* object.cc (Sized_relobj_file::do_layout): Remove unused local
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424   this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header.  This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439   const unsigned int shnum = this->elf_file_.shnum();
440   this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers.  The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section.  Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452   const unsigned int shnum = this->shnum();
453   this->symtab_shndx_ = 0;
454   if (shnum > 0)
455     {
456       // Look through the sections in reverse order, since gas tends
457       // to put the symbol table at the end.
458       const unsigned char* p = pshdrs + shnum * This::shdr_size;
459       unsigned int i = shnum;
460       unsigned int xindex_shndx = 0;
461       unsigned int xindex_link = 0;
462       while (i > 0)
463         {
464           --i;
465           p -= This::shdr_size;
466           typename This::Shdr shdr(p);
467           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468             {
469               this->symtab_shndx_ = i;
470               if (xindex_shndx > 0 && xindex_link == i)
471                 {
472                   Xindex* xindex =
473                     new Xindex(this->elf_file_.large_shndx_offset());
474                   xindex->read_symtab_xindex<size, big_endian>(this,
475                                                                xindex_shndx,
476                                                                pshdrs);
477                   this->set_xindex(xindex);
478                 }
479               break;
480             }
481
482           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483           // one.  This will work if it follows the SHT_SYMTAB
484           // section.
485           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486             {
487               xindex_shndx = i;
488               xindex_link = this->adjust_shndx(shdr.get_sh_link());
489             }
490         }
491     }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501   gold_assert(this->symtab_shndx_ != -1U);
502   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504   return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513     const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516   return ((sh_type == elfcpp::SHT_PROGBITS
517            || sh_type == elfcpp::SHT_X86_64_UNWIND)
518           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527     const unsigned char* pshdrs,
528     const char* names,
529     section_size_type names_size) const
530 {
531   const unsigned int shnum = this->shnum();
532   const unsigned char* p = pshdrs + This::shdr_size;
533   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534     {
535       typename This::Shdr shdr(p);
536       if (this->check_eh_frame_flags(&shdr))
537         {
538           if (shdr.get_sh_name() >= names_size)
539             {
540               this->error(_("bad section name offset for section %u: %lu"),
541                           i, static_cast<unsigned long>(shdr.get_sh_name()));
542               continue;
543             }
544
545           const char* name = names + shdr.get_sh_name();
546           if (strcmp(name, ".eh_frame") == 0)
547             return true;
548         }
549     }
550   return false;
551 }
552
553 // Build a table for any compressed debug sections, mapping each section index
554 // to the uncompressed size.
555
556 template<int size, bool big_endian>
557 Compressed_section_map*
558 build_compressed_section_map(
559     const unsigned char* pshdrs,
560     unsigned int shnum,
561     const char* names,
562     section_size_type names_size,
563     Sized_relobj_file<size, big_endian>* obj)
564 {
565   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
566   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
567   const unsigned char* p = pshdrs + shdr_size;
568   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
569     {
570       typename elfcpp::Shdr<size, big_endian> shdr(p);
571       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
572           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573         {
574           if (shdr.get_sh_name() >= names_size)
575             {
576               obj->error(_("bad section name offset for section %u: %lu"),
577                          i, static_cast<unsigned long>(shdr.get_sh_name()));
578               continue;
579             }
580
581           const char* name = names + shdr.get_sh_name();
582           if (is_compressed_debug_section(name))
583             {
584               section_size_type len;
585               const unsigned char* contents =
586                   obj->section_contents(i, &len, false);
587               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
588               if (uncompressed_size != -1ULL)
589                 (*uncompressed_sizes)[i] =
590                     convert_to_section_size_type(uncompressed_size);
591             }
592         }
593     }
594   return uncompressed_sizes;
595 }
596
597 // Read the sections and symbols from an object file.
598
599 template<int size, bool big_endian>
600 void
601 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
602 {
603   this->read_section_data(&this->elf_file_, sd);
604
605   const unsigned char* const pshdrs = sd->section_headers->data();
606
607   this->find_symtab(pshdrs);
608
609   const unsigned char* namesu = sd->section_names->data();
610   const char* names = reinterpret_cast<const char*>(namesu);
611   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
612     {
613       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
614         this->has_eh_frame_ = true;
615     }
616   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
617     this->compressed_sections_ =
618         build_compressed_section_map(pshdrs, this->shnum(), names,
619                                      sd->section_names_size, this);
620
621   sd->symbols = NULL;
622   sd->symbols_size = 0;
623   sd->external_symbols_offset = 0;
624   sd->symbol_names = NULL;
625   sd->symbol_names_size = 0;
626
627   if (this->symtab_shndx_ == 0)
628     {
629       // No symbol table.  Weird but legal.
630       return;
631     }
632
633   // Get the symbol table section header.
634   typename This::Shdr symtabshdr(pshdrs
635                                  + this->symtab_shndx_ * This::shdr_size);
636   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
637
638   // If this object has a .eh_frame section, we need all the symbols.
639   // Otherwise we only need the external symbols.  While it would be
640   // simpler to just always read all the symbols, I've seen object
641   // files with well over 2000 local symbols, which for a 64-bit
642   // object file format is over 5 pages that we don't need to read
643   // now.
644
645   const int sym_size = This::sym_size;
646   const unsigned int loccount = symtabshdr.get_sh_info();
647   this->local_symbol_count_ = loccount;
648   this->local_values_.resize(loccount);
649   section_offset_type locsize = loccount * sym_size;
650   off_t dataoff = symtabshdr.get_sh_offset();
651   section_size_type datasize =
652     convert_to_section_size_type(symtabshdr.get_sh_size());
653   off_t extoff = dataoff + locsize;
654   section_size_type extsize = datasize - locsize;
655
656   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
657   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
658
659   if (readsize == 0)
660     {
661       // No external symbols.  Also weird but also legal.
662       return;
663     }
664
665   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
666
667   // Read the section header for the symbol names.
668   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
669   if (strtab_shndx >= this->shnum())
670     {
671       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
672       return;
673     }
674   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
675   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
676     {
677       this->error(_("symbol table name section has wrong type: %u"),
678                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
679       return;
680     }
681
682   // Read the symbol names.
683   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
684                                                strtabshdr.get_sh_size(),
685                                                false, true);
686
687   sd->symbols = fvsymtab;
688   sd->symbols_size = readsize;
689   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
690   sd->symbol_names = fvstrtab;
691   sd->symbol_names_size =
692     convert_to_section_size_type(strtabshdr.get_sh_size());
693 }
694
695 // Return the section index of symbol SYM.  Set *VALUE to its value in
696 // the object file.  Set *IS_ORDINARY if this is an ordinary section
697 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
698 // Note that for a symbol which is not defined in this object file,
699 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
700 // the final value of the symbol in the link.
701
702 template<int size, bool big_endian>
703 unsigned int
704 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
705                                                               Address* value,
706                                                               bool* is_ordinary)
707 {
708   section_size_type symbols_size;
709   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
710                                                         &symbols_size,
711                                                         false);
712
713   const size_t count = symbols_size / This::sym_size;
714   gold_assert(sym < count);
715
716   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
717   *value = elfsym.get_st_value();
718
719   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
720 }
721
722 // Return whether to include a section group in the link.  LAYOUT is
723 // used to keep track of which section groups we have already seen.
724 // INDEX is the index of the section group and SHDR is the section
725 // header.  If we do not want to include this group, we set bits in
726 // OMIT for each section which should be discarded.
727
728 template<int size, bool big_endian>
729 bool
730 Sized_relobj_file<size, big_endian>::include_section_group(
731     Symbol_table* symtab,
732     Layout* layout,
733     unsigned int index,
734     const char* name,
735     const unsigned char* shdrs,
736     const char* section_names,
737     section_size_type section_names_size,
738     std::vector<bool>* omit)
739 {
740   // Read the section contents.
741   typename This::Shdr shdr(shdrs + index * This::shdr_size);
742   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
743                                              shdr.get_sh_size(), true, false);
744   const elfcpp::Elf_Word* pword =
745     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
746
747   // The first word contains flags.  We only care about COMDAT section
748   // groups.  Other section groups are always included in the link
749   // just like ordinary sections.
750   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
751
752   // Look up the group signature, which is the name of a symbol.  ELF
753   // uses a symbol name because some group signatures are long, and
754   // the name is generally already in the symbol table, so it makes
755   // sense to put the long string just once in .strtab rather than in
756   // both .strtab and .shstrtab.
757
758   // Get the appropriate symbol table header (this will normally be
759   // the single SHT_SYMTAB section, but in principle it need not be).
760   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
761   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
762
763   // Read the symbol table entry.
764   unsigned int symndx = shdr.get_sh_info();
765   if (symndx >= symshdr.get_sh_size() / This::sym_size)
766     {
767       this->error(_("section group %u info %u out of range"),
768                   index, symndx);
769       return false;
770     }
771   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
772   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
773                                              false);
774   elfcpp::Sym<size, big_endian> sym(psym);
775
776   // Read the symbol table names.
777   section_size_type symnamelen;
778   const unsigned char* psymnamesu;
779   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
780                                       &symnamelen, true);
781   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
782
783   // Get the section group signature.
784   if (sym.get_st_name() >= symnamelen)
785     {
786       this->error(_("symbol %u name offset %u out of range"),
787                   symndx, sym.get_st_name());
788       return false;
789     }
790
791   std::string signature(psymnames + sym.get_st_name());
792
793   // It seems that some versions of gas will create a section group
794   // associated with a section symbol, and then fail to give a name to
795   // the section symbol.  In such a case, use the name of the section.
796   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
797     {
798       bool is_ordinary;
799       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
800                                                       sym.get_st_shndx(),
801                                                       &is_ordinary);
802       if (!is_ordinary || sym_shndx >= this->shnum())
803         {
804           this->error(_("symbol %u invalid section index %u"),
805                       symndx, sym_shndx);
806           return false;
807         }
808       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
809       if (member_shdr.get_sh_name() < section_names_size)
810         signature = section_names + member_shdr.get_sh_name();
811     }
812
813   // Record this section group in the layout, and see whether we've already
814   // seen one with the same signature.
