* object.cc (Sized_relobj::include_section_group): Check for
[platform/upstream/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
39
40 namespace gold
41 {
42
43 // Class Xindex.
44
45 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
46 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
47 // table we care about.
48
49 template<int size, bool big_endian>
50 void
51 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
52 {
53   if (!this->symtab_xindex_.empty())
54     return;
55
56   gold_assert(symtab_shndx != 0);
57
58   // Look through the sections in reverse order, on the theory that it
59   // is more likely to be near the end than the beginning.
60   unsigned int i = object->shnum();
61   while (i > 0)
62     {
63       --i;
64       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
65           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
66         {
67           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
68           return;
69         }
70     }
71
72   object->error(_("missing SHT_SYMTAB_SHNDX section"));
73 }
74
75 // Read in the symtab_xindex_ array, given the section index of the
76 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
77 // section headers.
78
79 template<int size, bool big_endian>
80 void
81 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
82                            const unsigned char* pshdrs)
83 {
84   section_size_type bytecount;
85   const unsigned char* contents;
86   if (pshdrs == NULL)
87     contents = object->section_contents(xindex_shndx, &bytecount, false);
88   else
89     {
90       const unsigned char* p = (pshdrs
91                                 + (xindex_shndx
92                                    * elfcpp::Elf_sizes<size>::shdr_size));
93       typename elfcpp::Shdr<size, big_endian> shdr(p);
94       bytecount = convert_to_section_size_type(shdr.get_sh_size());
95       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
96     }
97
98   gold_assert(this->symtab_xindex_.empty());
99   this->symtab_xindex_.reserve(bytecount / 4);
100   for (section_size_type i = 0; i < bytecount; i += 4)
101     {
102       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
103       // We preadjust the section indexes we save.
104       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
105     }
106 }
107
108 // Symbol symndx has a section of SHN_XINDEX; return the real section
109 // index.
110
111 unsigned int
112 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
113 {
114   if (symndx >= this->symtab_xindex_.size())
115     {
116       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
117                     symndx);
118       return elfcpp::SHN_UNDEF;
119     }
120   unsigned int shndx = this->symtab_xindex_[symndx];
121   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
122     {
123       object->error(_("extended index for symbol %u out of range: %u"),
124                     symndx, shndx);
125       return elfcpp::SHN_UNDEF;
126     }
127   return shndx;
128 }
129
130 // Class Object.
131
132 // Set the target based on fields in the ELF file header.
133
134 void
135 Object::set_target(int machine, int size, bool big_endian, int osabi,
136                    int abiversion)
137 {
138   Target* target = select_target(machine, size, big_endian, osabi, abiversion);
139   if (target == NULL)
140     gold_fatal(_("%s: unsupported ELF machine number %d"),
141                this->name().c_str(), machine);
142   this->target_ = target;
143 }
144
145 // Report an error for this object file.  This is used by the
146 // elfcpp::Elf_file interface, and also called by the Object code
147 // itself.
148
149 void
150 Object::error(const char* format, ...) const
151 {
152   va_list args;
153   va_start(args, format);
154   char* buf = NULL;
155   if (vasprintf(&buf, format, args) < 0)
156     gold_nomem();
157   va_end(args);
158   gold_error(_("%s: %s"), this->name().c_str(), buf);
159   free(buf);
160 }
161
162 // Return a view of the contents of a section.
163
164 const unsigned char*
165 Object::section_contents(unsigned int shndx, section_size_type* plen,
166                          bool cache)
167 {
168   Location loc(this->do_section_contents(shndx));
169   *plen = convert_to_section_size_type(loc.data_size);
170   return this->get_view(loc.file_offset, *plen, true, cache);
171 }
172
173 // Read the section data into SD.  This is code common to Sized_relobj
174 // and Sized_dynobj, so we put it into Object.
175
176 template<int size, bool big_endian>
177 void
178 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
179                           Read_symbols_data* sd)
180 {
181   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182
183   // Read the section headers.
184   const off_t shoff = elf_file->shoff();
185   const unsigned int shnum = this->shnum();
186   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
187                                                true, true);
188
189   // Read the section names.
190   const unsigned char* pshdrs = sd->section_headers->data();
191   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
192   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
193
194   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
195     this->error(_("section name section has wrong type: %u"),
196                 static_cast<unsigned int>(shdrnames.get_sh_type()));
197
198   sd->section_names_size =
199     convert_to_section_size_type(shdrnames.get_sh_size());
200   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
201                                              sd->section_names_size, false,
202                                              false);
203 }
204
205 // If NAME is the name of a special .gnu.warning section, arrange for
206 // the warning to be issued.  SHNDX is the section index.  Return
207 // whether it is a warning section.
208
209 bool
210 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
211                                    Symbol_table* symtab)
212 {
213   const char warn_prefix[] = ".gnu.warning.";
214   const int warn_prefix_len = sizeof warn_prefix - 1;
215   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
216     {
217       // Read the section contents to get the warning text.  It would
218       // be nicer if we only did this if we have to actually issue a
219       // warning.  Unfortunately, warnings are issued as we relocate
220       // sections.  That means that we can not lock the object then,
221       // as we might try to issue the same warning multiple times
222       // simultaneously.
223       section_size_type len;
224       const unsigned char* contents = this->section_contents(shndx, &len,
225                                                              false);
226       std::string warning(reinterpret_cast<const char*>(contents), len);
227       symtab->add_warning(name + warn_prefix_len, this, warning);
228       return true;
229     }
230   return false;
231 }
232
233 // Class Sized_relobj.
234
235 template<int size, bool big_endian>
236 Sized_relobj<size, big_endian>::Sized_relobj(
237     const std::string& name,
238     Input_file* input_file,
239     off_t offset,
240     const elfcpp::Ehdr<size, big_endian>& ehdr)
241   : Relobj(name, input_file, offset),
242     elf_file_(this, ehdr),
243     symtab_shndx_(-1U),
244     local_symbol_count_(0),
245     output_local_symbol_count_(0),
246     output_local_dynsym_count_(0),
247     symbols_(),
248     local_symbol_offset_(0),
249     local_dynsym_offset_(0),
250     local_values_(),
251     local_got_offsets_(),
252     has_eh_frame_(false)
253 {
254 }
255
256 template<int size, bool big_endian>
257 Sized_relobj<size, big_endian>::~Sized_relobj()
258 {
259 }
260
261 // Set up an object file based on the file header.  This sets up the
262 // target and reads the section information.
