PR gold/12629
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header.  This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438   const unsigned int shnum = this->elf_file_.shnum();
439   this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers.  The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section.  Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451   const unsigned int shnum = this->shnum();
452   this->symtab_shndx_ = 0;
453   if (shnum > 0)
454     {
455       // Look through the sections in reverse order, since gas tends
456       // to put the symbol table at the end.
457       const unsigned char* p = pshdrs + shnum * This::shdr_size;
458       unsigned int i = shnum;
459       unsigned int xindex_shndx = 0;
460       unsigned int xindex_link = 0;
461       while (i > 0)
462         {
463           --i;
464           p -= This::shdr_size;
465           typename This::Shdr shdr(p);
466           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467             {
468               this->symtab_shndx_ = i;
469               if (xindex_shndx > 0 && xindex_link == i)
470                 {
471                   Xindex* xindex =
472                     new Xindex(this->elf_file_.large_shndx_offset());
473                   xindex->read_symtab_xindex<size, big_endian>(this,
474                                                                xindex_shndx,
475                                                                pshdrs);
476                   this->set_xindex(xindex);
477                 }
478               break;
479             }
480
481           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482           // one.  This will work if it follows the SHT_SYMTAB
483           // section.
484           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485             {
486               xindex_shndx = i;
487               xindex_link = this->adjust_shndx(shdr.get_sh_link());
488             }
489         }
490     }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500   gold_assert(this->symtab_shndx_ != -1U);
501   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503   return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512     const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
515   return ((sh_type == elfcpp::SHT_PROGBITS
516            || sh_type == elfcpp::SHT_X86_64_UNWIND)
517           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
518 }
519
520 // Return whether there is a GNU .eh_frame section, given the section
521 // headers and the section names.
522
523 template<int size, bool big_endian>
524 bool
525 Sized_relobj_file<size, big_endian>::find_eh_frame(
526     const unsigned char* pshdrs,
527     const char* names,
528     section_size_type names_size) const
529 {
530   const unsigned int shnum = this->shnum();
531   const unsigned char* p = pshdrs + This::shdr_size;
532   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
533     {
534       typename This::Shdr shdr(p);
535       if (this->check_eh_frame_flags(&shdr))
536         {
537           if (shdr.get_sh_name() >= names_size)
538             {
539               this->error(_("bad section name offset for section %u: %lu"),
540                           i, static_cast<unsigned long>(shdr.get_sh_name()));
541               continue;
542             }
543
544           const char* name = names + shdr.get_sh_name();
545           if (strcmp(name, ".eh_frame") == 0)
546             return true;
547         }
548     }
549   return false;
550 }
551
552 // Build a table for any compressed debug sections, mapping each section index
553 // to the uncompressed size.
554
555 template<int size, bool big_endian>
556 Compressed_section_map*
557 build_compressed_section_map(
558     const unsigned char* pshdrs,
559     unsigned int shnum,
560     const char* names,
561     section_size_type names_size,
562     Sized_relobj_file<size, big_endian>* obj)
563 {
564   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
565   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
566   const unsigned char* p = pshdrs + shdr_size;
567   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
568     {
569       typename elfcpp::Shdr<size, big_endian> shdr(p);
570       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
571           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
572         {
573           if (shdr.get_sh_name() >= names_size)
574             {
575               obj->error(_("bad section name offset for section %u: %lu"),
576                          i, static_cast<unsigned long>(shdr.get_sh_name()));
577               continue;
578             }
579
580           const char* name = names + shdr.get_sh_name();
581           if (is_compressed_debug_section(name))
582             {
583               section_size_type len;
584               const unsigned char* contents =
585                   obj->section_contents(i, &len, false);
586               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
587               if (uncompressed_size != -1ULL)
588                 (*uncompressed_sizes)[i] =
589                     convert_to_section_size_type(uncompressed_size);
590             }
591         }
592     }
593   return uncompressed_sizes;
594 }
595
596 // Read the sections and symbols from an object file.
597
598 template<int size, bool big_endian>
599 void
600 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
601 {
602   this->read_section_data(&this->elf_file_, sd);
603
604   const unsigned char* const pshdrs = sd->section_headers->data();
605
606   this->find_symtab(pshdrs);
607
608   const unsigned char* namesu = sd->section_names->data();
609   const char* names = reinterpret_cast<const char*>(namesu);
610   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
611     {
612       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
613         this->has_eh_frame_ = true;
614     }
615   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
616     this->compressed_sections_ =
617         build_compressed_section_map(pshdrs, this->shnum(), names,
618                                      sd->section_names_size, this);
619
620   sd->symbols = NULL;
621   sd->symbols_size = 0;
622   sd->external_symbols_offset = 0;
623   sd->symbol_names = NULL;
624   sd->symbol_names_size = 0;
625
626   if (this->symtab_shndx_ == 0)
627     {
628       // No symbol table.  Weird but legal.
629       return;
630     }
631
632   // Get the symbol table section header.
633   typename This::Shdr symtabshdr(pshdrs
634                                  + this->symtab_shndx_ * This::shdr_size);
635   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
636
637   // If this object has a .eh_frame section, we need all the symbols.
638   // Otherwise we only need the external symbols.  While it would be
639   // simpler to just always read all the symbols, I've seen object
640   // files with well over 2000 local symbols, which for a 64-bit
641   // object file format is over 5 pages that we don't need to read
642   // now.
643
644   const int sym_size = This::sym_size;
645   const unsigned int loccount = symtabshdr.get_sh_info();
646   this->local_symbol_count_ = loccount;
647   this->local_values_.resize(loccount);
648   section_offset_type locsize = loccount * sym_size;
649   off_t dataoff = symtabshdr.get_sh_offset();
650   section_size_type datasize =
651     convert_to_section_size_type(symtabshdr.get_sh_size());
652   off_t extoff = dataoff + locsize;
653   section_size_type extsize = datasize - locsize;
654
655   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
656   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
657
658   if (readsize == 0)
659     {
660       // No external symbols.  Also weird but also legal.
661       return;
662     }
663
664   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
665
666   // Read the section header for the symbol names.
667   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
668   if (strtab_shndx >= this->shnum())
669     {
670       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
671       return;
672     }
673   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
674   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
675     {
676       this->error(_("symbol table name section has wrong type: %u"),
677                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
678       return;
679     }
680
681   // Read the symbol names.
682   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
683                                                strtabshdr.get_sh_size(),
684                                                false, true);
685
686   sd->symbols = fvsymtab;
687   sd->symbols_size = readsize;
688   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
689   sd->symbol_names = fvstrtab;
690   sd->symbol_names_size =
691     convert_to_section_size_type(strtabshdr.get_sh_size());
692 }
693
694 // Return the section index of symbol SYM.  Set *VALUE to its value in
695 // the object file.  Set *IS_ORDINARY if this is an ordinary section
696 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
697 // Note that for a symbol which is not defined in this object file,
698 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
699 // the final value of the symbol in the link.
700
701 template<int size, bool big_endian>
702 unsigned int
703 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
704                                                               Address* value,
705                                                               bool* is_ordinary)
706 {
707   section_size_type symbols_size;
708   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
709                                                         &symbols_size,
710                                                         false);
711
712   const size_t count = symbols_size / This::sym_size;
713   gold_assert(sym < count);
714
715   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
716   *value = elfsym.get_st_value();
717
718   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
719 }
720
721 // Return whether to include a section group in the link.  LAYOUT is
722 // used to keep track of which section groups we have already seen.
723 // INDEX is the index of the section group and SHDR is the section
724 // header.  If we do not want to include this group, we set bits in
725 // OMIT for each section which should be discarded.
726
727 template<int size, bool big_endian>
728 bool
729 Sized_relobj_file<size, big_endian>::include_section_group(
730     Symbol_table* symtab,
731     Layout* layout,
732     unsigned int index,
733     const char* name,
734     const unsigned char* shdrs,
735     const char* section_names,
736     section_size_type section_names_size,
737     std::vector<bool>* omit)
738 {
739   // Read the section contents.
740   typename This::Shdr shdr(shdrs + index * This::shdr_size);
741   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
742                                              shdr.get_sh_size(), true, false);
743   const elfcpp::Elf_Word* pword =
744     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
745
746   // The first word contains flags.  We only care about COMDAT section
747   // groups.  Other section groups are always included in the link
748   // just like ordinary sections.
749   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
750
751   // Look up the group signature, which is the name of a symbol.  This
752   // is a lot of effort to go to to read a string.  Why didn't they
753   // just have the group signature point into the string table, rather
754   // than indirect through a symbol?
755
756   // Get the appropriate symbol table header (this will normally be
757   // the single SHT_SYMTAB section, but in principle it need not be).
758   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
759   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
760
761   // Read the symbol table entry.
762   unsigned int symndx = shdr.get_sh_info();
763   if (symndx >= symshdr.get_sh_size() / This::sym_size)
764     {
765       this->error(_("section group %u info %u out of range"),
766                   index, symndx);
767       return false;
768     }
769   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
770   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
771                                              false);
772   elfcpp::Sym<size, big_endian> sym(psym);
773
774   // Read the symbol table names.
775   section_size_type symnamelen;
776   const unsigned char* psymnamesu;
777   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
778                                       &symnamelen, true);
779   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
780
781   // Get the section group signature.
782   if (sym.get_st_name() >= symnamelen)
783     {
784       this->error(_("symbol %u name offset %u out of range"),
785                   symndx, sym.get_st_name());
786       return false;
787     }
788
789   std::string signature(psymnames + sym.get_st_name());
790
791   // It seems that some versions of gas will create a section group
792   // associated with a section symbol, and then fail to give a name to
793   // the section symbol.  In such a case, use the name of the section.
