* incremental-dump.cc (dump_incremental_inputs): Print COMDAT groups.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header.  This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438   const unsigned int shnum = this->elf_file_.shnum();
439   this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers.  The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section.  Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451   const unsigned int shnum = this->shnum();
452   this->symtab_shndx_ = 0;
453   if (shnum > 0)
454     {
455       // Look through the sections in reverse order, since gas tends
456       // to put the symbol table at the end.
457       const unsigned char* p = pshdrs + shnum * This::shdr_size;
458       unsigned int i = shnum;
459       unsigned int xindex_shndx = 0;
460       unsigned int xindex_link = 0;
461       while (i > 0)
462         {
463           --i;
464           p -= This::shdr_size;
465           typename This::Shdr shdr(p);
466           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467             {
468               this->symtab_shndx_ = i;
469               if (xindex_shndx > 0 && xindex_link == i)
470                 {
471                   Xindex* xindex =
472                     new Xindex(this->elf_file_.large_shndx_offset());
473                   xindex->read_symtab_xindex<size, big_endian>(this,
474                                                                xindex_shndx,
475                                                                pshdrs);
476                   this->set_xindex(xindex);
477                 }
478               break;
479             }
480
481           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482           // one.  This will work if it follows the SHT_SYMTAB
483           // section.
484           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485             {
486               xindex_shndx = i;
487               xindex_link = this->adjust_shndx(shdr.get_sh_link());
488             }
489         }
490     }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500   gold_assert(this->symtab_shndx_ != -1U);
501   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503   return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512     const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
515           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
516 }
517
518 // Return whether there is a GNU .eh_frame section, given the section
519 // headers and the section names.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::find_eh_frame(
524     const unsigned char* pshdrs,
525     const char* names,
526     section_size_type names_size) const
527 {
528   const unsigned int shnum = this->shnum();
529   const unsigned char* p = pshdrs + This::shdr_size;
530   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
531     {
532       typename This::Shdr shdr(p);
533       if (this->check_eh_frame_flags(&shdr))
534         {
535           if (shdr.get_sh_name() >= names_size)
536             {
537               this->error(_("bad section name offset for section %u: %lu"),
538                           i, static_cast<unsigned long>(shdr.get_sh_name()));
539               continue;
540             }
541
542           const char* name = names + shdr.get_sh_name();
543           if (strcmp(name, ".eh_frame") == 0)
544             return true;
545         }
546     }
547   return false;
548 }
549
550 // Build a table for any compressed debug sections, mapping each section index
551 // to the uncompressed size.
552
553 template<int size, bool big_endian>
554 Compressed_section_map*
555 build_compressed_section_map(
556     const unsigned char* pshdrs,
557     unsigned int shnum,
558     const char* names,
559     section_size_type names_size,
560     Sized_relobj_file<size, big_endian>* obj)
561 {
562   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
563   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
564   const unsigned char* p = pshdrs + shdr_size;
565   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
566     {
567       typename elfcpp::Shdr<size, big_endian> shdr(p);
568       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
569           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570         {
571           if (shdr.get_sh_name() >= names_size)
572             {
573               obj->error(_("bad section name offset for section %u: %lu"),
574                          i, static_cast<unsigned long>(shdr.get_sh_name()));
575               continue;
576             }
577
578           const char* name = names + shdr.get_sh_name();
579           if (is_compressed_debug_section(name))
580             {
581               section_size_type len;
582               const unsigned char* contents =
583                   obj->section_contents(i, &len, false);
584               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
585               if (uncompressed_size != -1ULL)
586                 (*uncompressed_sizes)[i] =
587                     convert_to_section_size_type(uncompressed_size);
588             }
589         }
590     }
591   return uncompressed_sizes;
592 }
593
594 // Read the sections and symbols from an object file.
595
596 template<int size, bool big_endian>
597 void
598 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
599 {
600   this->read_section_data(&this->elf_file_, sd);
601
602   const unsigned char* const pshdrs = sd->section_headers->data();
603
604   this->find_symtab(pshdrs);
605
606   const unsigned char* namesu = sd->section_names->data();
607   const char* names = reinterpret_cast<const char*>(namesu);
608   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
609     {
610       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
611         this->has_eh_frame_ = true;
612     }
613   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
614     this->compressed_sections_ =
615         build_compressed_section_map(pshdrs, this->shnum(), names,
616                                      sd->section_names_size, this);
617
618   sd->symbols = NULL;
619   sd->symbols_size = 0;
620   sd->external_symbols_offset = 0;
621   sd->symbol_names = NULL;
622   sd->symbol_names_size = 0;
623
624   if (this->symtab_shndx_ == 0)
625     {
626       // No symbol table.  Weird but legal.
627       return;
628     }
629
630   // Get the symbol table section header.
631   typename This::Shdr symtabshdr(pshdrs
632                                  + this->symtab_shndx_ * This::shdr_size);
633   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
634
635   // If this object has a .eh_frame section, we need all the symbols.
636   // Otherwise we only need the external symbols.  While it would be
637   // simpler to just always read all the symbols, I've seen object
638   // files with well over 2000 local symbols, which for a 64-bit
639   // object file format is over 5 pages that we don't need to read
640   // now.
641
642   const int sym_size = This::sym_size;
643   const unsigned int loccount = symtabshdr.get_sh_info();
644   this->local_symbol_count_ = loccount;
645   this->local_values_.resize(loccount);
646   section_offset_type locsize = loccount * sym_size;
647   off_t dataoff = symtabshdr.get_sh_offset();
648   section_size_type datasize =
649     convert_to_section_size_type(symtabshdr.get_sh_size());
650   off_t extoff = dataoff + locsize;
651   section_size_type extsize = datasize - locsize;
652
653   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
654   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
655
656   if (readsize == 0)
657     {
658       // No external symbols.  Also weird but also legal.
659       return;
660     }
661
662   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
663
664   // Read the section header for the symbol names.
665   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
666   if (strtab_shndx >= this->shnum())
667     {
668       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
669       return;
670     }
671   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
672   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
673     {
674       this->error(_("symbol table name section has wrong type: %u"),
675                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
676       return;
677     }
678
679   // Read the symbol names.
680   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
681                                                strtabshdr.get_sh_size(),
682                                                false, true);
683
684   sd->symbols = fvsymtab;
685   sd->symbols_size = readsize;
686   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
687   sd->symbol_names = fvstrtab;
688   sd->symbol_names_size =
689     convert_to_section_size_type(strtabshdr.get_sh_size());
690 }
691
692 // Return the section index of symbol SYM.  Set *VALUE to its value in
693 // the object file.  Set *IS_ORDINARY if this is an ordinary section
694 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
695 // Note that for a symbol which is not defined in this object file,
696 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
697 // the final value of the symbol in the link.
698
699 template<int size, bool big_endian>
700 unsigned int
701 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
702                                                               Address* value,
703                                                               bool* is_ordinary)
704 {
705   section_size_type symbols_size;
706   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
707                                                         &symbols_size,
708                                                         false);
709
710   const size_t count = symbols_size / This::sym_size;
711   gold_assert(sym < count);
712
713   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
714   *value = elfsym.get_st_value();
715
716   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
717 }
718
719 // Return whether to include a section group in the link.  LAYOUT is
720 // used to keep track of which section groups we have already seen.
721 // INDEX is the index of the section group and SHDR is the section
722 // header.  If we do not want to include this group, we set bits in
723 // OMIT for each section which should be discarded.
724
725 template<int size, bool big_endian>
726 bool
727 Sized_relobj_file<size, big_endian>::include_section_group(
728     Symbol_table* symtab,
729     Layout* layout,
730     unsigned int index,
731     const char* name,
732     const unsigned char* shdrs,
733     const char* section_names,
734     section_size_type section_names_size,
735     std::vector<bool>* omit)
736 {
737   // Read the section contents.
738   typename This::Shdr shdr(shdrs + index * This::shdr_size);
739   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
740                                              shdr.get_sh_size(), true, false);
741   const elfcpp::Elf_Word* pword =
742     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
743
744   // The first word contains flags.  We only care about COMDAT section
745   // groups.  Other section groups are always included in the link
746   // just like ordinary sections.
747   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
748
749   // Look up the group signature, which is the name of a symbol.  This
750   // is a lot of effort to go to to read a string.  Why didn't they
751   // just have the group signature point into the string table, rather
752   // than indirect through a symbol?
753
754   // Get the appropriate symbol table header (this will normally be
755   // the single SHT_SYMTAB section, but in principle it need not be).
756   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
757   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
758
759   // Read the symbol table entry.
760   unsigned int symndx = shdr.get_sh_info();
761   if (symndx >= symshdr.get_sh_size() / This::sym_size)
762     {
763       this->error(_("section group %u info %u out of range"),
764                   index, symndx);
765       return false;
766     }
767   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
768   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
769                                              false);
770   elfcpp::Sym<size, big_endian> sym(psym);
771
772   // Read the symbol table names.
773   section_size_type symnamelen;
774   const unsigned char* psymnamesu;
775   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
776                                       &symnamelen, true);
777   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
778
779   // Get the section group signature.
780   if (sym.get_st_name() >= symnamelen)
781     {
782       this->error(_("symbol %u name offset %u out of range"),
783                   symndx, sym.get_st_name());
784       return false;
785     }
786
787   std::string signature(psymnames + sym.get_st_name());
788
789   // It seems that some versions of gas will create a section group
790   // associated with a section symbol, and then fail to give a name to
791   // the section symbol.  In such a case, use the name of the section.
