* dwarf_reader.cc (Sized_dwarf_line_info::Sized_dwarf_line_info):
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424   this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header.  This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439   const unsigned int shnum = this->elf_file_.shnum();
440   this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers.  The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section.  Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452   const unsigned int shnum = this->shnum();
453   this->symtab_shndx_ = 0;
454   if (shnum > 0)
455     {
456       // Look through the sections in reverse order, since gas tends
457       // to put the symbol table at the end.
458       const unsigned char* p = pshdrs + shnum * This::shdr_size;
459       unsigned int i = shnum;
460       unsigned int xindex_shndx = 0;
461       unsigned int xindex_link = 0;
462       while (i > 0)
463         {
464           --i;
465           p -= This::shdr_size;
466           typename This::Shdr shdr(p);
467           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468             {
469               this->symtab_shndx_ = i;
470               if (xindex_shndx > 0 && xindex_link == i)
471                 {
472                   Xindex* xindex =
473                     new Xindex(this->elf_file_.large_shndx_offset());
474                   xindex->read_symtab_xindex<size, big_endian>(this,
475                                                                xindex_shndx,
476                                                                pshdrs);
477                   this->set_xindex(xindex);
478                 }
479               break;
480             }
481
482           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483           // one.  This will work if it follows the SHT_SYMTAB
484           // section.
485           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486             {
487               xindex_shndx = i;
488               xindex_link = this->adjust_shndx(shdr.get_sh_link());
489             }
490         }
491     }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501   gold_assert(this->symtab_shndx_ != -1U);
502   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504   return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513     const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516   return ((sh_type == elfcpp::SHT_PROGBITS
517            || sh_type == elfcpp::SHT_X86_64_UNWIND)
518           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527     const unsigned char* pshdrs,
528     const char* names,
529     section_size_type names_size) const
530 {
531   const unsigned int shnum = this->shnum();
532   const unsigned char* p = pshdrs + This::shdr_size;
533   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534     {
535       typename This::Shdr shdr(p);
536       if (this->check_eh_frame_flags(&shdr))
537         {
538           if (shdr.get_sh_name() >= names_size)
539             {
540               this->error(_("bad section name offset for section %u: %lu"),
541                           i, static_cast<unsigned long>(shdr.get_sh_name()));
542               continue;
543             }
544
545           const char* name = names + shdr.get_sh_name();
546           if (strcmp(name, ".eh_frame") == 0)
547             return true;
548         }
549     }
550   return false;
551 }
552
553 // Return TRUE if this is a section whose contents will be needed in the
554 // Add_symbols task.
555
556 static bool
557 need_decompressed_section(const char* name)
558 {
559   // We will need .zdebug_str if this is not an incremental link
560   // (i.e., we are processing string merge sections).
561   if (!parameters->incremental() && strcmp(name, ".zdebug_str") == 0)
562     return true;
563
564   return false;
565 }
566
567 // Build a table for any compressed debug sections, mapping each section index
568 // to the uncompressed size and (if needed) the decompressed contents.
569
570 template<int size, bool big_endian>
571 Compressed_section_map*
572 build_compressed_section_map(
573     const unsigned char* pshdrs,
574     unsigned int shnum,
575     const char* names,
576     section_size_type names_size,
577     Sized_relobj_file<size, big_endian>* obj)
578 {
579   Compressed_section_map* uncompressed_map = new Compressed_section_map();
580   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
581   const unsigned char* p = pshdrs + shdr_size;
582
583   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
584     {
585       typename elfcpp::Shdr<size, big_endian> shdr(p);
586       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
587           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
588         {
589           if (shdr.get_sh_name() >= names_size)
590             {
591               obj->error(_("bad section name offset for section %u: %lu"),
592                          i, static_cast<unsigned long>(shdr.get_sh_name()));
593               continue;
594             }
595
596           const char* name = names + shdr.get_sh_name();
597           if (is_compressed_debug_section(name))
598             {
599               section_size_type len;
600               const unsigned char* contents =
601                   obj->section_contents(i, &len, false);
602               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
603               if (uncompressed_size != -1ULL)
604                 {
605                   Compressed_section_info info;
606                   info.size = convert_to_section_size_type(uncompressed_size);
607                   info.contents = NULL;
608
609 #ifdef ENABLE_THREADS
610                   // If we're multi-threaded, it will help to decompress
611                   // any sections that will be needed during the Add_symbols
612                   // task, so that several decompressions can run in
613                   // parallel.
614                   if (parameters->options().threads())
615                     {
616                       unsigned char* uncompressed_data = NULL;
617                       if (need_decompressed_section(name))
618                         {
619                           uncompressed_data = new unsigned char[uncompressed_size];
620                           if (decompress_input_section(contents, len,
621                                                        uncompressed_data,
622                                                        uncompressed_size))
623                             info.contents = uncompressed_data;
624                           else
625                             delete[] uncompressed_data;
626                         }
627                     }
628 #endif
629
630                   (*uncompressed_map)[i] = info;
631                 }
632             }
633         }
634     }
635   return uncompressed_map;
636 }
637
638 // Read the sections and symbols from an object file.
639
640 template<int size, bool big_endian>
641 void
642 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
643 {
644   this->read_section_data(&this->elf_file_, sd);
645
646   const unsigned char* const pshdrs = sd->section_headers->data();
647
648   this->find_symtab(pshdrs);
649
650   const unsigned char* namesu = sd->section_names->data();
651   const char* names = reinterpret_cast<const char*>(namesu);
652   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
653     {
654       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
655         this->has_eh_frame_ = true;
656     }
657   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
658     this->compressed_sections_ =
659         build_compressed_section_map(pshdrs, this->shnum(), names,
660                                      sd->section_names_size, this);
661
662   sd->symbols = NULL;
663   sd->symbols_size = 0;
664   sd->external_symbols_offset = 0;
665   sd->symbol_names = NULL;
666   sd->symbol_names_size = 0;
667
668   if (this->symtab_shndx_ == 0)
669     {
670       // No symbol table.  Weird but legal.
671       return;
672     }
673
674   // Get the symbol table section header.
675   typename This::Shdr symtabshdr(pshdrs
676                                  + this->symtab_shndx_ * This::shdr_size);
677   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
678
679   // If this object has a .eh_frame section, we need all the symbols.
680   // Otherwise we only need the external symbols.  While it would be
681   // simpler to just always read all the symbols, I've seen object
682   // files with well over 2000 local symbols, which for a 64-bit
683   // object file format is over 5 pages that we don't need to read
684   // now.
685
686   const int sym_size = This::sym_size;
687   const unsigned int loccount = symtabshdr.get_sh_info();
688   this->local_symbol_count_ = loccount;
689   this->local_values_.resize(loccount);
690   section_offset_type locsize = loccount * sym_size;
691   off_t dataoff = symtabshdr.get_sh_offset();
692   section_size_type datasize =
693     convert_to_section_size_type(symtabshdr.get_sh_size());
694   off_t extoff = dataoff + locsize;
695   section_size_type extsize = datasize - locsize;
696
697   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
698   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
699
700   if (readsize == 0)
701     {
702       // No external symbols.  Also weird but also legal.
703       return;
704     }
705
706   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
707
708   // Read the section header for the symbol names.
709   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
710   if (strtab_shndx >= this->shnum())
711     {
712       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
713       return;
714     }
715   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
716   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
717     {
718       this->error(_("symbol table name section has wrong type: %u"),
719                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
720       return;
721     }
722
723   // Read the symbol names.
724   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
725                                                strtabshdr.get_sh_size(),
726                                                false, true);
727
728   sd->symbols = fvsymtab;
729   sd->symbols_size = readsize;
730   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
731   sd->symbol_names = fvstrtab;
732   sd->symbol_names_size =
733     convert_to_section_size_type(strtabshdr.get_sh_size());
734 }
735
736 // Return the section index of symbol SYM.  Set *VALUE to its value in
737 // the object file.  Set *IS_ORDINARY if this is an ordinary section
738 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
739 // Note that for a symbol which is not defined in this object file,
740 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
741 // the final value of the symbol in the link.
742
743 template<int size, bool big_endian>
744 unsigned int
745 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
746                                                               Address* value,
747                                                               bool* is_ordinary)
748 {
749   section_size_type symbols_size;
750   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
751                                                         &symbols_size,
752                                                         false);
753
754   const size_t count = symbols_size / This::sym_size;
755   gold_assert(sym < count);
756
757   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
758   *value = elfsym.get_st_value();
759
760   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
761 }
762
763 // Return whether to include a section group in the link.  LAYOUT is
764 // used to keep track of which section groups we have already seen.
765 // INDEX is the index of the section group and SHDR is the section
766 // header.  If we do not want to include this group, we set bits in
767 // OMIT for each section which should be discarded.
768
769 template<int size, bool big_endian>
770 bool
771 Sized_relobj_file<size, big_endian>::include_section_group(
772     Symbol_table* symtab,
773     Layout* layout,
774     unsigned int index,
775     const char* name,
776     const unsigned char* shdrs,
777     const char* section_names,
778     section_size_type section_names_size,
779     std::vector<bool>* omit)
780 {
781   // Read the section contents.
782   typename This::Shdr shdr(shdrs + index * This::shdr_size);
783   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
784                                              shdr.get_sh_size(), true, false);
785   const elfcpp::Elf_Word* pword =
786     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
787
788   // The first word contains flags.  We only care about COMDAT section
789   // groups.  Other section groups are always included in the link
790   // just like ordinary sections.
791   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
792
793   // Look up the group signature, which is the name of a symbol.  ELF
794   // uses a symbol name because some group signatures are long, and
795   // the name is generally already in the symbol table, so it makes
796   // sense to put the long string just once in .strtab rather than in
797   // both .strtab and .shstrtab.
798
799   // Get the appropriate symbol table header (this will normally be
800   // the single SHT_SYMTAB section, but in principle it need not be).
801   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
802   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
803
804   // Read the symbol table entry.
805   unsigned int symndx = shdr.get_sh_info();
806   if (symndx >= symshdr.get_sh_size() / This::sym_size)
807     {
808       this->error(_("section group %u info %u out of range"),
809                   index, symndx);
810       return false;
811     }
812   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
813   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
814                                              false);
815   elfcpp::Sym<size, big_endian> sym(psym);
816
817   // Read the symbol table names.