794   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
795     {
796       bool is_ordinary;
797       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
798                                                       sym.get_st_shndx(),
799                                                       &is_ordinary);
800       if (!is_ordinary || sym_shndx >= this->shnum())
801         {
802           this->error(_("symbol %u invalid section index %u"),
803                       symndx, sym_shndx);
804           return false;
805         }
806       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
807       if (member_shdr.get_sh_name() < section_names_size)
808         signature = section_names + member_shdr.get_sh_name();
809     }
810
811   // Record this section group in the layout, and see whether we've already
812   // seen one with the same signature.
813   bool include_group;
814   bool is_comdat;
815   Kept_section* kept_section = NULL;
816
817   if ((flags & elfcpp::GRP_COMDAT) == 0)
818     {
819       include_group = true;
820       is_comdat = false;
821     }
822   else
823     {
824       include_group = layout->find_or_add_kept_section(signature,
825                                                        this, index, true,
826                                                        true, &kept_section);
827       is_comdat = true;
828     }
829
830   if (is_comdat && include_group)
831     {
832       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
833       if (incremental_inputs != NULL)
834         incremental_inputs->report_comdat_group(this, signature.c_str());
835     }
836
837   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
838
839   std::vector<unsigned int> shndxes;
840   bool relocate_group = include_group && parameters->options().relocatable();
841   if (relocate_group)
842     shndxes.reserve(count - 1);
843
844   for (size_t i = 1; i < count; ++i)
845     {
846       elfcpp::Elf_Word shndx =
847         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
848
849       if (relocate_group)
850         shndxes.push_back(shndx);
851
852       if (shndx >= this->shnum())
853         {
854           this->error(_("section %u in section group %u out of range"),
855                       shndx, index);
856           continue;
857         }
858
859       // Check for an earlier section number, since we're going to get
860       // it wrong--we may have already decided to include the section.
861       if (shndx < index)
862         this->error(_("invalid section group %u refers to earlier section %u"),
863                     index, shndx);
864
865       // Get the name of the member section.
866       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
867       if (member_shdr.get_sh_name() >= section_names_size)
868         {
869           // This is an error, but it will be diagnosed eventually
870           // in do_layout, so we don't need to do anything here but
871           // ignore it.
872           continue;
873         }
874       std::string mname(section_names + member_shdr.get_sh_name());
875
876       if (include_group)
877         {
878           if (is_comdat)
879             kept_section->add_comdat_section(mname, shndx,
880                                              member_shdr.get_sh_size());
881         }
882       else
883         {
884           (*omit)[shndx] = true;
885
886           if (is_comdat)
887             {
888               Relobj* kept_object = kept_section->object();
889               if (kept_section->is_comdat())
890                 {
891                   // Find the corresponding kept section, and store
892                   // that info in the discarded section table.
893                   unsigned int kept_shndx;
894                   uint64_t kept_size;
895                   if (kept_section->find_comdat_section(mname, &kept_shndx,
896                                                         &kept_size))
897                     {
898                       // We don't keep a mapping for this section if
899                       // it has a different size.  The mapping is only
900                       // used for relocation processing, and we don't
901                       // want to treat the sections as similar if the
902                       // sizes are different.  Checking the section
903                       // size is the approach used by the GNU linker.
904                       if (kept_size == member_shdr.get_sh_size())
905                         this->set_kept_comdat_section(shndx, kept_object,
906                                                       kept_shndx);
907                     }
908                 }
909               else
910                 {
911                   // The existing section is a linkonce section.  Add
912                   // a mapping if there is exactly one section in the
913                   // group (which is true when COUNT == 2) and if it
914                   // is the same size.
915                   if (count == 2
916                       && (kept_section->linkonce_size()
917                           == member_shdr.get_sh_size()))
918                     this->set_kept_comdat_section(shndx, kept_object,
919                                                   kept_section->shndx());
920                 }
921             }
922         }
923     }
924
925   if (relocate_group)
926     layout->layout_group(symtab, this, index, name, signature.c_str(),
927                          shdr, flags, &shndxes);
928
929   return include_group;
930 }
931
932 // Whether to include a linkonce section in the link.  NAME is the
933 // name of the section and SHDR is the section header.
934
935 // Linkonce sections are a GNU extension implemented in the original
936 // GNU linker before section groups were defined.  The semantics are
937 // that we only include one linkonce section with a given name.  The
938 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
939 // where T is the type of section and SYMNAME is the name of a symbol.
940 // In an attempt to make linkonce sections interact well with section
941 // groups, we try to identify SYMNAME and use it like a section group
942 // signature.  We want to block section groups with that signature,
943 // but not other linkonce sections with that signature.  We also use
944 // the full name of the linkonce section as a normal section group
945 // signature.
946
947 template<int size, bool big_endian>
948 bool
949 Sized_relobj_file<size, big_endian>::include_linkonce_section(
950     Layout* layout,
951     unsigned int index,
952     const char* name,
953     const elfcpp::Shdr<size, big_endian>& shdr)
954 {
955   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
956   // In general the symbol name we want will be the string following
957   // the last '.'.  However, we have to handle the case of
958   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
959   // some versions of gcc.  So we use a heuristic: if the name starts
960   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
961   // we look for the last '.'.  We can't always simply skip
962   // ".gnu.linkonce.X", because we have to deal with cases like
963   // ".gnu.linkonce.d.rel.ro.local".
964   const char* const linkonce_t = ".gnu.linkonce.t.";
965   const char* symname;
966   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
967     symname = name + strlen(linkonce_t);
968   else
969     symname = strrchr(name, '.') + 1;
970   std::string sig1(symname);
971   std::string sig2(name);
972   Kept_section* kept1;
973   Kept_section* kept2;
974   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
975                                                    false, &kept1);
976   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
977                                                    true, &kept2);
978
979   if (!include2)
980     {
981       // We are not including this section because we already saw the
982       // name of the section as a signature.  This normally implies
983       // that the kept section is another linkonce section.  If it is
984       // the same size, record it as the section which corresponds to
985       // this one.
986       if (kept2->object() != NULL
987           && !kept2->is_comdat()
988           && kept2->linkonce_size() == sh_size)
989         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
990     }
991   else if (!include1)
992     {
993       // The section is being discarded on the basis of its symbol
994       // name.  This means that the corresponding kept section was
995       // part of a comdat group, and it will be difficult to identify
996       // the specific section within that group that corresponds to
997       // this linkonce section.  We'll handle the simple case where
998       // the group has only one member section.  Otherwise, it's not
999       // worth the effort.
1000       unsigned int kept_shndx;
1001       uint64_t kept_size;
1002       if (kept1->object() != NULL
1003           && kept1->is_comdat()
1004           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1005           && kept_size == sh_size)
1006         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1007     }
1008   else
1009     {
1010       kept1->set_linkonce_size(sh_size);
1011       kept2->set_linkonce_size(sh_size);
1012     }
1013
1014   return include1 && include2;
1015 }
1016
1017 // Layout an input section.
1018
1019 template<int size, bool big_endian>
1020 inline void
1021 Sized_relobj_file<size, big_endian>::layout_section(
1022     Layout* layout,
1023     unsigned int shndx,
1024     const char* name,
1025     const typename This::Shdr& shdr,
1026     unsigned int reloc_shndx,
1027     unsigned int reloc_type)
1028 {
1029   off_t offset;
1030   Output_section* os = layout->layout(this, shndx, name, shdr,
1031                                           reloc_shndx, reloc_type, &offset);
1032
1033   this->output_sections()[shndx] = os;
1034   if (offset == -1)
1035     this->section_offsets()[shndx] = invalid_address;
1036   else
1037     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1038
1039   // If this section requires special handling, and if there are
1040   // relocs that apply to it, then we must do the special handling
1041   // before we apply the relocs.
1042   if (offset == -1 && reloc_shndx != 0)
1043     this->set_relocs_must_follow_section_writes();
1044 }
1045
1046 // Layout an input .eh_frame section.
1047
1048 template<int size, bool big_endian>
1049 void
1050 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1051     Layout* layout,
1052     const unsigned char* symbols_data,
1053     section_size_type symbols_size,
1054     const unsigned char* symbol_names_data,
1055     section_size_type symbol_names_size,
1056     unsigned int shndx,
1057     const typename This::Shdr& shdr,
1058     unsigned int reloc_shndx,
1059     unsigned int reloc_type)
1060 {
1061   gold_assert(this->has_eh_frame_);
1062
1063   off_t offset;
1064   Output_section* os = layout->layout_eh_frame(this,
1065                                                symbols_data,
1066                                                symbols_size,
1067                                                symbol_names_data,
1068                                                symbol_names_size,
1069                                                shndx,
1070                                                shdr,
1071                                                reloc_shndx,
1072                                                reloc_type,
1073                                                &offset);
1074   this->output_sections()[shndx] = os;
1075   if (os == NULL || offset == -1)
1076     {
1077       // An object can contain at most one section holding exception
1078       // frame information.
1079       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1080       this->discarded_eh_frame_shndx_ = shndx;
1081       this->section_offsets()[shndx] = invalid_address;
1082     }
1083   else
1084     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1085
1086   // If this section requires special handling, and if there are
1087   // relocs that aply to it, then we must do the special handling
1088   // before we apply the relocs.
1089   if (os != NULL && offset == -1 && reloc_shndx != 0)
1090     this->set_relocs_must_follow_section_writes();
1091 }
1092
1093 // Lay out the input sections.  We walk through the sections and check
1094 // whether they should be included in the link.  If they should, we
1095 // pass them to the Layout object, which will return an output section
1096 // and an offset.  
1097 // During garbage collection (--gc-sections) and identical code folding 
1098 // (--icf), this function is called twice.  When it is called the first 
1099 // time, it is for setting up some sections as roots to a work-list for
1100 // --gc-sections and to do comdat processing.  Actual layout happens the 
1101 // second time around after all the relevant sections have been determined.  
1102 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1103 // set to true after the garbage collection worklist or identical code 
1104 // folding is processed and the relevant sections to be kept are 
1105 // determined.  Then, this function is called again to layout the sections.
