Avoid looking up Input_merge_map multiple times.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
431       if (p != this->local_got_offsets_.end())
432         {
433           const Got_offset_list* got_offsets = p->second;
434           got_offsets->for_all_got_offsets(v);
435         }
436     }
437 }
438
439 // Get the address of an output section.
440
441 template<int size, bool big_endian>
442 uint64_t
443 Sized_relobj<size, big_endian>::do_output_section_address(
444     unsigned int shndx)
445 {
446   // If the input file is linked as --just-symbols, the output
447   // section address is the input section address.
448   if (this->just_symbols())
449     return this->section_address(shndx);
450
451   const Output_section* os = this->do_output_section(shndx);
452   gold_assert(os != NULL);
453   return os->address();
454 }
455
456 // Class Sized_relobj_file.
457
458 template<int size, bool big_endian>
459 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
460     const std::string& name,
461     Input_file* input_file,
462     off_t offset,
463     const elfcpp::Ehdr<size, big_endian>& ehdr)
464   : Sized_relobj<size, big_endian>(name, input_file, offset),
465     elf_file_(this, ehdr),
466     symtab_shndx_(-1U),
467     local_symbol_count_(0),
468     output_local_symbol_count_(0),
469     output_local_dynsym_count_(0),
470     symbols_(),
471     defined_count_(0),
472     local_symbol_offset_(0),
473     local_dynsym_offset_(0),
474     local_values_(),
475     local_plt_offsets_(),
476     kept_comdat_sections_(),
477     has_eh_frame_(false),
478     discarded_eh_frame_shndx_(-1U),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_()
482 {
483   this->e_type_ = ehdr.get_e_type();
484 }
485
486 template<int size, bool big_endian>
487 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
488 {
489 }
490
491 // Set up an object file based on the file header.  This sets up the
492 // section information.
493
494 template<int size, bool big_endian>
495 void
496 Sized_relobj_file<size, big_endian>::do_setup()
497 {
498   const unsigned int shnum = this->elf_file_.shnum();
499   this->set_shnum(shnum);
500 }
501
502 // Find the SHT_SYMTAB section, given the section headers.  The ELF
503 // standard says that maybe in the future there can be more than one
504 // SHT_SYMTAB section.  Until somebody figures out how that could
505 // work, we assume there is only one.
506
507 template<int size, bool big_endian>
508 void
509 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
510 {
511   const unsigned int shnum = this->shnum();
512   this->symtab_shndx_ = 0;
513   if (shnum > 0)
514     {
515       // Look through the sections in reverse order, since gas tends
516       // to put the symbol table at the end.
517       const unsigned char* p = pshdrs + shnum * This::shdr_size;
518       unsigned int i = shnum;
519       unsigned int xindex_shndx = 0;
520       unsigned int xindex_link = 0;
521       while (i > 0)
522         {
523           --i;
524           p -= This::shdr_size;
525           typename This::Shdr shdr(p);
526           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
527             {
528               this->symtab_shndx_ = i;
529               if (xindex_shndx > 0 && xindex_link == i)
530                 {
531                   Xindex* xindex =
532                     new Xindex(this->elf_file_.large_shndx_offset());
533                   xindex->read_symtab_xindex<size, big_endian>(this,
534                                                                xindex_shndx,
535                                                                pshdrs);
536                   this->set_xindex(xindex);
537                 }
538               break;
539             }
540
541           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
542           // one.  This will work if it follows the SHT_SYMTAB
543           // section.
544           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
545             {
546               xindex_shndx = i;
547               xindex_link = this->adjust_shndx(shdr.get_sh_link());
548             }
549         }
550     }
551 }
552
553 // Return the Xindex structure to use for object with lots of
554 // sections.
555
556 template<int size, bool big_endian>
557 Xindex*
558 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
559 {
560   gold_assert(this->symtab_shndx_ != -1U);
561   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
562   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
563   return xindex;
564 }
565
566 // Return whether SHDR has the right type and flags to be a GNU
567 // .eh_frame section.
568
569 template<int size, bool big_endian>
570 bool
571 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
572     const elfcpp::Shdr<size, big_endian>* shdr) const
573 {
574   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
575   return ((sh_type == elfcpp::SHT_PROGBITS
576            || sh_type == elfcpp::SHT_X86_64_UNWIND)
577           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
578 }
579
580 // Find the section header with the given name.
581
582 template<int size, bool big_endian>
583 const unsigned char*
584 Object::find_shdr(
585     const unsigned char* pshdrs,
586     const char* name,
587     const char* names,
588     section_size_type names_size,
589     const unsigned char* hdr) const
590 {
591   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
592   const unsigned int shnum = this->shnum();
593   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
594   size_t sh_name = 0;
595
596   while (1)
597     {
598       if (hdr)
599         {
600           // We found HDR last time we were called, continue looking.
601           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
602           sh_name = shdr.get_sh_name();
603         }
604       else
605         {
606           // Look for the next occurrence of NAME in NAMES.
607           // The fact that .shstrtab produced by current GNU tools is
608           // string merged means we shouldn't have both .not.foo and
609           // .foo in .shstrtab, and multiple .foo sections should all
610           // have the same sh_name.  However, this is not guaranteed
611           // by the ELF spec and not all ELF object file producers may
612           // be so clever.
613           size_t len = strlen(name) + 1;
614           const char *p = sh_name ? names + sh_name + len : names;
615           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
616                                                    name, len));
617           if (p == NULL)
618             return NULL;
619           sh_name = p - names;
620           hdr = pshdrs;
621           if (sh_name == 0)
622             return hdr;
623         }
624
625       hdr += shdr_size;
626       while (hdr < hdr_end)
627         {
628           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
629           if (shdr.get_sh_name() == sh_name)
630             return hdr;
631           hdr += shdr_size;
632         }
633       hdr = NULL;
634       if (sh_name == 0)
635         return hdr;
636     }
637 }
638
639 // Return whether there is a GNU .eh_frame section, given the section
640 // headers and the section names.
