* object.cc (Sized_relobj::layout_section): New function.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "cref.h"
37 #include "reloc.h"
38 #include "object.h"
39 #include "dynobj.h"
40 #include "plugin.h"
41
42 namespace gold
43 {
44
45 // Class Xindex.
46
47 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
48 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
49 // table we care about.
50
51 template<int size, bool big_endian>
52 void
53 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
54 {
55   if (!this->symtab_xindex_.empty())
56     return;
57
58   gold_assert(symtab_shndx != 0);
59
60   // Look through the sections in reverse order, on the theory that it
61   // is more likely to be near the end than the beginning.
62   unsigned int i = object->shnum();
63   while (i > 0)
64     {
65       --i;
66       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
67           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
68         {
69           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
70           return;
71         }
72     }
73
74   object->error(_("missing SHT_SYMTAB_SHNDX section"));
75 }
76
77 // Read in the symtab_xindex_ array, given the section index of the
78 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
79 // section headers.
80
81 template<int size, bool big_endian>
82 void
83 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
84                            const unsigned char* pshdrs)
85 {
86   section_size_type bytecount;
87   const unsigned char* contents;
88   if (pshdrs == NULL)
89     contents = object->section_contents(xindex_shndx, &bytecount, false);
90   else
91     {
92       const unsigned char* p = (pshdrs
93                                 + (xindex_shndx
94                                    * elfcpp::Elf_sizes<size>::shdr_size));
95       typename elfcpp::Shdr<size, big_endian> shdr(p);
96       bytecount = convert_to_section_size_type(shdr.get_sh_size());
97       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
98     }
99
100   gold_assert(this->symtab_xindex_.empty());
101   this->symtab_xindex_.reserve(bytecount / 4);
102   for (section_size_type i = 0; i < bytecount; i += 4)
103     {
104       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
105       // We preadjust the section indexes we save.
106       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
107     }
108 }
109
110 // Symbol symndx has a section of SHN_XINDEX; return the real section
111 // index.
112
113 unsigned int
114 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
115 {
116   if (symndx >= this->symtab_xindex_.size())
117     {
118       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
119                     symndx);
120       return elfcpp::SHN_UNDEF;
121     }
122   unsigned int shndx = this->symtab_xindex_[symndx];
123   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
124     {
125       object->error(_("extended index for symbol %u out of range: %u"),
126                     symndx, shndx);
127       return elfcpp::SHN_UNDEF;
128     }
129   return shndx;
130 }
131
132 // Class Object.
133
134 // Set the target based on fields in the ELF file header.
135
136 void
137 Object::set_target(int machine, int size, bool big_endian, int osabi,
138                    int abiversion)
139 {
140   Target* target = select_target(machine, size, big_endian, osabi, abiversion);
141   if (target == NULL)
142     gold_fatal(_("%s: unsupported ELF machine number %d"),
143                this->name().c_str(), machine);
144   this->target_ = target;
145 }
146
147 // Report an error for this object file.  This is used by the
148 // elfcpp::Elf_file interface, and also called by the Object code
149 // itself.
150
151 void
152 Object::error(const char* format, ...) const
153 {
154   va_list args;
155   va_start(args, format);
156   char* buf = NULL;
157   if (vasprintf(&buf, format, args) < 0)
158     gold_nomem();
159   va_end(args);
160   gold_error(_("%s: %s"), this->name().c_str(), buf);
161   free(buf);
162 }
163
164 // Return a view of the contents of a section.
165
166 const unsigned char*
167 Object::section_contents(unsigned int shndx, section_size_type* plen,
168                          bool cache)
169 {
170   Location loc(this->do_section_contents(shndx));
171   *plen = convert_to_section_size_type(loc.data_size);
172   return this->get_view(loc.file_offset, *plen, true, cache);
173 }
174
175 // Read the section data into SD.  This is code common to Sized_relobj
176 // and Sized_dynobj, so we put it into Object.
177
178 template<int size, bool big_endian>
179 void
180 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
181                           Read_symbols_data* sd)
182 {
183   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
184
185   // Read the section headers.
186   const off_t shoff = elf_file->shoff();
187   const unsigned int shnum = this->shnum();
188   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
189                                                true, true);
190
191   // Read the section names.
192   const unsigned char* pshdrs = sd->section_headers->data();
193   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
194   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
195
196   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
197     this->error(_("section name section has wrong type: %u"),
198                 static_cast<unsigned int>(shdrnames.get_sh_type()));
199
200   sd->section_names_size =
201     convert_to_section_size_type(shdrnames.get_sh_size());
202   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
203                                              sd->section_names_size, false,
204                                              false);
205 }
206
207 // If NAME is the name of a special .gnu.warning section, arrange for
208 // the warning to be issued.  SHNDX is the section index.  Return
209 // whether it is a warning section.
210
211 bool
212 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
213                                    Symbol_table* symtab)
214 {
215   const char warn_prefix[] = ".gnu.warning.";
216   const int warn_prefix_len = sizeof warn_prefix - 1;
217   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
218     {
219       // Read the section contents to get the warning text.  It would
220       // be nicer if we only did this if we have to actually issue a
221       // warning.  Unfortunately, warnings are issued as we relocate
222       // sections.  That means that we can not lock the object then,
223       // as we might try to issue the same warning multiple times
224       // simultaneously.
225       section_size_type len;
226       const unsigned char* contents = this->section_contents(shndx, &len,
227                                                              false);
228       std::string warning(reinterpret_cast<const char*>(contents), len);
229       symtab->add_warning(name + warn_prefix_len, this, warning);
230       return true;
231     }
232   return false;
233 }
234
235 // Class Sized_relobj.
236
237 template<int size, bool big_endian>
238 Sized_relobj<size, big_endian>::Sized_relobj(
239     const std::string& name,
240     Input_file* input_file,
241     off_t offset,
242     const elfcpp::Ehdr<size, big_endian>& ehdr)
243   : Relobj(name, input_file, offset),
244     elf_file_(this, ehdr),
245     symtab_shndx_(-1U),
246     local_symbol_count_(0),
247     output_local_symbol_count_(0),
248     output_local_dynsym_count_(0),
249     symbols_(),
250     defined_count_(0),
251     local_symbol_offset_(0),
252     local_dynsym_offset_(0),
253     local_values_(),
254     local_got_offsets_(),
255     kept_comdat_sections_(),
256     comdat_groups_(),
257     has_eh_frame_(false)
258 {
259 }
260
261 template<int size, bool big_endian>
262 Sized_relobj<size, big_endian>::~Sized_relobj()
263 {
264 }
265
266 // Set up an object file based on the file header.  This sets up the
267 // target and reads the section information.
268
269 template<int size, bool big_endian>
270 void
271 Sized_relobj<size, big_endian>::setup(
272     const elfcpp::Ehdr<size, big_endian>& ehdr)
273 {
274   this->set_target(ehdr.get_e_machine(), size, big_endian,
275                    ehdr.get_e_ident()[elfcpp::EI_OSABI],
276                    ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
277
278   const unsigned int shnum = this->elf_file_.shnum();
279   this->set_shnum(shnum);
280 }
281
282 // Find the SHT_SYMTAB section, given the section headers.  The ELF
283 // standard says that maybe in the future there can be more than one
284 // SHT_SYMTAB section.  Until somebody figures out how that could
285 // work, we assume there is only one.
286
287 template<int size, bool big_endian>
288 void
289 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
290 {
291   const unsigned int shnum = this->shnum();
292   this->symtab_shndx_ = 0;
293   if (shnum > 0)
294     {
295       // Look through the sections in reverse order, since gas tends
296       // to put the symbol table at the end.