818   section_size_type symnamelen;
819   const unsigned char* psymnamesu;
820   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
821                                       &symnamelen, true);
822   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
823
824   // Get the section group signature.
825   if (sym.get_st_name() >= symnamelen)
826     {
827       this->error(_("symbol %u name offset %u out of range"),
828                   symndx, sym.get_st_name());
829       return false;
830     }
831
832   std::string signature(psymnames + sym.get_st_name());
833
834   // It seems that some versions of gas will create a section group
835   // associated with a section symbol, and then fail to give a name to
836   // the section symbol.  In such a case, use the name of the section.
837   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
838     {
839       bool is_ordinary;
840       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
841                                                       sym.get_st_shndx(),
842                                                       &is_ordinary);
843       if (!is_ordinary || sym_shndx >= this->shnum())
844         {
845           this->error(_("symbol %u invalid section index %u"),
846                       symndx, sym_shndx);
847           return false;
848         }
849       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
850       if (member_shdr.get_sh_name() < section_names_size)
851         signature = section_names + member_shdr.get_sh_name();
852     }
853
854   // Record this section group in the layout, and see whether we've already
855   // seen one with the same signature.
856   bool include_group;
857   bool is_comdat;
858   Kept_section* kept_section = NULL;
859
860   if ((flags & elfcpp::GRP_COMDAT) == 0)
861     {
862       include_group = true;
863       is_comdat = false;
864     }
865   else
866     {
867       include_group = layout->find_or_add_kept_section(signature,
868                                                        this, index, true,
869                                                        true, &kept_section);
870       is_comdat = true;
871     }
872
873   if (is_comdat && include_group)
874     {
875       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
876       if (incremental_inputs != NULL)
877         incremental_inputs->report_comdat_group(this, signature.c_str());
878     }
879
880   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
881
882   std::vector<unsigned int> shndxes;
883   bool relocate_group = include_group && parameters->options().relocatable();
884   if (relocate_group)
885     shndxes.reserve(count - 1);
886
887   for (size_t i = 1; i < count; ++i)
888     {
889       elfcpp::Elf_Word shndx =
890         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
891
892       if (relocate_group)
893         shndxes.push_back(shndx);
894
895       if (shndx >= this->shnum())
896         {
897           this->error(_("section %u in section group %u out of range"),
898                       shndx, index);
899           continue;
900         }
901
902       // Check for an earlier section number, since we're going to get
903       // it wrong--we may have already decided to include the section.
904       if (shndx < index)
905         this->error(_("invalid section group %u refers to earlier section %u"),
906                     index, shndx);
907
908       // Get the name of the member section.
909       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
910       if (member_shdr.get_sh_name() >= section_names_size)
911         {
912           // This is an error, but it will be diagnosed eventually
913           // in do_layout, so we don't need to do anything here but
914           // ignore it.
915           continue;
916         }
917       std::string mname(section_names + member_shdr.get_sh_name());
918
919       if (include_group)
920         {
921           if (is_comdat)
922             kept_section->add_comdat_section(mname, shndx,
923                                              member_shdr.get_sh_size());
924         }
925       else
926         {
927           (*omit)[shndx] = true;
928
929           if (is_comdat)
930             {
931               Relobj* kept_object = kept_section->object();
932               if (kept_section->is_comdat())
933                 {
934                   // Find the corresponding kept section, and store
935                   // that info in the discarded section table.
936                   unsigned int kept_shndx;
937                   uint64_t kept_size;
938                   if (kept_section->find_comdat_section(mname, &kept_shndx,
939                                                         &kept_size))
940                     {
941                       // We don't keep a mapping for this section if
942                       // it has a different size.  The mapping is only
943                       // used for relocation processing, and we don't
944                       // want to treat the sections as similar if the
945                       // sizes are different.  Checking the section
946                       // size is the approach used by the GNU linker.
947                       if (kept_size == member_shdr.get_sh_size())
948                         this->set_kept_comdat_section(shndx, kept_object,
949                                                       kept_shndx);
950                     }
951                 }
952               else
953                 {
954                   // The existing section is a linkonce section.  Add
955                   // a mapping if there is exactly one section in the
956                   // group (which is true when COUNT == 2) and if it
957                   // is the same size.
958                   if (count == 2
959                       && (kept_section->linkonce_size()
960                           == member_shdr.get_sh_size()))
961                     this->set_kept_comdat_section(shndx, kept_object,
962                                                   kept_section->shndx());
963                 }
964             }
965         }
966     }
967
968   if (relocate_group)
969     layout->layout_group(symtab, this, index, name, signature.c_str(),
970                          shdr, flags, &shndxes);
971
972   return include_group;
973 }
974
975 // Whether to include a linkonce section in the link.  NAME is the
976 // name of the section and SHDR is the section header.
977
978 // Linkonce sections are a GNU extension implemented in the original
979 // GNU linker before section groups were defined.  The semantics are
980 // that we only include one linkonce section with a given name.  The
981 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
982 // where T is the type of section and SYMNAME is the name of a symbol.
983 // In an attempt to make linkonce sections interact well with section
984 // groups, we try to identify SYMNAME and use it like a section group
985 // signature.  We want to block section groups with that signature,
986 // but not other linkonce sections with that signature.  We also use
987 // the full name of the linkonce section as a normal section group
988 // signature.
989
990 template<int size, bool big_endian>
991 bool
992 Sized_relobj_file<size, big_endian>::include_linkonce_section(
993     Layout* layout,
994     unsigned int index,
995     const char* name,
996     const elfcpp::Shdr<size, big_endian>& shdr)
997 {
998   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
999   // In general the symbol name we want will be the string following
1000   // the last '.'.  However, we have to handle the case of
1001   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1002   // some versions of gcc.  So we use a heuristic: if the name starts
1003   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1004   // we look for the last '.'.  We can't always simply skip
1005   // ".gnu.linkonce.X", because we have to deal with cases like
1006   // ".gnu.linkonce.d.rel.ro.local".
1007   const char* const linkonce_t = ".gnu.linkonce.t.";
1008   const char* symname;
1009   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1010     symname = name + strlen(linkonce_t);
1011   else
1012     symname = strrchr(name, '.') + 1;
1013   std::string sig1(symname);
1014   std::string sig2(name);
1015   Kept_section* kept1;
1016   Kept_section* kept2;
1017   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1018                                                    false, &kept1);
1019   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1020                                                    true, &kept2);
1021
1022   if (!include2)
1023     {
1024       // We are not including this section because we already saw the
1025       // name of the section as a signature.  This normally implies
1026       // that the kept section is another linkonce section.  If it is
1027       // the same size, record it as the section which corresponds to
1028       // this one.
1029       if (kept2->object() != NULL
1030           && !kept2->is_comdat()
1031           && kept2->linkonce_size() == sh_size)
1032         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1033     }
1034   else if (!include1)
1035     {
1036       // The section is being discarded on the basis of its symbol
1037       // name.  This means that the corresponding kept section was
1038       // part of a comdat group, and it will be difficult to identify
1039       // the specific section within that group that corresponds to
1040       // this linkonce section.  We'll handle the simple case where
1041       // the group has only one member section.  Otherwise, it's not
1042       // worth the effort.
1043       unsigned int kept_shndx;
1044       uint64_t kept_size;
1045       if (kept1->object() != NULL
1046           && kept1->is_comdat()
1047           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1048           && kept_size == sh_size)
1049         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1050     }
1051   else
1052     {
1053       kept1->set_linkonce_size(sh_size);
1054       kept2->set_linkonce_size(sh_size);
1055     }
1056
1057   return include1 && include2;
1058 }
1059
1060 // Layout an input section.
1061
1062 template<int size, bool big_endian>
1063 inline void
1064 Sized_relobj_file<size, big_endian>::layout_section(
1065     Layout* layout,
1066     unsigned int shndx,
1067     const char* name,
1068     const typename This::Shdr& shdr,
1069     unsigned int reloc_shndx,
1070     unsigned int reloc_type)
1071 {
1072   off_t offset;
1073   Output_section* os = layout->layout(this, shndx, name, shdr,
1074                                           reloc_shndx, reloc_type, &offset);
1075
1076   this->output_sections()[shndx] = os;
1077   if (offset == -1)
1078     this->section_offsets()[shndx] = invalid_address;
1079   else
1080     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1081
1082   // If this section requires special handling, and if there are
1083   // relocs that apply to it, then we must do the special handling
1084   // before we apply the relocs.
1085   if (offset == -1 && reloc_shndx != 0)
1086     this->set_relocs_must_follow_section_writes();
1087 }
1088
1089 // Layout an input .eh_frame section.
1090
1091 template<int size, bool big_endian>
1092 void
1093 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1094     Layout* layout,
1095     const unsigned char* symbols_data,
1096     section_size_type symbols_size,
1097     const unsigned char* symbol_names_data,
1098     section_size_type symbol_names_size,
1099     unsigned int shndx,
1100     const typename This::Shdr& shdr,
1101     unsigned int reloc_shndx,
1102     unsigned int reloc_type)
1103 {
1104   gold_assert(this->has_eh_frame_);
1105
1106   off_t offset;
1107   Output_section* os = layout->layout_eh_frame(this,
1108                                                symbols_data,
1109                                                symbols_size,
1110                                                symbol_names_data,
1111                                                symbol_names_size,
1112                                                shndx,
1113                                                shdr,
1114                                                reloc_shndx,
1115                                                reloc_type,
1116                                                &offset);
1117   this->output_sections()[shndx] = os;
1118   if (os == NULL || offset == -1)
1119     {
1120       // An object can contain at most one section holding exception
1121       // frame information.
1122       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1123       this->discarded_eh_frame_shndx_ = shndx;
1124       this->section_offsets()[shndx] = invalid_address;
1125     }
1126   else
1127     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1128
1129   // If this section requires special handling, and if there are
1130   // relocs that aply to it, then we must do the special handling
1131   // before we apply the relocs.
1132   if (os != NULL && offset == -1 && reloc_shndx != 0)
1133     this->set_relocs_must_follow_section_writes();
1134 }
1135
1136 // Lay out the input sections.  We walk through the sections and check
1137 // whether they should be included in the link.  If they should, we
1138 // pass them to the Layout object, which will return an output section
1139 // and an offset.  
1140 // During garbage collection (--gc-sections) and identical code folding 
1141 // (--icf), this function is called twice.  When it is called the first 
1142 // time, it is for setting up some sections as roots to a work-list for
1143 // --gc-sections and to do comdat processing.  Actual layout happens the 
1144 // second time around after all the relevant sections have been determined.  