641
642 template<int size, bool big_endian>
643 bool
644 Sized_relobj_file<size, big_endian>::find_eh_frame(
645     const unsigned char* pshdrs,
646     const char* names,
647     section_size_type names_size) const
648 {
649   const unsigned char* s = NULL;
650
651   while (1)
652     {
653       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
654                                                      names, names_size, s);
655       if (s == NULL)
656         return false;
657
658       typename This::Shdr shdr(s);
659       if (this->check_eh_frame_flags(&shdr))
660         return true;
661     }
662 }
663
664 // Return TRUE if this is a section whose contents will be needed in the
665 // Add_symbols task.  This function is only called for sections that have
666 // already passed the test in is_compressed_debug_section(), so we know
667 // that the section name begins with ".zdebug".
668
669 static bool
670 need_decompressed_section(const char* name)
671 {
672   // Skip over the ".zdebug" and a quick check for the "_".
673   name += 7;
674   if (*name++ != '_')
675     return false;
676
677 #ifdef ENABLE_THREADS
678   // Decompressing these sections now will help only if we're
679   // multithreaded.
680   if (parameters->options().threads())
681     {
682       // We will need .zdebug_str if this is not an incremental link
683       // (i.e., we are processing string merge sections) or if we need
684       // to build a gdb index.
685       if ((!parameters->incremental() || parameters->options().gdb_index())
686           && strcmp(name, "str") == 0)
687         return true;
688
689       // We will need these other sections when building a gdb index.
690       if (parameters->options().gdb_index()
691           && (strcmp(name, "info") == 0
692               || strcmp(name, "types") == 0
693               || strcmp(name, "pubnames") == 0
694               || strcmp(name, "pubtypes") == 0
695               || strcmp(name, "ranges") == 0
696               || strcmp(name, "abbrev") == 0))
697         return true;
698     }
699 #endif
700
701   // Even when single-threaded, we will need .zdebug_str if this is
702   // not an incremental link and we are building a gdb index.
703   // Otherwise, we would decompress the section twice: once for
704   // string merge processing, and once for building the gdb index.
705   if (!parameters->incremental()
706       && parameters->options().gdb_index()
707       && strcmp(name, "str") == 0)
708     return true;
709
710   return false;
711 }
712
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719     const unsigned char* pshdrs,
720     unsigned int shnum,
721     const char* names,
722     section_size_type names_size,
723     Object* obj,
724     bool decompress_if_needed)
725 {
726   Compressed_section_map* uncompressed_map = new Compressed_section_map();
727   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
728   const unsigned char* p = pshdrs + shdr_size;
729
730   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
731     {
732       typename elfcpp::Shdr<size, big_endian> shdr(p);
733       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
734           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735         {
736           if (shdr.get_sh_name() >= names_size)
737             {
738               obj->error(_("bad section name offset for section %u: %lu"),
739                          i, static_cast<unsigned long>(shdr.get_sh_name()));
740               continue;
741             }
742
743           const char* name = names + shdr.get_sh_name();
744           if (is_compressed_debug_section(name))
745             {
746               section_size_type len;
747               const unsigned char* contents =
748                   obj->section_contents(i, &len, false);
749               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
750               Compressed_section_info info;
751               info.size = convert_to_section_size_type(uncompressed_size);
752               info.contents = NULL;
753               if (uncompressed_size != -1ULL)
754                 {
755                   unsigned char* uncompressed_data = NULL;
756                   if (decompress_if_needed && need_decompressed_section(name))
757                     {
758                       uncompressed_data = new unsigned char[uncompressed_size];
759                       if (decompress_input_section(contents, len,
760                                                    uncompressed_data,
761                                                    uncompressed_size))
762                         info.contents = uncompressed_data;
763                       else
764                         delete[] uncompressed_data;
765                     }
766                   (*uncompressed_map)[i] = info;
767                 }
768             }
769         }
770     }
771   return uncompressed_map;
772 }
773
774 // Stash away info for a number of special sections.
775 // Return true if any of the sections found require local symbols to be read.
776
777 template<int size, bool big_endian>
778 bool
779 Sized_relobj_file<size, big_endian>::do_find_special_sections(
780     Read_symbols_data* sd)
781 {
782   const unsigned char* const pshdrs = sd->section_headers->data();
783   const unsigned char* namesu = sd->section_names->data();
784   const char* names = reinterpret_cast<const char*>(namesu);
785
786   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
787     this->has_eh_frame_ = true;
788
789   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
790     {
791       Compressed_section_map* compressed_sections =
792           build_compressed_section_map<size, big_endian>(
793               pshdrs, this->shnum(), names, sd->section_names_size, this, true);
794       if (compressed_sections != NULL)
795         this->set_compressed_sections(compressed_sections);
796     }
797
798   return (this->has_eh_frame_
799           || (!parameters->options().relocatable()
800               && parameters->options().gdb_index()
801               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
802                   || memmem(names, sd->section_names_size, "debug_types",
803                             13) == 0)));
804 }
805
806 // Read the sections and symbols from an object file.
807
808 template<int size, bool big_endian>
809 void
810 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
811 {
812   this->base_read_symbols(sd);
813 }
814
815 // Read the sections and symbols from an object file.  This is common
816 // code for all target-specific overrides of do_read_symbols().
817
818 template<int size, bool big_endian>
819 void
820 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
821 {
822   this->read_section_data(&this->elf_file_, sd);
823
824   const unsigned char* const pshdrs = sd->section_headers->data();
825
826   this->find_symtab(pshdrs);
827
828   bool need_local_symbols = this->do_find_special_sections(sd);
829
830   sd->symbols = NULL;
831   sd->symbols_size = 0;
832   sd->external_symbols_offset = 0;
833   sd->symbol_names = NULL;
834   sd->symbol_names_size = 0;
835
836   if (this->symtab_shndx_ == 0)
837     {
838       // No symbol table.  Weird but legal.
839       return;
840     }
841
842   // Get the symbol table section header.
