Support building gold with gcc 4.2/4.3.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fstack-split, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  Returns the next
353 // available reloation index.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       this->reloc_counts_[i] = 0;
370     }
371   layout->incremental_inputs()->set_reloc_count(rindex);
372 }
373
374 // Class Sized_relobj.
375
376 template<int size, bool big_endian>
377 Sized_relobj<size, big_endian>::Sized_relobj(
378     const std::string& name,
379     Input_file* input_file,
380     off_t offset,
381     const elfcpp::Ehdr<size, big_endian>& ehdr)
382   : Relobj(name, input_file, offset),
383     elf_file_(this, ehdr),
384     symtab_shndx_(-1U),
385     local_symbol_count_(0),
386     output_local_symbol_count_(0),
387     output_local_dynsym_count_(0),
388     symbols_(),
389     defined_count_(0),
390     local_symbol_offset_(0),
391     local_dynsym_offset_(0),
392     local_values_(),
393     local_got_offsets_(),
394     local_plt_offsets_(),
395     kept_comdat_sections_(),
396     has_eh_frame_(false),
397     discarded_eh_frame_shndx_(-1U),
398     deferred_layout_(),
399     deferred_layout_relocs_(),
400     compressed_sections_()
401 {
402 }
403
404 template<int size, bool big_endian>
405 Sized_relobj<size, big_endian>::~Sized_relobj()
406 {
407 }
408
409 // Set up an object file based on the file header.  This sets up the
410 // section information.
411
412 template<int size, bool big_endian>
413 void
414 Sized_relobj<size, big_endian>::do_setup()
415 {
416   const unsigned int shnum = this->elf_file_.shnum();
417   this->set_shnum(shnum);
418 }
419
420 // Find the SHT_SYMTAB section, given the section headers.  The ELF
421 // standard says that maybe in the future there can be more than one
422 // SHT_SYMTAB section.  Until somebody figures out how that could
423 // work, we assume there is only one.
424
425 template<int size, bool big_endian>
426 void
427 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
428 {
429   const unsigned int shnum = this->shnum();
430   this->symtab_shndx_ = 0;
431   if (shnum > 0)
432     {
433       // Look through the sections in reverse order, since gas tends
434       // to put the symbol table at the end.
435       const unsigned char* p = pshdrs + shnum * This::shdr_size;
436       unsigned int i = shnum;
437       unsigned int xindex_shndx = 0;
438       unsigned int xindex_link = 0;
439       while (i > 0)
440         {
441           --i;
442           p -= This::shdr_size;
443           typename This::Shdr shdr(p);
444           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
445             {
446               this->symtab_shndx_ = i;
447               if (xindex_shndx > 0 && xindex_link == i)
448                 {
449                   Xindex* xindex =
450                     new Xindex(this->elf_file_.large_shndx_offset());
451                   xindex->read_symtab_xindex<size, big_endian>(this,
452                                                                xindex_shndx,
453                                                                pshdrs);
454                   this->set_xindex(xindex);
455                 }
456               break;
457             }
458
459           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
460           // one.  This will work if it follows the SHT_SYMTAB
461           // section.
462           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
463             {
464               xindex_shndx = i;
465               xindex_link = this->adjust_shndx(shdr.get_sh_link());
466             }
467         }
468     }
469 }
470
471 // Return the Xindex structure to use for object with lots of
472 // sections.
473
474 template<int size, bool big_endian>
475 Xindex*
476 Sized_relobj<size, big_endian>::do_initialize_xindex()
477 {
478   gold_assert(this->symtab_shndx_ != -1U);
479   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
480   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
481   return xindex;
482 }
483
484 // Return whether SHDR has the right type and flags to be a GNU
485 // .eh_frame section.
486
487 template<int size, bool big_endian>
488 bool
489 Sized_relobj<size, big_endian>::check_eh_frame_flags(
490     const elfcpp::Shdr<size, big_endian>* shdr) const
491 {
492   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
493           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
494 }
495
496 // Return whether there is a GNU .eh_frame section, given the section
497 // headers and the section names.
498
499 template<int size, bool big_endian>
500 bool
501 Sized_relobj<size, big_endian>::find_eh_frame(
502     const unsigned char* pshdrs,
503     const char* names,
504     section_size_type names_size) const
505 {
506   const unsigned int shnum = this->shnum();
507   const unsigned char* p = pshdrs + This::shdr_size;
508   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
509     {
510       typename This::Shdr shdr(p);
511       if (this->check_eh_frame_flags(&shdr))
512         {
513           if (shdr.get_sh_name() >= names_size)
514             {
515               this->error(_("bad section name offset for section %u: %lu"),
516                           i, static_cast<unsigned long>(shdr.get_sh_name()));
517               continue;
518             }
519
520           const char* name = names + shdr.get_sh_name();
521           if (strcmp(name, ".eh_frame") == 0)
522             return true;
523         }
524     }
525   return false;
526 }
527
528 // Build a table for any compressed debug sections, mapping each section index
529 // to the uncompressed size.
530
531 template<int size, bool big_endian>
532 Compressed_section_map*
533 build_compressed_section_map(
534     const unsigned char* pshdrs,
535     unsigned int shnum,
536     const char* names,
537     section_size_type names_size,
538     Sized_relobj<size, big_endian>* obj)
539 {
540   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
541   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
542   const unsigned char* p = pshdrs + shdr_size;
543   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
544     {
545       typename elfcpp::Shdr<size, big_endian> shdr(p);
546       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
547           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
548         {
549           if (shdr.get_sh_name() >= names_size)
550             {
551               obj->error(_("bad section name offset for section %u: %lu"),
552                          i, static_cast<unsigned long>(shdr.get_sh_name()));
553               continue;
554             }
555
556           const char* name = names + shdr.get_sh_name();
557           if (is_compressed_debug_section(name))
558             {
559               section_size_type len;
560               const unsigned char* contents =
561                   obj->section_contents(i, &len, false);
562               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
563               if (uncompressed_size != -1ULL)
564                 (*uncompressed_sizes)[i] =
565                     convert_to_section_size_type(uncompressed_size);
566             }
567         }
568     }
569   return uncompressed_sizes;
570 }
571
572 // Read the sections and symbols from an object file.
573
574 template<int size, bool big_endian>
575 void
576 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
577 {
578   this->read_section_data(&this->elf_file_, sd);
579
580   const unsigned char* const pshdrs = sd->section_headers->data();
581
582   this->find_symtab(pshdrs);
583
584   const unsigned char* namesu = sd->section_names->data();
585   const char* names = reinterpret_cast<const char*>(namesu);
586   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
587     {
588       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
589         this->has_eh_frame_ = true;
590     }
591   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
592     this->compressed_sections_ =
593         build_compressed_section_map(pshdrs, this->shnum(), names,
594                                      sd->section_names_size, this);
595
596   sd->symbols = NULL;
597   sd->symbols_size = 0;
598   sd->external_symbols_offset = 0;
599   sd->symbol_names = NULL;
600   sd->symbol_names_size = 0;
601
602   if (this->symtab_shndx_ == 0)
603     {
604       // No symbol table.  Weird but legal.
605       return;
606     }
607
608   // Get the symbol table section header.
609   typename This::Shdr symtabshdr(pshdrs
610                                  + this->symtab_shndx_ * This::shdr_size);
611   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
612
613   // If this object has a .eh_frame section, we need all the symbols.
614   // Otherwise we only need the external symbols.  While it would be
615   // simpler to just always read all the symbols, I've seen object
616   // files with well over 2000 local symbols, which for a 64-bit
617   // object file format is over 5 pages that we don't need to read
618   // now.
619
620   const int sym_size = This::sym_size;
621   const unsigned int loccount = symtabshdr.get_sh_info();
622   this->local_symbol_count_ = loccount;
623   this->local_values_.resize(loccount);
624   section_offset_type locsize = loccount * sym_size;
625   off_t dataoff = symtabshdr.get_sh_offset();
626   section_size_type datasize =
627     convert_to_section_size_type(symtabshdr.get_sh_size());
628   off_t extoff = dataoff + locsize;
629   section_size_type extsize = datasize - locsize;
630
631   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
632   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
633
634   if (readsize == 0)
635     {
636       // No external symbols.  Also weird but also legal.
637       return;
638     }
639
640   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
641
642   // Read the section header for the symbol names.
643   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
644   if (strtab_shndx >= this->shnum())
645     {
646       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
647       return;
648     }
649   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
650   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
651     {
652       this->error(_("symbol table name section has wrong type: %u"),
653                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
654       return;
655     }
656
657   // Read the symbol names.
658   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
659                                                strtabshdr.get_sh_size(),
660                                                false, true);
661
662   sd->symbols = fvsymtab;
663   sd->symbols_size = readsize;
664   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
665   sd->symbol_names = fvstrtab;
666   sd->symbol_names_size =
667     convert_to_section_size_type(strtabshdr.get_sh_size());
668 }
669
670 // Return the section index of symbol SYM.  Set *VALUE to its value in
671 // the object file.  Set *IS_ORDINARY if this is an ordinary section
672 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
673 // Note that for a symbol which is not defined in this object file,
674 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
675 // the final value of the symbol in the link.
676
677 template<int size, bool big_endian>
678 unsigned int
679 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
680                                                          Address* value,
681                                                          bool* is_ordinary)
682 {
683   section_size_type symbols_size;
684   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
685                                                         &symbols_size,
686                                                         false);
687
688   const size_t count = symbols_size / This::sym_size;
689   gold_assert(sym < count);
690
691   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
692   *value = elfsym.get_st_value();
693
694   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
695 }
696
697 // Return whether to include a section group in the link.  LAYOUT is
698 // used to keep track of which section groups we have already seen.
699 // INDEX is the index of the section group and SHDR is the section
700 // header.  If we do not want to include this group, we set bits in
701 // OMIT for each section which should be discarded.