792   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
793     {
794       bool is_ordinary;
795       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
796                                                       sym.get_st_shndx(),
797                                                       &is_ordinary);
798       if (!is_ordinary || sym_shndx >= this->shnum())
799         {
800           this->error(_("symbol %u invalid section index %u"),
801                       symndx, sym_shndx);
802           return false;
803         }
804       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
805       if (member_shdr.get_sh_name() < section_names_size)
806         signature = section_names + member_shdr.get_sh_name();
807     }
808
809   // Record this section group in the layout, and see whether we've already
810   // seen one with the same signature.
811   bool include_group;
812   bool is_comdat;
813   Kept_section* kept_section = NULL;
814
815   if ((flags & elfcpp::GRP_COMDAT) == 0)
816     {
817       include_group = true;
818       is_comdat = false;
819     }
820   else
821     {
822       include_group = layout->find_or_add_kept_section(signature,
823                                                        this, index, true,
824                                                        true, &kept_section);
825       is_comdat = true;
826     }
827
828   if (is_comdat && include_group)
829     {
830       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
831       if (incremental_inputs != NULL)
832         incremental_inputs->report_comdat_group(this, signature.c_str());
833     }
834
835   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
836
837   std::vector<unsigned int> shndxes;
838   bool relocate_group = include_group && parameters->options().relocatable();
839   if (relocate_group)
840     shndxes.reserve(count - 1);
841
842   for (size_t i = 1; i < count; ++i)
843     {
844       elfcpp::Elf_Word shndx =
845         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
846
847       if (relocate_group)
848         shndxes.push_back(shndx);
849
850       if (shndx >= this->shnum())
851         {
852           this->error(_("section %u in section group %u out of range"),
853                       shndx, index);
854           continue;
855         }
856
857       // Check for an earlier section number, since we're going to get
858       // it wrong--we may have already decided to include the section.
859       if (shndx < index)
860         this->error(_("invalid section group %u refers to earlier section %u"),
861                     index, shndx);
862
863       // Get the name of the member section.
864       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
865       if (member_shdr.get_sh_name() >= section_names_size)
866         {
867           // This is an error, but it will be diagnosed eventually
868           // in do_layout, so we don't need to do anything here but
869           // ignore it.
870           continue;
871         }
872       std::string mname(section_names + member_shdr.get_sh_name());
873
874       if (include_group)
875         {
876           if (is_comdat)
877             kept_section->add_comdat_section(mname, shndx,
878                                              member_shdr.get_sh_size());
879         }
880       else
881         {
882           (*omit)[shndx] = true;
883
884           if (is_comdat)
885             {
886               Relobj* kept_object = kept_section->object();
887               if (kept_section->is_comdat())
888                 {
889                   // Find the corresponding kept section, and store
890                   // that info in the discarded section table.
891                   unsigned int kept_shndx;
892                   uint64_t kept_size;
893                   if (kept_section->find_comdat_section(mname, &kept_shndx,
894                                                         &kept_size))
895                     {
896                       // We don't keep a mapping for this section if
897                       // it has a different size.  The mapping is only
898                       // used for relocation processing, and we don't
899                       // want to treat the sections as similar if the
900                       // sizes are different.  Checking the section
901                       // size is the approach used by the GNU linker.
902                       if (kept_size == member_shdr.get_sh_size())
903                         this->set_kept_comdat_section(shndx, kept_object,
904                                                       kept_shndx);
905                     }
906                 }
907               else
908                 {
909                   // The existing section is a linkonce section.  Add
910                   // a mapping if there is exactly one section in the
911                   // group (which is true when COUNT == 2) and if it
912                   // is the same size.
913                   if (count == 2
914                       && (kept_section->linkonce_size()
915                           == member_shdr.get_sh_size()))
916                     this->set_kept_comdat_section(shndx, kept_object,
917                                                   kept_section->shndx());
918                 }
919             }
920         }
921     }
922
923   if (relocate_group)
924     layout->layout_group(symtab, this, index, name, signature.c_str(),
925                          shdr, flags, &shndxes);
926
927   return include_group;
928 }
929
930 // Whether to include a linkonce section in the link.  NAME is the
931 // name of the section and SHDR is the section header.
932
933 // Linkonce sections are a GNU extension implemented in the original
934 // GNU linker before section groups were defined.  The semantics are
935 // that we only include one linkonce section with a given name.  The
936 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
937 // where T is the type of section and SYMNAME is the name of a symbol.
938 // In an attempt to make linkonce sections interact well with section
939 // groups, we try to identify SYMNAME and use it like a section group
940 // signature.  We want to block section groups with that signature,
941 // but not other linkonce sections with that signature.  We also use
942 // the full name of the linkonce section as a normal section group
943 // signature.
944
945 template<int size, bool big_endian>
946 bool
947 Sized_relobj_file<size, big_endian>::include_linkonce_section(
948     Layout* layout,
949     unsigned int index,
950     const char* name,
951     const elfcpp::Shdr<size, big_endian>& shdr)
952 {
953   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
954   // In general the symbol name we want will be the string following
955   // the last '.'.  However, we have to handle the case of
956   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
957   // some versions of gcc.  So we use a heuristic: if the name starts
958   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
959   // we look for the last '.'.  We can't always simply skip
960   // ".gnu.linkonce.X", because we have to deal with cases like
961   // ".gnu.linkonce.d.rel.ro.local".
962   const char* const linkonce_t = ".gnu.linkonce.t.";
963   const char* symname;
964   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
965     symname = name + strlen(linkonce_t);
966   else
967     symname = strrchr(name, '.') + 1;
968   std::string sig1(symname);
969   std::string sig2(name);
970   Kept_section* kept1;
971   Kept_section* kept2;
972   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
973                                                    false, &kept1);
974   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
975                                                    true, &kept2);
976
977   if (!include2)
978     {
979       // We are not including this section because we already saw the
980       // name of the section as a signature.  This normally implies
981       // that the kept section is another linkonce section.  If it is
982       // the same size, record it as the section which corresponds to
983       // this one.
984       if (kept2->object() != NULL
985           && !kept2->is_comdat()
986           && kept2->linkonce_size() == sh_size)
987         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
988     }
989   else if (!include1)
990     {
991       // The section is being discarded on the basis of its symbol
992       // name.  This means that the corresponding kept section was
993       // part of a comdat group, and it will be difficult to identify
994       // the specific section within that group that corresponds to
995       // this linkonce section.  We'll handle the simple case where
996       // the group has only one member section.  Otherwise, it's not
997       // worth the effort.
998       unsigned int kept_shndx;
999       uint64_t kept_size;
1000       if (kept1->object() != NULL
1001           && kept1->is_comdat()
1002           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1003           && kept_size == sh_size)
1004         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1005     }
1006   else
1007     {
1008       kept1->set_linkonce_size(sh_size);
1009       kept2->set_linkonce_size(sh_size);
1010     }
1011
1012   return include1 && include2;
1013 }
1014
1015 // Layout an input section.
1016
1017 template<int size, bool big_endian>
1018 inline void
1019 Sized_relobj_file<size, big_endian>::layout_section(Layout* layout,
1020                                                     unsigned int shndx,
1021                                                     const char* name,
1022                                                     typename This::Shdr& shdr,
1023                                                     unsigned int reloc_shndx,
1024                                                     unsigned int reloc_type)
1025 {
1026   off_t offset;
1027   Output_section* os = layout->layout(this, shndx, name, shdr,
1028                                           reloc_shndx, reloc_type, &offset);
1029
1030   this->output_sections()[shndx] = os;
1031   if (offset == -1)
1032     this->section_offsets()[shndx] = invalid_address;
1033   else
1034     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1035
1036   // If this section requires special handling, and if there are
1037   // relocs that apply to it, then we must do the special handling
1038   // before we apply the relocs.
1039   if (offset == -1 && reloc_shndx != 0)
1040     this->set_relocs_must_follow_section_writes();
1041 }
1042
1043 // Lay out the input sections.  We walk through the sections and check
1044 // whether they should be included in the link.  If they should, we
1045 // pass them to the Layout object, which will return an output section
1046 // and an offset.  
1047 // During garbage collection (--gc-sections) and identical code folding 
1048 // (--icf), this function is called twice.  When it is called the first 
1049 // time, it is for setting up some sections as roots to a work-list for
1050 // --gc-sections and to do comdat processing.  Actual layout happens the 
1051 // second time around after all the relevant sections have been determined.  
1052 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1053 // set to true after the garbage collection worklist or identical code 
1054 // folding is processed and the relevant sections to be kept are 
1055 // determined.  Then, this function is called again to layout the sections.
1056
1057 template<int size, bool big_endian>
1058 void
1059 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1060                                                Layout* layout,
1061                                                Read_symbols_data* sd)
1062 {
1063   const unsigned int shnum = this->shnum();
1064   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1065                           && !symtab->gc()->is_worklist_ready())
1066                          || (parameters->options().icf_enabled()
1067                              && !symtab->icf()->is_icf_ready()));
1068  
1069   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1070                           && symtab->gc()->is_worklist_ready())
1071                          || (parameters->options().icf_enabled()
1072                              && symtab->icf()->is_icf_ready()));
1073
1074   bool is_gc_or_icf = (parameters->options().gc_sections()
1075                        || parameters->options().icf_enabled()); 
1076
1077   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1078   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1079
1080   if (shnum == 0)
1081     return;
1082   Symbols_data* gc_sd = NULL;
1083   if (is_gc_pass_one)
1084     {
1085       // During garbage collection save the symbols data to use it when 
1086       // re-entering this function.   