297       const unsigned char* p = pshdrs + shnum * This::shdr_size;
298       unsigned int i = shnum;
299       unsigned int xindex_shndx = 0;
300       unsigned int xindex_link = 0;
301       while (i > 0)
302         {
303           --i;
304           p -= This::shdr_size;
305           typename This::Shdr shdr(p);
306           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
307             {
308               this->symtab_shndx_ = i;
309               if (xindex_shndx > 0 && xindex_link == i)
310                 {
311                   Xindex* xindex =
312                     new Xindex(this->elf_file_.large_shndx_offset());
313                   xindex->read_symtab_xindex<size, big_endian>(this,
314                                                                xindex_shndx,
315                                                                pshdrs);
316                   this->set_xindex(xindex);
317                 }
318               break;
319             }
320
321           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
322           // one.  This will work if it follows the SHT_SYMTAB
323           // section.
324           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
325             {
326               xindex_shndx = i;
327               xindex_link = this->adjust_shndx(shdr.get_sh_link());
328             }
329         }
330     }
331 }
332
333 // Return the Xindex structure to use for object with lots of
334 // sections.
335
336 template<int size, bool big_endian>
337 Xindex*
338 Sized_relobj<size, big_endian>::do_initialize_xindex()
339 {
340   gold_assert(this->symtab_shndx_ != -1U);
341   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
342   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
343   return xindex;
344 }
345
346 // Return whether SHDR has the right type and flags to be a GNU
347 // .eh_frame section.
348
349 template<int size, bool big_endian>
350 bool
351 Sized_relobj<size, big_endian>::check_eh_frame_flags(
352     const elfcpp::Shdr<size, big_endian>* shdr) const
353 {
354   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
355           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
356 }
357
358 // Return whether there is a GNU .eh_frame section, given the section
359 // headers and the section names.
360
361 template<int size, bool big_endian>
362 bool
363 Sized_relobj<size, big_endian>::find_eh_frame(
364     const unsigned char* pshdrs,
365     const char* names,
366     section_size_type names_size) const
367 {
368   const unsigned int shnum = this->shnum();
369   const unsigned char* p = pshdrs + This::shdr_size;
370   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
371     {
372       typename This::Shdr shdr(p);
373       if (this->check_eh_frame_flags(&shdr))
374         {
375           if (shdr.get_sh_name() >= names_size)
376             {
377               this->error(_("bad section name offset for section %u: %lu"),
378                           i, static_cast<unsigned long>(shdr.get_sh_name()));
379               continue;
380             }
381
382           const char* name = names + shdr.get_sh_name();
383           if (strcmp(name, ".eh_frame") == 0)
384             return true;
385         }
386     }
387   return false;
388 }
389
390 // Read the sections and symbols from an object file.
391
392 template<int size, bool big_endian>
393 void
394 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
395 {
396   this->read_section_data(&this->elf_file_, sd);
397
398   const unsigned char* const pshdrs = sd->section_headers->data();
399
400   this->find_symtab(pshdrs);
401
402   const unsigned char* namesu = sd->section_names->data();
403   const char* names = reinterpret_cast<const char*>(namesu);
404   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
405     {
406       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
407         this->has_eh_frame_ = true;
408     }
409
410   sd->symbols = NULL;
411   sd->symbols_size = 0;
412   sd->external_symbols_offset = 0;
413   sd->symbol_names = NULL;
414   sd->symbol_names_size = 0;
415
416   if (this->symtab_shndx_ == 0)
417     {
418       // No symbol table.  Weird but legal.
419       return;
420     }
421
422   // Get the symbol table section header.
423   typename This::Shdr symtabshdr(pshdrs
424                                  + this->symtab_shndx_ * This::shdr_size);
425   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
426
427   // If this object has a .eh_frame section, we need all the symbols.
428   // Otherwise we only need the external symbols.  While it would be
429   // simpler to just always read all the symbols, I've seen object
430   // files with well over 2000 local symbols, which for a 64-bit
431   // object file format is over 5 pages that we don't need to read
432   // now.
433
434   const int sym_size = This::sym_size;
435   const unsigned int loccount = symtabshdr.get_sh_info();
436   this->local_symbol_count_ = loccount;
437   this->local_values_.resize(loccount);
438   section_offset_type locsize = loccount * sym_size;
439   off_t dataoff = symtabshdr.get_sh_offset();
440   section_size_type datasize =
441     convert_to_section_size_type(symtabshdr.get_sh_size());
442   off_t extoff = dataoff + locsize;
443   section_size_type extsize = datasize - locsize;
444
445   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
446   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
447
448   if (readsize == 0)
449     {
450       // No external symbols.  Also weird but also legal.
451       return;
452     }
453
454   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
455
456   // Read the section header for the symbol names.
457   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
458   if (strtab_shndx >= this->shnum())
459     {
460       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
461       return;
462     }
463   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
464   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
465     {
466       this->error(_("symbol table name section has wrong type: %u"),
467                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
468       return;
469     }
470
471   // Read the symbol names.
472   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
473                                                strtabshdr.get_sh_size(),
474                                                false, true);
475
476   sd->symbols = fvsymtab;
477   sd->symbols_size = readsize;
478   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
479   sd->symbol_names = fvstrtab;
480   sd->symbol_names_size =
481     convert_to_section_size_type(strtabshdr.get_sh_size());
482 }
483
484 // Return the section index of symbol SYM.  Set *VALUE to its value in
485 // the object file.  Set *IS_ORDINARY if this is an ordinary section
486 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
487 // Note that for a symbol which is not defined in this object file,
488 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
489 // the final value of the symbol in the link.
490
491 template<int size, bool big_endian>
492 unsigned int
493 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
494                                                          Address* value,
495                                                          bool* is_ordinary)
496 {
497   section_size_type symbols_size;
498   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
499                                                         &symbols_size,
500                                                         false);
501
502   const size_t count = symbols_size / This::sym_size;
503   gold_assert(sym < count);
504
505   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
506   *value = elfsym.get_st_value();
507
508   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
509 }
510
511 // Return whether to include a section group in the link.  LAYOUT is
512 // used to keep track of which section groups we have already seen.
513 // INDEX is the index of the section group and SHDR is the section
514 // header.  If we do not want to include this group, we set bits in
515 // OMIT for each section which should be discarded.
516
517 template<int size, bool big_endian>
518 bool
519 Sized_relobj<size, big_endian>::include_section_group(
520     Symbol_table* symtab,
521     Layout* layout,
522     unsigned int index,
523     const char* name,
524     const unsigned char* shdrs,
525     const char* section_names,
526     section_size_type section_names_size,
527     std::vector<bool>* omit)
528 {
529   // Read the section contents.
530   typename This::Shdr shdr(shdrs + index * This::shdr_size);
531   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
532                                              shdr.get_sh_size(), true, false);
533   const elfcpp::Elf_Word* pword =
534     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
535
536   // The first word contains flags.  We only care about COMDAT section
537   // groups.  Other section groups are always included in the link
538   // just like ordinary sections.
539   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
540
541   // Look up the group signature, which is the name of a symbol.  This
542   // is a lot of effort to go to to read a string.  Why didn't they
543   // just have the group signature point into the string table, rather
544   // than indirect through a symbol?
545
546   // Get the appropriate symbol table header (this will normally be
547   // the single SHT_SYMTAB section, but in principle it need not be).
548   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
549   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
550
551   // Read the symbol table entry.
552   unsigned int symndx = shdr.get_sh_info();
553   if (symndx >= symshdr.get_sh_size() / This::sym_size)
554     {
555       this->error(_("section group %u info %u out of range"),
556                   index, symndx);
557       return false;
558     }
559   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
560   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
561                                              false);
562   elfcpp::Sym<size, big_endian> sym(psym);
563
564   // Read the symbol table names.
565   section_size_type symnamelen;
566   const unsigned char* psymnamesu;
567   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
568                                       &symnamelen, true);
569   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
570
571   // Get the section group signature.
572   if (sym.get_st_name() >= symnamelen)
573     {
574       this->error(_("symbol %u name offset %u out of range"),
575                   symndx, sym.get_st_name());
576       return false;
577     }
578
579   std::string signature(psymnames + sym.get_st_name());
580
581   // It seems that some versions of gas will create a section group
582   // associated with a section symbol, and then fail to give a name to
583   // the section symbol.  In such a case, use the name of the section.