843   typename This::Shdr symtabshdr(pshdrs
844                                  + this->symtab_shndx_ * This::shdr_size);
845   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
846
847   // If this object has a .eh_frame section, or if building a .gdb_index
848   // section and there is debug info, we need all the symbols.
849   // Otherwise we only need the external symbols.  While it would be
850   // simpler to just always read all the symbols, I've seen object
851   // files with well over 2000 local symbols, which for a 64-bit
852   // object file format is over 5 pages that we don't need to read
853   // now.
854
855   const int sym_size = This::sym_size;
856   const unsigned int loccount = symtabshdr.get_sh_info();
857   this->local_symbol_count_ = loccount;
858   this->local_values_.resize(loccount);
859   section_offset_type locsize = loccount * sym_size;
860   off_t dataoff = symtabshdr.get_sh_offset();
861   section_size_type datasize =
862     convert_to_section_size_type(symtabshdr.get_sh_size());
863   off_t extoff = dataoff + locsize;
864   section_size_type extsize = datasize - locsize;
865
866   off_t readoff = need_local_symbols ? dataoff : extoff;
867   section_size_type readsize = need_local_symbols ? datasize : extsize;
868
869   if (readsize == 0)
870     {
871       // No external symbols.  Also weird but also legal.
872       return;
873     }
874
875   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
876
877   // Read the section header for the symbol names.
878   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
879   if (strtab_shndx >= this->shnum())
880     {
881       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
882       return;
883     }
884   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
885   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
886     {
887       this->error(_("symbol table name section has wrong type: %u"),
888                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
889       return;
890     }
891
892   // Read the symbol names.
893   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
894                                                strtabshdr.get_sh_size(),
895                                                false, true);
896
897   sd->symbols = fvsymtab;
898   sd->symbols_size = readsize;
899   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
900   sd->symbol_names = fvstrtab;
901   sd->symbol_names_size =
902     convert_to_section_size_type(strtabshdr.get_sh_size());
903 }
904
905 // Return the section index of symbol SYM.  Set *VALUE to its value in
906 // the object file.  Set *IS_ORDINARY if this is an ordinary section
907 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
908 // Note that for a symbol which is not defined in this object file,
909 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
910 // the final value of the symbol in the link.
911
912 template<int size, bool big_endian>
913 unsigned int
914 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
915                                                               Address* value,
916                                                               bool* is_ordinary)
917 {
918   section_size_type symbols_size;
919   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
920                                                         &symbols_size,
921                                                         false);
922
923   const size_t count = symbols_size / This::sym_size;
924   gold_assert(sym < count);
925
926   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
927   *value = elfsym.get_st_value();
928
929   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
930 }
931
932 // Return whether to include a section group in the link.  LAYOUT is
933 // used to keep track of which section groups we have already seen.
934 // INDEX is the index of the section group and SHDR is the section
935 // header.  If we do not want to include this group, we set bits in
936 // OMIT for each section which should be discarded.
937
938 template<int size, bool big_endian>
939 bool
940 Sized_relobj_file<size, big_endian>::include_section_group(
941     Symbol_table* symtab,
942     Layout* layout,
943     unsigned int index,
944     const char* name,
945     const unsigned char* shdrs,
946     const char* section_names,
947     section_size_type section_names_size,
948     std::vector<bool>* omit)
949 {
950   // Read the section contents.
951   typename This::Shdr shdr(shdrs + index * This::shdr_size);
952   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
953                                              shdr.get_sh_size(), true, false);
954   const elfcpp::Elf_Word* pword =
955     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
956
957   // The first word contains flags.  We only care about COMDAT section
958   // groups.  Other section groups are always included in the link
959   // just like ordinary sections.
960   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
961
962   // Look up the group signature, which is the name of a symbol.  ELF
963   // uses a symbol name because some group signatures are long, and
964   // the name is generally already in the symbol table, so it makes
965   // sense to put the long string just once in .strtab rather than in
966   // both .strtab and .shstrtab.
967
968   // Get the appropriate symbol table header (this will normally be
969   // the single SHT_SYMTAB section, but in principle it need not be).
970   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
971   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
972
973   // Read the symbol table entry.
974   unsigned int symndx = shdr.get_sh_info();
975   if (symndx >= symshdr.get_sh_size() / This::sym_size)
976     {
977       this->error(_("section group %u info %u out of range"),
978                   index, symndx);
979       return false;
980     }
981   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
982   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
983                                              false);
984   elfcpp::Sym<size, big_endian> sym(psym);
985
986   // Read the symbol table names.
987   section_size_type symnamelen;
988   const unsigned char* psymnamesu;
989   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
990                                       &symnamelen, true);
991   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
992
993   // Get the section group signature.
994   if (sym.get_st_name() >= symnamelen)
995     {
996       this->error(_("symbol %u name offset %u out of range"),
997                   symndx, sym.get_st_name());
998       return false;
999     }
1000
1001   std::string signature(psymnames + sym.get_st_name());
1002
1003   // It seems that some versions of gas will create a section group
1004   // associated with a section symbol, and then fail to give a name to
1005   // the section symbol.  In such a case, use the name of the section.
1006   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1007     {
1008       bool is_ordinary;
1009       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1010                                                       sym.get_st_shndx(),
1011                                                       &is_ordinary);
1012       if (!is_ordinary || sym_shndx >= this->shnum())
1013         {
1014           this->error(_("symbol %u invalid section index %u"),
1015                       symndx, sym_shndx);
1016           return false;
1017         }
1018       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1019       if (member_shdr.get_sh_name() < section_names_size)
1020         signature = section_names + member_shdr.get_sh_name();
1021     }
1022
1023   // Record this section group in the layout, and see whether we've already
1024   // seen one with the same signature.