1106
1107 template<int size, bool big_endian>
1108 void
1109 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1110                                                Layout* layout,
1111                                                Read_symbols_data* sd)
1112 {
1113   const unsigned int shnum = this->shnum();
1114   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1115                           && !symtab->gc()->is_worklist_ready())
1116                          || (parameters->options().icf_enabled()
1117                              && !symtab->icf()->is_icf_ready()));
1118  
1119   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1120                           && symtab->gc()->is_worklist_ready())
1121                          || (parameters->options().icf_enabled()
1122                              && symtab->icf()->is_icf_ready()));
1123
1124   bool is_gc_or_icf = (parameters->options().gc_sections()
1125                        || parameters->options().icf_enabled()); 
1126
1127   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1128   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1129
1130   if (shnum == 0)
1131     return;
1132   Symbols_data* gc_sd = NULL;
1133   if (is_gc_pass_one)
1134     {
1135       // During garbage collection save the symbols data to use it when 
1136       // re-entering this function.   
1137       gc_sd = new Symbols_data;
1138       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1139       this->set_symbols_data(gc_sd);
1140     }
1141   else if (is_gc_pass_two)
1142     {
1143       gc_sd = this->get_symbols_data();
1144     }
1145
1146   const unsigned char* section_headers_data = NULL;
1147   section_size_type section_names_size;
1148   const unsigned char* symbols_data = NULL;
1149   section_size_type symbols_size;
1150   section_offset_type external_symbols_offset;
1151   const unsigned char* symbol_names_data = NULL;
1152   section_size_type symbol_names_size;
1153  
1154   if (is_gc_or_icf)
1155     {
1156       section_headers_data = gc_sd->section_headers_data;
1157       section_names_size = gc_sd->section_names_size;
1158       symbols_data = gc_sd->symbols_data;
1159       symbols_size = gc_sd->symbols_size;
1160       external_symbols_offset = gc_sd->external_symbols_offset;
1161       symbol_names_data = gc_sd->symbol_names_data;
1162       symbol_names_size = gc_sd->symbol_names_size;
1163     }
1164   else
1165     {
1166       section_headers_data = sd->section_headers->data();
1167       section_names_size = sd->section_names_size;
1168       if (sd->symbols != NULL)
1169         symbols_data = sd->symbols->data();
1170       symbols_size = sd->symbols_size;
1171       external_symbols_offset = sd->external_symbols_offset;
1172       if (sd->symbol_names != NULL)
1173         symbol_names_data = sd->symbol_names->data();
1174       symbol_names_size = sd->symbol_names_size;
1175     }
1176
1177   // Get the section headers.
1178   const unsigned char* shdrs = section_headers_data;
1179   const unsigned char* pshdrs;
1180
1181   // Get the section names.
1182   const unsigned char* pnamesu = (is_gc_or_icf) 
1183                                  ? gc_sd->section_names_data
1184                                  : sd->section_names->data();
1185
1186   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1187
1188   // If any input files have been claimed by plugins, we need to defer
1189   // actual layout until the replacement files have arrived.
1190   const bool should_defer_layout =
1191       (parameters->options().has_plugins()
1192        && parameters->options().plugins()->should_defer_layout());
1193   unsigned int num_sections_to_defer = 0;
1194
1195   // For each section, record the index of the reloc section if any.
1196   // Use 0 to mean that there is no reloc section, -1U to mean that
1197   // there is more than one.
1198   std::vector<unsigned int> reloc_shndx(shnum, 0);
1199   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1200   // Skip the first, dummy, section.
1201   pshdrs = shdrs + This::shdr_size;
1202   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1203     {
1204       typename This::Shdr shdr(pshdrs);
1205
1206       // Count the number of sections whose layout will be deferred.
1207       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1208         ++num_sections_to_defer;
1209
1210       unsigned int sh_type = shdr.get_sh_type();
1211       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1212         {
1213           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1214           if (target_shndx == 0 || target_shndx >= shnum)
1215             {
1216               this->error(_("relocation section %u has bad info %u"),
1217                           i, target_shndx);
1218               continue;
1219             }
1220
1221           if (reloc_shndx[target_shndx] != 0)
1222             reloc_shndx[target_shndx] = -1U;
1223           else
1224             {
1225               reloc_shndx[target_shndx] = i;
1226               reloc_type[target_shndx] = sh_type;
1227             }
1228         }
1229     }
1230
1231   Output_sections& out_sections(this->output_sections());
1232   std::vector<Address>& out_section_offsets(this->section_offsets());
1233
1234   if (!is_gc_pass_two)
1235     {
1236       out_sections.resize(shnum);
1237       out_section_offsets.resize(shnum);
1238     }
1239
1240   // If we are only linking for symbols, then there is nothing else to
1241   // do here.
1242   if (this->input_file()->just_symbols())
1243     {
1244       if (!is_gc_pass_two)
1245         {
1246           delete sd->section_headers;
1247           sd->section_headers = NULL;
1248           delete sd->section_names;
1249           sd->section_names = NULL;
1250         }
1251       return;
1252     }
1253
1254   if (num_sections_to_defer > 0)
1255     {
1256       parameters->options().plugins()->add_deferred_layout_object(this);
1257       this->deferred_layout_.reserve(num_sections_to_defer);
1258     }
1259
1260   // Whether we've seen a .note.GNU-stack section.
1261   bool seen_gnu_stack = false;
1262   // The flags of a .note.GNU-stack section.
1263   uint64_t gnu_stack_flags = 0;
1264
1265   // Keep track of which sections to omit.
1266   std::vector<bool> omit(shnum, false);
1267
1268   // Keep track of reloc sections when emitting relocations.
1269   const bool relocatable = parameters->options().relocatable();
1270   const bool emit_relocs = (relocatable
1271                             || parameters->options().emit_relocs());
1272   std::vector<unsigned int> reloc_sections;
1273
1274   // Keep track of .eh_frame sections.
1275   std::vector<unsigned int> eh_frame_sections;
1276
1277   // Skip the first, dummy, section.
1278   pshdrs = shdrs + This::shdr_size;
1279   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1280     {
1281       typename This::Shdr shdr(pshdrs);
1282
1283       if (shdr.get_sh_name() >= section_names_size)
1284         {
1285           this->error(_("bad section name offset for section %u: %lu"),
1286                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1287           return;
1288         }
1289
1290       const char* name = pnames + shdr.get_sh_name();
1291
1292       if (!is_gc_pass_two)
1293         { 
1294           if (this->handle_gnu_warning_section(name, i, symtab))
1295             { 
1296               if (!relocatable && !parameters->options().shared())
1297                 omit[i] = true;
1298             }
1299
1300           // The .note.GNU-stack section is special.  It gives the
1301           // protection flags that this object file requires for the stack
1302           // in memory.
1303           if (strcmp(name, ".note.GNU-stack") == 0)
1304             {
1305               seen_gnu_stack = true;
1306               gnu_stack_flags |= shdr.get_sh_flags();
1307               omit[i] = true;
1308             }
1309
1310           // The .note.GNU-split-stack section is also special.  It
1311           // indicates that the object was compiled with
1312           // -fsplit-stack.
1313           if (this->handle_split_stack_section(name))
1314             {
1315               if (!relocatable && !parameters->options().shared())
1316                 omit[i] = true;
1317             }
1318
1319           // Skip attributes section.
1320           if (parameters->target().is_attributes_section(name))
1321             {
1322               omit[i] = true;
1323             }
1324
1325           bool discard = omit[i];
1326           if (!discard)
1327             {
1328               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1329                 {
1330                   if (!this->include_section_group(symtab, layout, i, name, 
1331                                                    shdrs, pnames, 
1332                                                    section_names_size,
1333                                                    &omit))
1334                     discard = true;
1335                 }
1336               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1337                        && Layout::is_linkonce(name))
1338                 {
1339                   if (!this->include_linkonce_section(layout, i, name, shdr))
1340                     discard = true;
1341                 }
1342             }
1343
1344           // Add the section to the incremental inputs layout.
1345           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1346           if (incremental_inputs != NULL
1347               && !discard
1348               && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1349                   || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1350                   || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1351             {
1352               off_t sh_size = shdr.get_sh_size();
1353               section_size_type uncompressed_size;
1354               if (this->section_is_compressed(i, &uncompressed_size))
1355                 sh_size = uncompressed_size;
1356               incremental_inputs->report_input_section(this, i, name, sh_size);
1357             }
1358
1359           if (discard)
1360             {
1361               // Do not include this section in the link.
1362               out_sections[i] = NULL;
1363               out_section_offsets[i] = invalid_address;
1364               continue;
1365             }
1366         }
1367  
1368       if (is_gc_pass_one && parameters->options().gc_sections())
1369         {
1370           if (this->is_section_name_included(name)
1371               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1372               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1373             {
1374               symtab->gc()->worklist().push(Section_id(this, i)); 
1375             }
1376           // If the section name XXX can be represented as a C identifier
1377           // it cannot be discarded if there are references to
1378           // __start_XXX and __stop_XXX symbols.  These need to be
1379           // specially handled.
1380           if (is_cident(name))
1381             {
1382               symtab->gc()->add_cident_section(name, Section_id(this, i));
1383             }
1384         }
1385
1386       // When doing a relocatable link we are going to copy input
1387       // reloc sections into the output.  We only want to copy the
1388       // ones associated with sections which are not being discarded.
1389       // However, we don't know that yet for all sections.  So save
1390       // reloc sections and process them later. Garbage collection is
1391       // not triggered when relocatable code is desired.
1392       if (emit_relocs
1393           && (shdr.get_sh_type() == elfcpp::SHT_REL
1394               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1395         {
1396           reloc_sections.push_back(i);
1397           continue;
1398         }
1399
1400       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1401         continue;
1402
1403       // The .eh_frame section is special.  It holds exception frame
1404       // information that we need to read in order to generate the
1405       // exception frame header.  We process these after all the other
1406       // sections so that the exception frame reader can reliably
1407       // determine which sections are being discarded, and discard the
1408       // corresponding information.