702
703 template<int size, bool big_endian>
704 bool
705 Sized_relobj<size, big_endian>::include_section_group(
706     Symbol_table* symtab,
707     Layout* layout,
708     unsigned int index,
709     const char* name,
710     const unsigned char* shdrs,
711     const char* section_names,
712     section_size_type section_names_size,
713     std::vector<bool>* omit)
714 {
715   // Read the section contents.
716   typename This::Shdr shdr(shdrs + index * This::shdr_size);
717   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
718                                              shdr.get_sh_size(), true, false);
719   const elfcpp::Elf_Word* pword =
720     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
721
722   // The first word contains flags.  We only care about COMDAT section
723   // groups.  Other section groups are always included in the link
724   // just like ordinary sections.
725   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
726
727   // Look up the group signature, which is the name of a symbol.  This
728   // is a lot of effort to go to to read a string.  Why didn't they
729   // just have the group signature point into the string table, rather
730   // than indirect through a symbol?
731
732   // Get the appropriate symbol table header (this will normally be
733   // the single SHT_SYMTAB section, but in principle it need not be).
734   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
735   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
736
737   // Read the symbol table entry.
738   unsigned int symndx = shdr.get_sh_info();
739   if (symndx >= symshdr.get_sh_size() / This::sym_size)
740     {
741       this->error(_("section group %u info %u out of range"),
742                   index, symndx);
743       return false;
744     }
745   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
746   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
747                                              false);
748   elfcpp::Sym<size, big_endian> sym(psym);
749
750   // Read the symbol table names.
751   section_size_type symnamelen;
752   const unsigned char* psymnamesu;
753   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
754                                       &symnamelen, true);
755   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
756
757   // Get the section group signature.
758   if (sym.get_st_name() >= symnamelen)
759     {
760       this->error(_("symbol %u name offset %u out of range"),
761                   symndx, sym.get_st_name());
762       return false;
763     }
764
765   std::string signature(psymnames + sym.get_st_name());
766
767   // It seems that some versions of gas will create a section group
768   // associated with a section symbol, and then fail to give a name to
769   // the section symbol.  In such a case, use the name of the section.
770   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
771     {
772       bool is_ordinary;
773       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
774                                                       sym.get_st_shndx(),
775                                                       &is_ordinary);
776       if (!is_ordinary || sym_shndx >= this->shnum())
777         {
778           this->error(_("symbol %u invalid section index %u"),
779                       symndx, sym_shndx);
780           return false;
781         }
782       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
783       if (member_shdr.get_sh_name() < section_names_size)
784         signature = section_names + member_shdr.get_sh_name();
785     }
786
787   // Record this section group in the layout, and see whether we've already
788   // seen one with the same signature.
789   bool include_group;
790   bool is_comdat;
791   Kept_section* kept_section = NULL;
792
793   if ((flags & elfcpp::GRP_COMDAT) == 0)
794     {
795       include_group = true;
796       is_comdat = false;
797     }
798   else
799     {
800       include_group = layout->find_or_add_kept_section(signature,
801                                                        this, index, true,
802                                                        true, &kept_section);
803       is_comdat = true;
804     }
805
806   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
807
808   std::vector<unsigned int> shndxes;
809   bool relocate_group = include_group && parameters->options().relocatable();
810   if (relocate_group)
811     shndxes.reserve(count - 1);
812
813   for (size_t i = 1; i < count; ++i)
814     {
815       elfcpp::Elf_Word shndx =
816         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
817
818       if (relocate_group)
819         shndxes.push_back(shndx);
820
821       if (shndx >= this->shnum())
822         {
823           this->error(_("section %u in section group %u out of range"),
824                       shndx, index);
825           continue;
826         }
827
828       // Check for an earlier section number, since we're going to get
829       // it wrong--we may have already decided to include the section.
830       if (shndx < index)
831         this->error(_("invalid section group %u refers to earlier section %u"),
832                     index, shndx);
833
834       // Get the name of the member section.
835       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
836       if (member_shdr.get_sh_name() >= section_names_size)
837         {
838           // This is an error, but it will be diagnosed eventually
839           // in do_layout, so we don't need to do anything here but
840           // ignore it.
841           continue;
842         }
843       std::string mname(section_names + member_shdr.get_sh_name());
844
845       if (include_group)
846         {
847           if (is_comdat)
848             kept_section->add_comdat_section(mname, shndx,
849                                              member_shdr.get_sh_size());
850         }
851       else
852         {
853           (*omit)[shndx] = true;
854
855           if (is_comdat)
856             {
857               Relobj* kept_object = kept_section->object();
858               if (kept_section->is_comdat())
859                 {
860                   // Find the corresponding kept section, and store
861                   // that info in the discarded section table.
862                   unsigned int kept_shndx;
863                   uint64_t kept_size;
864                   if (kept_section->find_comdat_section(mname, &kept_shndx,
865                                                         &kept_size))
866                     {
867                       // We don't keep a mapping for this section if
868                       // it has a different size.  The mapping is only
869                       // used for relocation processing, and we don't
870                       // want to treat the sections as similar if the
871                       // sizes are different.  Checking the section
872                       // size is the approach used by the GNU linker.
873                       if (kept_size == member_shdr.get_sh_size())
874                         this->set_kept_comdat_section(shndx, kept_object,
875                                                       kept_shndx);
876                     }
877                 }
878               else
879                 {
880                   // The existing section is a linkonce section.  Add
881                   // a mapping if there is exactly one section in the
882                   // group (which is true when COUNT == 2) and if it
883                   // is the same size.
884                   if (count == 2
885                       && (kept_section->linkonce_size()
886                           == member_shdr.get_sh_size()))
887                     this->set_kept_comdat_section(shndx, kept_object,
888                                                   kept_section->shndx());
889                 }
890             }
891         }
892     }
893
894   if (relocate_group)
895     layout->layout_group(symtab, this, index, name, signature.c_str(),
896                          shdr, flags, &shndxes);
897
898   return include_group;
899 }
900
901 // Whether to include a linkonce section in the link.  NAME is the
902 // name of the section and SHDR is the section header.
903
904 // Linkonce sections are a GNU extension implemented in the original
905 // GNU linker before section groups were defined.  The semantics are
906 // that we only include one linkonce section with a given name.  The
907 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
908 // where T is the type of section and SYMNAME is the name of a symbol.
909 // In an attempt to make linkonce sections interact well with section
910 // groups, we try to identify SYMNAME and use it like a section group
911 // signature.  We want to block section groups with that signature,
912 // but not other linkonce sections with that signature.  We also use
913 // the full name of the linkonce section as a normal section group
914 // signature.
915
916 template<int size, bool big_endian>
917 bool
918 Sized_relobj<size, big_endian>::include_linkonce_section(
919     Layout* layout,
920     unsigned int index,
921     const char* name,
922     const elfcpp::Shdr<size, big_endian>& shdr)
923 {
924   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
925   // In general the symbol name we want will be the string following
926   // the last '.'.  However, we have to handle the case of
927   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
928   // some versions of gcc.  So we use a heuristic: if the name starts
929   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
930   // we look for the last '.'.  We can't always simply skip
931   // ".gnu.linkonce.X", because we have to deal with cases like
932   // ".gnu.linkonce.d.rel.ro.local".
933   const char* const linkonce_t = ".gnu.linkonce.t.";
934   const char* symname;
935   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
936     symname = name + strlen(linkonce_t);
937   else
938     symname = strrchr(name, '.') + 1;
939   std::string sig1(symname);
940   std::string sig2(name);
941   Kept_section* kept1;
942   Kept_section* kept2;
943   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
944                                                    false, &kept1);
945   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
946                                                    true, &kept2);
947
948   if (!include2)
949     {
950       // We are not including this section because we already saw the
951       // name of the section as a signature.  This normally implies
952       // that the kept section is another linkonce section.  If it is
953       // the same size, record it as the section which corresponds to
954       // this one.
955       if (kept2->object() != NULL
956           && !kept2->is_comdat()
957           && kept2->linkonce_size() == sh_size)
958         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
959     }
960   else if (!include1)
961     {
962       // The section is being discarded on the basis of its symbol
963       // name.  This means that the corresponding kept section was
964       // part of a comdat group, and it will be difficult to identify
965       // the specific section within that group that corresponds to
966       // this linkonce section.  We'll handle the simple case where
967       // the group has only one member section.  Otherwise, it's not
968       // worth the effort.
969       unsigned int kept_shndx;
970       uint64_t kept_size;
971       if (kept1->object() != NULL
972           && kept1->is_comdat()
973           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
974           && kept_size == sh_size)
975         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
976     }
977   else
978     {
979       kept1->set_linkonce_size(sh_size);
980       kept2->set_linkonce_size(sh_size);
981     }
982
983   return include1 && include2;
984 }
985
986 // Layout an input section.
987
988 template<int size, bool big_endian>
989 inline void
990 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
991                                                unsigned int shndx,
992                                                const char* name,
993                                                typename This::Shdr& shdr,
994                                                unsigned int reloc_shndx,
995                                                unsigned int reloc_type)
996 {
997   off_t offset;
998   Output_section* os = layout->layout(this, shndx, name, shdr,
999                                           reloc_shndx, reloc_type, &offset);
1000
1001   this->output_sections()[shndx] = os;
1002   if (offset == -1)
1003     this->section_offsets_[shndx] = invalid_address;
1004   else
1005     this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
1006
1007   // If this section requires special handling, and if there are
1008   // relocs that apply to it, then we must do the special handling
1009   // before we apply the relocs.
1010   if (offset == -1 && reloc_shndx != 0)
1011     this->set_relocs_must_follow_section_writes();
1012 }
1013
1014 // Lay out the input sections.  We walk through the sections and check
1015 // whether they should be included in the link.  If they should, we
1016 // pass them to the Layout object, which will return an output section
1017 // and an offset.  