1087       gc_sd = new Symbols_data;
1088       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1089       this->set_symbols_data(gc_sd);
1090     }
1091   else if (is_gc_pass_two)
1092     {
1093       gc_sd = this->get_symbols_data();
1094     }
1095
1096   const unsigned char* section_headers_data = NULL;
1097   section_size_type section_names_size;
1098   const unsigned char* symbols_data = NULL;
1099   section_size_type symbols_size;
1100   section_offset_type external_symbols_offset;
1101   const unsigned char* symbol_names_data = NULL;
1102   section_size_type symbol_names_size;
1103  
1104   if (is_gc_or_icf)
1105     {
1106       section_headers_data = gc_sd->section_headers_data;
1107       section_names_size = gc_sd->section_names_size;
1108       symbols_data = gc_sd->symbols_data;
1109       symbols_size = gc_sd->symbols_size;
1110       external_symbols_offset = gc_sd->external_symbols_offset;
1111       symbol_names_data = gc_sd->symbol_names_data;
1112       symbol_names_size = gc_sd->symbol_names_size;
1113     }
1114   else
1115     {
1116       section_headers_data = sd->section_headers->data();
1117       section_names_size = sd->section_names_size;
1118       if (sd->symbols != NULL)
1119         symbols_data = sd->symbols->data();
1120       symbols_size = sd->symbols_size;
1121       external_symbols_offset = sd->external_symbols_offset;
1122       if (sd->symbol_names != NULL)
1123         symbol_names_data = sd->symbol_names->data();
1124       symbol_names_size = sd->symbol_names_size;
1125     }
1126
1127   // Get the section headers.
1128   const unsigned char* shdrs = section_headers_data;
1129   const unsigned char* pshdrs;
1130
1131   // Get the section names.
1132   const unsigned char* pnamesu = (is_gc_or_icf) 
1133                                  ? gc_sd->section_names_data
1134                                  : sd->section_names->data();
1135
1136   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1137
1138   // If any input files have been claimed by plugins, we need to defer
1139   // actual layout until the replacement files have arrived.
1140   const bool should_defer_layout =
1141       (parameters->options().has_plugins()
1142        && parameters->options().plugins()->should_defer_layout());
1143   unsigned int num_sections_to_defer = 0;
1144
1145   // For each section, record the index of the reloc section if any.
1146   // Use 0 to mean that there is no reloc section, -1U to mean that
1147   // there is more than one.
1148   std::vector<unsigned int> reloc_shndx(shnum, 0);
1149   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1150   // Skip the first, dummy, section.
1151   pshdrs = shdrs + This::shdr_size;
1152   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1153     {
1154       typename This::Shdr shdr(pshdrs);
1155
1156       // Count the number of sections whose layout will be deferred.
1157       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1158         ++num_sections_to_defer;
1159
1160       unsigned int sh_type = shdr.get_sh_type();
1161       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1162         {
1163           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1164           if (target_shndx == 0 || target_shndx >= shnum)
1165             {
1166               this->error(_("relocation section %u has bad info %u"),
1167                           i, target_shndx);
1168               continue;
1169             }
1170
1171           if (reloc_shndx[target_shndx] != 0)
1172             reloc_shndx[target_shndx] = -1U;
1173           else
1174             {
1175               reloc_shndx[target_shndx] = i;
1176               reloc_type[target_shndx] = sh_type;
1177             }
1178         }
1179     }
1180
1181   Output_sections& out_sections(this->output_sections());
1182   std::vector<Address>& out_section_offsets(this->section_offsets());
1183
1184   if (!is_gc_pass_two)
1185     {
1186       out_sections.resize(shnum);
1187       out_section_offsets.resize(shnum);
1188     }
1189
1190   // If we are only linking for symbols, then there is nothing else to
1191   // do here.
1192   if (this->input_file()->just_symbols())
1193     {
1194       if (!is_gc_pass_two)
1195         {
1196           delete sd->section_headers;
1197           sd->section_headers = NULL;
1198           delete sd->section_names;
1199           sd->section_names = NULL;
1200         }
1201       return;
1202     }
1203
1204   if (num_sections_to_defer > 0)
1205     {
1206       parameters->options().plugins()->add_deferred_layout_object(this);
1207       this->deferred_layout_.reserve(num_sections_to_defer);
1208     }
1209
1210   // Whether we've seen a .note.GNU-stack section.
1211   bool seen_gnu_stack = false;
1212   // The flags of a .note.GNU-stack section.
1213   uint64_t gnu_stack_flags = 0;
1214
1215   // Keep track of which sections to omit.
1216   std::vector<bool> omit(shnum, false);
1217
1218   // Keep track of reloc sections when emitting relocations.
1219   const bool relocatable = parameters->options().relocatable();
1220   const bool emit_relocs = (relocatable
1221                             || parameters->options().emit_relocs());
1222   std::vector<unsigned int> reloc_sections;
1223
1224   // Keep track of .eh_frame sections.
1225   std::vector<unsigned int> eh_frame_sections;
1226
1227   // Skip the first, dummy, section.
1228   pshdrs = shdrs + This::shdr_size;
1229   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1230     {
1231       typename This::Shdr shdr(pshdrs);
1232
1233       if (shdr.get_sh_name() >= section_names_size)
1234         {
1235           this->error(_("bad section name offset for section %u: %lu"),
1236                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1237           return;
1238         }
1239
1240       const char* name = pnames + shdr.get_sh_name();
1241
1242       if (!is_gc_pass_two)
1243         { 
1244           if (this->handle_gnu_warning_section(name, i, symtab))
1245             { 
1246               if (!relocatable)
1247                 omit[i] = true;
1248             }
1249
1250           // The .note.GNU-stack section is special.  It gives the
1251           // protection flags that this object file requires for the stack
1252           // in memory.
1253           if (strcmp(name, ".note.GNU-stack") == 0)
1254             {
1255               seen_gnu_stack = true;
1256               gnu_stack_flags |= shdr.get_sh_flags();
1257               omit[i] = true;
1258             }
1259
1260           // The .note.GNU-split-stack section is also special.  It
1261           // indicates that the object was compiled with
1262           // -fsplit-stack.
1263           if (this->handle_split_stack_section(name))
1264             {
1265               if (!parameters->options().relocatable()
1266                   && !parameters->options().shared())
1267                 omit[i] = true;
1268             }
1269
1270           // Skip attributes section.
1271           if (parameters->target().is_attributes_section(name))
1272             {
1273               omit[i] = true;
1274             }
1275
1276           bool discard = omit[i];
1277           if (!discard)
1278             {
1279               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1280                 {
1281                   if (!this->include_section_group(symtab, layout, i, name, 
1282                                                    shdrs, pnames, 
1283                                                    section_names_size,
1284                                                    &omit))
1285                     discard = true;
1286                 }
1287               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1288                        && Layout::is_linkonce(name))
1289                 {
1290                   if (!this->include_linkonce_section(layout, i, name, shdr))
1291                     discard = true;
1292                 }
1293             }
1294
1295           // Add the section to the incremental inputs layout.
1296           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1297           if (incremental_inputs != NULL
1298               && !discard
1299               && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1300                   || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1301                   || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1302             incremental_inputs->report_input_section(this, i, name,
1303                                                      shdr.get_sh_size());
1304
1305           if (discard)
1306             {
1307               // Do not include this section in the link.
1308               out_sections[i] = NULL;
1309               out_section_offsets[i] = invalid_address;
1310               continue;
1311             }
1312         }
1313  
1314       if (is_gc_pass_one && parameters->options().gc_sections())
1315         {
1316           if (this->is_section_name_included(name)
1317               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1318               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1319             {
1320               symtab->gc()->worklist().push(Section_id(this, i)); 
1321             }
1322           // If the section name XXX can be represented as a C identifier
1323           // it cannot be discarded if there are references to
1324           // __start_XXX and __stop_XXX symbols.  These need to be
1325           // specially handled.
1326           if (is_cident(name))
1327             {
1328               symtab->gc()->add_cident_section(name, Section_id(this, i));
1329             }
1330         }
1331
1332       // When doing a relocatable link we are going to copy input
1333       // reloc sections into the output.  We only want to copy the
1334       // ones associated with sections which are not being discarded.
1335       // However, we don't know that yet for all sections.  So save
1336       // reloc sections and process them later. Garbage collection is
1337       // not triggered when relocatable code is desired.
1338       if (emit_relocs
1339           && (shdr.get_sh_type() == elfcpp::SHT_REL
1340               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1341         {
1342           reloc_sections.push_back(i);
1343           continue;
1344         }
1345
1346       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1347         continue;
1348
1349       // The .eh_frame section is special.  It holds exception frame
1350       // information that we need to read in order to generate the
1351       // exception frame header.  We process these after all the other
1352       // sections so that the exception frame reader can reliably
1353       // determine which sections are being discarded, and discard the
1354       // corresponding information.
1355       if (!relocatable
1356           && strcmp(name, ".eh_frame") == 0
1357           && this->check_eh_frame_flags(&shdr))
1358         {
1359           if (is_gc_pass_one)
1360             {
1361               out_sections[i] = reinterpret_cast<Output_section*>(1);
1362               out_section_offsets[i] = invalid_address;
1363             }
1364           else
1365             eh_frame_sections.push_back(i);
1366           continue;
1367         }
1368
1369       if (is_gc_pass_two && parameters->options().gc_sections())
1370         {
1371           // This is executed during the second pass of garbage 
1372           // collection. do_layout has been called before and some 
1373           // sections have been already discarded. Simply ignore 
1374           // such sections this time around.