1409       if (!relocatable
1410           && strcmp(name, ".eh_frame") == 0
1411           && this->check_eh_frame_flags(&shdr))
1412         {
1413           if (is_gc_pass_one)
1414             {
1415               out_sections[i] = reinterpret_cast<Output_section*>(1);
1416               out_section_offsets[i] = invalid_address;
1417             }
1418           else if (should_defer_layout)
1419             this->deferred_layout_.push_back(Deferred_layout(i, name,
1420                                                              pshdrs,
1421                                                              reloc_shndx[i],
1422                                                              reloc_type[i]));
1423           else
1424             eh_frame_sections.push_back(i);
1425           continue;
1426         }
1427
1428       if (is_gc_pass_two && parameters->options().gc_sections())
1429         {
1430           // This is executed during the second pass of garbage 
1431           // collection. do_layout has been called before and some 
1432           // sections have been already discarded. Simply ignore 
1433           // such sections this time around.
1434           if (out_sections[i] == NULL)
1435             {
1436               gold_assert(out_section_offsets[i] == invalid_address);
1437               continue; 
1438             }
1439           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1440               && symtab->gc()->is_section_garbage(this, i))
1441               {
1442                 if (parameters->options().print_gc_sections())
1443                   gold_info(_("%s: removing unused section from '%s'" 
1444                               " in file '%s'"),
1445                             program_name, this->section_name(i).c_str(), 
1446                             this->name().c_str());
1447                 out_sections[i] = NULL;
1448                 out_section_offsets[i] = invalid_address;
1449                 continue;
1450               }
1451         }
1452
1453       if (is_gc_pass_two && parameters->options().icf_enabled())
1454         {
1455           if (out_sections[i] == NULL)
1456             {
1457               gold_assert(out_section_offsets[i] == invalid_address);
1458               continue;
1459             }
1460           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1461               && symtab->icf()->is_section_folded(this, i))
1462               {
1463                 if (parameters->options().print_icf_sections())
1464                   {
1465                     Section_id folded =
1466                                 symtab->icf()->get_folded_section(this, i);
1467                     Relobj* folded_obj =
1468                                 reinterpret_cast<Relobj*>(folded.first);
1469                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1470                                 "into '%s' in file '%s'"),
1471                               program_name, this->section_name(i).c_str(),
1472                               this->name().c_str(),
1473                               folded_obj->section_name(folded.second).c_str(),
1474                               folded_obj->name().c_str());
1475                   }
1476                 out_sections[i] = NULL;
1477                 out_section_offsets[i] = invalid_address;
1478                 continue;
1479               }
1480         }
1481
1482       // Defer layout here if input files are claimed by plugins.  When gc
1483       // is turned on this function is called twice.  For the second call
1484       // should_defer_layout should be false.
1485       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1486         {
1487           gold_assert(!is_gc_pass_two);
1488           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1489                                                            pshdrs,
1490                                                            reloc_shndx[i],
1491                                                            reloc_type[i]));
1492           // Put dummy values here; real values will be supplied by
1493           // do_layout_deferred_sections.
1494           out_sections[i] = reinterpret_cast<Output_section*>(2);
1495           out_section_offsets[i] = invalid_address;
1496           continue;
1497         }
1498
1499       // During gc_pass_two if a section that was previously deferred is
1500       // found, do not layout the section as layout_deferred_sections will
1501       // do it later from gold.cc.
1502       if (is_gc_pass_two 
1503           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1504         continue;
1505
1506       if (is_gc_pass_one)
1507         {
1508           // This is during garbage collection. The out_sections are 
1509           // assigned in the second call to this function. 
1510           out_sections[i] = reinterpret_cast<Output_section*>(1);
1511           out_section_offsets[i] = invalid_address;
1512         }
1513       else
1514         {
1515           // When garbage collection is switched on the actual layout
1516           // only happens in the second call.
1517           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1518                                reloc_type[i]);
1519         }
1520     }
1521
1522   if (!is_gc_pass_two)
1523     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1524
1525   // When doing a relocatable link handle the reloc sections at the
1526   // end.  Garbage collection  and Identical Code Folding is not 
1527   // turned on for relocatable code. 
1528   if (emit_relocs)
1529     this->size_relocatable_relocs();
1530
1531   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1532
1533   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1534        p != reloc_sections.end();
1535        ++p)
1536     {
1537       unsigned int i = *p;
1538       const unsigned char* pshdr;
1539       pshdr = section_headers_data + i * This::shdr_size;
1540       typename This::Shdr shdr(pshdr);
1541
1542       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1543       if (data_shndx >= shnum)
1544         {
1545           // We already warned about this above.
1546           continue;
1547         }
1548
1549       Output_section* data_section = out_sections[data_shndx];
1550       if (data_section == reinterpret_cast<Output_section*>(2))
1551         {
1552           // The layout for the data section was deferred, so we need
1553           // to defer the relocation section, too.
1554           const char* name = pnames + shdr.get_sh_name();
1555           this->deferred_layout_relocs_.push_back(
1556               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1557           out_sections[i] = reinterpret_cast<Output_section*>(2);
1558           out_section_offsets[i] = invalid_address;
1559           continue;
1560         }
1561       if (data_section == NULL)
1562         {
1563           out_sections[i] = NULL;
1564           out_section_offsets[i] = invalid_address;
1565           continue;
1566         }
1567
1568       Relocatable_relocs* rr = new Relocatable_relocs();
1569       this->set_relocatable_relocs(i, rr);
1570
1571       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1572                                                 rr);
1573       out_sections[i] = os;
1574       out_section_offsets[i] = invalid_address;
1575     }
1576
1577   // Handle the .eh_frame sections at the end.
1578   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1579   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1580        p != eh_frame_sections.end();
1581        ++p)
1582     {
1583       gold_assert(external_symbols_offset != 0);
1584
1585       unsigned int i = *p;
1586       const unsigned char* pshdr;
1587       pshdr = section_headers_data + i * This::shdr_size;
1588       typename This::Shdr shdr(pshdr);
1589
1590       this->layout_eh_frame_section(layout,
1591                                     symbols_data,
1592                                     symbols_size,
1593                                     symbol_names_data,
1594                                     symbol_names_size,
1595                                     i,
1596                                     shdr,
1597                                     reloc_shndx[i],
1598                                     reloc_type[i]);
1599     }
1600
1601   if (is_gc_pass_two)
1602     {
1603       delete[] gc_sd->section_headers_data;
1604       delete[] gc_sd->section_names_data;
1605       delete[] gc_sd->symbols_data;
1606       delete[] gc_sd->symbol_names_data;
1607       this->set_symbols_data(NULL);
1608     }
1609   else
1610     {
1611       delete sd->section_headers;
1612       sd->section_headers = NULL;
1613       delete sd->section_names;
1614       sd->section_names = NULL;
1615     }
1616 }
1617
1618 // Layout sections whose layout was deferred while waiting for
1619 // input files from a plugin.
1620
1621 template<int size, bool big_endian>
1622 void
1623 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1624 {
1625   typename std::vector<Deferred_layout>::iterator deferred;
1626
1627   for (deferred = this->deferred_layout_.begin();
1628        deferred != this->deferred_layout_.end();
1629        ++deferred)
1630     {
1631       typename This::Shdr shdr(deferred->shdr_data_);
1632       // If the section is not included, it is because the garbage collector
1633       // decided it is not needed.  Avoid reverting that decision.
1634       if (!this->is_section_included(deferred->shndx_))
1635         continue;
1636
1637       if (parameters->options().relocatable()
1638           || deferred->name_ != ".eh_frame"
1639           || !this->check_eh_frame_flags(&shdr))
1640         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1641                              shdr, deferred->reloc_shndx_,
1642                              deferred->reloc_type_);
1643       else
1644         {
1645           // Reading the symbols again here may be slow.
1646           Read_symbols_data sd;
1647           this->read_symbols(&sd);
1648           this->layout_eh_frame_section(layout,
1649                                         sd.symbols->data(),
1650                                         sd.symbols_size,
1651                                         sd.symbol_names->data(),
1652                                         sd.symbol_names_size,
1653                                         deferred->shndx_,
1654                                         shdr,
1655                                         deferred->reloc_shndx_,
1656                                         deferred->reloc_type_);
1657         }
1658     }
1659
1660   this->deferred_layout_.clear();
1661
1662   // Now handle the deferred relocation sections.
1663
1664   Output_sections& out_sections(this->output_sections());
1665   std::vector<Address>& out_section_offsets(this->section_offsets());
1666
1667   for (deferred = this->deferred_layout_relocs_.begin();
1668        deferred != this->deferred_layout_relocs_.end();
1669        ++deferred)
1670     {
1671       unsigned int shndx = deferred->shndx_;
1672       typename This::Shdr shdr(deferred->shdr_data_);
1673       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1674
1675       Output_section* data_section = out_sections[data_shndx];
1676       if (data_section == NULL)
1677         {
1678           out_sections[shndx] = NULL;
1679           out_section_offsets[shndx] = invalid_address;
1680           continue;
1681         }
1682
1683       Relocatable_relocs* rr = new Relocatable_relocs();
1684       this->set_relocatable_relocs(shndx, rr);
1685
1686       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1687                                                 data_section, rr);
1688       out_sections[shndx] = os;
1689       out_section_offsets[shndx] = invalid_address;
1690     }
1691 }
1692
1693 // Add the symbols to the symbol table.
