* object.h (Relobj::local_symbol_value): New function.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424   this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header.  This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439   const unsigned int shnum = this->elf_file_.shnum();
440   this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers.  The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section.  Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452   const unsigned int shnum = this->shnum();
453   this->symtab_shndx_ = 0;
454   if (shnum > 0)
455     {
456       // Look through the sections in reverse order, since gas tends
457       // to put the symbol table at the end.
458       const unsigned char* p = pshdrs + shnum * This::shdr_size;
459       unsigned int i = shnum;
460       unsigned int xindex_shndx = 0;
461       unsigned int xindex_link = 0;
462       while (i > 0)
463         {
464           --i;
465           p -= This::shdr_size;
466           typename This::Shdr shdr(p);
467           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468             {
469               this->symtab_shndx_ = i;
470               if (xindex_shndx > 0 && xindex_link == i)
471                 {
472                   Xindex* xindex =
473                     new Xindex(this->elf_file_.large_shndx_offset());
474                   xindex->read_symtab_xindex<size, big_endian>(this,
475                                                                xindex_shndx,
476                                                                pshdrs);
477                   this->set_xindex(xindex);
478                 }
479               break;
480             }
481
482           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483           // one.  This will work if it follows the SHT_SYMTAB
484           // section.
485           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486             {
487               xindex_shndx = i;
488               xindex_link = this->adjust_shndx(shdr.get_sh_link());
489             }
490         }
491     }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501   gold_assert(this->symtab_shndx_ != -1U);
502   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504   return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513     const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516   return ((sh_type == elfcpp::SHT_PROGBITS
517            || sh_type == elfcpp::SHT_X86_64_UNWIND)
518           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527     const unsigned char* pshdrs,
528     const char* names,
529     section_size_type names_size) const
530 {
531   const unsigned int shnum = this->shnum();
532   const unsigned char* p = pshdrs + This::shdr_size;
533   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534     {
535       typename This::Shdr shdr(p);
536       if (this->check_eh_frame_flags(&shdr))
537         {
538           if (shdr.get_sh_name() >= names_size)
539             {
540               this->error(_("bad section name offset for section %u: %lu"),
541                           i, static_cast<unsigned long>(shdr.get_sh_name()));
542               continue;
543             }
544
545           const char* name = names + shdr.get_sh_name();
546           if (strcmp(name, ".eh_frame") == 0)
547             return true;
548         }
549     }
550   return false;
551 }
552
553 // Build a table for any compressed debug sections, mapping each section index
554 // to the uncompressed size.
555
556 template<int size, bool big_endian>
557 Compressed_section_map*
558 build_compressed_section_map(
559     const unsigned char* pshdrs,
560     unsigned int shnum,
561     const char* names,
562     section_size_type names_size,
563     Sized_relobj_file<size, big_endian>* obj)
564 {
565   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
566   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
567   const unsigned char* p = pshdrs + shdr_size;
568   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
569     {
570       typename elfcpp::Shdr<size, big_endian> shdr(p);
571       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
572           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573         {
574           if (shdr.get_sh_name() >= names_size)
575             {
576               obj->error(_("bad section name offset for section %u: %lu"),
577                          i, static_cast<unsigned long>(shdr.get_sh_name()));
578               continue;
579             }
580
581           const char* name = names + shdr.get_sh_name();
582           if (is_compressed_debug_section(name))
583             {
584               section_size_type len;
585               const unsigned char* contents =
586                   obj->section_contents(i, &len, false);
587               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
588               if (uncompressed_size != -1ULL)
589                 (*uncompressed_sizes)[i] =
590                     convert_to_section_size_type(uncompressed_size);
591             }
592         }
593     }
594   return uncompressed_sizes;
595 }
596
597 // Read the sections and symbols from an object file.
598
599 template<int size, bool big_endian>
600 void
601 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
602 {
603   this->read_section_data(&this->elf_file_, sd);
604
605   const unsigned char* const pshdrs = sd->section_headers->data();
606
607   this->find_symtab(pshdrs);
608
609   const unsigned char* namesu = sd->section_names->data();
610   const char* names = reinterpret_cast<const char*>(namesu);
611   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
612     {
613       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
614         this->has_eh_frame_ = true;
615     }
616   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
617     this->compressed_sections_ =
618         build_compressed_section_map(pshdrs, this->shnum(), names,
619                                      sd->section_names_size, this);
620
621   sd->symbols = NULL;
622   sd->symbols_size = 0;
623   sd->external_symbols_offset = 0;
624   sd->symbol_names = NULL;
625   sd->symbol_names_size = 0;
626
627   if (this->symtab_shndx_ == 0)
628     {
629       // No symbol table.  Weird but legal.
630       return;
631     }
632
633   // Get the symbol table section header.
634   typename This::Shdr symtabshdr(pshdrs
635                                  + this->symtab_shndx_ * This::shdr_size);
636   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
637
638   // If this object has a .eh_frame section, we need all the symbols.
639   // Otherwise we only need the external symbols.  While it would be
640   // simpler to just always read all the symbols, I've seen object
641   // files with well over 2000 local symbols, which for a 64-bit
642   // object file format is over 5 pages that we don't need to read
643   // now.
644
645   const int sym_size = This::sym_size;
646   const unsigned int loccount = symtabshdr.get_sh_info();
647   this->local_symbol_count_ = loccount;
648   this->local_values_.resize(loccount);
649   section_offset_type locsize = loccount * sym_size;
650   off_t dataoff = symtabshdr.get_sh_offset();
651   section_size_type datasize =
652     convert_to_section_size_type(symtabshdr.get_sh_size());
653   off_t extoff = dataoff + locsize;
654   section_size_type extsize = datasize - locsize;
655
656   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
657   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
658
659   if (readsize == 0)
660     {
661       // No external symbols.  Also weird but also legal.
662       return;
663     }
664
665   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
666
667   // Read the section header for the symbol names.
668   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
669   if (strtab_shndx >= this->shnum())
670     {
671       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
672       return;
673     }
674   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
675   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
676     {
677       this->error(_("symbol table name section has wrong type: %u"),
678                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
679       return;
680     }
681
682   // Read the symbol names.
683   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
684                                                strtabshdr.get_sh_size(),
685                                                false, true);
686
687   sd->symbols = fvsymtab;
688   sd->symbols_size = readsize;
689   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
690   sd->symbol_names = fvstrtab;
691   sd->symbol_names_size =
692     convert_to_section_size_type(strtabshdr.get_sh_size());
693 }
694
695 // Return the section index of symbol SYM.  Set *VALUE to its value in
696 // the object file.  Set *IS_ORDINARY if this is an ordinary section
697 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
698 // Note that for a symbol which is not defined in this object file,
699 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
700 // the final value of the symbol in the link.
701
702 template<int size, bool big_endian>
703 unsigned int
704 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
705                                                               Address* value,
706                                                               bool* is_ordinary)
707 {
708   section_size_type symbols_size;
709   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
710                                                         &symbols_size,
711                                                         false);
712
713   const size_t count = symbols_size / This::sym_size;
714   gold_assert(sym < count);
715
716   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
717   *value = elfsym.get_st_value();
718
719   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
720 }
721
722 // Return whether to include a section group in the link.  LAYOUT is
723 // used to keep track of which section groups we have already seen.
724 // INDEX is the index of the section group and SHDR is the section
725 // header.  If we do not want to include this group, we set bits in
726 // OMIT for each section which should be discarded.
727
728 template<int size, bool big_endian>
729 bool
730 Sized_relobj_file<size, big_endian>::include_section_group(
731     Symbol_table* symtab,
732     Layout* layout,
733     unsigned int index,
734     const char* name,
735     const unsigned char* shdrs,
736     const char* section_names,
737     section_size_type section_names_size,
738     std::vector<bool>* omit)
739 {
740   // Read the section contents.
741   typename This::Shdr shdr(shdrs + index * This::shdr_size);
742   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
743                                              shdr.get_sh_size(), true, false);
744   const elfcpp::Elf_Word* pword =
745     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
746
747   // The first word contains flags.  We only care about COMDAT section
748   // groups.  Other section groups are always included in the link
749   // just like ordinary sections.
750   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
751
752   // Look up the group signature, which is the name of a symbol.  ELF
753   // uses a symbol name because some group signatures are long, and
754   // the name is generally already in the symbol table, so it makes
755   // sense to put the long string just once in .strtab rather than in
756   // both .strtab and .shstrtab.
757
758   // Get the appropriate symbol table header (this will normally be
759   // the single SHT_SYMTAB section, but in principle it need not be).
760   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
761   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
762
763   // Read the symbol table entry.
764   unsigned int symndx = shdr.get_sh_info();
765   if (symndx >= symshdr.get_sh_size() / This::sym_size)
766     {
767       this->error(_("section group %u info %u out of range"),
768                   index, symndx);
769       return false;
770     }
771   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
772   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
773                                              false);
774   elfcpp::Sym<size, big_endian> sym(psym);
775
776   // Read the symbol table names.
777   section_size_type symnamelen;
778   const unsigned char* psymnamesu;
779   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
780                                       &symnamelen, true);
781   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
782
783   // Get the section group signature.
784   if (sym.get_st_name() >= symnamelen)
785     {
786       this->error(_("symbol %u name offset %u out of range"),
787                   symndx, sym.get_st_name());
788       return false;
789     }
790
791   std::string signature(psymnames + sym.get_st_name());
792
793   // It seems that some versions of gas will create a section group
794   // associated with a section symbol, and then fail to give a name to
795   // the section symbol.  In such a case, use the name of the section.
796   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
797     {
798       bool is_ordinary;
799       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
800                                                       sym.get_st_shndx(),
801                                                       &is_ordinary);
802       if (!is_ordinary || sym_shndx >= this->shnum())
803         {
804           this->error(_("symbol %u invalid section index %u"),
805                       symndx, sym_shndx);
806           return false;
807         }
808       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
809       if (member_shdr.get_sh_name() < section_names_size)
810         signature = section_names + member_shdr.get_sh_name();
811     }
812
813   // Record this section group in the layout, and see whether we've already
814   // seen one with the same signature.