263
264 template<int size, bool big_endian>
265 void
266 Sized_relobj<size, big_endian>::setup(
267     const elfcpp::Ehdr<size, big_endian>& ehdr)
268 {
269   this->set_target(ehdr.get_e_machine(), size, big_endian,
270                    ehdr.get_e_ident()[elfcpp::EI_OSABI],
271                    ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
272
273   const unsigned int shnum = this->elf_file_.shnum();
274   this->set_shnum(shnum);
275 }
276
277 // Find the SHT_SYMTAB section, given the section headers.  The ELF
278 // standard says that maybe in the future there can be more than one
279 // SHT_SYMTAB section.  Until somebody figures out how that could
280 // work, we assume there is only one.
281
282 template<int size, bool big_endian>
283 void
284 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
285 {
286   const unsigned int shnum = this->shnum();
287   this->symtab_shndx_ = 0;
288   if (shnum > 0)
289     {
290       // Look through the sections in reverse order, since gas tends
291       // to put the symbol table at the end.
292       const unsigned char* p = pshdrs + shnum * This::shdr_size;
293       unsigned int i = shnum;
294       unsigned int xindex_shndx = 0;
295       unsigned int xindex_link = 0;
296       while (i > 0)
297         {
298           --i;
299           p -= This::shdr_size;
300           typename This::Shdr shdr(p);
301           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
302             {
303               this->symtab_shndx_ = i;
304               if (xindex_shndx > 0 && xindex_link == i)
305                 {
306                   Xindex* xindex =
307                     new Xindex(this->elf_file_.large_shndx_offset());
308                   xindex->read_symtab_xindex<size, big_endian>(this,
309                                                                xindex_shndx,
310                                                                pshdrs);
311                   this->set_xindex(xindex);
312                 }
313               break;
314             }
315
316           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
317           // one.  This will work if it follows the SHT_SYMTAB
318           // section.
319           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
320             {
321               xindex_shndx = i;
322               xindex_link = this->adjust_shndx(shdr.get_sh_link());
323             }
324         }
325     }
326 }
327
328 // Return the Xindex structure to use for object with lots of
329 // sections.
330
331 template<int size, bool big_endian>
332 Xindex*
333 Sized_relobj<size, big_endian>::do_initialize_xindex()
334 {
335   gold_assert(this->symtab_shndx_ != -1U);
336   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
337   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
338   return xindex;
339 }
340
341 // Return whether SHDR has the right type and flags to be a GNU
342 // .eh_frame section.
343
344 template<int size, bool big_endian>
345 bool
346 Sized_relobj<size, big_endian>::check_eh_frame_flags(
347     const elfcpp::Shdr<size, big_endian>* shdr) const
348 {
349   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
350           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
351 }
352
353 // Return whether there is a GNU .eh_frame section, given the section
354 // headers and the section names.
355
356 template<int size, bool big_endian>
357 bool
358 Sized_relobj<size, big_endian>::find_eh_frame(
359     const unsigned char* pshdrs,
360     const char* names,
361     section_size_type names_size) const
362 {
363   const unsigned int shnum = this->shnum();
364   const unsigned char* p = pshdrs + This::shdr_size;
365   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
366     {
367       typename This::Shdr shdr(p);
368       if (this->check_eh_frame_flags(&shdr))
369         {
370           if (shdr.get_sh_name() >= names_size)
371             {
372               this->error(_("bad section name offset for section %u: %lu"),
373                           i, static_cast<unsigned long>(shdr.get_sh_name()));
374               continue;
375             }
376
377           const char* name = names + shdr.get_sh_name();
378           if (strcmp(name, ".eh_frame") == 0)
379             return true;
380         }
381     }
382   return false;
383 }
384
385 // Read the sections and symbols from an object file.
386
387 template<int size, bool big_endian>
388 void
389 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
390 {
391   this->read_section_data(&this->elf_file_, sd);
392
393   const unsigned char* const pshdrs = sd->section_headers->data();
394
395   this->find_symtab(pshdrs);
396
397   const unsigned char* namesu = sd->section_names->data();
398   const char* names = reinterpret_cast<const char*>(namesu);
399   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
400     {
401       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
402         this->has_eh_frame_ = true;
403     }
404
405   sd->symbols = NULL;
406   sd->symbols_size = 0;
407   sd->external_symbols_offset = 0;
408   sd->symbol_names = NULL;
409   sd->symbol_names_size = 0;
410
411   if (this->symtab_shndx_ == 0)
412     {
413       // No symbol table.  Weird but legal.
414       return;
415     }
416
417   // Get the symbol table section header.
418   typename This::Shdr symtabshdr(pshdrs
419                                  + this->symtab_shndx_ * This::shdr_size);
420   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
421
422   // If this object has a .eh_frame section, we need all the symbols.
423   // Otherwise we only need the external symbols.  While it would be
424   // simpler to just always read all the symbols, I've seen object
425   // files with well over 2000 local symbols, which for a 64-bit
426   // object file format is over 5 pages that we don't need to read
427   // now.
428
429   const int sym_size = This::sym_size;
430   const unsigned int loccount = symtabshdr.get_sh_info();
431   this->local_symbol_count_ = loccount;
432   this->local_values_.resize(loccount);
433   section_offset_type locsize = loccount * sym_size;
434   off_t dataoff = symtabshdr.get_sh_offset();
435   section_size_type datasize =
436     convert_to_section_size_type(symtabshdr.get_sh_size());
437   off_t extoff = dataoff + locsize;
438   section_size_type extsize = datasize - locsize;
439
440   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
441   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
442
443   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
444
445   // Read the section header for the symbol names.
446   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
447   if (strtab_shndx >= this->shnum())
448     {
449       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
450       return;
451     }
452   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
453   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
454     {
455       this->error(_("symbol table name section has wrong type: %u"),
456                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
457       return;
458     }
459
460   // Read the symbol names.
461   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
462                                                strtabshdr.get_sh_size(),
463                                                false, true);
464
465   sd->symbols = fvsymtab;
466   sd->symbols_size = readsize;
467   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
468   sd->symbol_names = fvstrtab;
469   sd->symbol_names_size =
470     convert_to_section_size_type(strtabshdr.get_sh_size());
471 }
472
473 // Return the section index of symbol SYM.  Set *VALUE to its value in
474 // the object file.  Set *IS_ORDINARY if this is an ordinary section
475 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
476 // Note that for a symbol which is not defined in this object file,
477 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
478 // the final value of the symbol in the link.
479
480 template<int size, bool big_endian>
481 unsigned int
482 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
483                                                          Address* value,
484                                                          bool* is_ordinary)
485 {
486   section_size_type symbols_size;
487   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
488                                                         &symbols_size,
489                                                         false);
490
491   const size_t count = symbols_size / This::sym_size;
492   gold_assert(sym < count);
493
494   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
495   *value = elfsym.get_st_value();
496
497   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
498 }
499
500 // Return whether to include a section group in the link.  LAYOUT is
501 // used to keep track of which section groups we have already seen.
