952                         this->set_kept_comdat_section(shndx, kept_object,
953                                                       kept_shndx);
954                     }
955                 }
956               else
957                 {
958                   // The existing section is a linkonce section.  Add
959                   // a mapping if there is exactly one section in the
960                   // group (which is true when COUNT == 2) and if it
961                   // is the same size.
962                   if (count == 2
963                       && (kept_section->linkonce_size()
964                           == member_shdr.get_sh_size()))
965                     this->set_kept_comdat_section(shndx, kept_object,
966                                                   kept_section->shndx());
967                 }
968             }
969         }
970     }
971
972   if (relocate_group)
973     layout->layout_group(symtab, this, index, name, signature.c_str(),
974                          shdr, flags, &shndxes);
975
976   return include_group;
977 }
978
979 // Whether to include a linkonce section in the link.  NAME is the
980 // name of the section and SHDR is the section header.
981
982 // Linkonce sections are a GNU extension implemented in the original
983 // GNU linker before section groups were defined.  The semantics are
984 // that we only include one linkonce section with a given name.  The
985 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
986 // where T is the type of section and SYMNAME is the name of a symbol.
987 // In an attempt to make linkonce sections interact well with section
988 // groups, we try to identify SYMNAME and use it like a section group
989 // signature.  We want to block section groups with that signature,
990 // but not other linkonce sections with that signature.  We also use
991 // the full name of the linkonce section as a normal section group
992 // signature.
993
994 template<int size, bool big_endian>
995 bool
996 Sized_relobj_file<size, big_endian>::include_linkonce_section(
997     Layout* layout,
998     unsigned int index,
999     const char* name,
1000     const elfcpp::Shdr<size, big_endian>& shdr)
1001 {
1002   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1003   // In general the symbol name we want will be the string following
1004   // the last '.'.  However, we have to handle the case of
1005   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1006   // some versions of gcc.  So we use a heuristic: if the name starts
1007   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1008   // we look for the last '.'.  We can't always simply skip
1009   // ".gnu.linkonce.X", because we have to deal with cases like
1010   // ".gnu.linkonce.d.rel.ro.local".
1011   const char* const linkonce_t = ".gnu.linkonce.t.";
1012   const char* symname;
1013   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1014     symname = name + strlen(linkonce_t);
1015   else
1016     symname = strrchr(name, '.') + 1;
1017   std::string sig1(symname);
1018   std::string sig2(name);
1019   Kept_section* kept1;
1020   Kept_section* kept2;
1021   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1022                                                    false, &kept1);
1023   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1024                                                    true, &kept2);
1025
1026   if (!include2)
1027     {
1028       // We are not including this section because we already saw the
1029       // name of the section as a signature.  This normally implies
1030       // that the kept section is another linkonce section.  If it is
1031       // the same size, record it as the section which corresponds to
1032       // this one.
1033       if (kept2->object() != NULL
1034           && !kept2->is_comdat()
1035           && kept2->linkonce_size() == sh_size)
1036         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1037     }
1038   else if (!include1)
1039     {
1040       // The section is being discarded on the basis of its symbol
1041       // name.  This means that the corresponding kept section was
1042       // part of a comdat group, and it will be difficult to identify
1043       // the specific section within that group that corresponds to
1044       // this linkonce section.  We'll handle the simple case where
1045       // the group has only one member section.  Otherwise, it's not
1046       // worth the effort.
1047       unsigned int kept_shndx;
1048       uint64_t kept_size;
1049       if (kept1->object() != NULL
1050           && kept1->is_comdat()
1051           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1052           && kept_size == sh_size)
1053         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1054     }
1055   else
1056     {
1057       kept1->set_linkonce_size(sh_size);
1058       kept2->set_linkonce_size(sh_size);
1059     }
1060
1061   return include1 && include2;
1062 }
1063
1064 // Layout an input section.
1065
1066 template<int size, bool big_endian>
1067 inline void
1068 Sized_relobj_file<size, big_endian>::layout_section(
1069     Layout* layout,
1070     unsigned int shndx,
1071     const char* name,
1072     const typename This::Shdr& shdr,
1073     unsigned int reloc_shndx,
1074     unsigned int reloc_type)
1075 {
1076   off_t offset;
1077   Output_section* os = layout->layout(this, shndx, name, shdr,
1078                                           reloc_shndx, reloc_type, &offset);
1079
1080   this->output_sections()[shndx] = os;
1081   if (offset == -1)
1082     this->section_offsets()[shndx] = invalid_address;
1083   else
1084     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1085
1086   // If this section requires special handling, and if there are
1087   // relocs that apply to it, then we must do the special handling
1088   // before we apply the relocs.
1089   if (offset == -1 && reloc_shndx != 0)
1090     this->set_relocs_must_follow_section_writes();
1091 }
1092
1093 // Layout an input .eh_frame section.
1094
1095 template<int size, bool big_endian>
1096 void
1097 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1098     Layout* layout,
1099     const unsigned char* symbols_data,
1100     section_size_type symbols_size,
1101     const unsigned char* symbol_names_data,
1102     section_size_type symbol_names_size,
1103     unsigned int shndx,
1104     const typename This::Shdr& shdr,
1105     unsigned int reloc_shndx,
1106     unsigned int reloc_type)
1107 {
1108   gold_assert(this->has_eh_frame_);
1109
1110   off_t offset;
1111   Output_section* os = layout->layout_eh_frame(this,
1112                                                symbols_data,
1113                                                symbols_size,
1114                                                symbol_names_data,
1115                                                symbol_names_size,
1116                                                shndx,
1117                                                shdr,
1118                                                reloc_shndx,
1119                                                reloc_type,
1120                                                &offset);
1121   this->output_sections()[shndx] = os;
1122   if (os == NULL || offset == -1)
1123     {
1124       // An object can contain at most one section holding exception
1125       // frame information.
1126       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1127       this->discarded_eh_frame_shndx_ = shndx;
1128       this->section_offsets()[shndx] = invalid_address;
1129     }
1130   else
1131     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1132
1133   // If this section requires special handling, and if there are
1134   // relocs that aply to it, then we must do the special handling
1135   // before we apply the relocs.
1136   if (os != NULL && offset == -1 && reloc_shndx != 0)
1137     this->set_relocs_must_follow_section_writes();
1138 }
1139
1140 // Lay out the input sections.  We walk through the sections and check
1141 // whether they should be included in the link.  If they should, we
1142 // pass them to the Layout object, which will return an output section
1143 // and an offset.  
1144 // During garbage collection (--gc-sections) and identical code folding 
1145 // (--icf), this function is called twice.  When it is called the first 
1146 // time, it is for setting up some sections as roots to a work-list for
1147 // --gc-sections and to do comdat processing.  Actual layout happens the 
1148 // second time around after all the relevant sections have been determined.  
1149 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1150 // set to true after the garbage collection worklist or identical code 
1151 // folding is processed and the relevant sections to be kept are 
1152 // determined.  Then, this function is called again to layout the sections.
1153
1154 template<int size, bool big_endian>
1155 void
1156 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1157                                                Layout* layout,
1158                                                Read_symbols_data* sd)
1159 {
1160   const unsigned int shnum = this->shnum();
1161   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1162                           && !symtab->gc()->is_worklist_ready())
1163                          || (parameters->options().icf_enabled()
1164                              && !symtab->icf()->is_icf_ready()));
1165  
1166   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1167                           && symtab->gc()->is_worklist_ready())
1168                          || (parameters->options().icf_enabled()
1169                              && symtab->icf()->is_icf_ready()));
1170
1171   bool is_gc_or_icf = (parameters->options().gc_sections()
1172                        || parameters->options().icf_enabled()); 
1173
1174   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1175   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1176
1177   if (shnum == 0)
1178     return;
1179   Symbols_data* gc_sd = NULL;
1180   if (is_gc_pass_one)
1181     {
1182       // During garbage collection save the symbols data to use it when 
1183       // re-entering this function.   
1184       gc_sd = new Symbols_data;
1185       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1186       this->set_symbols_data(gc_sd);
1187     }
1188   else if (is_gc_pass_two)
1189     {
1190       gc_sd = this->get_symbols_data();
1191     }
1192
1193   const unsigned char* section_headers_data = NULL;
1194   section_size_type section_names_size;
1195   const unsigned char* symbols_data = NULL;
1196   section_size_type symbols_size;
1197   const unsigned char* symbol_names_data = NULL;
1198   section_size_type symbol_names_size;
1199  
1200   if (is_gc_or_icf)
1201     {
1202       section_headers_data = gc_sd->section_headers_data;
1203       section_names_size = gc_sd->section_names_size;
1204       symbols_data = gc_sd->symbols_data;
1205       symbols_size = gc_sd->symbols_size;
1206       symbol_names_data = gc_sd->symbol_names_data;
1207       symbol_names_size = gc_sd->symbol_names_size;
1208     }
1209   else
1210     {
1211       section_headers_data = sd->section_headers->data();
1212       section_names_size = sd->section_names_size;
1213       if (sd->symbols != NULL)
1214         symbols_data = sd->symbols->data();
1215       symbols_size = sd->symbols_size;
1216       if (sd->symbol_names != NULL)
1217         symbol_names_data = sd->symbol_names->data();
1218       symbol_names_size = sd->symbol_names_size;
1219     }
1220
1221   // Get the section headers.
