* object.cc (Sized_relobj::include_section_group): Adjust section
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
39
40 namespace gold
41 {
42
43 // Class Xindex.
44
45 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
46 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
47 // table we care about.
48
49 template<int size, bool big_endian>
50 void
51 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
52 {
53   if (!this->symtab_xindex_.empty())
54     return;
55
56   gold_assert(symtab_shndx != 0);
57
58   // Look through the sections in reverse order, on the theory that it
59   // is more likely to be near the end than the beginning.
60   unsigned int i = object->shnum();
61   while (i > 0)
62     {
63       --i;
64       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
65           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
66         {
67           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
68           return;
69         }
70     }
71
72   object->error(_("missing SHT_SYMTAB_SHNDX section"));
73 }
74
75 // Read in the symtab_xindex_ array, given the section index of the
76 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
77 // section headers.
78
79 template<int size, bool big_endian>
80 void
81 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
82                            const unsigned char* pshdrs)
83 {
84   section_size_type bytecount;
85   const unsigned char* contents;
86   if (pshdrs == NULL)
87     contents = object->section_contents(xindex_shndx, &bytecount, false);
88   else
89     {
90       const unsigned char* p = (pshdrs
91                                 + (xindex_shndx
92                                    * elfcpp::Elf_sizes<size>::shdr_size));
93       typename elfcpp::Shdr<size, big_endian> shdr(p);
94       bytecount = convert_to_section_size_type(shdr.get_sh_size());
95       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
96     }
97
98   gold_assert(this->symtab_xindex_.empty());
99   this->symtab_xindex_.reserve(bytecount / 4);
100   for (section_size_type i = 0; i < bytecount; i += 4)
101     {
102       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
103       // We preadjust the section indexes we save.
104       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
105     }
106 }
107
108 // Symbol symndx has a section of SHN_XINDEX; return the real section
109 // index.
110
111 unsigned int
112 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
113 {
114   if (symndx >= this->symtab_xindex_.size())
115     {
116       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
117                     symndx);
118       return elfcpp::SHN_UNDEF;
119     }
120   unsigned int shndx = this->symtab_xindex_[symndx];
121   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
122     {
123       object->error(_("extended index for symbol %u out of range: %u"),
124                     symndx, shndx);
125       return elfcpp::SHN_UNDEF;
126     }
127   return shndx;
128 }
129
130 // Class Object.
131
132 // Set the target based on fields in the ELF file header.
133
134 void
135 Object::set_target(int machine, int size, bool big_endian, int osabi,
136                    int abiversion)
137 {
138   Target* target = select_target(machine, size, big_endian, osabi, abiversion);
139   if (target == NULL)
140     gold_fatal(_("%s: unsupported ELF machine number %d"),
141                this->name().c_str(), machine);
142   this->target_ = target;
143 }
144
145 // Report an error for this object file.  This is used by the
146 // elfcpp::Elf_file interface, and also called by the Object code
147 // itself.
148
149 void
150 Object::error(const char* format, ...) const
151 {
152   va_list args;
153   va_start(args, format);
154   char* buf = NULL;
155   if (vasprintf(&buf, format, args) < 0)
156     gold_nomem();
157   va_end(args);
158   gold_error(_("%s: %s"), this->name().c_str(), buf);
159   free(buf);
160 }
161
162 // Return a view of the contents of a section.
163
164 const unsigned char*
165 Object::section_contents(unsigned int shndx, section_size_type* plen,
166                          bool cache)
167 {
168   Location loc(this->do_section_contents(shndx));
169   *plen = convert_to_section_size_type(loc.data_size);
170   return this->get_view(loc.file_offset, *plen, true, cache);
171 }
172
173 // Read the section data into SD.  This is code common to Sized_relobj
174 // and Sized_dynobj, so we put it into Object.
175
176 template<int size, bool big_endian>
177 void
178 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
179                           Read_symbols_data* sd)
180 {
181   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182
183   // Read the section headers.
184   const off_t shoff = elf_file->shoff();
185   const unsigned int shnum = this->shnum();
186   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
187                                                true, true);
188
189   // Read the section names.
190   const unsigned char* pshdrs = sd->section_headers->data();
191   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
192   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
193
194   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
195     this->error(_("section name section has wrong type: %u"),
196                 static_cast<unsigned int>(shdrnames.get_sh_type()));
197
198   sd->section_names_size =
199     convert_to_section_size_type(shdrnames.get_sh_size());
200   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
201                                              sd->section_names_size, false,
202                                              false);
203 }
204
205 // If NAME is the name of a special .gnu.warning section, arrange for
206 // the warning to be issued.  SHNDX is the section index.  Return
207 // whether it is a warning section.
208
209 bool
210 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
211                                    Symbol_table* symtab)
212 {
213   const char warn_prefix[] = ".gnu.warning.";
214   const int warn_prefix_len = sizeof warn_prefix - 1;
215   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
216     {
217       // Read the section contents to get the warning text.  It would
218       // be nicer if we only did this if we have to actually issue a
219       // warning.  Unfortunately, warnings are issued as we relocate
220       // sections.  That means that we can not lock the object then,
221       // as we might try to issue the same warning multiple times
222       // simultaneously.
223       section_size_type len;
224       const unsigned char* contents = this->section_contents(shndx, &len,
225                                                              false);
226       std::string warning(reinterpret_cast<const char*>(contents), len);
227       symtab->add_warning(name + warn_prefix_len, this, warning);
228       return true;
229     }
230   return false;
231 }
232
233 // Class Relobj.
234
235 // Return the output address of the input section SHNDX.
236 uint64_t
237 Relobj::output_section_address(unsigned int shndx) const
238 {
239   section_offset_type offset;
240   Output_section* os = this->output_section(shndx, &offset);
241   gold_assert(os != NULL && offset != -1);
242   return os->address() + offset;
243 }
244
245 // Class Sized_relobj.
246
247 template<int size, bool big_endian>
248 Sized_relobj<size, big_endian>::Sized_relobj(
249     const std::string& name,
250     Input_file* input_file,
251     off_t offset,
252     const elfcpp::Ehdr<size, big_endian>& ehdr)
253   : Relobj(name, input_file, offset),
254     elf_file_(this, ehdr),
255     symtab_shndx_(-1U),
256     local_symbol_count_(0),
257     output_local_symbol_count_(0),
258     output_local_dynsym_count_(0),
259     symbols_(),
260     local_symbol_offset_(0),
261     local_dynsym_offset_(0),
262     local_values_(),
263     local_got_offsets_(),
264     has_eh_frame_(false)
265 {
266 }
267
268 template<int size, bool big_endian>
269 Sized_relobj<size, big_endian>::~Sized_relobj()
270 {
271 }
272
273 // Set up an object file based on the file header.  This sets up the
274 // target and reads the section information.
275
276 template<int size, bool big_endian>
277 void
278 Sized_relobj<size, big_endian>::setup(
279     const elfcpp::Ehdr<size, big_endian>& ehdr)
280 {
281   this->set_target(ehdr.get_e_machine(), size, big_endian,
282                    ehdr.get_e_ident()[elfcpp::EI_OSABI],
283                    ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
284
285   const unsigned int shnum = this->elf_file_.shnum();
286   this->set_shnum(shnum);
287 }
288
289 // Find the SHT_SYMTAB section, given the section headers.  The ELF
290 // standard says that maybe in the future there can be more than one
291 // SHT_SYMTAB section.  Until somebody figures out how that could
292 // work, we assume there is only one.