1375           if (out_sections[i] == NULL)
1376             {
1377               gold_assert(out_section_offsets[i] == invalid_address);
1378               continue; 
1379             }
1380           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1381               && symtab->gc()->is_section_garbage(this, i))
1382               {
1383                 if (parameters->options().print_gc_sections())
1384                   gold_info(_("%s: removing unused section from '%s'" 
1385                               " in file '%s'"),
1386                             program_name, this->section_name(i).c_str(), 
1387                             this->name().c_str());
1388                 out_sections[i] = NULL;
1389                 out_section_offsets[i] = invalid_address;
1390                 continue;
1391               }
1392         }
1393
1394       if (is_gc_pass_two && parameters->options().icf_enabled())
1395         {
1396           if (out_sections[i] == NULL)
1397             {
1398               gold_assert(out_section_offsets[i] == invalid_address);
1399               continue;
1400             }
1401           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1402               && symtab->icf()->is_section_folded(this, i))
1403               {
1404                 if (parameters->options().print_icf_sections())
1405                   {
1406                     Section_id folded =
1407                                 symtab->icf()->get_folded_section(this, i);
1408                     Relobj* folded_obj =
1409                                 reinterpret_cast<Relobj*>(folded.first);
1410                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1411                                 "into '%s' in file '%s'"),
1412                               program_name, this->section_name(i).c_str(),
1413                               this->name().c_str(),
1414                               folded_obj->section_name(folded.second).c_str(),
1415                               folded_obj->name().c_str());
1416                   }
1417                 out_sections[i] = NULL;
1418                 out_section_offsets[i] = invalid_address;
1419                 continue;
1420               }
1421         }
1422
1423       // Defer layout here if input files are claimed by plugins.  When gc
1424       // is turned on this function is called twice.  For the second call
1425       // should_defer_layout should be false.
1426       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1427         {
1428           gold_assert(!is_gc_pass_two);
1429           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1430                                                            pshdrs,
1431                                                            reloc_shndx[i],
1432                                                            reloc_type[i]));
1433           // Put dummy values here; real values will be supplied by
1434           // do_layout_deferred_sections.
1435           out_sections[i] = reinterpret_cast<Output_section*>(2);
1436           out_section_offsets[i] = invalid_address;
1437           continue;
1438         }
1439
1440       // During gc_pass_two if a section that was previously deferred is
1441       // found, do not layout the section as layout_deferred_sections will
1442       // do it later from gold.cc.
1443       if (is_gc_pass_two 
1444           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1445         continue;
1446
1447       if (is_gc_pass_one)
1448         {
1449           // This is during garbage collection. The out_sections are 
1450           // assigned in the second call to this function. 
1451           out_sections[i] = reinterpret_cast<Output_section*>(1);
1452           out_section_offsets[i] = invalid_address;
1453         }
1454       else
1455         {
1456           // When garbage collection is switched on the actual layout
1457           // only happens in the second call.
1458           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1459                                reloc_type[i]);
1460         }
1461     }
1462
1463   if (!is_gc_pass_two)
1464     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1465
1466   // When doing a relocatable link handle the reloc sections at the
1467   // end.  Garbage collection  and Identical Code Folding is not 
1468   // turned on for relocatable code. 
1469   if (emit_relocs)
1470     this->size_relocatable_relocs();
1471
1472   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1473
1474   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1475        p != reloc_sections.end();
1476        ++p)
1477     {
1478       unsigned int i = *p;
1479       const unsigned char* pshdr;
1480       pshdr = section_headers_data + i * This::shdr_size;
1481       typename This::Shdr shdr(pshdr);
1482
1483       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1484       if (data_shndx >= shnum)
1485         {
1486           // We already warned about this above.
1487           continue;
1488         }
1489
1490       Output_section* data_section = out_sections[data_shndx];
1491       if (data_section == reinterpret_cast<Output_section*>(2))
1492         {
1493           // The layout for the data section was deferred, so we need
1494           // to defer the relocation section, too.
1495           const char* name = pnames + shdr.get_sh_name();
1496           this->deferred_layout_relocs_.push_back(
1497               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1498           out_sections[i] = reinterpret_cast<Output_section*>(2);
1499           out_section_offsets[i] = invalid_address;
1500           continue;
1501         }
1502       if (data_section == NULL)
1503         {
1504           out_sections[i] = NULL;
1505           out_section_offsets[i] = invalid_address;
1506           continue;
1507         }
1508
1509       Relocatable_relocs* rr = new Relocatable_relocs();
1510       this->set_relocatable_relocs(i, rr);
1511
1512       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1513                                                 rr);
1514       out_sections[i] = os;
1515       out_section_offsets[i] = invalid_address;
1516     }
1517
1518   // Handle the .eh_frame sections at the end.
1519   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1520   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1521        p != eh_frame_sections.end();
1522        ++p)
1523     {
1524       gold_assert(this->has_eh_frame_);
1525       gold_assert(external_symbols_offset != 0);
1526
1527       unsigned int i = *p;
1528       const unsigned char* pshdr;
1529       pshdr = section_headers_data + i * This::shdr_size;
1530       typename This::Shdr shdr(pshdr);
1531
1532       off_t offset;
1533       Output_section* os = layout->layout_eh_frame(this,
1534                                                    symbols_data,
1535                                                    symbols_size,
1536                                                    symbol_names_data,
1537                                                    symbol_names_size,
1538                                                    i, shdr,
1539                                                    reloc_shndx[i],
1540                                                    reloc_type[i],
1541                                                    &offset);
1542       out_sections[i] = os;
1543       if (os == NULL || offset == -1)
1544         {
1545           // An object can contain at most one section holding exception
1546           // frame information.
1547           gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1548           this->discarded_eh_frame_shndx_ = i;
1549           out_section_offsets[i] = invalid_address;
1550         }
1551       else
1552         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1553
1554       // If this section requires special handling, and if there are
1555       // relocs that apply to it, then we must do the special handling
1556       // before we apply the relocs.
1557       if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1558         this->set_relocs_must_follow_section_writes();
1559     }
1560
1561   if (is_gc_pass_two)
1562     {
1563       delete[] gc_sd->section_headers_data;
1564       delete[] gc_sd->section_names_data;
1565       delete[] gc_sd->symbols_data;
1566       delete[] gc_sd->symbol_names_data;
1567       this->set_symbols_data(NULL);
1568     }
1569   else
1570     {
1571       delete sd->section_headers;
1572       sd->section_headers = NULL;
1573       delete sd->section_names;
1574       sd->section_names = NULL;
1575     }
1576 }
1577
1578 // Layout sections whose layout was deferred while waiting for
1579 // input files from a plugin.
1580
1581 template<int size, bool big_endian>
1582 void
1583 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1584 {
1585   typename std::vector<Deferred_layout>::iterator deferred;
1586
1587   for (deferred = this->deferred_layout_.begin();
1588        deferred != this->deferred_layout_.end();
1589        ++deferred)
1590     {
1591       typename This::Shdr shdr(deferred->shdr_data_);
1592       // If the section is not included, it is because the garbage collector
1593       // decided it is not needed.  Avoid reverting that decision.
1594       if (!this->is_section_included(deferred->shndx_))
1595         continue;
1596
1597       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1598                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1599     }
1600
1601   this->deferred_layout_.clear();
1602
1603   // Now handle the deferred relocation sections.
1604
1605   Output_sections& out_sections(this->output_sections());
1606   std::vector<Address>& out_section_offsets(this->section_offsets());
1607
1608   for (deferred = this->deferred_layout_relocs_.begin();
1609        deferred != this->deferred_layout_relocs_.end();
1610        ++deferred)
1611     {
1612       unsigned int shndx = deferred->shndx_;
1613       typename This::Shdr shdr(deferred->shdr_data_);
1614       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1615
1616       Output_section* data_section = out_sections[data_shndx];
1617       if (data_section == NULL)
1618         {
1619           out_sections[shndx] = NULL;
1620           out_section_offsets[shndx] = invalid_address;
1621           continue;
1622         }
1623
1624       Relocatable_relocs* rr = new Relocatable_relocs();
1625       this->set_relocatable_relocs(shndx, rr);
1626
1627       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1628                                                 data_section, rr);
1629       out_sections[shndx] = os;
1630       out_section_offsets[shndx] = invalid_address;
1631     }
1632 }
1633
1634 // Add the symbols to the symbol table.
1635
1636 template<int size, bool big_endian>
1637 void
1638 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1639                                                     Read_symbols_data* sd,
1640                                                     Layout*)
1641 {
1642   if (sd->symbols == NULL)
1643     {
1644       gold_assert(sd->symbol_names == NULL);
1645       return;
1646     }
1647
1648   const int sym_size = This::sym_size;
1649   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1650                      / sym_size);
1651   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1652     {
1653       this->error(_("size of symbols is not multiple of symbol size"));
1654       return;
1655     }
1656
1657   this->symbols_.resize(symcount);
1658
1659   const char* sym_names =
1660     reinterpret_cast<const char*>(sd->symbol_names->data());
1661   symtab->add_from_relobj(this,
1662                           sd->symbols->data() + sd->external_symbols_offset,
1663                           symcount, this->local_symbol_count_,
1664                           sym_names, sd->symbol_names_size,
1665                           &this->symbols_,
1666                           &this->defined_count_);
1667
1668   delete sd->symbols;
1669   sd->symbols = NULL;
1670   delete sd->symbol_names;
1671   sd->symbol_names = NULL;
1672 }
1673
1674 // Find out if this object, that is a member of a lib group, should be included
1675 // in the link. We check every symbol defined by this object. If the symbol
1676 // table has a strong undefined reference to that symbol, we have to include
1677 // the object.