1222   const unsigned char* shdrs = section_headers_data;
1223   const unsigned char* pshdrs;
1224
1225   // Get the section names.
1226   const unsigned char* pnamesu = (is_gc_or_icf) 
1227                                  ? gc_sd->section_names_data
1228                                  : sd->section_names->data();
1229
1230   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1231
1232   // If any input files have been claimed by plugins, we need to defer
1233   // actual layout until the replacement files have arrived.
1234   const bool should_defer_layout =
1235       (parameters->options().has_plugins()
1236        && parameters->options().plugins()->should_defer_layout());
1237   unsigned int num_sections_to_defer = 0;
1238
1239   // For each section, record the index of the reloc section if any.
1240   // Use 0 to mean that there is no reloc section, -1U to mean that
1241   // there is more than one.
1242   std::vector<unsigned int> reloc_shndx(shnum, 0);
1243   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1244   // Skip the first, dummy, section.
1245   pshdrs = shdrs + This::shdr_size;
1246   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1247     {
1248       typename This::Shdr shdr(pshdrs);
1249
1250       // Count the number of sections whose layout will be deferred.
1251       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1252         ++num_sections_to_defer;
1253
1254       unsigned int sh_type = shdr.get_sh_type();
1255       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1256         {
1257           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1258           if (target_shndx == 0 || target_shndx >= shnum)
1259             {
1260               this->error(_("relocation section %u has bad info %u"),
1261                           i, target_shndx);
1262               continue;
1263             }
1264
1265           if (reloc_shndx[target_shndx] != 0)
1266             reloc_shndx[target_shndx] = -1U;
1267           else
1268             {
1269               reloc_shndx[target_shndx] = i;
1270               reloc_type[target_shndx] = sh_type;
1271             }
1272         }
1273     }
1274
1275   Output_sections& out_sections(this->output_sections());
1276   std::vector<Address>& out_section_offsets(this->section_offsets());
1277
1278   if (!is_gc_pass_two)
1279     {
1280       out_sections.resize(shnum);
1281       out_section_offsets.resize(shnum);
1282     }
1283
1284   // If we are only linking for symbols, then there is nothing else to
1285   // do here.
1286   if (this->input_file()->just_symbols())
1287     {
1288       if (!is_gc_pass_two)
1289         {
1290           delete sd->section_headers;
1291           sd->section_headers = NULL;
1292           delete sd->section_names;
1293           sd->section_names = NULL;
1294         }
1295       return;
1296     }
1297
1298   if (num_sections_to_defer > 0)
1299     {
1300       parameters->options().plugins()->add_deferred_layout_object(this);
1301       this->deferred_layout_.reserve(num_sections_to_defer);
1302     }
1303
1304   // Whether we've seen a .note.GNU-stack section.
1305   bool seen_gnu_stack = false;
1306   // The flags of a .note.GNU-stack section.
1307   uint64_t gnu_stack_flags = 0;
1308
1309   // Keep track of which sections to omit.
1310   std::vector<bool> omit(shnum, false);
1311
1312   // Keep track of reloc sections when emitting relocations.
1313   const bool relocatable = parameters->options().relocatable();
1314   const bool emit_relocs = (relocatable
1315                             || parameters->options().emit_relocs());
1316   std::vector<unsigned int> reloc_sections;
1317
1318   // Keep track of .eh_frame sections.
1319   std::vector<unsigned int> eh_frame_sections;
1320
1321   // Skip the first, dummy, section.
1322   pshdrs = shdrs + This::shdr_size;
1323   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1324     {
1325       typename This::Shdr shdr(pshdrs);
1326
1327       if (shdr.get_sh_name() >= section_names_size)
1328         {
1329           this->error(_("bad section name offset for section %u: %lu"),
1330                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1331           return;
1332         }
1333
1334       const char* name = pnames + shdr.get_sh_name();
1335
1336       if (!is_gc_pass_two)
1337         { 
1338           if (this->handle_gnu_warning_section(name, i, symtab))
1339             { 
1340               if (!relocatable && !parameters->options().shared())
1341                 omit[i] = true;
1342             }
1343
1344           // The .note.GNU-stack section is special.  It gives the
1345           // protection flags that this object file requires for the stack
1346           // in memory.
1347           if (strcmp(name, ".note.GNU-stack") == 0)
1348             {
1349               seen_gnu_stack = true;
1350               gnu_stack_flags |= shdr.get_sh_flags();
1351               omit[i] = true;
1352             }
1353
1354           // The .note.GNU-split-stack section is also special.  It
1355           // indicates that the object was compiled with
1356           // -fsplit-stack.
1357           if (this->handle_split_stack_section(name))
1358             {
1359               if (!relocatable && !parameters->options().shared())
1360                 omit[i] = true;
1361             }
1362
1363           // Skip attributes section.
1364           if (parameters->target().is_attributes_section(name))
1365             {
1366               omit[i] = true;
1367             }
1368
1369           bool discard = omit[i];
1370           if (!discard)
1371             {
1372               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1373                 {
1374                   if (!this->include_section_group(symtab, layout, i, name, 
1375                                                    shdrs, pnames, 
1376                                                    section_names_size,
1377                                                    &omit))
1378                     discard = true;
1379                 }
1380               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1381                        && Layout::is_linkonce(name))
1382                 {
1383                   if (!this->include_linkonce_section(layout, i, name, shdr))
1384                     discard = true;
1385                 }
1386             }
1387
1388           // Add the section to the incremental inputs layout.
1389           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1390           if (incremental_inputs != NULL
1391               && !discard
1392               && can_incremental_update(shdr.get_sh_type()))
1393             {
1394               off_t sh_size = shdr.get_sh_size();
1395               section_size_type uncompressed_size;
1396               if (this->section_is_compressed(i, &uncompressed_size))
1397                 sh_size = uncompressed_size;
1398               incremental_inputs->report_input_section(this, i, name, sh_size);
1399             }
1400
1401           if (discard)
1402             {
1403               // Do not include this section in the link.
1404               out_sections[i] = NULL;
1405               out_section_offsets[i] = invalid_address;
1406               continue;
1407             }
1408         }
1409  
1410       if (is_gc_pass_one && parameters->options().gc_sections())
1411         {
1412           if (this->is_section_name_included(name)
1413               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1414               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1415             {
1416               symtab->gc()->worklist().push(Section_id(this, i)); 
1417             }
1418           // If the section name XXX can be represented as a C identifier
1419           // it cannot be discarded if there are references to
1420           // __start_XXX and __stop_XXX symbols.  These need to be
1421           // specially handled.
1422           if (is_cident(name))
1423             {
1424               symtab->gc()->add_cident_section(name, Section_id(this, i));
1425             }
1426         }
1427
1428       // When doing a relocatable link we are going to copy input
1429       // reloc sections into the output.  We only want to copy the
1430       // ones associated with sections which are not being discarded.
1431       // However, we don't know that yet for all sections.  So save
1432       // reloc sections and process them later. Garbage collection is
1433       // not triggered when relocatable code is desired.
1434       if (emit_relocs
1435           && (shdr.get_sh_type() == elfcpp::SHT_REL
1436               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1437         {
1438           reloc_sections.push_back(i);
1439           continue;
1440         }
1441
1442       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1443         continue;
1444
1445       // The .eh_frame section is special.  It holds exception frame
1446       // information that we need to read in order to generate the
1447       // exception frame header.  We process these after all the other
1448       // sections so that the exception frame reader can reliably
1449       // determine which sections are being discarded, and discard the
1450       // corresponding information.