502 // INDEX is the index of the section group and SHDR is the section
503 // header.  If we do not want to include this group, we set bits in
504 // OMIT for each section which should be discarded.
505
506 template<int size, bool big_endian>
507 bool
508 Sized_relobj<size, big_endian>::include_section_group(
509     Symbol_table* symtab,
510     Layout* layout,
511     unsigned int index,
512     const char* name,
513     const elfcpp::Shdr<size, big_endian>& shdr,
514     std::vector<bool>* omit)
515 {
516   // Read the section contents.
517   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
518                                              shdr.get_sh_size(), true, false);
519   const elfcpp::Elf_Word* pword =
520     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
521
522   // The first word contains flags.  We only care about COMDAT section
523   // groups.  Other section groups are always included in the link
524   // just like ordinary sections.
525   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
526
527   // Look up the group signature, which is the name of a symbol.  This
528   // is a lot of effort to go to to read a string.  Why didn't they
529   // just have the group signature point into the string table, rather
530   // than indirect through a symbol?
531
532   // Get the appropriate symbol table header (this will normally be
533   // the single SHT_SYMTAB section, but in principle it need not be).
534   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
535   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
536
537   // Read the symbol table entry.
538   unsigned int symndx = shdr.get_sh_info();
539   if (symndx >= symshdr.get_sh_size() / This::sym_size)
540     {
541       this->error(_("section group %u info %u out of range"),
542                   index, symndx);
543       return false;
544     }
545   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
546   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
547                                              false);
548   elfcpp::Sym<size, big_endian> sym(psym);
549
550   // Read the symbol table names.
551   section_size_type symnamelen;
552   const unsigned char* psymnamesu;
553   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
554                                       &symnamelen, true);
555   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
556
557   // Get the section group signature.
558   if (sym.get_st_name() >= symnamelen)
559     {
560       this->error(_("symbol %u name offset %u out of range"),
561                   symndx, sym.get_st_name());
562       return false;
563     }
564
565   const char* signature = psymnames + sym.get_st_name();
566
567   // It seems that some versions of gas will create a section group
568   // associated with a section symbol, and then fail to give a name to
569   // the section symbol.  In such a case, use the name of the section.
570   std::string secname;
571   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
572     {
573       bool is_ordinary;
574       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
575                                                       sym.get_st_shndx(),
576                                                       &is_ordinary);
577       if (!is_ordinary || sym_shndx >= this->shnum())
578         {
579           this->error(_("symbol %u invalid section index %u"),
580                       symndx, sym_shndx);
581           return false;
582         }
583       secname = this->section_name(sym_shndx);
584       signature = secname.c_str();
585     }
586
587   // Record this section group, and see whether we've already seen one
588   // with the same signature.
589
590   if ((flags & elfcpp::GRP_COMDAT) == 0
591       || layout->add_comdat(signature, true))
592     {
593       if (parameters->options().relocatable())
594         layout->layout_group(symtab, this, index, name, signature, shdr,
595                              pword);
596       return true;
597     }
598
599   // This is a duplicate.  We want to discard the sections in this
600   // group.
601   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
602   for (size_t i = 1; i < count; ++i)
603     {
604       elfcpp::Elf_Word secnum =
605         elfcpp::Swap<32, big_endian>::readval(pword + i);
606       if (secnum >= this->shnum())
607         {
608           this->error(_("section %u in section group %u out of range"),
609                       secnum, index);
610           continue;
611         }
612
613       // Check for an earlier section number, since we're going to get
614       // it wrong--we may have already decided to include the section.
615       if (secnum < index)
616         this->error(_("invalid section group %u refers to earlier section %u"),
617                     index, secnum);
618
619       (*omit)[secnum] = true;
620     }
621
622   return false;
623 }
624
625 // Whether to include a linkonce section in the link.  NAME is the
626 // name of the section and SHDR is the section header.
627
628 // Linkonce sections are a GNU extension implemented in the original
629 // GNU linker before section groups were defined.  The semantics are
630 // that we only include one linkonce section with a given name.  The
631 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
632 // where T is the type of section and SYMNAME is the name of a symbol.
633 // In an attempt to make linkonce sections interact well with section
634 // groups, we try to identify SYMNAME and use it like a section group
635 // signature.  We want to block section groups with that signature,
636 // but not other linkonce sections with that signature.  We also use
637 // the full name of the linkonce section as a normal section group
638 // signature.
639
640 template<int size, bool big_endian>
641 bool
642 Sized_relobj<size, big_endian>::include_linkonce_section(
643     Layout* layout,
644     const char* name,
645     const elfcpp::Shdr<size, big_endian>&)
646 {
647   // In general the symbol name we want will be the string following
648   // the last '.'.  However, we have to handle the case of
649   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
650   // some versions of gcc.  So we use a heuristic: if the name starts
651   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
652   // we look for the last '.'.  We can't always simply skip
653   // ".gnu.linkonce.X", because we have to deal with cases like
654   // ".gnu.linkonce.d.rel.ro.local".
655   const char* const linkonce_t = ".gnu.linkonce.t.";
656   const char* symname;
657   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
658     symname = name + strlen(linkonce_t);
659   else
660     symname = strrchr(name, '.') + 1;
661   bool include1 = layout->add_comdat(symname, false);
662   bool include2 = layout->add_comdat(name, true);
663   return include1 && include2;
664 }
665
666 // Lay out the input sections.  We walk through the sections and check
667 // whether they should be included in the link.  If they should, we
668 // pass them to the Layout object, which will return an output section
669 // and an offset.
670
671 template<int size, bool big_endian>
672 void
673 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
674                                           Layout* layout,
675                                           Read_symbols_data* sd)
676 {
677   const unsigned int shnum = this->shnum();
678   if (shnum == 0)
679     return;
680
681   // Get the section headers.
682   const unsigned char* pshdrs = sd->section_headers->data();
683
684   // Get the section names.
685   const unsigned char* pnamesu = sd->section_names->data();
686   const char* pnames = reinterpret_cast<const char*>(pnamesu);
687
688   // For each section, record the index of the reloc section if any.
689   // Use 0 to mean that there is no reloc section, -1U to mean that
690   // there is more than one.
691   std::vector<unsigned int> reloc_shndx(shnum, 0);
692   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
693   // Skip the first, dummy, section.