584   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
585     {
586       bool is_ordinary;
587       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
588                                                       sym.get_st_shndx(),
589                                                       &is_ordinary);
590       if (!is_ordinary || sym_shndx >= this->shnum())
591         {
592           this->error(_("symbol %u invalid section index %u"),
593                       symndx, sym_shndx);
594           return false;
595         }
596       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
597       if (member_shdr.get_sh_name() < section_names_size)
598         signature = section_names + member_shdr.get_sh_name();
599     }
600
601   // Record this section group in the layout, and see whether we've already
602   // seen one with the same signature.
603   bool include_group = ((flags & elfcpp::GRP_COMDAT) == 0
604                         || layout->add_comdat(this, index, signature, true));
605
606   Sized_relobj<size, big_endian>* kept_object = NULL;
607   Comdat_group* kept_group = NULL;
608
609   if (!include_group)
610     {
611       // This group is being discarded.  Find the object and group
612       // that was kept in its place.
613       unsigned int kept_group_index = 0;
614       Relobj* kept_relobj = layout->find_kept_object(signature,
615                                                      &kept_group_index);
616       kept_object = static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
617       if (kept_object != NULL)
618         kept_group = kept_object->find_comdat_group(kept_group_index);
619     }
620   else if (flags & elfcpp::GRP_COMDAT)
621     {
622       // This group is being kept.  Create the table to map section names
623       // to section indexes and add it to the table of groups.
624       kept_group = new Comdat_group();
625       this->add_comdat_group(index, kept_group);
626     }
627
628   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
629
630   std::vector<unsigned int> shndxes;
631   bool relocate_group = include_group && parameters->options().relocatable();
632   if (relocate_group)
633     shndxes.reserve(count - 1);
634
635   for (size_t i = 1; i < count; ++i)
636     {
637       elfcpp::Elf_Word secnum =
638         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
639
640       if (relocate_group)
641         shndxes.push_back(secnum);
642
643       if (secnum >= this->shnum())
644         {
645           this->error(_("section %u in section group %u out of range"),
646                       secnum, index);
647           continue;
648         }
649
650       // Check for an earlier section number, since we're going to get
651       // it wrong--we may have already decided to include the section.
652       if (secnum < index)
653         this->error(_("invalid section group %u refers to earlier section %u"),
654                     index, secnum);
655
656       // Get the name of the member section.
657       typename This::Shdr member_shdr(shdrs + secnum * This::shdr_size);
658       if (member_shdr.get_sh_name() >= section_names_size)
659         {
660           // This is an error, but it will be diagnosed eventually
661           // in do_layout, so we don't need to do anything here but
662           // ignore it.
663           continue;
664         }
665       std::string mname(section_names + member_shdr.get_sh_name());
666
667       if (!include_group)
668         {
669           (*omit)[secnum] = true;
670           if (kept_group != NULL)
671             {
672               // Find the corresponding kept section, and store that info
673               // in the discarded section table.
674               Comdat_group::const_iterator p = kept_group->find(mname);
675               if (p != kept_group->end())
676                 {
677                   Kept_comdat_section* kept =
678                     new Kept_comdat_section(kept_object, p->second);
679                   this->set_kept_comdat_section(secnum, kept);
680                 }
681             }
682         }
683       else if (flags & elfcpp::GRP_COMDAT)
684         {
685           // Add the section to the kept group table.
686           gold_assert(kept_group != NULL);
687           kept_group->insert(std::make_pair(mname, secnum));
688         }
689     }
690
691   if (relocate_group)
692     layout->layout_group(symtab, this, index, name, signature.c_str(),
693                          shdr, flags, &shndxes);
694
695   return include_group;
696 }
697
698 // Whether to include a linkonce section in the link.  NAME is the
699 // name of the section and SHDR is the section header.
700
701 // Linkonce sections are a GNU extension implemented in the original
702 // GNU linker before section groups were defined.  The semantics are
703 // that we only include one linkonce section with a given name.  The
704 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
705 // where T is the type of section and SYMNAME is the name of a symbol.
706 // In an attempt to make linkonce sections interact well with section
707 // groups, we try to identify SYMNAME and use it like a section group
708 // signature.  We want to block section groups with that signature,
709 // but not other linkonce sections with that signature.  We also use
710 // the full name of the linkonce section as a normal section group
711 // signature.
712
713 template<int size, bool big_endian>
714 bool
715 Sized_relobj<size, big_endian>::include_linkonce_section(
716     Layout* layout,
717     unsigned int index,
718     const char* name,
719     const elfcpp::Shdr<size, big_endian>&)
720 {
721   // In general the symbol name we want will be the string following
722   // the last '.'.  However, we have to handle the case of
723   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
724   // some versions of gcc.  So we use a heuristic: if the name starts
725   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
726   // we look for the last '.'.  We can't always simply skip
727   // ".gnu.linkonce.X", because we have to deal with cases like
728   // ".gnu.linkonce.d.rel.ro.local".
729   const char* const linkonce_t = ".gnu.linkonce.t.";
730   const char* symname;
731   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
732     symname = name + strlen(linkonce_t);
733   else
734     symname = strrchr(name, '.') + 1;
735   std::string sig1(symname);
736   std::string sig2(name);
737   bool include1 = layout->add_comdat(this, index, sig1, false);
738   bool include2 = layout->add_comdat(this, index, sig2, true);
739
740   if (!include2)
741     {
742       // The section is being discarded on the basis of its section
743       // name (i.e., the kept section was also a linkonce section).
744       // In this case, the section index stored with the layout object
745       // is the linkonce section that was kept.
746       unsigned int kept_group_index = 0;
747       Relobj* kept_relobj = layout->find_kept_object(sig2, &kept_group_index);
748       if (kept_relobj != NULL)
749         {
750           Sized_relobj<size, big_endian>* kept_object
751               = static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
752           Kept_comdat_section* kept =
753             new Kept_comdat_section(kept_object, kept_group_index);
754           this->set_kept_comdat_section(index, kept);
755         }
756     }
757   else if (!include1)
758     {
759       // The section is being discarded on the basis of its symbol
760       // name.  This means that the corresponding kept section was
761       // part of a comdat group, and it will be difficult to identify
762       // the specific section within that group that corresponds to
763       // this linkonce section.  We'll handle the simple case where
764       // the group has only one member section.  Otherwise, it's not
765       // worth the effort.
766       unsigned int kept_group_index = 0;
767       Relobj* kept_relobj = layout->find_kept_object(sig1, &kept_group_index);
768       if (kept_relobj != NULL)
769         {
770           Sized_relobj<size, big_endian>* kept_object =
771               static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
772           Comdat_group* kept_group =
773             kept_object->find_comdat_group(kept_group_index);
774           if (kept_group != NULL && kept_group->size() == 1)
775             {
776               Comdat_group::const_iterator p = kept_group->begin();
777               gold_assert(p != kept_group->end());
778               Kept_comdat_section* kept =
779                 new Kept_comdat_section(kept_object, p->second);
780               this->set_kept_comdat_section(index, kept);
781             }
782         }
783     }
784
785   return include1 && include2;
786 }
787
788 // Layout an input section.
789
790 template<int size, bool big_endian>
791 inline void
792 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
793                                                unsigned int shndx,
794                                                const char* name,
795                                                typename This::Shdr& shdr,
796                                                unsigned int reloc_shndx,
797                                                unsigned int reloc_type)
798 {
799   off_t offset;
800   Output_section* os = layout->layout(this, shndx, name, shdr,
801                                           reloc_shndx, reloc_type, &offset);
802
803   this->output_sections()[shndx] = os;
804   if (offset == -1)
805     this->section_offsets_[shndx] = invalid_address;
806   else
807     this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
808
809   // If this section requires special handling, and if there are
810   // relocs that apply to it, then we must do the special handling
811   // before we apply the relocs.