1451       if (!relocatable
1452           && strcmp(name, ".eh_frame") == 0
1453           && this->check_eh_frame_flags(&shdr))
1454         {
1455           if (is_gc_pass_one)
1456             {
1457               out_sections[i] = reinterpret_cast<Output_section*>(1);
1458               out_section_offsets[i] = invalid_address;
1459             }
1460           else if (should_defer_layout)
1461             this->deferred_layout_.push_back(Deferred_layout(i, name,
1462                                                              pshdrs,
1463                                                              reloc_shndx[i],
1464                                                              reloc_type[i]));
1465           else
1466             eh_frame_sections.push_back(i);
1467           continue;
1468         }
1469
1470       if (is_gc_pass_two && parameters->options().gc_sections())
1471         {
1472           // This is executed during the second pass of garbage 
1473           // collection. do_layout has been called before and some 
1474           // sections have been already discarded. Simply ignore 
1475           // such sections this time around.
1476           if (out_sections[i] == NULL)
1477             {
1478               gold_assert(out_section_offsets[i] == invalid_address);
1479               continue; 
1480             }
1481           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1482               && symtab->gc()->is_section_garbage(this, i))
1483               {
1484                 if (parameters->options().print_gc_sections())
1485                   gold_info(_("%s: removing unused section from '%s'" 
1486                               " in file '%s'"),
1487                             program_name, this->section_name(i).c_str(), 
1488                             this->name().c_str());
1489                 out_sections[i] = NULL;
1490                 out_section_offsets[i] = invalid_address;
1491                 continue;
1492               }
1493         }
1494
1495       if (is_gc_pass_two && parameters->options().icf_enabled())
1496         {
1497           if (out_sections[i] == NULL)
1498             {
1499               gold_assert(out_section_offsets[i] == invalid_address);
1500               continue;
1501             }
1502           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1503               && symtab->icf()->is_section_folded(this, i))
1504               {
1505                 if (parameters->options().print_icf_sections())
1506                   {
1507                     Section_id folded =
1508                                 symtab->icf()->get_folded_section(this, i);
1509                     Relobj* folded_obj =
1510                                 reinterpret_cast<Relobj*>(folded.first);
1511                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1512                                 "into '%s' in file '%s'"),
1513                               program_name, this->section_name(i).c_str(),
1514                               this->name().c_str(),
1515                               folded_obj->section_name(folded.second).c_str(),
1516                               folded_obj->name().c_str());
1517                   }
1518                 out_sections[i] = NULL;
1519                 out_section_offsets[i] = invalid_address;
1520                 continue;
1521               }
1522         }
1523
1524       // Defer layout here if input files are claimed by plugins.  When gc
1525       // is turned on this function is called twice.  For the second call
1526       // should_defer_layout should be false.
1527       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1528         {
1529           gold_assert(!is_gc_pass_two);
1530           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1531                                                            pshdrs,
1532                                                            reloc_shndx[i],
1533                                                            reloc_type[i]));
1534           // Put dummy values here; real values will be supplied by
1535           // do_layout_deferred_sections.
1536           out_sections[i] = reinterpret_cast<Output_section*>(2);
1537           out_section_offsets[i] = invalid_address;
1538           continue;
1539         }
1540
1541       // During gc_pass_two if a section that was previously deferred is
1542       // found, do not layout the section as layout_deferred_sections will
1543       // do it later from gold.cc.
1544       if (is_gc_pass_two 
1545           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1546         continue;
1547
1548       if (is_gc_pass_one)
1549         {
1550           // This is during garbage collection. The out_sections are 
1551           // assigned in the second call to this function. 
1552           out_sections[i] = reinterpret_cast<Output_section*>(1);
1553           out_section_offsets[i] = invalid_address;
1554         }
1555       else
1556         {
1557           // When garbage collection is switched on the actual layout
1558           // only happens in the second call.
1559           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1560                                reloc_type[i]);
1561         }
1562     }
1563
1564   if (!is_gc_pass_two)
1565     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1566
1567   // When doing a relocatable link handle the reloc sections at the
1568   // end.  Garbage collection  and Identical Code Folding is not 
1569   // turned on for relocatable code. 
1570   if (emit_relocs)
1571     this->size_relocatable_relocs();
1572
1573   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1574
1575   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1576        p != reloc_sections.end();
1577        ++p)
1578     {
1579       unsigned int i = *p;
1580       const unsigned char* pshdr;
1581       pshdr = section_headers_data + i * This::shdr_size;
1582       typename This::Shdr shdr(pshdr);
1583
1584       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1585       if (data_shndx >= shnum)
1586         {
1587           // We already warned about this above.
1588           continue;
1589         }
1590
1591       Output_section* data_section = out_sections[data_shndx];
1592       if (data_section == reinterpret_cast<Output_section*>(2))
1593         {
1594           // The layout for the data section was deferred, so we need
1595           // to defer the relocation section, too.
1596           const char* name = pnames + shdr.get_sh_name();
1597           this->deferred_layout_relocs_.push_back(
1598               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1599           out_sections[i] = reinterpret_cast<Output_section*>(2);
1600           out_section_offsets[i] = invalid_address;
1601           continue;
1602         }
1603       if (data_section == NULL)
1604         {
1605           out_sections[i] = NULL;
1606           out_section_offsets[i] = invalid_address;
1607           continue;
1608         }
1609
1610       Relocatable_relocs* rr = new Relocatable_relocs();
1611       this->set_relocatable_relocs(i, rr);
1612
1613       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1614                                                 rr);
1615       out_sections[i] = os;
1616       out_section_offsets[i] = invalid_address;
1617     }
1618
1619   // Handle the .eh_frame sections at the end.
1620   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1621   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1622        p != eh_frame_sections.end();
1623        ++p)
1624     {
1625       unsigned int i = *p;
1626       const unsigned char* pshdr;
1627       pshdr = section_headers_data + i * This::shdr_size;
1628       typename This::Shdr shdr(pshdr);
1629
1630       this->layout_eh_frame_section(layout,
1631                                     symbols_data,
1632                                     symbols_size,
1633                                     symbol_names_data,
1634                                     symbol_names_size,
1635                                     i,
1636                                     shdr,
1637                                     reloc_shndx[i],
1638                                     reloc_type[i]);
1639     }
1640
1641   if (is_gc_pass_two)
1642     {
1643       delete[] gc_sd->section_headers_data;
1644       delete[] gc_sd->section_names_data;
1645       delete[] gc_sd->symbols_data;
1646       delete[] gc_sd->symbol_names_data;
1647       this->set_symbols_data(NULL);
1648     }
1649   else
1650     {
1651       delete sd->section_headers;
1652       sd->section_headers = NULL;
1653       delete sd->section_names;
1654       sd->section_names = NULL;
1655     }
1656 }
1657
1658 // Layout sections whose layout was deferred while waiting for
1659 // input files from a plugin.
1660
1661 template<int size, bool big_endian>
1662 void
1663 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1664 {
1665   typename std::vector<Deferred_layout>::iterator deferred;
1666
1667   for (deferred = this->deferred_layout_.begin();
1668        deferred != this->deferred_layout_.end();
1669        ++deferred)
1670     {
1671       typename This::Shdr shdr(deferred->shdr_data_);
1672       // If the section is not included, it is because the garbage collector
1673       // decided it is not needed.  Avoid reverting that decision.
1674       if (!this->is_section_included(deferred->shndx_))
1675         continue;
1676
1677       if (parameters->options().relocatable()
1678           || deferred->name_ != ".eh_frame"
1679           || !this->check_eh_frame_flags(&shdr))
1680         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1681                              shdr, deferred->reloc_shndx_,
1682                              deferred->reloc_type_);
1683       else
1684         {
1685           // Reading the symbols again here may be slow.
1686           Read_symbols_data sd;
1687           this->read_symbols(&sd);
1688           this->layout_eh_frame_section(layout,
1689                                         sd.symbols->data(),
1690                                         sd.symbols_size,
1691                                         sd.symbol_names->data(),
1692                                         sd.symbol_names_size,
1693                                         deferred->shndx_,
1694                                         shdr,
1695                                         deferred->reloc_shndx_,
1696                                         deferred->reloc_type_);
1697         }
1698     }
1699
1700   this->deferred_layout_.clear();
1701
1702   // Now handle the deferred relocation sections.
1703
1704   Output_sections& out_sections(this->output_sections());
1705   std::vector<Address>& out_section_offsets(this->section_offsets());
1706
1707   for (deferred = this->deferred_layout_relocs_.begin();
1708        deferred != this->deferred_layout_relocs_.end();
1709        ++deferred)
1710     {
1711       unsigned int shndx = deferred->shndx_;
1712       typename This::Shdr shdr(deferred->shdr_data_);
1713       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1714
1715       Output_section* data_section = out_sections[data_shndx];
1716       if (data_section == NULL)
1717         {
1718           out_sections[shndx] = NULL;
1719           out_section_offsets[shndx] = invalid_address;
1720           continue;
1721         }
1722
1723       Relocatable_relocs* rr = new Relocatable_relocs();
1724       this->set_relocatable_relocs(shndx, rr);
1725
1726       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1727                                                 data_section, rr);
1728       out_sections[shndx] = os;
1729       out_section_offsets[shndx] = invalid_address;
1730     }
1731 }
1732
1733 // Add the symbols to the symbol table.