1678
1679 template<int size, bool big_endian>
1680 Archive::Should_include
1681 Sized_relobj_file<size, big_endian>::do_should_include_member(
1682     Symbol_table* symtab,
1683     Layout* layout,
1684     Read_symbols_data* sd,
1685     std::string* why)
1686 {
1687   char* tmpbuf = NULL;
1688   size_t tmpbuflen = 0;
1689   const char* sym_names =
1690       reinterpret_cast<const char*>(sd->symbol_names->data());
1691   const unsigned char* syms =
1692       sd->symbols->data() + sd->external_symbols_offset;
1693   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1694   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1695                          / sym_size);
1696
1697   const unsigned char* p = syms;
1698
1699   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1700     {
1701       elfcpp::Sym<size, big_endian> sym(p);
1702       unsigned int st_shndx = sym.get_st_shndx();
1703       if (st_shndx == elfcpp::SHN_UNDEF)
1704         continue;
1705
1706       unsigned int st_name = sym.get_st_name();
1707       const char* name = sym_names + st_name;
1708       Symbol* symbol;
1709       Archive::Should_include t = Archive::should_include_member(symtab,
1710                                                                  layout,
1711                                                                  name,
1712                                                                  &symbol, why,
1713                                                                  &tmpbuf,
1714                                                                  &tmpbuflen);
1715       if (t == Archive::SHOULD_INCLUDE_YES)
1716         {
1717           if (tmpbuf != NULL)
1718             free(tmpbuf);
1719           return t;
1720         }
1721     }
1722   if (tmpbuf != NULL)
1723     free(tmpbuf);
1724   return Archive::SHOULD_INCLUDE_UNKNOWN;
1725 }
1726
1727 // Iterate over global defined symbols, calling a visitor class V for each.
1728
1729 template<int size, bool big_endian>
1730 void
1731 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1732     Read_symbols_data* sd,
1733     Library_base::Symbol_visitor_base* v)
1734 {
1735   const char* sym_names =
1736       reinterpret_cast<const char*>(sd->symbol_names->data());
1737   const unsigned char* syms =
1738       sd->symbols->data() + sd->external_symbols_offset;
1739   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1740   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1741                      / sym_size);
1742   const unsigned char* p = syms;
1743
1744   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1745     {
1746       elfcpp::Sym<size, big_endian> sym(p);
1747       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1748         v->visit(sym_names + sym.get_st_name());
1749     }
1750 }
1751
1752 // Return whether the local symbol SYMNDX has a PLT offset.
1753
1754 template<int size, bool big_endian>
1755 bool
1756 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1757     unsigned int symndx) const
1758 {
1759   typename Local_plt_offsets::const_iterator p =
1760     this->local_plt_offsets_.find(symndx);
1761   return p != this->local_plt_offsets_.end();
1762 }
1763
1764 // Get the PLT offset of a local symbol.
1765
1766 template<int size, bool big_endian>
1767 unsigned int
1768 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1769 {
1770   typename Local_plt_offsets::const_iterator p =
1771     this->local_plt_offsets_.find(symndx);
1772   gold_assert(p != this->local_plt_offsets_.end());
1773   return p->second;
1774 }
1775
1776 // Set the PLT offset of a local symbol.
1777
1778 template<int size, bool big_endian>
1779 void
1780 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1781     unsigned int symndx, unsigned int plt_offset)
1782 {
1783   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1784     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1785   gold_assert(ins.second);
1786 }
1787
1788 // First pass over the local symbols.  Here we add their names to
1789 // *POOL and *DYNPOOL, and we store the symbol value in
1790 // THIS->LOCAL_VALUES_.  This function is always called from a
1791 // singleton thread.  This is followed by a call to
1792 // finalize_local_symbols.
1793
1794 template<int size, bool big_endian>
1795 void
1796 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1797                                                             Stringpool* dynpool)
1798 {
1799   gold_assert(this->symtab_shndx_ != -1U);
1800   if (this->symtab_shndx_ == 0)
1801     {
1802       // This object has no symbols.  Weird but legal.
1803       return;
1804     }
1805
1806   // Read the symbol table section header.
1807   const unsigned int symtab_shndx = this->symtab_shndx_;
1808   typename This::Shdr symtabshdr(this,
1809                                  this->elf_file_.section_header(symtab_shndx));
1810   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1811
1812   // Read the local symbols.
1813   const int sym_size = This::sym_size;
1814   const unsigned int loccount = this->local_symbol_count_;
1815   gold_assert(loccount == symtabshdr.get_sh_info());
1816   off_t locsize = loccount * sym_size;
1817   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1818                                               locsize, true, true);
1819
1820   // Read the symbol names.
1821   const unsigned int strtab_shndx =
1822     this->adjust_shndx(symtabshdr.get_sh_link());
1823   section_size_type strtab_size;
1824   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1825                                                         &strtab_size,
1826                                                         true);
1827   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1828
1829   // Loop over the local symbols.
1830
1831   const Output_sections& out_sections(this->output_sections());
1832   unsigned int shnum = this->shnum();
1833   unsigned int count = 0;
1834   unsigned int dyncount = 0;
1835   // Skip the first, dummy, symbol.
1836   psyms += sym_size;
1837   bool strip_all = parameters->options().strip_all();
1838   bool discard_all = parameters->options().discard_all();
1839   bool discard_locals = parameters->options().discard_locals();
1840   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1841     {
1842       elfcpp::Sym<size, big_endian> sym(psyms);
1843
1844       Symbol_value<size>& lv(this->local_values_[i]);
1845
1846       bool is_ordinary;
1847       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1848                                                   &is_ordinary);
1849       lv.set_input_shndx(shndx, is_ordinary);
1850
1851       if (sym.get_st_type() == elfcpp::STT_SECTION)
1852         lv.set_is_section_symbol();
1853       else if (sym.get_st_type() == elfcpp::STT_TLS)
1854         lv.set_is_tls_symbol();
1855       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1856         lv.set_is_ifunc_symbol();
1857
1858       // Save the input symbol value for use in do_finalize_local_symbols().
1859       lv.set_input_value(sym.get_st_value());
1860
1861       // Decide whether this symbol should go into the output file.
1862
1863       if ((shndx < shnum && out_sections[shndx] == NULL)
1864           || shndx == this->discarded_eh_frame_shndx_)
1865         {
1866           lv.set_no_output_symtab_entry();
1867           gold_assert(!lv.needs_output_dynsym_entry());
1868           continue;
1869         }
1870
1871       if (sym.get_st_type() == elfcpp::STT_SECTION)
1872         {
1873           lv.set_no_output_symtab_entry();
1874           gold_assert(!lv.needs_output_dynsym_entry());
1875           continue;
1876         }
1877
1878       if (sym.get_st_name() >= strtab_size)
1879         {
1880           this->error(_("local symbol %u section name out of range: %u >= %u"),
1881                       i, sym.get_st_name(),
1882                       static_cast<unsigned int>(strtab_size));
1883           lv.set_no_output_symtab_entry();
1884           continue;
1885         }
1886
1887       const char* name = pnames + sym.get_st_name();
1888
1889       // If needed, add the symbol to the dynamic symbol table string pool.
1890       if (lv.needs_output_dynsym_entry())
1891         {
1892           dynpool->add(name, true, NULL);
1893           ++dyncount;
1894         }
1895
1896       if (strip_all
1897           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1898         {
1899           lv.set_no_output_symtab_entry();
1900           continue;
1901         }
1902
1903       // If --discard-locals option is used, discard all temporary local
1904       // symbols.  These symbols start with system-specific local label
1905       // prefixes, typically .L for ELF system.  We want to be compatible
1906       // with GNU ld so here we essentially use the same check in
1907       // bfd_is_local_label().  The code is different because we already
1908       // know that:
1909       //
1910       //   - the symbol is local and thus cannot have global or weak binding.
1911       //   - the symbol is not a section symbol.
1912       //   - the symbol has a name.
1913       //
1914       // We do not discard a symbol if it needs a dynamic symbol entry.
1915       if (discard_locals
1916           && sym.get_st_type() != elfcpp::STT_FILE
1917           && !lv.needs_output_dynsym_entry()
1918           && lv.may_be_discarded_from_output_symtab()
1919           && parameters->target().is_local_label_name(name))
1920         {
1921           lv.set_no_output_symtab_entry();
1922           continue;
1923         }
1924
1925       // Discard the local symbol if -retain_symbols_file is specified
1926       // and the local symbol is not in that file.
1927       if (!parameters->options().should_retain_symbol(name))
1928         {
1929           lv.set_no_output_symtab_entry();
1930           continue;
1931         }
1932
1933       // Add the symbol to the symbol table string pool.
1934       pool->add(name, true, NULL);
1935       ++count;
1936     }
1937
1938   this->output_local_symbol_count_ = count;
1939   this->output_local_dynsym_count_ = dyncount;
1940 }
1941
1942 // Compute the final value of a local symbol.
1943
1944 template<int size, bool big_endian>
1945 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
1946 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
1947     unsigned int r_sym,
1948     const Symbol_value<size>* lv_in,
1949     Symbol_value<size>* lv_out,
1950     bool relocatable,
1951     const Output_sections& out_sections,
1952     const std::vector<Address>& out_offsets,
1953     const Symbol_table* symtab)
1954 {
1955   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1956   // we may have a memory leak.
1957   gold_assert(lv_out->has_output_value());
1958
1959   bool is_ordinary;
1960   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1961   
1962   // Set the output symbol value.
1963   
1964   if (!is_ordinary)
1965     {
1966       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1967         lv_out->set_output_value(lv_in->input_value());
1968       else
1969         {
1970           this->error(_("unknown section index %u for local symbol %u"),
1971                       shndx, r_sym);
1972           lv_out->set_output_value(0);
1973           return This::CFLV_ERROR;
1974         }
1975     }
1976   else
1977     {
1978       if (shndx >= this->shnum())
1979         {
1980           this->error(_("local symbol %u section index %u out of range"),
1981                       r_sym, shndx);
1982           lv_out->set_output_value(0);
1983           return This::CFLV_ERROR;
1984         }
1985       
1986       Output_section* os = out_sections[shndx];
1987       Address secoffset = out_offsets[shndx];
1988       if (symtab->is_section_folded(this, shndx))
1989         {
1990           gold_assert(os == NULL && secoffset == invalid_address);
1991           // Get the os of the section it is folded onto.