815   bool include_group;
816   bool is_comdat;
817   Kept_section* kept_section = NULL;
818
819   if ((flags & elfcpp::GRP_COMDAT) == 0)
820     {
821       include_group = true;
822       is_comdat = false;
823     }
824   else
825     {
826       include_group = layout->find_or_add_kept_section(signature,
827                                                        this, index, true,
828                                                        true, &kept_section);
829       is_comdat = true;
830     }
831
832   if (is_comdat && include_group)
833     {
834       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
835       if (incremental_inputs != NULL)
836         incremental_inputs->report_comdat_group(this, signature.c_str());
837     }
838
839   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
840
841   std::vector<unsigned int> shndxes;
842   bool relocate_group = include_group && parameters->options().relocatable();
843   if (relocate_group)
844     shndxes.reserve(count - 1);
845
846   for (size_t i = 1; i < count; ++i)
847     {
848       elfcpp::Elf_Word shndx =
849         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
850
851       if (relocate_group)
852         shndxes.push_back(shndx);
853
854       if (shndx >= this->shnum())
855         {
856           this->error(_("section %u in section group %u out of range"),
857                       shndx, index);
858           continue;
859         }
860
861       // Check for an earlier section number, since we're going to get
862       // it wrong--we may have already decided to include the section.
863       if (shndx < index)
864         this->error(_("invalid section group %u refers to earlier section %u"),
865                     index, shndx);
866
867       // Get the name of the member section.
868       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
869       if (member_shdr.get_sh_name() >= section_names_size)
870         {
871           // This is an error, but it will be diagnosed eventually
872           // in do_layout, so we don't need to do anything here but
873           // ignore it.
874           continue;
875         }
876       std::string mname(section_names + member_shdr.get_sh_name());
877
878       if (include_group)
879         {
880           if (is_comdat)
881             kept_section->add_comdat_section(mname, shndx,
882                                              member_shdr.get_sh_size());
883         }
884       else
885         {
886           (*omit)[shndx] = true;
887
888           if (is_comdat)
889             {
890               Relobj* kept_object = kept_section->object();
891               if (kept_section->is_comdat())
892                 {
893                   // Find the corresponding kept section, and store
894                   // that info in the discarded section table.
895                   unsigned int kept_shndx;
896                   uint64_t kept_size;
897                   if (kept_section->find_comdat_section(mname, &kept_shndx,
898                                                         &kept_size))
899                     {
900                       // We don't keep a mapping for this section if
901                       // it has a different size.  The mapping is only
902                       // used for relocation processing, and we don't
903                       // want to treat the sections as similar if the
904                       // sizes are different.  Checking the section
905                       // size is the approach used by the GNU linker.
906                       if (kept_size == member_shdr.get_sh_size())
907                         this->set_kept_comdat_section(shndx, kept_object,
908                                                       kept_shndx);
909                     }
910                 }
911               else
912                 {
913                   // The existing section is a linkonce section.  Add
914                   // a mapping if there is exactly one section in the
915                   // group (which is true when COUNT == 2) and if it
916                   // is the same size.
917                   if (count == 2
918                       && (kept_section->linkonce_size()
919                           == member_shdr.get_sh_size()))
920                     this->set_kept_comdat_section(shndx, kept_object,
921                                                   kept_section->shndx());
922                 }
923             }
924         }
925     }
926
927   if (relocate_group)
928     layout->layout_group(symtab, this, index, name, signature.c_str(),
929                          shdr, flags, &shndxes);
930
931   return include_group;
932 }
933
934 // Whether to include a linkonce section in the link.  NAME is the
935 // name of the section and SHDR is the section header.
936
937 // Linkonce sections are a GNU extension implemented in the original
938 // GNU linker before section groups were defined.  The semantics are
939 // that we only include one linkonce section with a given name.  The
940 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
941 // where T is the type of section and SYMNAME is the name of a symbol.
942 // In an attempt to make linkonce sections interact well with section
943 // groups, we try to identify SYMNAME and use it like a section group
944 // signature.  We want to block section groups with that signature,
945 // but not other linkonce sections with that signature.  We also use
946 // the full name of the linkonce section as a normal section group
947 // signature.
948
949 template<int size, bool big_endian>
950 bool
951 Sized_relobj_file<size, big_endian>::include_linkonce_section(
952     Layout* layout,
953     unsigned int index,
954     const char* name,
955     const elfcpp::Shdr<size, big_endian>& shdr)
956 {
957   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
958   // In general the symbol name we want will be the string following
959   // the last '.'.  However, we have to handle the case of
960   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
961   // some versions of gcc.  So we use a heuristic: if the name starts
962   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
963   // we look for the last '.'.  We can't always simply skip
964   // ".gnu.linkonce.X", because we have to deal with cases like
965   // ".gnu.linkonce.d.rel.ro.local".
966   const char* const linkonce_t = ".gnu.linkonce.t.";
967   const char* symname;
968   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
969     symname = name + strlen(linkonce_t);
970   else
971     symname = strrchr(name, '.') + 1;
972   std::string sig1(symname);
973   std::string sig2(name);
974   Kept_section* kept1;
975   Kept_section* kept2;
976   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
977                                                    false, &kept1);
978   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
979                                                    true, &kept2);
980
981   if (!include2)
982     {
983       // We are not including this section because we already saw the
984       // name of the section as a signature.  This normally implies
985       // that the kept section is another linkonce section.  If it is
986       // the same size, record it as the section which corresponds to
987       // this one.
988       if (kept2->object() != NULL
989           && !kept2->is_comdat()
990           && kept2->linkonce_size() == sh_size)
991         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
992     }
993   else if (!include1)
994     {
995       // The section is being discarded on the basis of its symbol
996       // name.  This means that the corresponding kept section was
997       // part of a comdat group, and it will be difficult to identify
998       // the specific section within that group that corresponds to
999       // this linkonce section.  We'll handle the simple case where
1000       // the group has only one member section.  Otherwise, it's not
1001       // worth the effort.
1002       unsigned int kept_shndx;
1003       uint64_t kept_size;
1004       if (kept1->object() != NULL
1005           && kept1->is_comdat()
1006           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1007           && kept_size == sh_size)
1008         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1009     }
1010   else
1011     {
1012       kept1->set_linkonce_size(sh_size);
1013       kept2->set_linkonce_size(sh_size);
1014     }
1015
1016   return include1 && include2;
1017 }
1018
1019 // Layout an input section.
1020
1021 template<int size, bool big_endian>
1022 inline void
1023 Sized_relobj_file<size, big_endian>::layout_section(
1024     Layout* layout,
1025     unsigned int shndx,
1026     const char* name,
1027     const typename This::Shdr& shdr,
1028     unsigned int reloc_shndx,
1029     unsigned int reloc_type)
1030 {
1031   off_t offset;
1032   Output_section* os = layout->layout(this, shndx, name, shdr,
1033                                           reloc_shndx, reloc_type, &offset);
1034
1035   this->output_sections()[shndx] = os;
1036   if (offset == -1)
1037     this->section_offsets()[shndx] = invalid_address;
1038   else
1039     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1040
1041   // If this section requires special handling, and if there are
1042   // relocs that apply to it, then we must do the special handling
1043   // before we apply the relocs.
1044   if (offset == -1 && reloc_shndx != 0)
1045     this->set_relocs_must_follow_section_writes();
1046 }
1047
1048 // Layout an input .eh_frame section.
1049
1050 template<int size, bool big_endian>
1051 void
1052 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1053     Layout* layout,
1054     const unsigned char* symbols_data,
1055     section_size_type symbols_size,
1056     const unsigned char* symbol_names_data,
1057     section_size_type symbol_names_size,
1058     unsigned int shndx,
1059     const typename This::Shdr& shdr,
1060     unsigned int reloc_shndx,
1061     unsigned int reloc_type)
1062 {
1063   gold_assert(this->has_eh_frame_);
1064
1065   off_t offset;
1066   Output_section* os = layout->layout_eh_frame(this,
1067                                                symbols_data,
1068                                                symbols_size,
1069                                                symbol_names_data,
1070                                                symbol_names_size,
1071                                                shndx,
1072                                                shdr,
1073                                                reloc_shndx,
1074                                                reloc_type,
1075                                                &offset);
1076   this->output_sections()[shndx] = os;
1077   if (os == NULL || offset == -1)
1078     {
1079       // An object can contain at most one section holding exception
1080       // frame information.
1081       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1082       this->discarded_eh_frame_shndx_ = shndx;
1083       this->section_offsets()[shndx] = invalid_address;
1084     }
1085   else
1086     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1087
1088   // If this section requires special handling, and if there are
1089   // relocs that aply to it, then we must do the special handling
1090   // before we apply the relocs.
1091   if (os != NULL && offset == -1 && reloc_shndx != 0)
1092     this->set_relocs_must_follow_section_writes();
1093 }
1094
1095 // Lay out the input sections.  We walk through the sections and check
1096 // whether they should be included in the link.  If they should, we
1097 // pass them to the Layout object, which will return an output section
1098 // and an offset.  
1099 // During garbage collection (--gc-sections) and identical code folding 
1100 // (--icf), this function is called twice.  When it is called the first 
1101 // time, it is for setting up some sections as roots to a work-list for
1102 // --gc-sections and to do comdat processing.  Actual layout happens the 
1103 // second time around after all the relevant sections have been determined.  
1104 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1105 // set to true after the garbage collection worklist or identical code 
1106 // folding is processed and the relevant sections to be kept are 
1107 // determined.  Then, this function is called again to layout the sections.