293
294 template<int size, bool big_endian>
295 void
296 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
297 {
298   const unsigned int shnum = this->shnum();
299   this->symtab_shndx_ = 0;
300   if (shnum > 0)
301     {
302       // Look through the sections in reverse order, since gas tends
303       // to put the symbol table at the end.
304       const unsigned char* p = pshdrs + shnum * This::shdr_size;
305       unsigned int i = shnum;
306       unsigned int xindex_shndx = 0;
307       unsigned int xindex_link = 0;
308       while (i > 0)
309         {
310           --i;
311           p -= This::shdr_size;
312           typename This::Shdr shdr(p);
313           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
314             {
315               this->symtab_shndx_ = i;
316               if (xindex_shndx > 0 && xindex_link == i)
317                 {
318                   Xindex* xindex =
319                     new Xindex(this->elf_file_.large_shndx_offset());
320                   xindex->read_symtab_xindex<size, big_endian>(this,
321                                                                xindex_shndx,
322                                                                pshdrs);
323                   this->set_xindex(xindex);
324                 }
325               break;
326             }
327
328           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
329           // one.  This will work if it follows the SHT_SYMTAB
330           // section.
331           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
332             {
333               xindex_shndx = i;
334               xindex_link = this->adjust_shndx(shdr.get_sh_link());
335             }
336         }
337     }
338 }
339
340 // Return the Xindex structure to use for object with lots of
341 // sections.
342
343 template<int size, bool big_endian>
344 Xindex*
345 Sized_relobj<size, big_endian>::do_initialize_xindex()
346 {
347   gold_assert(this->symtab_shndx_ != -1U);
348   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
349   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
350   return xindex;
351 }
352
353 // Return whether SHDR has the right type and flags to be a GNU
354 // .eh_frame section.
355
356 template<int size, bool big_endian>
357 bool
358 Sized_relobj<size, big_endian>::check_eh_frame_flags(
359     const elfcpp::Shdr<size, big_endian>* shdr) const
360 {
361   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
362           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
363 }
364
365 // Return whether there is a GNU .eh_frame section, given the section
366 // headers and the section names.
367
368 template<int size, bool big_endian>
369 bool
370 Sized_relobj<size, big_endian>::find_eh_frame(
371     const unsigned char* pshdrs,
372     const char* names,
373     section_size_type names_size) const
374 {
375   const unsigned int shnum = this->shnum();
376   const unsigned char* p = pshdrs + This::shdr_size;
377   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
378     {
379       typename This::Shdr shdr(p);
380       if (this->check_eh_frame_flags(&shdr))
381         {
382           if (shdr.get_sh_name() >= names_size)
383             {
384               this->error(_("bad section name offset for section %u: %lu"),
385                           i, static_cast<unsigned long>(shdr.get_sh_name()));
386               continue;
387             }
388
389           const char* name = names + shdr.get_sh_name();
390           if (strcmp(name, ".eh_frame") == 0)
391             return true;
392         }
393     }
394   return false;
395 }
396
397 // Read the sections and symbols from an object file.
398
399 template<int size, bool big_endian>
400 void
401 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
402 {
403   this->read_section_data(&this->elf_file_, sd);
404
405   const unsigned char* const pshdrs = sd->section_headers->data();
406
407   this->find_symtab(pshdrs);
408
409   const unsigned char* namesu = sd->section_names->data();
410   const char* names = reinterpret_cast<const char*>(namesu);
411   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
412     {
413       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
414         this->has_eh_frame_ = true;
415     }
416
417   sd->symbols = NULL;
418   sd->symbols_size = 0;
419   sd->external_symbols_offset = 0;
420   sd->symbol_names = NULL;
421   sd->symbol_names_size = 0;
422
423   if (this->symtab_shndx_ == 0)
424     {
425       // No symbol table.  Weird but legal.
426       return;
427     }
428
429   // Get the symbol table section header.
430   typename This::Shdr symtabshdr(pshdrs
431                                  + this->symtab_shndx_ * This::shdr_size);
432   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
433
434   // If this object has a .eh_frame section, we need all the symbols.
435   // Otherwise we only need the external symbols.  While it would be
436   // simpler to just always read all the symbols, I've seen object
437   // files with well over 2000 local symbols, which for a 64-bit
438   // object file format is over 5 pages that we don't need to read
439   // now.
440
441   const int sym_size = This::sym_size;
442   const unsigned int loccount = symtabshdr.get_sh_info();
443   this->local_symbol_count_ = loccount;
444   this->local_values_.resize(loccount);
445   section_offset_type locsize = loccount * sym_size;
446   off_t dataoff = symtabshdr.get_sh_offset();
447   section_size_type datasize =
448     convert_to_section_size_type(symtabshdr.get_sh_size());
449   off_t extoff = dataoff + locsize;
450   section_size_type extsize = datasize - locsize;
451
452   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
453   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
454
455   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
456
457   // Read the section header for the symbol names.
458   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
459   if (strtab_shndx >= this->shnum())
460     {
461       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
462       return;
463     }
464   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
465   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
466     {
467       this->error(_("symbol table name section has wrong type: %u"),
468                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
469       return;
470     }
471
472   // Read the symbol names.
473   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
474                                                strtabshdr.get_sh_size(),
475                                                false, true);
476
477   sd->symbols = fvsymtab;
478   sd->symbols_size = readsize;
479   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
480   sd->symbol_names = fvstrtab;
481   sd->symbol_names_size =
482     convert_to_section_size_type(strtabshdr.get_sh_size());
483 }
484
485 // Return the section index of symbol SYM.  Set *VALUE to its value in
486 // the object file.  Set *IS_ORDINARY if this is an ordinary section
487 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
488 // Note that for a symbol which is not defined in this object file,
489 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
490 // the final value of the symbol in the link.
491
492 template<int size, bool big_endian>
493 unsigned int
494 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
495                                                          Address* value,
496                                                          bool* is_ordinary)
497 {
498   section_size_type symbols_size;
499   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
500                                                         &symbols_size,
501                                                         false);
502
503   const size_t count = symbols_size / This::sym_size;
504   gold_assert(sym < count);
505
506   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
507   *value = elfsym.get_st_value();
508
509   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
510 }
511
512 // Return whether to include a section group in the link.  LAYOUT is
513 // used to keep track of which section groups we have already seen.
514 // INDEX is the index of the section group and SHDR is the section
515 // header.  If we do not want to include this group, we set bits in
516 // OMIT for each section which should be discarded.
517
518 template<int size, bool big_endian>
519 bool
520 Sized_relobj<size, big_endian>::include_section_group(
521     Symbol_table* symtab,
522     Layout* layout,
523     unsigned int index,
524     const char* name,
525     const unsigned char* shdrs,
526     const char* section_names,
527     section_size_type section_names_size,
528     std::vector<bool>* omit)
529 {
530   // Read the section contents.
531   typename This::Shdr shdr(shdrs + index * This::shdr_size);
532   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
533                                              shdr.get_sh_size(), true, false);
534   const elfcpp::Elf_Word* pword =
535     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
536
537   // The first word contains flags.  We only care about COMDAT section
538   // groups.  Other section groups are always included in the link
539   // just like ordinary sections.