1145 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1146 // set to true after the garbage collection worklist or identical code 
1147 // folding is processed and the relevant sections to be kept are 
1148 // determined.  Then, this function is called again to layout the sections.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1153                                                Layout* layout,
1154                                                Read_symbols_data* sd)
1155 {
1156   const unsigned int shnum = this->shnum();
1157   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1158                           && !symtab->gc()->is_worklist_ready())
1159                          || (parameters->options().icf_enabled()
1160                              && !symtab->icf()->is_icf_ready()));
1161  
1162   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1163                           && symtab->gc()->is_worklist_ready())
1164                          || (parameters->options().icf_enabled()
1165                              && symtab->icf()->is_icf_ready()));
1166
1167   bool is_gc_or_icf = (parameters->options().gc_sections()
1168                        || parameters->options().icf_enabled()); 
1169
1170   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1171   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1172
1173   if (shnum == 0)
1174     return;
1175   Symbols_data* gc_sd = NULL;
1176   if (is_gc_pass_one)
1177     {
1178       // During garbage collection save the symbols data to use it when 
1179       // re-entering this function.   
1180       gc_sd = new Symbols_data;
1181       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1182       this->set_symbols_data(gc_sd);
1183     }
1184   else if (is_gc_pass_two)
1185     {
1186       gc_sd = this->get_symbols_data();
1187     }
1188
1189   const unsigned char* section_headers_data = NULL;
1190   section_size_type section_names_size;
1191   const unsigned char* symbols_data = NULL;
1192   section_size_type symbols_size;
1193   const unsigned char* symbol_names_data = NULL;
1194   section_size_type symbol_names_size;
1195  
1196   if (is_gc_or_icf)
1197     {
1198       section_headers_data = gc_sd->section_headers_data;
1199       section_names_size = gc_sd->section_names_size;
1200       symbols_data = gc_sd->symbols_data;
1201       symbols_size = gc_sd->symbols_size;
1202       symbol_names_data = gc_sd->symbol_names_data;
1203       symbol_names_size = gc_sd->symbol_names_size;
1204     }
1205   else
1206     {
1207       section_headers_data = sd->section_headers->data();
1208       section_names_size = sd->section_names_size;
1209       if (sd->symbols != NULL)
1210         symbols_data = sd->symbols->data();
1211       symbols_size = sd->symbols_size;
1212       if (sd->symbol_names != NULL)
1213         symbol_names_data = sd->symbol_names->data();
1214       symbol_names_size = sd->symbol_names_size;
1215     }
1216
1217   // Get the section headers.
1218   const unsigned char* shdrs = section_headers_data;
1219   const unsigned char* pshdrs;
1220
1221   // Get the section names.
1222   const unsigned char* pnamesu = (is_gc_or_icf) 
1223                                  ? gc_sd->section_names_data
1224                                  : sd->section_names->data();
1225
1226   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1227
1228   // If any input files have been claimed by plugins, we need to defer
1229   // actual layout until the replacement files have arrived.
1230   const bool should_defer_layout =
1231       (parameters->options().has_plugins()
1232        && parameters->options().plugins()->should_defer_layout());
1233   unsigned int num_sections_to_defer = 0;
1234
1235   // For each section, record the index of the reloc section if any.
1236   // Use 0 to mean that there is no reloc section, -1U to mean that
1237   // there is more than one.
1238   std::vector<unsigned int> reloc_shndx(shnum, 0);
1239   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1240   // Skip the first, dummy, section.
1241   pshdrs = shdrs + This::shdr_size;
1242   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1243     {
1244       typename This::Shdr shdr(pshdrs);
1245
1246       // Count the number of sections whose layout will be deferred.
1247       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1248         ++num_sections_to_defer;
1249
1250       unsigned int sh_type = shdr.get_sh_type();
1251       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1252         {
1253           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1254           if (target_shndx == 0 || target_shndx >= shnum)
1255             {
1256               this->error(_("relocation section %u has bad info %u"),
1257                           i, target_shndx);
1258               continue;
1259             }
1260
1261           if (reloc_shndx[target_shndx] != 0)
1262             reloc_shndx[target_shndx] = -1U;
1263           else
1264             {
1265               reloc_shndx[target_shndx] = i;
1266               reloc_type[target_shndx] = sh_type;
1267             }
1268         }
1269     }
1270
1271   Output_sections& out_sections(this->output_sections());
1272   std::vector<Address>& out_section_offsets(this->section_offsets());
1273
1274   if (!is_gc_pass_two)
1275     {
1276       out_sections.resize(shnum);
1277       out_section_offsets.resize(shnum);
1278     }
1279
1280   // If we are only linking for symbols, then there is nothing else to
1281   // do here.
1282   if (this->input_file()->just_symbols())
1283     {
1284       if (!is_gc_pass_two)
1285         {
1286           delete sd->section_headers;
1287           sd->section_headers = NULL;
1288           delete sd->section_names;
1289           sd->section_names = NULL;
1290         }
1291       return;
1292     }
1293
1294   if (num_sections_to_defer > 0)
1295     {
1296       parameters->options().plugins()->add_deferred_layout_object(this);
1297       this->deferred_layout_.reserve(num_sections_to_defer);
1298     }
1299
1300   // Whether we've seen a .note.GNU-stack section.
1301   bool seen_gnu_stack = false;
1302   // The flags of a .note.GNU-stack section.
1303   uint64_t gnu_stack_flags = 0;
1304
1305   // Keep track of which sections to omit.
1306   std::vector<bool> omit(shnum, false);
1307
1308   // Keep track of reloc sections when emitting relocations.
1309   const bool relocatable = parameters->options().relocatable();
1310   const bool emit_relocs = (relocatable
1311                             || parameters->options().emit_relocs());
1312   std::vector<unsigned int> reloc_sections;
1313
1314   // Keep track of .eh_frame sections.
1315   std::vector<unsigned int> eh_frame_sections;
1316
1317   // Skip the first, dummy, section.
1318   pshdrs = shdrs + This::shdr_size;
1319   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1320     {
1321       typename This::Shdr shdr(pshdrs);
1322
1323       if (shdr.get_sh_name() >= section_names_size)
1324         {
1325           this->error(_("bad section name offset for section %u: %lu"),
1326                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1327           return;
1328         }
1329
1330       const char* name = pnames + shdr.get_sh_name();
1331
1332       if (!is_gc_pass_two)
1333         { 
1334           if (this->handle_gnu_warning_section(name, i, symtab))
1335             { 
1336               if (!relocatable && !parameters->options().shared())
1337                 omit[i] = true;
1338             }
1339
1340           // The .note.GNU-stack section is special.  It gives the
1341           // protection flags that this object file requires for the stack
1342           // in memory.
1343           if (strcmp(name, ".note.GNU-stack") == 0)
1344             {
1345               seen_gnu_stack = true;
1346               gnu_stack_flags |= shdr.get_sh_flags();
1347               omit[i] = true;
1348             }
1349
1350           // The .note.GNU-split-stack section is also special.  It
1351           // indicates that the object was compiled with
1352           // -fsplit-stack.
1353           if (this->handle_split_stack_section(name))
1354             {
1355               if (!relocatable && !parameters->options().shared())
1356                 omit[i] = true;
1357             }
1358
1359           // Skip attributes section.
1360           if (parameters->target().is_attributes_section(name))
1361             {
1362               omit[i] = true;
1363             }
1364
1365           bool discard = omit[i];
1366           if (!discard)
1367             {
1368               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1369                 {
1370                   if (!this->include_section_group(symtab, layout, i, name, 
1371                                                    shdrs, pnames, 
1372                                                    section_names_size,
1373                                                    &omit))
1374                     discard = true;
1375                 }
1376               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1377                        && Layout::is_linkonce(name))
1378                 {
1379                   if (!this->include_linkonce_section(layout, i, name, shdr))
1380                     discard = true;
1381                 }
1382             }
1383
1384           // Add the section to the incremental inputs layout.
1385           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1386           if (incremental_inputs != NULL
1387               && !discard
1388               && can_incremental_update(shdr.get_sh_type()))
1389             {
1390               off_t sh_size = shdr.get_sh_size();
1391               section_size_type uncompressed_size;
1392               if (this->section_is_compressed(i, &uncompressed_size))
1393                 sh_size = uncompressed_size;
1394               incremental_inputs->report_input_section(this, i, name, sh_size);
1395             }
1396
1397           if (discard)
1398             {
1399               // Do not include this section in the link.
1400               out_sections[i] = NULL;
1401               out_section_offsets[i] = invalid_address;
1402               continue;
1403             }
1404         }
1405  
1406       if (is_gc_pass_one && parameters->options().gc_sections())
1407         {
1408           if (this->is_section_name_included(name)
1409               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1410               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1411             {
1412               symtab->gc()->worklist().push(Section_id(this, i)); 
1413             }
1414           // If the section name XXX can be represented as a C identifier
1415           // it cannot be discarded if there are references to
1416           // __start_XXX and __stop_XXX symbols.  These need to be
1417           // specially handled.
1418           if (is_cident(name))
1419             {
1420               symtab->gc()->add_cident_section(name, Section_id(this, i));
1421             }
1422         }
1423
1424       // When doing a relocatable link we are going to copy input
1425       // reloc sections into the output.  We only want to copy the
1426       // ones associated with sections which are not being discarded.
1427       // However, we don't know that yet for all sections.  So save
1428       // reloc sections and process them later. Garbage collection is
1429       // not triggered when relocatable code is desired.
1430       if (emit_relocs
1431           && (shdr.get_sh_type() == elfcpp::SHT_REL
1432               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1433         {
1434           reloc_sections.push_back(i);
1435           continue;
1436         }
1437
1438       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1439         continue;
1440
1441       // The .eh_frame section is special.  It holds exception frame
1442       // information that we need to read in order to generate the
1443       // exception frame header.  We process these after all the other
1444       // sections so that the exception frame reader can reliably
1445       // determine which sections are being discarded, and discard the
1446       // corresponding information.