1018 // During garbage collection (--gc-sections) and identical code folding 
1019 // (--icf), this function is called twice.  When it is called the first 
1020 // time, it is for setting up some sections as roots to a work-list for
1021 // --gc-sections and to do comdat processing.  Actual layout happens the 
1022 // second time around after all the relevant sections have been determined.  
1023 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1024 // set to true after the garbage collection worklist or identical code 
1025 // folding is processed and the relevant sections to be kept are 
1026 // determined.  Then, this function is called again to layout the sections.
1027
1028 template<int size, bool big_endian>
1029 void
1030 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
1031                                           Layout* layout,
1032                                           Read_symbols_data* sd)
1033 {
1034   const unsigned int shnum = this->shnum();
1035   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1036                           && !symtab->gc()->is_worklist_ready())
1037                          || (parameters->options().icf_enabled()
1038                              && !symtab->icf()->is_icf_ready()));
1039  
1040   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1041                           && symtab->gc()->is_worklist_ready())
1042                          || (parameters->options().icf_enabled()
1043                              && symtab->icf()->is_icf_ready()));
1044
1045   bool is_gc_or_icf = (parameters->options().gc_sections()
1046                        || parameters->options().icf_enabled()); 
1047
1048   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1049   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1050
1051   if (shnum == 0)
1052     return;
1053   Symbols_data* gc_sd = NULL;
1054   if (is_gc_pass_one)
1055     {
1056       // During garbage collection save the symbols data to use it when 
1057       // re-entering this function.   
1058       gc_sd = new Symbols_data;
1059       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1060       this->set_symbols_data(gc_sd);
1061     }
1062   else if (is_gc_pass_two)
1063     {
1064       gc_sd = this->get_symbols_data();
1065     }
1066
1067   const unsigned char* section_headers_data = NULL;
1068   section_size_type section_names_size;
1069   const unsigned char* symbols_data = NULL;
1070   section_size_type symbols_size;
1071   section_offset_type external_symbols_offset;
1072   const unsigned char* symbol_names_data = NULL;
1073   section_size_type symbol_names_size;
1074  
1075   if (is_gc_or_icf)
1076     {
1077       section_headers_data = gc_sd->section_headers_data;
1078       section_names_size = gc_sd->section_names_size;
1079       symbols_data = gc_sd->symbols_data;
1080       symbols_size = gc_sd->symbols_size;
1081       external_symbols_offset = gc_sd->external_symbols_offset;
1082       symbol_names_data = gc_sd->symbol_names_data;
1083       symbol_names_size = gc_sd->symbol_names_size;
1084     }
1085   else
1086     {
1087       section_headers_data = sd->section_headers->data();
1088       section_names_size = sd->section_names_size;
1089       if (sd->symbols != NULL)
1090         symbols_data = sd->symbols->data();
1091       symbols_size = sd->symbols_size;
1092       external_symbols_offset = sd->external_symbols_offset;
1093       if (sd->symbol_names != NULL)
1094         symbol_names_data = sd->symbol_names->data();
1095       symbol_names_size = sd->symbol_names_size;
1096     }
1097
1098   // Get the section headers.
1099   const unsigned char* shdrs = section_headers_data;
1100   const unsigned char* pshdrs;
1101
1102   // Get the section names.
1103   const unsigned char* pnamesu = (is_gc_or_icf) 
1104                                  ? gc_sd->section_names_data
1105                                  : sd->section_names->data();
1106
1107   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1108
1109   // If any input files have been claimed by plugins, we need to defer
1110   // actual layout until the replacement files have arrived.
1111   const bool should_defer_layout =
1112       (parameters->options().has_plugins()
1113        && parameters->options().plugins()->should_defer_layout());
1114   unsigned int num_sections_to_defer = 0;
1115
1116   // For each section, record the index of the reloc section if any.
1117   // Use 0 to mean that there is no reloc section, -1U to mean that
1118   // there is more than one.
1119   std::vector<unsigned int> reloc_shndx(shnum, 0);
1120   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1121   // Skip the first, dummy, section.
1122   pshdrs = shdrs + This::shdr_size;
1123   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1124     {
1125       typename This::Shdr shdr(pshdrs);
1126
1127       // Count the number of sections whose layout will be deferred.
1128       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1129         ++num_sections_to_defer;
1130
1131       unsigned int sh_type = shdr.get_sh_type();
1132       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1133         {
1134           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1135           if (target_shndx == 0 || target_shndx >= shnum)
1136             {
1137               this->error(_("relocation section %u has bad info %u"),
1138                           i, target_shndx);
1139               continue;
1140             }
1141
1142           if (reloc_shndx[target_shndx] != 0)
1143             reloc_shndx[target_shndx] = -1U;
1144           else
1145             {
1146               reloc_shndx[target_shndx] = i;
1147               reloc_type[target_shndx] = sh_type;
1148             }
1149         }
1150     }
1151
1152   Output_sections& out_sections(this->output_sections());
1153   std::vector<Address>& out_section_offsets(this->section_offsets_);
1154
1155   if (!is_gc_pass_two)
1156     {
1157       out_sections.resize(shnum);
1158       out_section_offsets.resize(shnum);
1159     }
1160
1161   // If we are only linking for symbols, then there is nothing else to
1162   // do here.
1163   if (this->input_file()->just_symbols())
1164     {
1165       if (!is_gc_pass_two)
1166         {
1167           delete sd->section_headers;
1168           sd->section_headers = NULL;
1169           delete sd->section_names;
1170           sd->section_names = NULL;
1171         }
1172       return;
1173     }
1174
1175   if (num_sections_to_defer > 0)
1176     {
1177       parameters->options().plugins()->add_deferred_layout_object(this);
1178       this->deferred_layout_.reserve(num_sections_to_defer);
1179     }
1180
1181   // Whether we've seen a .note.GNU-stack section.
1182   bool seen_gnu_stack = false;
1183   // The flags of a .note.GNU-stack section.
1184   uint64_t gnu_stack_flags = 0;
1185
1186   // Keep track of which sections to omit.
1187   std::vector<bool> omit(shnum, false);
1188
1189   // Keep track of reloc sections when emitting relocations.
1190   const bool relocatable = parameters->options().relocatable();
1191   const bool emit_relocs = (relocatable
1192                             || parameters->options().emit_relocs());
1193   std::vector<unsigned int> reloc_sections;
1194
1195   // Keep track of .eh_frame sections.
1196   std::vector<unsigned int> eh_frame_sections;
1197
1198   // Skip the first, dummy, section.
1199   pshdrs = shdrs + This::shdr_size;
1200   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1201     {
1202       typename This::Shdr shdr(pshdrs);
1203
1204       if (shdr.get_sh_name() >= section_names_size)
1205         {
1206           this->error(_("bad section name offset for section %u: %lu"),
1207                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1208           return;
1209         }
1210
1211       const char* name = pnames + shdr.get_sh_name();
1212
1213       if (!is_gc_pass_two)
1214         { 
1215           if (this->handle_gnu_warning_section(name, i, symtab))
1216             { 
1217               if (!relocatable)
1218                 omit[i] = true;
1219             }
1220
1221           // The .note.GNU-stack section is special.  It gives the
1222           // protection flags that this object file requires for the stack
1223           // in memory.
1224           if (strcmp(name, ".note.GNU-stack") == 0)
1225             {
1226               seen_gnu_stack = true;
1227               gnu_stack_flags |= shdr.get_sh_flags();
1228               omit[i] = true;
1229             }
1230
1231           // The .note.GNU-split-stack section is also special.  It
1232           // indicates that the object was compiled with
1233           // -fsplit-stack.
1234           if (this->handle_split_stack_section(name))
1235             {
1236               if (!parameters->options().relocatable()
1237                   && !parameters->options().shared())
1238                 omit[i] = true;
1239             }
1240
1241           // Skip attributes section.
1242           if (parameters->target().is_attributes_section(name))
1243             {
1244               omit[i] = true;
1245             }
1246
1247           bool discard = omit[i];
1248           if (!discard)
1249             {
1250               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1251                 {
1252                   if (!this->include_section_group(symtab, layout, i, name, 
1253                                                    shdrs, pnames, 
1254                                                    section_names_size,
1255                                                    &omit))
1256                     discard = true;
1257                 }
1258               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1259                        && Layout::is_linkonce(name))
1260                 {
1261                   if (!this->include_linkonce_section(layout, i, name, shdr))
1262                     discard = true;
1263                 }
1264             }
1265
1266           // Add the section to the incremental inputs layout.
1267           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1268           if (incremental_inputs != NULL)
1269             incremental_inputs->report_input_section(this, i,
1270                                                      discard ? NULL : name,
1271                                                      shdr.get_sh_size());
1272
1273           if (discard)
1274             {
1275               // Do not include this section in the link.
1276               out_sections[i] = NULL;
1277               out_section_offsets[i] = invalid_address;
1278               continue;
1279             }
1280         }
1281  
1282       if (is_gc_pass_one && parameters->options().gc_sections())
1283         {
1284           if (is_section_name_included(name)
1285               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1286               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1287             {
1288               symtab->gc()->worklist().push(Section_id(this, i)); 
1289             }
1290           // If the section name XXX can be represented as a C identifier
1291           // it cannot be discarded if there are references to
1292           // __start_XXX and __stop_XXX symbols.  These need to be
1293           // specially handled.
1294           if (is_cident(name))
1295             {
1296               symtab->gc()->add_cident_section(name, Section_id(this, i));
1297             }
1298         }
1299
1300       // When doing a relocatable link we are going to copy input
1301       // reloc sections into the output.  We only want to copy the
1302       // ones associated with sections which are not being discarded.
1303       // However, we don't know that yet for all sections.  So save
1304       // reloc sections and process them later. Garbage collection is
1305       // not triggered when relocatable code is desired.