540   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
541
542   // Look up the group signature, which is the name of a symbol.  This
543   // is a lot of effort to go to to read a string.  Why didn't they
544   // just have the group signature point into the string table, rather
545   // than indirect through a symbol?
546
547   // Get the appropriate symbol table header (this will normally be
548   // the single SHT_SYMTAB section, but in principle it need not be).
549   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
550   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
551
552   // Read the symbol table entry.
553   unsigned int symndx = shdr.get_sh_info();
554   if (symndx >= symshdr.get_sh_size() / This::sym_size)
555     {
556       this->error(_("section group %u info %u out of range"),
557                   index, symndx);
558       return false;
559     }
560   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
561   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
562                                              false);
563   elfcpp::Sym<size, big_endian> sym(psym);
564
565   // Read the symbol table names.
566   section_size_type symnamelen;
567   const unsigned char* psymnamesu;
568   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
569                                       &symnamelen, true);
570   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
571
572   // Get the section group signature.
573   if (sym.get_st_name() >= symnamelen)
574     {
575       this->error(_("symbol %u name offset %u out of range"),
576                   symndx, sym.get_st_name());
577       return false;
578     }
579
580   std::string signature(psymnames + sym.get_st_name());
581
582   // It seems that some versions of gas will create a section group
583   // associated with a section symbol, and then fail to give a name to
584   // the section symbol.  In such a case, use the name of the section.
585   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
586     {
587       bool is_ordinary;
588       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
589                                                       sym.get_st_shndx(),
590                                                       &is_ordinary);
591       if (!is_ordinary || sym_shndx >= this->shnum())
592         {
593           this->error(_("symbol %u invalid section index %u"),
594                       symndx, sym_shndx);
595           return false;
596         }
597       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
598       if (member_shdr.get_sh_name() < section_names_size)
599         signature = section_names + member_shdr.get_sh_name();
600     }
601
602   // Record this section group in the layout, and see whether we've already
603   // seen one with the same signature.
604   bool include_group = ((flags & elfcpp::GRP_COMDAT) == 0
605                         || layout->add_comdat(this, index, signature, true));
606
607   Relobj* kept_object = NULL;
608   Comdat_group* kept_group = NULL;
609
610   if (!include_group)
611     {
612       // This group is being discarded.  Find the object and group
613       // that was kept in its place.
614       unsigned int kept_group_index = 0;
615       kept_object = layout->find_kept_object(signature, &kept_group_index);
616       if (kept_object != NULL)
617         kept_group = kept_object->find_comdat_group(kept_group_index);
618     }
619   else if (flags & elfcpp::GRP_COMDAT)
620     {
621       // This group is being kept.  Create the table to map section names
622       // to section indexes and add it to the table of groups.
623       kept_group = new Comdat_group();
624       this->add_comdat_group(index, kept_group);
625     }
626
627   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
628
629   std::vector<unsigned int> shndxes;
630   bool relocate_group = include_group && parameters->options().relocatable();
631   if (relocate_group)
632     shndxes.reserve(count - 1);
633
634   for (size_t i = 1; i < count; ++i)
635     {
636       elfcpp::Elf_Word secnum =
637         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
638
639       if (relocate_group)
640         shndxes.push_back(secnum);
641
642       if (secnum >= this->shnum())
643         {
644           this->error(_("section %u in section group %u out of range"),
645                       secnum, index);
646           continue;
647         }
648
649       // Check for an earlier section number, since we're going to get
650       // it wrong--we may have already decided to include the section.
651       if (secnum < index)
652         this->error(_("invalid section group %u refers to earlier section %u"),
653                     index, secnum);
654
655       // Get the name of the member section.
656       typename This::Shdr member_shdr(shdrs + secnum * This::shdr_size);
657       if (member_shdr.get_sh_name() >= section_names_size)
658         {
659           // This is an error, but it will be diagnosed eventually
660           // in do_layout, so we don't need to do anything here but
661           // ignore it.
662           continue;
663         }
664       std::string mname(section_names + member_shdr.get_sh_name());
665
666       if (!include_group)
667         {
668           (*omit)[secnum] = true;
669           if (kept_group != NULL)
670             {
671               // Find the corresponding kept section, and store that info
672               // in the discarded section table.
673               Comdat_group::const_iterator p = kept_group->find(mname);
674               if (p != kept_group->end())
675                 {
676                   Kept_comdat_section* kept =
677                     new Kept_comdat_section(kept_object, p->second);
678                   this->set_kept_comdat_section(secnum, kept);
679                 }
680             }
681         }
682       else if (flags & elfcpp::GRP_COMDAT)
683         {
684           // Add the section to the kept group table.
685           gold_assert(kept_group != NULL);
686           kept_group->insert(std::make_pair(mname, secnum));
687         }
688     }
689
690   if (relocate_group)
691     layout->layout_group(symtab, this, index, name, signature.c_str(),
692                          shdr, flags, &shndxes);
693
694   return include_group;
695 }
696
697 // Whether to include a linkonce section in the link.  NAME is the
698 // name of the section and SHDR is the section header.
699
700 // Linkonce sections are a GNU extension implemented in the original
701 // GNU linker before section groups were defined.  The semantics are
702 // that we only include one linkonce section with a given name.  The
703 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
704 // where T is the type of section and SYMNAME is the name of a symbol.
705 // In an attempt to make linkonce sections interact well with section
706 // groups, we try to identify SYMNAME and use it like a section group
707 // signature.  We want to block section groups with that signature,
708 // but not other linkonce sections with that signature.  We also use
709 // the full name of the linkonce section as a normal section group
710 // signature.
711
712 template<int size, bool big_endian>
713 bool
714 Sized_relobj<size, big_endian>::include_linkonce_section(
715     Layout* layout,
716     unsigned int index,
717     const char* name,
718     const elfcpp::Shdr<size, big_endian>&)
719 {
720   // In general the symbol name we want will be the string following
721   // the last '.'.  However, we have to handle the case of
722   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
723   // some versions of gcc.  So we use a heuristic: if the name starts
724   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
725   // we look for the last '.'.  We can't always simply skip
726   // ".gnu.linkonce.X", because we have to deal with cases like
727   // ".gnu.linkonce.d.rel.ro.local".
728   const char* const linkonce_t = ".gnu.linkonce.t.";
729   const char* symname;
730   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
731     symname = name + strlen(linkonce_t);
732   else
733     symname = strrchr(name, '.') + 1;
734   std::string sig1(symname);
735   std::string sig2(name);
736   bool include1 = layout->add_comdat(this, index, sig1, false);
737   bool include2 = layout->add_comdat(this, index, sig2, true);
738
739   if (!include2)
740     {
741       // The section is being discarded on the basis of its section
742       // name (i.e., the kept section was also a linkonce section).
743       // In this case, the section index stored with the layout object
744       // is the linkonce section that was kept.
745       unsigned int kept_group_index = 0;
746       Relobj* kept_object = layout->find_kept_object(sig2, &kept_group_index);
747       if (kept_object != NULL)
748         {
749           Kept_comdat_section* kept =
750             new Kept_comdat_section(kept_object, kept_group_index);
751           this->set_kept_comdat_section(index, kept);
752         }
753     }
754   else if (!include1)
755     {
756       // The section is being discarded on the basis of its symbol
757       // name.  This means that the corresponding kept section was
758       // part of a comdat group, and it will be difficult to identify
759       // the specific section within that group that corresponds to
760       // this linkonce section.  We'll handle the simple case where
761       // the group has only one member section.  Otherwise, it's not
762       // worth the effort.