1447       if (!relocatable
1448           && strcmp(name, ".eh_frame") == 0
1449           && this->check_eh_frame_flags(&shdr))
1450         {
1451           if (is_gc_pass_one)
1452             {
1453               out_sections[i] = reinterpret_cast<Output_section*>(1);
1454               out_section_offsets[i] = invalid_address;
1455             }
1456           else if (should_defer_layout)
1457             this->deferred_layout_.push_back(Deferred_layout(i, name,
1458                                                              pshdrs,
1459                                                              reloc_shndx[i],
1460                                                              reloc_type[i]));
1461           else
1462             eh_frame_sections.push_back(i);
1463           continue;
1464         }
1465
1466       if (is_gc_pass_two && parameters->options().gc_sections())
1467         {
1468           // This is executed during the second pass of garbage 
1469           // collection. do_layout has been called before and some 
1470           // sections have been already discarded. Simply ignore 
1471           // such sections this time around.
1472           if (out_sections[i] == NULL)
1473             {
1474               gold_assert(out_section_offsets[i] == invalid_address);
1475               continue; 
1476             }
1477           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1478               && symtab->gc()->is_section_garbage(this, i))
1479               {
1480                 if (parameters->options().print_gc_sections())
1481                   gold_info(_("%s: removing unused section from '%s'" 
1482                               " in file '%s'"),
1483                             program_name, this->section_name(i).c_str(), 
1484                             this->name().c_str());
1485                 out_sections[i] = NULL;
1486                 out_section_offsets[i] = invalid_address;
1487                 continue;
1488               }
1489         }
1490
1491       if (is_gc_pass_two && parameters->options().icf_enabled())
1492         {
1493           if (out_sections[i] == NULL)
1494             {
1495               gold_assert(out_section_offsets[i] == invalid_address);
1496               continue;
1497             }
1498           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1499               && symtab->icf()->is_section_folded(this, i))
1500               {
1501                 if (parameters->options().print_icf_sections())
1502                   {
1503                     Section_id folded =
1504                                 symtab->icf()->get_folded_section(this, i);
1505                     Relobj* folded_obj =
1506                                 reinterpret_cast<Relobj*>(folded.first);
1507                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1508                                 "into '%s' in file '%s'"),
1509                               program_name, this->section_name(i).c_str(),
1510                               this->name().c_str(),
1511                               folded_obj->section_name(folded.second).c_str(),
1512                               folded_obj->name().c_str());
1513                   }
1514                 out_sections[i] = NULL;
1515                 out_section_offsets[i] = invalid_address;
1516                 continue;
1517               }
1518         }
1519
1520       // Defer layout here if input files are claimed by plugins.  When gc
1521       // is turned on this function is called twice.  For the second call
1522       // should_defer_layout should be false.
1523       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1524         {
1525           gold_assert(!is_gc_pass_two);
1526           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1527                                                            pshdrs,
1528                                                            reloc_shndx[i],
1529                                                            reloc_type[i]));
1530           // Put dummy values here; real values will be supplied by
1531           // do_layout_deferred_sections.
1532           out_sections[i] = reinterpret_cast<Output_section*>(2);
1533           out_section_offsets[i] = invalid_address;
1534           continue;
1535         }
1536
1537       // During gc_pass_two if a section that was previously deferred is
1538       // found, do not layout the section as layout_deferred_sections will
1539       // do it later from gold.cc.
1540       if (is_gc_pass_two 
1541           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1542         continue;
1543
1544       if (is_gc_pass_one)
1545         {
1546           // This is during garbage collection. The out_sections are 
1547           // assigned in the second call to this function. 
1548           out_sections[i] = reinterpret_cast<Output_section*>(1);
1549           out_section_offsets[i] = invalid_address;
1550         }
1551       else
1552         {
1553           // When garbage collection is switched on the actual layout
1554           // only happens in the second call.
1555           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1556                                reloc_type[i]);
1557         }
1558     }
1559
1560   if (!is_gc_pass_two)
1561     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1562
1563   // When doing a relocatable link handle the reloc sections at the
1564   // end.  Garbage collection  and Identical Code Folding is not 
1565   // turned on for relocatable code. 
1566   if (emit_relocs)
1567     this->size_relocatable_relocs();
1568
1569   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1570
1571   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1572        p != reloc_sections.end();
1573        ++p)
1574     {
1575       unsigned int i = *p;
1576       const unsigned char* pshdr;
1577       pshdr = section_headers_data + i * This::shdr_size;
1578       typename This::Shdr shdr(pshdr);
1579
1580       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1581       if (data_shndx >= shnum)
1582         {
1583           // We already warned about this above.
1584           continue;
1585         }
1586
1587       Output_section* data_section = out_sections[data_shndx];
1588       if (data_section == reinterpret_cast<Output_section*>(2))
1589         {
1590           // The layout for the data section was deferred, so we need
1591           // to defer the relocation section, too.
1592           const char* name = pnames + shdr.get_sh_name();
1593           this->deferred_layout_relocs_.push_back(
1594               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1595           out_sections[i] = reinterpret_cast<Output_section*>(2);
1596           out_section_offsets[i] = invalid_address;
1597           continue;
1598         }
1599       if (data_section == NULL)
1600         {
1601           out_sections[i] = NULL;
1602           out_section_offsets[i] = invalid_address;
1603           continue;
1604         }
1605
1606       Relocatable_relocs* rr = new Relocatable_relocs();
1607       this->set_relocatable_relocs(i, rr);
1608
1609       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1610                                                 rr);
1611       out_sections[i] = os;
1612       out_section_offsets[i] = invalid_address;
1613     }
1614
1615   // Handle the .eh_frame sections at the end.
1616   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1617   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1618        p != eh_frame_sections.end();
1619        ++p)
1620     {
1621       unsigned int i = *p;
1622       const unsigned char* pshdr;
1623       pshdr = section_headers_data + i * This::shdr_size;
1624       typename This::Shdr shdr(pshdr);
1625
1626       this->layout_eh_frame_section(layout,
1627                                     symbols_data,
1628                                     symbols_size,
1629                                     symbol_names_data,
1630                                     symbol_names_size,
1631                                     i,
1632                                     shdr,
1633                                     reloc_shndx[i],
1634                                     reloc_type[i]);
1635     }
1636
1637   if (is_gc_pass_two)
1638     {
1639       delete[] gc_sd->section_headers_data;
1640       delete[] gc_sd->section_names_data;
1641       delete[] gc_sd->symbols_data;
1642       delete[] gc_sd->symbol_names_data;
1643       this->set_symbols_data(NULL);
1644     }
1645   else
1646     {
1647       delete sd->section_headers;
1648       sd->section_headers = NULL;
1649       delete sd->section_names;
1650       sd->section_names = NULL;
1651     }
1652 }
1653
1654 // Layout sections whose layout was deferred while waiting for
1655 // input files from a plugin.
1656
1657 template<int size, bool big_endian>
1658 void
1659 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1660 {
1661   typename std::vector<Deferred_layout>::iterator deferred;
1662
1663   for (deferred = this->deferred_layout_.begin();
1664        deferred != this->deferred_layout_.end();
1665        ++deferred)
1666     {
1667       typename This::Shdr shdr(deferred->shdr_data_);
1668       // If the section is not included, it is because the garbage collector
1669       // decided it is not needed.  Avoid reverting that decision.
1670       if (!this->is_section_included(deferred->shndx_))
1671         continue;
1672
1673       if (parameters->options().relocatable()
1674           || deferred->name_ != ".eh_frame"
1675           || !this->check_eh_frame_flags(&shdr))
1676         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1677                              shdr, deferred->reloc_shndx_,
1678                              deferred->reloc_type_);
1679       else
1680         {
1681           // Reading the symbols again here may be slow.
1682           Read_symbols_data sd;
1683           this->read_symbols(&sd);
1684           this->layout_eh_frame_section(layout,
1685                                         sd.symbols->data(),
1686                                         sd.symbols_size,
1687                                         sd.symbol_names->data(),
1688                                         sd.symbol_names_size,
1689                                         deferred->shndx_,
1690                                         shdr,
1691                                         deferred->reloc_shndx_,
1692                                         deferred->reloc_type_);
1693         }
1694     }
1695
1696   this->deferred_layout_.clear();
1697
1698   // Now handle the deferred relocation sections.
1699
1700   Output_sections& out_sections(this->output_sections());
1701   std::vector<Address>& out_section_offsets(this->section_offsets());
1702
1703   for (deferred = this->deferred_layout_relocs_.begin();
1704        deferred != this->deferred_layout_relocs_.end();
1705        ++deferred)
1706     {
1707       unsigned int shndx = deferred->shndx_;
1708       typename This::Shdr shdr(deferred->shdr_data_);
1709       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1710
1711       Output_section* data_section = out_sections[data_shndx];
1712       if (data_section == NULL)
1713         {
1714           out_sections[shndx] = NULL;
1715           out_section_offsets[shndx] = invalid_address;
1716           continue;
1717         }
1718
1719       Relocatable_relocs* rr = new Relocatable_relocs();
1720       this->set_relocatable_relocs(shndx, rr);
1721
1722       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1723                                                 data_section, rr);
1724       out_sections[shndx] = os;
1725       out_section_offsets[shndx] = invalid_address;
1726     }
1727 }
1728
1729 // Add the symbols to the symbol table.
1730
1731 template<int size, bool big_endian>
1732 void
1733 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1734                                                     Read_symbols_data* sd,
1735                                                     Layout*)
1736 {
1737   if (sd->symbols == NULL)
1738     {
1739       gold_assert(sd->symbol_names == NULL);
1740       return;
1741     }
1742
1743   const int sym_size = This::sym_size;
1744   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1745                      / sym_size);
1746   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1747     {
1748       this->error(_("size of symbols is not multiple of symbol size"));
1749       return;
1750     }
1751
1752   this->symbols_.resize(symcount);
1753
1754   const char* sym_names =
1755     reinterpret_cast<const char*>(sd->symbol_names->data());
1756   symtab->add_from_relobj(this,
1757                           sd->symbols->data() + sd->external_symbols_offset,
1758                           symcount, this->local_symbol_count_,
1759                           sym_names, sd->symbol_names_size,
1760                           &this->symbols_,
1761                           &this->defined_count_);
1762
1763   delete sd->symbols;
1764   sd->symbols = NULL;
1765   delete sd->symbol_names;
1766   sd->symbol_names = NULL;
1767 }
1768
1769 // Find out if this object, that is a member of a lib group, should be included
1770 // in the link. We check every symbol defined by this object. If the symbol
1771 // table has a strong undefined reference to that symbol, we have to include
1772 // the object.