1306       if (emit_relocs
1307           && (shdr.get_sh_type() == elfcpp::SHT_REL
1308               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1309         {
1310           reloc_sections.push_back(i);
1311           continue;
1312         }
1313
1314       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1315         continue;
1316
1317       // The .eh_frame section is special.  It holds exception frame
1318       // information that we need to read in order to generate the
1319       // exception frame header.  We process these after all the other
1320       // sections so that the exception frame reader can reliably
1321       // determine which sections are being discarded, and discard the
1322       // corresponding information.
1323       if (!relocatable
1324           && strcmp(name, ".eh_frame") == 0
1325           && this->check_eh_frame_flags(&shdr))
1326         {
1327           if (is_gc_pass_one)
1328             {
1329               out_sections[i] = reinterpret_cast<Output_section*>(1);
1330               out_section_offsets[i] = invalid_address;
1331             }
1332           else
1333             eh_frame_sections.push_back(i);
1334           continue;
1335         }
1336
1337       if (is_gc_pass_two && parameters->options().gc_sections())
1338         {
1339           // This is executed during the second pass of garbage 
1340           // collection. do_layout has been called before and some 
1341           // sections have been already discarded. Simply ignore 
1342           // such sections this time around.
1343           if (out_sections[i] == NULL)
1344             {
1345               gold_assert(out_section_offsets[i] == invalid_address);
1346               continue; 
1347             }
1348           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1349               && symtab->gc()->is_section_garbage(this, i))
1350               {
1351                 if (parameters->options().print_gc_sections())
1352                   gold_info(_("%s: removing unused section from '%s'" 
1353                               " in file '%s'"),
1354                             program_name, this->section_name(i).c_str(), 
1355                             this->name().c_str());
1356                 out_sections[i] = NULL;
1357                 out_section_offsets[i] = invalid_address;
1358                 continue;
1359               }
1360         }
1361
1362       if (is_gc_pass_two && parameters->options().icf_enabled())
1363         {
1364           if (out_sections[i] == NULL)
1365             {
1366               gold_assert(out_section_offsets[i] == invalid_address);
1367               continue;
1368             }
1369           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1370               && symtab->icf()->is_section_folded(this, i))
1371               {
1372                 if (parameters->options().print_icf_sections())
1373                   {
1374                     Section_id folded =
1375                                 symtab->icf()->get_folded_section(this, i);
1376                     Relobj* folded_obj =
1377                                 reinterpret_cast<Relobj*>(folded.first);
1378                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1379                                 "into '%s' in file '%s'"),
1380                               program_name, this->section_name(i).c_str(),
1381                               this->name().c_str(),
1382                               folded_obj->section_name(folded.second).c_str(),
1383                               folded_obj->name().c_str());
1384                   }
1385                 out_sections[i] = NULL;
1386                 out_section_offsets[i] = invalid_address;
1387                 continue;
1388               }
1389         }
1390
1391       // Defer layout here if input files are claimed by plugins.  When gc
1392       // is turned on this function is called twice.  For the second call
1393       // should_defer_layout should be false.
1394       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1395         {
1396           gold_assert(!is_gc_pass_two);
1397           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1398                                                            pshdrs,
1399                                                            reloc_shndx[i],
1400                                                            reloc_type[i]));
1401           // Put dummy values here; real values will be supplied by
1402           // do_layout_deferred_sections.
1403           out_sections[i] = reinterpret_cast<Output_section*>(2);
1404           out_section_offsets[i] = invalid_address;
1405           continue;
1406         }
1407
1408       // During gc_pass_two if a section that was previously deferred is
1409       // found, do not layout the section as layout_deferred_sections will
1410       // do it later from gold.cc.
1411       if (is_gc_pass_two 
1412           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1413         continue;
1414
1415       if (is_gc_pass_one)
1416         {
1417           // This is during garbage collection. The out_sections are 
1418           // assigned in the second call to this function. 
1419           out_sections[i] = reinterpret_cast<Output_section*>(1);
1420           out_section_offsets[i] = invalid_address;
1421         }
1422       else
1423         {
1424           // When garbage collection is switched on the actual layout
1425           // only happens in the second call.
1426           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1427                                reloc_type[i]);
1428         }
1429     }
1430
1431   if (!is_gc_pass_two)
1432     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1433
1434   // When doing a relocatable link handle the reloc sections at the
1435   // end.  Garbage collection  and Identical Code Folding is not 
1436   // turned on for relocatable code. 
1437   if (emit_relocs)
1438     this->size_relocatable_relocs();
1439
1440   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1441
1442   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1443        p != reloc_sections.end();
1444        ++p)
1445     {
1446       unsigned int i = *p;
1447       const unsigned char* pshdr;
1448       pshdr = section_headers_data + i * This::shdr_size;
1449       typename This::Shdr shdr(pshdr);
1450
1451       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1452       if (data_shndx >= shnum)
1453         {
1454           // We already warned about this above.
1455           continue;
1456         }
1457
1458       Output_section* data_section = out_sections[data_shndx];
1459       if (data_section == reinterpret_cast<Output_section*>(2))
1460         {
1461           // The layout for the data section was deferred, so we need
1462           // to defer the relocation section, too.
1463           const char* name = pnames + shdr.get_sh_name();
1464           this->deferred_layout_relocs_.push_back(
1465               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1466           out_sections[i] = reinterpret_cast<Output_section*>(2);
1467           out_section_offsets[i] = invalid_address;
1468           continue;
1469         }
1470       if (data_section == NULL)
1471         {
1472           out_sections[i] = NULL;
1473           out_section_offsets[i] = invalid_address;
1474           continue;
1475         }
1476
1477       Relocatable_relocs* rr = new Relocatable_relocs();
1478       this->set_relocatable_relocs(i, rr);
1479
1480       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1481                                                 rr);
1482       out_sections[i] = os;
1483       out_section_offsets[i] = invalid_address;
1484     }
1485
1486   // Handle the .eh_frame sections at the end.
1487   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1488   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1489        p != eh_frame_sections.end();
1490        ++p)
1491     {
1492       gold_assert(this->has_eh_frame_);
1493       gold_assert(external_symbols_offset != 0);
1494
1495       unsigned int i = *p;
1496       const unsigned char* pshdr;
1497       pshdr = section_headers_data + i * This::shdr_size;
1498       typename This::Shdr shdr(pshdr);
1499
1500       off_t offset;
1501       Output_section* os = layout->layout_eh_frame(this,
1502                                                    symbols_data,
1503                                                    symbols_size,
1504                                                    symbol_names_data,
1505                                                    symbol_names_size,
1506                                                    i, shdr,
1507                                                    reloc_shndx[i],
1508                                                    reloc_type[i],
1509                                                    &offset);
1510       out_sections[i] = os;
1511       if (os == NULL || offset == -1)
1512         {
1513           // An object can contain at most one section holding exception
1514           // frame information.
1515           gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1516           this->discarded_eh_frame_shndx_ = i;
1517           out_section_offsets[i] = invalid_address;
1518         }
1519       else
1520         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1521
1522       // If this section requires special handling, and if there are
1523       // relocs that apply to it, then we must do the special handling
1524       // before we apply the relocs.
1525       if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1526         this->set_relocs_must_follow_section_writes();
1527     }
1528
1529   if (is_gc_pass_two)
1530     {
1531       delete[] gc_sd->section_headers_data;
1532       delete[] gc_sd->section_names_data;
1533       delete[] gc_sd->symbols_data;
1534       delete[] gc_sd->symbol_names_data;
1535       this->set_symbols_data(NULL);
1536     }
1537   else
1538     {
1539       delete sd->section_headers;
1540       sd->section_headers = NULL;
1541       delete sd->section_names;
1542       sd->section_names = NULL;
1543     }
1544 }
1545
1546 // Layout sections whose layout was deferred while waiting for
1547 // input files from a plugin.
1548
1549 template<int size, bool big_endian>
1550 void
1551 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1552 {
1553   typename std::vector<Deferred_layout>::iterator deferred;
1554
1555   for (deferred = this->deferred_layout_.begin();
1556        deferred != this->deferred_layout_.end();
1557        ++deferred)
1558     {
1559       typename This::Shdr shdr(deferred->shdr_data_);
1560       // If the section is not included, it is because the garbage collector
1561       // decided it is not needed.  Avoid reverting that decision.
1562       if (!this->is_section_included(deferred->shndx_))
1563         continue;
1564
1565       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1566                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1567     }
1568
1569   this->deferred_layout_.clear();
1570
1571   // Now handle the deferred relocation sections.
1572
1573   Output_sections& out_sections(this->output_sections());
1574   std::vector<Address>& out_section_offsets(this->section_offsets_);
1575
1576   for (deferred = this->deferred_layout_relocs_.begin();
1577        deferred != this->deferred_layout_relocs_.end();
1578        ++deferred)
1579     {
1580       unsigned int shndx = deferred->shndx_;
1581       typename This::Shdr shdr(deferred->shdr_data_);
1582       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1583
1584       Output_section* data_section = out_sections[data_shndx];
1585       if (data_section == NULL)
1586         {
1587           out_sections[shndx] = NULL;
1588           out_section_offsets[shndx] = invalid_address;
1589           continue;
1590         }
1591
1592       Relocatable_relocs* rr = new Relocatable_relocs();
1593       this->set_relocatable_relocs(shndx, rr);
1594
1595       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1596                                                 data_section, rr);
1597       out_sections[shndx] = os;
1598       out_section_offsets[shndx] = invalid_address;
1599     }
1600 }
1601
1602 // Add the symbols to the symbol table.