1992           Section_id folded = symtab->icf()->get_folded_section(this,
1993                                                                 shndx);
1994           gold_assert(folded.first != NULL);
1995           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
1996             <Sized_relobj_file<size, big_endian>*>(folded.first);
1997           os = folded_obj->output_section(folded.second);
1998           gold_assert(os != NULL);
1999           secoffset = folded_obj->get_output_section_offset(folded.second);
2000           
2001           // This could be a relaxed input section.
2002           if (secoffset == invalid_address)
2003             {
2004               const Output_relaxed_input_section* relaxed_section =
2005                 os->find_relaxed_input_section(folded_obj, folded.second);
2006               gold_assert(relaxed_section != NULL);
2007               secoffset = relaxed_section->address() - os->address();
2008             }
2009         }
2010       
2011       if (os == NULL)
2012         {
2013           // This local symbol belongs to a section we are discarding.
2014           // In some cases when applying relocations later, we will
2015           // attempt to match it to the corresponding kept section,
2016           // so we leave the input value unchanged here.
2017           return This::CFLV_DISCARDED;
2018         }
2019       else if (secoffset == invalid_address)
2020         {
2021           uint64_t start;
2022           
2023           // This is a SHF_MERGE section or one which otherwise
2024           // requires special handling.
2025           if (shndx == this->discarded_eh_frame_shndx_)
2026             {
2027               // This local symbol belongs to a discarded .eh_frame
2028               // section.  Just treat it like the case in which
2029               // os == NULL above.
2030               gold_assert(this->has_eh_frame_);
2031               return This::CFLV_DISCARDED;
2032             }
2033           else if (!lv_in->is_section_symbol())
2034             {
2035               // This is not a section symbol.  We can determine
2036               // the final value now.
2037               lv_out->set_output_value(
2038                   os->output_address(this, shndx, lv_in->input_value()));
2039             }
2040           else if (!os->find_starting_output_address(this, shndx, &start))
2041             {
2042               // This is a section symbol, but apparently not one in a
2043               // merged section.  First check to see if this is a relaxed
2044               // input section.  If so, use its address.  Otherwise just
2045               // use the start of the output section.  This happens with
2046               // relocatable links when the input object has section
2047               // symbols for arbitrary non-merge sections.
2048               const Output_section_data* posd =
2049                 os->find_relaxed_input_section(this, shndx);
2050               if (posd != NULL)
2051                 {
2052                   Address relocatable_link_adjustment =
2053                     relocatable ? os->address() : 0;
2054                   lv_out->set_output_value(posd->address()
2055                                            - relocatable_link_adjustment);
2056                 }
2057               else
2058                 lv_out->set_output_value(os->address());
2059             }
2060           else
2061             {
2062               // We have to consider the addend to determine the
2063               // value to use in a relocation.  START is the start
2064               // of this input section.  If we are doing a relocatable
2065               // link, use offset from start output section instead of
2066               // address.
2067               Address adjusted_start =
2068                 relocatable ? start - os->address() : start;
2069               Merged_symbol_value<size>* msv =
2070                 new Merged_symbol_value<size>(lv_in->input_value(),
2071                                               adjusted_start);
2072               lv_out->set_merged_symbol_value(msv);
2073             }
2074         }
2075       else if (lv_in->is_tls_symbol())
2076         lv_out->set_output_value(os->tls_offset()
2077                                  + secoffset
2078                                  + lv_in->input_value());
2079       else
2080         lv_out->set_output_value((relocatable ? 0 : os->address())
2081                                  + secoffset
2082                                  + lv_in->input_value());
2083     }
2084   return This::CFLV_OK;
2085 }
2086
2087 // Compute final local symbol value.  R_SYM is the index of a local
2088 // symbol in symbol table.  LV points to a symbol value, which is
2089 // expected to hold the input value and to be over-written by the
2090 // final value.  SYMTAB points to a symbol table.  Some targets may want
2091 // to know would-be-finalized local symbol values in relaxation.
2092 // Hence we provide this method.  Since this method updates *LV, a
2093 // callee should make a copy of the original local symbol value and
2094 // use the copy instead of modifying an object's local symbols before
2095 // everything is finalized.  The caller should also free up any allocated
2096 // memory in the return value in *LV.
2097 template<int size, bool big_endian>
2098 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2099 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2100     unsigned int r_sym,
2101     const Symbol_value<size>* lv_in,
2102     Symbol_value<size>* lv_out,
2103     const Symbol_table* symtab)
2104 {
2105   // This is just a wrapper of compute_final_local_value_internal.
2106   const bool relocatable = parameters->options().relocatable();
2107   const Output_sections& out_sections(this->output_sections());
2108   const std::vector<Address>& out_offsets(this->section_offsets());
2109   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2110                                                   relocatable, out_sections,
2111                                                   out_offsets, symtab);
2112 }
2113
2114 // Finalize the local symbols.  Here we set the final value in
2115 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2116 // This function is always called from a singleton thread.  The actual
2117 // output of the local symbols will occur in a separate task.
2118
2119 template<int size, bool big_endian>
2120 unsigned int
2121 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2122     unsigned int index,
2123     off_t off,
2124     Symbol_table* symtab)
2125 {
2126   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2127
2128   const unsigned int loccount = this->local_symbol_count_;
2129   this->local_symbol_offset_ = off;
2130
2131   const bool relocatable = parameters->options().relocatable();
2132   const Output_sections& out_sections(this->output_sections());
2133   const std::vector<Address>& out_offsets(this->section_offsets());
2134
2135   for (unsigned int i = 1; i < loccount; ++i)
2136     {
2137       Symbol_value<size>* lv = &this->local_values_[i];
2138
2139       Compute_final_local_value_status cflv_status =
2140         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2141                                                  out_sections, out_offsets,
2142                                                  symtab);
2143       switch (cflv_status)
2144         {
2145         case CFLV_OK:
2146           if (!lv->is_output_symtab_index_set())
2147             {
2148               lv->set_output_symtab_index(index);
2149               ++index;
2150             }
2151           break;
2152         case CFLV_DISCARDED:
2153         case CFLV_ERROR:
2154           // Do nothing.
2155           break;
2156         default:
2157           gold_unreachable();
2158         }
2159     }
2160   return index;
2161 }
2162
2163 // Set the output dynamic symbol table indexes for the local variables.
2164
2165 template<int size, bool big_endian>
2166 unsigned int
2167 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2168     unsigned int index)
2169 {
2170   const unsigned int loccount = this->local_symbol_count_;
2171   for (unsigned int i = 1; i < loccount; ++i)
2172     {
2173       Symbol_value<size>& lv(this->local_values_[i]);
2174       if (lv.needs_output_dynsym_entry())
2175         {
2176           lv.set_output_dynsym_index(index);
2177           ++index;
2178         }
2179     }
2180   return index;
2181 }
2182
2183 // Set the offset where local dynamic symbol information will be stored.
2184 // Returns the count of local symbols contributed to the symbol table by
2185 // this object.
2186
2187 template<int size, bool big_endian>
2188 unsigned int
2189 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2190 {
2191   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2192   this->local_dynsym_offset_ = off;
2193   return this->output_local_dynsym_count_;
2194 }
2195
2196 // If Symbols_data is not NULL get the section flags from here otherwise
2197 // get it from the file.
2198
2199 template<int size, bool big_endian>
2200 uint64_t
2201 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2202 {
2203   Symbols_data* sd = this->get_symbols_data();
2204   if (sd != NULL)
2205     {
2206       const unsigned char* pshdrs = sd->section_headers_data
2207                                     + This::shdr_size * shndx;
2208       typename This::Shdr shdr(pshdrs);
2209       return shdr.get_sh_flags(); 
2210     }
2211   // If sd is NULL, read the section header from the file.
2212   return this->elf_file_.section_flags(shndx); 
2213 }
2214
2215 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2216 // in icf.cc
2217
2218 template<int size, bool big_endian>
2219 uint64_t
2220 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2221 {
2222   Symbols_data* sd = this->get_symbols_data();
2223   gold_assert(sd != NULL);
2224
2225   const unsigned char* pshdrs = sd->section_headers_data
2226                                 + This::shdr_size * shndx;
2227   typename This::Shdr shdr(pshdrs);
2228   return shdr.get_sh_entsize(); 
2229 }
2230
2231 // Write out the local symbols.
2232
2233 template<int size, bool big_endian>
2234 void
2235 Sized_relobj_file<size, big_endian>::write_local_symbols(
2236     Output_file* of,
2237     const Stringpool* sympool,
2238     const Stringpool* dynpool,
2239     Output_symtab_xindex* symtab_xindex,
2240     Output_symtab_xindex* dynsym_xindex,
2241     off_t symtab_off)
2242 {
2243   const bool strip_all = parameters->options().strip_all();
2244   if (strip_all)
2245     {
2246       if (this->output_local_dynsym_count_ == 0)
2247         return;
2248       this->output_local_symbol_count_ = 0;
2249     }
2250
2251   gold_assert(this->symtab_shndx_ != -1U);
2252   if (this->symtab_shndx_ == 0)
2253     {
2254       // This object has no symbols.  Weird but legal.
2255       return;
2256     }
2257
2258   // Read the symbol table section header.
2259   const unsigned int symtab_shndx = this->symtab_shndx_;
2260   typename This::Shdr symtabshdr(this,
2261                                  this->elf_file_.section_header(symtab_shndx));
2262   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2263   const unsigned int loccount = this->local_symbol_count_;
2264   gold_assert(loccount == symtabshdr.get_sh_info());
2265
2266   // Read the local symbols.