694   pshdrs += This::shdr_size;
695   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
696     {
697       typename This::Shdr shdr(pshdrs);
698
699       unsigned int sh_type = shdr.get_sh_type();
700       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
701         {
702           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
703           if (target_shndx == 0 || target_shndx >= shnum)
704             {
705               this->error(_("relocation section %u has bad info %u"),
706                           i, target_shndx);
707               continue;
708             }
709
710           if (reloc_shndx[target_shndx] != 0)
711             reloc_shndx[target_shndx] = -1U;
712           else
713             {
714               reloc_shndx[target_shndx] = i;
715               reloc_type[target_shndx] = sh_type;
716             }
717         }
718     }
719
720   std::vector<Map_to_output>& map_sections(this->map_to_output());
721   map_sections.resize(shnum);
722
723   // If we are only linking for symbols, then there is nothing else to
724   // do here.
725   if (this->input_file()->just_symbols())
726     {
727       delete sd->section_headers;
728       sd->section_headers = NULL;
729       delete sd->section_names;
730       sd->section_names = NULL;
731       return;
732     }
733
734   // Whether we've seen a .note.GNU-stack section.
735   bool seen_gnu_stack = false;
736   // The flags of a .note.GNU-stack section.
737   uint64_t gnu_stack_flags = 0;
738
739   // Keep track of which sections to omit.
740   std::vector<bool> omit(shnum, false);
741
742   // Keep track of reloc sections when emitting relocations.
743   const bool relocatable = parameters->options().relocatable();
744   const bool emit_relocs = (relocatable
745                             || parameters->options().emit_relocs());
746   std::vector<unsigned int> reloc_sections;
747
748   // Keep track of .eh_frame sections.
749   std::vector<unsigned int> eh_frame_sections;
750
751   // Skip the first, dummy, section.
752   pshdrs = sd->section_headers->data() + This::shdr_size;
753   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
754     {
755       typename This::Shdr shdr(pshdrs);
756
757       if (shdr.get_sh_name() >= sd->section_names_size)
758         {
759           this->error(_("bad section name offset for section %u: %lu"),
760                       i, static_cast<unsigned long>(shdr.get_sh_name()));
761           return;
762         }
763
764       const char* name = pnames + shdr.get_sh_name();
765
766       if (this->handle_gnu_warning_section(name, i, symtab))
767         {
768           if (!relocatable)
769             omit[i] = true;
770         }
771
772       // The .note.GNU-stack section is special.  It gives the
773       // protection flags that this object file requires for the stack
774       // in memory.
775       if (strcmp(name, ".note.GNU-stack") == 0)
776         {
777           seen_gnu_stack = true;
778           gnu_stack_flags |= shdr.get_sh_flags();
779           omit[i] = true;
780         }
781
782       bool discard = omit[i];
783       if (!discard)
784         {
785           if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
786             {
787               if (!this->include_section_group(symtab, layout, i, name, shdr,
788                                                &omit))
789                 discard = true;
790             }
791           else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
792                    && Layout::is_linkonce(name))
793             {
794               if (!this->include_linkonce_section(layout, name, shdr))
795                 discard = true;
796             }
797         }
798
799       if (discard)
800         {
801           // Do not include this section in the link.
802           map_sections[i].output_section = NULL;
803           continue;
804         }
805
806       // When doing a relocatable link we are going to copy input
807       // reloc sections into the output.  We only want to copy the
808       // ones associated with sections which are not being discarded.
809       // However, we don't know that yet for all sections.  So save
810       // reloc sections and process them later.
811       if (emit_relocs
812           && (shdr.get_sh_type() == elfcpp::SHT_REL
813               || shdr.get_sh_type() == elfcpp::SHT_RELA))
814         {
815           reloc_sections.push_back(i);
816           continue;
817         }
818
819       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
820         continue;
821
822       // The .eh_frame section is special.  It holds exception frame
823       // information that we need to read in order to generate the
824       // exception frame header.  We process these after all the other
825       // sections so that the exception frame reader can reliably
826       // determine which sections are being discarded, and discard the
827       // corresponding information.
828       if (!relocatable
829           && strcmp(name, ".eh_frame") == 0
830           && this->check_eh_frame_flags(&shdr))
831         {
832           eh_frame_sections.push_back(i);
833           continue;
834         }
835
836       off_t offset;
837       Output_section* os = layout->layout(this, i, name, shdr,
838                                           reloc_shndx[i], reloc_type[i],
839                                           &offset);
840
841       map_sections[i].output_section = os;
842       map_sections[i].offset = offset;
843
844       // If this section requires special handling, and if there are
845       // relocs that apply to it, then we must do the special handling
846       // before we apply the relocs.
847       if (offset == -1 && reloc_shndx[i] != 0)
848         this->set_relocs_must_follow_section_writes();
849     }
850
851   layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
852
853   // When doing a relocatable link handle the reloc sections at the
854   // end.
855   if (emit_relocs)
856     this->size_relocatable_relocs();
857   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
858        p != reloc_sections.end();
859        ++p)
860     {
861       unsigned int i = *p;
862       const unsigned char* pshdr;
863       pshdr = sd->section_headers->data() + i * This::shdr_size;
864       typename This::Shdr shdr(pshdr);
865
866       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
867       if (data_shndx >= shnum)
868         {
869           // We already warned about this above.
870           continue;
871         }
872
873       Output_section* data_section = map_sections[data_shndx].output_section;
874       if (data_section == NULL)
875         {
876           map_sections[i].output_section = NULL;
877           continue;
878         }
879
880       Relocatable_relocs* rr = new Relocatable_relocs();
881       this->set_relocatable_relocs(i, rr);
882
883       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
884                                                 rr);
885       map_sections[i].output_section = os;
886       map_sections[i].offset = -1;
887     }
888
889   // Handle the .eh_frame sections at the end.
890   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
891        p != eh_frame_sections.end();
892        ++p)
893     {
894       gold_assert(this->has_eh_frame_);
895       gold_assert(sd->external_symbols_offset != 0);
896
897       unsigned int i = *p;
898       const unsigned char *pshdr;
899       pshdr = sd->section_headers->data() + i * This::shdr_size;
900       typename This::Shdr shdr(pshdr);
901
902       off_t offset;
903       Output_section* os = layout->layout_eh_frame(this,
904                                                    sd->symbols->data(),
905                                                    sd->symbols_size,
906                                                    sd->symbol_names->data(),
907                                                    sd->symbol_names_size,
908                                                    i, shdr,
909                                                    reloc_shndx[i],
910                                                    reloc_type[i],
911                                                    &offset);
912       map_sections[i].output_section = os;
913       map_sections[i].offset = offset;
914
915       // If this section requires special handling, and if there are
916       // relocs that apply to it, then we must do the special handling
917       // before we apply the relocs.
918       if (offset == -1 && reloc_shndx[i] != 0)
919         this->set_relocs_must_follow_section_writes();
920     }
921
922   delete sd->section_headers;
923   sd->section_headers = NULL;
924   delete sd->section_names;
925   sd->section_names = NULL;
926 }
927
928 // Add the symbols to the symbol table.