815   bool include_group;
816   bool is_comdat;
817   Kept_section* kept_section = NULL;
818
819   if ((flags & elfcpp::GRP_COMDAT) == 0)
820     {
821       include_group = true;
822       is_comdat = false;
823     }
824   else
825     {
826       include_group = layout->find_or_add_kept_section(signature,
827                                                        this, index, true,
828                                                        true, &kept_section);
829       is_comdat = true;
830     }
831
832   if (is_comdat && include_group)
833     {
834       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
835       if (incremental_inputs != NULL)
836         incremental_inputs->report_comdat_group(this, signature.c_str());
837     }
838
839   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
840
841   std::vector<unsigned int> shndxes;
842   bool relocate_group = include_group && parameters->options().relocatable();
843   if (relocate_group)
844     shndxes.reserve(count - 1);
845
846   for (size_t i = 1; i < count; ++i)
847     {
848       elfcpp::Elf_Word shndx =
849         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
850
851       if (relocate_group)
852         shndxes.push_back(shndx);
853
854       if (shndx >= this->shnum())
855         {
856           this->error(_("section %u in section group %u out of range"),
857                       shndx, index);
858           continue;
859         }
860
861       // Check for an earlier section number, since we're going to get
862       // it wrong--we may have already decided to include the section.
863       if (shndx < index)
864         this->error(_("invalid section group %u refers to earlier section %u"),
865                     index, shndx);
866
867       // Get the name of the member section.
868       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
869       if (member_shdr.get_sh_name() >= section_names_size)
870         {
871           // This is an error, but it will be diagnosed eventually
872           // in do_layout, so we don't need to do anything here but
873           // ignore it.
874           continue;
875         }
876       std::string mname(section_names + member_shdr.get_sh_name());
877
878       if (include_group)
879         {
880           if (is_comdat)
881             kept_section->add_comdat_section(mname, shndx,
882                                              member_shdr.get_sh_size());
883         }
884       else
885         {
886           (*omit)[shndx] = true;
887
888           if (is_comdat)
889             {
890               Relobj* kept_object = kept_section->object();
891               if (kept_section->is_comdat())
892                 {
893                   // Find the corresponding kept section, and store
894                   // that info in the discarded section table.
895                   unsigned int kept_shndx;
896                   uint64_t kept_size;
897                   if (kept_section->find_comdat_section(mname, &kept_shndx,
898                                                         &kept_size))
899                     {
900                       // We don't keep a mapping for this section if
901                       // it has a different size.  The mapping is only
902                       // used for relocation processing, and we don't
903                       // want to treat the sections as similar if the
904                       // sizes are different.  Checking the section
905                       // size is the approach used by the GNU linker.
906                       if (kept_size == member_shdr.get_sh_size())
907                         this->set_kept_comdat_section(shndx, kept_object,
908                                                       kept_shndx);
909                     }
910                 }
911               else
912                 {
913                   // The existing section is a linkonce section.  Add
914                   // a mapping if there is exactly one section in the
915                   // group (which is true when COUNT == 2) and if it
916                   // is the same size.
917                   if (count == 2
918                       && (kept_section->linkonce_size()
919                           == member_shdr.get_sh_size()))
920                     this->set_kept_comdat_section(shndx, kept_object,
921                                                   kept_section->shndx());
922                 }
923             }
924         }
925     }
926
927   if (relocate_group)
928     layout->layout_group(symtab, this, index, name, signature.c_str(),
929                          shdr, flags, &shndxes);
930
931   return include_group;
932 }
933
934 // Whether to include a linkonce section in the link.  NAME is the
935 // name of the section and SHDR is the section header.
936
937 // Linkonce sections are a GNU extension implemented in the original
938 // GNU linker before section groups were defined.  The semantics are
939 // that we only include one linkonce section with a given name.  The
940 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
941 // where T is the type of section and SYMNAME is the name of a symbol.
942 // In an attempt to make linkonce sections interact well with section
943 // groups, we try to identify SYMNAME and use it like a section group
944 // signature.  We want to block section groups with that signature,
945 // but not other linkonce sections with that signature.  We also use
946 // the full name of the linkonce section as a normal section group
947 // signature.
948
949 template<int size, bool big_endian>
950 bool
951 Sized_relobj_file<size, big_endian>::include_linkonce_section(
952     Layout* layout,
953     unsigned int index,
954     const char* name,
955     const elfcpp::Shdr<size, big_endian>& shdr)
956 {
957   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
958   // In general the symbol name we want will be the string following
959   // the last '.'.  However, we have to handle the case of
960   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
961   // some versions of gcc.  So we use a heuristic: if the name starts
962   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
963   // we look for the last '.'.  We can't always simply skip
964   // ".gnu.linkonce.X", because we have to deal with cases like
965   // ".gnu.linkonce.d.rel.ro.local".
966   const char* const linkonce_t = ".gnu.linkonce.t.";
967   const char* symname;
968   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
969     symname = name + strlen(linkonce_t);
970   else
971     symname = strrchr(name, '.') + 1;
972   std::string sig1(symname);
973   std::string sig2(name);
974   Kept_section* kept1;
975   Kept_section* kept2;
976   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
977                                                    false, &kept1);
978   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
979                                                    true, &kept2);
980
981   if (!include2)
982     {
983       // We are not including this section because we already saw the
984       // name of the section as a signature.  This normally implies
985       // that the kept section is another linkonce section.  If it is
986       // the same size, record it as the section which corresponds to
987       // this one.
988       if (kept2->object() != NULL
989           && !kept2->is_comdat()
990           && kept2->linkonce_size() == sh_size)
991         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
992     }
993   else if (!include1)
994     {
995       // The section is being discarded on the basis of its symbol
996       // name.  This means that the corresponding kept section was
997       // part of a comdat group, and it will be difficult to identify
998       // the specific section within that group that corresponds to
999       // this linkonce section.  We'll handle the simple case where
1000       // the group has only one member section.  Otherwise, it's not
1001       // worth the effort.
1002       unsigned int kept_shndx;
1003       uint64_t kept_size;
1004       if (kept1->object() != NULL
1005           && kept1->is_comdat()
1006           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1007           && kept_size == sh_size)
1008         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1009     }
1010   else
1011     {
1012       kept1->set_linkonce_size(sh_size);
1013       kept2->set_linkonce_size(sh_size);
1014     }
1015
1016   return include1 && include2;
1017 }
1018
1019 // Layout an input section.
1020
1021 template<int size, bool big_endian>
1022 inline void
1023 Sized_relobj_file<size, big_endian>::layout_section(
1024     Layout* layout,
1025     unsigned int shndx,
1026     const char* name,
1027     const typename This::Shdr& shdr,
1028     unsigned int reloc_shndx,
1029     unsigned int reloc_type)
1030 {
1031   off_t offset;
1032   Output_section* os = layout->layout(this, shndx, name, shdr,
1033                                           reloc_shndx, reloc_type, &offset);
1034
1035   this->output_sections()[shndx] = os;
1036   if (offset == -1)
1037     this->section_offsets()[shndx] = invalid_address;
1038   else
1039     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1040
1041   // If this section requires special handling, and if there are
1042   // relocs that apply to it, then we must do the special handling
1043   // before we apply the relocs.
1044   if (offset == -1 && reloc_shndx != 0)
1045     this->set_relocs_must_follow_section_writes();
1046 }
1047
1048 // Layout an input .eh_frame section.
1049
1050 template<int size, bool big_endian>
1051 void
1052 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1053     Layout* layout,
1054     const unsigned char* symbols_data,
1055     section_size_type symbols_size,
1056     const unsigned char* symbol_names_data,
1057     section_size_type symbol_names_size,
1058     unsigned int shndx,
1059     const typename This::Shdr& shdr,
1060     unsigned int reloc_shndx,
1061     unsigned int reloc_type)
1062 {
1063   gold_assert(this->has_eh_frame_);
1064
1065   off_t offset;
1066   Output_section* os = layout->layout_eh_frame(this,
1067                                                symbols_data,
1068                                                symbols_size,
1069                                                symbol_names_data,
1070                                                symbol_names_size,
1071                                                shndx,
1072                                                shdr,
1073                                                reloc_shndx,
1074                                                reloc_type,
1075                                                &offset);
1076   this->output_sections()[shndx] = os;
1077   if (os == NULL || offset == -1)
1078     {
1079       // An object can contain at most one section holding exception
1080       // frame information.
1081       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1082       this->discarded_eh_frame_shndx_ = shndx;
1083       this->section_offsets()[shndx] = invalid_address;
1084     }
1085   else
1086     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1087
1088   // If this section requires special handling, and if there are
1089   // relocs that aply to it, then we must do the special handling
1090   // before we apply the relocs.
1091   if (os != NULL && offset == -1 && reloc_shndx != 0)
1092     this->set_relocs_must_follow_section_writes();
1093 }
1094
1095 // Lay out the input sections.  We walk through the sections and check
1096 // whether they should be included in the link.  If they should, we
1097 // pass them to the Layout object, which will return an output section
1098 // and an offset.  
1099 // During garbage collection (--gc-sections) and identical code folding 
1100 // (--icf), this function is called twice.  When it is called the first 
1101 // time, it is for setting up some sections as roots to a work-list for
1102 // --gc-sections and to do comdat processing.  Actual layout happens the 
1103 // second time around after all the relevant sections have been determined.  
1104 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1105 // set to true after the garbage collection worklist or identical code 
1106 // folding is processed and the relevant sections to be kept are 
1107 // determined.  Then, this function is called again to layout the sections.