1108
1109 template<int size, bool big_endian>
1110 void
1111 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1112                                                Layout* layout,
1113                                                Read_symbols_data* sd)
1114 {
1115   const unsigned int shnum = this->shnum();
1116   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1117                           && !symtab->gc()->is_worklist_ready())
1118                          || (parameters->options().icf_enabled()
1119                              && !symtab->icf()->is_icf_ready()));
1120  
1121   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1122                           && symtab->gc()->is_worklist_ready())
1123                          || (parameters->options().icf_enabled()
1124                              && symtab->icf()->is_icf_ready()));
1125
1126   bool is_gc_or_icf = (parameters->options().gc_sections()
1127                        || parameters->options().icf_enabled()); 
1128
1129   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1130   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1131
1132   if (shnum == 0)
1133     return;
1134   Symbols_data* gc_sd = NULL;
1135   if (is_gc_pass_one)
1136     {
1137       // During garbage collection save the symbols data to use it when 
1138       // re-entering this function.   
1139       gc_sd = new Symbols_data;
1140       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1141       this->set_symbols_data(gc_sd);
1142     }
1143   else if (is_gc_pass_two)
1144     {
1145       gc_sd = this->get_symbols_data();
1146     }
1147
1148   const unsigned char* section_headers_data = NULL;
1149   section_size_type section_names_size;
1150   const unsigned char* symbols_data = NULL;
1151   section_size_type symbols_size;
1152   const unsigned char* symbol_names_data = NULL;
1153   section_size_type symbol_names_size;
1154  
1155   if (is_gc_or_icf)
1156     {
1157       section_headers_data = gc_sd->section_headers_data;
1158       section_names_size = gc_sd->section_names_size;
1159       symbols_data = gc_sd->symbols_data;
1160       symbols_size = gc_sd->symbols_size;
1161       symbol_names_data = gc_sd->symbol_names_data;
1162       symbol_names_size = gc_sd->symbol_names_size;
1163     }
1164   else
1165     {
1166       section_headers_data = sd->section_headers->data();
1167       section_names_size = sd->section_names_size;
1168       if (sd->symbols != NULL)
1169         symbols_data = sd->symbols->data();
1170       symbols_size = sd->symbols_size;
1171       if (sd->symbol_names != NULL)
1172         symbol_names_data = sd->symbol_names->data();
1173       symbol_names_size = sd->symbol_names_size;
1174     }
1175
1176   // Get the section headers.
1177   const unsigned char* shdrs = section_headers_data;
1178   const unsigned char* pshdrs;
1179
1180   // Get the section names.
1181   const unsigned char* pnamesu = (is_gc_or_icf) 
1182                                  ? gc_sd->section_names_data
1183                                  : sd->section_names->data();
1184
1185   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1186
1187   // If any input files have been claimed by plugins, we need to defer
1188   // actual layout until the replacement files have arrived.
1189   const bool should_defer_layout =
1190       (parameters->options().has_plugins()
1191        && parameters->options().plugins()->should_defer_layout());
1192   unsigned int num_sections_to_defer = 0;
1193
1194   // For each section, record the index of the reloc section if any.
1195   // Use 0 to mean that there is no reloc section, -1U to mean that
1196   // there is more than one.
1197   std::vector<unsigned int> reloc_shndx(shnum, 0);
1198   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1199   // Skip the first, dummy, section.
1200   pshdrs = shdrs + This::shdr_size;
1201   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1202     {
1203       typename This::Shdr shdr(pshdrs);
1204
1205       // Count the number of sections whose layout will be deferred.
1206       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1207         ++num_sections_to_defer;
1208
1209       unsigned int sh_type = shdr.get_sh_type();
1210       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1211         {
1212           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1213           if (target_shndx == 0 || target_shndx >= shnum)
1214             {
1215               this->error(_("relocation section %u has bad info %u"),
1216                           i, target_shndx);
1217               continue;
1218             }
1219
1220           if (reloc_shndx[target_shndx] != 0)
1221             reloc_shndx[target_shndx] = -1U;
1222           else
1223             {
1224               reloc_shndx[target_shndx] = i;
1225               reloc_type[target_shndx] = sh_type;
1226             }
1227         }
1228     }
1229
1230   Output_sections& out_sections(this->output_sections());
1231   std::vector<Address>& out_section_offsets(this->section_offsets());
1232
1233   if (!is_gc_pass_two)
1234     {
1235       out_sections.resize(shnum);
1236       out_section_offsets.resize(shnum);
1237     }
1238
1239   // If we are only linking for symbols, then there is nothing else to
1240   // do here.
1241   if (this->input_file()->just_symbols())
1242     {
1243       if (!is_gc_pass_two)
1244         {
1245           delete sd->section_headers;
1246           sd->section_headers = NULL;
1247           delete sd->section_names;
1248           sd->section_names = NULL;
1249         }
1250       return;
1251     }
1252
1253   if (num_sections_to_defer > 0)
1254     {
1255       parameters->options().plugins()->add_deferred_layout_object(this);
1256       this->deferred_layout_.reserve(num_sections_to_defer);
1257     }
1258
1259   // Whether we've seen a .note.GNU-stack section.
1260   bool seen_gnu_stack = false;
1261   // The flags of a .note.GNU-stack section.
1262   uint64_t gnu_stack_flags = 0;
1263
1264   // Keep track of which sections to omit.
1265   std::vector<bool> omit(shnum, false);
1266
1267   // Keep track of reloc sections when emitting relocations.
1268   const bool relocatable = parameters->options().relocatable();
1269   const bool emit_relocs = (relocatable
1270                             || parameters->options().emit_relocs());
1271   std::vector<unsigned int> reloc_sections;
1272
1273   // Keep track of .eh_frame sections.
1274   std::vector<unsigned int> eh_frame_sections;
1275
1276   // Skip the first, dummy, section.
1277   pshdrs = shdrs + This::shdr_size;
1278   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1279     {
1280       typename This::Shdr shdr(pshdrs);
1281
1282       if (shdr.get_sh_name() >= section_names_size)
1283         {
1284           this->error(_("bad section name offset for section %u: %lu"),
1285                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1286           return;
1287         }
1288
1289       const char* name = pnames + shdr.get_sh_name();
1290
1291       if (!is_gc_pass_two)
1292         { 
1293           if (this->handle_gnu_warning_section(name, i, symtab))
1294             { 
1295               if (!relocatable && !parameters->options().shared())
1296                 omit[i] = true;
1297             }
1298
1299           // The .note.GNU-stack section is special.  It gives the
1300           // protection flags that this object file requires for the stack
1301           // in memory.
1302           if (strcmp(name, ".note.GNU-stack") == 0)
1303             {
1304               seen_gnu_stack = true;
1305               gnu_stack_flags |= shdr.get_sh_flags();
1306               omit[i] = true;
1307             }
1308
1309           // The .note.GNU-split-stack section is also special.  It
1310           // indicates that the object was compiled with
1311           // -fsplit-stack.
1312           if (this->handle_split_stack_section(name))
1313             {
1314               if (!relocatable && !parameters->options().shared())
1315                 omit[i] = true;
1316             }
1317
1318           // Skip attributes section.
1319           if (parameters->target().is_attributes_section(name))
1320             {
1321               omit[i] = true;
1322             }
1323
1324           bool discard = omit[i];
1325           if (!discard)
1326             {
1327               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1328                 {
1329                   if (!this->include_section_group(symtab, layout, i, name, 
1330                                                    shdrs, pnames, 
1331                                                    section_names_size,
1332                                                    &omit))
1333                     discard = true;
1334                 }
1335               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1336                        && Layout::is_linkonce(name))
1337                 {
1338                   if (!this->include_linkonce_section(layout, i, name, shdr))
1339                     discard = true;
1340                 }
1341             }
1342
1343           // Add the section to the incremental inputs layout.
1344           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1345           if (incremental_inputs != NULL
1346               && !discard
1347               && can_incremental_update(shdr.get_sh_type()))
1348             {
1349               off_t sh_size = shdr.get_sh_size();
1350               section_size_type uncompressed_size;
1351               if (this->section_is_compressed(i, &uncompressed_size))
1352                 sh_size = uncompressed_size;
1353               incremental_inputs->report_input_section(this, i, name, sh_size);
1354             }
1355
1356           if (discard)
1357             {
1358               // Do not include this section in the link.
1359               out_sections[i] = NULL;
1360               out_section_offsets[i] = invalid_address;
1361               continue;
1362             }
1363         }
1364  
1365       if (is_gc_pass_one && parameters->options().gc_sections())
1366         {
1367           if (this->is_section_name_included(name)
1368               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1369               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1370             {
1371               symtab->gc()->worklist().push(Section_id(this, i)); 
1372             }
1373           // If the section name XXX can be represented as a C identifier
1374           // it cannot be discarded if there are references to
1375           // __start_XXX and __stop_XXX symbols.  These need to be
1376           // specially handled.
1377           if (is_cident(name))
1378             {
1379               symtab->gc()->add_cident_section(name, Section_id(this, i));
1380             }
1381         }
1382
1383       // When doing a relocatable link we are going to copy input
1384       // reloc sections into the output.  We only want to copy the
1385       // ones associated with sections which are not being discarded.
1386       // However, we don't know that yet for all sections.  So save
1387       // reloc sections and process them later. Garbage collection is
1388       // not triggered when relocatable code is desired.
1389       if (emit_relocs
1390           && (shdr.get_sh_type() == elfcpp::SHT_REL
1391               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1392         {
1393           reloc_sections.push_back(i);
1394           continue;
1395         }
1396
1397       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1398         continue;
1399
1400       // The .eh_frame section is special.  It holds exception frame
1401       // information that we need to read in order to generate the
1402       // exception frame header.  We process these after all the other
1403       // sections so that the exception frame reader can reliably
1404       // determine which sections are being discarded, and discard the
1405       // corresponding information.