2267   const int sym_size = This::sym_size;
2268   off_t locsize = loccount * sym_size;
2269   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2270                                               locsize, true, false);
2271
2272   // Read the symbol names.
2273   const unsigned int strtab_shndx =
2274     this->adjust_shndx(symtabshdr.get_sh_link());
2275   section_size_type strtab_size;
2276   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2277                                                         &strtab_size,
2278                                                         false);
2279   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2280
2281   // Get views into the output file for the portions of the symbol table
2282   // and the dynamic symbol table that we will be writing.
2283   off_t output_size = this->output_local_symbol_count_ * sym_size;
2284   unsigned char* oview = NULL;
2285   if (output_size > 0)
2286     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2287                                 output_size);
2288
2289   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2290   unsigned char* dyn_oview = NULL;
2291   if (dyn_output_size > 0)
2292     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2293                                     dyn_output_size);
2294
2295   const Output_sections out_sections(this->output_sections());
2296
2297   gold_assert(this->local_values_.size() == loccount);
2298
2299   unsigned char* ov = oview;
2300   unsigned char* dyn_ov = dyn_oview;
2301   psyms += sym_size;
2302   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2303     {
2304       elfcpp::Sym<size, big_endian> isym(psyms);
2305
2306       Symbol_value<size>& lv(this->local_values_[i]);
2307
2308       bool is_ordinary;
2309       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2310                                                      &is_ordinary);
2311       if (is_ordinary)
2312         {
2313           gold_assert(st_shndx < out_sections.size());
2314           if (out_sections[st_shndx] == NULL)
2315             continue;
2316           st_shndx = out_sections[st_shndx]->out_shndx();
2317           if (st_shndx >= elfcpp::SHN_LORESERVE)
2318             {
2319               if (lv.has_output_symtab_entry())
2320                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2321               if (lv.has_output_dynsym_entry())
2322                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2323               st_shndx = elfcpp::SHN_XINDEX;
2324             }
2325         }
2326
2327       // Write the symbol to the output symbol table.
2328       if (lv.has_output_symtab_entry())
2329         {
2330           elfcpp::Sym_write<size, big_endian> osym(ov);
2331
2332           gold_assert(isym.get_st_name() < strtab_size);
2333           const char* name = pnames + isym.get_st_name();
2334           osym.put_st_name(sympool->get_offset(name));
2335           osym.put_st_value(this->local_values_[i].value(this, 0));
2336           osym.put_st_size(isym.get_st_size());
2337           osym.put_st_info(isym.get_st_info());
2338           osym.put_st_other(isym.get_st_other());
2339           osym.put_st_shndx(st_shndx);
2340
2341           ov += sym_size;
2342         }
2343
2344       // Write the symbol to the output dynamic symbol table.
2345       if (lv.has_output_dynsym_entry())
2346         {
2347           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2348           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2349
2350           gold_assert(isym.get_st_name() < strtab_size);
2351           const char* name = pnames + isym.get_st_name();
2352           osym.put_st_name(dynpool->get_offset(name));
2353           osym.put_st_value(this->local_values_[i].value(this, 0));
2354           osym.put_st_size(isym.get_st_size());
2355           osym.put_st_info(isym.get_st_info());
2356           osym.put_st_other(isym.get_st_other());
2357           osym.put_st_shndx(st_shndx);
2358
2359           dyn_ov += sym_size;
2360         }
2361     }
2362
2363
2364   if (output_size > 0)
2365     {
2366       gold_assert(ov - oview == output_size);
2367       of->write_output_view(symtab_off + this->local_symbol_offset_,
2368                             output_size, oview);
2369     }
2370
2371   if (dyn_output_size > 0)
2372     {
2373       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2374       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2375                             dyn_oview);
2376     }
2377 }
2378
2379 // Set *INFO to symbolic information about the offset OFFSET in the
2380 // section SHNDX.  Return true if we found something, false if we
2381 // found nothing.
2382
2383 template<int size, bool big_endian>
2384 bool
2385 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2386     unsigned int shndx,
2387     off_t offset,
2388     Symbol_location_info* info)
2389 {
2390   if (this->symtab_shndx_ == 0)
2391     return false;
2392
2393   section_size_type symbols_size;
2394   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2395                                                         &symbols_size,
2396                                                         false);
2397
2398   unsigned int symbol_names_shndx =
2399     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2400   section_size_type names_size;
2401   const unsigned char* symbol_names_u =
2402     this->section_contents(symbol_names_shndx, &names_size, false);
2403   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2404
2405   const int sym_size = This::sym_size;
2406   const size_t count = symbols_size / sym_size;
2407
2408   const unsigned char* p = symbols;
2409   for (size_t i = 0; i < count; ++i, p += sym_size)
2410     {
2411       elfcpp::Sym<size, big_endian> sym(p);
2412
2413       if (sym.get_st_type() == elfcpp::STT_FILE)
2414         {
2415           if (sym.get_st_name() >= names_size)
2416             info->source_file = "(invalid)";
2417           else
2418             info->source_file = symbol_names + sym.get_st_name();
2419           continue;
2420         }
2421
2422       bool is_ordinary;
2423       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2424                                                      &is_ordinary);
2425       if (is_ordinary
2426           && st_shndx == shndx
2427           && static_cast<off_t>(sym.get_st_value()) <= offset
2428           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2429               > offset))
2430         {
2431           if (sym.get_st_name() > names_size)
2432             info->enclosing_symbol_name = "(invalid)";
2433           else
2434             {
2435               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2436               if (parameters->options().do_demangle())
2437                 {
2438                   char* demangled_name = cplus_demangle(
2439                       info->enclosing_symbol_name.c_str(),
2440                       DMGL_ANSI | DMGL_PARAMS);
2441                   if (demangled_name != NULL)
2442                     {
2443                       info->enclosing_symbol_name.assign(demangled_name);
2444                       free(demangled_name);
2445                     }
2446                 }
2447             }
2448           return true;
2449         }
2450     }
2451
2452   return false;
2453 }
2454
2455 // Look for a kept section corresponding to the given discarded section,
2456 // and return its output address.  This is used only for relocations in
2457 // debugging sections.  If we can't find the kept section, return 0.
2458
2459 template<int size, bool big_endian>
2460 typename Sized_relobj_file<size, big_endian>::Address
2461 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2462     unsigned int shndx,
2463     bool* found) const
2464 {
2465   Relobj* kept_object;
2466   unsigned int kept_shndx;
2467   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2468     {
2469       Sized_relobj_file<size, big_endian>* kept_relobj =
2470         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2471       Output_section* os = kept_relobj->output_section(kept_shndx);
2472       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2473       if (os != NULL && offset != invalid_address)
2474         {
2475           *found = true;
2476           return os->address() + offset;
2477         }
2478     }
2479   *found = false;
2480   return 0;
2481 }
2482
2483 // Get symbol counts.
2484
2485 template<int size, bool big_endian>
2486 void
2487 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2488     const Symbol_table*,
2489     size_t* defined,
2490     size_t* used) const
2491 {
2492   *defined = this->defined_count_;
2493   size_t count = 0;
2494   for (typename Symbols::const_iterator p = this->symbols_.begin();
2495        p != this->symbols_.end();
2496        ++p)
2497     if (*p != NULL
2498         && (*p)->source() == Symbol::FROM_OBJECT
2499         && (*p)->object() == this
2500         && (*p)->is_defined())
2501       ++count;
2502   *used = count;
2503 }
2504
2505 // Input_objects methods.
2506
2507 // Add a regular relocatable object to the list.  Return false if this
2508 // object should be ignored.
2509
2510 bool
2511 Input_objects::add_object(Object* obj)
2512 {
2513   // Print the filename if the -t/--trace option is selected.
2514   if (parameters->options().trace())
2515     gold_info("%s", obj->name().c_str());
2516
2517   if (!obj->is_dynamic())
2518     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2519   else
2520     {
2521       // See if this is a duplicate SONAME.
2522       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2523       const char* soname = dynobj->soname();
2524
2525       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2526         this->sonames_.insert(soname);
2527       if (!ins.second)
2528         {
2529           // We have already seen a dynamic object with this soname.
2530           return false;
2531         }
2532
2533       this->dynobj_list_.push_back(dynobj);
2534     }
2535
2536   // Add this object to the cross-referencer if requested.
2537   if (parameters->options().user_set_print_symbol_counts()
2538       || parameters->options().cref())
2539     {
2540       if (this->cref_ == NULL)
2541         this->cref_ = new Cref();
2542       this->cref_->add_object(obj);
2543     }
2544
2545   return true;
2546 }
2547
2548 // For each dynamic object, record whether we've seen all of its
2549 // explicit dependencies.
2550
2551 void
2552 Input_objects::check_dynamic_dependencies() const
2553 {
2554   bool issued_copy_dt_needed_error = false;
2555   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2556        p != this->dynobj_list_.end();
2557        ++p)
2558     {
2559       const Dynobj::Needed& needed((*p)->needed());
2560       bool found_all = true;
2561       Dynobj::Needed::const_iterator pneeded;
2562       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2563         {
2564           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2565             {
2566               found_all = false;
2567               break;
2568             }
2569         }
2570       (*p)->set_has_unknown_needed_entries(!found_all);
2571
2572       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2573       // that gold does not support.  However, they cause no trouble
2574       // unless there is a DT_NEEDED entry that we don't know about;
2575       // warn only in that case.