812   if (offset == -1 && reloc_shndx != 0)
813     this->set_relocs_must_follow_section_writes();
814 }
815
816 // Lay out the input sections.  We walk through the sections and check
817 // whether they should be included in the link.  If they should, we
818 // pass them to the Layout object, which will return an output section
819 // and an offset.
820
821 template<int size, bool big_endian>
822 void
823 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
824                                           Layout* layout,
825                                           Read_symbols_data* sd)
826 {
827   const unsigned int shnum = this->shnum();
828   if (shnum == 0)
829     return;
830
831   // Get the section headers.
832   const unsigned char* shdrs = sd->section_headers->data();
833   const unsigned char* pshdrs;
834
835   // Get the section names.
836   const unsigned char* pnamesu = sd->section_names->data();
837   const char* pnames = reinterpret_cast<const char*>(pnamesu);
838
839   // If any input files have been claimed by plugins, we need to defer
840   // actual layout until the replacement files have arrived.
841   const bool should_defer_layout =
842       (parameters->options().has_plugins()
843        && parameters->options().plugins()->should_defer_layout());
844   unsigned int num_sections_to_defer = 0;
845
846   // For each section, record the index of the reloc section if any.
847   // Use 0 to mean that there is no reloc section, -1U to mean that
848   // there is more than one.
849   std::vector<unsigned int> reloc_shndx(shnum, 0);
850   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
851   // Skip the first, dummy, section.
852   pshdrs = shdrs + This::shdr_size;
853   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
854     {
855       typename This::Shdr shdr(pshdrs);
856
857       // Count the number of sections whose layout will be deferred.
858       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
859         ++num_sections_to_defer;
860
861       unsigned int sh_type = shdr.get_sh_type();
862       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
863         {
864           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
865           if (target_shndx == 0 || target_shndx >= shnum)
866             {
867               this->error(_("relocation section %u has bad info %u"),
868                           i, target_shndx);
869               continue;
870             }
871
872           if (reloc_shndx[target_shndx] != 0)
873             reloc_shndx[target_shndx] = -1U;
874           else
875             {
876               reloc_shndx[target_shndx] = i;
877               reloc_type[target_shndx] = sh_type;
878             }
879         }
880     }
881
882   Output_sections& out_sections(this->output_sections());
883   std::vector<Address>& out_section_offsets(this->section_offsets_);
884
885   out_sections.resize(shnum);
886   out_section_offsets.resize(shnum);
887
888   // If we are only linking for symbols, then there is nothing else to
889   // do here.
890   if (this->input_file()->just_symbols())
891     {
892       delete sd->section_headers;
893       sd->section_headers = NULL;
894       delete sd->section_names;
895       sd->section_names = NULL;
896       return;
897     }
898
899   if (num_sections_to_defer > 0)
900     {
901       parameters->options().plugins()->add_deferred_layout_object(this);
902       this->deferred_layout_.reserve(num_sections_to_defer);
903     }
904
905   // Whether we've seen a .note.GNU-stack section.
906   bool seen_gnu_stack = false;
907   // The flags of a .note.GNU-stack section.
908   uint64_t gnu_stack_flags = 0;
909
910   // Keep track of which sections to omit.
911   std::vector<bool> omit(shnum, false);
912
913   // Keep track of reloc sections when emitting relocations.
914   const bool relocatable = parameters->options().relocatable();
915   const bool emit_relocs = (relocatable
916                             || parameters->options().emit_relocs());
917   std::vector<unsigned int> reloc_sections;
918
919   // Keep track of .eh_frame sections.
920   std::vector<unsigned int> eh_frame_sections;
921
922   // Skip the first, dummy, section.
923   pshdrs = shdrs + This::shdr_size;
924   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
925     {
926       typename This::Shdr shdr(pshdrs);
927
928       if (shdr.get_sh_name() >= sd->section_names_size)
929         {
930           this->error(_("bad section name offset for section %u: %lu"),
931                       i, static_cast<unsigned long>(shdr.get_sh_name()));
932           return;
933         }
934
935       const char* name = pnames + shdr.get_sh_name();
936
937       if (this->handle_gnu_warning_section(name, i, symtab))
938         {
939           if (!relocatable)
940             omit[i] = true;
941         }
942
943       // The .note.GNU-stack section is special.  It gives the
944       // protection flags that this object file requires for the stack
945       // in memory.
946       if (strcmp(name, ".note.GNU-stack") == 0)
947         {
948           seen_gnu_stack = true;
949           gnu_stack_flags |= shdr.get_sh_flags();
950           omit[i] = true;
951         }
952
953       bool discard = omit[i];
954       if (!discard)
955         {
956           if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
957             {
958               if (!this->include_section_group(symtab, layout, i, name, shdrs,
959                                                pnames, sd->section_names_size,
960                                                &omit))
961                 discard = true;
962             }
963           else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
964                    && Layout::is_linkonce(name))
965             {
966               if (!this->include_linkonce_section(layout, i, name, shdr))
967                 discard = true;
968             }
969         }
970
971       if (discard)
972         {
973           // Do not include this section in the link.
974           out_sections[i] = NULL;
975           out_section_offsets[i] = invalid_address;
976           continue;
977         }
978
979       // When doing a relocatable link we are going to copy input
980       // reloc sections into the output.  We only want to copy the
981       // ones associated with sections which are not being discarded.
982       // However, we don't know that yet for all sections.  So save
983       // reloc sections and process them later.
984       if (emit_relocs
985           && (shdr.get_sh_type() == elfcpp::SHT_REL
986               || shdr.get_sh_type() == elfcpp::SHT_RELA))
987         {
988           reloc_sections.push_back(i);
989           continue;
990         }
991
992       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
993         continue;
994
995       // The .eh_frame section is special.  It holds exception frame
996       // information that we need to read in order to generate the
997       // exception frame header.  We process these after all the other
998       // sections so that the exception frame reader can reliably
999       // determine which sections are being discarded, and discard the
1000       // corresponding information.
1001       if (!relocatable
1002           && strcmp(name, ".eh_frame") == 0
1003           && this->check_eh_frame_flags(&shdr))
1004         {
1005           eh_frame_sections.push_back(i);
1006           continue;
1007         }
1008
1009       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1010         {
1011           this->deferred_layout_.push_back(Deferred_layout(i, name, pshdrs,
1012                                                            reloc_shndx[i],
1013                                                            reloc_type[i]));
1014
1015           // Put dummy values here; real values will be supplied by
1016           // do_layout_deferred_sections.
1017           out_sections[i] = reinterpret_cast<Output_section*>(1);
1018           out_section_offsets[i] = invalid_address;
1019         }
1020       else
1021         {
1022           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1023                                reloc_type[i]);
1024         }
1025     }
1026
1027   layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1028
1029   // When doing a relocatable link handle the reloc sections at the
1030   // end.
1031   if (emit_relocs)
1032     this->size_relocatable_relocs();
1033   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1034        p != reloc_sections.end();
1035        ++p)
1036     {
1037       unsigned int i = *p;
1038       const unsigned char* pshdr;
1039       pshdr = sd->section_headers->data() + i * This::shdr_size;
1040       typename This::Shdr shdr(pshdr);
1041
1042       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1043       if (data_shndx >= shnum)
1044         {
1045           // We already warned about this above.
1046           continue;
1047         }
1048
1049       Output_section* data_section = out_sections[data_shndx];
1050       if (data_section == NULL)
1051         {
1052           out_sections[i] = NULL;
1053           out_section_offsets[i] = invalid_address;
1054           continue;
1055         }
1056
1057       Relocatable_relocs* rr = new Relocatable_relocs();
1058       this->set_relocatable_relocs(i, rr);
1059
1060       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1061                                                 rr);
1062       out_sections[i] = os;
1063       out_section_offsets[i] = invalid_address;
1064     }
1065
1066   // Handle the .eh_frame sections at the end.