763       unsigned int kept_group_index = 0;
764       Relobj* kept_object = layout->find_kept_object(sig1, &kept_group_index);
765       if (kept_object != NULL)
766         {
767           Comdat_group* kept_group =
768             kept_object->find_comdat_group(kept_group_index);
769           if (kept_group != NULL && kept_group->size() == 1)
770             {
771               Comdat_group::const_iterator p = kept_group->begin();
772               gold_assert(p != kept_group->end());
773               Kept_comdat_section* kept =
774                 new Kept_comdat_section(kept_object, p->second);
775               this->set_kept_comdat_section(index, kept);
776             }
777         }
778     }
779
780   return include1 && include2;
781 }
782
783 // Lay out the input sections.  We walk through the sections and check
784 // whether they should be included in the link.  If they should, we
785 // pass them to the Layout object, which will return an output section
786 // and an offset.
787
788 template<int size, bool big_endian>
789 void
790 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
791                                           Layout* layout,
792                                           Read_symbols_data* sd)
793 {
794   const unsigned int shnum = this->shnum();
795   if (shnum == 0)
796     return;
797
798   // Get the section headers.
799   const unsigned char* shdrs = sd->section_headers->data();
800   const unsigned char* pshdrs;
801
802   // Get the section names.
803   const unsigned char* pnamesu = sd->section_names->data();
804   const char* pnames = reinterpret_cast<const char*>(pnamesu);
805
806   // For each section, record the index of the reloc section if any.
807   // Use 0 to mean that there is no reloc section, -1U to mean that
808   // there is more than one.
809   std::vector<unsigned int> reloc_shndx(shnum, 0);
810   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
811   // Skip the first, dummy, section.
812   pshdrs = shdrs + This::shdr_size;
813   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
814     {
815       typename This::Shdr shdr(pshdrs);
816
817       unsigned int sh_type = shdr.get_sh_type();
818       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
819         {
820           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
821           if (target_shndx == 0 || target_shndx >= shnum)
822             {
823               this->error(_("relocation section %u has bad info %u"),
824                           i, target_shndx);
825               continue;
826             }
827
828           if (reloc_shndx[target_shndx] != 0)
829             reloc_shndx[target_shndx] = -1U;
830           else
831             {
832               reloc_shndx[target_shndx] = i;
833               reloc_type[target_shndx] = sh_type;
834             }
835         }
836     }
837
838   std::vector<Map_to_output>& map_sections(this->map_to_output());
839   map_sections.resize(shnum);
840
841   // If we are only linking for symbols, then there is nothing else to
842   // do here.
843   if (this->input_file()->just_symbols())
844     {
845       delete sd->section_headers;
846       sd->section_headers = NULL;
847       delete sd->section_names;
848       sd->section_names = NULL;
849       return;
850     }
851
852   // Whether we've seen a .note.GNU-stack section.
853   bool seen_gnu_stack = false;
854   // The flags of a .note.GNU-stack section.
855   uint64_t gnu_stack_flags = 0;
856
857   // Keep track of which sections to omit.
858   std::vector<bool> omit(shnum, false);
859
860   // Keep track of reloc sections when emitting relocations.
861   const bool relocatable = parameters->options().relocatable();
862   const bool emit_relocs = (relocatable
863                             || parameters->options().emit_relocs());
864   std::vector<unsigned int> reloc_sections;
865
866   // Keep track of .eh_frame sections.
867   std::vector<unsigned int> eh_frame_sections;
868
869   // Skip the first, dummy, section.
870   pshdrs = shdrs + This::shdr_size;
871   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
872     {
873       typename This::Shdr shdr(pshdrs);
874
875       if (shdr.get_sh_name() >= sd->section_names_size)
876         {
877           this->error(_("bad section name offset for section %u: %lu"),
878                       i, static_cast<unsigned long>(shdr.get_sh_name()));
879           return;
880         }
881
882       const char* name = pnames + shdr.get_sh_name();
883
884       if (this->handle_gnu_warning_section(name, i, symtab))
885         {
886           if (!relocatable)
887             omit[i] = true;
888         }
889
890       // The .note.GNU-stack section is special.  It gives the
891       // protection flags that this object file requires for the stack
892       // in memory.
893       if (strcmp(name, ".note.GNU-stack") == 0)
894         {
895           seen_gnu_stack = true;
896           gnu_stack_flags |= shdr.get_sh_flags();
897           omit[i] = true;
898         }
899
900       bool discard = omit[i];
901       if (!discard)
902         {
903           if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
904             {
905               if (!this->include_section_group(symtab, layout, i, name, shdrs,
906                                                pnames, sd->section_names_size,
907                                                &omit))
908                 discard = true;
909             }
910           else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
911                    && Layout::is_linkonce(name))
912             {
913               if (!this->include_linkonce_section(layout, i, name, shdr))
914                 discard = true;
915             }
916         }
917
918       if (discard)
919         {
920           // Do not include this section in the link.
921           map_sections[i].output_section = NULL;
922           continue;
923         }
924
925       // When doing a relocatable link we are going to copy input
926       // reloc sections into the output.  We only want to copy the
927       // ones associated with sections which are not being discarded.
928       // However, we don't know that yet for all sections.  So save
929       // reloc sections and process them later.
930       if (emit_relocs
931           && (shdr.get_sh_type() == elfcpp::SHT_REL
932               || shdr.get_sh_type() == elfcpp::SHT_RELA))
933         {
934           reloc_sections.push_back(i);
935           continue;
936         }
937
938       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
939         continue;
940
941       // The .eh_frame section is special.  It holds exception frame
942       // information that we need to read in order to generate the
943       // exception frame header.  We process these after all the other
944       // sections so that the exception frame reader can reliably
945       // determine which sections are being discarded, and discard the
946       // corresponding information.
947       if (!relocatable
948           && strcmp(name, ".eh_frame") == 0
949           && this->check_eh_frame_flags(&shdr))
950         {
951           eh_frame_sections.push_back(i);
952           continue;
953         }
954
955       off_t offset;
956       Output_section* os = layout->layout(this, i, name, shdr,
957                                           reloc_shndx[i], reloc_type[i],
958                                           &offset);
959
960       map_sections[i].output_section = os;
961       map_sections[i].offset = offset;
962
963       // If this section requires special handling, and if there are
964       // relocs that apply to it, then we must do the special handling
965       // before we apply the relocs.
966       if (offset == -1 && reloc_shndx[i] != 0)
967         this->set_relocs_must_follow_section_writes();
968     }
969
970   layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
971
972   // When doing a relocatable link handle the reloc sections at the
973   // end.
974   if (emit_relocs)
975     this->size_relocatable_relocs();
976   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
977        p != reloc_sections.end();
978        ++p)
979     {
980       unsigned int i = *p;
981       const unsigned char* pshdr;
982       pshdr = sd->section_headers->data() + i * This::shdr_size;
983       typename This::Shdr shdr(pshdr);
984
985       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
986       if (data_shndx >= shnum)
987         {
988           // We already warned about this above.
989           continue;
990         }
991
992       Output_section* data_section = map_sections[data_shndx].output_section;
993       if (data_section == NULL)
994         {
995           map_sections[i].output_section = NULL;
996           continue;
997         }
998
999       Relocatable_relocs* rr = new Relocatable_relocs();
1000       this->set_relocatable_relocs(i, rr);
1001
1002       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1003                                                 rr);
1004       map_sections[i].output_section = os;
1005       map_sections[i].offset = -1;
1006     }
1007
1008   // Handle the .eh_frame sections at the end.