1406       if (!relocatable
1407           && strcmp(name, ".eh_frame") == 0
1408           && this->check_eh_frame_flags(&shdr))
1409         {
1410           if (is_gc_pass_one)
1411             {
1412               out_sections[i] = reinterpret_cast<Output_section*>(1);
1413               out_section_offsets[i] = invalid_address;
1414             }
1415           else if (should_defer_layout)
1416             this->deferred_layout_.push_back(Deferred_layout(i, name,
1417                                                              pshdrs,
1418                                                              reloc_shndx[i],
1419                                                              reloc_type[i]));
1420           else
1421             eh_frame_sections.push_back(i);
1422           continue;
1423         }
1424
1425       if (is_gc_pass_two && parameters->options().gc_sections())
1426         {
1427           // This is executed during the second pass of garbage 
1428           // collection. do_layout has been called before and some 
1429           // sections have been already discarded. Simply ignore 
1430           // such sections this time around.
1431           if (out_sections[i] == NULL)
1432             {
1433               gold_assert(out_section_offsets[i] == invalid_address);
1434               continue; 
1435             }
1436           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1437               && symtab->gc()->is_section_garbage(this, i))
1438               {
1439                 if (parameters->options().print_gc_sections())
1440                   gold_info(_("%s: removing unused section from '%s'" 
1441                               " in file '%s'"),
1442                             program_name, this->section_name(i).c_str(), 
1443                             this->name().c_str());
1444                 out_sections[i] = NULL;
1445                 out_section_offsets[i] = invalid_address;
1446                 continue;
1447               }
1448         }
1449
1450       if (is_gc_pass_two && parameters->options().icf_enabled())
1451         {
1452           if (out_sections[i] == NULL)
1453             {
1454               gold_assert(out_section_offsets[i] == invalid_address);
1455               continue;
1456             }
1457           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1458               && symtab->icf()->is_section_folded(this, i))
1459               {
1460                 if (parameters->options().print_icf_sections())
1461                   {
1462                     Section_id folded =
1463                                 symtab->icf()->get_folded_section(this, i);
1464                     Relobj* folded_obj =
1465                                 reinterpret_cast<Relobj*>(folded.first);
1466                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1467                                 "into '%s' in file '%s'"),
1468                               program_name, this->section_name(i).c_str(),
1469                               this->name().c_str(),
1470                               folded_obj->section_name(folded.second).c_str(),
1471                               folded_obj->name().c_str());
1472                   }
1473                 out_sections[i] = NULL;
1474                 out_section_offsets[i] = invalid_address;
1475                 continue;
1476               }
1477         }
1478
1479       // Defer layout here if input files are claimed by plugins.  When gc
1480       // is turned on this function is called twice.  For the second call
1481       // should_defer_layout should be false.
1482       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1483         {
1484           gold_assert(!is_gc_pass_two);
1485           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1486                                                            pshdrs,
1487                                                            reloc_shndx[i],
1488                                                            reloc_type[i]));
1489           // Put dummy values here; real values will be supplied by
1490           // do_layout_deferred_sections.
1491           out_sections[i] = reinterpret_cast<Output_section*>(2);
1492           out_section_offsets[i] = invalid_address;
1493           continue;
1494         }
1495
1496       // During gc_pass_two if a section that was previously deferred is
1497       // found, do not layout the section as layout_deferred_sections will
1498       // do it later from gold.cc.
1499       if (is_gc_pass_two 
1500           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1501         continue;
1502
1503       if (is_gc_pass_one)
1504         {
1505           // This is during garbage collection. The out_sections are 
1506           // assigned in the second call to this function. 
1507           out_sections[i] = reinterpret_cast<Output_section*>(1);
1508           out_section_offsets[i] = invalid_address;
1509         }
1510       else
1511         {
1512           // When garbage collection is switched on the actual layout
1513           // only happens in the second call.
1514           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1515                                reloc_type[i]);
1516         }
1517     }
1518
1519   if (!is_gc_pass_two)
1520     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1521
1522   // When doing a relocatable link handle the reloc sections at the
1523   // end.  Garbage collection  and Identical Code Folding is not 
1524   // turned on for relocatable code. 
1525   if (emit_relocs)
1526     this->size_relocatable_relocs();
1527
1528   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1529
1530   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1531        p != reloc_sections.end();
1532        ++p)
1533     {
1534       unsigned int i = *p;
1535       const unsigned char* pshdr;
1536       pshdr = section_headers_data + i * This::shdr_size;
1537       typename This::Shdr shdr(pshdr);
1538
1539       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1540       if (data_shndx >= shnum)
1541         {
1542           // We already warned about this above.
1543           continue;
1544         }
1545
1546       Output_section* data_section = out_sections[data_shndx];
1547       if (data_section == reinterpret_cast<Output_section*>(2))
1548         {
1549           // The layout for the data section was deferred, so we need
1550           // to defer the relocation section, too.
1551           const char* name = pnames + shdr.get_sh_name();
1552           this->deferred_layout_relocs_.push_back(
1553               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1554           out_sections[i] = reinterpret_cast<Output_section*>(2);
1555           out_section_offsets[i] = invalid_address;
1556           continue;
1557         }
1558       if (data_section == NULL)
1559         {
1560           out_sections[i] = NULL;
1561           out_section_offsets[i] = invalid_address;
1562           continue;
1563         }
1564
1565       Relocatable_relocs* rr = new Relocatable_relocs();
1566       this->set_relocatable_relocs(i, rr);
1567
1568       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1569                                                 rr);
1570       out_sections[i] = os;
1571       out_section_offsets[i] = invalid_address;
1572     }
1573
1574   // Handle the .eh_frame sections at the end.
1575   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1576   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1577        p != eh_frame_sections.end();
1578        ++p)
1579     {
1580       unsigned int i = *p;
1581       const unsigned char* pshdr;
1582       pshdr = section_headers_data + i * This::shdr_size;
1583       typename This::Shdr shdr(pshdr);
1584
1585       this->layout_eh_frame_section(layout,
1586                                     symbols_data,
1587                                     symbols_size,
1588                                     symbol_names_data,
1589                                     symbol_names_size,
1590                                     i,
1591                                     shdr,
1592                                     reloc_shndx[i],
1593                                     reloc_type[i]);
1594     }
1595
1596   if (is_gc_pass_two)
1597     {
1598       delete[] gc_sd->section_headers_data;
1599       delete[] gc_sd->section_names_data;
1600       delete[] gc_sd->symbols_data;
1601       delete[] gc_sd->symbol_names_data;
1602       this->set_symbols_data(NULL);
1603     }
1604   else
1605     {
1606       delete sd->section_headers;
1607       sd->section_headers = NULL;
1608       delete sd->section_names;
1609       sd->section_names = NULL;
1610     }
1611 }
1612
1613 // Layout sections whose layout was deferred while waiting for
1614 // input files from a plugin.
1615
1616 template<int size, bool big_endian>
1617 void
1618 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1619 {
1620   typename std::vector<Deferred_layout>::iterator deferred;
1621
1622   for (deferred = this->deferred_layout_.begin();
1623        deferred != this->deferred_layout_.end();
1624        ++deferred)
1625     {
1626       typename This::Shdr shdr(deferred->shdr_data_);
1627       // If the section is not included, it is because the garbage collector
1628       // decided it is not needed.  Avoid reverting that decision.
1629       if (!this->is_section_included(deferred->shndx_))
1630         continue;
1631
1632       if (parameters->options().relocatable()
1633           || deferred->name_ != ".eh_frame"
1634           || !this->check_eh_frame_flags(&shdr))
1635         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1636                              shdr, deferred->reloc_shndx_,
1637                              deferred->reloc_type_);
1638       else
1639         {
1640           // Reading the symbols again here may be slow.
1641           Read_symbols_data sd;
1642           this->read_symbols(&sd);
1643           this->layout_eh_frame_section(layout,
1644                                         sd.symbols->data(),
1645                                         sd.symbols_size,
1646                                         sd.symbol_names->data(),
1647                                         sd.symbol_names_size,
1648                                         deferred->shndx_,
1649                                         shdr,
1650                                         deferred->reloc_shndx_,
1651                                         deferred->reloc_type_);
1652         }
1653     }
1654
1655   this->deferred_layout_.clear();
1656
1657   // Now handle the deferred relocation sections.
1658
1659   Output_sections& out_sections(this->output_sections());
1660   std::vector<Address>& out_section_offsets(this->section_offsets());
1661
1662   for (deferred = this->deferred_layout_relocs_.begin();
1663        deferred != this->deferred_layout_relocs_.end();
1664        ++deferred)
1665     {
1666       unsigned int shndx = deferred->shndx_;
1667       typename This::Shdr shdr(deferred->shdr_data_);
1668       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1669
1670       Output_section* data_section = out_sections[data_shndx];
1671       if (data_section == NULL)
1672         {
1673           out_sections[shndx] = NULL;
1674           out_section_offsets[shndx] = invalid_address;
1675           continue;
1676         }
1677
1678       Relocatable_relocs* rr = new Relocatable_relocs();
1679       this->set_relocatable_relocs(shndx, rr);
1680
1681       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1682                                                 data_section, rr);
1683       out_sections[shndx] = os;
1684       out_section_offsets[shndx] = invalid_address;
1685     }
1686 }
1687
1688 // Add the symbols to the symbol table.
1689
1690 template<int size, bool big_endian>
1691 void
1692 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1693                                                     Read_symbols_data* sd,
1694                                                     Layout*)
1695 {
1696   if (sd->symbols == NULL)
1697     {
1698       gold_assert(sd->symbol_names == NULL);
1699       return;
1700     }
1701
1702   const int sym_size = This::sym_size;
1703   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1704                      / sym_size);
1705   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1706     {
1707       this->error(_("size of symbols is not multiple of symbol size"));
1708       return;
1709     }
1710
1711   this->symbols_.resize(symcount);
1712
1713   const char* sym_names =
1714     reinterpret_cast<const char*>(sd->symbol_names->data());
1715   symtab->add_from_relobj(this,
1716                           sd->symbols->data() + sd->external_symbols_offset,
1717                           symcount, this->local_symbol_count_,
1718                           sym_names, sd->symbol_names_size,
1719                           &this->symbols_,
1720                           &this->defined_count_);
1721
1722   delete sd->symbols;
1723   sd->symbols = NULL;
1724   delete sd->symbol_names;
1725   sd->symbol_names = NULL;
1726 }
1727
1728 // Find out if this object, that is a member of a lib group, should be included
1729 // in the link. We check every symbol defined by this object. If the symbol
1730 // table has a strong undefined reference to that symbol, we have to include
1731 // the object.