929
930 template<int size, bool big_endian>
931 void
932 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
933                                                Read_symbols_data* sd)
934 {
935   if (sd->symbols == NULL)
936     {
937       gold_assert(sd->symbol_names == NULL);
938       return;
939     }
940
941   const int sym_size = This::sym_size;
942   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
943                      / sym_size);
944   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
945     {
946       this->error(_("size of symbols is not multiple of symbol size"));
947       return;
948     }
949
950   this->symbols_.resize(symcount);
951
952   const char* sym_names =
953     reinterpret_cast<const char*>(sd->symbol_names->data());
954   symtab->add_from_relobj(this,
955                           sd->symbols->data() + sd->external_symbols_offset,
956                           symcount, this->local_symbol_count_,
957                           sym_names, sd->symbol_names_size,
958                           &this->symbols_);
959
960   delete sd->symbols;
961   sd->symbols = NULL;
962   delete sd->symbol_names;
963   sd->symbol_names = NULL;
964 }
965
966 // First pass over the local symbols.  Here we add their names to
967 // *POOL and *DYNPOOL, and we store the symbol value in
968 // THIS->LOCAL_VALUES_.  This function is always called from a
969 // singleton thread.  This is followed by a call to
970 // finalize_local_symbols.
971
972 template<int size, bool big_endian>
973 void
974 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
975                                                        Stringpool* dynpool)
976 {
977   gold_assert(this->symtab_shndx_ != -1U);
978   if (this->symtab_shndx_ == 0)
979     {
980       // This object has no symbols.  Weird but legal.
981       return;
982     }
983
984   // Read the symbol table section header.
985   const unsigned int symtab_shndx = this->symtab_shndx_;
986   typename This::Shdr symtabshdr(this,
987                                  this->elf_file_.section_header(symtab_shndx));
988   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
989
990   // Read the local symbols.
991   const int sym_size = This::sym_size;
992   const unsigned int loccount = this->local_symbol_count_;
993   gold_assert(loccount == symtabshdr.get_sh_info());
994   off_t locsize = loccount * sym_size;
995   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
996                                               locsize, true, true);
997
998   // Read the symbol names.
999   const unsigned int strtab_shndx =
1000     this->adjust_shndx(symtabshdr.get_sh_link());
1001   section_size_type strtab_size;
1002   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1003                                                         &strtab_size,
1004                                                         true);
1005   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1006
1007   // Loop over the local symbols.
1008
1009   const std::vector<Map_to_output>& mo(this->map_to_output());
1010   unsigned int shnum = this->shnum();
1011   unsigned int count = 0;
1012   unsigned int dyncount = 0;
1013   // Skip the first, dummy, symbol.
1014   psyms += sym_size;
1015   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1016     {
1017       elfcpp::Sym<size, big_endian> sym(psyms);
1018
1019       Symbol_value<size>& lv(this->local_values_[i]);
1020
1021       bool is_ordinary;
1022       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1023                                                   &is_ordinary);
1024       lv.set_input_shndx(shndx, is_ordinary);
1025
1026       if (sym.get_st_type() == elfcpp::STT_SECTION)
1027         lv.set_is_section_symbol();
1028       else if (sym.get_st_type() == elfcpp::STT_TLS)
1029         lv.set_is_tls_symbol();
1030
1031       // Save the input symbol value for use in do_finalize_local_symbols().
1032       lv.set_input_value(sym.get_st_value());
1033
1034       // Decide whether this symbol should go into the output file.
1035
1036       if (shndx < shnum && mo[shndx].output_section == NULL)
1037         {
1038           lv.set_no_output_symtab_entry();
1039           gold_assert(!lv.needs_output_dynsym_entry());
1040           continue;
1041         }
1042
1043       if (sym.get_st_type() == elfcpp::STT_SECTION)
1044         {
1045           lv.set_no_output_symtab_entry();
1046           gold_assert(!lv.needs_output_dynsym_entry());
1047           continue;
1048         }
1049
1050       if (sym.get_st_name() >= strtab_size)
1051         {
1052           this->error(_("local symbol %u section name out of range: %u >= %u"),
1053                       i, sym.get_st_name(),
1054                       static_cast<unsigned int>(strtab_size));
1055           lv.set_no_output_symtab_entry();
1056           continue;
1057         }
1058
1059       // Add the symbol to the symbol table string pool.
1060       const char* name = pnames + sym.get_st_name();
1061       pool->add(name, true, NULL);
1062       ++count;
1063
1064       // If needed, add the symbol to the dynamic symbol table string pool.
1065       if (lv.needs_output_dynsym_entry())
1066         {
1067           dynpool->add(name, true, NULL);
1068           ++dyncount;
1069         }
1070     }
1071
1072   this->output_local_symbol_count_ = count;
1073   this->output_local_dynsym_count_ = dyncount;
1074 }
1075
1076 // Finalize the local symbols.  Here we set the final value in
1077 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1078 // This function is always called from a singleton thread.  The actual
1079 // output of the local symbols will occur in a separate task.
1080
1081 template<int size, bool big_endian>
1082 unsigned int
1083 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1084                                                           off_t off)
1085 {
1086   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1087
1088   const unsigned int loccount = this->local_symbol_count_;
1089   this->local_symbol_offset_ = off;
1090
1091   const std::vector<Map_to_output>& mo(this->map_to_output());
1092   unsigned int shnum = this->shnum();
1093
1094   for (unsigned int i = 1; i < loccount; ++i)
1095     {
1096       Symbol_value<size>& lv(this->local_values_[i]);
1097
1098       bool is_ordinary;
1099       unsigned int shndx = lv.input_shndx(&is_ordinary);
1100
1101       // Set the output symbol value.
1102       
1103       if (!is_ordinary)
1104         {
1105           if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1106             lv.set_output_value(lv.input_value());
1107           else
1108             {
1109               this->error(_("unknown section index %u for local symbol %u"),
1110                           shndx, i);
1111               lv.set_output_value(0);
1112             }
1113         }
1114       else
1115         {
1116           if (shndx >= shnum)
1117             {
1118               this->error(_("local symbol %u section index %u out of range"),
1119                           i, shndx);
1120               shndx = 0;
1121             }
1122
1123           Output_section* os = mo[shndx].output_section;
1124
1125           if (os == NULL)
1126             {
1127               lv.set_output_value(0);
1128               continue;
1129             }
1130           else if (mo[shndx].offset == -1)
1131             {
1132               // This is a SHF_MERGE section or one which otherwise
1133               // requires special handling.  We get the output address
1134               // of the start of the merged section.  If this is not a
1135               // section symbol, we can then determine the final
1136               // value.  If it is a section symbol, we can not, as in
1137               // that case we have to consider the addend to determine
1138               // the value to use in a relocation.