1009   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1010        p != eh_frame_sections.end();
1011        ++p)
1012     {
1013       gold_assert(this->has_eh_frame_);
1014       gold_assert(sd->external_symbols_offset != 0);
1015
1016       unsigned int i = *p;
1017       const unsigned char *pshdr;
1018       pshdr = sd->section_headers->data() + i * This::shdr_size;
1019       typename This::Shdr shdr(pshdr);
1020
1021       off_t offset;
1022       Output_section* os = layout->layout_eh_frame(this,
1023                                                    sd->symbols->data(),
1024                                                    sd->symbols_size,
1025                                                    sd->symbol_names->data(),
1026                                                    sd->symbol_names_size,
1027                                                    i, shdr,
1028                                                    reloc_shndx[i],
1029                                                    reloc_type[i],
1030                                                    &offset);
1031       map_sections[i].output_section = os;
1032       map_sections[i].offset = offset;
1033
1034       // If this section requires special handling, and if there are
1035       // relocs that apply to it, then we must do the special handling
1036       // before we apply the relocs.
1037       if (offset == -1 && reloc_shndx[i] != 0)
1038         this->set_relocs_must_follow_section_writes();
1039     }
1040
1041   delete sd->section_headers;
1042   sd->section_headers = NULL;
1043   delete sd->section_names;
1044   sd->section_names = NULL;
1045 }
1046
1047 // Add the symbols to the symbol table.
1048
1049 template<int size, bool big_endian>
1050 void
1051 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1052                                                Read_symbols_data* sd)
1053 {
1054   if (sd->symbols == NULL)
1055     {
1056       gold_assert(sd->symbol_names == NULL);
1057       return;
1058     }
1059
1060   const int sym_size = This::sym_size;
1061   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1062                      / sym_size);
1063   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1064     {
1065       this->error(_("size of symbols is not multiple of symbol size"));
1066       return;
1067     }
1068
1069   this->symbols_.resize(symcount);
1070
1071   const char* sym_names =
1072     reinterpret_cast<const char*>(sd->symbol_names->data());
1073   symtab->add_from_relobj(this,
1074                           sd->symbols->data() + sd->external_symbols_offset,
1075                           symcount, this->local_symbol_count_,
1076                           sym_names, sd->symbol_names_size,
1077                           &this->symbols_);
1078
1079   delete sd->symbols;
1080   sd->symbols = NULL;
1081   delete sd->symbol_names;
1082   sd->symbol_names = NULL;
1083 }
1084
1085 // First pass over the local symbols.  Here we add their names to
1086 // *POOL and *DYNPOOL, and we store the symbol value in
1087 // THIS->LOCAL_VALUES_.  This function is always called from a
1088 // singleton thread.  This is followed by a call to
1089 // finalize_local_symbols.
1090
1091 template<int size, bool big_endian>
1092 void
1093 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1094                                                        Stringpool* dynpool)
1095 {
1096   gold_assert(this->symtab_shndx_ != -1U);
1097   if (this->symtab_shndx_ == 0)
1098     {
1099       // This object has no symbols.  Weird but legal.
1100       return;
1101     }
1102
1103   // Read the symbol table section header.
1104   const unsigned int symtab_shndx = this->symtab_shndx_;
1105   typename This::Shdr symtabshdr(this,
1106                                  this->elf_file_.section_header(symtab_shndx));
1107   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1108
1109   // Read the local symbols.
1110   const int sym_size = This::sym_size;
1111   const unsigned int loccount = this->local_symbol_count_;
1112   gold_assert(loccount == symtabshdr.get_sh_info());
1113   off_t locsize = loccount * sym_size;
1114   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1115                                               locsize, true, true);
1116
1117   // Read the symbol names.
1118   const unsigned int strtab_shndx =
1119     this->adjust_shndx(symtabshdr.get_sh_link());
1120   section_size_type strtab_size;
1121   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1122                                                         &strtab_size,
1123                                                         true);
1124   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1125
1126   // Loop over the local symbols.
1127
1128   const std::vector<Map_to_output>& mo(this->map_to_output());
1129   unsigned int shnum = this->shnum();
1130   unsigned int count = 0;
1131   unsigned int dyncount = 0;
1132   // Skip the first, dummy, symbol.
1133   psyms += sym_size;
1134   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1135     {
1136       elfcpp::Sym<size, big_endian> sym(psyms);
1137
1138       Symbol_value<size>& lv(this->local_values_[i]);
1139
1140       bool is_ordinary;
1141       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1142                                                   &is_ordinary);
1143       lv.set_input_shndx(shndx, is_ordinary);
1144
1145       if (sym.get_st_type() == elfcpp::STT_SECTION)
1146         lv.set_is_section_symbol();
1147       else if (sym.get_st_type() == elfcpp::STT_TLS)
1148         lv.set_is_tls_symbol();
1149
1150       // Save the input symbol value for use in do_finalize_local_symbols().
1151       lv.set_input_value(sym.get_st_value());
1152
1153       // Decide whether this symbol should go into the output file.
1154
1155       if (shndx < shnum && mo[shndx].output_section == NULL)
1156         {
1157           lv.set_no_output_symtab_entry();
1158           gold_assert(!lv.needs_output_dynsym_entry());
1159           continue;
1160         }
1161
1162       if (sym.get_st_type() == elfcpp::STT_SECTION)
1163         {
1164           lv.set_no_output_symtab_entry();
1165           gold_assert(!lv.needs_output_dynsym_entry());
1166           continue;
1167         }
1168
1169       if (sym.get_st_name() >= strtab_size)
1170         {
1171           this->error(_("local symbol %u section name out of range: %u >= %u"),
1172                       i, sym.get_st_name(),
1173                       static_cast<unsigned int>(strtab_size));
1174           lv.set_no_output_symtab_entry();
1175           continue;
1176         }
1177
1178       // Add the symbol to the symbol table string pool.
1179       const char* name = pnames + sym.get_st_name();
1180       pool->add(name, true, NULL);
1181       ++count;
1182
1183       // If needed, add the symbol to the dynamic symbol table string pool.
1184       if (lv.needs_output_dynsym_entry())
1185         {
1186           dynpool->add(name, true, NULL);
1187           ++dyncount;
1188         }
1189     }
1190
1191   this->output_local_symbol_count_ = count;
1192   this->output_local_dynsym_count_ = dyncount;
1193 }
1194
1195 // Finalize the local symbols.  Here we set the final value in
1196 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1197 // This function is always called from a singleton thread.  The actual
1198 // output of the local symbols will occur in a separate task.
1199
1200 template<int size, bool big_endian>
1201 unsigned int
1202 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1203                                                           off_t off)
1204 {
1205   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1206
1207   const unsigned int loccount = this->local_symbol_count_;
1208   this->local_symbol_offset_ = off;
1209
1210   const std::vector<Map_to_output>& mo(this->map_to_output());
1211   unsigned int shnum = this->shnum();
1212
1213   for (unsigned int i = 1; i < loccount; ++i)
1214     {
1215       Symbol_value<size>& lv(this->local_values_[i]);
1216
1217       bool is_ordinary;
1218       unsigned int shndx = lv.input_shndx(&is_ordinary);
1219
1220       // Set the output symbol value.