1603
1604 template<int size, bool big_endian>
1605 void
1606 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1607                                                Read_symbols_data* sd,
1608                                                Layout*)
1609 {
1610   if (sd->symbols == NULL)
1611     {
1612       gold_assert(sd->symbol_names == NULL);
1613       return;
1614     }
1615
1616   const int sym_size = This::sym_size;
1617   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1618                      / sym_size);
1619   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1620     {
1621       this->error(_("size of symbols is not multiple of symbol size"));
1622       return;
1623     }
1624
1625   this->symbols_.resize(symcount);
1626
1627   const char* sym_names =
1628     reinterpret_cast<const char*>(sd->symbol_names->data());
1629   symtab->add_from_relobj(this,
1630                           sd->symbols->data() + sd->external_symbols_offset,
1631                           symcount, this->local_symbol_count_,
1632                           sym_names, sd->symbol_names_size,
1633                           &this->symbols_,
1634                           &this->defined_count_);
1635
1636   delete sd->symbols;
1637   sd->symbols = NULL;
1638   delete sd->symbol_names;
1639   sd->symbol_names = NULL;
1640 }
1641
1642 // Find out if this object, that is a member of a lib group, should be included
1643 // in the link. We check every symbol defined by this object. If the symbol
1644 // table has a strong undefined reference to that symbol, we have to include
1645 // the object.
1646
1647 template<int size, bool big_endian>
1648 Archive::Should_include
1649 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab,
1650                                                          Layout* layout,
1651                                                          Read_symbols_data* sd,
1652                                                          std::string* why)
1653 {
1654   char* tmpbuf = NULL;
1655   size_t tmpbuflen = 0;
1656   const char* sym_names =
1657       reinterpret_cast<const char*>(sd->symbol_names->data());
1658   const unsigned char* syms =
1659       sd->symbols->data() + sd->external_symbols_offset;
1660   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1661   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1662                          / sym_size);
1663
1664   const unsigned char* p = syms;
1665
1666   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1667     {
1668       elfcpp::Sym<size, big_endian> sym(p);
1669       unsigned int st_shndx = sym.get_st_shndx();
1670       if (st_shndx == elfcpp::SHN_UNDEF)
1671         continue;
1672
1673       unsigned int st_name = sym.get_st_name();
1674       const char* name = sym_names + st_name;
1675       Symbol* symbol;
1676       Archive::Should_include t = Archive::should_include_member(symtab,
1677                                                                  layout,
1678                                                                  name,
1679                                                                  &symbol, why,
1680                                                                  &tmpbuf,
1681                                                                  &tmpbuflen);
1682       if (t == Archive::SHOULD_INCLUDE_YES)
1683         {
1684           if (tmpbuf != NULL)
1685             free(tmpbuf);
1686           return t;
1687         }
1688     }
1689   if (tmpbuf != NULL)
1690     free(tmpbuf);
1691   return Archive::SHOULD_INCLUDE_UNKNOWN;
1692 }
1693
1694 // Return whether the local symbol SYMNDX has a PLT offset.
1695
1696 template<int size, bool big_endian>
1697 bool
1698 Sized_relobj<size, big_endian>::local_has_plt_offset(unsigned int symndx) const
1699 {
1700   typename Local_plt_offsets::const_iterator p =
1701     this->local_plt_offsets_.find(symndx);
1702   return p != this->local_plt_offsets_.end();
1703 }
1704
1705 // Get the PLT offset of a local symbol.
1706
1707 template<int size, bool big_endian>
1708 unsigned int
1709 Sized_relobj<size, big_endian>::local_plt_offset(unsigned int symndx) const
1710 {
1711   typename Local_plt_offsets::const_iterator p =
1712     this->local_plt_offsets_.find(symndx);
1713   gold_assert(p != this->local_plt_offsets_.end());
1714   return p->second;
1715 }
1716
1717 // Set the PLT offset of a local symbol.
1718
1719 template<int size, bool big_endian>
1720 void
1721 Sized_relobj<size, big_endian>::set_local_plt_offset(unsigned int symndx,
1722                                                      unsigned int plt_offset)
1723 {
1724   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1725     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1726   gold_assert(ins.second);
1727 }
1728
1729 // First pass over the local symbols.  Here we add their names to
1730 // *POOL and *DYNPOOL, and we store the symbol value in
1731 // THIS->LOCAL_VALUES_.  This function is always called from a
1732 // singleton thread.  This is followed by a call to
1733 // finalize_local_symbols.
1734
1735 template<int size, bool big_endian>
1736 void
1737 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1738                                                        Stringpool* dynpool)
1739 {
1740   gold_assert(this->symtab_shndx_ != -1U);
1741   if (this->symtab_shndx_ == 0)
1742     {
1743       // This object has no symbols.  Weird but legal.
1744       return;
1745     }
1746
1747   // Read the symbol table section header.
1748   const unsigned int symtab_shndx = this->symtab_shndx_;
1749   typename This::Shdr symtabshdr(this,
1750                                  this->elf_file_.section_header(symtab_shndx));
1751   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1752
1753   // Read the local symbols.
1754   const int sym_size = This::sym_size;
1755   const unsigned int loccount = this->local_symbol_count_;
1756   gold_assert(loccount == symtabshdr.get_sh_info());
1757   off_t locsize = loccount * sym_size;
1758   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1759                                               locsize, true, true);
1760
1761   // Read the symbol names.
1762   const unsigned int strtab_shndx =
1763     this->adjust_shndx(symtabshdr.get_sh_link());
1764   section_size_type strtab_size;
1765   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1766                                                         &strtab_size,
1767                                                         true);
1768   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1769
1770   // Loop over the local symbols.
1771
1772   const Output_sections& out_sections(this->output_sections());
1773   unsigned int shnum = this->shnum();
1774   unsigned int count = 0;
1775   unsigned int dyncount = 0;
1776   // Skip the first, dummy, symbol.
1777   psyms += sym_size;
1778   bool discard_all = parameters->options().discard_all();
1779   bool discard_locals = parameters->options().discard_locals();
1780   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1781     {
1782       elfcpp::Sym<size, big_endian> sym(psyms);
1783
1784       Symbol_value<size>& lv(this->local_values_[i]);
1785
1786       bool is_ordinary;
1787       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1788                                                   &is_ordinary);
1789       lv.set_input_shndx(shndx, is_ordinary);
1790
1791       if (sym.get_st_type() == elfcpp::STT_SECTION)
1792         lv.set_is_section_symbol();
1793       else if (sym.get_st_type() == elfcpp::STT_TLS)
1794         lv.set_is_tls_symbol();
1795       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1796         lv.set_is_ifunc_symbol();
1797
1798       // Save the input symbol value for use in do_finalize_local_symbols().
1799       lv.set_input_value(sym.get_st_value());
1800
1801       // Decide whether this symbol should go into the output file.
1802
1803       if ((shndx < shnum && out_sections[shndx] == NULL)
1804           || shndx == this->discarded_eh_frame_shndx_)
1805         {
1806           lv.set_no_output_symtab_entry();
1807           gold_assert(!lv.needs_output_dynsym_entry());
1808           continue;
1809         }
1810
1811       if (sym.get_st_type() == elfcpp::STT_SECTION)
1812         {
1813           lv.set_no_output_symtab_entry();
1814           gold_assert(!lv.needs_output_dynsym_entry());
1815           continue;
1816         }
1817
1818       if (sym.get_st_name() >= strtab_size)
1819         {
1820           this->error(_("local symbol %u section name out of range: %u >= %u"),
1821                       i, sym.get_st_name(),
1822                       static_cast<unsigned int>(strtab_size));
1823           lv.set_no_output_symtab_entry();
1824           continue;
1825         }
1826
1827       const char* name = pnames + sym.get_st_name();
1828
1829       // If needed, add the symbol to the dynamic symbol table string pool.
1830       if (lv.needs_output_dynsym_entry())
1831         {
1832           dynpool->add(name, true, NULL);
1833           ++dyncount;
1834         }
1835
1836       if (discard_all && lv.may_be_discarded_from_output_symtab())
1837         {
1838           lv.set_no_output_symtab_entry();
1839           continue;
1840         }
1841
1842       // If --discard-locals option is used, discard all temporary local
1843       // symbols.  These symbols start with system-specific local label
1844       // prefixes, typically .L for ELF system.  We want to be compatible
1845       // with GNU ld so here we essentially use the same check in
1846       // bfd_is_local_label().  The code is different because we already
1847       // know that:
1848       //
1849       //   - the symbol is local and thus cannot have global or weak binding.
1850       //   - the symbol is not a section symbol.
1851       //   - the symbol has a name.
1852       //
1853       // We do not discard a symbol if it needs a dynamic symbol entry.
1854       if (discard_locals
1855           && sym.get_st_type() != elfcpp::STT_FILE
1856           && !lv.needs_output_dynsym_entry()
1857           && lv.may_be_discarded_from_output_symtab()
1858           && parameters->target().is_local_label_name(name))
1859         {
1860           lv.set_no_output_symtab_entry();
1861           continue;
1862         }
1863
1864       // Discard the local symbol if -retain_symbols_file is specified
1865       // and the local symbol is not in that file.
1866       if (!parameters->options().should_retain_symbol(name))
1867         {
1868           lv.set_no_output_symtab_entry();
1869           continue;
1870         }
1871
1872       // Add the symbol to the symbol table string pool.
1873       pool->add(name, true, NULL);
1874       ++count;
1875     }
1876
1877   this->output_local_symbol_count_ = count;
1878   this->output_local_dynsym_count_ = dyncount;
1879 }
1880
1881 // Compute the final value of a local symbol.
1882
1883 template<int size, bool big_endian>
1884 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
1885 Sized_relobj<size, big_endian>::compute_final_local_value_internal(
1886     unsigned int r_sym,
1887     const Symbol_value<size>* lv_in,
1888     Symbol_value<size>* lv_out,
1889     bool relocatable,
1890     const Output_sections& out_sections,
1891     const std::vector<Address>& out_offsets,
1892     const Symbol_table* symtab)
1893 {
1894   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1895   // we may have a memory leak.
1896   gold_assert(lv_out->has_output_value());
1897
1898   bool is_ordinary;
1899   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1900   
1901   // Set the output symbol value.