1694
1695 template<int size, bool big_endian>
1696 void
1697 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1698                                                     Read_symbols_data* sd,
1699                                                     Layout*)
1700 {
1701   if (sd->symbols == NULL)
1702     {
1703       gold_assert(sd->symbol_names == NULL);
1704       return;
1705     }
1706
1707   const int sym_size = This::sym_size;
1708   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1709                      / sym_size);
1710   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1711     {
1712       this->error(_("size of symbols is not multiple of symbol size"));
1713       return;
1714     }
1715
1716   this->symbols_.resize(symcount);
1717
1718   const char* sym_names =
1719     reinterpret_cast<const char*>(sd->symbol_names->data());
1720   symtab->add_from_relobj(this,
1721                           sd->symbols->data() + sd->external_symbols_offset,
1722                           symcount, this->local_symbol_count_,
1723                           sym_names, sd->symbol_names_size,
1724                           &this->symbols_,
1725                           &this->defined_count_);
1726
1727   delete sd->symbols;
1728   sd->symbols = NULL;
1729   delete sd->symbol_names;
1730   sd->symbol_names = NULL;
1731 }
1732
1733 // Find out if this object, that is a member of a lib group, should be included
1734 // in the link. We check every symbol defined by this object. If the symbol
1735 // table has a strong undefined reference to that symbol, we have to include
1736 // the object.
1737
1738 template<int size, bool big_endian>
1739 Archive::Should_include
1740 Sized_relobj_file<size, big_endian>::do_should_include_member(
1741     Symbol_table* symtab,
1742     Layout* layout,
1743     Read_symbols_data* sd,
1744     std::string* why)
1745 {
1746   char* tmpbuf = NULL;
1747   size_t tmpbuflen = 0;
1748   const char* sym_names =
1749       reinterpret_cast<const char*>(sd->symbol_names->data());
1750   const unsigned char* syms =
1751       sd->symbols->data() + sd->external_symbols_offset;
1752   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1753   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1754                          / sym_size);
1755
1756   const unsigned char* p = syms;
1757
1758   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1759     {
1760       elfcpp::Sym<size, big_endian> sym(p);
1761       unsigned int st_shndx = sym.get_st_shndx();
1762       if (st_shndx == elfcpp::SHN_UNDEF)
1763         continue;
1764
1765       unsigned int st_name = sym.get_st_name();
1766       const char* name = sym_names + st_name;
1767       Symbol* symbol;
1768       Archive::Should_include t = Archive::should_include_member(symtab,
1769                                                                  layout,
1770                                                                  name,
1771                                                                  &symbol, why,
1772                                                                  &tmpbuf,
1773                                                                  &tmpbuflen);
1774       if (t == Archive::SHOULD_INCLUDE_YES)
1775         {
1776           if (tmpbuf != NULL)
1777             free(tmpbuf);
1778           return t;
1779         }
1780     }
1781   if (tmpbuf != NULL)
1782     free(tmpbuf);
1783   return Archive::SHOULD_INCLUDE_UNKNOWN;
1784 }
1785
1786 // Iterate over global defined symbols, calling a visitor class V for each.
1787
1788 template<int size, bool big_endian>
1789 void
1790 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1791     Read_symbols_data* sd,
1792     Library_base::Symbol_visitor_base* v)
1793 {
1794   const char* sym_names =
1795       reinterpret_cast<const char*>(sd->symbol_names->data());
1796   const unsigned char* syms =
1797       sd->symbols->data() + sd->external_symbols_offset;
1798   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1799   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1800                      / sym_size);
1801   const unsigned char* p = syms;
1802
1803   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1804     {
1805       elfcpp::Sym<size, big_endian> sym(p);
1806       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1807         v->visit(sym_names + sym.get_st_name());
1808     }
1809 }
1810
1811 // Return whether the local symbol SYMNDX has a PLT offset.
1812
1813 template<int size, bool big_endian>
1814 bool
1815 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1816     unsigned int symndx) const
1817 {
1818   typename Local_plt_offsets::const_iterator p =
1819     this->local_plt_offsets_.find(symndx);
1820   return p != this->local_plt_offsets_.end();
1821 }
1822
1823 // Get the PLT offset of a local symbol.
1824
1825 template<int size, bool big_endian>
1826 unsigned int
1827 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1828 {
1829   typename Local_plt_offsets::const_iterator p =
1830     this->local_plt_offsets_.find(symndx);
1831   gold_assert(p != this->local_plt_offsets_.end());
1832   return p->second;
1833 }
1834
1835 // Set the PLT offset of a local symbol.
1836
1837 template<int size, bool big_endian>
1838 void
1839 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1840     unsigned int symndx, unsigned int plt_offset)
1841 {
1842   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1843     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1844   gold_assert(ins.second);
1845 }
1846
1847 // First pass over the local symbols.  Here we add their names to
1848 // *POOL and *DYNPOOL, and we store the symbol value in
1849 // THIS->LOCAL_VALUES_.  This function is always called from a
1850 // singleton thread.  This is followed by a call to
1851 // finalize_local_symbols.
1852
1853 template<int size, bool big_endian>
1854 void
1855 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1856                                                             Stringpool* dynpool)
1857 {
1858   gold_assert(this->symtab_shndx_ != -1U);
1859   if (this->symtab_shndx_ == 0)
1860     {
1861       // This object has no symbols.  Weird but legal.
1862       return;
1863     }
1864
1865   // Read the symbol table section header.
1866   const unsigned int symtab_shndx = this->symtab_shndx_;
1867   typename This::Shdr symtabshdr(this,
1868                                  this->elf_file_.section_header(symtab_shndx));
1869   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1870
1871   // Read the local symbols.
1872   const int sym_size = This::sym_size;
1873   const unsigned int loccount = this->local_symbol_count_;
1874   gold_assert(loccount == symtabshdr.get_sh_info());
1875   off_t locsize = loccount * sym_size;
1876   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1877                                               locsize, true, true);
1878
1879   // Read the symbol names.
1880   const unsigned int strtab_shndx =
1881     this->adjust_shndx(symtabshdr.get_sh_link());
1882   section_size_type strtab_size;
1883   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1884                                                         &strtab_size,
1885                                                         true);
1886   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1887
1888   // Loop over the local symbols.
1889
1890   const Output_sections& out_sections(this->output_sections());
1891   unsigned int shnum = this->shnum();
1892   unsigned int count = 0;
1893   unsigned int dyncount = 0;
1894   // Skip the first, dummy, symbol.
1895   psyms += sym_size;
1896   bool strip_all = parameters->options().strip_all();
1897   bool discard_all = parameters->options().discard_all();
1898   bool discard_locals = parameters->options().discard_locals();
1899   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1900     {
1901       elfcpp::Sym<size, big_endian> sym(psyms);
1902
1903       Symbol_value<size>& lv(this->local_values_[i]);
1904
1905       bool is_ordinary;
1906       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1907                                                   &is_ordinary);
1908       lv.set_input_shndx(shndx, is_ordinary);
1909
1910       if (sym.get_st_type() == elfcpp::STT_SECTION)
1911         lv.set_is_section_symbol();
1912       else if (sym.get_st_type() == elfcpp::STT_TLS)
1913         lv.set_is_tls_symbol();
1914       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1915         lv.set_is_ifunc_symbol();
1916
1917       // Save the input symbol value for use in do_finalize_local_symbols().
1918       lv.set_input_value(sym.get_st_value());
1919
1920       // Decide whether this symbol should go into the output file.
1921
1922       if ((shndx < shnum && out_sections[shndx] == NULL)
1923           || shndx == this->discarded_eh_frame_shndx_)
1924         {
1925           lv.set_no_output_symtab_entry();
1926           gold_assert(!lv.needs_output_dynsym_entry());
1927           continue;
1928         }
1929
1930       if (sym.get_st_type() == elfcpp::STT_SECTION)
1931         {
1932           lv.set_no_output_symtab_entry();
1933           gold_assert(!lv.needs_output_dynsym_entry());
1934           continue;
1935         }
1936
1937       if (sym.get_st_name() >= strtab_size)
1938         {
1939           this->error(_("local symbol %u section name out of range: %u >= %u"),
1940                       i, sym.get_st_name(),
1941                       static_cast<unsigned int>(strtab_size));
1942           lv.set_no_output_symtab_entry();
1943           continue;
1944         }
1945
1946       const char* name = pnames + sym.get_st_name();
1947
1948       // If needed, add the symbol to the dynamic symbol table string pool.
1949       if (lv.needs_output_dynsym_entry())
1950         {
1951           dynpool->add(name, true, NULL);
1952           ++dyncount;
1953         }
1954
1955       if (strip_all
1956           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1957         {
1958           lv.set_no_output_symtab_entry();
1959           continue;
1960         }
1961
1962       // If --discard-locals option is used, discard all temporary local
1963       // symbols.  These symbols start with system-specific local label
1964       // prefixes, typically .L for ELF system.  We want to be compatible
1965       // with GNU ld so here we essentially use the same check in
1966       // bfd_is_local_label().  The code is different because we already
1967       // know that:
1968       //
1969       //   - the symbol is local and thus cannot have global or weak binding.
1970       //   - the symbol is not a section symbol.
1971       //   - the symbol has a name.
1972       //
1973       // We do not discard a symbol if it needs a dynamic symbol entry.
1974       if (discard_locals
1975           && sym.get_st_type() != elfcpp::STT_FILE
1976           && !lv.needs_output_dynsym_entry()
1977           && lv.may_be_discarded_from_output_symtab()
1978           && parameters->target().is_local_label_name(name))
1979         {
1980           lv.set_no_output_symtab_entry();
1981           continue;
1982         }
1983
1984       // Discard the local symbol if -retain_symbols_file is specified
1985       // and the local symbol is not in that file.
1986       if (!parameters->options().should_retain_symbol(name))
1987         {
1988           lv.set_no_output_symtab_entry();
1989           continue;
1990         }
1991
1992       // Add the symbol to the symbol table string pool.
1993       pool->add(name, true, NULL);
1994       ++count;
1995     }
1996
1997   this->output_local_symbol_count_ = count;
1998   this->output_local_dynsym_count_ = dyncount;
1999 }
2000
2001 // Compute the final value of a local symbol.
2002
2003 template<int size, bool big_endian>
2004 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2005 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2006     unsigned int r_sym,
2007     const Symbol_value<size>* lv_in,
2008     Symbol_value<size>* lv_out,
2009     bool relocatable,
2010     const Output_sections& out_sections,
2011     const std::vector<Address>& out_offsets,
2012     const Symbol_table* symtab)
2013 {
2014   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2015   // we may have a memory leak.