1734
1735 template<int size, bool big_endian>
1736 void
1737 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1738                                                     Read_symbols_data* sd,
1739                                                     Layout*)
1740 {
1741   if (sd->symbols == NULL)
1742     {
1743       gold_assert(sd->symbol_names == NULL);
1744       return;
1745     }
1746
1747   const int sym_size = This::sym_size;
1748   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1749                      / sym_size);
1750   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1751     {
1752       this->error(_("size of symbols is not multiple of symbol size"));
1753       return;
1754     }
1755
1756   this->symbols_.resize(symcount);
1757
1758   const char* sym_names =
1759     reinterpret_cast<const char*>(sd->symbol_names->data());
1760   symtab->add_from_relobj(this,
1761                           sd->symbols->data() + sd->external_symbols_offset,
1762                           symcount, this->local_symbol_count_,
1763                           sym_names, sd->symbol_names_size,
1764                           &this->symbols_,
1765                           &this->defined_count_);
1766
1767   delete sd->symbols;
1768   sd->symbols = NULL;
1769   delete sd->symbol_names;
1770   sd->symbol_names = NULL;
1771 }
1772
1773 // Find out if this object, that is a member of a lib group, should be included
1774 // in the link. We check every symbol defined by this object. If the symbol
1775 // table has a strong undefined reference to that symbol, we have to include
1776 // the object.
1777
1778 template<int size, bool big_endian>
1779 Archive::Should_include
1780 Sized_relobj_file<size, big_endian>::do_should_include_member(
1781     Symbol_table* symtab,
1782     Layout* layout,
1783     Read_symbols_data* sd,
1784     std::string* why)
1785 {
1786   char* tmpbuf = NULL;
1787   size_t tmpbuflen = 0;
1788   const char* sym_names =
1789       reinterpret_cast<const char*>(sd->symbol_names->data());
1790   const unsigned char* syms =
1791       sd->symbols->data() + sd->external_symbols_offset;
1792   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1793   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1794                          / sym_size);
1795
1796   const unsigned char* p = syms;
1797
1798   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1799     {
1800       elfcpp::Sym<size, big_endian> sym(p);
1801       unsigned int st_shndx = sym.get_st_shndx();
1802       if (st_shndx == elfcpp::SHN_UNDEF)
1803         continue;
1804
1805       unsigned int st_name = sym.get_st_name();
1806       const char* name = sym_names + st_name;
1807       Symbol* symbol;
1808       Archive::Should_include t = Archive::should_include_member(symtab,
1809                                                                  layout,
1810                                                                  name,
1811                                                                  &symbol, why,
1812                                                                  &tmpbuf,
1813                                                                  &tmpbuflen);
1814       if (t == Archive::SHOULD_INCLUDE_YES)
1815         {
1816           if (tmpbuf != NULL)
1817             free(tmpbuf);
1818           return t;
1819         }
1820     }
1821   if (tmpbuf != NULL)
1822     free(tmpbuf);
1823   return Archive::SHOULD_INCLUDE_UNKNOWN;
1824 }
1825
1826 // Iterate over global defined symbols, calling a visitor class V for each.
1827
1828 template<int size, bool big_endian>
1829 void
1830 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1831     Read_symbols_data* sd,
1832     Library_base::Symbol_visitor_base* v)
1833 {
1834   const char* sym_names =
1835       reinterpret_cast<const char*>(sd->symbol_names->data());
1836   const unsigned char* syms =
1837       sd->symbols->data() + sd->external_symbols_offset;
1838   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1839   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1840                      / sym_size);
1841   const unsigned char* p = syms;
1842
1843   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1844     {
1845       elfcpp::Sym<size, big_endian> sym(p);
1846       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1847         v->visit(sym_names + sym.get_st_name());
1848     }
1849 }
1850
1851 // Return whether the local symbol SYMNDX has a PLT offset.
1852
1853 template<int size, bool big_endian>
1854 bool
1855 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1856     unsigned int symndx) const
1857 {
1858   typename Local_plt_offsets::const_iterator p =
1859     this->local_plt_offsets_.find(symndx);
1860   return p != this->local_plt_offsets_.end();
1861 }
1862
1863 // Get the PLT offset of a local symbol.
1864
1865 template<int size, bool big_endian>
1866 unsigned int
1867 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
1868     unsigned int symndx) const
1869 {
1870   typename Local_plt_offsets::const_iterator p =
1871     this->local_plt_offsets_.find(symndx);
1872   gold_assert(p != this->local_plt_offsets_.end());
1873   return p->second;
1874 }
1875
1876 // Set the PLT offset of a local symbol.
1877
1878 template<int size, bool big_endian>
1879 void
1880 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1881     unsigned int symndx, unsigned int plt_offset)
1882 {
1883   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1884     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1885   gold_assert(ins.second);
1886 }
1887
1888 // First pass over the local symbols.  Here we add their names to
1889 // *POOL and *DYNPOOL, and we store the symbol value in
1890 // THIS->LOCAL_VALUES_.  This function is always called from a
1891 // singleton thread.  This is followed by a call to
1892 // finalize_local_symbols.
1893
1894 template<int size, bool big_endian>
1895 void
1896 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1897                                                             Stringpool* dynpool)
1898 {
1899   gold_assert(this->symtab_shndx_ != -1U);
1900   if (this->symtab_shndx_ == 0)
1901     {
1902       // This object has no symbols.  Weird but legal.
1903       return;
1904     }
1905
1906   // Read the symbol table section header.
1907   const unsigned int symtab_shndx = this->symtab_shndx_;
1908   typename This::Shdr symtabshdr(this,
1909                                  this->elf_file_.section_header(symtab_shndx));
1910   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1911
1912   // Read the local symbols.
1913   const int sym_size = This::sym_size;
1914   const unsigned int loccount = this->local_symbol_count_;
1915   gold_assert(loccount == symtabshdr.get_sh_info());
1916   off_t locsize = loccount * sym_size;
1917   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1918                                               locsize, true, true);
1919
1920   // Read the symbol names.
1921   const unsigned int strtab_shndx =
1922     this->adjust_shndx(symtabshdr.get_sh_link());
1923   section_size_type strtab_size;
1924   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1925                                                         &strtab_size,
1926                                                         true);
1927   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1928
1929   // Loop over the local symbols.
1930
1931   const Output_sections& out_sections(this->output_sections());
1932   unsigned int shnum = this->shnum();
1933   unsigned int count = 0;
1934   unsigned int dyncount = 0;
1935   // Skip the first, dummy, symbol.
1936   psyms += sym_size;
1937   bool strip_all = parameters->options().strip_all();
1938   bool discard_all = parameters->options().discard_all();
1939   bool discard_locals = parameters->options().discard_locals();
1940   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1941     {
1942       elfcpp::Sym<size, big_endian> sym(psyms);
1943
1944       Symbol_value<size>& lv(this->local_values_[i]);
1945
1946       bool is_ordinary;
1947       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1948                                                   &is_ordinary);
1949       lv.set_input_shndx(shndx, is_ordinary);
1950
1951       if (sym.get_st_type() == elfcpp::STT_SECTION)
1952         lv.set_is_section_symbol();
1953       else if (sym.get_st_type() == elfcpp::STT_TLS)
1954         lv.set_is_tls_symbol();
1955       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1956         lv.set_is_ifunc_symbol();
1957
1958       // Save the input symbol value for use in do_finalize_local_symbols().
1959       lv.set_input_value(sym.get_st_value());
1960
1961       // Decide whether this symbol should go into the output file.
1962
1963       if ((shndx < shnum && out_sections[shndx] == NULL)
1964           || shndx == this->discarded_eh_frame_shndx_)
1965         {
1966           lv.set_no_output_symtab_entry();
1967           gold_assert(!lv.needs_output_dynsym_entry());
1968           continue;
1969         }
1970
1971       if (sym.get_st_type() == elfcpp::STT_SECTION)
1972         {
1973           lv.set_no_output_symtab_entry();
1974           gold_assert(!lv.needs_output_dynsym_entry());
1975           continue;
1976         }
1977
1978       if (sym.get_st_name() >= strtab_size)
1979         {
1980           this->error(_("local symbol %u section name out of range: %u >= %u"),
1981                       i, sym.get_st_name(),
1982                       static_cast<unsigned int>(strtab_size));
1983           lv.set_no_output_symtab_entry();
1984           continue;
1985         }
1986
1987       const char* name = pnames + sym.get_st_name();
1988
1989       // If needed, add the symbol to the dynamic symbol table string pool.