1732
1733 template<int size, bool big_endian>
1734 Archive::Should_include
1735 Sized_relobj_file<size, big_endian>::do_should_include_member(
1736     Symbol_table* symtab,
1737     Layout* layout,
1738     Read_symbols_data* sd,
1739     std::string* why)
1740 {
1741   char* tmpbuf = NULL;
1742   size_t tmpbuflen = 0;
1743   const char* sym_names =
1744       reinterpret_cast<const char*>(sd->symbol_names->data());
1745   const unsigned char* syms =
1746       sd->symbols->data() + sd->external_symbols_offset;
1747   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1748   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1749                          / sym_size);
1750
1751   const unsigned char* p = syms;
1752
1753   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1754     {
1755       elfcpp::Sym<size, big_endian> sym(p);
1756       unsigned int st_shndx = sym.get_st_shndx();
1757       if (st_shndx == elfcpp::SHN_UNDEF)
1758         continue;
1759
1760       unsigned int st_name = sym.get_st_name();
1761       const char* name = sym_names + st_name;
1762       Symbol* symbol;
1763       Archive::Should_include t = Archive::should_include_member(symtab,
1764                                                                  layout,
1765                                                                  name,
1766                                                                  &symbol, why,
1767                                                                  &tmpbuf,
1768                                                                  &tmpbuflen);
1769       if (t == Archive::SHOULD_INCLUDE_YES)
1770         {
1771           if (tmpbuf != NULL)
1772             free(tmpbuf);
1773           return t;
1774         }
1775     }
1776   if (tmpbuf != NULL)
1777     free(tmpbuf);
1778   return Archive::SHOULD_INCLUDE_UNKNOWN;
1779 }
1780
1781 // Iterate over global defined symbols, calling a visitor class V for each.
1782
1783 template<int size, bool big_endian>
1784 void
1785 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1786     Read_symbols_data* sd,
1787     Library_base::Symbol_visitor_base* v)
1788 {
1789   const char* sym_names =
1790       reinterpret_cast<const char*>(sd->symbol_names->data());
1791   const unsigned char* syms =
1792       sd->symbols->data() + sd->external_symbols_offset;
1793   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1794   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1795                      / sym_size);
1796   const unsigned char* p = syms;
1797
1798   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1799     {
1800       elfcpp::Sym<size, big_endian> sym(p);
1801       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1802         v->visit(sym_names + sym.get_st_name());
1803     }
1804 }
1805
1806 // Return whether the local symbol SYMNDX has a PLT offset.
1807
1808 template<int size, bool big_endian>
1809 bool
1810 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1811     unsigned int symndx) const
1812 {
1813   typename Local_plt_offsets::const_iterator p =
1814     this->local_plt_offsets_.find(symndx);
1815   return p != this->local_plt_offsets_.end();
1816 }
1817
1818 // Get the PLT offset of a local symbol.
1819
1820 template<int size, bool big_endian>
1821 unsigned int
1822 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
1823     unsigned int symndx) const
1824 {
1825   typename Local_plt_offsets::const_iterator p =
1826     this->local_plt_offsets_.find(symndx);
1827   gold_assert(p != this->local_plt_offsets_.end());
1828   return p->second;
1829 }
1830
1831 // Set the PLT offset of a local symbol.
1832
1833 template<int size, bool big_endian>
1834 void
1835 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1836     unsigned int symndx, unsigned int plt_offset)
1837 {
1838   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1839     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1840   gold_assert(ins.second);
1841 }
1842
1843 // First pass over the local symbols.  Here we add their names to
1844 // *POOL and *DYNPOOL, and we store the symbol value in
1845 // THIS->LOCAL_VALUES_.  This function is always called from a
1846 // singleton thread.  This is followed by a call to
1847 // finalize_local_symbols.
1848
1849 template<int size, bool big_endian>
1850 void
1851 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1852                                                             Stringpool* dynpool)
1853 {
1854   gold_assert(this->symtab_shndx_ != -1U);
1855   if (this->symtab_shndx_ == 0)
1856     {
1857       // This object has no symbols.  Weird but legal.
1858       return;
1859     }
1860
1861   // Read the symbol table section header.
1862   const unsigned int symtab_shndx = this->symtab_shndx_;
1863   typename This::Shdr symtabshdr(this,
1864                                  this->elf_file_.section_header(symtab_shndx));
1865   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1866
1867   // Read the local symbols.
1868   const int sym_size = This::sym_size;
1869   const unsigned int loccount = this->local_symbol_count_;
1870   gold_assert(loccount == symtabshdr.get_sh_info());
1871   off_t locsize = loccount * sym_size;
1872   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1873                                               locsize, true, true);
1874
1875   // Read the symbol names.
1876   const unsigned int strtab_shndx =
1877     this->adjust_shndx(symtabshdr.get_sh_link());
1878   section_size_type strtab_size;
1879   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1880                                                         &strtab_size,
1881                                                         true);
1882   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1883
1884   // Loop over the local symbols.
1885
1886   const Output_sections& out_sections(this->output_sections());
1887   unsigned int shnum = this->shnum();
1888   unsigned int count = 0;
1889   unsigned int dyncount = 0;
1890   // Skip the first, dummy, symbol.
1891   psyms += sym_size;
1892   bool strip_all = parameters->options().strip_all();
1893   bool discard_all = parameters->options().discard_all();
1894   bool discard_locals = parameters->options().discard_locals();
1895   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1896     {
1897       elfcpp::Sym<size, big_endian> sym(psyms);
1898
1899       Symbol_value<size>& lv(this->local_values_[i]);
1900
1901       bool is_ordinary;
1902       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1903                                                   &is_ordinary);
1904       lv.set_input_shndx(shndx, is_ordinary);
1905
1906       if (sym.get_st_type() == elfcpp::STT_SECTION)
1907         lv.set_is_section_symbol();
1908       else if (sym.get_st_type() == elfcpp::STT_TLS)
1909         lv.set_is_tls_symbol();
1910       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1911         lv.set_is_ifunc_symbol();
1912
1913       // Save the input symbol value for use in do_finalize_local_symbols().
1914       lv.set_input_value(sym.get_st_value());
1915
1916       // Decide whether this symbol should go into the output file.
1917
1918       if ((shndx < shnum && out_sections[shndx] == NULL)
1919           || shndx == this->discarded_eh_frame_shndx_)
1920         {
1921           lv.set_no_output_symtab_entry();
1922           gold_assert(!lv.needs_output_dynsym_entry());
1923           continue;
1924         }
1925
1926       if (sym.get_st_type() == elfcpp::STT_SECTION)
1927         {
1928           lv.set_no_output_symtab_entry();
1929           gold_assert(!lv.needs_output_dynsym_entry());
1930           continue;
1931         }
1932
1933       if (sym.get_st_name() >= strtab_size)
1934         {
1935           this->error(_("local symbol %u section name out of range: %u >= %u"),
1936                       i, sym.get_st_name(),
1937                       static_cast<unsigned int>(strtab_size));
1938           lv.set_no_output_symtab_entry();
1939           continue;
1940         }
1941
1942       const char* name = pnames + sym.get_st_name();
1943
1944       // If needed, add the symbol to the dynamic symbol table string pool.
1945       if (lv.needs_output_dynsym_entry())
1946         {
1947           dynpool->add(name, true, NULL);
1948           ++dyncount;
1949         }
1950
1951       if (strip_all
1952           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1953         {
1954           lv.set_no_output_symtab_entry();
1955           continue;
1956         }
1957
1958       // If --discard-locals option is used, discard all temporary local
1959       // symbols.  These symbols start with system-specific local label
1960       // prefixes, typically .L for ELF system.  We want to be compatible
1961       // with GNU ld so here we essentially use the same check in
1962       // bfd_is_local_label().  The code is different because we already
1963       // know that:
1964       //
1965       //   - the symbol is local and thus cannot have global or weak binding.
1966       //   - the symbol is not a section symbol.
1967       //   - the symbol has a name.
1968       //
1969       // We do not discard a symbol if it needs a dynamic symbol entry.
1970       if (discard_locals
1971           && sym.get_st_type() != elfcpp::STT_FILE
1972           && !lv.needs_output_dynsym_entry()
1973           && lv.may_be_discarded_from_output_symtab()
1974           && parameters->target().is_local_label_name(name))
1975         {
1976           lv.set_no_output_symtab_entry();
1977           continue;
1978         }
1979
1980       // Discard the local symbol if -retain_symbols_file is specified
1981       // and the local symbol is not in that file.
1982       if (!parameters->options().should_retain_symbol(name))
1983         {
1984           lv.set_no_output_symtab_entry();
1985           continue;
1986         }
1987
1988       // Add the symbol to the symbol table string pool.
1989       pool->add(name, true, NULL);
1990       ++count;
1991     }
1992
1993   this->output_local_symbol_count_ = count;
1994   this->output_local_dynsym_count_ = dyncount;
1995 }
1996
1997 // Compute the final value of a local symbol.
1998
1999 template<int size, bool big_endian>
2000 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2001 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2002     unsigned int r_sym,
2003     const Symbol_value<size>* lv_in,
2004     Symbol_value<size>* lv_out,
2005     bool relocatable,
2006     const Output_sections& out_sections,
2007     const std::vector<Address>& out_offsets,
2008     const Symbol_table* symtab)
2009 {
2010   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2011   // we may have a memory leak.