2016   gold_assert(lv_out->has_output_value());
2017
2018   bool is_ordinary;
2019   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2020   
2021   // Set the output symbol value.
2022   
2023   if (!is_ordinary)
2024     {
2025       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2026         lv_out->set_output_value(lv_in->input_value());
2027       else
2028         {
2029           this->error(_("unknown section index %u for local symbol %u"),
2030                       shndx, r_sym);
2031           lv_out->set_output_value(0);
2032           return This::CFLV_ERROR;
2033         }
2034     }
2035   else
2036     {
2037       if (shndx >= this->shnum())
2038         {
2039           this->error(_("local symbol %u section index %u out of range"),
2040                       r_sym, shndx);
2041           lv_out->set_output_value(0);
2042           return This::CFLV_ERROR;
2043         }
2044       
2045       Output_section* os = out_sections[shndx];
2046       Address secoffset = out_offsets[shndx];
2047       if (symtab->is_section_folded(this, shndx))
2048         {
2049           gold_assert(os == NULL && secoffset == invalid_address);
2050           // Get the os of the section it is folded onto.
2051           Section_id folded = symtab->icf()->get_folded_section(this,
2052                                                                 shndx);
2053           gold_assert(folded.first != NULL);
2054           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2055             <Sized_relobj_file<size, big_endian>*>(folded.first);
2056           os = folded_obj->output_section(folded.second);
2057           gold_assert(os != NULL);
2058           secoffset = folded_obj->get_output_section_offset(folded.second);
2059           
2060           // This could be a relaxed input section.
2061           if (secoffset == invalid_address)
2062             {
2063               const Output_relaxed_input_section* relaxed_section =
2064                 os->find_relaxed_input_section(folded_obj, folded.second);
2065               gold_assert(relaxed_section != NULL);
2066               secoffset = relaxed_section->address() - os->address();
2067             }
2068         }
2069       
2070       if (os == NULL)
2071         {
2072           // This local symbol belongs to a section we are discarding.
2073           // In some cases when applying relocations later, we will
2074           // attempt to match it to the corresponding kept section,
2075           // so we leave the input value unchanged here.
2076           return This::CFLV_DISCARDED;
2077         }
2078       else if (secoffset == invalid_address)
2079         {
2080           uint64_t start;
2081           
2082           // This is a SHF_MERGE section or one which otherwise
2083           // requires special handling.
2084           if (shndx == this->discarded_eh_frame_shndx_)
2085             {
2086               // This local symbol belongs to a discarded .eh_frame
2087               // section.  Just treat it like the case in which
2088               // os == NULL above.
2089               gold_assert(this->has_eh_frame_);
2090               return This::CFLV_DISCARDED;
2091             }
2092           else if (!lv_in->is_section_symbol())
2093             {
2094               // This is not a section symbol.  We can determine
2095               // the final value now.
2096               lv_out->set_output_value(
2097                   os->output_address(this, shndx, lv_in->input_value()));
2098             }
2099           else if (!os->find_starting_output_address(this, shndx, &start))
2100             {
2101               // This is a section symbol, but apparently not one in a
2102               // merged section.  First check to see if this is a relaxed
2103               // input section.  If so, use its address.  Otherwise just
2104               // use the start of the output section.  This happens with
2105               // relocatable links when the input object has section
2106               // symbols for arbitrary non-merge sections.
2107               const Output_section_data* posd =
2108                 os->find_relaxed_input_section(this, shndx);
2109               if (posd != NULL)
2110                 {
2111                   Address relocatable_link_adjustment =
2112                     relocatable ? os->address() : 0;
2113                   lv_out->set_output_value(posd->address()
2114                                            - relocatable_link_adjustment);
2115                 }
2116               else
2117                 lv_out->set_output_value(os->address());
2118             }
2119           else
2120             {
2121               // We have to consider the addend to determine the
2122               // value to use in a relocation.  START is the start
2123               // of this input section.  If we are doing a relocatable
2124               // link, use offset from start output section instead of
2125               // address.
2126               Address adjusted_start =
2127                 relocatable ? start - os->address() : start;
2128               Merged_symbol_value<size>* msv =
2129                 new Merged_symbol_value<size>(lv_in->input_value(),
2130                                               adjusted_start);
2131               lv_out->set_merged_symbol_value(msv);
2132             }
2133         }
2134       else if (lv_in->is_tls_symbol())
2135         lv_out->set_output_value(os->tls_offset()
2136                                  + secoffset
2137                                  + lv_in->input_value());
2138       else
2139         lv_out->set_output_value((relocatable ? 0 : os->address())
2140                                  + secoffset
2141                                  + lv_in->input_value());
2142     }
2143   return This::CFLV_OK;
2144 }
2145
2146 // Compute final local symbol value.  R_SYM is the index of a local
2147 // symbol in symbol table.  LV points to a symbol value, which is
2148 // expected to hold the input value and to be over-written by the
2149 // final value.  SYMTAB points to a symbol table.  Some targets may want
2150 // to know would-be-finalized local symbol values in relaxation.
2151 // Hence we provide this method.  Since this method updates *LV, a
2152 // callee should make a copy of the original local symbol value and
2153 // use the copy instead of modifying an object's local symbols before
2154 // everything is finalized.  The caller should also free up any allocated
2155 // memory in the return value in *LV.
2156 template<int size, bool big_endian>
2157 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2158 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2159     unsigned int r_sym,
2160     const Symbol_value<size>* lv_in,
2161     Symbol_value<size>* lv_out,
2162     const Symbol_table* symtab)
2163 {
2164   // This is just a wrapper of compute_final_local_value_internal.
2165   const bool relocatable = parameters->options().relocatable();
2166   const Output_sections& out_sections(this->output_sections());
2167   const std::vector<Address>& out_offsets(this->section_offsets());
2168   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2169                                                   relocatable, out_sections,
2170                                                   out_offsets, symtab);
2171 }
2172
2173 // Finalize the local symbols.  Here we set the final value in
2174 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2175 // This function is always called from a singleton thread.  The actual
2176 // output of the local symbols will occur in a separate task.
2177
2178 template<int size, bool big_endian>
2179 unsigned int
2180 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2181     unsigned int index,
2182     off_t off,
2183     Symbol_table* symtab)
2184 {
2185   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2186
2187   const unsigned int loccount = this->local_symbol_count_;
2188   this->local_symbol_offset_ = off;
2189
2190   const bool relocatable = parameters->options().relocatable();
2191   const Output_sections& out_sections(this->output_sections());
2192   const std::vector<Address>& out_offsets(this->section_offsets());
2193
2194   for (unsigned int i = 1; i < loccount; ++i)
2195     {
2196       Symbol_value<size>* lv = &this->local_values_[i];
2197
2198       Compute_final_local_value_status cflv_status =
2199         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2200                                                  out_sections, out_offsets,
2201                                                  symtab);
2202       switch (cflv_status)
2203         {
2204         case CFLV_OK:
2205           if (!lv->is_output_symtab_index_set())
2206             {
2207               lv->set_output_symtab_index(index);
2208               ++index;
2209             }
2210           break;
2211         case CFLV_DISCARDED:
2212         case CFLV_ERROR:
2213           // Do nothing.
2214           break;
2215         default:
2216           gold_unreachable();
2217         }
2218     }
2219   return index;
2220 }
2221
2222 // Set the output dynamic symbol table indexes for the local variables.
2223
2224 template<int size, bool big_endian>
2225 unsigned int
2226 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2227     unsigned int index)
2228 {
2229   const unsigned int loccount = this->local_symbol_count_;
2230   for (unsigned int i = 1; i < loccount; ++i)
2231     {
2232       Symbol_value<size>& lv(this->local_values_[i]);
2233       if (lv.needs_output_dynsym_entry())
2234         {
2235           lv.set_output_dynsym_index(index);
2236           ++index;
2237         }
2238     }
2239   return index;
2240 }
2241
2242 // Set the offset where local dynamic symbol information will be stored.
2243 // Returns the count of local symbols contributed to the symbol table by
2244 // this object.
2245
2246 template<int size, bool big_endian>
2247 unsigned int
2248 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2249 {
2250   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2251   this->local_dynsym_offset_ = off;
2252   return this->output_local_dynsym_count_;
2253 }
2254
2255 // If Symbols_data is not NULL get the section flags from here otherwise
2256 // get it from the file.
2257
2258 template<int size, bool big_endian>
2259 uint64_t
2260 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2261 {
2262   Symbols_data* sd = this->get_symbols_data();
2263   if (sd != NULL)
2264     {
2265       const unsigned char* pshdrs = sd->section_headers_data
2266                                     + This::shdr_size * shndx;
2267       typename This::Shdr shdr(pshdrs);
2268       return shdr.get_sh_flags(); 
2269     }
2270   // If sd is NULL, read the section header from the file.
2271   return this->elf_file_.section_flags(shndx); 
2272 }
2273
2274 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2275 // in icf.cc
2276
2277 template<int size, bool big_endian>
2278 uint64_t
2279 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2280 {
2281   Symbols_data* sd = this->get_symbols_data();
2282   gold_assert(sd != NULL);
2283
2284   const unsigned char* pshdrs = sd->section_headers_data
2285                                 + This::shdr_size * shndx;
2286   typename This::Shdr shdr(pshdrs);
2287   return shdr.get_sh_entsize(); 
2288 }
2289
2290 // Write out the local symbols.
2291
2292 template<int size, bool big_endian>
2293 void
2294 Sized_relobj_file<size, big_endian>::write_local_symbols(
2295     Output_file* of,
2296     const Stringpool* sympool,
2297     const Stringpool* dynpool,
2298     Output_symtab_xindex* symtab_xindex,
2299     Output_symtab_xindex* dynsym_xindex,
2300     off_t symtab_off)
2301 {
2302   const bool strip_all = parameters->options().strip_all();
2303   if (strip_all)
2304     {
2305       if (this->output_local_dynsym_count_ == 0)
2306         return;
2307       this->output_local_symbol_count_ = 0;
2308     }
2309
2310   gold_assert(this->symtab_shndx_ != -1U);
2311   if (this->symtab_shndx_ == 0)
2312     {
2313       // This object has no symbols.  Weird but legal.