1025   bool include_group;
1026   bool is_comdat;
1027   Kept_section* kept_section = NULL;
1028
1029   if ((flags & elfcpp::GRP_COMDAT) == 0)
1030     {
1031       include_group = true;
1032       is_comdat = false;
1033     }
1034   else
1035     {
1036       include_group = layout->find_or_add_kept_section(signature,
1037                                                        this, index, true,
1038                                                        true, &kept_section);
1039       is_comdat = true;
1040     }
1041
1042   if (is_comdat && include_group)
1043     {
1044       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1045       if (incremental_inputs != NULL)
1046         incremental_inputs->report_comdat_group(this, signature.c_str());
1047     }
1048
1049   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1050
1051   std::vector<unsigned int> shndxes;
1052   bool relocate_group = include_group && parameters->options().relocatable();
1053   if (relocate_group)
1054     shndxes.reserve(count - 1);
1055
1056   for (size_t i = 1; i < count; ++i)
1057     {
1058       elfcpp::Elf_Word shndx =
1059         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1060
1061       if (relocate_group)
1062         shndxes.push_back(shndx);
1063
1064       if (shndx >= this->shnum())
1065         {
1066           this->error(_("section %u in section group %u out of range"),
1067                       shndx, index);
1068           continue;
1069         }
1070
1071       // Check for an earlier section number, since we're going to get
1072       // it wrong--we may have already decided to include the section.
1073       if (shndx < index)
1074         this->error(_("invalid section group %u refers to earlier section %u"),
1075                     index, shndx);
1076
1077       // Get the name of the member section.
1078       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1079       if (member_shdr.get_sh_name() >= section_names_size)
1080         {
1081           // This is an error, but it will be diagnosed eventually
1082           // in do_layout, so we don't need to do anything here but
1083           // ignore it.
1084           continue;
1085         }
1086       std::string mname(section_names + member_shdr.get_sh_name());
1087
1088       if (include_group)
1089         {
1090           if (is_comdat)
1091             kept_section->add_comdat_section(mname, shndx,
1092                                              member_shdr.get_sh_size());
1093         }
1094       else
1095         {
1096           (*omit)[shndx] = true;
1097
1098           if (is_comdat)
1099             {
1100               Relobj* kept_object = kept_section->object();
1101               if (kept_section->is_comdat())
1102                 {
1103                   // Find the corresponding kept section, and store
1104                   // that info in the discarded section table.
1105                   unsigned int kept_shndx;
1106                   uint64_t kept_size;
1107                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1108                                                         &kept_size))
1109                     {
1110                       // We don't keep a mapping for this section if
1111                       // it has a different size.  The mapping is only
1112                       // used for relocation processing, and we don't
1113                       // want to treat the sections as similar if the
1114                       // sizes are different.  Checking the section
1115                       // size is the approach used by the GNU linker.
1116                       if (kept_size == member_shdr.get_sh_size())
1117                         this->set_kept_comdat_section(shndx, kept_object,
1118                                                       kept_shndx);
1119                     }
1120                 }
1121               else
1122                 {
1123                   // The existing section is a linkonce section.  Add
1124                   // a mapping if there is exactly one section in the
1125                   // group (which is true when COUNT == 2) and if it
1126                   // is the same size.
1127                   if (count == 2
1128                       && (kept_section->linkonce_size()
1129                           == member_shdr.get_sh_size()))
1130                     this->set_kept_comdat_section(shndx, kept_object,
1131                                                   kept_section->shndx());
1132                 }
1133             }
1134         }
1135     }
1136
1137   if (relocate_group)
1138     layout->layout_group(symtab, this, index, name, signature.c_str(),
1139                          shdr, flags, &shndxes);
1140
1141   return include_group;
1142 }
1143
1144 // Whether to include a linkonce section in the link.  NAME is the
1145 // name of the section and SHDR is the section header.
1146
1147 // Linkonce sections are a GNU extension implemented in the original
1148 // GNU linker before section groups were defined.  The semantics are
1149 // that we only include one linkonce section with a given name.  The
1150 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1151 // where T is the type of section and SYMNAME is the name of a symbol.
1152 // In an attempt to make linkonce sections interact well with section
1153 // groups, we try to identify SYMNAME and use it like a section group
1154 // signature.  We want to block section groups with that signature,
1155 // but not other linkonce sections with that signature.  We also use
1156 // the full name of the linkonce section as a normal section group
1157 // signature.
1158
1159 template<int size, bool big_endian>
1160 bool
1161 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1162     Layout* layout,
1163     unsigned int index,
1164     const char* name,
1165     const elfcpp::Shdr<size, big_endian>& shdr)
1166 {
1167   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1168   // In general the symbol name we want will be the string following
1169   // the last '.'.  However, we have to handle the case of
1170   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1171   // some versions of gcc.  So we use a heuristic: if the name starts
1172   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1173   // we look for the last '.'.  We can't always simply skip
1174   // ".gnu.linkonce.X", because we have to deal with cases like
1175   // ".gnu.linkonce.d.rel.ro.local".
1176   const char* const linkonce_t = ".gnu.linkonce.t.";
1177   const char* symname;
1178   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1179     symname = name + strlen(linkonce_t);
1180   else
1181     symname = strrchr(name, '.') + 1;
1182   std::string sig1(symname);
1183   std::string sig2(name);
1184   Kept_section* kept1;
1185   Kept_section* kept2;
1186   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1187                                                    false, &kept1);
1188   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1189                                                    true, &kept2);
1190
1191   if (!include2)
1192     {
1193       // We are not including this section because we already saw the
1194       // name of the section as a signature.  This normally implies
1195       // that the kept section is another linkonce section.  If it is
1196       // the same size, record it as the section which corresponds to
1197       // this one.
1198       if (kept2->object() != NULL
1199           && !kept2->is_comdat()
1200           && kept2->linkonce_size() == sh_size)
1201         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1202     }
1203   else if (!include1)
1204     {
1205       // The section is being discarded on the basis of its symbol
1206       // name.  This means that the corresponding kept section was
1207       // part of a comdat group, and it will be difficult to identify
1208       // the specific section within that group that corresponds to
1209       // this linkonce section.  We'll handle the simple case where
1210       // the group has only one member section.  Otherwise, it's not
1211       // worth the effort.