1773
1774 template<int size, bool big_endian>
1775 Archive::Should_include
1776 Sized_relobj_file<size, big_endian>::do_should_include_member(
1777     Symbol_table* symtab,
1778     Layout* layout,
1779     Read_symbols_data* sd,
1780     std::string* why)
1781 {
1782   char* tmpbuf = NULL;
1783   size_t tmpbuflen = 0;
1784   const char* sym_names =
1785       reinterpret_cast<const char*>(sd->symbol_names->data());
1786   const unsigned char* syms =
1787       sd->symbols->data() + sd->external_symbols_offset;
1788   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1789   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1790                          / sym_size);
1791
1792   const unsigned char* p = syms;
1793
1794   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1795     {
1796       elfcpp::Sym<size, big_endian> sym(p);
1797       unsigned int st_shndx = sym.get_st_shndx();
1798       if (st_shndx == elfcpp::SHN_UNDEF)
1799         continue;
1800
1801       unsigned int st_name = sym.get_st_name();
1802       const char* name = sym_names + st_name;
1803       Symbol* symbol;
1804       Archive::Should_include t = Archive::should_include_member(symtab,
1805                                                                  layout,
1806                                                                  name,
1807                                                                  &symbol, why,
1808                                                                  &tmpbuf,
1809                                                                  &tmpbuflen);
1810       if (t == Archive::SHOULD_INCLUDE_YES)
1811         {
1812           if (tmpbuf != NULL)
1813             free(tmpbuf);
1814           return t;
1815         }
1816     }
1817   if (tmpbuf != NULL)
1818     free(tmpbuf);
1819   return Archive::SHOULD_INCLUDE_UNKNOWN;
1820 }
1821
1822 // Iterate over global defined symbols, calling a visitor class V for each.
1823
1824 template<int size, bool big_endian>
1825 void
1826 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1827     Read_symbols_data* sd,
1828     Library_base::Symbol_visitor_base* v)
1829 {
1830   const char* sym_names =
1831       reinterpret_cast<const char*>(sd->symbol_names->data());
1832   const unsigned char* syms =
1833       sd->symbols->data() + sd->external_symbols_offset;
1834   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1835   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1836                      / sym_size);
1837   const unsigned char* p = syms;
1838
1839   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1840     {
1841       elfcpp::Sym<size, big_endian> sym(p);
1842       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1843         v->visit(sym_names + sym.get_st_name());
1844     }
1845 }
1846
1847 // Return whether the local symbol SYMNDX has a PLT offset.
1848
1849 template<int size, bool big_endian>
1850 bool
1851 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1852     unsigned int symndx) const
1853 {
1854   typename Local_plt_offsets::const_iterator p =
1855     this->local_plt_offsets_.find(symndx);
1856   return p != this->local_plt_offsets_.end();
1857 }
1858
1859 // Get the PLT offset of a local symbol.
1860
1861 template<int size, bool big_endian>
1862 unsigned int
1863 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
1864     unsigned int symndx) const
1865 {
1866   typename Local_plt_offsets::const_iterator p =
1867     this->local_plt_offsets_.find(symndx);
1868   gold_assert(p != this->local_plt_offsets_.end());
1869   return p->second;
1870 }
1871
1872 // Set the PLT offset of a local symbol.
1873
1874 template<int size, bool big_endian>
1875 void
1876 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1877     unsigned int symndx, unsigned int plt_offset)
1878 {
1879   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1880     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1881   gold_assert(ins.second);
1882 }
1883
1884 // First pass over the local symbols.  Here we add their names to
1885 // *POOL and *DYNPOOL, and we store the symbol value in
1886 // THIS->LOCAL_VALUES_.  This function is always called from a
1887 // singleton thread.  This is followed by a call to
1888 // finalize_local_symbols.
1889
1890 template<int size, bool big_endian>
1891 void
1892 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1893                                                             Stringpool* dynpool)
1894 {
1895   gold_assert(this->symtab_shndx_ != -1U);
1896   if (this->symtab_shndx_ == 0)
1897     {
1898       // This object has no symbols.  Weird but legal.
1899       return;
1900     }
1901
1902   // Read the symbol table section header.
1903   const unsigned int symtab_shndx = this->symtab_shndx_;
1904   typename This::Shdr symtabshdr(this,
1905                                  this->elf_file_.section_header(symtab_shndx));
1906   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1907
1908   // Read the local symbols.
1909   const int sym_size = This::sym_size;
1910   const unsigned int loccount = this->local_symbol_count_;
1911   gold_assert(loccount == symtabshdr.get_sh_info());
1912   off_t locsize = loccount * sym_size;
1913   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1914                                               locsize, true, true);
1915
1916   // Read the symbol names.
1917   const unsigned int strtab_shndx =
1918     this->adjust_shndx(symtabshdr.get_sh_link());
1919   section_size_type strtab_size;
1920   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1921                                                         &strtab_size,
1922                                                         true);
1923   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1924
1925   // Loop over the local symbols.
1926
1927   const Output_sections& out_sections(this->output_sections());
1928   unsigned int shnum = this->shnum();
1929   unsigned int count = 0;
1930   unsigned int dyncount = 0;
1931   // Skip the first, dummy, symbol.
1932   psyms += sym_size;
1933   bool strip_all = parameters->options().strip_all();
1934   bool discard_all = parameters->options().discard_all();
1935   bool discard_locals = parameters->options().discard_locals();
1936   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1937     {
1938       elfcpp::Sym<size, big_endian> sym(psyms);
1939
1940       Symbol_value<size>& lv(this->local_values_[i]);
1941
1942       bool is_ordinary;
1943       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1944                                                   &is_ordinary);
1945       lv.set_input_shndx(shndx, is_ordinary);
1946
1947       if (sym.get_st_type() == elfcpp::STT_SECTION)
1948         lv.set_is_section_symbol();
1949       else if (sym.get_st_type() == elfcpp::STT_TLS)
1950         lv.set_is_tls_symbol();
1951       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1952         lv.set_is_ifunc_symbol();
1953
1954       // Save the input symbol value for use in do_finalize_local_symbols().
1955       lv.set_input_value(sym.get_st_value());
1956
1957       // Decide whether this symbol should go into the output file.
1958
1959       if ((shndx < shnum && out_sections[shndx] == NULL)
1960           || shndx == this->discarded_eh_frame_shndx_)
1961         {
1962           lv.set_no_output_symtab_entry();
1963           gold_assert(!lv.needs_output_dynsym_entry());
1964           continue;
1965         }
1966
1967       if (sym.get_st_type() == elfcpp::STT_SECTION)
1968         {
1969           lv.set_no_output_symtab_entry();
1970           gold_assert(!lv.needs_output_dynsym_entry());
1971           continue;
1972         }
1973
1974       if (sym.get_st_name() >= strtab_size)
1975         {
1976           this->error(_("local symbol %u section name out of range: %u >= %u"),
1977                       i, sym.get_st_name(),
1978                       static_cast<unsigned int>(strtab_size));
1979           lv.set_no_output_symtab_entry();
1980           continue;
1981         }
1982
1983       const char* name = pnames + sym.get_st_name();
1984
1985       // If needed, add the symbol to the dynamic symbol table string pool.
1986       if (lv.needs_output_dynsym_entry())
1987         {
1988           dynpool->add(name, true, NULL);
1989           ++dyncount;
1990         }
1991
1992       if (strip_all
1993           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1994         {
1995           lv.set_no_output_symtab_entry();
1996           continue;
1997         }
1998
1999       // If --discard-locals option is used, discard all temporary local
2000       // symbols.  These symbols start with system-specific local label
2001       // prefixes, typically .L for ELF system.  We want to be compatible
2002       // with GNU ld so here we essentially use the same check in
2003       // bfd_is_local_label().  The code is different because we already
2004       // know that:
2005       //
2006       //   - the symbol is local and thus cannot have global or weak binding.
2007       //   - the symbol is not a section symbol.
2008       //   - the symbol has a name.
2009       //
2010       // We do not discard a symbol if it needs a dynamic symbol entry.
2011       if (discard_locals
2012           && sym.get_st_type() != elfcpp::STT_FILE
2013           && !lv.needs_output_dynsym_entry()
2014           && lv.may_be_discarded_from_output_symtab()
2015           && parameters->target().is_local_label_name(name))
2016         {
2017           lv.set_no_output_symtab_entry();
2018           continue;
2019         }
2020
2021       // Discard the local symbol if -retain_symbols_file is specified
2022       // and the local symbol is not in that file.
2023       if (!parameters->options().should_retain_symbol(name))
2024         {
2025           lv.set_no_output_symtab_entry();
2026           continue;
2027         }
2028
2029       // Add the symbol to the symbol table string pool.
2030       pool->add(name, true, NULL);
2031       ++count;
2032     }
2033
2034   this->output_local_symbol_count_ = count;
2035   this->output_local_dynsym_count_ = dyncount;
2036 }
2037
2038 // Compute the final value of a local symbol.
2039
2040 template<int size, bool big_endian>
2041 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2042 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2043     unsigned int r_sym,
2044     const Symbol_value<size>* lv_in,
2045     Symbol_value<size>* lv_out,
2046     bool relocatable,
2047     const Output_sections& out_sections,
2048     const std::vector<Address>& out_offsets,
2049     const Symbol_table* symtab)
2050 {
2051   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2052   // we may have a memory leak.
2053   gold_assert(lv_out->has_output_value());
2054
2055   bool is_ordinary;
2056   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2057   
2058   // Set the output symbol value.
2059   
2060   if (!is_ordinary)
2061     {
2062       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2063         lv_out->set_output_value(lv_in->input_value());
2064       else
2065         {
2066           this->error(_("unknown section index %u for local symbol %u"),
2067                       shndx, r_sym);
2068           lv_out->set_output_value(0);
2069           return This::CFLV_ERROR;
2070         }
2071     }
2072   else
2073     {
2074       if (shndx >= this->shnum())
2075         {
2076           this->error(_("local symbol %u section index %u out of range"),
2077                       r_sym, shndx);
2078           lv_out->set_output_value(0);
2079           return This::CFLV_ERROR;
2080         }
2081       
2082       Output_section* os = out_sections[shndx];
2083       Address secoffset = out_offsets[shndx];
2084       if (symtab->is_section_folded(this, shndx))
2085         {
2086           gold_assert(os == NULL && secoffset == invalid_address);
2087           // Get the os of the section it is folded onto.