1902   
1903   if (!is_ordinary)
1904     {
1905       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1906         lv_out->set_output_value(lv_in->input_value());
1907       else
1908         {
1909           this->error(_("unknown section index %u for local symbol %u"),
1910                       shndx, r_sym);
1911           lv_out->set_output_value(0);
1912           return This::CFLV_ERROR;
1913         }
1914     }
1915   else
1916     {
1917       if (shndx >= this->shnum())
1918         {
1919           this->error(_("local symbol %u section index %u out of range"),
1920                       r_sym, shndx);
1921           lv_out->set_output_value(0);
1922           return This::CFLV_ERROR;
1923         }
1924       
1925       Output_section* os = out_sections[shndx];
1926       Address secoffset = out_offsets[shndx];
1927       if (symtab->is_section_folded(this, shndx))
1928         {
1929           gold_assert(os == NULL && secoffset == invalid_address);
1930           // Get the os of the section it is folded onto.
1931           Section_id folded = symtab->icf()->get_folded_section(this,
1932                                                                 shndx);
1933           gold_assert(folded.first != NULL);
1934           Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1935             <Sized_relobj<size, big_endian>*>(folded.first);
1936           os = folded_obj->output_section(folded.second);
1937           gold_assert(os != NULL);
1938           secoffset = folded_obj->get_output_section_offset(folded.second);
1939           
1940           // This could be a relaxed input section.
1941           if (secoffset == invalid_address)
1942             {
1943               const Output_relaxed_input_section* relaxed_section =
1944                 os->find_relaxed_input_section(folded_obj, folded.second);
1945               gold_assert(relaxed_section != NULL);
1946               secoffset = relaxed_section->address() - os->address();
1947             }
1948         }
1949       
1950       if (os == NULL)
1951         {
1952           // This local symbol belongs to a section we are discarding.
1953           // In some cases when applying relocations later, we will
1954           // attempt to match it to the corresponding kept section,
1955           // so we leave the input value unchanged here.
1956           return This::CFLV_DISCARDED;
1957         }
1958       else if (secoffset == invalid_address)
1959         {
1960           uint64_t start;
1961           
1962           // This is a SHF_MERGE section or one which otherwise
1963           // requires special handling.
1964           if (shndx == this->discarded_eh_frame_shndx_)
1965             {
1966               // This local symbol belongs to a discarded .eh_frame
1967               // section.  Just treat it like the case in which
1968               // os == NULL above.
1969               gold_assert(this->has_eh_frame_);
1970               return This::CFLV_DISCARDED;
1971             }
1972           else if (!lv_in->is_section_symbol())
1973             {
1974               // This is not a section symbol.  We can determine
1975               // the final value now.
1976               lv_out->set_output_value(
1977                   os->output_address(this, shndx, lv_in->input_value()));
1978             }
1979           else if (!os->find_starting_output_address(this, shndx, &start))
1980             {
1981               // This is a section symbol, but apparently not one in a
1982               // merged section.  First check to see if this is a relaxed
1983               // input section.  If so, use its address.  Otherwise just
1984               // use the start of the output section.  This happens with
1985               // relocatable links when the input object has section
1986               // symbols for arbitrary non-merge sections.
1987               const Output_section_data* posd =
1988                 os->find_relaxed_input_section(this, shndx);
1989               if (posd != NULL)
1990                 {
1991                   Address relocatable_link_adjustment =
1992                     relocatable ? os->address() : 0;
1993                   lv_out->set_output_value(posd->address()
1994                                            - relocatable_link_adjustment);
1995                 }
1996               else
1997                 lv_out->set_output_value(os->address());
1998             }
1999           else
2000             {
2001               // We have to consider the addend to determine the
2002               // value to use in a relocation.  START is the start
2003               // of this input section.  If we are doing a relocatable
2004               // link, use offset from start output section instead of
2005               // address.
2006               Address adjusted_start =
2007                 relocatable ? start - os->address() : start;
2008               Merged_symbol_value<size>* msv =
2009                 new Merged_symbol_value<size>(lv_in->input_value(),
2010                                               adjusted_start);
2011               lv_out->set_merged_symbol_value(msv);
2012             }
2013         }
2014       else if (lv_in->is_tls_symbol())
2015         lv_out->set_output_value(os->tls_offset()
2016                                  + secoffset
2017                                  + lv_in->input_value());
2018       else
2019         lv_out->set_output_value((relocatable ? 0 : os->address())
2020                                  + secoffset
2021                                  + lv_in->input_value());
2022     }
2023   return This::CFLV_OK;
2024 }
2025
2026 // Compute final local symbol value.  R_SYM is the index of a local
2027 // symbol in symbol table.  LV points to a symbol value, which is
2028 // expected to hold the input value and to be over-written by the
2029 // final value.  SYMTAB points to a symbol table.  Some targets may want
2030 // to know would-be-finalized local symbol values in relaxation.
2031 // Hence we provide this method.  Since this method updates *LV, a
2032 // callee should make a copy of the original local symbol value and
2033 // use the copy instead of modifying an object's local symbols before
2034 // everything is finalized.  The caller should also free up any allocated
2035 // memory in the return value in *LV.
2036 template<int size, bool big_endian>
2037 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
2038 Sized_relobj<size, big_endian>::compute_final_local_value(
2039     unsigned int r_sym,
2040     const Symbol_value<size>* lv_in,
2041     Symbol_value<size>* lv_out,
2042     const Symbol_table* symtab)
2043 {
2044   // This is just a wrapper of compute_final_local_value_internal.
2045   const bool relocatable = parameters->options().relocatable();
2046   const Output_sections& out_sections(this->output_sections());
2047   const std::vector<Address>& out_offsets(this->section_offsets_);
2048   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2049                                                   relocatable, out_sections,
2050                                                   out_offsets, symtab);
2051 }
2052
2053 // Finalize the local symbols.  Here we set the final value in
2054 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2055 // This function is always called from a singleton thread.  The actual
2056 // output of the local symbols will occur in a separate task.
2057
2058 template<int size, bool big_endian>
2059 unsigned int
2060 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
2061                                                           off_t off,
2062                                                           Symbol_table* symtab)
2063 {
2064   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2065
2066   const unsigned int loccount = this->local_symbol_count_;
2067   this->local_symbol_offset_ = off;
2068
2069   const bool relocatable = parameters->options().relocatable();
2070   const Output_sections& out_sections(this->output_sections());
2071   const std::vector<Address>& out_offsets(this->section_offsets_);
2072
2073   for (unsigned int i = 1; i < loccount; ++i)
2074     {
2075       Symbol_value<size>* lv = &this->local_values_[i];
2076
2077       Compute_final_local_value_status cflv_status =
2078         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2079                                                  out_sections, out_offsets,
2080                                                  symtab);
2081       switch (cflv_status)
2082         {
2083         case CFLV_OK:
2084           if (!lv->is_output_symtab_index_set())
2085             {
2086               lv->set_output_symtab_index(index);
2087               ++index;
2088             }
2089           break;
2090         case CFLV_DISCARDED:
2091         case CFLV_ERROR:
2092           // Do nothing.
2093           break;
2094         default:
2095           gold_unreachable();
2096         }
2097     }
2098   return index;
2099 }
2100
2101 // Set the output dynamic symbol table indexes for the local variables.
2102
2103 template<int size, bool big_endian>
2104 unsigned int
2105 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
2106 {
2107   const unsigned int loccount = this->local_symbol_count_;
2108   for (unsigned int i = 1; i < loccount; ++i)
2109     {
2110       Symbol_value<size>& lv(this->local_values_[i]);
2111       if (lv.needs_output_dynsym_entry())
2112         {
2113           lv.set_output_dynsym_index(index);
2114           ++index;
2115         }
2116     }
2117   return index;
2118 }
2119
2120 // Set the offset where local dynamic symbol information will be stored.
2121 // Returns the count of local symbols contributed to the symbol table by
2122 // this object.
2123
2124 template<int size, bool big_endian>
2125 unsigned int
2126 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2127 {
2128   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2129   this->local_dynsym_offset_ = off;
2130   return this->output_local_dynsym_count_;
2131 }
2132
2133 // If Symbols_data is not NULL get the section flags from here otherwise
2134 // get it from the file.
2135
2136 template<int size, bool big_endian>
2137 uint64_t
2138 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
2139 {
2140   Symbols_data* sd = this->get_symbols_data();
2141   if (sd != NULL)
2142     {
2143       const unsigned char* pshdrs = sd->section_headers_data
2144                                     + This::shdr_size * shndx;
2145       typename This::Shdr shdr(pshdrs);
2146       return shdr.get_sh_flags(); 
2147     }
2148   // If sd is NULL, read the section header from the file.
2149   return this->elf_file_.section_flags(shndx); 
2150 }
2151
2152 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2153 // in icf.cc
2154
2155 template<int size, bool big_endian>
2156 uint64_t
2157 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
2158 {
2159   Symbols_data* sd = this->get_symbols_data();
2160   gold_assert(sd != NULL);
2161
2162   const unsigned char* pshdrs = sd->section_headers_data
2163                                 + This::shdr_size * shndx;
2164   typename This::Shdr shdr(pshdrs);
2165   return shdr.get_sh_entsize(); 
2166 }
2167
2168 // Write out the local symbols.
2169
2170 template<int size, bool big_endian>
2171 void
2172 Sized_relobj<size, big_endian>::write_local_symbols(
2173     Output_file* of,
2174     const Stringpool* sympool,
2175     const Stringpool* dynpool,
2176     Output_symtab_xindex* symtab_xindex,
2177     Output_symtab_xindex* dynsym_xindex)
2178 {
2179   const bool strip_all = parameters->options().strip_all();
2180   if (strip_all)
2181     {
2182       if (this->output_local_dynsym_count_ == 0)
2183         return;
2184       this->output_local_symbol_count_ = 0;
2185     }
2186
2187   gold_assert(this->symtab_shndx_ != -1U);
2188   if (this->symtab_shndx_ == 0)
2189     {
2190       // This object has no symbols.  Weird but legal.
2191       return;
2192     }
2193
2194   // Read the symbol table section header.