1067   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1068        p != eh_frame_sections.end();
1069        ++p)
1070     {
1071       gold_assert(this->has_eh_frame_);
1072       gold_assert(sd->external_symbols_offset != 0);
1073
1074       unsigned int i = *p;
1075       const unsigned char *pshdr;
1076       pshdr = sd->section_headers->data() + i * This::shdr_size;
1077       typename This::Shdr shdr(pshdr);
1078
1079       off_t offset;
1080       Output_section* os = layout->layout_eh_frame(this,
1081                                                    sd->symbols->data(),
1082                                                    sd->symbols_size,
1083                                                    sd->symbol_names->data(),
1084                                                    sd->symbol_names_size,
1085                                                    i, shdr,
1086                                                    reloc_shndx[i],
1087                                                    reloc_type[i],
1088                                                    &offset);
1089       out_sections[i] = os;
1090       if (offset == -1)
1091         out_section_offsets[i] = invalid_address;
1092       else
1093         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1094
1095       // If this section requires special handling, and if there are
1096       // relocs that apply to it, then we must do the special handling
1097       // before we apply the relocs.
1098       if (offset == -1 && reloc_shndx[i] != 0)
1099         this->set_relocs_must_follow_section_writes();
1100     }
1101
1102   delete sd->section_headers;
1103   sd->section_headers = NULL;
1104   delete sd->section_names;
1105   sd->section_names = NULL;
1106 }
1107
1108 // Layout sections whose layout was deferred while waiting for
1109 // input files from a plugin.
1110
1111 template<int size, bool big_endian>
1112 void
1113 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1114 {
1115   typename std::vector<Deferred_layout>::iterator deferred;
1116
1117   for (deferred = this->deferred_layout_.begin();
1118        deferred != this->deferred_layout_.end();
1119        ++deferred)
1120     {
1121       typename This::Shdr shdr(deferred->shdr_data_);
1122       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1123                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1124     }
1125
1126   this->deferred_layout_.clear();
1127 }
1128
1129 // Add the symbols to the symbol table.
1130
1131 template<int size, bool big_endian>
1132 void
1133 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1134                                                Read_symbols_data* sd)
1135 {
1136   if (sd->symbols == NULL)
1137     {
1138       gold_assert(sd->symbol_names == NULL);
1139       return;
1140     }
1141
1142   const int sym_size = This::sym_size;
1143   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1144                      / sym_size);
1145   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1146     {
1147       this->error(_("size of symbols is not multiple of symbol size"));
1148       return;
1149     }
1150
1151   this->symbols_.resize(symcount);
1152
1153   const char* sym_names =
1154     reinterpret_cast<const char*>(sd->symbol_names->data());
1155   symtab->add_from_relobj(this,
1156                           sd->symbols->data() + sd->external_symbols_offset,
1157                           symcount, this->local_symbol_count_,
1158                           sym_names, sd->symbol_names_size,
1159                           &this->symbols_,
1160                           &this->defined_count_);
1161
1162   delete sd->symbols;
1163   sd->symbols = NULL;
1164   delete sd->symbol_names;
1165   sd->symbol_names = NULL;
1166 }
1167
1168 // First pass over the local symbols.  Here we add their names to
1169 // *POOL and *DYNPOOL, and we store the symbol value in
1170 // THIS->LOCAL_VALUES_.  This function is always called from a
1171 // singleton thread.  This is followed by a call to
1172 // finalize_local_symbols.
1173
1174 template<int size, bool big_endian>
1175 void
1176 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1177                                                        Stringpool* dynpool)
1178 {
1179   gold_assert(this->symtab_shndx_ != -1U);
1180   if (this->symtab_shndx_ == 0)
1181     {
1182       // This object has no symbols.  Weird but legal.
1183       return;
1184     }
1185
1186   // Read the symbol table section header.
1187   const unsigned int symtab_shndx = this->symtab_shndx_;
1188   typename This::Shdr symtabshdr(this,
1189                                  this->elf_file_.section_header(symtab_shndx));
1190   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1191
1192   // Read the local symbols.
1193   const int sym_size = This::sym_size;
1194   const unsigned int loccount = this->local_symbol_count_;
1195   gold_assert(loccount == symtabshdr.get_sh_info());
1196   off_t locsize = loccount * sym_size;
1197   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1198                                               locsize, true, true);
1199
1200   // Read the symbol names.
1201   const unsigned int strtab_shndx =
1202     this->adjust_shndx(symtabshdr.get_sh_link());
1203   section_size_type strtab_size;
1204   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1205                                                         &strtab_size,
1206                                                         true);
1207   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1208
1209   // Loop over the local symbols.
1210
1211   const Output_sections& out_sections(this->output_sections());
1212   unsigned int shnum = this->shnum();
1213   unsigned int count = 0;
1214   unsigned int dyncount = 0;
1215   // Skip the first, dummy, symbol.
1216   psyms += sym_size;
1217   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1218     {
1219       elfcpp::Sym<size, big_endian> sym(psyms);
1220
1221       Symbol_value<size>& lv(this->local_values_[i]);
1222
1223       bool is_ordinary;
1224       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1225                                                   &is_ordinary);
1226       lv.set_input_shndx(shndx, is_ordinary);
1227
1228       if (sym.get_st_type() == elfcpp::STT_SECTION)
1229         lv.set_is_section_symbol();
1230       else if (sym.get_st_type() == elfcpp::STT_TLS)
1231         lv.set_is_tls_symbol();
1232
1233       // Save the input symbol value for use in do_finalize_local_symbols().
1234       lv.set_input_value(sym.get_st_value());
1235
1236       // Decide whether this symbol should go into the output file.
1237
1238       if (shndx < shnum && out_sections[shndx] == NULL)
1239         {
1240           lv.set_no_output_symtab_entry();
1241           gold_assert(!lv.needs_output_dynsym_entry());
1242           continue;
1243         }
1244
1245       if (sym.get_st_type() == elfcpp::STT_SECTION)
1246         {
1247           lv.set_no_output_symtab_entry();
1248           gold_assert(!lv.needs_output_dynsym_entry());
1249           continue;
1250         }
1251
1252       if (sym.get_st_name() >= strtab_size)
1253         {
1254           this->error(_("local symbol %u section name out of range: %u >= %u"),
1255                       i, sym.get_st_name(),
1256                       static_cast<unsigned int>(strtab_size));
1257           lv.set_no_output_symtab_entry();
1258           continue;
1259         }
1260
1261       // Add the symbol to the symbol table string pool.
1262       const char* name = pnames + sym.get_st_name();
1263       pool->add(name, true, NULL);
1264       ++count;
1265
1266       // If needed, add the symbol to the dynamic symbol table string pool.
1267       if (lv.needs_output_dynsym_entry())
1268         {
1269           dynpool->add(name, true, NULL);
1270           ++dyncount;
1271         }
1272     }
1273
1274   this->output_local_symbol_count_ = count;
1275   this->output_local_dynsym_count_ = dyncount;
1276 }
1277
1278 // Finalize the local symbols.  Here we set the final value in
1279 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1280 // This function is always called from a singleton thread.  The actual
1281 // output of the local symbols will occur in a separate task.
1282
1283 template<int size, bool big_endian>
1284 unsigned int
1285 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1286                                                           off_t off)
1287 {
1288   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1289
1290   const unsigned int loccount = this->local_symbol_count_;
1291   this->local_symbol_offset_ = off;
1292
1293   const Output_sections& out_sections(this->output_sections());
1294   const std::vector<Address>& out_offsets(this->section_offsets_);
1295   unsigned int shnum = this->shnum();
1296
1297   for (unsigned int i = 1; i < loccount; ++i)
1298     {
1299       Symbol_value<size>& lv(this->local_values_[i]);
1300
1301       bool is_ordinary;
1302       unsigned int shndx = lv.input_shndx(&is_ordinary);
1303
1304       // Set the output symbol value.