2088           Section_id folded = symtab->icf()->get_folded_section(this,
2089                                                                 shndx);
2090           gold_assert(folded.first != NULL);
2091           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2092             <Sized_relobj_file<size, big_endian>*>(folded.first);
2093           os = folded_obj->output_section(folded.second);
2094           gold_assert(os != NULL);
2095           secoffset = folded_obj->get_output_section_offset(folded.second);
2096           
2097           // This could be a relaxed input section.
2098           if (secoffset == invalid_address)
2099             {
2100               const Output_relaxed_input_section* relaxed_section =
2101                 os->find_relaxed_input_section(folded_obj, folded.second);
2102               gold_assert(relaxed_section != NULL);
2103               secoffset = relaxed_section->address() - os->address();
2104             }
2105         }
2106       
2107       if (os == NULL)
2108         {
2109           // This local symbol belongs to a section we are discarding.
2110           // In some cases when applying relocations later, we will
2111           // attempt to match it to the corresponding kept section,
2112           // so we leave the input value unchanged here.
2113           return This::CFLV_DISCARDED;
2114         }
2115       else if (secoffset == invalid_address)
2116         {
2117           uint64_t start;
2118           
2119           // This is a SHF_MERGE section or one which otherwise
2120           // requires special handling.
2121           if (shndx == this->discarded_eh_frame_shndx_)
2122             {
2123               // This local symbol belongs to a discarded .eh_frame
2124               // section.  Just treat it like the case in which
2125               // os == NULL above.
2126               gold_assert(this->has_eh_frame_);
2127               return This::CFLV_DISCARDED;
2128             }
2129           else if (!lv_in->is_section_symbol())
2130             {
2131               // This is not a section symbol.  We can determine
2132               // the final value now.
2133               lv_out->set_output_value(
2134                   os->output_address(this, shndx, lv_in->input_value()));
2135             }
2136           else if (!os->find_starting_output_address(this, shndx, &start))
2137             {
2138               // This is a section symbol, but apparently not one in a
2139               // merged section.  First check to see if this is a relaxed
2140               // input section.  If so, use its address.  Otherwise just
2141               // use the start of the output section.  This happens with
2142               // relocatable links when the input object has section
2143               // symbols for arbitrary non-merge sections.
2144               const Output_section_data* posd =
2145                 os->find_relaxed_input_section(this, shndx);
2146               if (posd != NULL)
2147                 {
2148                   Address relocatable_link_adjustment =
2149                     relocatable ? os->address() : 0;
2150                   lv_out->set_output_value(posd->address()
2151                                            - relocatable_link_adjustment);
2152                 }
2153               else
2154                 lv_out->set_output_value(os->address());
2155             }
2156           else
2157             {
2158               // We have to consider the addend to determine the
2159               // value to use in a relocation.  START is the start
2160               // of this input section.  If we are doing a relocatable
2161               // link, use offset from start output section instead of
2162               // address.
2163               Address adjusted_start =
2164                 relocatable ? start - os->address() : start;
2165               Merged_symbol_value<size>* msv =
2166                 new Merged_symbol_value<size>(lv_in->input_value(),
2167                                               adjusted_start);
2168               lv_out->set_merged_symbol_value(msv);
2169             }
2170         }
2171       else if (lv_in->is_tls_symbol())
2172         lv_out->set_output_value(os->tls_offset()
2173                                  + secoffset
2174                                  + lv_in->input_value());
2175       else
2176         lv_out->set_output_value((relocatable ? 0 : os->address())
2177                                  + secoffset
2178                                  + lv_in->input_value());
2179     }
2180   return This::CFLV_OK;
2181 }
2182
2183 // Compute final local symbol value.  R_SYM is the index of a local
2184 // symbol in symbol table.  LV points to a symbol value, which is
2185 // expected to hold the input value and to be over-written by the
2186 // final value.  SYMTAB points to a symbol table.  Some targets may want
2187 // to know would-be-finalized local symbol values in relaxation.
2188 // Hence we provide this method.  Since this method updates *LV, a
2189 // callee should make a copy of the original local symbol value and
2190 // use the copy instead of modifying an object's local symbols before
2191 // everything is finalized.  The caller should also free up any allocated
2192 // memory in the return value in *LV.
2193 template<int size, bool big_endian>
2194 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2195 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2196     unsigned int r_sym,
2197     const Symbol_value<size>* lv_in,
2198     Symbol_value<size>* lv_out,
2199     const Symbol_table* symtab)
2200 {
2201   // This is just a wrapper of compute_final_local_value_internal.
2202   const bool relocatable = parameters->options().relocatable();
2203   const Output_sections& out_sections(this->output_sections());
2204   const std::vector<Address>& out_offsets(this->section_offsets());
2205   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2206                                                   relocatable, out_sections,
2207                                                   out_offsets, symtab);
2208 }
2209
2210 // Finalize the local symbols.  Here we set the final value in
2211 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2212 // This function is always called from a singleton thread.  The actual
2213 // output of the local symbols will occur in a separate task.
2214
2215 template<int size, bool big_endian>
2216 unsigned int
2217 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2218     unsigned int index,
2219     off_t off,
2220     Symbol_table* symtab)
2221 {
2222   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2223
2224   const unsigned int loccount = this->local_symbol_count_;
2225   this->local_symbol_offset_ = off;
2226
2227   const bool relocatable = parameters->options().relocatable();
2228   const Output_sections& out_sections(this->output_sections());
2229   const std::vector<Address>& out_offsets(this->section_offsets());
2230
2231   for (unsigned int i = 1; i < loccount; ++i)
2232     {
2233       Symbol_value<size>* lv = &this->local_values_[i];
2234
2235       Compute_final_local_value_status cflv_status =
2236         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2237                                                  out_sections, out_offsets,
2238                                                  symtab);
2239       switch (cflv_status)
2240         {
2241         case CFLV_OK:
2242           if (!lv->is_output_symtab_index_set())
2243             {
2244               lv->set_output_symtab_index(index);
2245               ++index;
2246             }
2247           break;
2248         case CFLV_DISCARDED:
2249         case CFLV_ERROR:
2250           // Do nothing.
2251           break;
2252         default:
2253           gold_unreachable();
2254         }
2255     }
2256   return index;
2257 }
2258
2259 // Set the output dynamic symbol table indexes for the local variables.
2260
2261 template<int size, bool big_endian>
2262 unsigned int
2263 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2264     unsigned int index)
2265 {
2266   const unsigned int loccount = this->local_symbol_count_;
2267   for (unsigned int i = 1; i < loccount; ++i)
2268     {
2269       Symbol_value<size>& lv(this->local_values_[i]);
2270       if (lv.needs_output_dynsym_entry())
2271         {
2272           lv.set_output_dynsym_index(index);
2273           ++index;
2274         }
2275     }
2276   return index;
2277 }
2278
2279 // Set the offset where local dynamic symbol information will be stored.
2280 // Returns the count of local symbols contributed to the symbol table by
2281 // this object.
2282
2283 template<int size, bool big_endian>
2284 unsigned int
2285 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2286 {
2287   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2288   this->local_dynsym_offset_ = off;
2289   return this->output_local_dynsym_count_;
2290 }
2291
2292 // If Symbols_data is not NULL get the section flags from here otherwise
2293 // get it from the file.
2294
2295 template<int size, bool big_endian>
2296 uint64_t
2297 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2298 {
2299   Symbols_data* sd = this->get_symbols_data();
2300   if (sd != NULL)
2301     {
2302       const unsigned char* pshdrs = sd->section_headers_data
2303                                     + This::shdr_size * shndx;
2304       typename This::Shdr shdr(pshdrs);
2305       return shdr.get_sh_flags(); 
2306     }
2307   // If sd is NULL, read the section header from the file.
2308   return this->elf_file_.section_flags(shndx); 
2309 }
2310
2311 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2312 // in icf.cc
2313
2314 template<int size, bool big_endian>
2315 uint64_t
2316 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2317 {
2318   Symbols_data* sd = this->get_symbols_data();
2319   gold_assert(sd != NULL);
2320
2321   const unsigned char* pshdrs = sd->section_headers_data
2322                                 + This::shdr_size * shndx;
2323   typename This::Shdr shdr(pshdrs);
2324   return shdr.get_sh_entsize(); 
2325 }
2326
2327 // Write out the local symbols.
2328
2329 template<int size, bool big_endian>
2330 void
2331 Sized_relobj_file<size, big_endian>::write_local_symbols(
2332     Output_file* of,
2333     const Stringpool* sympool,
2334     const Stringpool* dynpool,
2335     Output_symtab_xindex* symtab_xindex,
2336     Output_symtab_xindex* dynsym_xindex,
2337     off_t symtab_off)
2338 {
2339   const bool strip_all = parameters->options().strip_all();
2340   if (strip_all)
2341     {
2342       if (this->output_local_dynsym_count_ == 0)
2343         return;
2344       this->output_local_symbol_count_ = 0;
2345     }
2346
2347   gold_assert(this->symtab_shndx_ != -1U);
2348   if (this->symtab_shndx_ == 0)
2349     {
2350       // This object has no symbols.  Weird but legal.
2351       return;
2352     }
2353
2354   // Read the symbol table section header.
2355   const unsigned int symtab_shndx = this->symtab_shndx_;
2356   typename This::Shdr symtabshdr(this,
2357                                  this->elf_file_.section_header(symtab_shndx));
2358   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2359   const unsigned int loccount = this->local_symbol_count_;
2360   gold_assert(loccount == symtabshdr.get_sh_info());
2361
2362   // Read the local symbols.
2363   const int sym_size = This::sym_size;
2364   off_t locsize = loccount * sym_size;
2365   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2366                                               locsize, true, false);
2367
2368   // Read the symbol names.
2369   const unsigned int strtab_shndx =
2370     this->adjust_shndx(symtabshdr.get_sh_link());
2371   section_size_type strtab_size;
2372   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2373                                                         &strtab_size,
2374                                                         false);
2375   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2376
2377   // Get views into the output file for the portions of the symbol table
2378   // and the dynamic symbol table that we will be writing.