2195   const unsigned int symtab_shndx = this->symtab_shndx_;
2196   typename This::Shdr symtabshdr(this,
2197                                  this->elf_file_.section_header(symtab_shndx));
2198   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2199   const unsigned int loccount = this->local_symbol_count_;
2200   gold_assert(loccount == symtabshdr.get_sh_info());
2201
2202   // Read the local symbols.
2203   const int sym_size = This::sym_size;
2204   off_t locsize = loccount * sym_size;
2205   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2206                                               locsize, true, false);
2207
2208   // Read the symbol names.
2209   const unsigned int strtab_shndx =
2210     this->adjust_shndx(symtabshdr.get_sh_link());
2211   section_size_type strtab_size;
2212   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2213                                                         &strtab_size,
2214                                                         false);
2215   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2216
2217   // Get views into the output file for the portions of the symbol table
2218   // and the dynamic symbol table that we will be writing.
2219   off_t output_size = this->output_local_symbol_count_ * sym_size;
2220   unsigned char* oview = NULL;
2221   if (output_size > 0)
2222     oview = of->get_output_view(this->local_symbol_offset_, output_size);
2223
2224   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2225   unsigned char* dyn_oview = NULL;
2226   if (dyn_output_size > 0)
2227     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2228                                     dyn_output_size);
2229
2230   const Output_sections out_sections(this->output_sections());
2231
2232   gold_assert(this->local_values_.size() == loccount);
2233
2234   unsigned char* ov = oview;
2235   unsigned char* dyn_ov = dyn_oview;
2236   psyms += sym_size;
2237   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2238     {
2239       elfcpp::Sym<size, big_endian> isym(psyms);
2240
2241       Symbol_value<size>& lv(this->local_values_[i]);
2242
2243       bool is_ordinary;
2244       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2245                                                      &is_ordinary);
2246       if (is_ordinary)
2247         {
2248           gold_assert(st_shndx < out_sections.size());
2249           if (out_sections[st_shndx] == NULL)
2250             continue;
2251           st_shndx = out_sections[st_shndx]->out_shndx();
2252           if (st_shndx >= elfcpp::SHN_LORESERVE)
2253             {
2254               if (lv.has_output_symtab_entry())
2255                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2256               if (lv.has_output_dynsym_entry())
2257                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2258               st_shndx = elfcpp::SHN_XINDEX;
2259             }
2260         }
2261
2262       // Write the symbol to the output symbol table.
2263       if (lv.has_output_symtab_entry())
2264         {
2265           elfcpp::Sym_write<size, big_endian> osym(ov);
2266
2267           gold_assert(isym.get_st_name() < strtab_size);
2268           const char* name = pnames + isym.get_st_name();
2269           osym.put_st_name(sympool->get_offset(name));
2270           osym.put_st_value(this->local_values_[i].value(this, 0));
2271           osym.put_st_size(isym.get_st_size());
2272           osym.put_st_info(isym.get_st_info());
2273           osym.put_st_other(isym.get_st_other());
2274           osym.put_st_shndx(st_shndx);
2275
2276           ov += sym_size;
2277         }
2278
2279       // Write the symbol to the output dynamic symbol table.
2280       if (lv.has_output_dynsym_entry())
2281         {
2282           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2283           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2284
2285           gold_assert(isym.get_st_name() < strtab_size);
2286           const char* name = pnames + isym.get_st_name();
2287           osym.put_st_name(dynpool->get_offset(name));
2288           osym.put_st_value(this->local_values_[i].value(this, 0));
2289           osym.put_st_size(isym.get_st_size());
2290           osym.put_st_info(isym.get_st_info());
2291           osym.put_st_other(isym.get_st_other());
2292           osym.put_st_shndx(st_shndx);
2293
2294           dyn_ov += sym_size;
2295         }
2296     }
2297
2298
2299   if (output_size > 0)
2300     {
2301       gold_assert(ov - oview == output_size);
2302       of->write_output_view(this->local_symbol_offset_, output_size, oview);
2303     }
2304
2305   if (dyn_output_size > 0)
2306     {
2307       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2308       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2309                             dyn_oview);
2310     }
2311 }
2312
2313 // Set *INFO to symbolic information about the offset OFFSET in the
2314 // section SHNDX.  Return true if we found something, false if we
2315 // found nothing.
2316
2317 template<int size, bool big_endian>
2318 bool
2319 Sized_relobj<size, big_endian>::get_symbol_location_info(
2320     unsigned int shndx,
2321     off_t offset,
2322     Symbol_location_info* info)
2323 {
2324   if (this->symtab_shndx_ == 0)
2325     return false;
2326
2327   section_size_type symbols_size;
2328   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2329                                                         &symbols_size,
2330                                                         false);
2331
2332   unsigned int symbol_names_shndx =
2333     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2334   section_size_type names_size;
2335   const unsigned char* symbol_names_u =
2336     this->section_contents(symbol_names_shndx, &names_size, false);
2337   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2338
2339   const int sym_size = This::sym_size;
2340   const size_t count = symbols_size / sym_size;
2341
2342   const unsigned char* p = symbols;
2343   for (size_t i = 0; i < count; ++i, p += sym_size)
2344     {
2345       elfcpp::Sym<size, big_endian> sym(p);
2346
2347       if (sym.get_st_type() == elfcpp::STT_FILE)
2348         {
2349           if (sym.get_st_name() >= names_size)
2350             info->source_file = "(invalid)";
2351           else
2352             info->source_file = symbol_names + sym.get_st_name();
2353           continue;
2354         }
2355
2356       bool is_ordinary;
2357       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2358                                                      &is_ordinary);
2359       if (is_ordinary
2360           && st_shndx == shndx
2361           && static_cast<off_t>(sym.get_st_value()) <= offset
2362           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2363               > offset))
2364         {
2365           if (sym.get_st_name() > names_size)
2366             info->enclosing_symbol_name = "(invalid)";
2367           else
2368             {
2369               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2370               if (parameters->options().do_demangle())
2371                 {
2372                   char* demangled_name = cplus_demangle(
2373                       info->enclosing_symbol_name.c_str(),
2374                       DMGL_ANSI | DMGL_PARAMS);
2375                   if (demangled_name != NULL)
2376                     {
2377                       info->enclosing_symbol_name.assign(demangled_name);
2378                       free(demangled_name);
2379                     }
2380                 }
2381             }
2382           return true;
2383         }
2384     }
2385
2386   return false;
2387 }
2388
2389 // Look for a kept section corresponding to the given discarded section,
2390 // and return its output address.  This is used only for relocations in
2391 // debugging sections.  If we can't find the kept section, return 0.
2392
2393 template<int size, bool big_endian>
2394 typename Sized_relobj<size, big_endian>::Address
2395 Sized_relobj<size, big_endian>::map_to_kept_section(
2396     unsigned int shndx,
2397     bool* found) const
2398 {
2399   Relobj* kept_object;
2400   unsigned int kept_shndx;
2401   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2402     {
2403       Sized_relobj<size, big_endian>* kept_relobj =
2404         static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2405       Output_section* os = kept_relobj->output_section(kept_shndx);
2406       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2407       if (os != NULL && offset != invalid_address)
2408         {
2409           *found = true;
2410           return os->address() + offset;
2411         }
2412     }
2413   *found = false;
2414   return 0;
2415 }
2416
2417 // Get symbol counts.
2418
2419 template<int size, bool big_endian>
2420 void
2421 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2422     const Symbol_table*,
2423     size_t* defined,
2424     size_t* used) const
2425 {
2426   *defined = this->defined_count_;
2427   size_t count = 0;
2428   for (Symbols::const_iterator p = this->symbols_.begin();
2429        p != this->symbols_.end();
2430        ++p)
2431     if (*p != NULL
2432         && (*p)->source() == Symbol::FROM_OBJECT
2433         && (*p)->object() == this
2434         && (*p)->is_defined())
2435       ++count;
2436   *used = count;
2437 }
2438
2439 // Input_objects methods.
2440
2441 // Add a regular relocatable object to the list.  Return false if this
2442 // object should be ignored.
2443
2444 bool
2445 Input_objects::add_object(Object* obj)
2446 {
2447   // Print the filename if the -t/--trace option is selected.
2448   if (parameters->options().trace())
2449     gold_info("%s", obj->name().c_str());
2450
2451   if (!obj->is_dynamic())
2452     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2453   else
2454     {
2455       // See if this is a duplicate SONAME.
2456       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2457       const char* soname = dynobj->soname();
2458
2459       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2460         this->sonames_.insert(soname);
2461       if (!ins.second)
2462         {
2463           // We have already seen a dynamic object with this soname.
2464           return false;
2465         }
2466
2467       this->dynobj_list_.push_back(dynobj);
2468     }
2469
2470   // Add this object to the cross-referencer if requested.
2471   if (parameters->options().user_set_print_symbol_counts()
2472       || parameters->options().cref())
2473     {
2474       if (this->cref_ == NULL)
2475         this->cref_ = new Cref();
2476       this->cref_->add_object(obj);
2477     }
2478
2479   return true;
2480 }
2481
2482 // For each dynamic object, record whether we've seen all of its
2483 // explicit dependencies.
2484
2485 void
2486 Input_objects::check_dynamic_dependencies() const
2487 {
2488   bool issued_copy_dt_needed_error = false;
2489   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2490        p != this->dynobj_list_.end();
2491        ++p)
2492     {
2493       const Dynobj::Needed& needed((*p)->needed());
2494       bool found_all = true;
2495       Dynobj::Needed::const_iterator pneeded;
2496       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2497         {
2498           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2499             {
2500               found_all = false;
2501               break;
2502             }
2503         }
2504       (*p)->set_has_unknown_needed_entries(!found_all);
2505
2506       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2507       // that gold does not support.  However, they cause no trouble
2508       // unless there is a DT_NEEDED entry that we don't know about;
2509       // warn only in that case.