2314       return;
2315     }
2316
2317   // Read the symbol table section header.
2318   const unsigned int symtab_shndx = this->symtab_shndx_;
2319   typename This::Shdr symtabshdr(this,
2320                                  this->elf_file_.section_header(symtab_shndx));
2321   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2322   const unsigned int loccount = this->local_symbol_count_;
2323   gold_assert(loccount == symtabshdr.get_sh_info());
2324
2325   // Read the local symbols.
2326   const int sym_size = This::sym_size;
2327   off_t locsize = loccount * sym_size;
2328   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2329                                               locsize, true, false);
2330
2331   // Read the symbol names.
2332   const unsigned int strtab_shndx =
2333     this->adjust_shndx(symtabshdr.get_sh_link());
2334   section_size_type strtab_size;
2335   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2336                                                         &strtab_size,
2337                                                         false);
2338   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2339
2340   // Get views into the output file for the portions of the symbol table
2341   // and the dynamic symbol table that we will be writing.
2342   off_t output_size = this->output_local_symbol_count_ * sym_size;
2343   unsigned char* oview = NULL;
2344   if (output_size > 0)
2345     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2346                                 output_size);
2347
2348   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2349   unsigned char* dyn_oview = NULL;
2350   if (dyn_output_size > 0)
2351     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2352                                     dyn_output_size);
2353
2354   const Output_sections out_sections(this->output_sections());
2355
2356   gold_assert(this->local_values_.size() == loccount);
2357
2358   unsigned char* ov = oview;
2359   unsigned char* dyn_ov = dyn_oview;
2360   psyms += sym_size;
2361   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2362     {
2363       elfcpp::Sym<size, big_endian> isym(psyms);
2364
2365       Symbol_value<size>& lv(this->local_values_[i]);
2366
2367       bool is_ordinary;
2368       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2369                                                      &is_ordinary);
2370       if (is_ordinary)
2371         {
2372           gold_assert(st_shndx < out_sections.size());
2373           if (out_sections[st_shndx] == NULL)
2374             continue;
2375           st_shndx = out_sections[st_shndx]->out_shndx();
2376           if (st_shndx >= elfcpp::SHN_LORESERVE)
2377             {
2378               if (lv.has_output_symtab_entry())
2379                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2380               if (lv.has_output_dynsym_entry())
2381                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2382               st_shndx = elfcpp::SHN_XINDEX;
2383             }
2384         }
2385
2386       // Write the symbol to the output symbol table.
2387       if (lv.has_output_symtab_entry())
2388         {
2389           elfcpp::Sym_write<size, big_endian> osym(ov);
2390
2391           gold_assert(isym.get_st_name() < strtab_size);
2392           const char* name = pnames + isym.get_st_name();
2393           osym.put_st_name(sympool->get_offset(name));
2394           osym.put_st_value(this->local_values_[i].value(this, 0));
2395           osym.put_st_size(isym.get_st_size());
2396           osym.put_st_info(isym.get_st_info());
2397           osym.put_st_other(isym.get_st_other());
2398           osym.put_st_shndx(st_shndx);
2399
2400           ov += sym_size;
2401         }
2402
2403       // Write the symbol to the output dynamic symbol table.
2404       if (lv.has_output_dynsym_entry())
2405         {
2406           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2407           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2408
2409           gold_assert(isym.get_st_name() < strtab_size);
2410           const char* name = pnames + isym.get_st_name();
2411           osym.put_st_name(dynpool->get_offset(name));
2412           osym.put_st_value(this->local_values_[i].value(this, 0));
2413           osym.put_st_size(isym.get_st_size());
2414           osym.put_st_info(isym.get_st_info());
2415           osym.put_st_other(isym.get_st_other());
2416           osym.put_st_shndx(st_shndx);
2417
2418           dyn_ov += sym_size;
2419         }
2420     }
2421
2422
2423   if (output_size > 0)
2424     {
2425       gold_assert(ov - oview == output_size);
2426       of->write_output_view(symtab_off + this->local_symbol_offset_,
2427                             output_size, oview);
2428     }
2429
2430   if (dyn_output_size > 0)
2431     {
2432       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2433       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2434                             dyn_oview);
2435     }
2436 }
2437
2438 // Set *INFO to symbolic information about the offset OFFSET in the
2439 // section SHNDX.  Return true if we found something, false if we
2440 // found nothing.
2441
2442 template<int size, bool big_endian>
2443 bool
2444 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2445     unsigned int shndx,
2446     off_t offset,
2447     Symbol_location_info* info)
2448 {
2449   if (this->symtab_shndx_ == 0)
2450     return false;
2451
2452   section_size_type symbols_size;
2453   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2454                                                         &symbols_size,
2455                                                         false);
2456
2457   unsigned int symbol_names_shndx =
2458     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2459   section_size_type names_size;
2460   const unsigned char* symbol_names_u =
2461     this->section_contents(symbol_names_shndx, &names_size, false);
2462   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2463
2464   const int sym_size = This::sym_size;
2465   const size_t count = symbols_size / sym_size;
2466
2467   const unsigned char* p = symbols;
2468   for (size_t i = 0; i < count; ++i, p += sym_size)
2469     {
2470       elfcpp::Sym<size, big_endian> sym(p);
2471
2472       if (sym.get_st_type() == elfcpp::STT_FILE)
2473         {
2474           if (sym.get_st_name() >= names_size)
2475             info->source_file = "(invalid)";
2476           else
2477             info->source_file = symbol_names + sym.get_st_name();
2478           continue;
2479         }
2480
2481       bool is_ordinary;
2482       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2483                                                      &is_ordinary);
2484       if (is_ordinary
2485           && st_shndx == shndx
2486           && static_cast<off_t>(sym.get_st_value()) <= offset
2487           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2488               > offset))
2489         {
2490           if (sym.get_st_name() > names_size)
2491             info->enclosing_symbol_name = "(invalid)";
2492           else
2493             {
2494               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2495               if (parameters->options().do_demangle())
2496                 {
2497                   char* demangled_name = cplus_demangle(
2498                       info->enclosing_symbol_name.c_str(),
2499                       DMGL_ANSI | DMGL_PARAMS);
2500                   if (demangled_name != NULL)
2501                     {
2502                       info->enclosing_symbol_name.assign(demangled_name);
2503                       free(demangled_name);
2504                     }
2505                 }
2506             }
2507           return true;
2508         }
2509     }
2510
2511   return false;
2512 }
2513
2514 // Look for a kept section corresponding to the given discarded section,
2515 // and return its output address.  This is used only for relocations in
2516 // debugging sections.  If we can't find the kept section, return 0.
2517
2518 template<int size, bool big_endian>
2519 typename Sized_relobj_file<size, big_endian>::Address
2520 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2521     unsigned int shndx,
2522     bool* found) const
2523 {
2524   Relobj* kept_object;
2525   unsigned int kept_shndx;
2526   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2527     {
2528       Sized_relobj_file<size, big_endian>* kept_relobj =
2529         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2530       Output_section* os = kept_relobj->output_section(kept_shndx);
2531       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2532       if (os != NULL && offset != invalid_address)
2533         {
2534           *found = true;
2535           return os->address() + offset;
2536         }
2537     }
2538   *found = false;
2539   return 0;
2540 }
2541
2542 // Get symbol counts.
2543
2544 template<int size, bool big_endian>
2545 void
2546 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2547     const Symbol_table*,
2548     size_t* defined,
2549     size_t* used) const
2550 {
2551   *defined = this->defined_count_;
2552   size_t count = 0;
2553   for (typename Symbols::const_iterator p = this->symbols_.begin();
2554        p != this->symbols_.end();
2555        ++p)
2556     if (*p != NULL
2557         && (*p)->source() == Symbol::FROM_OBJECT
2558         && (*p)->object() == this
2559         && (*p)->is_defined())
2560       ++count;
2561   *used = count;
2562 }
2563
2564 // Input_objects methods.
2565
2566 // Add a regular relocatable object to the list.  Return false if this
2567 // object should be ignored.
2568
2569 bool
2570 Input_objects::add_object(Object* obj)
2571 {
2572   // Print the filename if the -t/--trace option is selected.
2573   if (parameters->options().trace())
2574     gold_info("%s", obj->name().c_str());
2575
2576   if (!obj->is_dynamic())
2577     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2578   else
2579     {
2580       // See if this is a duplicate SONAME.
2581       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2582       const char* soname = dynobj->soname();
2583
2584       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2585         this->sonames_.insert(soname);
2586       if (!ins.second)
2587         {
2588           // We have already seen a dynamic object with this soname.
2589           return false;
2590         }
2591
2592       this->dynobj_list_.push_back(dynobj);
2593     }
2594
2595   // Add this object to the cross-referencer if requested.
2596   if (parameters->options().user_set_print_symbol_counts()
2597       || parameters->options().cref())
2598     {
2599       if (this->cref_ == NULL)
2600         this->cref_ = new Cref();
2601       this->cref_->add_object(obj);
2602     }
2603
2604   return true;
2605 }
2606
2607 // For each dynamic object, record whether we've seen all of its
2608 // explicit dependencies.
2609
2610 void
2611 Input_objects::check_dynamic_dependencies() const
2612 {
2613   bool issued_copy_dt_needed_error = false;
2614   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2615        p != this->dynobj_list_.end();
2616        ++p)
2617     {
2618       const Dynobj::Needed& needed((*p)->needed());
2619       bool found_all = true;
2620       Dynobj::Needed::const_iterator pneeded;
2621       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2622         {
2623           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2624             {
2625               found_all = false;
2626               break;
2627             }
2628         }
2629       (*p)->set_has_unknown_needed_entries(!found_all);
2630
2631       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2632       // that gold does not support.  However, they cause no trouble
2633       // unless there is a DT_NEEDED entry that we don't know about;
2634       // warn only in that case.