1108
1109 template<int size, bool big_endian>
1110 void
1111 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1112                                                Layout* layout,
1113                                                Read_symbols_data* sd)
1114 {
1115   const unsigned int shnum = this->shnum();
1116   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1117                           && !symtab->gc()->is_worklist_ready())
1118                          || (parameters->options().icf_enabled()
1119                              && !symtab->icf()->is_icf_ready()));
1120  
1121   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1122                           && symtab->gc()->is_worklist_ready())
1123                          || (parameters->options().icf_enabled()
1124                              && symtab->icf()->is_icf_ready()));
1125
1126   bool is_gc_or_icf = (parameters->options().gc_sections()
1127                        || parameters->options().icf_enabled()); 
1128
1129   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1130   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1131
1132   if (shnum == 0)
1133     return;
1134   Symbols_data* gc_sd = NULL;
1135   if (is_gc_pass_one)
1136     {
1137       // During garbage collection save the symbols data to use it when 
1138       // re-entering this function.   
1139       gc_sd = new Symbols_data;
1140       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1141       this->set_symbols_data(gc_sd);
1142     }
1143   else if (is_gc_pass_two)
1144     {
1145       gc_sd = this->get_symbols_data();
1146     }
1147
1148   const unsigned char* section_headers_data = NULL;
1149   section_size_type section_names_size;
1150   const unsigned char* symbols_data = NULL;
1151   section_size_type symbols_size;
1152   const unsigned char* symbol_names_data = NULL;
1153   section_size_type symbol_names_size;
1154  
1155   if (is_gc_or_icf)
1156     {
1157       section_headers_data = gc_sd->section_headers_data;
1158       section_names_size = gc_sd->section_names_size;
1159       symbols_data = gc_sd->symbols_data;
1160       symbols_size = gc_sd->symbols_size;
1161       symbol_names_data = gc_sd->symbol_names_data;
1162       symbol_names_size = gc_sd->symbol_names_size;
1163     }
1164   else
1165     {
1166       section_headers_data = sd->section_headers->data();
1167       section_names_size = sd->section_names_size;
1168       if (sd->symbols != NULL)
1169         symbols_data = sd->symbols->data();
1170       symbols_size = sd->symbols_size;
1171       if (sd->symbol_names != NULL)
1172         symbol_names_data = sd->symbol_names->data();
1173       symbol_names_size = sd->symbol_names_size;
1174     }
1175
1176   // Get the section headers.
1177   const unsigned char* shdrs = section_headers_data;
1178   const unsigned char* pshdrs;
1179
1180   // Get the section names.
1181   const unsigned char* pnamesu = (is_gc_or_icf) 
1182                                  ? gc_sd->section_names_data
1183                                  : sd->section_names->data();
1184
1185   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1186
1187   // If any input files have been claimed by plugins, we need to defer
1188   // actual layout until the replacement files have arrived.
1189   const bool should_defer_layout =
1190       (parameters->options().has_plugins()
1191        && parameters->options().plugins()->should_defer_layout());
1192   unsigned int num_sections_to_defer = 0;
1193
1194   // For each section, record the index of the reloc section if any.
1195   // Use 0 to mean that there is no reloc section, -1U to mean that
1196   // there is more than one.
1197   std::vector<unsigned int> reloc_shndx(shnum, 0);
1198   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1199   // Skip the first, dummy, section.
1200   pshdrs = shdrs + This::shdr_size;
1201   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1202     {
1203       typename This::Shdr shdr(pshdrs);
1204
1205       // Count the number of sections whose layout will be deferred.
1206       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1207         ++num_sections_to_defer;
1208
1209       unsigned int sh_type = shdr.get_sh_type();
1210       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1211         {
1212           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1213           if (target_shndx == 0 || target_shndx >= shnum)
1214             {
1215               this->error(_("relocation section %u has bad info %u"),
1216                           i, target_shndx);
1217               continue;
1218             }
1219
1220           if (reloc_shndx[target_shndx] != 0)
1221             reloc_shndx[target_shndx] = -1U;
1222           else
1223             {
1224               reloc_shndx[target_shndx] = i;
1225               reloc_type[target_shndx] = sh_type;
1226             }
1227         }
1228     }
1229
1230   Output_sections& out_sections(this->output_sections());
1231   std::vector<Address>& out_section_offsets(this->section_offsets());
1232
1233   if (!is_gc_pass_two)
1234     {
1235       out_sections.resize(shnum);
1236       out_section_offsets.resize(shnum);
1237     }
1238
1239   // If we are only linking for symbols, then there is nothing else to
1240   // do here.
1241   if (this->input_file()->just_symbols())
1242     {
1243       if (!is_gc_pass_two)
1244         {
1245           delete sd->section_headers;
1246           sd->section_headers = NULL;
1247           delete sd->section_names;
1248           sd->section_names = NULL;
1249         }
1250       return;
1251     }
1252
1253   if (num_sections_to_defer > 0)
1254     {
1255       parameters->options().plugins()->add_deferred_layout_object(this);
1256       this->deferred_layout_.reserve(num_sections_to_defer);
1257     }
1258
1259   // Whether we've seen a .note.GNU-stack section.
1260   bool seen_gnu_stack = false;
1261   // The flags of a .note.GNU-stack section.
1262   uint64_t gnu_stack_flags = 0;
1263
1264   // Keep track of which sections to omit.
1265   std::vector<bool> omit(shnum, false);
1266
1267   // Keep track of reloc sections when emitting relocations.
1268   const bool relocatable = parameters->options().relocatable();
1269   const bool emit_relocs = (relocatable
1270                             || parameters->options().emit_relocs());
1271   std::vector<unsigned int> reloc_sections;
1272
1273   // Keep track of .eh_frame sections.
1274   std::vector<unsigned int> eh_frame_sections;
1275
1276   // Skip the first, dummy, section.
1277   pshdrs = shdrs + This::shdr_size;
1278   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1279     {
1280       typename This::Shdr shdr(pshdrs);
1281
1282       if (shdr.get_sh_name() >= section_names_size)
1283         {
1284           this->error(_("bad section name offset for section %u: %lu"),
1285                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1286           return;
1287         }
1288
1289       const char* name = pnames + shdr.get_sh_name();
1290
1291       if (!is_gc_pass_two)
1292         { 
1293           if (this->handle_gnu_warning_section(name, i, symtab))
1294             { 
1295               if (!relocatable && !parameters->options().shared())
1296                 omit[i] = true;
1297             }
1298
1299           // The .note.GNU-stack section is special.  It gives the
1300           // protection flags that this object file requires for the stack
1301           // in memory.
1302           if (strcmp(name, ".note.GNU-stack") == 0)
1303             {
1304               seen_gnu_stack = true;
1305               gnu_stack_flags |= shdr.get_sh_flags();
1306               omit[i] = true;
1307             }
1308
1309           // The .note.GNU-split-stack section is also special.  It
1310           // indicates that the object was compiled with
1311           // -fsplit-stack.
1312           if (this->handle_split_stack_section(name))
1313             {
1314               if (!relocatable && !parameters->options().shared())
1315                 omit[i] = true;
1316             }
1317
1318           // Skip attributes section.
1319           if (parameters->target().is_attributes_section(name))
1320             {
1321               omit[i] = true;
1322             }
1323
1324           bool discard = omit[i];
1325           if (!discard)
1326             {
1327               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1328                 {
1329                   if (!this->include_section_group(symtab, layout, i, name, 
1330                                                    shdrs, pnames, 
1331                                                    section_names_size,
1332                                                    &omit))
1333                     discard = true;
1334                 }
1335               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1336                        && Layout::is_linkonce(name))
1337                 {
1338                   if (!this->include_linkonce_section(layout, i, name, shdr))
1339                     discard = true;
1340                 }
1341             }
1342
1343           // Add the section to the incremental inputs layout.
1344           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1345           if (incremental_inputs != NULL
1346               && !discard
1347               && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1348                   || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1349                   || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1350             {
1351               off_t sh_size = shdr.get_sh_size();
1352               section_size_type uncompressed_size;
1353               if (this->section_is_compressed(i, &uncompressed_size))
1354                 sh_size = uncompressed_size;
1355               incremental_inputs->report_input_section(this, i, name, sh_size);
1356             }
1357
1358           if (discard)
1359             {
1360               // Do not include this section in the link.
1361               out_sections[i] = NULL;
1362               out_section_offsets[i] = invalid_address;
1363               continue;
1364             }
1365         }
1366  
1367       if (is_gc_pass_one && parameters->options().gc_sections())
1368         {
1369           if (this->is_section_name_included(name)
1370               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1371               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1372             {
1373               symtab->gc()->worklist().push(Section_id(this, i)); 
1374             }
1375           // If the section name XXX can be represented as a C identifier
1376           // it cannot be discarded if there are references to
1377           // __start_XXX and __stop_XXX symbols.  These need to be
1378           // specially handled.
1379           if (is_cident(name))
1380             {
1381               symtab->gc()->add_cident_section(name, Section_id(this, i));
1382             }
1383         }
1384
1385       // When doing a relocatable link we are going to copy input
1386       // reloc sections into the output.  We only want to copy the
1387       // ones associated with sections which are not being discarded.
1388       // However, we don't know that yet for all sections.  So save
1389       // reloc sections and process them later. Garbage collection is
1390       // not triggered when relocatable code is desired.
1391       if (emit_relocs
1392           && (shdr.get_sh_type() == elfcpp::SHT_REL
1393               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1394         {
1395           reloc_sections.push_back(i);
1396           continue;
1397         }
1398
1399       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1400         continue;
1401
1402       // The .eh_frame section is special.  It holds exception frame
1403       // information that we need to read in order to generate the
1404       // exception frame header.  We process these after all the other
1405       // sections so that the exception frame reader can reliably
1406       // determine which sections are being discarded, and discard the
1407       // corresponding information.