1221       
1222       if (!is_ordinary)
1223         {
1224           if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1225             lv.set_output_value(lv.input_value());
1226           else
1227             {
1228               this->error(_("unknown section index %u for local symbol %u"),
1229                           shndx, i);
1230               lv.set_output_value(0);
1231             }
1232         }
1233       else
1234         {
1235           if (shndx >= shnum)
1236             {
1237               this->error(_("local symbol %u section index %u out of range"),
1238                           i, shndx);
1239               shndx = 0;
1240             }
1241
1242           Output_section* os = mo[shndx].output_section;
1243
1244           if (os == NULL)
1245             {
1246               // This local symbol belongs to a section we are discarding.
1247               // In some cases when applying relocations later, we will
1248               // attempt to match it to the corresponding kept section,
1249               // so we leave the input value unchanged here.
1250               continue;
1251             }
1252           else if (mo[shndx].offset == -1)
1253             {
1254               // This is a SHF_MERGE section or one which otherwise
1255               // requires special handling.  We get the output address
1256               // of the start of the merged section.  If this is not a
1257               // section symbol, we can then determine the final
1258               // value.  If it is a section symbol, we can not, as in
1259               // that case we have to consider the addend to determine
1260               // the value to use in a relocation.
1261               if (!lv.is_section_symbol())
1262                 lv.set_output_value(os->output_address(this, shndx,
1263                                                        lv.input_value()));
1264               else
1265                 {
1266                   section_offset_type start =
1267                     os->starting_output_address(this, shndx);
1268                   Merged_symbol_value<size>* msv =
1269                     new Merged_symbol_value<size>(lv.input_value(), start);
1270                   lv.set_merged_symbol_value(msv);
1271                 }
1272             }
1273           else if (lv.is_tls_symbol())
1274             lv.set_output_value(os->tls_offset()
1275                                 + mo[shndx].offset
1276                                 + lv.input_value());
1277           else
1278             lv.set_output_value(os->address()
1279                                 + mo[shndx].offset
1280                                 + lv.input_value());
1281         }
1282
1283       if (lv.needs_output_symtab_entry())
1284         {
1285           lv.set_output_symtab_index(index);
1286           ++index;
1287         }
1288     }
1289   return index;
1290 }
1291
1292 // Set the output dynamic symbol table indexes for the local variables.
1293
1294 template<int size, bool big_endian>
1295 unsigned int
1296 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1297 {
1298   const unsigned int loccount = this->local_symbol_count_;
1299   for (unsigned int i = 1; i < loccount; ++i)
1300     {
1301       Symbol_value<size>& lv(this->local_values_[i]);
1302       if (lv.needs_output_dynsym_entry())
1303         {
1304           lv.set_output_dynsym_index(index);
1305           ++index;
1306         }
1307     }
1308   return index;
1309 }
1310
1311 // Set the offset where local dynamic symbol information will be stored.
1312 // Returns the count of local symbols contributed to the symbol table by
1313 // this object.
1314
1315 template<int size, bool big_endian>
1316 unsigned int
1317 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1318 {
1319   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1320   this->local_dynsym_offset_ = off;
1321   return this->output_local_dynsym_count_;
1322 }
1323
1324 // Write out the local symbols.
1325
1326 template<int size, bool big_endian>
1327 void
1328 Sized_relobj<size, big_endian>::write_local_symbols(
1329     Output_file* of,
1330     const Stringpool* sympool,
1331     const Stringpool* dynpool,
1332     Output_symtab_xindex* symtab_xindex,
1333     Output_symtab_xindex* dynsym_xindex)
1334 {
1335   if (parameters->options().strip_all()
1336       && this->output_local_dynsym_count_ == 0)
1337     return;
1338
1339   gold_assert(this->symtab_shndx_ != -1U);
1340   if (this->symtab_shndx_ == 0)
1341     {
1342       // This object has no symbols.  Weird but legal.
1343       return;
1344     }
1345
1346   // Read the symbol table section header.
1347   const unsigned int symtab_shndx = this->symtab_shndx_;
1348   typename This::Shdr symtabshdr(this,
1349                                  this->elf_file_.section_header(symtab_shndx));
1350   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1351   const unsigned int loccount = this->local_symbol_count_;
1352   gold_assert(loccount == symtabshdr.get_sh_info());
1353
1354   // Read the local symbols.
1355   const int sym_size = This::sym_size;
1356   off_t locsize = loccount * sym_size;
1357   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1358                                               locsize, true, false);
1359
1360   // Read the symbol names.
1361   const unsigned int strtab_shndx =
1362     this->adjust_shndx(symtabshdr.get_sh_link());
1363   section_size_type strtab_size;
1364   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1365                                                         &strtab_size,
1366                                                         false);
1367   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1368
1369   // Get views into the output file for the portions of the symbol table
1370   // and the dynamic symbol table that we will be writing.
1371   off_t output_size = this->output_local_symbol_count_ * sym_size;
1372   unsigned char* oview = NULL;
1373   if (output_size > 0)
1374     oview = of->get_output_view(this->local_symbol_offset_, output_size);
1375
1376   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1377   unsigned char* dyn_oview = NULL;
1378   if (dyn_output_size > 0)
1379     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1380                                     dyn_output_size);
1381
1382   const std::vector<Map_to_output>& mo(this->map_to_output());
1383
1384   gold_assert(this->local_values_.size() == loccount);
1385
1386   unsigned char* ov = oview;
1387   unsigned char* dyn_ov = dyn_oview;
1388   psyms += sym_size;
1389   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1390     {
1391       elfcpp::Sym<size, big_endian> isym(psyms);
1392
1393       Symbol_value<size>& lv(this->local_values_[i]);
1394
1395       bool is_ordinary;
1396       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1397                                                      &is_ordinary);
1398       if (is_ordinary)
1399         {
1400           gold_assert(st_shndx < mo.size());
1401           if (mo[st_shndx].output_section == NULL)
1402             continue;
1403           st_shndx = mo[st_shndx].output_section->out_shndx();
1404           if (st_shndx >= elfcpp::SHN_LORESERVE)
1405             {
1406               if (lv.needs_output_symtab_entry())
1407                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1408               if (lv.needs_output_dynsym_entry())
1409                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1410               st_shndx = elfcpp::SHN_XINDEX;
1411             }
1412         }
1413
1414       // Write the symbol to the output symbol table.
1415       if (!parameters->options().strip_all()
1416           && lv.needs_output_symtab_entry())
1417         {
1418           elfcpp::Sym_write<size, big_endian> osym(ov);
1419
1420           gold_assert(isym.get_st_name() < strtab_size);
1421           const char* name = pnames + isym.get_st_name();
1422           osym.put_st_name(sympool->get_offset(name));
1423           osym.put_st_value(this->local_values_[i].value(this, 0));
1424           osym.put_st_size(isym.get_st_size());
1425           osym.put_st_info(isym.get_st_info());
1426           osym.put_st_other(isym.get_st_other());
1427           osym.put_st_shndx(st_shndx);
1428
1429           ov += sym_size;
1430         }
1431
1432       // Write the symbol to the output dynamic symbol table.