1212       unsigned int kept_shndx;
1213       uint64_t kept_size;
1214       if (kept1->object() != NULL
1215           && kept1->is_comdat()
1216           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1217           && kept_size == sh_size)
1218         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1219     }
1220   else
1221     {
1222       kept1->set_linkonce_size(sh_size);
1223       kept2->set_linkonce_size(sh_size);
1224     }
1225
1226   return include1 && include2;
1227 }
1228
1229 // Layout an input section.
1230
1231 template<int size, bool big_endian>
1232 inline void
1233 Sized_relobj_file<size, big_endian>::layout_section(
1234     Layout* layout,
1235     unsigned int shndx,
1236     const char* name,
1237     const typename This::Shdr& shdr,
1238     unsigned int reloc_shndx,
1239     unsigned int reloc_type)
1240 {
1241   off_t offset;
1242   Output_section* os = layout->layout(this, shndx, name, shdr,
1243                                           reloc_shndx, reloc_type, &offset);
1244
1245   this->output_sections()[shndx] = os;
1246   if (offset == -1)
1247     this->section_offsets()[shndx] = invalid_address;
1248   else
1249     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1250
1251   // If this section requires special handling, and if there are
1252   // relocs that apply to it, then we must do the special handling
1253   // before we apply the relocs.
1254   if (offset == -1 && reloc_shndx != 0)
1255     this->set_relocs_must_follow_section_writes();
1256 }
1257
1258 // Layout an input .eh_frame section.
1259
1260 template<int size, bool big_endian>
1261 void
1262 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1263     Layout* layout,
1264     const unsigned char* symbols_data,
1265     section_size_type symbols_size,
1266     const unsigned char* symbol_names_data,
1267     section_size_type symbol_names_size,
1268     unsigned int shndx,
1269     const typename This::Shdr& shdr,
1270     unsigned int reloc_shndx,
1271     unsigned int reloc_type)
1272 {
1273   gold_assert(this->has_eh_frame_);
1274
1275   off_t offset;
1276   Output_section* os = layout->layout_eh_frame(this,
1277                                                symbols_data,
1278                                                symbols_size,
1279                                                symbol_names_data,
1280                                                symbol_names_size,
1281                                                shndx,
1282                                                shdr,
1283                                                reloc_shndx,
1284                                                reloc_type,
1285                                                &offset);
1286   this->output_sections()[shndx] = os;
1287   if (os == NULL || offset == -1)
1288     {
1289       // An object can contain at most one section holding exception
1290       // frame information.
1291       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1292       this->discarded_eh_frame_shndx_ = shndx;
1293       this->section_offsets()[shndx] = invalid_address;
1294     }
1295   else
1296     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1297
1298   // If this section requires special handling, and if there are
1299   // relocs that aply to it, then we must do the special handling
1300   // before we apply the relocs.
1301   if (os != NULL && offset == -1 && reloc_shndx != 0)
1302     this->set_relocs_must_follow_section_writes();
1303 }
1304
1305 // Lay out the input sections.  We walk through the sections and check
1306 // whether they should be included in the link.  If they should, we
1307 // pass them to the Layout object, which will return an output section
1308 // and an offset.
1309 // This function is called twice sometimes, two passes, when mapping
1310 // of input sections to output sections must be delayed.
1311 // This is true for the following :
1312 // * Garbage collection (--gc-sections): Some input sections will be
1313 // discarded and hence the assignment must wait until the second pass.
1314 // In the first pass,  it is for setting up some sections as roots to
1315 // a work-list for --gc-sections and to do comdat processing.
1316 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1317 // will be folded and hence the assignment must wait.
1318 // * Using plugins to map some sections to unique segments: Mapping
1319 // some sections to unique segments requires mapping them to unique
1320 // output sections too.  This can be done via plugins now and this
1321 // information is not available in the first pass.
1322
1323 template<int size, bool big_endian>
1324 void
1325 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1326                                                Layout* layout,
1327                                                Read_symbols_data* sd)
1328 {
1329   const unsigned int shnum = this->shnum();
1330
1331   /* Should this function be called twice?  */
1332   bool is_two_pass = (parameters->options().gc_sections()
1333                       || parameters->options().icf_enabled()
1334                       || layout->is_unique_segment_for_sections_specified());
1335
1336   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1337      a two-pass approach is not needed.  */
1338   bool is_pass_one = false;
1339   bool is_pass_two = false;
1340
1341   Symbols_data* gc_sd = NULL;
1342
1343   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1344      should happen.  In the first pass, the data in sd is saved to be used
1345      later in the second pass.  */
1346   if (is_two_pass)
1347     {
1348       gc_sd = this->get_symbols_data();
1349       if (gc_sd == NULL)
1350         {
1351           gold_assert(sd != NULL);
1352           is_pass_one = true;
1353         }
1354       else
1355         {
1356           if (parameters->options().gc_sections())
1357             gold_assert(symtab->gc()->is_worklist_ready());
1358           if (parameters->options().icf_enabled())
1359             gold_assert(symtab->icf()->is_icf_ready()); 
1360           is_pass_two = true;
1361         }
1362     }
1363     
1364   if (shnum == 0)
1365     return;
1366
1367   if (is_pass_one)
1368     {
1369       // During garbage collection save the symbols data to use it when
1370       // re-entering this function.
1371       gc_sd = new Symbols_data;
1372       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1373       this->set_symbols_data(gc_sd);
1374     }
1375
1376   const unsigned char* section_headers_data = NULL;
1377   section_size_type section_names_size;
1378   const unsigned char* symbols_data = NULL;
1379   section_size_type symbols_size;
1380   const unsigned char* symbol_names_data = NULL;
1381   section_size_type symbol_names_size;
1382
1383   if (is_two_pass)
1384     {
1385       section_headers_data = gc_sd->section_headers_data;
1386       section_names_size = gc_sd->section_names_size;
1387       symbols_data = gc_sd->symbols_data;
1388       symbols_size = gc_sd->symbols_size;
1389       symbol_names_data = gc_sd->symbol_names_data;
1390       symbol_names_size = gc_sd->symbol_names_size;
1391     }
1392   else
1393     {
1394       section_headers_data = sd->section_headers->data();
1395       section_names_size = sd->section_names_size;
1396       if (sd->symbols != NULL)
1397         symbols_data = sd->symbols->data();
1398       symbols_size = sd->symbols_size;
1399       if (sd->symbol_names != NULL)
1400         symbol_names_data = sd->symbol_names->data();
1401       symbol_names_size = sd->symbol_names_size;
1402     }
1403
1404   // Get the section headers.