1408       if (!relocatable
1409           && strcmp(name, ".eh_frame") == 0
1410           && this->check_eh_frame_flags(&shdr))
1411         {
1412           if (is_gc_pass_one)
1413             {
1414               out_sections[i] = reinterpret_cast<Output_section*>(1);
1415               out_section_offsets[i] = invalid_address;
1416             }
1417           else if (should_defer_layout)
1418             this->deferred_layout_.push_back(Deferred_layout(i, name,
1419                                                              pshdrs,
1420                                                              reloc_shndx[i],
1421                                                              reloc_type[i]));
1422           else
1423             eh_frame_sections.push_back(i);
1424           continue;
1425         }
1426
1427       if (is_gc_pass_two && parameters->options().gc_sections())
1428         {
1429           // This is executed during the second pass of garbage 
1430           // collection. do_layout has been called before and some 
1431           // sections have been already discarded. Simply ignore 
1432           // such sections this time around.
1433           if (out_sections[i] == NULL)
1434             {
1435               gold_assert(out_section_offsets[i] == invalid_address);
1436               continue; 
1437             }
1438           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1439               && symtab->gc()->is_section_garbage(this, i))
1440               {
1441                 if (parameters->options().print_gc_sections())
1442                   gold_info(_("%s: removing unused section from '%s'" 
1443                               " in file '%s'"),
1444                             program_name, this->section_name(i).c_str(), 
1445                             this->name().c_str());
1446                 out_sections[i] = NULL;
1447                 out_section_offsets[i] = invalid_address;
1448                 continue;
1449               }
1450         }
1451
1452       if (is_gc_pass_two && parameters->options().icf_enabled())
1453         {
1454           if (out_sections[i] == NULL)
1455             {
1456               gold_assert(out_section_offsets[i] == invalid_address);
1457               continue;
1458             }
1459           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1460               && symtab->icf()->is_section_folded(this, i))
1461               {
1462                 if (parameters->options().print_icf_sections())
1463                   {
1464                     Section_id folded =
1465                                 symtab->icf()->get_folded_section(this, i);
1466                     Relobj* folded_obj =
1467                                 reinterpret_cast<Relobj*>(folded.first);
1468                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1469                                 "into '%s' in file '%s'"),
1470                               program_name, this->section_name(i).c_str(),
1471                               this->name().c_str(),
1472                               folded_obj->section_name(folded.second).c_str(),
1473                               folded_obj->name().c_str());
1474                   }
1475                 out_sections[i] = NULL;
1476                 out_section_offsets[i] = invalid_address;
1477                 continue;
1478               }
1479         }
1480
1481       // Defer layout here if input files are claimed by plugins.  When gc
1482       // is turned on this function is called twice.  For the second call
1483       // should_defer_layout should be false.
1484       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1485         {
1486           gold_assert(!is_gc_pass_two);
1487           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1488                                                            pshdrs,
1489                                                            reloc_shndx[i],
1490                                                            reloc_type[i]));
1491           // Put dummy values here; real values will be supplied by
1492           // do_layout_deferred_sections.
1493           out_sections[i] = reinterpret_cast<Output_section*>(2);
1494           out_section_offsets[i] = invalid_address;
1495           continue;
1496         }
1497
1498       // During gc_pass_two if a section that was previously deferred is
1499       // found, do not layout the section as layout_deferred_sections will
1500       // do it later from gold.cc.
1501       if (is_gc_pass_two 
1502           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1503         continue;
1504
1505       if (is_gc_pass_one)
1506         {
1507           // This is during garbage collection. The out_sections are 
1508           // assigned in the second call to this function. 
1509           out_sections[i] = reinterpret_cast<Output_section*>(1);
1510           out_section_offsets[i] = invalid_address;
1511         }
1512       else
1513         {
1514           // When garbage collection is switched on the actual layout
1515           // only happens in the second call.
1516           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1517                                reloc_type[i]);
1518         }
1519     }
1520
1521   if (!is_gc_pass_two)
1522     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1523
1524   // When doing a relocatable link handle the reloc sections at the
1525   // end.  Garbage collection  and Identical Code Folding is not 
1526   // turned on for relocatable code. 
1527   if (emit_relocs)
1528     this->size_relocatable_relocs();
1529
1530   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1531
1532   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1533        p != reloc_sections.end();
1534        ++p)
1535     {
1536       unsigned int i = *p;
1537       const unsigned char* pshdr;
1538       pshdr = section_headers_data + i * This::shdr_size;
1539       typename This::Shdr shdr(pshdr);
1540
1541       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1542       if (data_shndx >= shnum)
1543         {
1544           // We already warned about this above.
1545           continue;
1546         }
1547
1548       Output_section* data_section = out_sections[data_shndx];
1549       if (data_section == reinterpret_cast<Output_section*>(2))
1550         {
1551           // The layout for the data section was deferred, so we need
1552           // to defer the relocation section, too.
1553           const char* name = pnames + shdr.get_sh_name();
1554           this->deferred_layout_relocs_.push_back(
1555               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1556           out_sections[i] = reinterpret_cast<Output_section*>(2);
1557           out_section_offsets[i] = invalid_address;
1558           continue;
1559         }
1560       if (data_section == NULL)
1561         {
1562           out_sections[i] = NULL;
1563           out_section_offsets[i] = invalid_address;
1564           continue;
1565         }
1566
1567       Relocatable_relocs* rr = new Relocatable_relocs();
1568       this->set_relocatable_relocs(i, rr);
1569
1570       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1571                                                 rr);
1572       out_sections[i] = os;
1573       out_section_offsets[i] = invalid_address;
1574     }
1575
1576   // Handle the .eh_frame sections at the end.
1577   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1578   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1579        p != eh_frame_sections.end();
1580        ++p)
1581     {
1582       unsigned int i = *p;
1583       const unsigned char* pshdr;
1584       pshdr = section_headers_data + i * This::shdr_size;
1585       typename This::Shdr shdr(pshdr);
1586
1587       this->layout_eh_frame_section(layout,
1588                                     symbols_data,
1589                                     symbols_size,
1590                                     symbol_names_data,
1591                                     symbol_names_size,
1592                                     i,
1593                                     shdr,
1594                                     reloc_shndx[i],
1595                                     reloc_type[i]);
1596     }
1597
1598   if (is_gc_pass_two)
1599     {
1600       delete[] gc_sd->section_headers_data;
1601       delete[] gc_sd->section_names_data;
1602       delete[] gc_sd->symbols_data;
1603       delete[] gc_sd->symbol_names_data;
1604       this->set_symbols_data(NULL);
1605     }
1606   else
1607     {
1608       delete sd->section_headers;
1609       sd->section_headers = NULL;
1610       delete sd->section_names;
1611       sd->section_names = NULL;
1612     }
1613 }
1614
1615 // Layout sections whose layout was deferred while waiting for
1616 // input files from a plugin.
1617
1618 template<int size, bool big_endian>
1619 void
1620 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1621 {
1622   typename std::vector<Deferred_layout>::iterator deferred;
1623
1624   for (deferred = this->deferred_layout_.begin();
1625        deferred != this->deferred_layout_.end();
1626        ++deferred)
1627     {
1628       typename This::Shdr shdr(deferred->shdr_data_);
1629       // If the section is not included, it is because the garbage collector
1630       // decided it is not needed.  Avoid reverting that decision.
1631       if (!this->is_section_included(deferred->shndx_))
1632         continue;
1633
1634       if (parameters->options().relocatable()
1635           || deferred->name_ != ".eh_frame"
1636           || !this->check_eh_frame_flags(&shdr))
1637         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1638                              shdr, deferred->reloc_shndx_,
1639                              deferred->reloc_type_);
1640       else
1641         {
1642           // Reading the symbols again here may be slow.
1643           Read_symbols_data sd;
1644           this->read_symbols(&sd);
1645           this->layout_eh_frame_section(layout,
1646                                         sd.symbols->data(),
1647                                         sd.symbols_size,
1648                                         sd.symbol_names->data(),
1649                                         sd.symbol_names_size,
1650                                         deferred->shndx_,
1651                                         shdr,
1652                                         deferred->reloc_shndx_,
1653                                         deferred->reloc_type_);
1654         }
1655     }
1656
1657   this->deferred_layout_.clear();
1658
1659   // Now handle the deferred relocation sections.
1660
1661   Output_sections& out_sections(this->output_sections());
1662   std::vector<Address>& out_section_offsets(this->section_offsets());
1663
1664   for (deferred = this->deferred_layout_relocs_.begin();
1665        deferred != this->deferred_layout_relocs_.end();
1666        ++deferred)
1667     {
1668       unsigned int shndx = deferred->shndx_;
1669       typename This::Shdr shdr(deferred->shdr_data_);
1670       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1671
1672       Output_section* data_section = out_sections[data_shndx];
1673       if (data_section == NULL)
1674         {
1675           out_sections[shndx] = NULL;
1676           out_section_offsets[shndx] = invalid_address;
1677           continue;
1678         }
1679
1680       Relocatable_relocs* rr = new Relocatable_relocs();
1681       this->set_relocatable_relocs(shndx, rr);
1682
1683       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1684                                                 data_section, rr);
1685       out_sections[shndx] = os;
1686       out_section_offsets[shndx] = invalid_address;
1687     }
1688 }
1689
1690 // Add the symbols to the symbol table.
1691
1692 template<int size, bool big_endian>
1693 void
1694 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1695                                                     Read_symbols_data* sd,
1696                                                     Layout*)
1697 {
1698   if (sd->symbols == NULL)
1699     {
1700       gold_assert(sd->symbol_names == NULL);
1701       return;
1702     }
1703
1704   const int sym_size = This::sym_size;
1705   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1706                      / sym_size);
1707   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1708     {
1709       this->error(_("size of symbols is not multiple of symbol size"));
1710       return;
1711     }
1712
1713   this->symbols_.resize(symcount);
1714
1715   const char* sym_names =
1716     reinterpret_cast<const char*>(sd->symbol_names->data());
1717   symtab->add_from_relobj(this,
1718                           sd->symbols->data() + sd->external_symbols_offset,
1719                           symcount, this->local_symbol_count_,
1720                           sym_names, sd->symbol_names_size,
1721                           &this->symbols_,
1722                           &this->defined_count_);
1723
1724   delete sd->symbols;
1725   sd->symbols = NULL;
1726   delete sd->symbol_names;
1727   sd->symbol_names = NULL;
1728 }
1729
1730 // Find out if this object, that is a member of a lib group, should be included
1731 // in the link. We check every symbol defined by this object. If the symbol
1732 // table has a strong undefined reference to that symbol, we have to include
1733 // the object.