2576       if (!found_all
2577           && !issued_copy_dt_needed_error
2578           && (parameters->options().copy_dt_needed_entries()
2579               || parameters->options().add_needed()))
2580         {
2581           const char* optname;
2582           if (parameters->options().copy_dt_needed_entries())
2583             optname = "--copy-dt-needed-entries";
2584           else
2585             optname = "--add-needed";
2586           gold_error(_("%s is not supported but is required for %s in %s"),
2587                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2588           issued_copy_dt_needed_error = true;
2589         }
2590     }
2591 }
2592
2593 // Start processing an archive.
2594
2595 void
2596 Input_objects::archive_start(Archive* archive)
2597 {
2598   if (parameters->options().user_set_print_symbol_counts()
2599       || parameters->options().cref())
2600     {
2601       if (this->cref_ == NULL)
2602         this->cref_ = new Cref();
2603       this->cref_->add_archive_start(archive);
2604     }
2605 }
2606
2607 // Stop processing an archive.
2608
2609 void
2610 Input_objects::archive_stop(Archive* archive)
2611 {
2612   if (parameters->options().user_set_print_symbol_counts()
2613       || parameters->options().cref())
2614     this->cref_->add_archive_stop(archive);
2615 }
2616
2617 // Print symbol counts
2618
2619 void
2620 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2621 {
2622   if (parameters->options().user_set_print_symbol_counts()
2623       && this->cref_ != NULL)
2624     this->cref_->print_symbol_counts(symtab);
2625 }
2626
2627 // Print a cross reference table.
2628
2629 void
2630 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2631 {
2632   if (parameters->options().cref() && this->cref_ != NULL)
2633     this->cref_->print_cref(symtab, f);
2634 }
2635
2636 // Relocate_info methods.
2637
2638 // Return a string describing the location of a relocation when file
2639 // and lineno information is not available.  This is only used in
2640 // error messages.
2641
2642 template<int size, bool big_endian>
2643 std::string
2644 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2645 {
2646   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2647   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2648   if (!ret.empty())
2649     return ret;
2650
2651   ret = this->object->name();
2652
2653   Symbol_location_info info;
2654   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2655     {
2656       if (!info.source_file.empty())
2657         {
2658           ret += ":";
2659           ret += info.source_file;
2660         }
2661       size_t len = info.enclosing_symbol_name.length() + 100;
2662       char* buf = new char[len];
2663       snprintf(buf, len, _(":function %s"),
2664                info.enclosing_symbol_name.c_str());
2665       ret += buf;
2666       delete[] buf;
2667       return ret;
2668     }
2669
2670   ret += "(";
2671   ret += this->object->section_name(this->data_shndx);
2672   char buf[100];
2673   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2674   ret += buf;
2675   return ret;
2676 }
2677
2678 } // End namespace gold.
2679
2680 namespace
2681 {
2682
2683 using namespace gold;
2684
2685 // Read an ELF file with the header and return the appropriate
2686 // instance of Object.
2687
2688 template<int size, bool big_endian>
2689 Object*
2690 make_elf_sized_object(const std::string& name, Input_file* input_file,
2691                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2692                       bool* punconfigured)
2693 {
2694   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2695                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2696                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2697   if (target == NULL)
2698     gold_fatal(_("%s: unsupported ELF machine number %d"),
2699                name.c_str(), ehdr.get_e_machine());
2700
2701   if (!parameters->target_valid())
2702     set_parameters_target(target);
2703   else if (target != &parameters->target())
2704     {
2705       if (punconfigured != NULL)
2706         *punconfigured = true;
2707       else
2708         gold_error(_("%s: incompatible target"), name.c_str());
2709       return NULL;
2710     }
2711
2712   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2713                                                    ehdr);
2714 }
2715
2716 } // End anonymous namespace.
2717
2718 namespace gold
2719 {
2720
2721 // Return whether INPUT_FILE is an ELF object.
2722
2723 bool
2724 is_elf_object(Input_file* input_file, off_t offset,
2725               const unsigned char** start, int* read_size)
2726 {
2727   off_t filesize = input_file->file().filesize();
2728   int want = elfcpp::Elf_recognizer::max_header_size;
2729   if (filesize - offset < want)
2730     want = filesize - offset;
2731
2732   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2733                                                        true, false);
2734   *start = p;
2735   *read_size = want;
2736
2737   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2738 }
2739
2740 // Read an ELF file and return the appropriate instance of Object.
2741
2742 Object*
2743 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2744                 const unsigned char* p, section_offset_type bytes,
2745                 bool* punconfigured)
2746 {
2747   if (punconfigured != NULL)
2748     *punconfigured = false;
2749
2750   std::string error;
2751   bool big_endian = false;
2752   int size = 0;
2753   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2754                                                &big_endian, &error))
2755     {
2756       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2757       return NULL;
2758     }
2759
2760   if (size == 32)
2761     {
2762       if (big_endian)
2763         {
2764 #ifdef HAVE_TARGET_32_BIG
2765           elfcpp::Ehdr<32, true> ehdr(p);
2766           return make_elf_sized_object<32, true>(name, input_file,
2767                                                  offset, ehdr, punconfigured);
2768 #else
2769           if (punconfigured != NULL)
2770             *punconfigured = true;
2771           else
2772             gold_error(_("%s: not configured to support "
2773                          "32-bit big-endian object"),
2774                        name.c_str());
2775           return NULL;
2776 #endif
2777         }
2778       else
2779         {
2780 #ifdef HAVE_TARGET_32_LITTLE
2781           elfcpp::Ehdr<32, false> ehdr(p);
2782           return make_elf_sized_object<32, false>(name, input_file,
2783                                                   offset, ehdr, punconfigured);
2784 #else
2785           if (punconfigured != NULL)
2786             *punconfigured = true;
2787           else
2788             gold_error(_("%s: not configured to support "
2789                          "32-bit little-endian object"),
2790                        name.c_str());
2791           return NULL;
2792 #endif
2793         }
2794     }
2795   else if (size == 64)
2796     {
2797       if (big_endian)
2798         {
2799 #ifdef HAVE_TARGET_64_BIG
2800           elfcpp::Ehdr<64, true> ehdr(p);
2801           return make_elf_sized_object<64, true>(name, input_file,
2802                                                  offset, ehdr, punconfigured);
2803 #else
2804           if (punconfigured != NULL)
2805             *punconfigured = true;
2806           else
2807             gold_error(_("%s: not configured to support "
2808                          "64-bit big-endian object"),
2809                        name.c_str());
2810           return NULL;
2811 #endif
2812         }
2813       else
2814         {
2815 #ifdef HAVE_TARGET_64_LITTLE
2816           elfcpp::Ehdr<64, false> ehdr(p);
2817           return make_elf_sized_object<64, false>(name, input_file,
2818                                                   offset, ehdr, punconfigured);
2819 #else
2820           if (punconfigured != NULL)
2821             *punconfigured = true;
2822           else
2823             gold_error(_("%s: not configured to support "
2824                          "64-bit little-endian object"),
2825                        name.c_str());
2826           return NULL;
2827 #endif
2828         }
2829     }
2830   else
2831     gold_unreachable();
2832 }
2833
2834 // Instantiate the templates we need.
2835
2836 #ifdef HAVE_TARGET_32_LITTLE
2837 template
2838 void
2839 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2840                                      Read_symbols_data*);
2841 #endif
2842
2843 #ifdef HAVE_TARGET_32_BIG
2844 template
2845 void
2846 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2847                                     Read_symbols_data*);
2848 #endif
2849
2850 #ifdef HAVE_TARGET_64_LITTLE
2851 template
2852 void
2853 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2854                                      Read_symbols_data*);
2855 #endif
2856
2857 #ifdef HAVE_TARGET_64_BIG
2858 template
2859 void
2860 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2861                                     Read_symbols_data*);
2862 #endif
2863
2864 #ifdef HAVE_TARGET_32_LITTLE
2865 template
2866 class Sized_relobj_file<32, false>;
2867 #endif
2868
2869 #ifdef HAVE_TARGET_32_BIG
2870 template
2871 class Sized_relobj_file<32, true>;
2872 #endif
2873
2874 #ifdef HAVE_TARGET_64_LITTLE
2875 template
2876 class Sized_relobj_file<64, false>;
2877 #endif
2878
2879 #ifdef HAVE_TARGET_64_BIG
2880 template
2881 class Sized_relobj_file<64, true>;
2882 #endif
2883
2884 #ifdef HAVE_TARGET_32_LITTLE
2885 template
2886 struct Relocate_info<32, false>;
2887 #endif
2888
2889 #ifdef HAVE_TARGET_32_BIG
2890 template
2891 struct Relocate_info<32, true>;
2892 #endif
2893
2894 #ifdef HAVE_TARGET_64_LITTLE
2895 template
2896 struct Relocate_info<64, false>;
2897 #endif
2898
2899 #ifdef HAVE_TARGET_64_BIG
2900 template
2901 struct Relocate_info<64, true>;
2902 #endif
2903
2904 #ifdef HAVE_TARGET_32_LITTLE
2905 template
2906 void
2907 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2908
2909 template
2910 void
2911 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2912                                       const unsigned char*);
2913 #endif
2914
2915 #ifdef HAVE_TARGET_32_BIG
2916 template
2917 void
2918 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2919
2920 template
2921 void
2922 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2923                                      const unsigned char*);
2924 #endif
2925
2926 #ifdef HAVE_TARGET_64_LITTLE
2927 template
2928 void
2929 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2930
2931 template
2932 void
2933 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2934                                       const unsigned char*);
2935 #endif
2936
2937 #ifdef HAVE_TARGET_64_BIG
2938 template
2939 void
2940 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2941
2942 template
2943 void
2944 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2945                                      const unsigned char*);
2946 #endif
2947
2948 } // End namespace gold.