1305
1306       if (!is_ordinary)
1307         {
1308           if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1309             lv.set_output_value(lv.input_value());
1310           else
1311             {
1312               this->error(_("unknown section index %u for local symbol %u"),
1313                           shndx, i);
1314               lv.set_output_value(0);
1315             }
1316         }
1317       else
1318         {
1319           if (shndx >= shnum)
1320             {
1321               this->error(_("local symbol %u section index %u out of range"),
1322                           i, shndx);
1323               shndx = 0;
1324             }
1325
1326           Output_section* os = out_sections[shndx];
1327
1328           if (os == NULL)
1329             {
1330               // This local symbol belongs to a section we are discarding.
1331               // In some cases when applying relocations later, we will
1332               // attempt to match it to the corresponding kept section,
1333               // so we leave the input value unchanged here.
1334               continue;
1335             }
1336           else if (out_offsets[shndx] == invalid_address)
1337             {
1338               // This is a SHF_MERGE section or one which otherwise
1339               // requires special handling.  We get the output address
1340               // of the start of the merged section.  If this is not a
1341               // section symbol, we can then determine the final
1342               // value.  If it is a section symbol, we can not, as in
1343               // that case we have to consider the addend to determine
1344               // the value to use in a relocation.
1345               if (!lv.is_section_symbol())
1346                 lv.set_output_value(os->output_address(this, shndx,
1347                                                        lv.input_value()));
1348               else
1349                 {
1350                   section_offset_type start =
1351                     os->starting_output_address(this, shndx);
1352                   Merged_symbol_value<size>* msv =
1353                     new Merged_symbol_value<size>(lv.input_value(), start);
1354                   lv.set_merged_symbol_value(msv);
1355                 }
1356             }
1357           else if (lv.is_tls_symbol())
1358             lv.set_output_value(os->tls_offset()
1359                                 + out_offsets[shndx]
1360                                 + lv.input_value());
1361           else
1362             lv.set_output_value(os->address()
1363                                 + out_offsets[shndx]
1364                                 + lv.input_value());
1365         }
1366
1367       if (lv.needs_output_symtab_entry())
1368         {
1369           lv.set_output_symtab_index(index);
1370           ++index;
1371         }
1372     }
1373   return index;
1374 }
1375
1376 // Set the output dynamic symbol table indexes for the local variables.
1377
1378 template<int size, bool big_endian>
1379 unsigned int
1380 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1381 {
1382   const unsigned int loccount = this->local_symbol_count_;
1383   for (unsigned int i = 1; i < loccount; ++i)
1384     {
1385       Symbol_value<size>& lv(this->local_values_[i]);
1386       if (lv.needs_output_dynsym_entry())
1387         {
1388           lv.set_output_dynsym_index(index);
1389           ++index;
1390         }
1391     }
1392   return index;
1393 }
1394
1395 // Set the offset where local dynamic symbol information will be stored.
1396 // Returns the count of local symbols contributed to the symbol table by
1397 // this object.
1398
1399 template<int size, bool big_endian>
1400 unsigned int
1401 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1402 {
1403   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1404   this->local_dynsym_offset_ = off;
1405   return this->output_local_dynsym_count_;
1406 }
1407
1408 // Write out the local symbols.
1409
1410 template<int size, bool big_endian>
1411 void
1412 Sized_relobj<size, big_endian>::write_local_symbols(
1413     Output_file* of,
1414     const Stringpool* sympool,
1415     const Stringpool* dynpool,
1416     Output_symtab_xindex* symtab_xindex,
1417     Output_symtab_xindex* dynsym_xindex)
1418 {
1419   if (parameters->options().strip_all()
1420       && this->output_local_dynsym_count_ == 0)
1421     return;
1422
1423   gold_assert(this->symtab_shndx_ != -1U);
1424   if (this->symtab_shndx_ == 0)
1425     {
1426       // This object has no symbols.  Weird but legal.
1427       return;
1428     }
1429
1430   // Read the symbol table section header.
1431   const unsigned int symtab_shndx = this->symtab_shndx_;
1432   typename This::Shdr symtabshdr(this,
1433                                  this->elf_file_.section_header(symtab_shndx));
1434   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1435   const unsigned int loccount = this->local_symbol_count_;
1436   gold_assert(loccount == symtabshdr.get_sh_info());
1437
1438   // Read the local symbols.
1439   const int sym_size = This::sym_size;
1440   off_t locsize = loccount * sym_size;
1441   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1442                                               locsize, true, false);
1443
1444   // Read the symbol names.
1445   const unsigned int strtab_shndx =
1446     this->adjust_shndx(symtabshdr.get_sh_link());
1447   section_size_type strtab_size;
1448   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1449                                                         &strtab_size,
1450                                                         false);
1451   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1452
1453   // Get views into the output file for the portions of the symbol table
1454   // and the dynamic symbol table that we will be writing.
1455   off_t output_size = this->output_local_symbol_count_ * sym_size;
1456   unsigned char* oview = NULL;
1457   if (output_size > 0)
1458     oview = of->get_output_view(this->local_symbol_offset_, output_size);
1459
1460   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1461   unsigned char* dyn_oview = NULL;
1462   if (dyn_output_size > 0)
1463     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1464                                     dyn_output_size);
1465
1466   const Output_sections out_sections(this->output_sections());
1467
1468   gold_assert(this->local_values_.size() == loccount);
1469
1470   unsigned char* ov = oview;
1471   unsigned char* dyn_ov = dyn_oview;
1472   psyms += sym_size;
1473   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1474     {
1475       elfcpp::Sym<size, big_endian> isym(psyms);
1476
1477       Symbol_value<size>& lv(this->local_values_[i]);
1478
1479       bool is_ordinary;
1480       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1481                                                      &is_ordinary);
1482       if (is_ordinary)
1483         {
1484           gold_assert(st_shndx < out_sections.size());
1485           if (out_sections[st_shndx] == NULL)
1486             continue;
1487           st_shndx = out_sections[st_shndx]->out_shndx();
1488           if (st_shndx >= elfcpp::SHN_LORESERVE)
1489             {
1490               if (lv.needs_output_symtab_entry())
1491                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1492               if (lv.needs_output_dynsym_entry())
1493                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1494               st_shndx = elfcpp::SHN_XINDEX;
1495             }
1496         }
1497
1498       // Write the symbol to the output symbol table.
1499       if (!parameters->options().strip_all()
1500           && lv.needs_output_symtab_entry())
1501         {
1502           elfcpp::Sym_write<size, big_endian> osym(ov);
1503
1504           gold_assert(isym.get_st_name() < strtab_size);
1505           const char* name = pnames + isym.get_st_name();
1506           osym.put_st_name(sympool->get_offset(name));
1507           osym.put_st_value(this->local_values_[i].value(this, 0));
1508           osym.put_st_size(isym.get_st_size());
1509           osym.put_st_info(isym.get_st_info());
1510           osym.put_st_other(isym.get_st_other());
1511           osym.put_st_shndx(st_shndx);
1512
1513           ov += sym_size;
1514         }
1515
1516       // Write the symbol to the output dynamic symbol table.
1517       if (lv.needs_output_dynsym_entry())
1518         {
1519           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1520           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1521
1522           gold_assert(isym.get_st_name() < strtab_size);
1523           const char* name = pnames + isym.get_st_name();
1524           osym.put_st_name(dynpool->get_offset(name));
1525           osym.put_st_value(this->local_values_[i].value(this, 0));
1526           osym.put_st_size(isym.get_st_size());
1527           osym.put_st_info(isym.get_st_info());
1528           osym.put_st_other(isym.get_st_other());
1529           osym.put_st_shndx(st_shndx);
1530
1531           dyn_ov += sym_size;
1532         }
1533     }
1534
1535
1536   if (output_size > 0)
1537     {
1538       gold_assert(ov - oview == output_size);
1539       of->write_output_view(this->local_symbol_offset_, output_size, oview);
1540     }
1541
1542   if (dyn_output_size > 0)
1543     {
1544       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1545       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1546                             dyn_oview);
1547     }
1548 }
1549
1550 // Set *INFO to symbolic information about the offset OFFSET in the
1551 // section SHNDX.  Return true if we found something, false if we
1552 // found nothing.