1734
1735 template<int size, bool big_endian>
1736 Archive::Should_include
1737 Sized_relobj_file<size, big_endian>::do_should_include_member(
1738     Symbol_table* symtab,
1739     Layout* layout,
1740     Read_symbols_data* sd,
1741     std::string* why)
1742 {
1743   char* tmpbuf = NULL;
1744   size_t tmpbuflen = 0;
1745   const char* sym_names =
1746       reinterpret_cast<const char*>(sd->symbol_names->data());
1747   const unsigned char* syms =
1748       sd->symbols->data() + sd->external_symbols_offset;
1749   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1750   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1751                          / sym_size);
1752
1753   const unsigned char* p = syms;
1754
1755   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1756     {
1757       elfcpp::Sym<size, big_endian> sym(p);
1758       unsigned int st_shndx = sym.get_st_shndx();
1759       if (st_shndx == elfcpp::SHN_UNDEF)
1760         continue;
1761
1762       unsigned int st_name = sym.get_st_name();
1763       const char* name = sym_names + st_name;
1764       Symbol* symbol;
1765       Archive::Should_include t = Archive::should_include_member(symtab,
1766                                                                  layout,
1767                                                                  name,
1768                                                                  &symbol, why,
1769                                                                  &tmpbuf,
1770                                                                  &tmpbuflen);
1771       if (t == Archive::SHOULD_INCLUDE_YES)
1772         {
1773           if (tmpbuf != NULL)
1774             free(tmpbuf);
1775           return t;
1776         }
1777     }
1778   if (tmpbuf != NULL)
1779     free(tmpbuf);
1780   return Archive::SHOULD_INCLUDE_UNKNOWN;
1781 }
1782
1783 // Iterate over global defined symbols, calling a visitor class V for each.
1784
1785 template<int size, bool big_endian>
1786 void
1787 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1788     Read_symbols_data* sd,
1789     Library_base::Symbol_visitor_base* v)
1790 {
1791   const char* sym_names =
1792       reinterpret_cast<const char*>(sd->symbol_names->data());
1793   const unsigned char* syms =
1794       sd->symbols->data() + sd->external_symbols_offset;
1795   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1796   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1797                      / sym_size);
1798   const unsigned char* p = syms;
1799
1800   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1801     {
1802       elfcpp::Sym<size, big_endian> sym(p);
1803       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1804         v->visit(sym_names + sym.get_st_name());
1805     }
1806 }
1807
1808 // Return whether the local symbol SYMNDX has a PLT offset.
1809
1810 template<int size, bool big_endian>
1811 bool
1812 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1813     unsigned int symndx) const
1814 {
1815   typename Local_plt_offsets::const_iterator p =
1816     this->local_plt_offsets_.find(symndx);
1817   return p != this->local_plt_offsets_.end();
1818 }
1819
1820 // Get the PLT offset of a local symbol.
1821
1822 template<int size, bool big_endian>
1823 unsigned int
1824 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1825 {
1826   typename Local_plt_offsets::const_iterator p =
1827     this->local_plt_offsets_.find(symndx);
1828   gold_assert(p != this->local_plt_offsets_.end());
1829   return p->second;
1830 }
1831
1832 // Set the PLT offset of a local symbol.
1833
1834 template<int size, bool big_endian>
1835 void
1836 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1837     unsigned int symndx, unsigned int plt_offset)
1838 {
1839   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1840     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1841   gold_assert(ins.second);
1842 }
1843
1844 // First pass over the local symbols.  Here we add their names to
1845 // *POOL and *DYNPOOL, and we store the symbol value in
1846 // THIS->LOCAL_VALUES_.  This function is always called from a
1847 // singleton thread.  This is followed by a call to
1848 // finalize_local_symbols.
1849
1850 template<int size, bool big_endian>
1851 void
1852 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1853                                                             Stringpool* dynpool)
1854 {
1855   gold_assert(this->symtab_shndx_ != -1U);
1856   if (this->symtab_shndx_ == 0)
1857     {
1858       // This object has no symbols.  Weird but legal.
1859       return;
1860     }
1861
1862   // Read the symbol table section header.
1863   const unsigned int symtab_shndx = this->symtab_shndx_;
1864   typename This::Shdr symtabshdr(this,
1865                                  this->elf_file_.section_header(symtab_shndx));
1866   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1867
1868   // Read the local symbols.
1869   const int sym_size = This::sym_size;
1870   const unsigned int loccount = this->local_symbol_count_;
1871   gold_assert(loccount == symtabshdr.get_sh_info());
1872   off_t locsize = loccount * sym_size;
1873   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1874                                               locsize, true, true);
1875
1876   // Read the symbol names.
1877   const unsigned int strtab_shndx =
1878     this->adjust_shndx(symtabshdr.get_sh_link());
1879   section_size_type strtab_size;
1880   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1881                                                         &strtab_size,
1882                                                         true);
1883   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1884
1885   // Loop over the local symbols.
1886
1887   const Output_sections& out_sections(this->output_sections());
1888   unsigned int shnum = this->shnum();
1889   unsigned int count = 0;
1890   unsigned int dyncount = 0;
1891   // Skip the first, dummy, symbol.
1892   psyms += sym_size;
1893   bool strip_all = parameters->options().strip_all();
1894   bool discard_all = parameters->options().discard_all();
1895   bool discard_locals = parameters->options().discard_locals();
1896   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1897     {
1898       elfcpp::Sym<size, big_endian> sym(psyms);
1899
1900       Symbol_value<size>& lv(this->local_values_[i]);
1901
1902       bool is_ordinary;
1903       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1904                                                   &is_ordinary);
1905       lv.set_input_shndx(shndx, is_ordinary);
1906
1907       if (sym.get_st_type() == elfcpp::STT_SECTION)
1908         lv.set_is_section_symbol();
1909       else if (sym.get_st_type() == elfcpp::STT_TLS)
1910         lv.set_is_tls_symbol();
1911       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1912         lv.set_is_ifunc_symbol();
1913
1914       // Save the input symbol value for use in do_finalize_local_symbols().
1915       lv.set_input_value(sym.get_st_value());
1916
1917       // Decide whether this symbol should go into the output file.
1918
1919       if ((shndx < shnum && out_sections[shndx] == NULL)
1920           || shndx == this->discarded_eh_frame_shndx_)
1921         {
1922           lv.set_no_output_symtab_entry();
1923           gold_assert(!lv.needs_output_dynsym_entry());
1924           continue;
1925         }
1926
1927       if (sym.get_st_type() == elfcpp::STT_SECTION)
1928         {
1929           lv.set_no_output_symtab_entry();
1930           gold_assert(!lv.needs_output_dynsym_entry());
1931           continue;
1932         }
1933
1934       if (sym.get_st_name() >= strtab_size)
1935         {
1936           this->error(_("local symbol %u section name out of range: %u >= %u"),
1937                       i, sym.get_st_name(),
1938                       static_cast<unsigned int>(strtab_size));
1939           lv.set_no_output_symtab_entry();
1940           continue;
1941         }
1942
1943       const char* name = pnames + sym.get_st_name();
1944
1945       // If needed, add the symbol to the dynamic symbol table string pool.
1946       if (lv.needs_output_dynsym_entry())
1947         {
1948           dynpool->add(name, true, NULL);
1949           ++dyncount;
1950         }
1951
1952       if (strip_all
1953           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1954         {
1955           lv.set_no_output_symtab_entry();
1956           continue;
1957         }
1958
1959       // If --discard-locals option is used, discard all temporary local
1960       // symbols.  These symbols start with system-specific local label
1961       // prefixes, typically .L for ELF system.  We want to be compatible
1962       // with GNU ld so here we essentially use the same check in
1963       // bfd_is_local_label().  The code is different because we already
1964       // know that:
1965       //
1966       //   - the symbol is local and thus cannot have global or weak binding.
1967       //   - the symbol is not a section symbol.
1968       //   - the symbol has a name.
1969       //
1970       // We do not discard a symbol if it needs a dynamic symbol entry.
1971       if (discard_locals
1972           && sym.get_st_type() != elfcpp::STT_FILE
1973           && !lv.needs_output_dynsym_entry()
1974           && lv.may_be_discarded_from_output_symtab()
1975           && parameters->target().is_local_label_name(name))
1976         {
1977           lv.set_no_output_symtab_entry();
1978           continue;
1979         }
1980
1981       // Discard the local symbol if -retain_symbols_file is specified
1982       // and the local symbol is not in that file.
1983       if (!parameters->options().should_retain_symbol(name))
1984         {
1985           lv.set_no_output_symtab_entry();
1986           continue;
1987         }
1988
1989       // Add the symbol to the symbol table string pool.
1990       pool->add(name, true, NULL);
1991       ++count;
1992     }
1993
1994   this->output_local_symbol_count_ = count;
1995   this->output_local_dynsym_count_ = dyncount;
1996 }
1997
1998 // Compute the final value of a local symbol.
1999
2000 template<int size, bool big_endian>
2001 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2002 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2003     unsigned int r_sym,
2004     const Symbol_value<size>* lv_in,
2005     Symbol_value<size>* lv_out,
2006     bool relocatable,
2007     const Output_sections& out_sections,
2008     const std::vector<Address>& out_offsets,
2009     const Symbol_table* symtab)
2010 {
2011   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2012   // we may have a memory leak.
2013   gold_assert(lv_out->has_output_value());
2014
2015   bool is_ordinary;
2016   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2017   
2018   // Set the output symbol value.