1433       if (lv.needs_output_dynsym_entry())
1434         {
1435           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1436           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1437
1438           gold_assert(isym.get_st_name() < strtab_size);
1439           const char* name = pnames + isym.get_st_name();
1440           osym.put_st_name(dynpool->get_offset(name));
1441           osym.put_st_value(this->local_values_[i].value(this, 0));
1442           osym.put_st_size(isym.get_st_size());
1443           osym.put_st_info(isym.get_st_info());
1444           osym.put_st_other(isym.get_st_other());
1445           osym.put_st_shndx(st_shndx);
1446
1447           dyn_ov += sym_size;
1448         }
1449     }
1450
1451
1452   if (output_size > 0)
1453     {
1454       gold_assert(ov - oview == output_size);
1455       of->write_output_view(this->local_symbol_offset_, output_size, oview);
1456     }
1457
1458   if (dyn_output_size > 0)
1459     {
1460       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1461       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1462                             dyn_oview);
1463     }
1464 }
1465
1466 // Set *INFO to symbolic information about the offset OFFSET in the
1467 // section SHNDX.  Return true if we found something, false if we
1468 // found nothing.
1469
1470 template<int size, bool big_endian>
1471 bool
1472 Sized_relobj<size, big_endian>::get_symbol_location_info(
1473     unsigned int shndx,
1474     off_t offset,
1475     Symbol_location_info* info)
1476 {
1477   if (this->symtab_shndx_ == 0)
1478     return false;
1479
1480   section_size_type symbols_size;
1481   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1482                                                         &symbols_size,
1483                                                         false);
1484
1485   unsigned int symbol_names_shndx =
1486     this->adjust_shndx(this->section_link(this->symtab_shndx_));
1487   section_size_type names_size;
1488   const unsigned char* symbol_names_u =
1489     this->section_contents(symbol_names_shndx, &names_size, false);
1490   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1491
1492   const int sym_size = This::sym_size;
1493   const size_t count = symbols_size / sym_size;
1494
1495   const unsigned char* p = symbols;
1496   for (size_t i = 0; i < count; ++i, p += sym_size)
1497     {
1498       elfcpp::Sym<size, big_endian> sym(p);
1499
1500       if (sym.get_st_type() == elfcpp::STT_FILE)
1501         {
1502           if (sym.get_st_name() >= names_size)
1503             info->source_file = "(invalid)";
1504           else
1505             info->source_file = symbol_names + sym.get_st_name();
1506           continue;
1507         }
1508
1509       bool is_ordinary;
1510       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1511                                                      &is_ordinary);
1512       if (is_ordinary
1513           && st_shndx == shndx
1514           && static_cast<off_t>(sym.get_st_value()) <= offset
1515           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1516               > offset))
1517         {
1518           if (sym.get_st_name() > names_size)
1519             info->enclosing_symbol_name = "(invalid)";
1520           else
1521             {
1522               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1523               if (parameters->options().do_demangle())
1524                 {
1525                   char* demangled_name = cplus_demangle(
1526                       info->enclosing_symbol_name.c_str(),
1527                       DMGL_ANSI | DMGL_PARAMS);
1528                   if (demangled_name != NULL)
1529                     {
1530                       info->enclosing_symbol_name.assign(demangled_name);
1531                       free(demangled_name);
1532                     }
1533                 }
1534             }
1535           return true;
1536         }
1537     }
1538
1539   return false;
1540 }
1541
1542 // Look for a kept section corresponding to the given discarded section,
1543 // and return its output address.  This is used only for relocations in
1544 // debugging sections.  If we can't find the kept section, return 0.
1545
1546 template<int size, bool big_endian>
1547 typename Sized_relobj<size, big_endian>::Address
1548 Sized_relobj<size, big_endian>::map_to_kept_section(
1549     unsigned int shndx,
1550     bool* found) const
1551 {
1552   Kept_comdat_section *kept = this->get_kept_comdat_section(shndx);
1553   if (kept != NULL)
1554     {
1555       gold_assert(kept->object_ != NULL);
1556       *found = true;
1557       return (static_cast<Address>
1558               (kept->object_->output_section_address(kept->shndx_)));
1559     }
1560   *found = false;
1561   return 0;
1562 }
1563
1564 // Input_objects methods.
1565
1566 // Add a regular relocatable object to the list.  Return false if this
1567 // object should be ignored.
1568
1569 bool
1570 Input_objects::add_object(Object* obj)
1571 {
1572   // Set the global target from the first object file we recognize.
1573   Target* target = obj->target();
1574   if (!parameters->target_valid())
1575     set_parameters_target(target);
1576   else if (target != &parameters->target())
1577     {
1578       obj->error(_("incompatible target"));
1579       return false;
1580     }
1581
1582   // Print the filename if the -t/--trace option is selected.
1583   if (parameters->options().trace())
1584     gold_info("%s", obj->name().c_str());
1585
1586   if (!obj->is_dynamic())
1587     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1588   else
1589     {
1590       // See if this is a duplicate SONAME.
1591       Dynobj* dynobj = static_cast<Dynobj*>(obj);
1592       const char* soname = dynobj->soname();
1593
1594       std::pair<Unordered_set<std::string>::iterator, bool> ins =
1595         this->sonames_.insert(soname);
1596       if (!ins.second)
1597         {
1598           // We have already seen a dynamic object with this soname.
1599           return false;
1600         }
1601
1602       this->dynobj_list_.push_back(dynobj);
1603
1604       // If this is -lc, remember the directory in which we found it.
1605       // We use this when issuing warnings about undefined symbols: as
1606       // a heuristic, we don't warn about system libraries found in
1607       // the same directory as -lc.
1608       if (strncmp(soname, "libc.so", 7) == 0)
1609         {
1610           const char* object_name = dynobj->name().c_str();
1611           const char* base = lbasename(object_name);
1612           if (base != object_name)
1613             this->system_library_directory_.assign(object_name,
1614                                                    base - 1 - object_name);
1615         }
1616     }
1617
1618   return true;
1619 }
1620
1621 // Return whether an object was found in the system library directory.
1622
1623 bool
1624 Input_objects::found_in_system_library_directory(const Object* object) const
1625 {
1626   return (!this->system_library_directory_.empty()
1627           && object->name().compare(0,
1628                                     this->system_library_directory_.size(),
1629                                     this->system_library_directory_) == 0);
1630 }
1631
1632 // For each dynamic object, record whether we've seen all of its
1633 // explicit dependencies.
1634
1635 void
1636 Input_objects::check_dynamic_dependencies() const
1637 {
1638   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1639        p != this->dynobj_list_.end();
1640        ++p)
1641     {
1642       const Dynobj::Needed& needed((*p)->needed());
1643       bool found_all = true;
1644       for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1645            pneeded != needed.end();
1646            ++pneeded)
1647         {
1648           if (this->sonames_.find(*pneeded) == this->sonames_.end())
1649             {
1650               found_all = false;
1651               break;
1652             }
1653         }
1654       (*p)->set_has_unknown_needed_entries(!found_all);
1655     }
1656 }
1657
1658 // Relocate_info methods.
1659
1660 // Return a string describing the location of a relocation.  This is
1661 // only used in error messages.
1662
1663 template<int size, bool big_endian>
1664 std::string
1665 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1666 {
1667   // See if we can get line-number information from debugging sections.
1668   std::string filename;
1669   std::string file_and_lineno;   // Better than filename-only, if available.
1670
1671   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1672   // This will be "" if we failed to parse the debug info for any reason.