1139               if (!lv.is_section_symbol())
1140                 lv.set_output_value(os->output_address(this, shndx,
1141                                                        lv.input_value()));
1142               else
1143                 {
1144                   section_offset_type start =
1145                     os->starting_output_address(this, shndx);
1146                   Merged_symbol_value<size>* msv =
1147                     new Merged_symbol_value<size>(lv.input_value(), start);
1148                   lv.set_merged_symbol_value(msv);
1149                 }
1150             }
1151           else if (lv.is_tls_symbol())
1152             lv.set_output_value(os->tls_offset()
1153                                 + mo[shndx].offset
1154                                 + lv.input_value());
1155           else
1156             lv.set_output_value(os->address()
1157                                 + mo[shndx].offset
1158                                 + lv.input_value());
1159         }
1160
1161       if (lv.needs_output_symtab_entry())
1162         {
1163           lv.set_output_symtab_index(index);
1164           ++index;
1165         }
1166     }
1167   return index;
1168 }
1169
1170 // Set the output dynamic symbol table indexes for the local variables.
1171
1172 template<int size, bool big_endian>
1173 unsigned int
1174 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1175 {
1176   const unsigned int loccount = this->local_symbol_count_;
1177   for (unsigned int i = 1; i < loccount; ++i)
1178     {
1179       Symbol_value<size>& lv(this->local_values_[i]);
1180       if (lv.needs_output_dynsym_entry())
1181         {
1182           lv.set_output_dynsym_index(index);
1183           ++index;
1184         }
1185     }
1186   return index;
1187 }
1188
1189 // Set the offset where local dynamic symbol information will be stored.
1190 // Returns the count of local symbols contributed to the symbol table by
1191 // this object.
1192
1193 template<int size, bool big_endian>
1194 unsigned int
1195 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1196 {
1197   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1198   this->local_dynsym_offset_ = off;
1199   return this->output_local_dynsym_count_;
1200 }
1201
1202 // Write out the local symbols.
1203
1204 template<int size, bool big_endian>
1205 void
1206 Sized_relobj<size, big_endian>::write_local_symbols(
1207     Output_file* of,
1208     const Stringpool* sympool,
1209     const Stringpool* dynpool,
1210     Output_symtab_xindex* symtab_xindex,
1211     Output_symtab_xindex* dynsym_xindex)
1212 {
1213   if (parameters->options().strip_all()
1214       && this->output_local_dynsym_count_ == 0)
1215     return;
1216
1217   gold_assert(this->symtab_shndx_ != -1U);
1218   if (this->symtab_shndx_ == 0)
1219     {
1220       // This object has no symbols.  Weird but legal.
1221       return;
1222     }
1223
1224   // Read the symbol table section header.
1225   const unsigned int symtab_shndx = this->symtab_shndx_;
1226   typename This::Shdr symtabshdr(this,
1227                                  this->elf_file_.section_header(symtab_shndx));
1228   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1229   const unsigned int loccount = this->local_symbol_count_;
1230   gold_assert(loccount == symtabshdr.get_sh_info());
1231
1232   // Read the local symbols.
1233   const int sym_size = This::sym_size;
1234   off_t locsize = loccount * sym_size;
1235   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1236                                               locsize, true, false);
1237
1238   // Read the symbol names.
1239   const unsigned int strtab_shndx =
1240     this->adjust_shndx(symtabshdr.get_sh_link());
1241   section_size_type strtab_size;
1242   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1243                                                         &strtab_size,
1244                                                         false);
1245   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1246
1247   // Get views into the output file for the portions of the symbol table
1248   // and the dynamic symbol table that we will be writing.
1249   off_t output_size = this->output_local_symbol_count_ * sym_size;
1250   unsigned char* oview = NULL;
1251   if (output_size > 0)
1252     oview = of->get_output_view(this->local_symbol_offset_, output_size);
1253
1254   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1255   unsigned char* dyn_oview = NULL;
1256   if (dyn_output_size > 0)
1257     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1258                                     dyn_output_size);
1259
1260   const std::vector<Map_to_output>& mo(this->map_to_output());
1261
1262   gold_assert(this->local_values_.size() == loccount);
1263
1264   unsigned char* ov = oview;
1265   unsigned char* dyn_ov = dyn_oview;
1266   psyms += sym_size;
1267   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1268     {
1269       elfcpp::Sym<size, big_endian> isym(psyms);
1270
1271       Symbol_value<size>& lv(this->local_values_[i]);
1272
1273       bool is_ordinary;
1274       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1275                                                      &is_ordinary);
1276       if (is_ordinary)
1277         {
1278           gold_assert(st_shndx < mo.size());
1279           if (mo[st_shndx].output_section == NULL)
1280             continue;
1281           st_shndx = mo[st_shndx].output_section->out_shndx();
1282           if (st_shndx >= elfcpp::SHN_LORESERVE)
1283             {
1284               if (lv.needs_output_symtab_entry())
1285                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1286               if (lv.needs_output_dynsym_entry())
1287                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1288               st_shndx = elfcpp::SHN_XINDEX;
1289             }
1290         }
1291
1292       // Write the symbol to the output symbol table.
1293       if (!parameters->options().strip_all()
1294           && lv.needs_output_symtab_entry())
1295         {
1296           elfcpp::Sym_write<size, big_endian> osym(ov);
1297
1298           gold_assert(isym.get_st_name() < strtab_size);
1299           const char* name = pnames + isym.get_st_name();
1300           osym.put_st_name(sympool->get_offset(name));
1301           osym.put_st_value(this->local_values_[i].value(this, 0));
1302           osym.put_st_size(isym.get_st_size());
1303           osym.put_st_info(isym.get_st_info());
1304           osym.put_st_other(isym.get_st_other());
1305           osym.put_st_shndx(st_shndx);
1306
1307           ov += sym_size;
1308         }
1309
1310       // Write the symbol to the output dynamic symbol table.
1311       if (lv.needs_output_dynsym_entry())
1312         {
1313           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1314           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1315
1316           gold_assert(isym.get_st_name() < strtab_size);
1317           const char* name = pnames + isym.get_st_name();
1318           osym.put_st_name(dynpool->get_offset(name));
1319           osym.put_st_value(this->local_values_[i].value(this, 0));
1320           osym.put_st_size(isym.get_st_size());
1321           osym.put_st_info(isym.get_st_info());
1322           osym.put_st_other(isym.get_st_other());
1323           osym.put_st_shndx(st_shndx);
1324
1325           dyn_ov += sym_size;
1326         }
1327     }
1328
1329
1330   if (output_size > 0)
1331     {
1332       gold_assert(ov - oview == output_size);
1333       of->write_output_view(this->local_symbol_offset_, output_size, oview);
1334     }
1335
1336   if (dyn_output_size > 0)
1337     {
1338       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1339       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1340                             dyn_oview);
1341     }
1342 }
1343
1344 // Set *INFO to symbolic information about the offset OFFSET in the
1345 // section SHNDX.  Return true if we found something, false if we
1346 // found nothing.