2019   
2020   if (!is_ordinary)
2021     {
2022       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2023         lv_out->set_output_value(lv_in->input_value());
2024       else
2025         {
2026           this->error(_("unknown section index %u for local symbol %u"),
2027                       shndx, r_sym);
2028           lv_out->set_output_value(0);
2029           return This::CFLV_ERROR;
2030         }
2031     }
2032   else
2033     {
2034       if (shndx >= this->shnum())
2035         {
2036           this->error(_("local symbol %u section index %u out of range"),
2037                       r_sym, shndx);
2038           lv_out->set_output_value(0);
2039           return This::CFLV_ERROR;
2040         }
2041       
2042       Output_section* os = out_sections[shndx];
2043       Address secoffset = out_offsets[shndx];
2044       if (symtab->is_section_folded(this, shndx))
2045         {
2046           gold_assert(os == NULL && secoffset == invalid_address);
2047           // Get the os of the section it is folded onto.
2048           Section_id folded = symtab->icf()->get_folded_section(this,
2049                                                                 shndx);
2050           gold_assert(folded.first != NULL);
2051           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2052             <Sized_relobj_file<size, big_endian>*>(folded.first);
2053           os = folded_obj->output_section(folded.second);
2054           gold_assert(os != NULL);
2055           secoffset = folded_obj->get_output_section_offset(folded.second);
2056           
2057           // This could be a relaxed input section.
2058           if (secoffset == invalid_address)
2059             {
2060               const Output_relaxed_input_section* relaxed_section =
2061                 os->find_relaxed_input_section(folded_obj, folded.second);
2062               gold_assert(relaxed_section != NULL);
2063               secoffset = relaxed_section->address() - os->address();
2064             }
2065         }
2066       
2067       if (os == NULL)
2068         {
2069           // This local symbol belongs to a section we are discarding.
2070           // In some cases when applying relocations later, we will
2071           // attempt to match it to the corresponding kept section,
2072           // so we leave the input value unchanged here.
2073           return This::CFLV_DISCARDED;
2074         }
2075       else if (secoffset == invalid_address)
2076         {
2077           uint64_t start;
2078           
2079           // This is a SHF_MERGE section or one which otherwise
2080           // requires special handling.
2081           if (shndx == this->discarded_eh_frame_shndx_)
2082             {
2083               // This local symbol belongs to a discarded .eh_frame
2084               // section.  Just treat it like the case in which
2085               // os == NULL above.
2086               gold_assert(this->has_eh_frame_);
2087               return This::CFLV_DISCARDED;
2088             }
2089           else if (!lv_in->is_section_symbol())
2090             {
2091               // This is not a section symbol.  We can determine
2092               // the final value now.
2093               lv_out->set_output_value(
2094                   os->output_address(this, shndx, lv_in->input_value()));
2095             }
2096           else if (!os->find_starting_output_address(this, shndx, &start))
2097             {
2098               // This is a section symbol, but apparently not one in a
2099               // merged section.  First check to see if this is a relaxed
2100               // input section.  If so, use its address.  Otherwise just
2101               // use the start of the output section.  This happens with
2102               // relocatable links when the input object has section
2103               // symbols for arbitrary non-merge sections.
2104               const Output_section_data* posd =
2105                 os->find_relaxed_input_section(this, shndx);
2106               if (posd != NULL)
2107                 {
2108                   Address relocatable_link_adjustment =
2109                     relocatable ? os->address() : 0;
2110                   lv_out->set_output_value(posd->address()
2111                                            - relocatable_link_adjustment);
2112                 }
2113               else
2114                 lv_out->set_output_value(os->address());
2115             }
2116           else
2117             {
2118               // We have to consider the addend to determine the
2119               // value to use in a relocation.  START is the start
2120               // of this input section.  If we are doing a relocatable
2121               // link, use offset from start output section instead of
2122               // address.
2123               Address adjusted_start =
2124                 relocatable ? start - os->address() : start;
2125               Merged_symbol_value<size>* msv =
2126                 new Merged_symbol_value<size>(lv_in->input_value(),
2127                                               adjusted_start);
2128               lv_out->set_merged_symbol_value(msv);
2129             }
2130         }
2131       else if (lv_in->is_tls_symbol())
2132         lv_out->set_output_value(os->tls_offset()
2133                                  + secoffset
2134                                  + lv_in->input_value());
2135       else
2136         lv_out->set_output_value((relocatable ? 0 : os->address())
2137                                  + secoffset
2138                                  + lv_in->input_value());
2139     }
2140   return This::CFLV_OK;
2141 }
2142
2143 // Compute final local symbol value.  R_SYM is the index of a local
2144 // symbol in symbol table.  LV points to a symbol value, which is
2145 // expected to hold the input value and to be over-written by the
2146 // final value.  SYMTAB points to a symbol table.  Some targets may want
2147 // to know would-be-finalized local symbol values in relaxation.
2148 // Hence we provide this method.  Since this method updates *LV, a
2149 // callee should make a copy of the original local symbol value and
2150 // use the copy instead of modifying an object's local symbols before
2151 // everything is finalized.  The caller should also free up any allocated
2152 // memory in the return value in *LV.
2153 template<int size, bool big_endian>
2154 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2155 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2156     unsigned int r_sym,
2157     const Symbol_value<size>* lv_in,
2158     Symbol_value<size>* lv_out,
2159     const Symbol_table* symtab)
2160 {
2161   // This is just a wrapper of compute_final_local_value_internal.
2162   const bool relocatable = parameters->options().relocatable();
2163   const Output_sections& out_sections(this->output_sections());
2164   const std::vector<Address>& out_offsets(this->section_offsets());
2165   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2166                                                   relocatable, out_sections,
2167                                                   out_offsets, symtab);
2168 }
2169
2170 // Finalize the local symbols.  Here we set the final value in
2171 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2172 // This function is always called from a singleton thread.  The actual
2173 // output of the local symbols will occur in a separate task.
2174
2175 template<int size, bool big_endian>
2176 unsigned int
2177 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2178     unsigned int index,
2179     off_t off,
2180     Symbol_table* symtab)
2181 {
2182   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2183
2184   const unsigned int loccount = this->local_symbol_count_;
2185   this->local_symbol_offset_ = off;
2186
2187   const bool relocatable = parameters->options().relocatable();
2188   const Output_sections& out_sections(this->output_sections());
2189   const std::vector<Address>& out_offsets(this->section_offsets());
2190
2191   for (unsigned int i = 1; i < loccount; ++i)
2192     {
2193       Symbol_value<size>* lv = &this->local_values_[i];
2194
2195       Compute_final_local_value_status cflv_status =
2196         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2197                                                  out_sections, out_offsets,
2198                                                  symtab);
2199       switch (cflv_status)
2200         {
2201         case CFLV_OK:
2202           if (!lv->is_output_symtab_index_set())
2203             {
2204               lv->set_output_symtab_index(index);
2205               ++index;
2206             }
2207           break;
2208         case CFLV_DISCARDED:
2209         case CFLV_ERROR:
2210           // Do nothing.
2211           break;
2212         default:
2213           gold_unreachable();
2214         }
2215     }
2216   return index;
2217 }
2218
2219 // Set the output dynamic symbol table indexes for the local variables.
2220
2221 template<int size, bool big_endian>
2222 unsigned int
2223 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2224     unsigned int index)
2225 {
2226   const unsigned int loccount = this->local_symbol_count_;
2227   for (unsigned int i = 1; i < loccount; ++i)
2228     {
2229       Symbol_value<size>& lv(this->local_values_[i]);
2230       if (lv.needs_output_dynsym_entry())
2231         {
2232           lv.set_output_dynsym_index(index);
2233           ++index;
2234         }
2235     }
2236   return index;
2237 }
2238
2239 // Set the offset where local dynamic symbol information will be stored.
2240 // Returns the count of local symbols contributed to the symbol table by
2241 // this object.
2242
2243 template<int size, bool big_endian>
2244 unsigned int
2245 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2246 {
2247   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2248   this->local_dynsym_offset_ = off;
2249   return this->output_local_dynsym_count_;
2250 }
2251
2252 // If Symbols_data is not NULL get the section flags from here otherwise
2253 // get it from the file.
2254
2255 template<int size, bool big_endian>
2256 uint64_t
2257 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2258 {
2259   Symbols_data* sd = this->get_symbols_data();
2260   if (sd != NULL)
2261     {
2262       const unsigned char* pshdrs = sd->section_headers_data
2263                                     + This::shdr_size * shndx;
2264       typename This::Shdr shdr(pshdrs);
2265       return shdr.get_sh_flags(); 
2266     }
2267   // If sd is NULL, read the section header from the file.
2268   return this->elf_file_.section_flags(shndx); 
2269 }
2270
2271 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2272 // in icf.cc
2273
2274 template<int size, bool big_endian>
2275 uint64_t
2276 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2277 {
2278   Symbols_data* sd = this->get_symbols_data();
2279   gold_assert(sd != NULL);
2280
2281   const unsigned char* pshdrs = sd->section_headers_data
2282                                 + This::shdr_size * shndx;
2283   typename This::Shdr shdr(pshdrs);
2284   return shdr.get_sh_entsize(); 
2285 }
2286
2287 // Write out the local symbols.
2288
2289 template<int size, bool big_endian>
2290 void
2291 Sized_relobj_file<size, big_endian>::write_local_symbols(
2292     Output_file* of,
2293     const Stringpool* sympool,
2294     const Stringpool* dynpool,
2295     Output_symtab_xindex* symtab_xindex,
2296     Output_symtab_xindex* dynsym_xindex,
2297     off_t symtab_off)
2298 {
2299   const bool strip_all = parameters->options().strip_all();
2300   if (strip_all)
2301     {
2302       if (this->output_local_dynsym_count_ == 0)
2303         return;
2304       this->output_local_symbol_count_ = 0;
2305     }
2306
2307   gold_assert(this->symtab_shndx_ != -1U);
2308   if (this->symtab_shndx_ == 0)
2309     {
2310       // This object has no symbols.  Weird but legal.