1990       if (lv.needs_output_dynsym_entry())
1991         {
1992           dynpool->add(name, true, NULL);
1993           ++dyncount;
1994         }
1995
1996       if (strip_all
1997           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1998         {
1999           lv.set_no_output_symtab_entry();
2000           continue;
2001         }
2002
2003       // If --discard-locals option is used, discard all temporary local
2004       // symbols.  These symbols start with system-specific local label
2005       // prefixes, typically .L for ELF system.  We want to be compatible
2006       // with GNU ld so here we essentially use the same check in
2007       // bfd_is_local_label().  The code is different because we already
2008       // know that:
2009       //
2010       //   - the symbol is local and thus cannot have global or weak binding.
2011       //   - the symbol is not a section symbol.
2012       //   - the symbol has a name.
2013       //
2014       // We do not discard a symbol if it needs a dynamic symbol entry.
2015       if (discard_locals
2016           && sym.get_st_type() != elfcpp::STT_FILE
2017           && !lv.needs_output_dynsym_entry()
2018           && lv.may_be_discarded_from_output_symtab()
2019           && parameters->target().is_local_label_name(name))
2020         {
2021           lv.set_no_output_symtab_entry();
2022           continue;
2023         }
2024
2025       // Discard the local symbol if -retain_symbols_file is specified
2026       // and the local symbol is not in that file.
2027       if (!parameters->options().should_retain_symbol(name))
2028         {
2029           lv.set_no_output_symtab_entry();
2030           continue;
2031         }
2032
2033       // Add the symbol to the symbol table string pool.
2034       pool->add(name, true, NULL);
2035       ++count;
2036     }
2037
2038   this->output_local_symbol_count_ = count;
2039   this->output_local_dynsym_count_ = dyncount;
2040 }
2041
2042 // Compute the final value of a local symbol.
2043
2044 template<int size, bool big_endian>
2045 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2046 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2047     unsigned int r_sym,
2048     const Symbol_value<size>* lv_in,
2049     Symbol_value<size>* lv_out,
2050     bool relocatable,
2051     const Output_sections& out_sections,
2052     const std::vector<Address>& out_offsets,
2053     const Symbol_table* symtab)
2054 {
2055   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2056   // we may have a memory leak.
2057   gold_assert(lv_out->has_output_value());
2058
2059   bool is_ordinary;
2060   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2061   
2062   // Set the output symbol value.
2063   
2064   if (!is_ordinary)
2065     {
2066       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2067         lv_out->set_output_value(lv_in->input_value());
2068       else
2069         {
2070           this->error(_("unknown section index %u for local symbol %u"),
2071                       shndx, r_sym);
2072           lv_out->set_output_value(0);
2073           return This::CFLV_ERROR;
2074         }
2075     }
2076   else
2077     {
2078       if (shndx >= this->shnum())
2079         {
2080           this->error(_("local symbol %u section index %u out of range"),
2081                       r_sym, shndx);
2082           lv_out->set_output_value(0);
2083           return This::CFLV_ERROR;
2084         }
2085       
2086       Output_section* os = out_sections[shndx];
2087       Address secoffset = out_offsets[shndx];
2088       if (symtab->is_section_folded(this, shndx))
2089         {
2090           gold_assert(os == NULL && secoffset == invalid_address);
2091           // Get the os of the section it is folded onto.
2092           Section_id folded = symtab->icf()->get_folded_section(this,
2093                                                                 shndx);
2094           gold_assert(folded.first != NULL);
2095           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2096             <Sized_relobj_file<size, big_endian>*>(folded.first);
2097           os = folded_obj->output_section(folded.second);
2098           gold_assert(os != NULL);
2099           secoffset = folded_obj->get_output_section_offset(folded.second);
2100           
2101           // This could be a relaxed input section.
2102           if (secoffset == invalid_address)
2103             {
2104               const Output_relaxed_input_section* relaxed_section =
2105                 os->find_relaxed_input_section(folded_obj, folded.second);
2106               gold_assert(relaxed_section != NULL);
2107               secoffset = relaxed_section->address() - os->address();
2108             }
2109         }
2110       
2111       if (os == NULL)
2112         {
2113           // This local symbol belongs to a section we are discarding.
2114           // In some cases when applying relocations later, we will
2115           // attempt to match it to the corresponding kept section,
2116           // so we leave the input value unchanged here.
2117           return This::CFLV_DISCARDED;
2118         }
2119       else if (secoffset == invalid_address)
2120         {
2121           uint64_t start;
2122           
2123           // This is a SHF_MERGE section or one which otherwise
2124           // requires special handling.
2125           if (shndx == this->discarded_eh_frame_shndx_)
2126             {
2127               // This local symbol belongs to a discarded .eh_frame
2128               // section.  Just treat it like the case in which
2129               // os == NULL above.
2130               gold_assert(this->has_eh_frame_);
2131               return This::CFLV_DISCARDED;
2132             }
2133           else if (!lv_in->is_section_symbol())
2134             {
2135               // This is not a section symbol.  We can determine
2136               // the final value now.
2137               lv_out->set_output_value(
2138                   os->output_address(this, shndx, lv_in->input_value()));
2139             }
2140           else if (!os->find_starting_output_address(this, shndx, &start))
2141             {
2142               // This is a section symbol, but apparently not one in a
2143               // merged section.  First check to see if this is a relaxed
2144               // input section.  If so, use its address.  Otherwise just
2145               // use the start of the output section.  This happens with
2146               // relocatable links when the input object has section
2147               // symbols for arbitrary non-merge sections.
2148               const Output_section_data* posd =
2149                 os->find_relaxed_input_section(this, shndx);
2150               if (posd != NULL)
2151                 {
2152                   Address relocatable_link_adjustment =
2153                     relocatable ? os->address() : 0;
2154                   lv_out->set_output_value(posd->address()
2155                                            - relocatable_link_adjustment);
2156                 }
2157               else
2158                 lv_out->set_output_value(os->address());
2159             }
2160           else
2161             {
2162               // We have to consider the addend to determine the
2163               // value to use in a relocation.  START is the start
2164               // of this input section.  If we are doing a relocatable
2165               // link, use offset from start output section instead of
2166               // address.
2167               Address adjusted_start =
2168                 relocatable ? start - os->address() : start;
2169               Merged_symbol_value<size>* msv =
2170                 new Merged_symbol_value<size>(lv_in->input_value(),
2171                                               adjusted_start);
2172               lv_out->set_merged_symbol_value(msv);
2173             }
2174         }
2175       else if (lv_in->is_tls_symbol())
2176         lv_out->set_output_value(os->tls_offset()
2177                                  + secoffset
2178                                  + lv_in->input_value());
2179       else
2180         lv_out->set_output_value((relocatable ? 0 : os->address())
2181                                  + secoffset
2182                                  + lv_in->input_value());
2183     }
2184   return This::CFLV_OK;
2185 }
2186
2187 // Compute final local symbol value.  R_SYM is the index of a local
2188 // symbol in symbol table.  LV points to a symbol value, which is
2189 // expected to hold the input value and to be over-written by the
2190 // final value.  SYMTAB points to a symbol table.  Some targets may want
2191 // to know would-be-finalized local symbol values in relaxation.
2192 // Hence we provide this method.  Since this method updates *LV, a
2193 // callee should make a copy of the original local symbol value and
2194 // use the copy instead of modifying an object's local symbols before
2195 // everything is finalized.  The caller should also free up any allocated
2196 // memory in the return value in *LV.
2197 template<int size, bool big_endian>
2198 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2199 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2200     unsigned int r_sym,
2201     const Symbol_value<size>* lv_in,
2202     Symbol_value<size>* lv_out,
2203     const Symbol_table* symtab)
2204 {
2205   // This is just a wrapper of compute_final_local_value_internal.
2206   const bool relocatable = parameters->options().relocatable();
2207   const Output_sections& out_sections(this->output_sections());
2208   const std::vector<Address>& out_offsets(this->section_offsets());
2209   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2210                                                   relocatable, out_sections,
2211                                                   out_offsets, symtab);
2212 }
2213
2214 // Finalize the local symbols.  Here we set the final value in
2215 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2216 // This function is always called from a singleton thread.  The actual
2217 // output of the local symbols will occur in a separate task.