1405   const unsigned char* shdrs = section_headers_data;
1406   const unsigned char* pshdrs;
1407
1408   // Get the section names.
1409   const unsigned char* pnamesu = (is_two_pass
1410                                   ? gc_sd->section_names_data
1411                                   : sd->section_names->data());
1412
1413   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1414
1415   // If any input files have been claimed by plugins, we need to defer
1416   // actual layout until the replacement files have arrived.
1417   const bool should_defer_layout =
1418       (parameters->options().has_plugins()
1419        && parameters->options().plugins()->should_defer_layout());
1420   unsigned int num_sections_to_defer = 0;
1421
1422   // For each section, record the index of the reloc section if any.
1423   // Use 0 to mean that there is no reloc section, -1U to mean that
1424   // there is more than one.
1425   std::vector<unsigned int> reloc_shndx(shnum, 0);
1426   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1427   // Skip the first, dummy, section.
1428   pshdrs = shdrs + This::shdr_size;
1429   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1430     {
1431       typename This::Shdr shdr(pshdrs);
1432
1433       // Count the number of sections whose layout will be deferred.
1434       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1435         ++num_sections_to_defer;
1436
1437       unsigned int sh_type = shdr.get_sh_type();
1438       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1439         {
1440           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1441           if (target_shndx == 0 || target_shndx >= shnum)
1442             {
1443               this->error(_("relocation section %u has bad info %u"),
1444                           i, target_shndx);
1445               continue;
1446             }
1447
1448           if (reloc_shndx[target_shndx] != 0)
1449             reloc_shndx[target_shndx] = -1U;
1450           else
1451             {
1452               reloc_shndx[target_shndx] = i;
1453               reloc_type[target_shndx] = sh_type;
1454             }
1455         }
1456     }
1457
1458   Output_sections& out_sections(this->output_sections());
1459   std::vector<Address>& out_section_offsets(this->section_offsets());
1460
1461   if (!is_pass_two)
1462     {
1463       out_sections.resize(shnum);
1464       out_section_offsets.resize(shnum);
1465     }
1466
1467   // If we are only linking for symbols, then there is nothing else to
1468   // do here.
1469   if (this->input_file()->just_symbols())
1470     {
1471       if (!is_pass_two)
1472         {
1473           delete sd->section_headers;
1474           sd->section_headers = NULL;
1475           delete sd->section_names;
1476           sd->section_names = NULL;
1477         }
1478       return;
1479     }
1480
1481   if (num_sections_to_defer > 0)
1482     {
1483       parameters->options().plugins()->add_deferred_layout_object(this);
1484       this->deferred_layout_.reserve(num_sections_to_defer);
1485       this->is_deferred_layout_ = true;
1486     }
1487
1488   // Whether we've seen a .note.GNU-stack section.
1489   bool seen_gnu_stack = false;
1490   // The flags of a .note.GNU-stack section.
1491   uint64_t gnu_stack_flags = 0;
1492
1493   // Keep track of which sections to omit.
1494   std::vector<bool> omit(shnum, false);
1495
1496   // Keep track of reloc sections when emitting relocations.
1497   const bool relocatable = parameters->options().relocatable();
1498   const bool emit_relocs = (relocatable
1499                             || parameters->options().emit_relocs());
1500   std::vector<unsigned int> reloc_sections;
1501
1502   // Keep track of .eh_frame sections.
1503   std::vector<unsigned int> eh_frame_sections;
1504
1505   // Keep track of .debug_info and .debug_types sections.
1506   std::vector<unsigned int> debug_info_sections;
1507   std::vector<unsigned int> debug_types_sections;
1508
1509   // Skip the first, dummy, section.
1510   pshdrs = shdrs + This::shdr_size;
1511   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1512     {
1513       typename This::Shdr shdr(pshdrs);
1514
1515       if (shdr.get_sh_name() >= section_names_size)
1516         {
1517           this->error(_("bad section name offset for section %u: %lu"),
1518                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1519           return;
1520         }
1521
1522       const char* name = pnames + shdr.get_sh_name();
1523
1524       if (!is_pass_two)
1525         {
1526           if (this->handle_gnu_warning_section(name, i, symtab))
1527             {
1528               if (!relocatable && !parameters->options().shared())
1529                 omit[i] = true;
1530             }
1531
1532           // The .note.GNU-stack section is special.  It gives the
1533           // protection flags that this object file requires for the stack
1534           // in memory.
1535           if (strcmp(name, ".note.GNU-stack") == 0)
1536             {
1537               seen_gnu_stack = true;
1538               gnu_stack_flags |= shdr.get_sh_flags();
1539               omit[i] = true;
1540             }
1541
1542           // The .note.GNU-split-stack section is also special.  It
1543           // indicates that the object was compiled with
1544           // -fsplit-stack.
1545           if (this->handle_split_stack_section(name))
1546             {
1547               if (!relocatable && !parameters->options().shared())
1548                 omit[i] = true;
1549             }
1550
1551           // Skip attributes section.
1552           if (parameters->target().is_attributes_section(name))
1553             {
1554               omit[i] = true;
1555             }
1556
1557           bool discard = omit[i];
1558           if (!discard)
1559             {
1560               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1561                 {
1562                   if (!this->include_section_group(symtab, layout, i, name,
1563                                                    shdrs, pnames,
1564                                                    section_names_size,
1565                                                    &omit))
1566                     discard = true;
1567                 }
1568               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1569                        && Layout::is_linkonce(name))
1570                 {
1571                   if (!this->include_linkonce_section(layout, i, name, shdr))
1572                     discard = true;
1573                 }
1574             }
1575
1576           // Add the section to the incremental inputs layout.