2635       if (!found_all
2636           && !issued_copy_dt_needed_error
2637           && (parameters->options().copy_dt_needed_entries()
2638               || parameters->options().add_needed()))
2639         {
2640           const char* optname;
2641           if (parameters->options().copy_dt_needed_entries())
2642             optname = "--copy-dt-needed-entries";
2643           else
2644             optname = "--add-needed";
2645           gold_error(_("%s is not supported but is required for %s in %s"),
2646                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2647           issued_copy_dt_needed_error = true;
2648         }
2649     }
2650 }
2651
2652 // Start processing an archive.
2653
2654 void
2655 Input_objects::archive_start(Archive* archive)
2656 {
2657   if (parameters->options().user_set_print_symbol_counts()
2658       || parameters->options().cref())
2659     {
2660       if (this->cref_ == NULL)
2661         this->cref_ = new Cref();
2662       this->cref_->add_archive_start(archive);
2663     }
2664 }
2665
2666 // Stop processing an archive.
2667
2668 void
2669 Input_objects::archive_stop(Archive* archive)
2670 {
2671   if (parameters->options().user_set_print_symbol_counts()
2672       || parameters->options().cref())
2673     this->cref_->add_archive_stop(archive);
2674 }
2675
2676 // Print symbol counts
2677
2678 void
2679 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2680 {
2681   if (parameters->options().user_set_print_symbol_counts()
2682       && this->cref_ != NULL)
2683     this->cref_->print_symbol_counts(symtab);
2684 }
2685
2686 // Print a cross reference table.
2687
2688 void
2689 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2690 {
2691   if (parameters->options().cref() && this->cref_ != NULL)
2692     this->cref_->print_cref(symtab, f);
2693 }
2694
2695 // Relocate_info methods.
2696
2697 // Return a string describing the location of a relocation when file
2698 // and lineno information is not available.  This is only used in
2699 // error messages.
2700
2701 template<int size, bool big_endian>
2702 std::string
2703 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2704 {
2705   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2706   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2707   if (!ret.empty())
2708     return ret;
2709
2710   ret = this->object->name();
2711
2712   Symbol_location_info info;
2713   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2714     {
2715       if (!info.source_file.empty())
2716         {
2717           ret += ":";
2718           ret += info.source_file;
2719         }
2720       size_t len = info.enclosing_symbol_name.length() + 100;
2721       char* buf = new char[len];
2722       snprintf(buf, len, _(":function %s"),
2723                info.enclosing_symbol_name.c_str());
2724       ret += buf;
2725       delete[] buf;
2726       return ret;
2727     }
2728
2729   ret += "(";
2730   ret += this->object->section_name(this->data_shndx);
2731   char buf[100];
2732   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2733   ret += buf;
2734   return ret;
2735 }
2736
2737 } // End namespace gold.
2738
2739 namespace
2740 {
2741
2742 using namespace gold;
2743
2744 // Read an ELF file with the header and return the appropriate
2745 // instance of Object.
2746
2747 template<int size, bool big_endian>
2748 Object*
2749 make_elf_sized_object(const std::string& name, Input_file* input_file,
2750                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2751                       bool* punconfigured)
2752 {
2753   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2754                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2755                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2756   if (target == NULL)
2757     gold_fatal(_("%s: unsupported ELF machine number %d"),
2758                name.c_str(), ehdr.get_e_machine());
2759
2760   if (!parameters->target_valid())
2761     set_parameters_target(target);
2762   else if (target != &parameters->target())
2763     {
2764       if (punconfigured != NULL)
2765         *punconfigured = true;
2766       else
2767         gold_error(_("%s: incompatible target"), name.c_str());
2768       return NULL;
2769     }
2770
2771   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2772                                                    ehdr);
2773 }
2774
2775 } // End anonymous namespace.
2776
2777 namespace gold
2778 {
2779
2780 // Return whether INPUT_FILE is an ELF object.
2781
2782 bool
2783 is_elf_object(Input_file* input_file, off_t offset,
2784               const unsigned char** start, int* read_size)
2785 {
2786   off_t filesize = input_file->file().filesize();
2787   int want = elfcpp::Elf_recognizer::max_header_size;
2788   if (filesize - offset < want)
2789     want = filesize - offset;
2790
2791   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2792                                                        true, false);
2793   *start = p;
2794   *read_size = want;
2795
2796   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2797 }
2798
2799 // Read an ELF file and return the appropriate instance of Object.
2800
2801 Object*
2802 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2803                 const unsigned char* p, section_offset_type bytes,
2804                 bool* punconfigured)
2805 {
2806   if (punconfigured != NULL)
2807     *punconfigured = false;
2808
2809   std::string error;
2810   bool big_endian = false;
2811   int size = 0;
2812   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2813                                                &big_endian, &error))
2814     {
2815       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2816       return NULL;
2817     }
2818
2819   if (size == 32)
2820     {
2821       if (big_endian)
2822         {
2823 #ifdef HAVE_TARGET_32_BIG
2824           elfcpp::Ehdr<32, true> ehdr(p);
2825           return make_elf_sized_object<32, true>(name, input_file,
2826                                                  offset, ehdr, punconfigured);
2827 #else
2828           if (punconfigured != NULL)
2829             *punconfigured = true;
2830           else
2831             gold_error(_("%s: not configured to support "
2832                          "32-bit big-endian object"),
2833                        name.c_str());
2834           return NULL;
2835 #endif
2836         }
2837       else
2838         {
2839 #ifdef HAVE_TARGET_32_LITTLE
2840           elfcpp::Ehdr<32, false> ehdr(p);
2841           return make_elf_sized_object<32, false>(name, input_file,
2842                                                   offset, ehdr, punconfigured);
2843 #else
2844           if (punconfigured != NULL)
2845             *punconfigured = true;
2846           else
2847             gold_error(_("%s: not configured to support "
2848                          "32-bit little-endian object"),
2849                        name.c_str());
2850           return NULL;
2851 #endif
2852         }
2853     }
2854   else if (size == 64)
2855     {
2856       if (big_endian)
2857         {
2858 #ifdef HAVE_TARGET_64_BIG
2859           elfcpp::Ehdr<64, true> ehdr(p);
2860           return make_elf_sized_object<64, true>(name, input_file,
2861                                                  offset, ehdr, punconfigured);
2862 #else
2863           if (punconfigured != NULL)
2864             *punconfigured = true;
2865           else
2866             gold_error(_("%s: not configured to support "
2867                          "64-bit big-endian object"),
2868                        name.c_str());
2869           return NULL;
2870 #endif
2871         }
2872       else
2873         {
2874 #ifdef HAVE_TARGET_64_LITTLE
2875           elfcpp::Ehdr<64, false> ehdr(p);
2876           return make_elf_sized_object<64, false>(name, input_file,
2877                                                   offset, ehdr, punconfigured);
2878 #else
2879           if (punconfigured != NULL)
2880             *punconfigured = true;
2881           else
2882             gold_error(_("%s: not configured to support "
2883                          "64-bit little-endian object"),
2884                        name.c_str());
2885           return NULL;
2886 #endif
2887         }
2888     }
2889   else
2890     gold_unreachable();
2891 }
2892
2893 // Instantiate the templates we need.
2894
2895 #ifdef HAVE_TARGET_32_LITTLE
2896 template
2897 void
2898 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2899                                      Read_symbols_data*);
2900 #endif
2901
2902 #ifdef HAVE_TARGET_32_BIG
2903 template
2904 void
2905 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2906                                     Read_symbols_data*);
2907 #endif
2908
2909 #ifdef HAVE_TARGET_64_LITTLE
2910 template
2911 void
2912 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2913                                      Read_symbols_data*);
2914 #endif
2915
2916 #ifdef HAVE_TARGET_64_BIG
2917 template
2918 void
2919 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2920                                     Read_symbols_data*);
2921 #endif
2922
2923 #ifdef HAVE_TARGET_32_LITTLE
2924 template
2925 class Sized_relobj_file<32, false>;
2926 #endif
2927
2928 #ifdef HAVE_TARGET_32_BIG
2929 template
2930 class Sized_relobj_file<32, true>;
2931 #endif
2932
2933 #ifdef HAVE_TARGET_64_LITTLE
2934 template
2935 class Sized_relobj_file<64, false>;
2936 #endif
2937
2938 #ifdef HAVE_TARGET_64_BIG
2939 template
2940 class Sized_relobj_file<64, true>;
2941 #endif
2942
2943 #ifdef HAVE_TARGET_32_LITTLE
2944 template
2945 struct Relocate_info<32, false>;
2946 #endif
2947
2948 #ifdef HAVE_TARGET_32_BIG
2949 template
2950 struct Relocate_info<32, true>;
2951 #endif
2952
2953 #ifdef HAVE_TARGET_64_LITTLE
2954 template
2955 struct Relocate_info<64, false>;
2956 #endif
2957
2958 #ifdef HAVE_TARGET_64_BIG
2959 template
2960 struct Relocate_info<64, true>;
2961 #endif
2962
2963 #ifdef HAVE_TARGET_32_LITTLE
2964 template
2965 void
2966 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2967
2968 template
2969 void
2970 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2971                                       const unsigned char*);
2972 #endif
2973
2974 #ifdef HAVE_TARGET_32_BIG
2975 template
2976 void
2977 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2978
2979 template
2980 void
2981 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2982                                      const unsigned char*);
2983 #endif
2984
2985 #ifdef HAVE_TARGET_64_LITTLE
2986 template
2987 void
2988 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2989
2990 template
2991 void
2992 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2993                                       const unsigned char*);
2994 #endif
2995
2996 #ifdef HAVE_TARGET_64_BIG
2997 template
2998 void
2999 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3000
3001 template
3002 void
3003 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3004                                      const unsigned char*);
3005 #endif
3006
3007 } // End namespace gold.