2218
2219 template<int size, bool big_endian>
2220 unsigned int
2221 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2222     unsigned int index,
2223     off_t off,
2224     Symbol_table* symtab)
2225 {
2226   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2227
2228   const unsigned int loccount = this->local_symbol_count_;
2229   this->local_symbol_offset_ = off;
2230
2231   const bool relocatable = parameters->options().relocatable();
2232   const Output_sections& out_sections(this->output_sections());
2233   const std::vector<Address>& out_offsets(this->section_offsets());
2234
2235   for (unsigned int i = 1; i < loccount; ++i)
2236     {
2237       Symbol_value<size>* lv = &this->local_values_[i];
2238
2239       Compute_final_local_value_status cflv_status =
2240         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2241                                                  out_sections, out_offsets,
2242                                                  symtab);
2243       switch (cflv_status)
2244         {
2245         case CFLV_OK:
2246           if (!lv->is_output_symtab_index_set())
2247             {
2248               lv->set_output_symtab_index(index);
2249               ++index;
2250             }
2251           break;
2252         case CFLV_DISCARDED:
2253         case CFLV_ERROR:
2254           // Do nothing.
2255           break;
2256         default:
2257           gold_unreachable();
2258         }
2259     }
2260   return index;
2261 }
2262
2263 // Set the output dynamic symbol table indexes for the local variables.
2264
2265 template<int size, bool big_endian>
2266 unsigned int
2267 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2268     unsigned int index)
2269 {
2270   const unsigned int loccount = this->local_symbol_count_;
2271   for (unsigned int i = 1; i < loccount; ++i)
2272     {
2273       Symbol_value<size>& lv(this->local_values_[i]);
2274       if (lv.needs_output_dynsym_entry())
2275         {
2276           lv.set_output_dynsym_index(index);
2277           ++index;
2278         }
2279     }
2280   return index;
2281 }
2282
2283 // Set the offset where local dynamic symbol information will be stored.
2284 // Returns the count of local symbols contributed to the symbol table by
2285 // this object.
2286
2287 template<int size, bool big_endian>
2288 unsigned int
2289 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2290 {
2291   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2292   this->local_dynsym_offset_ = off;
2293   return this->output_local_dynsym_count_;
2294 }
2295
2296 // If Symbols_data is not NULL get the section flags from here otherwise
2297 // get it from the file.
2298
2299 template<int size, bool big_endian>
2300 uint64_t
2301 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2302 {
2303   Symbols_data* sd = this->get_symbols_data();
2304   if (sd != NULL)
2305     {
2306       const unsigned char* pshdrs = sd->section_headers_data
2307                                     + This::shdr_size * shndx;
2308       typename This::Shdr shdr(pshdrs);
2309       return shdr.get_sh_flags(); 
2310     }
2311   // If sd is NULL, read the section header from the file.
2312   return this->elf_file_.section_flags(shndx); 
2313 }
2314
2315 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2316 // in icf.cc
2317
2318 template<int size, bool big_endian>
2319 uint64_t
2320 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2321 {
2322   Symbols_data* sd = this->get_symbols_data();
2323   gold_assert(sd != NULL);
2324
2325   const unsigned char* pshdrs = sd->section_headers_data
2326                                 + This::shdr_size * shndx;
2327   typename This::Shdr shdr(pshdrs);
2328   return shdr.get_sh_entsize(); 
2329 }
2330
2331 // Write out the local symbols.
2332
2333 template<int size, bool big_endian>
2334 void
2335 Sized_relobj_file<size, big_endian>::write_local_symbols(
2336     Output_file* of,
2337     const Stringpool* sympool,
2338     const Stringpool* dynpool,
2339     Output_symtab_xindex* symtab_xindex,
2340     Output_symtab_xindex* dynsym_xindex,
2341     off_t symtab_off)
2342 {
2343   const bool strip_all = parameters->options().strip_all();
2344   if (strip_all)
2345     {
2346       if (this->output_local_dynsym_count_ == 0)
2347         return;
2348       this->output_local_symbol_count_ = 0;
2349     }
2350
2351   gold_assert(this->symtab_shndx_ != -1U);
2352   if (this->symtab_shndx_ == 0)
2353     {
2354       // This object has no symbols.  Weird but legal.
2355       return;
2356     }
2357
2358   // Read the symbol table section header.
2359   const unsigned int symtab_shndx = this->symtab_shndx_;
2360   typename This::Shdr symtabshdr(this,
2361                                  this->elf_file_.section_header(symtab_shndx));
2362   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2363   const unsigned int loccount = this->local_symbol_count_;
2364   gold_assert(loccount == symtabshdr.get_sh_info());
2365
2366   // Read the local symbols.
2367   const int sym_size = This::sym_size;
2368   off_t locsize = loccount * sym_size;
2369   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2370                                               locsize, true, false);
2371
2372   // Read the symbol names.
2373   const unsigned int strtab_shndx =
2374     this->adjust_shndx(symtabshdr.get_sh_link());
2375   section_size_type strtab_size;
2376   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2377                                                         &strtab_size,
2378                                                         false);
2379   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2380
2381   // Get views into the output file for the portions of the symbol table
2382   // and the dynamic symbol table that we will be writing.
2383   off_t output_size = this->output_local_symbol_count_ * sym_size;
2384   unsigned char* oview = NULL;
2385   if (output_size > 0)
2386     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2387                                 output_size);
2388
2389   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2390   unsigned char* dyn_oview = NULL;
2391   if (dyn_output_size > 0)
2392     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2393                                     dyn_output_size);
2394
2395   const Output_sections out_sections(this->output_sections());
2396
2397   gold_assert(this->local_values_.size() == loccount);
2398
2399   unsigned char* ov = oview;
2400   unsigned char* dyn_ov = dyn_oview;
2401   psyms += sym_size;
2402   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2403     {
2404       elfcpp::Sym<size, big_endian> isym(psyms);
2405
2406       Symbol_value<size>& lv(this->local_values_[i]);
2407
2408       bool is_ordinary;
2409       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2410                                                      &is_ordinary);
2411       if (is_ordinary)
2412         {
2413           gold_assert(st_shndx < out_sections.size());
2414           if (out_sections[st_shndx] == NULL)
2415             continue;
2416           st_shndx = out_sections[st_shndx]->out_shndx();
2417           if (st_shndx >= elfcpp::SHN_LORESERVE)
2418             {
2419               if (lv.has_output_symtab_entry())
2420                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2421               if (lv.has_output_dynsym_entry())
2422                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2423               st_shndx = elfcpp::SHN_XINDEX;
2424             }
2425         }
2426
2427       // Write the symbol to the output symbol table.
2428       if (lv.has_output_symtab_entry())
2429         {
2430           elfcpp::Sym_write<size, big_endian> osym(ov);
2431
2432           gold_assert(isym.get_st_name() < strtab_size);
2433           const char* name = pnames + isym.get_st_name();
2434           osym.put_st_name(sympool->get_offset(name));
2435           osym.put_st_value(this->local_values_[i].value(this, 0));
2436           osym.put_st_size(isym.get_st_size());
2437           osym.put_st_info(isym.get_st_info());
2438           osym.put_st_other(isym.get_st_other());
2439           osym.put_st_shndx(st_shndx);
2440
2441           ov += sym_size;
2442         }
2443
2444       // Write the symbol to the output dynamic symbol table.
2445       if (lv.has_output_dynsym_entry())
2446         {
2447           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2448           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2449
2450           gold_assert(isym.get_st_name() < strtab_size);
2451           const char* name = pnames + isym.get_st_name();
2452           osym.put_st_name(dynpool->get_offset(name));
2453           osym.put_st_value(this->local_values_[i].value(this, 0));
2454           osym.put_st_size(isym.get_st_size());
2455           osym.put_st_info(isym.get_st_info());
2456           osym.put_st_other(isym.get_st_other());
2457           osym.put_st_shndx(st_shndx);
2458
2459           dyn_ov += sym_size;
2460         }
2461     }
2462
2463
2464   if (output_size > 0)
2465     {
2466       gold_assert(ov - oview == output_size);
2467       of->write_output_view(symtab_off + this->local_symbol_offset_,
2468                             output_size, oview);
2469     }
2470
2471   if (dyn_output_size > 0)
2472     {
2473       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2474       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2475                             dyn_oview);
2476     }
2477 }
2478
2479 // Set *INFO to symbolic information about the offset OFFSET in the
2480 // section SHNDX.  Return true if we found something, false if we
2481 // found nothing.