1577           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1578           if (incremental_inputs != NULL
1579               && !discard
1580               && can_incremental_update(shdr.get_sh_type()))
1581             {
1582               off_t sh_size = shdr.get_sh_size();
1583               section_size_type uncompressed_size;
1584               if (this->section_is_compressed(i, &uncompressed_size))
1585                 sh_size = uncompressed_size;
1586               incremental_inputs->report_input_section(this, i, name, sh_size);
1587             }
1588
1589           if (discard)
1590             {
1591               // Do not include this section in the link.
1592               out_sections[i] = NULL;
1593               out_section_offsets[i] = invalid_address;
1594               continue;
1595             }
1596         }
1597
1598       if (is_pass_one && parameters->options().gc_sections())
1599         {
1600           if (this->is_section_name_included(name)
1601               || layout->keep_input_section (this, name)
1602               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1603               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1604             {
1605               symtab->gc()->worklist().push(Section_id(this, i));
1606             }
1607           // If the section name XXX can be represented as a C identifier
1608           // it cannot be discarded if there are references to
1609           // __start_XXX and __stop_XXX symbols.  These need to be
1610           // specially handled.
1611           if (is_cident(name))
1612             {
1613               symtab->gc()->add_cident_section(name, Section_id(this, i));
1614             }
1615         }
1616
1617       // When doing a relocatable link we are going to copy input
1618       // reloc sections into the output.  We only want to copy the
1619       // ones associated with sections which are not being discarded.
1620       // However, we don't know that yet for all sections.  So save
1621       // reloc sections and process them later. Garbage collection is
1622       // not triggered when relocatable code is desired.
1623       if (emit_relocs
1624           && (shdr.get_sh_type() == elfcpp::SHT_REL
1625               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1626         {
1627           reloc_sections.push_back(i);
1628           continue;
1629         }
1630
1631       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1632         continue;
1633
1634       // The .eh_frame section is special.  It holds exception frame
1635       // information that we need to read in order to generate the
1636       // exception frame header.  We process these after all the other
1637       // sections so that the exception frame reader can reliably
1638       // determine which sections are being discarded, and discard the
1639       // corresponding information.
1640       if (!relocatable
1641           && strcmp(name, ".eh_frame") == 0
1642           && this->check_eh_frame_flags(&shdr))
1643         {
1644           if (is_pass_one)
1645             {
1646               if (this->is_deferred_layout())
1647                 out_sections[i] = reinterpret_cast<Output_section*>(2);
1648               else
1649                 out_sections[i] = reinterpret_cast<Output_section*>(1);
1650               out_section_offsets[i] = invalid_address;
1651             }
1652           else if (this->is_deferred_layout())
1653             this->deferred_layout_.push_back(Deferred_layout(i, name,
1654                                                              pshdrs,
1655                                                              reloc_shndx[i],
1656                                                              reloc_type[i]));
1657           else
1658             eh_frame_sections.push_back(i);
1659           continue;
1660         }
1661
1662       if (is_pass_two && parameters->options().gc_sections())
1663         {
1664           // This is executed during the second pass of garbage
1665           // collection. do_layout has been called before and some
1666           // sections have been already discarded. Simply ignore
1667           // such sections this time around.
1668           if (out_sections[i] == NULL)
1669             {
1670               gold_assert(out_section_offsets[i] == invalid_address);
1671               continue;
1672             }
1673           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1674               && symtab->gc()->is_section_garbage(this, i))
1675               {
1676                 if (parameters->options().print_gc_sections())
1677                   gold_info(_("%s: removing unused section from '%s'"
1678                               " in file '%s'"),
1679                             program_name, this->section_name(i).c_str(),
1680                             this->name().c_str());
1681                 out_sections[i] = NULL;
1682                 out_section_offsets[i] = invalid_address;
1683                 continue;
1684               }
1685         }
1686
1687       if (is_pass_two && parameters->options().icf_enabled())
1688         {
1689           if (out_sections[i] == NULL)
1690             {
1691               gold_assert(out_section_offsets[i] == invalid_address);
1692               continue;
1693             }
1694           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1695               && symtab->icf()->is_section_folded(this, i))
1696               {
1697                 if (parameters->options().print_icf_sections())
1698                   {
1699                     Section_id folded =
1700                                 symtab->icf()->get_folded_section(this, i);
1701                     Relobj* folded_obj =
1702                                 reinterpret_cast<Relobj*>(folded.first);
1703                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1704                                 "into '%s' in file '%s'"),
1705                               program_name, this->section_name(i).c_str(),
1706                               this->name().c_str(),
1707                               folded_obj->section_name(folded.second).c_str(),
1708                               folded_obj->name().c_str());
1709                   }
1710                 out_sections[i] = NULL;
1711                 out_section_offsets[i] = invalid_address;
1712                 continue;
1713               }
1714         }
1715
1716       // Defer layout here if input files are claimed by plugins.  When gc
1717       // is turned on this function is called twice; we only want to do this
1718       // on the first pass.
1719       if (!is_pass_two
1720           && this->is_deferred_layout()
1721           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1722         {
1723           this->deferred_layout_.push_back(Deferred_layout(i, name,
1724                                                            pshdrs,
1725                                                            reloc_shndx[i],
1726                                                            reloc_type[i]));
1727           // Put dummy values here; real values will be supplied by
1728           // do_layout_deferred_sections.
1729           out_sections[i] = reinterpret_cast<Output_section*>(2);
1730           out_section_offsets[i] = invalid_address;
1731           continue;
1732         }
1733
1734       // During gc_pass_two if a section that was previously deferred is
1735       // found, do not layout the section as layout_deferred_sections will
1736       // do it later from gold.cc.
1737       if (is_pass_two
1738           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1739         continue;
1740
1741       if (is_pass_one)
1742         {
1743           // This is during garbage collection. The out_sections are
1744           // assigned in the second call to this function.
1745           out_sections[i] = reinterpret_cast<Output_section*>(1);
1746           out_section_offsets[i] = invalid_address;
1747         }
1748       else
1749         {
1750           // When garbage collection is switched on the actual layout
1751           // only happens in the second call.