1347
1348 template<int size, bool big_endian>
1349 bool
1350 Sized_relobj<size, big_endian>::get_symbol_location_info(
1351     unsigned int shndx,
1352     off_t offset,
1353     Symbol_location_info* info)
1354 {
1355   if (this->symtab_shndx_ == 0)
1356     return false;
1357
1358   section_size_type symbols_size;
1359   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1360                                                         &symbols_size,
1361                                                         false);
1362
1363   unsigned int symbol_names_shndx =
1364     this->adjust_shndx(this->section_link(this->symtab_shndx_));
1365   section_size_type names_size;
1366   const unsigned char* symbol_names_u =
1367     this->section_contents(symbol_names_shndx, &names_size, false);
1368   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1369
1370   const int sym_size = This::sym_size;
1371   const size_t count = symbols_size / sym_size;
1372
1373   const unsigned char* p = symbols;
1374   for (size_t i = 0; i < count; ++i, p += sym_size)
1375     {
1376       elfcpp::Sym<size, big_endian> sym(p);
1377
1378       if (sym.get_st_type() == elfcpp::STT_FILE)
1379         {
1380           if (sym.get_st_name() >= names_size)
1381             info->source_file = "(invalid)";
1382           else
1383             info->source_file = symbol_names + sym.get_st_name();
1384           continue;
1385         }
1386
1387       bool is_ordinary;
1388       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1389                                                      &is_ordinary);
1390       if (is_ordinary
1391           && st_shndx == shndx
1392           && static_cast<off_t>(sym.get_st_value()) <= offset
1393           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1394               > offset))
1395         {
1396           if (sym.get_st_name() > names_size)
1397             info->enclosing_symbol_name = "(invalid)";
1398           else
1399             {
1400               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1401               if (parameters->options().do_demangle())
1402                 {
1403                   char* demangled_name = cplus_demangle(
1404                       info->enclosing_symbol_name.c_str(),
1405                       DMGL_ANSI | DMGL_PARAMS);
1406                   if (demangled_name != NULL)
1407                     {
1408                       info->enclosing_symbol_name.assign(demangled_name);
1409                       free(demangled_name);
1410                     }
1411                 }
1412             }
1413           return true;
1414         }
1415     }
1416
1417   return false;
1418 }
1419
1420 // Input_objects methods.
1421
1422 // Add a regular relocatable object to the list.  Return false if this
1423 // object should be ignored.
1424
1425 bool
1426 Input_objects::add_object(Object* obj)
1427 {
1428   // Set the global target from the first object file we recognize.
1429   Target* target = obj->target();
1430   if (!parameters->target_valid())
1431     set_parameters_target(target);
1432   else if (target != &parameters->target())
1433     {
1434       obj->error(_("incompatible target"));
1435       return false;
1436     }
1437
1438   // Print the filename if the -t/--trace option is selected.
1439   if (parameters->options().trace())
1440     gold_info("%s", obj->name().c_str());
1441
1442   if (!obj->is_dynamic())
1443     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1444   else
1445     {
1446       // See if this is a duplicate SONAME.
1447       Dynobj* dynobj = static_cast<Dynobj*>(obj);
1448       const char* soname = dynobj->soname();
1449
1450       std::pair<Unordered_set<std::string>::iterator, bool> ins =
1451         this->sonames_.insert(soname);
1452       if (!ins.second)
1453         {
1454           // We have already seen a dynamic object with this soname.
1455           return false;
1456         }
1457
1458       this->dynobj_list_.push_back(dynobj);
1459
1460       // If this is -lc, remember the directory in which we found it.
1461       // We use this when issuing warnings about undefined symbols: as
1462       // a heuristic, we don't warn about system libraries found in
1463       // the same directory as -lc.
1464       if (strncmp(soname, "libc.so", 7) == 0)
1465         {
1466           const char* object_name = dynobj->name().c_str();
1467           const char* base = lbasename(object_name);
1468           if (base != object_name)
1469             this->system_library_directory_.assign(object_name,
1470                                                    base - 1 - object_name);
1471         }
1472     }
1473
1474   return true;
1475 }
1476
1477 // Return whether an object was found in the system library directory.
1478
1479 bool
1480 Input_objects::found_in_system_library_directory(const Object* object) const
1481 {
1482   return (!this->system_library_directory_.empty()
1483           && object->name().compare(0,
1484                                     this->system_library_directory_.size(),
1485                                     this->system_library_directory_) == 0);
1486 }
1487
1488 // For each dynamic object, record whether we've seen all of its
1489 // explicit dependencies.
1490
1491 void
1492 Input_objects::check_dynamic_dependencies() const
1493 {
1494   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1495        p != this->dynobj_list_.end();
1496        ++p)
1497     {
1498       const Dynobj::Needed& needed((*p)->needed());
1499       bool found_all = true;
1500       for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1501            pneeded != needed.end();
1502            ++pneeded)
1503         {
1504           if (this->sonames_.find(*pneeded) == this->sonames_.end())
1505             {
1506               found_all = false;
1507               break;
1508             }
1509         }
1510       (*p)->set_has_unknown_needed_entries(!found_all);
1511     }
1512 }
1513
1514 // Relocate_info methods.
1515
1516 // Return a string describing the location of a relocation.  This is
1517 // only used in error messages.
1518
1519 template<int size, bool big_endian>
1520 std::string
1521 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1522 {
1523   // See if we can get line-number information from debugging sections.
1524   std::string filename;
1525   std::string file_and_lineno;   // Better than filename-only, if available.
1526
1527   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1528   // This will be "" if we failed to parse the debug info for any reason.
1529   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1530
1531   std::string ret(this->object->name());
1532   ret += ':';
1533   Symbol_location_info info;
1534   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1535     {
1536       ret += " in function ";
1537       ret += info.enclosing_symbol_name;
1538       ret += ":";
1539       filename = info.source_file;
1540     }
1541
1542   if (!file_and_lineno.empty())
1543     ret += file_and_lineno;
1544   else
1545     {
1546       if (!filename.empty())
1547         ret += filename;
1548       ret += "(";
1549       ret += this->object->section_name(this->data_shndx);
1550       char buf[100];
1551       // Offsets into sections have to be positive.
1552       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1553       ret += buf;
1554       ret += ")";
1555     }
1556   return ret;
1557 }
1558
1559 } // End namespace gold.