1553
1554 template<int size, bool big_endian>
1555 bool
1556 Sized_relobj<size, big_endian>::get_symbol_location_info(
1557     unsigned int shndx,
1558     off_t offset,
1559     Symbol_location_info* info)
1560 {
1561   if (this->symtab_shndx_ == 0)
1562     return false;
1563
1564   section_size_type symbols_size;
1565   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1566                                                         &symbols_size,
1567                                                         false);
1568
1569   unsigned int symbol_names_shndx =
1570     this->adjust_shndx(this->section_link(this->symtab_shndx_));
1571   section_size_type names_size;
1572   const unsigned char* symbol_names_u =
1573     this->section_contents(symbol_names_shndx, &names_size, false);
1574   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1575
1576   const int sym_size = This::sym_size;
1577   const size_t count = symbols_size / sym_size;
1578
1579   const unsigned char* p = symbols;
1580   for (size_t i = 0; i < count; ++i, p += sym_size)
1581     {
1582       elfcpp::Sym<size, big_endian> sym(p);
1583
1584       if (sym.get_st_type() == elfcpp::STT_FILE)
1585         {
1586           if (sym.get_st_name() >= names_size)
1587             info->source_file = "(invalid)";
1588           else
1589             info->source_file = symbol_names + sym.get_st_name();
1590           continue;
1591         }
1592
1593       bool is_ordinary;
1594       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1595                                                      &is_ordinary);
1596       if (is_ordinary
1597           && st_shndx == shndx
1598           && static_cast<off_t>(sym.get_st_value()) <= offset
1599           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1600               > offset))
1601         {
1602           if (sym.get_st_name() > names_size)
1603             info->enclosing_symbol_name = "(invalid)";
1604           else
1605             {
1606               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1607               if (parameters->options().do_demangle())
1608                 {
1609                   char* demangled_name = cplus_demangle(
1610                       info->enclosing_symbol_name.c_str(),
1611                       DMGL_ANSI | DMGL_PARAMS);
1612                   if (demangled_name != NULL)
1613                     {
1614                       info->enclosing_symbol_name.assign(demangled_name);
1615                       free(demangled_name);
1616                     }
1617                 }
1618             }
1619           return true;
1620         }
1621     }
1622
1623   return false;
1624 }
1625
1626 // Look for a kept section corresponding to the given discarded section,
1627 // and return its output address.  This is used only for relocations in
1628 // debugging sections.  If we can't find the kept section, return 0.
1629
1630 template<int size, bool big_endian>
1631 typename Sized_relobj<size, big_endian>::Address
1632 Sized_relobj<size, big_endian>::map_to_kept_section(
1633     unsigned int shndx,
1634     bool* found) const
1635 {
1636   Kept_comdat_section *kept = this->get_kept_comdat_section(shndx);
1637   if (kept != NULL)
1638     {
1639       gold_assert(kept->object_ != NULL);
1640       *found = true;
1641       Output_section* os = kept->object_->output_section(kept->shndx_);
1642       Address offset = kept->object_->get_output_section_offset(kept->shndx_);
1643       gold_assert(os != NULL && offset != invalid_address);
1644       return os->address() + offset;
1645     }
1646   *found = false;
1647   return 0;
1648 }
1649
1650 // Get symbol counts.
1651
1652 template<int size, bool big_endian>
1653 void
1654 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
1655     const Symbol_table*,
1656     size_t* defined,
1657     size_t* used) const
1658 {
1659   *defined = this->defined_count_;
1660   size_t count = 0;
1661   for (Symbols::const_iterator p = this->symbols_.begin();
1662        p != this->symbols_.end();
1663        ++p)
1664     if (*p != NULL
1665         && (*p)->source() == Symbol::FROM_OBJECT
1666         && (*p)->object() == this
1667         && (*p)->is_defined())
1668       ++count;
1669   *used = count;
1670 }
1671
1672 // Input_objects methods.
1673
1674 // Add a regular relocatable object to the list.  Return false if this
1675 // object should be ignored.
1676
1677 bool
1678 Input_objects::add_object(Object* obj)
1679 {
1680   // Set the global target from the first object file we recognize.
1681   Target* target = obj->target();
1682   if (!parameters->target_valid())
1683     set_parameters_target(target);
1684   else if (target != &parameters->target())
1685     {
1686       obj->error(_("incompatible target"));
1687       return false;
1688     }
1689
1690   // Print the filename if the -t/--trace option is selected.
1691   if (parameters->options().trace())
1692     gold_info("%s", obj->name().c_str());
1693
1694   if (!obj->is_dynamic())
1695     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1696   else
1697     {
1698       // See if this is a duplicate SONAME.
1699       Dynobj* dynobj = static_cast<Dynobj*>(obj);
1700       const char* soname = dynobj->soname();
1701
1702       std::pair<Unordered_set<std::string>::iterator, bool> ins =
1703         this->sonames_.insert(soname);
1704       if (!ins.second)
1705         {
1706           // We have already seen a dynamic object with this soname.
1707           return false;
1708         }
1709
1710       this->dynobj_list_.push_back(dynobj);
1711
1712       // If this is -lc, remember the directory in which we found it.
1713       // We use this when issuing warnings about undefined symbols: as
1714       // a heuristic, we don't warn about system libraries found in
1715       // the same directory as -lc.
1716       if (strncmp(soname, "libc.so", 7) == 0)
1717         {
1718           const char* object_name = dynobj->name().c_str();
1719           const char* base = lbasename(object_name);
1720           if (base != object_name)
1721             this->system_library_directory_.assign(object_name,
1722                                                    base - 1 - object_name);
1723         }
1724     }
1725
1726   // Add this object to the cross-referencer if requested.
1727   if (parameters->options().user_set_print_symbol_counts())
1728     {
1729       if (this->cref_ == NULL)
1730         this->cref_ = new Cref();
1731       this->cref_->add_object(obj);
1732     }
1733
1734   return true;
1735 }
1736
1737 // Return whether an object was found in the system library directory.
1738
1739 bool
1740 Input_objects::found_in_system_library_directory(const Object* object) const
1741 {
1742   return (!this->system_library_directory_.empty()
1743           && object->name().compare(0,
1744                                     this->system_library_directory_.size(),
1745                                     this->system_library_directory_) == 0);
1746 }
1747
1748 // For each dynamic object, record whether we've seen all of its
1749 // explicit dependencies.
1750
1751 void
1752 Input_objects::check_dynamic_dependencies() const
1753 {
1754   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1755        p != this->dynobj_list_.end();
1756        ++p)
1757     {
1758       const Dynobj::Needed& needed((*p)->needed());
1759       bool found_all = true;
1760       for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1761            pneeded != needed.end();
1762            ++pneeded)
1763         {
1764           if (this->sonames_.find(*pneeded) == this->sonames_.end())
1765             {
1766               found_all = false;
1767               break;
1768             }
1769         }
1770       (*p)->set_has_unknown_needed_entries(!found_all);
1771     }
1772 }
1773
1774 // Start processing an archive.
1775
1776 void
1777 Input_objects::archive_start(Archive* archive)
1778 {
1779   if (parameters->options().user_set_print_symbol_counts())
1780     {
1781       if (this->cref_ == NULL)
1782         this->cref_ = new Cref();
1783       this->cref_->add_archive_start(archive);
1784     }
1785 }
1786
1787 // Stop processing an archive.
1788
1789 void
1790 Input_objects::archive_stop(Archive* archive)
1791 {
1792   if (parameters->options().user_set_print_symbol_counts())
1793     this->cref_->add_archive_stop(archive);
1794 }
1795
1796 // Print symbol counts
1797
1798 void
1799 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
1800 {
1801   if (parameters->options().user_set_print_symbol_counts()
1802       && this->cref_ != NULL)
1803     this->cref_->print_symbol_counts(symtab);
1804 }
1805
1806 // Relocate_info methods.