2012   gold_assert(lv_out->has_output_value());
2013
2014   bool is_ordinary;
2015   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2016   
2017   // Set the output symbol value.
2018   
2019   if (!is_ordinary)
2020     {
2021       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2022         lv_out->set_output_value(lv_in->input_value());
2023       else
2024         {
2025           this->error(_("unknown section index %u for local symbol %u"),
2026                       shndx, r_sym);
2027           lv_out->set_output_value(0);
2028           return This::CFLV_ERROR;
2029         }
2030     }
2031   else
2032     {
2033       if (shndx >= this->shnum())
2034         {
2035           this->error(_("local symbol %u section index %u out of range"),
2036                       r_sym, shndx);
2037           lv_out->set_output_value(0);
2038           return This::CFLV_ERROR;
2039         }
2040       
2041       Output_section* os = out_sections[shndx];
2042       Address secoffset = out_offsets[shndx];
2043       if (symtab->is_section_folded(this, shndx))
2044         {
2045           gold_assert(os == NULL && secoffset == invalid_address);
2046           // Get the os of the section it is folded onto.
2047           Section_id folded = symtab->icf()->get_folded_section(this,
2048                                                                 shndx);
2049           gold_assert(folded.first != NULL);
2050           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2051             <Sized_relobj_file<size, big_endian>*>(folded.first);
2052           os = folded_obj->output_section(folded.second);
2053           gold_assert(os != NULL);
2054           secoffset = folded_obj->get_output_section_offset(folded.second);
2055           
2056           // This could be a relaxed input section.
2057           if (secoffset == invalid_address)
2058             {
2059               const Output_relaxed_input_section* relaxed_section =
2060                 os->find_relaxed_input_section(folded_obj, folded.second);
2061               gold_assert(relaxed_section != NULL);
2062               secoffset = relaxed_section->address() - os->address();
2063             }
2064         }
2065       
2066       if (os == NULL)
2067         {
2068           // This local symbol belongs to a section we are discarding.
2069           // In some cases when applying relocations later, we will
2070           // attempt to match it to the corresponding kept section,
2071           // so we leave the input value unchanged here.
2072           return This::CFLV_DISCARDED;
2073         }
2074       else if (secoffset == invalid_address)
2075         {
2076           uint64_t start;
2077           
2078           // This is a SHF_MERGE section or one which otherwise
2079           // requires special handling.
2080           if (shndx == this->discarded_eh_frame_shndx_)
2081             {
2082               // This local symbol belongs to a discarded .eh_frame
2083               // section.  Just treat it like the case in which
2084               // os == NULL above.
2085               gold_assert(this->has_eh_frame_);
2086               return This::CFLV_DISCARDED;
2087             }
2088           else if (!lv_in->is_section_symbol())
2089             {
2090               // This is not a section symbol.  We can determine
2091               // the final value now.
2092               lv_out->set_output_value(
2093                   os->output_address(this, shndx, lv_in->input_value()));
2094             }
2095           else if (!os->find_starting_output_address(this, shndx, &start))
2096             {
2097               // This is a section symbol, but apparently not one in a
2098               // merged section.  First check to see if this is a relaxed
2099               // input section.  If so, use its address.  Otherwise just
2100               // use the start of the output section.  This happens with
2101               // relocatable links when the input object has section
2102               // symbols for arbitrary non-merge sections.
2103               const Output_section_data* posd =
2104                 os->find_relaxed_input_section(this, shndx);
2105               if (posd != NULL)
2106                 {
2107                   Address relocatable_link_adjustment =
2108                     relocatable ? os->address() : 0;
2109                   lv_out->set_output_value(posd->address()
2110                                            - relocatable_link_adjustment);
2111                 }
2112               else
2113                 lv_out->set_output_value(os->address());
2114             }
2115           else
2116             {
2117               // We have to consider the addend to determine the
2118               // value to use in a relocation.  START is the start
2119               // of this input section.  If we are doing a relocatable
2120               // link, use offset from start output section instead of
2121               // address.
2122               Address adjusted_start =
2123                 relocatable ? start - os->address() : start;
2124               Merged_symbol_value<size>* msv =
2125                 new Merged_symbol_value<size>(lv_in->input_value(),
2126                                               adjusted_start);
2127               lv_out->set_merged_symbol_value(msv);
2128             }
2129         }
2130       else if (lv_in->is_tls_symbol())
2131         lv_out->set_output_value(os->tls_offset()
2132                                  + secoffset
2133                                  + lv_in->input_value());
2134       else
2135         lv_out->set_output_value((relocatable ? 0 : os->address())
2136                                  + secoffset
2137                                  + lv_in->input_value());
2138     }
2139   return This::CFLV_OK;
2140 }
2141
2142 // Compute final local symbol value.  R_SYM is the index of a local
2143 // symbol in symbol table.  LV points to a symbol value, which is
2144 // expected to hold the input value and to be over-written by the
2145 // final value.  SYMTAB points to a symbol table.  Some targets may want
2146 // to know would-be-finalized local symbol values in relaxation.
2147 // Hence we provide this method.  Since this method updates *LV, a
2148 // callee should make a copy of the original local symbol value and
2149 // use the copy instead of modifying an object's local symbols before
2150 // everything is finalized.  The caller should also free up any allocated
2151 // memory in the return value in *LV.
2152 template<int size, bool big_endian>
2153 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2154 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2155     unsigned int r_sym,
2156     const Symbol_value<size>* lv_in,
2157     Symbol_value<size>* lv_out,
2158     const Symbol_table* symtab)
2159 {
2160   // This is just a wrapper of compute_final_local_value_internal.
2161   const bool relocatable = parameters->options().relocatable();
2162   const Output_sections& out_sections(this->output_sections());
2163   const std::vector<Address>& out_offsets(this->section_offsets());
2164   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2165                                                   relocatable, out_sections,
2166                                                   out_offsets, symtab);
2167 }
2168
2169 // Finalize the local symbols.  Here we set the final value in
2170 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2171 // This function is always called from a singleton thread.  The actual
2172 // output of the local symbols will occur in a separate task.
2173
2174 template<int size, bool big_endian>
2175 unsigned int
2176 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2177     unsigned int index,
2178     off_t off,
2179     Symbol_table* symtab)
2180 {
2181   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2182
2183   const unsigned int loccount = this->local_symbol_count_;
2184   this->local_symbol_offset_ = off;
2185
2186   const bool relocatable = parameters->options().relocatable();
2187   const Output_sections& out_sections(this->output_sections());
2188   const std::vector<Address>& out_offsets(this->section_offsets());
2189
2190   for (unsigned int i = 1; i < loccount; ++i)
2191     {
2192       Symbol_value<size>* lv = &this->local_values_[i];
2193
2194       Compute_final_local_value_status cflv_status =
2195         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2196                                                  out_sections, out_offsets,
2197                                                  symtab);
2198       switch (cflv_status)
2199         {
2200         case CFLV_OK:
2201           if (!lv->is_output_symtab_index_set())
2202             {
2203               lv->set_output_symtab_index(index);
2204               ++index;
2205             }
2206           break;
2207         case CFLV_DISCARDED:
2208         case CFLV_ERROR:
2209           // Do nothing.
2210           break;
2211         default:
2212           gold_unreachable();
2213         }
2214     }
2215   return index;
2216 }
2217
2218 // Set the output dynamic symbol table indexes for the local variables.
2219
2220 template<int size, bool big_endian>
2221 unsigned int
2222 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2223     unsigned int index)
2224 {
2225   const unsigned int loccount = this->local_symbol_count_;
2226   for (unsigned int i = 1; i < loccount; ++i)
2227     {
2228       Symbol_value<size>& lv(this->local_values_[i]);
2229       if (lv.needs_output_dynsym_entry())
2230         {
2231           lv.set_output_dynsym_index(index);
2232           ++index;
2233         }
2234     }
2235   return index;
2236 }
2237
2238 // Set the offset where local dynamic symbol information will be stored.
2239 // Returns the count of local symbols contributed to the symbol table by
2240 // this object.
2241
2242 template<int size, bool big_endian>
2243 unsigned int
2244 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2245 {
2246   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2247   this->local_dynsym_offset_ = off;
2248   return this->output_local_dynsym_count_;
2249 }
2250
2251 // If Symbols_data is not NULL get the section flags from here otherwise
2252 // get it from the file.
2253
2254 template<int size, bool big_endian>
2255 uint64_t
2256 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2257 {
2258   Symbols_data* sd = this->get_symbols_data();
2259   if (sd != NULL)
2260     {
2261       const unsigned char* pshdrs = sd->section_headers_data
2262                                     + This::shdr_size * shndx;
2263       typename This::Shdr shdr(pshdrs);
2264       return shdr.get_sh_flags(); 
2265     }
2266   // If sd is NULL, read the section header from the file.
2267   return this->elf_file_.section_flags(shndx); 
2268 }
2269
2270 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2271 // in icf.cc
2272
2273 template<int size, bool big_endian>
2274 uint64_t
2275 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2276 {
2277   Symbols_data* sd = this->get_symbols_data();
2278   gold_assert(sd != NULL);
2279
2280   const unsigned char* pshdrs = sd->section_headers_data
2281                                 + This::shdr_size * shndx;
2282   typename This::Shdr shdr(pshdrs);
2283   return shdr.get_sh_entsize(); 
2284 }
2285
2286 // Write out the local symbols.
2287
2288 template<int size, bool big_endian>
2289 void
2290 Sized_relobj_file<size, big_endian>::write_local_symbols(
2291     Output_file* of,
2292     const Stringpool* sympool,
2293     const Stringpool* dynpool,
2294     Output_symtab_xindex* symtab_xindex,
2295     Output_symtab_xindex* dynsym_xindex,
2296     off_t symtab_off)
2297 {
2298   const bool strip_all = parameters->options().strip_all();
2299   if (strip_all)
2300     {
2301       if (this->output_local_dynsym_count_ == 0)
2302         return;
2303       this->output_local_symbol_count_ = 0;
2304     }
2305
2306   gold_assert(this->symtab_shndx_ != -1U);
2307   if (this->symtab_shndx_ == 0)
2308     {
2309       // This object has no symbols.  Weird but legal.