2510       if (!found_all
2511           && !issued_copy_dt_needed_error
2512           && (parameters->options().copy_dt_needed_entries()
2513               || parameters->options().add_needed()))
2514         {
2515           const char* optname;
2516           if (parameters->options().copy_dt_needed_entries())
2517             optname = "--copy-dt-needed-entries";
2518           else
2519             optname = "--add-needed";
2520           gold_error(_("%s is not supported but is required for %s in %s"),
2521                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2522           issued_copy_dt_needed_error = true;
2523         }
2524     }
2525 }
2526
2527 // Start processing an archive.
2528
2529 void
2530 Input_objects::archive_start(Archive* archive)
2531 {
2532   if (parameters->options().user_set_print_symbol_counts()
2533       || parameters->options().cref())
2534     {
2535       if (this->cref_ == NULL)
2536         this->cref_ = new Cref();
2537       this->cref_->add_archive_start(archive);
2538     }
2539 }
2540
2541 // Stop processing an archive.
2542
2543 void
2544 Input_objects::archive_stop(Archive* archive)
2545 {
2546   if (parameters->options().user_set_print_symbol_counts()
2547       || parameters->options().cref())
2548     this->cref_->add_archive_stop(archive);
2549 }
2550
2551 // Print symbol counts
2552
2553 void
2554 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2555 {
2556   if (parameters->options().user_set_print_symbol_counts()
2557       && this->cref_ != NULL)
2558     this->cref_->print_symbol_counts(symtab);
2559 }
2560
2561 // Print a cross reference table.
2562
2563 void
2564 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2565 {
2566   if (parameters->options().cref() && this->cref_ != NULL)
2567     this->cref_->print_cref(symtab, f);
2568 }
2569
2570 // Relocate_info methods.
2571
2572 // Return a string describing the location of a relocation.  This is
2573 // only used in error messages.
2574
2575 template<int size, bool big_endian>
2576 std::string
2577 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2578 {
2579   // See if we can get line-number information from debugging sections.
2580   std::string filename;
2581   std::string file_and_lineno;   // Better than filename-only, if available.
2582
2583   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2584   // This will be "" if we failed to parse the debug info for any reason.
2585   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2586
2587   std::string ret(this->object->name());
2588   ret += ':';
2589   Symbol_location_info info;
2590   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2591     {
2592       ret += " in function ";
2593       ret += info.enclosing_symbol_name;
2594       ret += ":";
2595       filename = info.source_file;
2596     }
2597
2598   if (!file_and_lineno.empty())
2599     ret += file_and_lineno;
2600   else
2601     {
2602       if (!filename.empty())
2603         ret += filename;
2604       ret += "(";
2605       ret += this->object->section_name(this->data_shndx);
2606       char buf[100];
2607       // Offsets into sections have to be positive.
2608       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2609       ret += buf;
2610       ret += ")";
2611     }
2612   return ret;
2613 }
2614
2615 } // End namespace gold.
2616
2617 namespace
2618 {
2619
2620 using namespace gold;
2621
2622 // Read an ELF file with the header and return the appropriate
2623 // instance of Object.
2624
2625 template<int size, bool big_endian>
2626 Object*
2627 make_elf_sized_object(const std::string& name, Input_file* input_file,
2628                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2629                       bool* punconfigured)
2630 {
2631   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2632                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2633                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2634   if (target == NULL)
2635     gold_fatal(_("%s: unsupported ELF machine number %d"),
2636                name.c_str(), ehdr.get_e_machine());
2637
2638   if (!parameters->target_valid())
2639     set_parameters_target(target);
2640   else if (target != &parameters->target())
2641     {
2642       if (punconfigured != NULL)
2643         *punconfigured = true;
2644       else
2645         gold_error(_("%s: incompatible target"), name.c_str());
2646       return NULL;
2647     }
2648
2649   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2650                                                    ehdr);
2651 }
2652
2653 } // End anonymous namespace.
2654
2655 namespace gold
2656 {
2657
2658 // Return whether INPUT_FILE is an ELF object.
2659
2660 bool
2661 is_elf_object(Input_file* input_file, off_t offset,
2662               const unsigned char** start, int* read_size)
2663 {
2664   off_t filesize = input_file->file().filesize();
2665   int want = elfcpp::Elf_recognizer::max_header_size;
2666   if (filesize - offset < want)
2667     want = filesize - offset;
2668
2669   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2670                                                        true, false);
2671   *start = p;
2672   *read_size = want;
2673
2674   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2675 }
2676
2677 // Read an ELF file and return the appropriate instance of Object.
2678
2679 Object*
2680 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2681                 const unsigned char* p, section_offset_type bytes,
2682                 bool* punconfigured)
2683 {
2684   if (punconfigured != NULL)
2685     *punconfigured = false;
2686
2687   std::string error;
2688   bool big_endian = false;
2689   int size = 0;
2690   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2691                                                &big_endian, &error))
2692     {
2693       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2694       return NULL;
2695     }
2696
2697   if (size == 32)
2698     {
2699       if (big_endian)
2700         {
2701 #ifdef HAVE_TARGET_32_BIG
2702           elfcpp::Ehdr<32, true> ehdr(p);
2703           return make_elf_sized_object<32, true>(name, input_file,
2704                                                  offset, ehdr, punconfigured);
2705 #else
2706           if (punconfigured != NULL)
2707             *punconfigured = true;
2708           else
2709             gold_error(_("%s: not configured to support "
2710                          "32-bit big-endian object"),
2711                        name.c_str());
2712           return NULL;
2713 #endif
2714         }
2715       else
2716         {
2717 #ifdef HAVE_TARGET_32_LITTLE
2718           elfcpp::Ehdr<32, false> ehdr(p);
2719           return make_elf_sized_object<32, false>(name, input_file,
2720                                                   offset, ehdr, punconfigured);
2721 #else
2722           if (punconfigured != NULL)
2723             *punconfigured = true;
2724           else
2725             gold_error(_("%s: not configured to support "
2726                          "32-bit little-endian object"),
2727                        name.c_str());
2728           return NULL;
2729 #endif
2730         }
2731     }
2732   else if (size == 64)
2733     {
2734       if (big_endian)
2735         {
2736 #ifdef HAVE_TARGET_64_BIG
2737           elfcpp::Ehdr<64, true> ehdr(p);
2738           return make_elf_sized_object<64, true>(name, input_file,
2739                                                  offset, ehdr, punconfigured);
2740 #else
2741           if (punconfigured != NULL)
2742             *punconfigured = true;
2743           else
2744             gold_error(_("%s: not configured to support "
2745                          "64-bit big-endian object"),
2746                        name.c_str());
2747           return NULL;
2748 #endif
2749         }
2750       else
2751         {
2752 #ifdef HAVE_TARGET_64_LITTLE
2753           elfcpp::Ehdr<64, false> ehdr(p);
2754           return make_elf_sized_object<64, false>(name, input_file,
2755                                                   offset, ehdr, punconfigured);
2756 #else
2757           if (punconfigured != NULL)
2758             *punconfigured = true;
2759           else
2760             gold_error(_("%s: not configured to support "
2761                          "64-bit little-endian object"),
2762                        name.c_str());
2763           return NULL;
2764 #endif
2765         }
2766     }
2767   else
2768     gold_unreachable();
2769 }
2770
2771 // Instantiate the templates we need.
2772
2773 #ifdef HAVE_TARGET_32_LITTLE
2774 template
2775 void
2776 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2777                                      Read_symbols_data*);
2778 #endif
2779
2780 #ifdef HAVE_TARGET_32_BIG
2781 template
2782 void
2783 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2784                                     Read_symbols_data*);
2785 #endif
2786
2787 #ifdef HAVE_TARGET_64_LITTLE
2788 template
2789 void
2790 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2791                                      Read_symbols_data*);
2792 #endif
2793
2794 #ifdef HAVE_TARGET_64_BIG
2795 template
2796 void
2797 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2798                                     Read_symbols_data*);
2799 #endif
2800
2801 #ifdef HAVE_TARGET_32_LITTLE
2802 template
2803 class Sized_relobj<32, false>;
2804 #endif
2805
2806 #ifdef HAVE_TARGET_32_BIG
2807 template
2808 class Sized_relobj<32, true>;
2809 #endif
2810
2811 #ifdef HAVE_TARGET_64_LITTLE
2812 template
2813 class Sized_relobj<64, false>;
2814 #endif
2815
2816 #ifdef HAVE_TARGET_64_BIG
2817 template
2818 class Sized_relobj<64, true>;
2819 #endif
2820
2821 #ifdef HAVE_TARGET_32_LITTLE
2822 template
2823 struct Relocate_info<32, false>;
2824 #endif
2825
2826 #ifdef HAVE_TARGET_32_BIG
2827 template
2828 struct Relocate_info<32, true>;
2829 #endif
2830
2831 #ifdef HAVE_TARGET_64_LITTLE
2832 template
2833 struct Relocate_info<64, false>;
2834 #endif
2835
2836 #ifdef HAVE_TARGET_64_BIG
2837 template
2838 struct Relocate_info<64, true>;
2839 #endif
2840
2841 #ifdef HAVE_TARGET_32_LITTLE
2842 template
2843 void
2844 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2845
2846 template
2847 void
2848 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2849                                       const unsigned char*);
2850 #endif
2851
2852 #ifdef HAVE_TARGET_32_BIG
2853 template
2854 void
2855 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2856
2857 template
2858 void
2859 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2860                                      const unsigned char*);
2861 #endif
2862
2863 #ifdef HAVE_TARGET_64_LITTLE
2864 template
2865 void
2866 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2867
2868 template
2869 void
2870 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2871                                       const unsigned char*);
2872 #endif
2873
2874 #ifdef HAVE_TARGET_64_BIG
2875 template
2876 void
2877 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2878
2879 template
2880 void
2881 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2882                                      const unsigned char*);
2883 #endif
2884
2885 } // End namespace gold.