1807
1808 // Return a string describing the location of a relocation.  This is
1809 // only used in error messages.
1810
1811 template<int size, bool big_endian>
1812 std::string
1813 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1814 {
1815   // See if we can get line-number information from debugging sections.
1816   std::string filename;
1817   std::string file_and_lineno;   // Better than filename-only, if available.
1818
1819   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1820   // This will be "" if we failed to parse the debug info for any reason.
1821   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1822
1823   std::string ret(this->object->name());
1824   ret += ':';
1825   Symbol_location_info info;
1826   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1827     {
1828       ret += " in function ";
1829       ret += info.enclosing_symbol_name;
1830       ret += ":";
1831       filename = info.source_file;
1832     }
1833
1834   if (!file_and_lineno.empty())
1835     ret += file_and_lineno;
1836   else
1837     {
1838       if (!filename.empty())
1839         ret += filename;
1840       ret += "(";
1841       ret += this->object->section_name(this->data_shndx);
1842       char buf[100];
1843       // Offsets into sections have to be positive.
1844       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1845       ret += buf;
1846       ret += ")";
1847     }
1848   return ret;
1849 }
1850
1851 } // End namespace gold.
1852
1853 namespace
1854 {
1855
1856 using namespace gold;
1857
1858 // Read an ELF file with the header and return the appropriate
1859 // instance of Object.
1860
1861 template<int size, bool big_endian>
1862 Object*
1863 make_elf_sized_object(const std::string& name, Input_file* input_file,
1864                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1865 {
1866   int et = ehdr.get_e_type();
1867   if (et == elfcpp::ET_REL)
1868     {
1869       Sized_relobj<size, big_endian>* obj =
1870         new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1871       obj->setup(ehdr);
1872       return obj;
1873     }
1874   else if (et == elfcpp::ET_DYN)
1875     {
1876       Sized_dynobj<size, big_endian>* obj =
1877         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1878       obj->setup(ehdr);
1879       return obj;
1880     }
1881   else
1882     {
1883       gold_error(_("%s: unsupported ELF file type %d"),
1884                  name.c_str(), et);
1885       return NULL;
1886     }
1887 }
1888
1889 } // End anonymous namespace.
1890
1891 namespace gold
1892 {
1893
1894 // Read an ELF file and return the appropriate instance of Object.
1895
1896 Object*
1897 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1898                 const unsigned char* p, section_offset_type bytes)
1899 {
1900   if (bytes < elfcpp::EI_NIDENT)
1901     {
1902       gold_error(_("%s: ELF file too short"), name.c_str());
1903       return NULL;
1904     }
1905
1906   int v = p[elfcpp::EI_VERSION];
1907   if (v != elfcpp::EV_CURRENT)
1908     {
1909       if (v == elfcpp::EV_NONE)
1910         gold_error(_("%s: invalid ELF version 0"), name.c_str());
1911       else
1912         gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1913       return NULL;
1914     }
1915
1916   int c = p[elfcpp::EI_CLASS];
1917   if (c == elfcpp::ELFCLASSNONE)
1918     {
1919       gold_error(_("%s: invalid ELF class 0"), name.c_str());
1920       return NULL;
1921     }
1922   else if (c != elfcpp::ELFCLASS32
1923            && c != elfcpp::ELFCLASS64)
1924     {
1925       gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1926       return NULL;
1927     }
1928
1929   int d = p[elfcpp::EI_DATA];
1930   if (d == elfcpp::ELFDATANONE)
1931     {
1932       gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1933       return NULL;
1934     }
1935   else if (d != elfcpp::ELFDATA2LSB
1936            && d != elfcpp::ELFDATA2MSB)
1937     {
1938       gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1939       return NULL;
1940     }
1941
1942   bool big_endian = d == elfcpp::ELFDATA2MSB;
1943
1944   if (c == elfcpp::ELFCLASS32)
1945     {
1946       if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1947         {
1948           gold_error(_("%s: ELF file too short"), name.c_str());
1949           return NULL;
1950         }
1951       if (big_endian)
1952         {
1953 #ifdef HAVE_TARGET_32_BIG
1954           elfcpp::Ehdr<32, true> ehdr(p);
1955           return make_elf_sized_object<32, true>(name, input_file,
1956                                                  offset, ehdr);
1957 #else
1958           gold_error(_("%s: not configured to support "
1959                        "32-bit big-endian object"),
1960                      name.c_str());
1961           return NULL;
1962 #endif
1963         }
1964       else
1965         {
1966 #ifdef HAVE_TARGET_32_LITTLE
1967           elfcpp::Ehdr<32, false> ehdr(p);
1968           return make_elf_sized_object<32, false>(name, input_file,
1969                                                   offset, ehdr);
1970 #else
1971           gold_error(_("%s: not configured to support "
1972                        "32-bit little-endian object"),
1973                      name.c_str());
1974           return NULL;
1975 #endif
1976         }
1977     }
1978   else
1979     {
1980       if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
1981         {
1982           gold_error(_("%s: ELF file too short"), name.c_str());
1983           return NULL;
1984         }
1985       if (big_endian)
1986         {
1987 #ifdef HAVE_TARGET_64_BIG
1988           elfcpp::Ehdr<64, true> ehdr(p);
1989           return make_elf_sized_object<64, true>(name, input_file,
1990                                                  offset, ehdr);
1991 #else
1992           gold_error(_("%s: not configured to support "
1993                        "64-bit big-endian object"),
1994                      name.c_str());
1995           return NULL;
1996 #endif
1997         }
1998       else
1999         {
2000 #ifdef HAVE_TARGET_64_LITTLE
2001           elfcpp::Ehdr<64, false> ehdr(p);
2002           return make_elf_sized_object<64, false>(name, input_file,
2003                                                   offset, ehdr);
2004 #else
2005           gold_error(_("%s: not configured to support "
2006                        "64-bit little-endian object"),
2007                      name.c_str());
2008           return NULL;
2009 #endif
2010         }
2011     }
2012 }
2013
2014 // Instantiate the templates we need.
2015
2016 #ifdef HAVE_TARGET_32_LITTLE
2017 template
2018 void
2019 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2020                                      Read_symbols_data*);
2021 #endif
2022
2023 #ifdef HAVE_TARGET_32_BIG
2024 template
2025 void
2026 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2027                                     Read_symbols_data*);
2028 #endif
2029
2030 #ifdef HAVE_TARGET_64_LITTLE
2031 template
2032 void
2033 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2034                                      Read_symbols_data*);
2035 #endif
2036
2037 #ifdef HAVE_TARGET_64_BIG
2038 template
2039 void
2040 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2041                                     Read_symbols_data*);
2042 #endif
2043
2044 #ifdef HAVE_TARGET_32_LITTLE
2045 template
2046 class Sized_relobj<32, false>;
2047 #endif
2048
2049 #ifdef HAVE_TARGET_32_BIG
2050 template
2051 class Sized_relobj<32, true>;
2052 #endif
2053
2054 #ifdef HAVE_TARGET_64_LITTLE
2055 template
2056 class Sized_relobj<64, false>;
2057 #endif
2058
2059 #ifdef HAVE_TARGET_64_BIG
2060 template
2061 class Sized_relobj<64, true>;
2062 #endif
2063
2064 #ifdef HAVE_TARGET_32_LITTLE
2065 template
2066 struct Relocate_info<32, false>;
2067 #endif
2068
2069 #ifdef HAVE_TARGET_32_BIG
2070 template
2071 struct Relocate_info<32, true>;
2072 #endif
2073
2074 #ifdef HAVE_TARGET_64_LITTLE
2075 template
2076 struct Relocate_info<64, false>;
2077 #endif
2078
2079 #ifdef HAVE_TARGET_64_BIG
2080 template
2081 struct Relocate_info<64, true>;
2082 #endif
2083
2084 } // End namespace gold.