1560
1561 namespace
1562 {
1563
1564 using namespace gold;
1565
1566 // Read an ELF file with the header and return the appropriate
1567 // instance of Object.
1568
1569 template<int size, bool big_endian>
1570 Object*
1571 make_elf_sized_object(const std::string& name, Input_file* input_file,
1572                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1573 {
1574   int et = ehdr.get_e_type();
1575   if (et == elfcpp::ET_REL)
1576     {
1577       Sized_relobj<size, big_endian>* obj =
1578         new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1579       obj->setup(ehdr);
1580       return obj;
1581     }
1582   else if (et == elfcpp::ET_DYN)
1583     {
1584       Sized_dynobj<size, big_endian>* obj =
1585         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1586       obj->setup(ehdr);
1587       return obj;
1588     }
1589   else
1590     {
1591       gold_error(_("%s: unsupported ELF file type %d"),
1592                  name.c_str(), et);
1593       return NULL;
1594     }
1595 }
1596
1597 } // End anonymous namespace.
1598
1599 namespace gold
1600 {
1601
1602 // Read an ELF file and return the appropriate instance of Object.
1603
1604 Object*
1605 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1606                 const unsigned char* p, section_offset_type bytes)
1607 {
1608   if (bytes < elfcpp::EI_NIDENT)
1609     {
1610       gold_error(_("%s: ELF file too short"), name.c_str());
1611       return NULL;
1612     }
1613
1614   int v = p[elfcpp::EI_VERSION];
1615   if (v != elfcpp::EV_CURRENT)
1616     {
1617       if (v == elfcpp::EV_NONE)
1618         gold_error(_("%s: invalid ELF version 0"), name.c_str());
1619       else
1620         gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1621       return NULL;
1622     }
1623
1624   int c = p[elfcpp::EI_CLASS];
1625   if (c == elfcpp::ELFCLASSNONE)
1626     {
1627       gold_error(_("%s: invalid ELF class 0"), name.c_str());
1628       return NULL;
1629     }
1630   else if (c != elfcpp::ELFCLASS32
1631            && c != elfcpp::ELFCLASS64)
1632     {
1633       gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1634       return NULL;
1635     }
1636
1637   int d = p[elfcpp::EI_DATA];
1638   if (d == elfcpp::ELFDATANONE)
1639     {
1640       gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1641       return NULL;
1642     }
1643   else if (d != elfcpp::ELFDATA2LSB
1644            && d != elfcpp::ELFDATA2MSB)
1645     {
1646       gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1647       return NULL;
1648     }
1649
1650   bool big_endian = d == elfcpp::ELFDATA2MSB;
1651
1652   if (c == elfcpp::ELFCLASS32)
1653     {
1654       if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1655         {
1656           gold_error(_("%s: ELF file too short"), name.c_str());
1657           return NULL;
1658         }
1659       if (big_endian)
1660         {
1661 #ifdef HAVE_TARGET_32_BIG
1662           elfcpp::Ehdr<32, true> ehdr(p);
1663           return make_elf_sized_object<32, true>(name, input_file,
1664                                                  offset, ehdr);
1665 #else
1666           gold_error(_("%s: not configured to support "
1667                        "32-bit big-endian object"),
1668                      name.c_str());
1669           return NULL;
1670 #endif
1671         }
1672       else
1673         {
1674 #ifdef HAVE_TARGET_32_LITTLE
1675           elfcpp::Ehdr<32, false> ehdr(p);
1676           return make_elf_sized_object<32, false>(name, input_file,
1677                                                   offset, ehdr);
1678 #else
1679           gold_error(_("%s: not configured to support "
1680                        "32-bit little-endian object"),
1681                      name.c_str());
1682           return NULL;
1683 #endif
1684         }
1685     }
1686   else
1687     {
1688       if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
1689         {
1690           gold_error(_("%s: ELF file too short"), name.c_str());
1691           return NULL;
1692         }
1693       if (big_endian)
1694         {
1695 #ifdef HAVE_TARGET_64_BIG
1696           elfcpp::Ehdr<64, true> ehdr(p);
1697           return make_elf_sized_object<64, true>(name, input_file,
1698                                                  offset, ehdr);
1699 #else
1700           gold_error(_("%s: not configured to support "
1701                        "64-bit big-endian object"),
1702                      name.c_str());
1703           return NULL;
1704 #endif
1705         }
1706       else
1707         {
1708 #ifdef HAVE_TARGET_64_LITTLE
1709           elfcpp::Ehdr<64, false> ehdr(p);
1710           return make_elf_sized_object<64, false>(name, input_file,
1711                                                   offset, ehdr);
1712 #else
1713           gold_error(_("%s: not configured to support "
1714                        "64-bit little-endian object"),
1715                      name.c_str());
1716           return NULL;
1717 #endif
1718         }
1719     }
1720 }
1721
1722 // Instantiate the templates we need.
1723
1724 #ifdef HAVE_TARGET_32_LITTLE
1725 template
1726 void
1727 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
1728                                      Read_symbols_data*);
1729 #endif
1730
1731 #ifdef HAVE_TARGET_32_BIG
1732 template
1733 void
1734 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
1735                                     Read_symbols_data*);
1736 #endif
1737
1738 #ifdef HAVE_TARGET_64_LITTLE
1739 template
1740 void
1741 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
1742                                      Read_symbols_data*);
1743 #endif
1744
1745 #ifdef HAVE_TARGET_64_BIG
1746 template
1747 void
1748 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
1749                                     Read_symbols_data*);
1750 #endif
1751
1752 #ifdef HAVE_TARGET_32_LITTLE
1753 template
1754 class Sized_relobj<32, false>;
1755 #endif
1756
1757 #ifdef HAVE_TARGET_32_BIG
1758 template
1759 class Sized_relobj<32, true>;
1760 #endif
1761
1762 #ifdef HAVE_TARGET_64_LITTLE
1763 template
1764 class Sized_relobj<64, false>;
1765 #endif
1766
1767 #ifdef HAVE_TARGET_64_BIG
1768 template
1769 class Sized_relobj<64, true>;
1770 #endif
1771
1772 #ifdef HAVE_TARGET_32_LITTLE
1773 template
1774 struct Relocate_info<32, false>;
1775 #endif
1776
1777 #ifdef HAVE_TARGET_32_BIG
1778 template
1779 struct Relocate_info<32, true>;
1780 #endif
1781
1782 #ifdef HAVE_TARGET_64_LITTLE
1783 template
1784 struct Relocate_info<64, false>;
1785 #endif
1786
1787 #ifdef HAVE_TARGET_64_BIG
1788 template
1789 struct Relocate_info<64, true>;
1790 #endif
1791
1792 } // End namespace gold.