2379   off_t output_size = this->output_local_symbol_count_ * sym_size;
2380   unsigned char* oview = NULL;
2381   if (output_size > 0)
2382     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2383                                 output_size);
2384
2385   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2386   unsigned char* dyn_oview = NULL;
2387   if (dyn_output_size > 0)
2388     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2389                                     dyn_output_size);
2390
2391   const Output_sections out_sections(this->output_sections());
2392
2393   gold_assert(this->local_values_.size() == loccount);
2394
2395   unsigned char* ov = oview;
2396   unsigned char* dyn_ov = dyn_oview;
2397   psyms += sym_size;
2398   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2399     {
2400       elfcpp::Sym<size, big_endian> isym(psyms);
2401
2402       Symbol_value<size>& lv(this->local_values_[i]);
2403
2404       bool is_ordinary;
2405       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2406                                                      &is_ordinary);
2407       if (is_ordinary)
2408         {
2409           gold_assert(st_shndx < out_sections.size());
2410           if (out_sections[st_shndx] == NULL)
2411             continue;
2412           st_shndx = out_sections[st_shndx]->out_shndx();
2413           if (st_shndx >= elfcpp::SHN_LORESERVE)
2414             {
2415               if (lv.has_output_symtab_entry())
2416                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2417               if (lv.has_output_dynsym_entry())
2418                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2419               st_shndx = elfcpp::SHN_XINDEX;
2420             }
2421         }
2422
2423       // Write the symbol to the output symbol table.
2424       if (lv.has_output_symtab_entry())
2425         {
2426           elfcpp::Sym_write<size, big_endian> osym(ov);
2427
2428           gold_assert(isym.get_st_name() < strtab_size);
2429           const char* name = pnames + isym.get_st_name();
2430           osym.put_st_name(sympool->get_offset(name));
2431           osym.put_st_value(this->local_values_[i].value(this, 0));
2432           osym.put_st_size(isym.get_st_size());
2433           osym.put_st_info(isym.get_st_info());
2434           osym.put_st_other(isym.get_st_other());
2435           osym.put_st_shndx(st_shndx);
2436
2437           ov += sym_size;
2438         }
2439
2440       // Write the symbol to the output dynamic symbol table.
2441       if (lv.has_output_dynsym_entry())
2442         {
2443           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2444           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2445
2446           gold_assert(isym.get_st_name() < strtab_size);
2447           const char* name = pnames + isym.get_st_name();
2448           osym.put_st_name(dynpool->get_offset(name));
2449           osym.put_st_value(this->local_values_[i].value(this, 0));
2450           osym.put_st_size(isym.get_st_size());
2451           osym.put_st_info(isym.get_st_info());
2452           osym.put_st_other(isym.get_st_other());
2453           osym.put_st_shndx(st_shndx);
2454
2455           dyn_ov += sym_size;
2456         }
2457     }
2458
2459
2460   if (output_size > 0)
2461     {
2462       gold_assert(ov - oview == output_size);
2463       of->write_output_view(symtab_off + this->local_symbol_offset_,
2464                             output_size, oview);
2465     }
2466
2467   if (dyn_output_size > 0)
2468     {
2469       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2470       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2471                             dyn_oview);
2472     }
2473 }
2474
2475 // Set *INFO to symbolic information about the offset OFFSET in the
2476 // section SHNDX.  Return true if we found something, false if we
2477 // found nothing.
2478
2479 template<int size, bool big_endian>
2480 bool
2481 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2482     unsigned int shndx,
2483     off_t offset,
2484     Symbol_location_info* info)
2485 {
2486   if (this->symtab_shndx_ == 0)
2487     return false;
2488
2489   section_size_type symbols_size;
2490   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2491                                                         &symbols_size,
2492                                                         false);
2493
2494   unsigned int symbol_names_shndx =
2495     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2496   section_size_type names_size;
2497   const unsigned char* symbol_names_u =
2498     this->section_contents(symbol_names_shndx, &names_size, false);
2499   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2500
2501   const int sym_size = This::sym_size;
2502   const size_t count = symbols_size / sym_size;
2503
2504   const unsigned char* p = symbols;
2505   for (size_t i = 0; i < count; ++i, p += sym_size)
2506     {
2507       elfcpp::Sym<size, big_endian> sym(p);
2508
2509       if (sym.get_st_type() == elfcpp::STT_FILE)
2510         {
2511           if (sym.get_st_name() >= names_size)
2512             info->source_file = "(invalid)";
2513           else
2514             info->source_file = symbol_names + sym.get_st_name();
2515           continue;
2516         }
2517
2518       bool is_ordinary;
2519       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2520                                                      &is_ordinary);
2521       if (is_ordinary
2522           && st_shndx == shndx
2523           && static_cast<off_t>(sym.get_st_value()) <= offset
2524           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2525               > offset))
2526         {
2527           if (sym.get_st_name() > names_size)
2528             info->enclosing_symbol_name = "(invalid)";
2529           else
2530             {
2531               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2532               if (parameters->options().do_demangle())
2533                 {
2534                   char* demangled_name = cplus_demangle(
2535                       info->enclosing_symbol_name.c_str(),
2536                       DMGL_ANSI | DMGL_PARAMS);
2537                   if (demangled_name != NULL)
2538                     {
2539                       info->enclosing_symbol_name.assign(demangled_name);
2540                       free(demangled_name);
2541                     }
2542                 }
2543             }
2544           return true;
2545         }
2546     }
2547
2548   return false;
2549 }
2550
2551 // Look for a kept section corresponding to the given discarded section,
2552 // and return its output address.  This is used only for relocations in
2553 // debugging sections.  If we can't find the kept section, return 0.
2554
2555 template<int size, bool big_endian>
2556 typename Sized_relobj_file<size, big_endian>::Address
2557 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2558     unsigned int shndx,
2559     bool* found) const
2560 {
2561   Relobj* kept_object;
2562   unsigned int kept_shndx;
2563   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2564     {
2565       Sized_relobj_file<size, big_endian>* kept_relobj =
2566         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2567       Output_section* os = kept_relobj->output_section(kept_shndx);
2568       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2569       if (os != NULL && offset != invalid_address)
2570         {
2571           *found = true;
2572           return os->address() + offset;
2573         }
2574     }
2575   *found = false;
2576   return 0;
2577 }
2578
2579 // Get symbol counts.
2580
2581 template<int size, bool big_endian>
2582 void
2583 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2584     const Symbol_table*,
2585     size_t* defined,
2586     size_t* used) const
2587 {
2588   *defined = this->defined_count_;
2589   size_t count = 0;
2590   for (typename Symbols::const_iterator p = this->symbols_.begin();
2591        p != this->symbols_.end();
2592        ++p)
2593     if (*p != NULL
2594         && (*p)->source() == Symbol::FROM_OBJECT
2595         && (*p)->object() == this
2596         && (*p)->is_defined())
2597       ++count;
2598   *used = count;
2599 }
2600
2601 // Return a view of the decompressed contents of a section.  Set *PLEN
2602 // to the size.  Set *IS_NEW to true if the contents need to be freed
2603 // by the caller.
2604
2605 template<int size, bool big_endian>
2606 const unsigned char*
2607 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2608     unsigned int shndx,
2609     section_size_type* plen,
2610     bool* is_new)
2611 {
2612   section_size_type buffer_size;
2613   const unsigned char* buffer = this->section_contents(shndx, &buffer_size,
2614                                                        false);
2615
2616   if (this->compressed_sections_ == NULL)
2617     {
2618       *plen = buffer_size;
2619       *is_new = false;
2620       return buffer;
2621     }
2622
2623   Compressed_section_map::const_iterator p =
2624       this->compressed_sections_->find(shndx);
2625   if (p == this->compressed_sections_->end())
2626     {
2627       *plen = buffer_size;
2628       *is_new = false;
2629       return buffer;
2630     }
2631
2632   section_size_type uncompressed_size = p->second.size;
2633   if (p->second.contents != NULL)
2634     {
2635       *plen = uncompressed_size;
2636       *is_new = false;
2637       return p->second.contents;
2638     }
2639
2640   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2641   if (!decompress_input_section(buffer,
2642                                 buffer_size,
2643                                 uncompressed_data,
2644                                 uncompressed_size))
2645     this->error(_("could not decompress section %s"),
2646                 this->do_section_name(shndx).c_str());
2647
2648   // We could cache the results in p->second.contents and store
2649   // false in *IS_NEW, but build_compressed_section_map() would
2650   // have done so if it had expected it to be profitable.  If
2651   // we reach this point, we expect to need the contents only
2652   // once in this pass.
2653   *plen = uncompressed_size;
2654   *is_new = true;
2655   return uncompressed_data;
2656 }
2657
2658 // Discard any buffers of uncompressed sections.  This is done
2659 // at the end of the Add_symbols task.
2660
2661 template<int size, bool big_endian>
2662 void
2663 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2664 {
2665   if (this->compressed_sections_ == NULL)
2666     return;
2667
2668   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2669        p != this->compressed_sections_->end();
2670        ++p)
2671     {
2672       if (p->second.contents != NULL)
2673         {
2674           delete[] p->second.contents;
2675           p->second.contents = NULL;
2676         }
2677     }
2678 }
2679
2680 // Input_objects methods.
2681
2682 // Add a regular relocatable object to the list.  Return false if this
2683 // object should be ignored.
2684
2685 bool
2686 Input_objects::add_object(Object* obj)
2687 {
2688   // Print the filename if the -t/--trace option is selected.
2689   if (parameters->options().trace())
2690     gold_info("%s", obj->name().c_str());
2691
2692   if (!obj->is_dynamic())
2693     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2694   else
2695     {
2696       // See if this is a duplicate SONAME.
2697       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2698       const char* soname = dynobj->soname();
2699
2700       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2701         this->sonames_.insert(soname);
2702       if (!ins.second)
2703         {
2704           // We have already seen a dynamic object with this soname.
2705           return false;
2706         }
2707
2708       this->dynobj_list_.push_back(dynobj);
2709     }
2710
2711   // Add this object to the cross-referencer if requested.
2712   if (parameters->options().user_set_print_symbol_counts()
2713       || parameters->options().cref())
2714     {
2715       if (this->cref_ == NULL)
2716         this->cref_ = new Cref();
2717       this->cref_->add_object(obj);
2718     }
2719
2720   return true;
2721 }
2722
2723 // For each dynamic object, record whether we've seen all of its
2724 // explicit dependencies.