2311       return;
2312     }
2313
2314   // Read the symbol table section header.
2315   const unsigned int symtab_shndx = this->symtab_shndx_;
2316   typename This::Shdr symtabshdr(this,
2317                                  this->elf_file_.section_header(symtab_shndx));
2318   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2319   const unsigned int loccount = this->local_symbol_count_;
2320   gold_assert(loccount == symtabshdr.get_sh_info());
2321
2322   // Read the local symbols.
2323   const int sym_size = This::sym_size;
2324   off_t locsize = loccount * sym_size;
2325   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2326                                               locsize, true, false);
2327
2328   // Read the symbol names.
2329   const unsigned int strtab_shndx =
2330     this->adjust_shndx(symtabshdr.get_sh_link());
2331   section_size_type strtab_size;
2332   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2333                                                         &strtab_size,
2334                                                         false);
2335   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2336
2337   // Get views into the output file for the portions of the symbol table
2338   // and the dynamic symbol table that we will be writing.
2339   off_t output_size = this->output_local_symbol_count_ * sym_size;
2340   unsigned char* oview = NULL;
2341   if (output_size > 0)
2342     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2343                                 output_size);
2344
2345   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2346   unsigned char* dyn_oview = NULL;
2347   if (dyn_output_size > 0)
2348     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2349                                     dyn_output_size);
2350
2351   const Output_sections out_sections(this->output_sections());
2352
2353   gold_assert(this->local_values_.size() == loccount);
2354
2355   unsigned char* ov = oview;
2356   unsigned char* dyn_ov = dyn_oview;
2357   psyms += sym_size;
2358   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2359     {
2360       elfcpp::Sym<size, big_endian> isym(psyms);
2361
2362       Symbol_value<size>& lv(this->local_values_[i]);
2363
2364       bool is_ordinary;
2365       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2366                                                      &is_ordinary);
2367       if (is_ordinary)
2368         {
2369           gold_assert(st_shndx < out_sections.size());
2370           if (out_sections[st_shndx] == NULL)
2371             continue;
2372           st_shndx = out_sections[st_shndx]->out_shndx();
2373           if (st_shndx >= elfcpp::SHN_LORESERVE)
2374             {
2375               if (lv.has_output_symtab_entry())
2376                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2377               if (lv.has_output_dynsym_entry())
2378                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2379               st_shndx = elfcpp::SHN_XINDEX;
2380             }
2381         }
2382
2383       // Write the symbol to the output symbol table.
2384       if (lv.has_output_symtab_entry())
2385         {
2386           elfcpp::Sym_write<size, big_endian> osym(ov);
2387
2388           gold_assert(isym.get_st_name() < strtab_size);
2389           const char* name = pnames + isym.get_st_name();
2390           osym.put_st_name(sympool->get_offset(name));
2391           osym.put_st_value(this->local_values_[i].value(this, 0));
2392           osym.put_st_size(isym.get_st_size());
2393           osym.put_st_info(isym.get_st_info());
2394           osym.put_st_other(isym.get_st_other());
2395           osym.put_st_shndx(st_shndx);
2396
2397           ov += sym_size;
2398         }
2399
2400       // Write the symbol to the output dynamic symbol table.
2401       if (lv.has_output_dynsym_entry())
2402         {
2403           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2404           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2405
2406           gold_assert(isym.get_st_name() < strtab_size);
2407           const char* name = pnames + isym.get_st_name();
2408           osym.put_st_name(dynpool->get_offset(name));
2409           osym.put_st_value(this->local_values_[i].value(this, 0));
2410           osym.put_st_size(isym.get_st_size());
2411           osym.put_st_info(isym.get_st_info());
2412           osym.put_st_other(isym.get_st_other());
2413           osym.put_st_shndx(st_shndx);
2414
2415           dyn_ov += sym_size;
2416         }
2417     }
2418
2419
2420   if (output_size > 0)
2421     {
2422       gold_assert(ov - oview == output_size);
2423       of->write_output_view(symtab_off + this->local_symbol_offset_,
2424                             output_size, oview);
2425     }
2426
2427   if (dyn_output_size > 0)
2428     {
2429       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2430       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2431                             dyn_oview);
2432     }
2433 }
2434
2435 // Set *INFO to symbolic information about the offset OFFSET in the
2436 // section SHNDX.  Return true if we found something, false if we
2437 // found nothing.
2438
2439 template<int size, bool big_endian>
2440 bool
2441 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2442     unsigned int shndx,
2443     off_t offset,
2444     Symbol_location_info* info)
2445 {
2446   if (this->symtab_shndx_ == 0)
2447     return false;
2448
2449   section_size_type symbols_size;
2450   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2451                                                         &symbols_size,
2452                                                         false);
2453
2454   unsigned int symbol_names_shndx =
2455     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2456   section_size_type names_size;
2457   const unsigned char* symbol_names_u =
2458     this->section_contents(symbol_names_shndx, &names_size, false);
2459   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2460
2461   const int sym_size = This::sym_size;
2462   const size_t count = symbols_size / sym_size;
2463
2464   const unsigned char* p = symbols;
2465   for (size_t i = 0; i < count; ++i, p += sym_size)
2466     {
2467       elfcpp::Sym<size, big_endian> sym(p);
2468
2469       if (sym.get_st_type() == elfcpp::STT_FILE)
2470         {
2471           if (sym.get_st_name() >= names_size)
2472             info->source_file = "(invalid)";
2473           else
2474             info->source_file = symbol_names + sym.get_st_name();
2475           continue;
2476         }
2477
2478       bool is_ordinary;
2479       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2480                                                      &is_ordinary);
2481       if (is_ordinary
2482           && st_shndx == shndx
2483           && static_cast<off_t>(sym.get_st_value()) <= offset
2484           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2485               > offset))
2486         {
2487           if (sym.get_st_name() > names_size)
2488             info->enclosing_symbol_name = "(invalid)";
2489           else
2490             {
2491               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2492               if (parameters->options().do_demangle())
2493                 {
2494                   char* demangled_name = cplus_demangle(
2495                       info->enclosing_symbol_name.c_str(),
2496                       DMGL_ANSI | DMGL_PARAMS);
2497                   if (demangled_name != NULL)
2498                     {
2499                       info->enclosing_symbol_name.assign(demangled_name);
2500                       free(demangled_name);
2501                     }
2502                 }
2503             }
2504           return true;
2505         }
2506     }
2507
2508   return false;
2509 }
2510
2511 // Look for a kept section corresponding to the given discarded section,
2512 // and return its output address.  This is used only for relocations in
2513 // debugging sections.  If we can't find the kept section, return 0.
2514
2515 template<int size, bool big_endian>
2516 typename Sized_relobj_file<size, big_endian>::Address
2517 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2518     unsigned int shndx,
2519     bool* found) const
2520 {
2521   Relobj* kept_object;
2522   unsigned int kept_shndx;
2523   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2524     {
2525       Sized_relobj_file<size, big_endian>* kept_relobj =
2526         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2527       Output_section* os = kept_relobj->output_section(kept_shndx);
2528       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2529       if (os != NULL && offset != invalid_address)
2530         {
2531           *found = true;
2532           return os->address() + offset;
2533         }
2534     }
2535   *found = false;
2536   return 0;
2537 }
2538
2539 // Get symbol counts.
2540
2541 template<int size, bool big_endian>
2542 void
2543 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2544     const Symbol_table*,
2545     size_t* defined,
2546     size_t* used) const
2547 {
2548   *defined = this->defined_count_;
2549   size_t count = 0;
2550   for (typename Symbols::const_iterator p = this->symbols_.begin();
2551        p != this->symbols_.end();
2552        ++p)
2553     if (*p != NULL
2554         && (*p)->source() == Symbol::FROM_OBJECT
2555         && (*p)->object() == this
2556         && (*p)->is_defined())
2557       ++count;
2558   *used = count;
2559 }
2560
2561 // Input_objects methods.
2562
2563 // Add a regular relocatable object to the list.  Return false if this
2564 // object should be ignored.
2565
2566 bool
2567 Input_objects::add_object(Object* obj)
2568 {
2569   // Print the filename if the -t/--trace option is selected.
2570   if (parameters->options().trace())
2571     gold_info("%s", obj->name().c_str());
2572
2573   if (!obj->is_dynamic())
2574     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2575   else
2576     {
2577       // See if this is a duplicate SONAME.
2578       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2579       const char* soname = dynobj->soname();
2580
2581       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2582         this->sonames_.insert(soname);
2583       if (!ins.second)
2584         {
2585           // We have already seen a dynamic object with this soname.
2586           return false;
2587         }
2588
2589       this->dynobj_list_.push_back(dynobj);
2590     }
2591
2592   // Add this object to the cross-referencer if requested.
2593   if (parameters->options().user_set_print_symbol_counts()
2594       || parameters->options().cref())
2595     {
2596       if (this->cref_ == NULL)
2597         this->cref_ = new Cref();
2598       this->cref_->add_object(obj);
2599     }
2600
2601   return true;
2602 }
2603
2604 // For each dynamic object, record whether we've seen all of its
2605 // explicit dependencies.
2606
2607 void
2608 Input_objects::check_dynamic_dependencies() const
2609 {
2610   bool issued_copy_dt_needed_error = false;
2611   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2612        p != this->dynobj_list_.end();
2613        ++p)
2614     {
2615       const Dynobj::Needed& needed((*p)->needed());
2616       bool found_all = true;
2617       Dynobj::Needed::const_iterator pneeded;
2618       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2619         {
2620           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2621             {
2622               found_all = false;
2623               break;
2624             }
2625         }
2626       (*p)->set_has_unknown_needed_entries(!found_all);
2627
2628       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2629       // that gold does not support.  However, they cause no trouble
2630       // unless there is a DT_NEEDED entry that we don't know about;
2631       // warn only in that case.