2310       return;
2311     }
2312
2313   // Read the symbol table section header.
2314   const unsigned int symtab_shndx = this->symtab_shndx_;
2315   typename This::Shdr symtabshdr(this,
2316                                  this->elf_file_.section_header(symtab_shndx));
2317   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2318   const unsigned int loccount = this->local_symbol_count_;
2319   gold_assert(loccount == symtabshdr.get_sh_info());
2320
2321   // Read the local symbols.
2322   const int sym_size = This::sym_size;
2323   off_t locsize = loccount * sym_size;
2324   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2325                                               locsize, true, false);
2326
2327   // Read the symbol names.
2328   const unsigned int strtab_shndx =
2329     this->adjust_shndx(symtabshdr.get_sh_link());
2330   section_size_type strtab_size;
2331   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2332                                                         &strtab_size,
2333                                                         false);
2334   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2335
2336   // Get views into the output file for the portions of the symbol table
2337   // and the dynamic symbol table that we will be writing.
2338   off_t output_size = this->output_local_symbol_count_ * sym_size;
2339   unsigned char* oview = NULL;
2340   if (output_size > 0)
2341     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2342                                 output_size);
2343
2344   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2345   unsigned char* dyn_oview = NULL;
2346   if (dyn_output_size > 0)
2347     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2348                                     dyn_output_size);
2349
2350   const Output_sections out_sections(this->output_sections());
2351
2352   gold_assert(this->local_values_.size() == loccount);
2353
2354   unsigned char* ov = oview;
2355   unsigned char* dyn_ov = dyn_oview;
2356   psyms += sym_size;
2357   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2358     {
2359       elfcpp::Sym<size, big_endian> isym(psyms);
2360
2361       Symbol_value<size>& lv(this->local_values_[i]);
2362
2363       bool is_ordinary;
2364       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2365                                                      &is_ordinary);
2366       if (is_ordinary)
2367         {
2368           gold_assert(st_shndx < out_sections.size());
2369           if (out_sections[st_shndx] == NULL)
2370             continue;
2371           st_shndx = out_sections[st_shndx]->out_shndx();
2372           if (st_shndx >= elfcpp::SHN_LORESERVE)
2373             {
2374               if (lv.has_output_symtab_entry())
2375                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2376               if (lv.has_output_dynsym_entry())
2377                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2378               st_shndx = elfcpp::SHN_XINDEX;
2379             }
2380         }
2381
2382       // Write the symbol to the output symbol table.
2383       if (lv.has_output_symtab_entry())
2384         {
2385           elfcpp::Sym_write<size, big_endian> osym(ov);
2386
2387           gold_assert(isym.get_st_name() < strtab_size);
2388           const char* name = pnames + isym.get_st_name();
2389           osym.put_st_name(sympool->get_offset(name));
2390           osym.put_st_value(this->local_values_[i].value(this, 0));
2391           osym.put_st_size(isym.get_st_size());
2392           osym.put_st_info(isym.get_st_info());
2393           osym.put_st_other(isym.get_st_other());
2394           osym.put_st_shndx(st_shndx);
2395
2396           ov += sym_size;
2397         }
2398
2399       // Write the symbol to the output dynamic symbol table.
2400       if (lv.has_output_dynsym_entry())
2401         {
2402           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2403           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2404
2405           gold_assert(isym.get_st_name() < strtab_size);
2406           const char* name = pnames + isym.get_st_name();
2407           osym.put_st_name(dynpool->get_offset(name));
2408           osym.put_st_value(this->local_values_[i].value(this, 0));
2409           osym.put_st_size(isym.get_st_size());
2410           osym.put_st_info(isym.get_st_info());
2411           osym.put_st_other(isym.get_st_other());
2412           osym.put_st_shndx(st_shndx);
2413
2414           dyn_ov += sym_size;
2415         }
2416     }
2417
2418
2419   if (output_size > 0)
2420     {
2421       gold_assert(ov - oview == output_size);
2422       of->write_output_view(symtab_off + this->local_symbol_offset_,
2423                             output_size, oview);
2424     }
2425
2426   if (dyn_output_size > 0)
2427     {
2428       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2429       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2430                             dyn_oview);
2431     }
2432 }
2433
2434 // Set *INFO to symbolic information about the offset OFFSET in the
2435 // section SHNDX.  Return true if we found something, false if we
2436 // found nothing.
2437
2438 template<int size, bool big_endian>
2439 bool
2440 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2441     unsigned int shndx,
2442     off_t offset,
2443     Symbol_location_info* info)
2444 {
2445   if (this->symtab_shndx_ == 0)
2446     return false;
2447
2448   section_size_type symbols_size;
2449   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2450                                                         &symbols_size,
2451                                                         false);
2452
2453   unsigned int symbol_names_shndx =
2454     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2455   section_size_type names_size;
2456   const unsigned char* symbol_names_u =
2457     this->section_contents(symbol_names_shndx, &names_size, false);
2458   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2459
2460   const int sym_size = This::sym_size;
2461   const size_t count = symbols_size / sym_size;
2462
2463   const unsigned char* p = symbols;
2464   for (size_t i = 0; i < count; ++i, p += sym_size)
2465     {
2466       elfcpp::Sym<size, big_endian> sym(p);
2467
2468       if (sym.get_st_type() == elfcpp::STT_FILE)
2469         {
2470           if (sym.get_st_name() >= names_size)
2471             info->source_file = "(invalid)";
2472           else
2473             info->source_file = symbol_names + sym.get_st_name();
2474           continue;
2475         }
2476
2477       bool is_ordinary;
2478       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2479                                                      &is_ordinary);
2480       if (is_ordinary
2481           && st_shndx == shndx
2482           && static_cast<off_t>(sym.get_st_value()) <= offset
2483           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2484               > offset))
2485         {
2486           if (sym.get_st_name() > names_size)
2487             info->enclosing_symbol_name = "(invalid)";
2488           else
2489             {
2490               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2491               if (parameters->options().do_demangle())
2492                 {
2493                   char* demangled_name = cplus_demangle(
2494                       info->enclosing_symbol_name.c_str(),
2495                       DMGL_ANSI | DMGL_PARAMS);
2496                   if (demangled_name != NULL)
2497                     {
2498                       info->enclosing_symbol_name.assign(demangled_name);
2499                       free(demangled_name);
2500                     }
2501                 }
2502             }
2503           return true;
2504         }
2505     }
2506
2507   return false;
2508 }
2509
2510 // Look for a kept section corresponding to the given discarded section,
2511 // and return its output address.  This is used only for relocations in
2512 // debugging sections.  If we can't find the kept section, return 0.
2513
2514 template<int size, bool big_endian>
2515 typename Sized_relobj_file<size, big_endian>::Address
2516 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2517     unsigned int shndx,
2518     bool* found) const
2519 {
2520   Relobj* kept_object;
2521   unsigned int kept_shndx;
2522   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2523     {
2524       Sized_relobj_file<size, big_endian>* kept_relobj =
2525         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2526       Output_section* os = kept_relobj->output_section(kept_shndx);
2527       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2528       if (os != NULL && offset != invalid_address)
2529         {
2530           *found = true;
2531           return os->address() + offset;
2532         }
2533     }
2534   *found = false;
2535   return 0;
2536 }
2537
2538 // Get symbol counts.
2539
2540 template<int size, bool big_endian>
2541 void
2542 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2543     const Symbol_table*,
2544     size_t* defined,
2545     size_t* used) const
2546 {
2547   *defined = this->defined_count_;
2548   size_t count = 0;
2549   for (typename Symbols::const_iterator p = this->symbols_.begin();
2550        p != this->symbols_.end();
2551        ++p)
2552     if (*p != NULL
2553         && (*p)->source() == Symbol::FROM_OBJECT
2554         && (*p)->object() == this
2555         && (*p)->is_defined())
2556       ++count;
2557   *used = count;
2558 }
2559
2560 // Input_objects methods.
2561
2562 // Add a regular relocatable object to the list.  Return false if this
2563 // object should be ignored.
2564
2565 bool
2566 Input_objects::add_object(Object* obj)
2567 {
2568   // Print the filename if the -t/--trace option is selected.
2569   if (parameters->options().trace())
2570     gold_info("%s", obj->name().c_str());
2571
2572   if (!obj->is_dynamic())
2573     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2574   else
2575     {
2576       // See if this is a duplicate SONAME.
2577       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2578       const char* soname = dynobj->soname();
2579
2580       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2581         this->sonames_.insert(soname);
2582       if (!ins.second)
2583         {
2584           // We have already seen a dynamic object with this soname.
2585           return false;
2586         }
2587
2588       this->dynobj_list_.push_back(dynobj);
2589     }
2590
2591   // Add this object to the cross-referencer if requested.
2592   if (parameters->options().user_set_print_symbol_counts()
2593       || parameters->options().cref())
2594     {
2595       if (this->cref_ == NULL)
2596         this->cref_ = new Cref();
2597       this->cref_->add_object(obj);
2598     }
2599
2600   return true;
2601 }
2602
2603 // For each dynamic object, record whether we've seen all of its
2604 // explicit dependencies.
2605
2606 void
2607 Input_objects::check_dynamic_dependencies() const
2608 {
2609   bool issued_copy_dt_needed_error = false;
2610   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2611        p != this->dynobj_list_.end();
2612        ++p)
2613     {
2614       const Dynobj::Needed& needed((*p)->needed());
2615       bool found_all = true;
2616       Dynobj::Needed::const_iterator pneeded;
2617       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2618         {
2619           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2620             {
2621               found_all = false;
2622               break;
2623             }
2624         }
2625       (*p)->set_has_unknown_needed_entries(!found_all);
2626
2627       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2628       // that gold does not support.  However, they cause no trouble
2629       // unless there is a DT_NEEDED entry that we don't know about;
2630       // warn only in that case.