2482
2483 template<int size, bool big_endian>
2484 bool
2485 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2486     unsigned int shndx,
2487     off_t offset,
2488     Symbol_location_info* info)
2489 {
2490   if (this->symtab_shndx_ == 0)
2491     return false;
2492
2493   section_size_type symbols_size;
2494   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2495                                                         &symbols_size,
2496                                                         false);
2497
2498   unsigned int symbol_names_shndx =
2499     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2500   section_size_type names_size;
2501   const unsigned char* symbol_names_u =
2502     this->section_contents(symbol_names_shndx, &names_size, false);
2503   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2504
2505   const int sym_size = This::sym_size;
2506   const size_t count = symbols_size / sym_size;
2507
2508   const unsigned char* p = symbols;
2509   for (size_t i = 0; i < count; ++i, p += sym_size)
2510     {
2511       elfcpp::Sym<size, big_endian> sym(p);
2512
2513       if (sym.get_st_type() == elfcpp::STT_FILE)
2514         {
2515           if (sym.get_st_name() >= names_size)
2516             info->source_file = "(invalid)";
2517           else
2518             info->source_file = symbol_names + sym.get_st_name();
2519           continue;
2520         }
2521
2522       bool is_ordinary;
2523       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2524                                                      &is_ordinary);
2525       if (is_ordinary
2526           && st_shndx == shndx
2527           && static_cast<off_t>(sym.get_st_value()) <= offset
2528           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2529               > offset))
2530         {
2531           if (sym.get_st_name() > names_size)
2532             info->enclosing_symbol_name = "(invalid)";
2533           else
2534             {
2535               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2536               if (parameters->options().do_demangle())
2537                 {
2538                   char* demangled_name = cplus_demangle(
2539                       info->enclosing_symbol_name.c_str(),
2540                       DMGL_ANSI | DMGL_PARAMS);
2541                   if (demangled_name != NULL)
2542                     {
2543                       info->enclosing_symbol_name.assign(demangled_name);
2544                       free(demangled_name);
2545                     }
2546                 }
2547             }
2548           return true;
2549         }
2550     }
2551
2552   return false;
2553 }
2554
2555 // Look for a kept section corresponding to the given discarded section,
2556 // and return its output address.  This is used only for relocations in
2557 // debugging sections.  If we can't find the kept section, return 0.
2558
2559 template<int size, bool big_endian>
2560 typename Sized_relobj_file<size, big_endian>::Address
2561 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2562     unsigned int shndx,
2563     bool* found) const
2564 {
2565   Relobj* kept_object;
2566   unsigned int kept_shndx;
2567   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2568     {
2569       Sized_relobj_file<size, big_endian>* kept_relobj =
2570         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2571       Output_section* os = kept_relobj->output_section(kept_shndx);
2572       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2573       if (os != NULL && offset != invalid_address)
2574         {
2575           *found = true;
2576           return os->address() + offset;
2577         }
2578     }
2579   *found = false;
2580   return 0;
2581 }
2582
2583 // Get symbol counts.
2584
2585 template<int size, bool big_endian>
2586 void
2587 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2588     const Symbol_table*,
2589     size_t* defined,
2590     size_t* used) const
2591 {
2592   *defined = this->defined_count_;
2593   size_t count = 0;
2594   for (typename Symbols::const_iterator p = this->symbols_.begin();
2595        p != this->symbols_.end();
2596        ++p)
2597     if (*p != NULL
2598         && (*p)->source() == Symbol::FROM_OBJECT
2599         && (*p)->object() == this
2600         && (*p)->is_defined())
2601       ++count;
2602   *used = count;
2603 }
2604
2605 // Return a view of the decompressed contents of a section.  Set *PLEN
2606 // to the size.  Set *IS_NEW to true if the contents need to be freed
2607 // by the caller.
2608
2609 template<int size, bool big_endian>
2610 const unsigned char*
2611 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2612     unsigned int shndx,
2613     section_size_type* plen,
2614     bool* is_new)
2615 {
2616   section_size_type buffer_size;
2617   const unsigned char* buffer = this->section_contents(shndx, &buffer_size,
2618                                                        false);
2619
2620   if (this->compressed_sections_ == NULL)
2621     {
2622       *plen = buffer_size;
2623       *is_new = false;
2624       return buffer;
2625     }
2626
2627   Compressed_section_map::const_iterator p =
2628       this->compressed_sections_->find(shndx);
2629   if (p == this->compressed_sections_->end())
2630     {
2631       *plen = buffer_size;
2632       *is_new = false;
2633       return buffer;
2634     }
2635
2636   section_size_type uncompressed_size = p->second.size;
2637   if (p->second.contents != NULL)
2638     {
2639       *plen = uncompressed_size;
2640       *is_new = false;
2641       return p->second.contents;
2642     }
2643
2644   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2645   if (!decompress_input_section(buffer,
2646                                 buffer_size,
2647                                 uncompressed_data,
2648                                 uncompressed_size))
2649     this->error(_("could not decompress section %s"),
2650                 this->do_section_name(shndx).c_str());
2651
2652   // We could cache the results in p->second.contents and store
2653   // false in *IS_NEW, but build_compressed_section_map() would
2654   // have done so if it had expected it to be profitable.  If
2655   // we reach this point, we expect to need the contents only
2656   // once in this pass.
2657   *plen = uncompressed_size;
2658   *is_new = true;
2659   return uncompressed_data;
2660 }
2661
2662 // Discard any buffers of uncompressed sections.  This is done
2663 // at the end of the Add_symbols task.
2664
2665 template<int size, bool big_endian>
2666 void
2667 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2668 {
2669   if (this->compressed_sections_ == NULL)
2670     return;
2671
2672   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2673        p != this->compressed_sections_->end();
2674        ++p)
2675     {
2676       if (p->second.contents != NULL)
2677         {
2678           delete[] p->second.contents;
2679           p->second.contents = NULL;
2680         }
2681     }
2682 }
2683
2684 // Input_objects methods.
2685
2686 // Add a regular relocatable object to the list.  Return false if this
2687 // object should be ignored.
2688
2689 bool
2690 Input_objects::add_object(Object* obj)
2691 {
2692   // Print the filename if the -t/--trace option is selected.
2693   if (parameters->options().trace())
2694     gold_info("%s", obj->name().c_str());
2695
2696   if (!obj->is_dynamic())
2697     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2698   else
2699     {
2700       // See if this is a duplicate SONAME.
2701       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2702       const char* soname = dynobj->soname();
2703
2704       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2705         this->sonames_.insert(soname);
2706       if (!ins.second)
2707         {
2708           // We have already seen a dynamic object with this soname.
2709           return false;
2710         }
2711
2712       this->dynobj_list_.push_back(dynobj);
2713     }
2714
2715   // Add this object to the cross-referencer if requested.
2716   if (parameters->options().user_set_print_symbol_counts()
2717       || parameters->options().cref())
2718     {
2719       if (this->cref_ == NULL)
2720         this->cref_ = new Cref();
2721       this->cref_->add_object(obj);
2722     }
2723
2724   return true;
2725 }
2726
2727 // For each dynamic object, record whether we've seen all of its
2728 // explicit dependencies.
2729
2730 void
2731 Input_objects::check_dynamic_dependencies() const
2732 {
2733   bool issued_copy_dt_needed_error = false;
2734   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2735        p != this->dynobj_list_.end();
2736        ++p)
2737     {
2738       const Dynobj::Needed& needed((*p)->needed());
2739       bool found_all = true;
2740       Dynobj::Needed::const_iterator pneeded;
2741       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2742         {
2743           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2744             {
2745               found_all = false;
2746               break;
2747             }
2748         }
2749       (*p)->set_has_unknown_needed_entries(!found_all);
2750
2751       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2752       // that gold does not support.  However, they cause no trouble
2753       // unless there is a DT_NEEDED entry that we don't know about;
2754       // warn only in that case.
2755       if (!found_all
2756           && !issued_copy_dt_needed_error
2757           && (parameters->options().copy_dt_needed_entries()
2758               || parameters->options().add_needed()))
2759         {
2760           const char* optname;
2761           if (parameters->options().copy_dt_needed_entries())
2762             optname = "--copy-dt-needed-entries";
2763           else
2764             optname = "--add-needed";
2765           gold_error(_("%s is not supported but is required for %s in %s"),
2766                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2767           issued_copy_dt_needed_error = true;
2768         }
2769     }
2770 }
2771
2772 // Start processing an archive.
2773
2774 void
2775 Input_objects::archive_start(Archive* archive)
2776 {
2777   if (parameters->options().user_set_print_symbol_counts()
2778       || parameters->options().cref())
2779     {
2780       if (this->cref_ == NULL)
2781         this->cref_ = new Cref();
2782       this->cref_->add_archive_start(archive);
2783     }
2784 }
2785
2786 // Stop processing an archive.