2725
2726 void
2727 Input_objects::check_dynamic_dependencies() const
2728 {
2729   bool issued_copy_dt_needed_error = false;
2730   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2731        p != this->dynobj_list_.end();
2732        ++p)
2733     {
2734       const Dynobj::Needed& needed((*p)->needed());
2735       bool found_all = true;
2736       Dynobj::Needed::const_iterator pneeded;
2737       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2738         {
2739           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2740             {
2741               found_all = false;
2742               break;
2743             }
2744         }
2745       (*p)->set_has_unknown_needed_entries(!found_all);
2746
2747       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2748       // that gold does not support.  However, they cause no trouble
2749       // unless there is a DT_NEEDED entry that we don't know about;
2750       // warn only in that case.
2751       if (!found_all
2752           && !issued_copy_dt_needed_error
2753           && (parameters->options().copy_dt_needed_entries()
2754               || parameters->options().add_needed()))
2755         {
2756           const char* optname;
2757           if (parameters->options().copy_dt_needed_entries())
2758             optname = "--copy-dt-needed-entries";
2759           else
2760             optname = "--add-needed";
2761           gold_error(_("%s is not supported but is required for %s in %s"),
2762                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2763           issued_copy_dt_needed_error = true;
2764         }
2765     }
2766 }
2767
2768 // Start processing an archive.
2769
2770 void
2771 Input_objects::archive_start(Archive* archive)
2772 {
2773   if (parameters->options().user_set_print_symbol_counts()
2774       || parameters->options().cref())
2775     {
2776       if (this->cref_ == NULL)
2777         this->cref_ = new Cref();
2778       this->cref_->add_archive_start(archive);
2779     }
2780 }
2781
2782 // Stop processing an archive.
2783
2784 void
2785 Input_objects::archive_stop(Archive* archive)
2786 {
2787   if (parameters->options().user_set_print_symbol_counts()
2788       || parameters->options().cref())
2789     this->cref_->add_archive_stop(archive);
2790 }
2791
2792 // Print symbol counts
2793
2794 void
2795 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2796 {
2797   if (parameters->options().user_set_print_symbol_counts()
2798       && this->cref_ != NULL)
2799     this->cref_->print_symbol_counts(symtab);
2800 }
2801
2802 // Print a cross reference table.
2803
2804 void
2805 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2806 {
2807   if (parameters->options().cref() && this->cref_ != NULL)
2808     this->cref_->print_cref(symtab, f);
2809 }
2810
2811 // Relocate_info methods.
2812
2813 // Return a string describing the location of a relocation when file
2814 // and lineno information is not available.  This is only used in
2815 // error messages.
2816
2817 template<int size, bool big_endian>
2818 std::string
2819 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2820 {
2821   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2822   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2823   if (!ret.empty())
2824     return ret;
2825
2826   ret = this->object->name();
2827
2828   Symbol_location_info info;
2829   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2830     {
2831       if (!info.source_file.empty())
2832         {
2833           ret += ":";
2834           ret += info.source_file;
2835         }
2836       size_t len = info.enclosing_symbol_name.length() + 100;
2837       char* buf = new char[len];
2838       snprintf(buf, len, _(":function %s"),
2839                info.enclosing_symbol_name.c_str());
2840       ret += buf;
2841       delete[] buf;
2842       return ret;
2843     }
2844
2845   ret += "(";
2846   ret += this->object->section_name(this->data_shndx);
2847   char buf[100];
2848   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2849   ret += buf;
2850   return ret;
2851 }
2852
2853 } // End namespace gold.
2854
2855 namespace
2856 {
2857
2858 using namespace gold;
2859
2860 // Read an ELF file with the header and return the appropriate
2861 // instance of Object.
2862
2863 template<int size, bool big_endian>
2864 Object*
2865 make_elf_sized_object(const std::string& name, Input_file* input_file,
2866                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2867                       bool* punconfigured)
2868 {
2869   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2870                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2871                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2872   if (target == NULL)
2873     gold_fatal(_("%s: unsupported ELF machine number %d"),
2874                name.c_str(), ehdr.get_e_machine());
2875
2876   if (!parameters->target_valid())
2877     set_parameters_target(target);
2878   else if (target != &parameters->target())
2879     {
2880       if (punconfigured != NULL)
2881         *punconfigured = true;
2882       else
2883         gold_error(_("%s: incompatible target"), name.c_str());
2884       return NULL;
2885     }
2886
2887   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2888                                                    ehdr);
2889 }
2890
2891 } // End anonymous namespace.
2892
2893 namespace gold
2894 {
2895
2896 // Return whether INPUT_FILE is an ELF object.
2897
2898 bool
2899 is_elf_object(Input_file* input_file, off_t offset,
2900               const unsigned char** start, int* read_size)
2901 {
2902   off_t filesize = input_file->file().filesize();
2903   int want = elfcpp::Elf_recognizer::max_header_size;
2904   if (filesize - offset < want)
2905     want = filesize - offset;
2906
2907   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2908                                                        true, false);
2909   *start = p;
2910   *read_size = want;
2911
2912   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2913 }
2914
2915 // Read an ELF file and return the appropriate instance of Object.
2916
2917 Object*
2918 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2919                 const unsigned char* p, section_offset_type bytes,
2920                 bool* punconfigured)
2921 {
2922   if (punconfigured != NULL)
2923     *punconfigured = false;
2924
2925   std::string error;
2926   bool big_endian = false;
2927   int size = 0;
2928   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2929                                                &big_endian, &error))
2930     {
2931       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2932       return NULL;
2933     }
2934
2935   if (size == 32)
2936     {
2937       if (big_endian)
2938         {
2939 #ifdef HAVE_TARGET_32_BIG
2940           elfcpp::Ehdr<32, true> ehdr(p);
2941           return make_elf_sized_object<32, true>(name, input_file,
2942                                                  offset, ehdr, punconfigured);
2943 #else
2944           if (punconfigured != NULL)
2945             *punconfigured = true;
2946           else
2947             gold_error(_("%s: not configured to support "
2948                          "32-bit big-endian object"),
2949                        name.c_str());
2950           return NULL;
2951 #endif
2952         }
2953       else
2954         {
2955 #ifdef HAVE_TARGET_32_LITTLE
2956           elfcpp::Ehdr<32, false> ehdr(p);
2957           return make_elf_sized_object<32, false>(name, input_file,
2958                                                   offset, ehdr, punconfigured);
2959 #else
2960           if (punconfigured != NULL)
2961             *punconfigured = true;
2962           else
2963             gold_error(_("%s: not configured to support "
2964                          "32-bit little-endian object"),
2965                        name.c_str());
2966           return NULL;
2967 #endif
2968         }
2969     }
2970   else if (size == 64)
2971     {
2972       if (big_endian)
2973         {
2974 #ifdef HAVE_TARGET_64_BIG
2975           elfcpp::Ehdr<64, true> ehdr(p);
2976           return make_elf_sized_object<64, true>(name, input_file,
2977                                                  offset, ehdr, punconfigured);
2978 #else
2979           if (punconfigured != NULL)
2980             *punconfigured = true;
2981           else
2982             gold_error(_("%s: not configured to support "
2983                          "64-bit big-endian object"),
2984                        name.c_str());
2985           return NULL;
2986 #endif
2987         }
2988       else
2989         {
2990 #ifdef HAVE_TARGET_64_LITTLE
2991           elfcpp::Ehdr<64, false> ehdr(p);
2992           return make_elf_sized_object<64, false>(name, input_file,
2993                                                   offset, ehdr, punconfigured);
2994 #else
2995           if (punconfigured != NULL)
2996             *punconfigured = true;
2997           else
2998             gold_error(_("%s: not configured to support "
2999                          "64-bit little-endian object"),
3000                        name.c_str());
3001           return NULL;
3002 #endif
3003         }
3004     }
3005   else
3006     gold_unreachable();
3007 }
3008
3009 // Instantiate the templates we need.
3010
3011 #ifdef HAVE_TARGET_32_LITTLE
3012 template
3013 void
3014 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3015                                      Read_symbols_data*);
3016 #endif
3017
3018 #ifdef HAVE_TARGET_32_BIG
3019 template
3020 void
3021 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3022                                     Read_symbols_data*);
3023 #endif
3024
3025 #ifdef HAVE_TARGET_64_LITTLE
3026 template
3027 void
3028 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3029                                      Read_symbols_data*);
3030 #endif
3031
3032 #ifdef HAVE_TARGET_64_BIG
3033 template
3034 void
3035 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3036                                     Read_symbols_data*);
3037 #endif
3038
3039 #ifdef HAVE_TARGET_32_LITTLE
3040 template
3041 class Sized_relobj_file<32, false>;
3042 #endif
3043
3044 #ifdef HAVE_TARGET_32_BIG
3045 template
3046 class Sized_relobj_file<32, true>;
3047 #endif
3048
3049 #ifdef HAVE_TARGET_64_LITTLE
3050 template
3051 class Sized_relobj_file<64, false>;
3052 #endif
3053
3054 #ifdef HAVE_TARGET_64_BIG
3055 template
3056 class Sized_relobj_file<64, true>;
3057 #endif
3058
3059 #ifdef HAVE_TARGET_32_LITTLE
3060 template
3061 struct Relocate_info<32, false>;
3062 #endif
3063
3064 #ifdef HAVE_TARGET_32_BIG
3065 template
3066 struct Relocate_info<32, true>;
3067 #endif
3068
3069 #ifdef HAVE_TARGET_64_LITTLE
3070 template
3071 struct Relocate_info<64, false>;
3072 #endif
3073
3074 #ifdef HAVE_TARGET_64_BIG
3075 template
3076 struct Relocate_info<64, true>;
3077 #endif
3078
3079 #ifdef HAVE_TARGET_32_LITTLE
3080 template
3081 void
3082 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3083
3084 template
3085 void
3086 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3087                                       const unsigned char*);
3088 #endif
3089
3090 #ifdef HAVE_TARGET_32_BIG
3091 template
3092 void
3093 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3094
3095 template
3096 void
3097 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3098                                      const unsigned char*);
3099 #endif
3100
3101 #ifdef HAVE_TARGET_64_LITTLE
3102 template
3103 void
3104 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3105
3106 template
3107 void
3108 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3109                                       const unsigned char*);
3110 #endif
3111
3112 #ifdef HAVE_TARGET_64_BIG
3113 template
3114 void
3115 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3116
3117 template
3118 void
3119 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3120                                      const unsigned char*);
3121 #endif
3122
3123 } // End namespace gold.