2632       if (!found_all
2633           && !issued_copy_dt_needed_error
2634           && (parameters->options().copy_dt_needed_entries()
2635               || parameters->options().add_needed()))
2636         {
2637           const char* optname;
2638           if (parameters->options().copy_dt_needed_entries())
2639             optname = "--copy-dt-needed-entries";
2640           else
2641             optname = "--add-needed";
2642           gold_error(_("%s is not supported but is required for %s in %s"),
2643                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2644           issued_copy_dt_needed_error = true;
2645         }
2646     }
2647 }
2648
2649 // Start processing an archive.
2650
2651 void
2652 Input_objects::archive_start(Archive* archive)
2653 {
2654   if (parameters->options().user_set_print_symbol_counts()
2655       || parameters->options().cref())
2656     {
2657       if (this->cref_ == NULL)
2658         this->cref_ = new Cref();
2659       this->cref_->add_archive_start(archive);
2660     }
2661 }
2662
2663 // Stop processing an archive.
2664
2665 void
2666 Input_objects::archive_stop(Archive* archive)
2667 {
2668   if (parameters->options().user_set_print_symbol_counts()
2669       || parameters->options().cref())
2670     this->cref_->add_archive_stop(archive);
2671 }
2672
2673 // Print symbol counts
2674
2675 void
2676 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2677 {
2678   if (parameters->options().user_set_print_symbol_counts()
2679       && this->cref_ != NULL)
2680     this->cref_->print_symbol_counts(symtab);
2681 }
2682
2683 // Print a cross reference table.
2684
2685 void
2686 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2687 {
2688   if (parameters->options().cref() && this->cref_ != NULL)
2689     this->cref_->print_cref(symtab, f);
2690 }
2691
2692 // Relocate_info methods.
2693
2694 // Return a string describing the location of a relocation when file
2695 // and lineno information is not available.  This is only used in
2696 // error messages.
2697
2698 template<int size, bool big_endian>
2699 std::string
2700 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2701 {
2702   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2703   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2704   if (!ret.empty())
2705     return ret;
2706
2707   ret = this->object->name();
2708
2709   Symbol_location_info info;
2710   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2711     {
2712       if (!info.source_file.empty())
2713         {
2714           ret += ":";
2715           ret += info.source_file;
2716         }
2717       size_t len = info.enclosing_symbol_name.length() + 100;
2718       char* buf = new char[len];
2719       snprintf(buf, len, _(":function %s"),
2720                info.enclosing_symbol_name.c_str());
2721       ret += buf;
2722       delete[] buf;
2723       return ret;
2724     }
2725
2726   ret += "(";
2727   ret += this->object->section_name(this->data_shndx);
2728   char buf[100];
2729   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2730   ret += buf;
2731   return ret;
2732 }
2733
2734 } // End namespace gold.
2735
2736 namespace
2737 {
2738
2739 using namespace gold;
2740
2741 // Read an ELF file with the header and return the appropriate
2742 // instance of Object.
2743
2744 template<int size, bool big_endian>
2745 Object*
2746 make_elf_sized_object(const std::string& name, Input_file* input_file,
2747                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2748                       bool* punconfigured)
2749 {
2750   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2751                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2752                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2753   if (target == NULL)
2754     gold_fatal(_("%s: unsupported ELF machine number %d"),
2755                name.c_str(), ehdr.get_e_machine());
2756
2757   if (!parameters->target_valid())
2758     set_parameters_target(target);
2759   else if (target != &parameters->target())
2760     {
2761       if (punconfigured != NULL)
2762         *punconfigured = true;
2763       else
2764         gold_error(_("%s: incompatible target"), name.c_str());
2765       return NULL;
2766     }
2767
2768   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2769                                                    ehdr);
2770 }
2771
2772 } // End anonymous namespace.
2773
2774 namespace gold
2775 {
2776
2777 // Return whether INPUT_FILE is an ELF object.
2778
2779 bool
2780 is_elf_object(Input_file* input_file, off_t offset,
2781               const unsigned char** start, int* read_size)
2782 {
2783   off_t filesize = input_file->file().filesize();
2784   int want = elfcpp::Elf_recognizer::max_header_size;
2785   if (filesize - offset < want)
2786     want = filesize - offset;
2787
2788   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2789                                                        true, false);
2790   *start = p;
2791   *read_size = want;
2792
2793   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2794 }
2795
2796 // Read an ELF file and return the appropriate instance of Object.
2797
2798 Object*
2799 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2800                 const unsigned char* p, section_offset_type bytes,
2801                 bool* punconfigured)
2802 {
2803   if (punconfigured != NULL)
2804     *punconfigured = false;
2805
2806   std::string error;
2807   bool big_endian = false;
2808   int size = 0;
2809   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2810                                                &big_endian, &error))
2811     {
2812       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2813       return NULL;
2814     }
2815
2816   if (size == 32)
2817     {
2818       if (big_endian)
2819         {
2820 #ifdef HAVE_TARGET_32_BIG
2821           elfcpp::Ehdr<32, true> ehdr(p);
2822           return make_elf_sized_object<32, true>(name, input_file,
2823                                                  offset, ehdr, punconfigured);
2824 #else
2825           if (punconfigured != NULL)
2826             *punconfigured = true;
2827           else
2828             gold_error(_("%s: not configured to support "
2829                          "32-bit big-endian object"),
2830                        name.c_str());
2831           return NULL;
2832 #endif
2833         }
2834       else
2835         {
2836 #ifdef HAVE_TARGET_32_LITTLE
2837           elfcpp::Ehdr<32, false> ehdr(p);
2838           return make_elf_sized_object<32, false>(name, input_file,
2839                                                   offset, ehdr, punconfigured);
2840 #else
2841           if (punconfigured != NULL)
2842             *punconfigured = true;
2843           else
2844             gold_error(_("%s: not configured to support "
2845                          "32-bit little-endian object"),
2846                        name.c_str());
2847           return NULL;
2848 #endif
2849         }
2850     }
2851   else if (size == 64)
2852     {
2853       if (big_endian)
2854         {
2855 #ifdef HAVE_TARGET_64_BIG
2856           elfcpp::Ehdr<64, true> ehdr(p);
2857           return make_elf_sized_object<64, true>(name, input_file,
2858                                                  offset, ehdr, punconfigured);
2859 #else
2860           if (punconfigured != NULL)
2861             *punconfigured = true;
2862           else
2863             gold_error(_("%s: not configured to support "
2864                          "64-bit big-endian object"),
2865                        name.c_str());
2866           return NULL;
2867 #endif
2868         }
2869       else
2870         {
2871 #ifdef HAVE_TARGET_64_LITTLE
2872           elfcpp::Ehdr<64, false> ehdr(p);
2873           return make_elf_sized_object<64, false>(name, input_file,
2874                                                   offset, ehdr, punconfigured);
2875 #else
2876           if (punconfigured != NULL)
2877             *punconfigured = true;
2878           else
2879             gold_error(_("%s: not configured to support "
2880                          "64-bit little-endian object"),
2881                        name.c_str());
2882           return NULL;
2883 #endif
2884         }
2885     }
2886   else
2887     gold_unreachable();
2888 }
2889
2890 // Instantiate the templates we need.
2891
2892 #ifdef HAVE_TARGET_32_LITTLE
2893 template
2894 void
2895 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2896                                      Read_symbols_data*);
2897 #endif
2898
2899 #ifdef HAVE_TARGET_32_BIG
2900 template
2901 void
2902 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2903                                     Read_symbols_data*);
2904 #endif
2905
2906 #ifdef HAVE_TARGET_64_LITTLE
2907 template
2908 void
2909 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2910                                      Read_symbols_data*);
2911 #endif
2912
2913 #ifdef HAVE_TARGET_64_BIG
2914 template
2915 void
2916 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2917                                     Read_symbols_data*);
2918 #endif
2919
2920 #ifdef HAVE_TARGET_32_LITTLE
2921 template
2922 class Sized_relobj_file<32, false>;
2923 #endif
2924
2925 #ifdef HAVE_TARGET_32_BIG
2926 template
2927 class Sized_relobj_file<32, true>;
2928 #endif
2929
2930 #ifdef HAVE_TARGET_64_LITTLE
2931 template
2932 class Sized_relobj_file<64, false>;
2933 #endif
2934
2935 #ifdef HAVE_TARGET_64_BIG
2936 template
2937 class Sized_relobj_file<64, true>;
2938 #endif
2939
2940 #ifdef HAVE_TARGET_32_LITTLE
2941 template
2942 struct Relocate_info<32, false>;
2943 #endif
2944
2945 #ifdef HAVE_TARGET_32_BIG
2946 template
2947 struct Relocate_info<32, true>;
2948 #endif
2949
2950 #ifdef HAVE_TARGET_64_LITTLE
2951 template
2952 struct Relocate_info<64, false>;
2953 #endif
2954
2955 #ifdef HAVE_TARGET_64_BIG
2956 template
2957 struct Relocate_info<64, true>;
2958 #endif
2959
2960 #ifdef HAVE_TARGET_32_LITTLE
2961 template
2962 void
2963 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2964
2965 template
2966 void
2967 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2968                                       const unsigned char*);
2969 #endif
2970
2971 #ifdef HAVE_TARGET_32_BIG
2972 template
2973 void
2974 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2975
2976 template
2977 void
2978 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2979                                      const unsigned char*);
2980 #endif
2981
2982 #ifdef HAVE_TARGET_64_LITTLE
2983 template
2984 void
2985 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2986
2987 template
2988 void
2989 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2990                                       const unsigned char*);
2991 #endif
2992
2993 #ifdef HAVE_TARGET_64_BIG
2994 template
2995 void
2996 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2997
2998 template
2999 void
3000 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3001                                      const unsigned char*);
3002 #endif
3003
3004 } // End namespace gold.