2787
2788 void
2789 Input_objects::archive_stop(Archive* archive)
2790 {
2791   if (parameters->options().user_set_print_symbol_counts()
2792       || parameters->options().cref())
2793     this->cref_->add_archive_stop(archive);
2794 }
2795
2796 // Print symbol counts
2797
2798 void
2799 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2800 {
2801   if (parameters->options().user_set_print_symbol_counts()
2802       && this->cref_ != NULL)
2803     this->cref_->print_symbol_counts(symtab);
2804 }
2805
2806 // Print a cross reference table.
2807
2808 void
2809 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2810 {
2811   if (parameters->options().cref() && this->cref_ != NULL)
2812     this->cref_->print_cref(symtab, f);
2813 }
2814
2815 // Relocate_info methods.
2816
2817 // Return a string describing the location of a relocation when file
2818 // and lineno information is not available.  This is only used in
2819 // error messages.
2820
2821 template<int size, bool big_endian>
2822 std::string
2823 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2824 {
2825   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2826   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2827   if (!ret.empty())
2828     return ret;
2829
2830   ret = this->object->name();
2831
2832   Symbol_location_info info;
2833   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2834     {
2835       if (!info.source_file.empty())
2836         {
2837           ret += ":";
2838           ret += info.source_file;
2839         }
2840       size_t len = info.enclosing_symbol_name.length() + 100;
2841       char* buf = new char[len];
2842       snprintf(buf, len, _(":function %s"),
2843                info.enclosing_symbol_name.c_str());
2844       ret += buf;
2845       delete[] buf;
2846       return ret;
2847     }
2848
2849   ret += "(";
2850   ret += this->object->section_name(this->data_shndx);
2851   char buf[100];
2852   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2853   ret += buf;
2854   return ret;
2855 }
2856
2857 } // End namespace gold.
2858
2859 namespace
2860 {
2861
2862 using namespace gold;
2863
2864 // Read an ELF file with the header and return the appropriate
2865 // instance of Object.
2866
2867 template<int size, bool big_endian>
2868 Object*
2869 make_elf_sized_object(const std::string& name, Input_file* input_file,
2870                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2871                       bool* punconfigured)
2872 {
2873   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2874                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2875                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2876   if (target == NULL)
2877     gold_fatal(_("%s: unsupported ELF machine number %d"),
2878                name.c_str(), ehdr.get_e_machine());
2879
2880   if (!parameters->target_valid())
2881     set_parameters_target(target);
2882   else if (target != &parameters->target())
2883     {
2884       if (punconfigured != NULL)
2885         *punconfigured = true;
2886       else
2887         gold_error(_("%s: incompatible target"), name.c_str());
2888       return NULL;
2889     }
2890
2891   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2892                                                    ehdr);
2893 }
2894
2895 } // End anonymous namespace.
2896
2897 namespace gold
2898 {
2899
2900 // Return whether INPUT_FILE is an ELF object.
2901
2902 bool
2903 is_elf_object(Input_file* input_file, off_t offset,
2904               const unsigned char** start, int* read_size)
2905 {
2906   off_t filesize = input_file->file().filesize();
2907   int want = elfcpp::Elf_recognizer::max_header_size;
2908   if (filesize - offset < want)
2909     want = filesize - offset;
2910
2911   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2912                                                        true, false);
2913   *start = p;
2914   *read_size = want;
2915
2916   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2917 }
2918
2919 // Read an ELF file and return the appropriate instance of Object.
2920
2921 Object*
2922 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2923                 const unsigned char* p, section_offset_type bytes,
2924                 bool* punconfigured)
2925 {
2926   if (punconfigured != NULL)
2927     *punconfigured = false;
2928
2929   std::string error;
2930   bool big_endian = false;
2931   int size = 0;
2932   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2933                                                &big_endian, &error))
2934     {
2935       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2936       return NULL;
2937     }
2938
2939   if (size == 32)
2940     {
2941       if (big_endian)
2942         {
2943 #ifdef HAVE_TARGET_32_BIG
2944           elfcpp::Ehdr<32, true> ehdr(p);
2945           return make_elf_sized_object<32, true>(name, input_file,
2946                                                  offset, ehdr, punconfigured);
2947 #else
2948           if (punconfigured != NULL)
2949             *punconfigured = true;
2950           else
2951             gold_error(_("%s: not configured to support "
2952                          "32-bit big-endian object"),
2953                        name.c_str());
2954           return NULL;
2955 #endif
2956         }
2957       else
2958         {
2959 #ifdef HAVE_TARGET_32_LITTLE
2960           elfcpp::Ehdr<32, false> ehdr(p);
2961           return make_elf_sized_object<32, false>(name, input_file,
2962                                                   offset, ehdr, punconfigured);
2963 #else
2964           if (punconfigured != NULL)
2965             *punconfigured = true;
2966           else
2967             gold_error(_("%s: not configured to support "
2968                          "32-bit little-endian object"),
2969                        name.c_str());
2970           return NULL;
2971 #endif
2972         }
2973     }
2974   else if (size == 64)
2975     {
2976       if (big_endian)
2977         {
2978 #ifdef HAVE_TARGET_64_BIG
2979           elfcpp::Ehdr<64, true> ehdr(p);
2980           return make_elf_sized_object<64, true>(name, input_file,
2981                                                  offset, ehdr, punconfigured);
2982 #else
2983           if (punconfigured != NULL)
2984             *punconfigured = true;
2985           else
2986             gold_error(_("%s: not configured to support "
2987                          "64-bit big-endian object"),
2988                        name.c_str());
2989           return NULL;
2990 #endif
2991         }
2992       else
2993         {
2994 #ifdef HAVE_TARGET_64_LITTLE
2995           elfcpp::Ehdr<64, false> ehdr(p);
2996           return make_elf_sized_object<64, false>(name, input_file,
2997                                                   offset, ehdr, punconfigured);
2998 #else
2999           if (punconfigured != NULL)
3000             *punconfigured = true;
3001           else
3002             gold_error(_("%s: not configured to support "
3003                          "64-bit little-endian object"),
3004                        name.c_str());
3005           return NULL;
3006 #endif
3007         }
3008     }
3009   else
3010     gold_unreachable();
3011 }
3012
3013 // Instantiate the templates we need.
3014
3015 #ifdef HAVE_TARGET_32_LITTLE
3016 template
3017 void
3018 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3019                                      Read_symbols_data*);
3020 #endif
3021
3022 #ifdef HAVE_TARGET_32_BIG
3023 template
3024 void
3025 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3026                                     Read_symbols_data*);
3027 #endif
3028
3029 #ifdef HAVE_TARGET_64_LITTLE
3030 template
3031 void
3032 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3033                                      Read_symbols_data*);
3034 #endif
3035
3036 #ifdef HAVE_TARGET_64_BIG
3037 template
3038 void
3039 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3040                                     Read_symbols_data*);
3041 #endif
3042
3043 #ifdef HAVE_TARGET_32_LITTLE
3044 template
3045 class Sized_relobj_file<32, false>;
3046 #endif
3047
3048 #ifdef HAVE_TARGET_32_BIG
3049 template
3050 class Sized_relobj_file<32, true>;
3051 #endif
3052
3053 #ifdef HAVE_TARGET_64_LITTLE
3054 template
3055 class Sized_relobj_file<64, false>;
3056 #endif
3057
3058 #ifdef HAVE_TARGET_64_BIG
3059 template
3060 class Sized_relobj_file<64, true>;
3061 #endif
3062
3063 #ifdef HAVE_TARGET_32_LITTLE
3064 template
3065 struct Relocate_info<32, false>;
3066 #endif
3067
3068 #ifdef HAVE_TARGET_32_BIG
3069 template
3070 struct Relocate_info<32, true>;
3071 #endif
3072
3073 #ifdef HAVE_TARGET_64_LITTLE
3074 template
3075 struct Relocate_info<64, false>;
3076 #endif
3077
3078 #ifdef HAVE_TARGET_64_BIG
3079 template
3080 struct Relocate_info<64, true>;
3081 #endif
3082
3083 #ifdef HAVE_TARGET_32_LITTLE
3084 template
3085 void
3086 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3087
3088 template
3089 void
3090 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3091                                       const unsigned char*);
3092 #endif
3093
3094 #ifdef HAVE_TARGET_32_BIG
3095 template
3096 void
3097 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3098
3099 template
3100 void
3101 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3102                                      const unsigned char*);
3103 #endif
3104
3105 #ifdef HAVE_TARGET_64_LITTLE
3106 template
3107 void
3108 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3109
3110 template
3111 void
3112 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3113                                       const unsigned char*);
3114 #endif
3115
3116 #ifdef HAVE_TARGET_64_BIG
3117 template
3118 void
3119 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3120
3121 template
3122 void
3123 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3124                                      const unsigned char*);
3125 #endif
3126
3127 } // End namespace gold.