1673   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1674
1675   std::string ret(this->object->name());
1676   ret += ':';
1677   Symbol_location_info info;
1678   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1679     {
1680       ret += " in function ";
1681       ret += info.enclosing_symbol_name;
1682       ret += ":";
1683       filename = info.source_file;
1684     }
1685
1686   if (!file_and_lineno.empty())
1687     ret += file_and_lineno;
1688   else
1689     {
1690       if (!filename.empty())
1691         ret += filename;
1692       ret += "(";
1693       ret += this->object->section_name(this->data_shndx);
1694       char buf[100];
1695       // Offsets into sections have to be positive.
1696       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1697       ret += buf;
1698       ret += ")";
1699     }
1700   return ret;
1701 }
1702
1703 } // End namespace gold.
1704
1705 namespace
1706 {
1707
1708 using namespace gold;
1709
1710 // Read an ELF file with the header and return the appropriate
1711 // instance of Object.
1712
1713 template<int size, bool big_endian>
1714 Object*
1715 make_elf_sized_object(const std::string& name, Input_file* input_file,
1716                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1717 {
1718   int et = ehdr.get_e_type();
1719   if (et == elfcpp::ET_REL)
1720     {
1721       Sized_relobj<size, big_endian>* obj =
1722         new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1723       obj->setup(ehdr);
1724       return obj;
1725     }
1726   else if (et == elfcpp::ET_DYN)
1727     {
1728       Sized_dynobj<size, big_endian>* obj =
1729         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1730       obj->setup(ehdr);
1731       return obj;
1732     }
1733   else
1734     {
1735       gold_error(_("%s: unsupported ELF file type %d"),
1736                  name.c_str(), et);
1737       return NULL;
1738     }
1739 }
1740
1741 } // End anonymous namespace.
1742
1743 namespace gold
1744 {
1745
1746 // Read an ELF file and return the appropriate instance of Object.
1747
1748 Object*
1749 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1750                 const unsigned char* p, section_offset_type bytes)
1751 {
1752   if (bytes < elfcpp::EI_NIDENT)
1753     {
1754       gold_error(_("%s: ELF file too short"), name.c_str());
1755       return NULL;
1756     }
1757
1758   int v = p[elfcpp::EI_VERSION];
1759   if (v != elfcpp::EV_CURRENT)
1760     {
1761       if (v == elfcpp::EV_NONE)
1762         gold_error(_("%s: invalid ELF version 0"), name.c_str());
1763       else
1764         gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1765       return NULL;
1766     }
1767
1768   int c = p[elfcpp::EI_CLASS];
1769   if (c == elfcpp::ELFCLASSNONE)
1770     {
1771       gold_error(_("%s: invalid ELF class 0"), name.c_str());
1772       return NULL;
1773     }
1774   else if (c != elfcpp::ELFCLASS32
1775            && c != elfcpp::ELFCLASS64)
1776     {
1777       gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1778       return NULL;
1779     }
1780
1781   int d = p[elfcpp::EI_DATA];
1782   if (d == elfcpp::ELFDATANONE)
1783     {
1784       gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1785       return NULL;
1786     }
1787   else if (d != elfcpp::ELFDATA2LSB
1788            && d != elfcpp::ELFDATA2MSB)
1789     {
1790       gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1791       return NULL;
1792     }
1793
1794   bool big_endian = d == elfcpp::ELFDATA2MSB;
1795
1796   if (c == elfcpp::ELFCLASS32)
1797     {
1798       if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1799         {
1800           gold_error(_("%s: ELF file too short"), name.c_str());
1801           return NULL;
1802         }
1803       if (big_endian)
1804         {
1805 #ifdef HAVE_TARGET_32_BIG
1806           elfcpp::Ehdr<32, true> ehdr(p);
1807           return make_elf_sized_object<32, true>(name, input_file,
1808                                                  offset, ehdr);
1809 #else
1810           gold_error(_("%s: not configured to support "
1811                        "32-bit big-endian object"),
1812                      name.c_str());
1813           return NULL;
1814 #endif
1815         }
1816       else
1817         {
1818 #ifdef HAVE_TARGET_32_LITTLE
1819           elfcpp::Ehdr<32, false> ehdr(p);
1820           return make_elf_sized_object<32, false>(name, input_file,
1821                                                   offset, ehdr);
1822 #else
1823           gold_error(_("%s: not configured to support "
1824                        "32-bit little-endian object"),
1825                      name.c_str());
1826           return NULL;
1827 #endif
1828         }
1829     }
1830   else
1831     {
1832       if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
1833         {
1834           gold_error(_("%s: ELF file too short"), name.c_str());
1835           return NULL;
1836         }
1837       if (big_endian)
1838         {
1839 #ifdef HAVE_TARGET_64_BIG
1840           elfcpp::Ehdr<64, true> ehdr(p);
1841           return make_elf_sized_object<64, true>(name, input_file,
1842                                                  offset, ehdr);
1843 #else
1844           gold_error(_("%s: not configured to support "
1845                        "64-bit big-endian object"),
1846                      name.c_str());
1847           return NULL;
1848 #endif
1849         }
1850       else
1851         {
1852 #ifdef HAVE_TARGET_64_LITTLE
1853           elfcpp::Ehdr<64, false> ehdr(p);
1854           return make_elf_sized_object<64, false>(name, input_file,
1855                                                   offset, ehdr);
1856 #else
1857           gold_error(_("%s: not configured to support "
1858                        "64-bit little-endian object"),
1859                      name.c_str());
1860           return NULL;
1861 #endif
1862         }
1863     }
1864 }
1865
1866 // Instantiate the templates we need.
1867
1868 #ifdef HAVE_TARGET_32_LITTLE
1869 template
1870 void
1871 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
1872                                      Read_symbols_data*);
1873 #endif
1874
1875 #ifdef HAVE_TARGET_32_BIG
1876 template
1877 void
1878 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
1879                                     Read_symbols_data*);
1880 #endif
1881
1882 #ifdef HAVE_TARGET_64_LITTLE
1883 template
1884 void
1885 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
1886                                      Read_symbols_data*);
1887 #endif
1888
1889 #ifdef HAVE_TARGET_64_BIG
1890 template
1891 void
1892 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
1893                                     Read_symbols_data*);
1894 #endif
1895
1896 #ifdef HAVE_TARGET_32_LITTLE
1897 template
1898 class Sized_relobj<32, false>;
1899 #endif
1900
1901 #ifdef HAVE_TARGET_32_BIG
1902 template
1903 class Sized_relobj<32, true>;
1904 #endif
1905
1906 #ifdef HAVE_TARGET_64_LITTLE
1907 template
1908 class Sized_relobj<64, false>;
1909 #endif
1910
1911 #ifdef HAVE_TARGET_64_BIG
1912 template
1913 class Sized_relobj<64, true>;
1914 #endif
1915
1916 #ifdef HAVE_TARGET_32_LITTLE
1917 template
1918 struct Relocate_info<32, false>;
1919 #endif
1920
1921 #ifdef HAVE_TARGET_32_BIG
1922 template
1923 struct Relocate_info<32, true>;
1924 #endif
1925
1926 #ifdef HAVE_TARGET_64_LITTLE
1927 template
1928 struct Relocate_info<64, false>;
1929 #endif
1930
1931 #ifdef HAVE_TARGET_64_BIG
1932 template
1933 struct Relocate_info<64, true>;
1934 #endif
1935
1936 } // End namespace gold.