2631       if (!found_all
2632           && !issued_copy_dt_needed_error
2633           && (parameters->options().copy_dt_needed_entries()
2634               || parameters->options().add_needed()))
2635         {
2636           const char* optname;
2637           if (parameters->options().copy_dt_needed_entries())
2638             optname = "--copy-dt-needed-entries";
2639           else
2640             optname = "--add-needed";
2641           gold_error(_("%s is not supported but is required for %s in %s"),
2642                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2643           issued_copy_dt_needed_error = true;
2644         }
2645     }
2646 }
2647
2648 // Start processing an archive.
2649
2650 void
2651 Input_objects::archive_start(Archive* archive)
2652 {
2653   if (parameters->options().user_set_print_symbol_counts()
2654       || parameters->options().cref())
2655     {
2656       if (this->cref_ == NULL)
2657         this->cref_ = new Cref();
2658       this->cref_->add_archive_start(archive);
2659     }
2660 }
2661
2662 // Stop processing an archive.
2663
2664 void
2665 Input_objects::archive_stop(Archive* archive)
2666 {
2667   if (parameters->options().user_set_print_symbol_counts()
2668       || parameters->options().cref())
2669     this->cref_->add_archive_stop(archive);
2670 }
2671
2672 // Print symbol counts
2673
2674 void
2675 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2676 {
2677   if (parameters->options().user_set_print_symbol_counts()
2678       && this->cref_ != NULL)
2679     this->cref_->print_symbol_counts(symtab);
2680 }
2681
2682 // Print a cross reference table.
2683
2684 void
2685 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2686 {
2687   if (parameters->options().cref() && this->cref_ != NULL)
2688     this->cref_->print_cref(symtab, f);
2689 }
2690
2691 // Relocate_info methods.
2692
2693 // Return a string describing the location of a relocation when file
2694 // and lineno information is not available.  This is only used in
2695 // error messages.
2696
2697 template<int size, bool big_endian>
2698 std::string
2699 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2700 {
2701   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2702   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2703   if (!ret.empty())
2704     return ret;
2705
2706   ret = this->object->name();
2707
2708   Symbol_location_info info;
2709   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2710     {
2711       if (!info.source_file.empty())
2712         {
2713           ret += ":";
2714           ret += info.source_file;
2715         }
2716       size_t len = info.enclosing_symbol_name.length() + 100;
2717       char* buf = new char[len];
2718       snprintf(buf, len, _(":function %s"),
2719                info.enclosing_symbol_name.c_str());
2720       ret += buf;
2721       delete[] buf;
2722       return ret;
2723     }
2724
2725   ret += "(";
2726   ret += this->object->section_name(this->data_shndx);
2727   char buf[100];
2728   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2729   ret += buf;
2730   return ret;
2731 }
2732
2733 } // End namespace gold.
2734
2735 namespace
2736 {
2737
2738 using namespace gold;
2739
2740 // Read an ELF file with the header and return the appropriate
2741 // instance of Object.
2742
2743 template<int size, bool big_endian>
2744 Object*
2745 make_elf_sized_object(const std::string& name, Input_file* input_file,
2746                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2747                       bool* punconfigured)
2748 {
2749   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2750                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2751                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2752   if (target == NULL)
2753     gold_fatal(_("%s: unsupported ELF machine number %d"),
2754                name.c_str(), ehdr.get_e_machine());
2755
2756   if (!parameters->target_valid())
2757     set_parameters_target(target);
2758   else if (target != &parameters->target())
2759     {
2760       if (punconfigured != NULL)
2761         *punconfigured = true;
2762       else
2763         gold_error(_("%s: incompatible target"), name.c_str());
2764       return NULL;
2765     }
2766
2767   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2768                                                    ehdr);
2769 }
2770
2771 } // End anonymous namespace.
2772
2773 namespace gold
2774 {
2775
2776 // Return whether INPUT_FILE is an ELF object.
2777
2778 bool
2779 is_elf_object(Input_file* input_file, off_t offset,
2780               const unsigned char** start, int* read_size)
2781 {
2782   off_t filesize = input_file->file().filesize();
2783   int want = elfcpp::Elf_recognizer::max_header_size;
2784   if (filesize - offset < want)
2785     want = filesize - offset;
2786
2787   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2788                                                        true, false);
2789   *start = p;
2790   *read_size = want;
2791
2792   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2793 }
2794
2795 // Read an ELF file and return the appropriate instance of Object.
2796
2797 Object*
2798 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2799                 const unsigned char* p, section_offset_type bytes,
2800                 bool* punconfigured)
2801 {
2802   if (punconfigured != NULL)
2803     *punconfigured = false;
2804
2805   std::string error;
2806   bool big_endian = false;
2807   int size = 0;
2808   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2809                                                &big_endian, &error))
2810     {
2811       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2812       return NULL;
2813     }
2814
2815   if (size == 32)
2816     {
2817       if (big_endian)
2818         {
2819 #ifdef HAVE_TARGET_32_BIG
2820           elfcpp::Ehdr<32, true> ehdr(p);
2821           return make_elf_sized_object<32, true>(name, input_file,
2822                                                  offset, ehdr, punconfigured);
2823 #else
2824           if (punconfigured != NULL)
2825             *punconfigured = true;
2826           else
2827             gold_error(_("%s: not configured to support "
2828                          "32-bit big-endian object"),
2829                        name.c_str());
2830           return NULL;
2831 #endif
2832         }
2833       else
2834         {
2835 #ifdef HAVE_TARGET_32_LITTLE
2836           elfcpp::Ehdr<32, false> ehdr(p);
2837           return make_elf_sized_object<32, false>(name, input_file,
2838                                                   offset, ehdr, punconfigured);
2839 #else
2840           if (punconfigured != NULL)
2841             *punconfigured = true;
2842           else
2843             gold_error(_("%s: not configured to support "
2844                          "32-bit little-endian object"),
2845                        name.c_str());
2846           return NULL;
2847 #endif
2848         }
2849     }
2850   else if (size == 64)
2851     {
2852       if (big_endian)
2853         {
2854 #ifdef HAVE_TARGET_64_BIG
2855           elfcpp::Ehdr<64, true> ehdr(p);
2856           return make_elf_sized_object<64, true>(name, input_file,
2857                                                  offset, ehdr, punconfigured);
2858 #else
2859           if (punconfigured != NULL)
2860             *punconfigured = true;
2861           else
2862             gold_error(_("%s: not configured to support "
2863                          "64-bit big-endian object"),
2864                        name.c_str());
2865           return NULL;
2866 #endif
2867         }
2868       else
2869         {
2870 #ifdef HAVE_TARGET_64_LITTLE
2871           elfcpp::Ehdr<64, false> ehdr(p);
2872           return make_elf_sized_object<64, false>(name, input_file,
2873                                                   offset, ehdr, punconfigured);
2874 #else
2875           if (punconfigured != NULL)
2876             *punconfigured = true;
2877           else
2878             gold_error(_("%s: not configured to support "
2879                          "64-bit little-endian object"),
2880                        name.c_str());
2881           return NULL;
2882 #endif
2883         }
2884     }
2885   else
2886     gold_unreachable();
2887 }
2888
2889 // Instantiate the templates we need.
2890
2891 #ifdef HAVE_TARGET_32_LITTLE
2892 template
2893 void
2894 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2895                                      Read_symbols_data*);
2896 #endif
2897
2898 #ifdef HAVE_TARGET_32_BIG
2899 template
2900 void
2901 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2902                                     Read_symbols_data*);
2903 #endif
2904
2905 #ifdef HAVE_TARGET_64_LITTLE
2906 template
2907 void
2908 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2909                                      Read_symbols_data*);
2910 #endif
2911
2912 #ifdef HAVE_TARGET_64_BIG
2913 template
2914 void
2915 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2916                                     Read_symbols_data*);
2917 #endif
2918
2919 #ifdef HAVE_TARGET_32_LITTLE
2920 template
2921 class Sized_relobj_file<32, false>;
2922 #endif
2923
2924 #ifdef HAVE_TARGET_32_BIG
2925 template
2926 class Sized_relobj_file<32, true>;
2927 #endif
2928
2929 #ifdef HAVE_TARGET_64_LITTLE
2930 template
2931 class Sized_relobj_file<64, false>;
2932 #endif
2933
2934 #ifdef HAVE_TARGET_64_BIG
2935 template
2936 class Sized_relobj_file<64, true>;
2937 #endif
2938
2939 #ifdef HAVE_TARGET_32_LITTLE
2940 template
2941 struct Relocate_info<32, false>;
2942 #endif
2943
2944 #ifdef HAVE_TARGET_32_BIG
2945 template
2946 struct Relocate_info<32, true>;
2947 #endif
2948
2949 #ifdef HAVE_TARGET_64_LITTLE
2950 template
2951 struct Relocate_info<64, false>;
2952 #endif
2953
2954 #ifdef HAVE_TARGET_64_BIG
2955 template
2956 struct Relocate_info<64, true>;
2957 #endif
2958
2959 #ifdef HAVE_TARGET_32_LITTLE
2960 template
2961 void
2962 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2963
2964 template
2965 void
2966 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2967                                       const unsigned char*);
2968 #endif
2969
2970 #ifdef HAVE_TARGET_32_BIG
2971 template
2972 void
2973 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2974
2975 template
2976 void
2977 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2978                                      const unsigned char*);
2979 #endif
2980
2981 #ifdef HAVE_TARGET_64_LITTLE
2982 template
2983 void
2984 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2985
2986 template
2987 void
2988 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2989                                       const unsigned char*);
2990 #endif
2991
2992 #ifdef HAVE_TARGET_64_BIG
2993 template
2994 void
2995 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2996
2997 template
2998 void
2999 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3000                                      const unsigned char*);
3001 #endif
3002
3003 } // End namespace gold.