1752           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1753                                reloc_type[i]);
1754
1755           // When generating a .gdb_index section, we do additional
1756           // processing of .debug_info and .debug_types sections after all
1757           // the other sections for the same reason as above.
1758           if (!relocatable
1759               && parameters->options().gdb_index()
1760               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1761             {
1762               if (strcmp(name, ".debug_info") == 0
1763                   || strcmp(name, ".zdebug_info") == 0)
1764                 debug_info_sections.push_back(i);
1765               else if (strcmp(name, ".debug_types") == 0
1766                        || strcmp(name, ".zdebug_types") == 0)
1767                 debug_types_sections.push_back(i);
1768             }
1769         }
1770     }
1771
1772   if (!is_pass_two)
1773     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1774
1775   // Handle the .eh_frame sections after the other sections.
1776   gold_assert(!is_pass_one || eh_frame_sections.empty());
1777   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1778        p != eh_frame_sections.end();
1779        ++p)
1780     {
1781       unsigned int i = *p;
1782       const unsigned char* pshdr;
1783       pshdr = section_headers_data + i * This::shdr_size;
1784       typename This::Shdr shdr(pshdr);
1785
1786       this->layout_eh_frame_section(layout,
1787                                     symbols_data,
1788                                     symbols_size,
1789                                     symbol_names_data,
1790                                     symbol_names_size,
1791                                     i,
1792                                     shdr,
1793                                     reloc_shndx[i],
1794                                     reloc_type[i]);
1795     }
1796
1797   // When doing a relocatable link handle the reloc sections at the
1798   // end.  Garbage collection  and Identical Code Folding is not
1799   // turned on for relocatable code.
1800   if (emit_relocs)
1801     this->size_relocatable_relocs();
1802
1803   gold_assert(!is_two_pass || reloc_sections.empty());
1804
1805   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1806        p != reloc_sections.end();
1807        ++p)
1808     {
1809       unsigned int i = *p;
1810       const unsigned char* pshdr;
1811       pshdr = section_headers_data + i * This::shdr_size;
1812       typename This::Shdr shdr(pshdr);
1813
1814       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1815       if (data_shndx >= shnum)
1816         {
1817           // We already warned about this above.
1818           continue;
1819         }
1820
1821       Output_section* data_section = out_sections[data_shndx];
1822       if (data_section == reinterpret_cast<Output_section*>(2))
1823         {
1824           if (is_pass_two)
1825             continue;
1826           // The layout for the data section was deferred, so we need
1827           // to defer the relocation section, too.
1828           const char* name = pnames + shdr.get_sh_name();
1829           this->deferred_layout_relocs_.push_back(
1830               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1831           out_sections[i] = reinterpret_cast<Output_section*>(2);
1832           out_section_offsets[i] = invalid_address;
1833           continue;
1834         }
1835       if (data_section == NULL)
1836         {
1837           out_sections[i] = NULL;
1838           out_section_offsets[i] = invalid_address;
1839           continue;
1840         }
1841
1842       Relocatable_relocs* rr = new Relocatable_relocs();
1843       this->set_relocatable_relocs(i, rr);
1844
1845       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1846                                                 rr);
1847       out_sections[i] = os;
1848       out_section_offsets[i] = invalid_address;
1849     }
1850
1851   // When building a .gdb_index section, scan the .debug_info and
1852   // .debug_types sections.
1853   gold_assert(!is_pass_one
1854               || (debug_info_sections.empty() && debug_types_sections.empty()));
1855   for (std::vector<unsigned int>::const_iterator p
1856            = debug_info_sections.begin();
1857        p != debug_info_sections.end();
1858        ++p)
1859     {
1860       unsigned int i = *p;
1861       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1862                                i, reloc_shndx[i], reloc_type[i]);
1863     }
1864   for (std::vector<unsigned int>::const_iterator p
1865            = debug_types_sections.begin();
1866        p != debug_types_sections.end();
1867        ++p)
1868     {
1869       unsigned int i = *p;
1870       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1871                                i, reloc_shndx[i], reloc_type[i]);
1872     }
1873
1874   if (is_pass_two)
1875     {
1876       delete[] gc_sd->section_headers_data;
1877       delete[] gc_sd->section_names_data;
1878       delete[] gc_sd->symbols_data;
1879       delete[] gc_sd->symbol_names_data;
1880       this->set_symbols_data(NULL);
1881     }
1882   else
1883     {
1884       delete sd->section_headers;
1885       sd->section_headers = NULL;
1886       delete sd->section_names;
1887       sd->section_names = NULL;
1888     }
1889 }
1890
1891 // Layout sections whose layout was deferred while waiting for
1892 // input files from a plugin.
1893
1894 template<int size, bool big_endian>
1895 void
1896 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1897 {
1898   typename std::vector<Deferred_layout>::iterator deferred;
1899
1900   for (deferred = this->deferred_layout_.begin();
1901        deferred != this->deferred_layout_.end();
1902        ++deferred)
1903     {
1904       typename This::Shdr shdr(deferred->shdr_data_);
1905
1906       if (!parameters->options().relocatable()
1907           && deferred->name_ == ".eh_frame"
1908           && this->check_eh_frame_flags(&shdr))
1909         {
1910           // Checking is_section_included is not reliable for
1911           // .eh_frame sections, because they do not have an output
1912           // section.  This is not a problem normally because we call
1913           // layout_eh_frame_section unconditionally, but when
1914           // deferring sections that is not true.  We don't want to
1915           // keep all .eh_frame sections because that will cause us to
1916           // keep all sections that they refer to, which is the wrong
1917           // way around.  Instead, the eh_frame code will discard
1918           // .eh_frame sections that refer to discarded sections.
1919
1920           // Reading the symbols again here may be slow.
1921           Read_symbols_data sd;
1922           this->base_read_symbols(&sd);
1923           this->layout_eh_frame_section(layout,
1924                                         sd.symbols->data(),
1925                                         sd.symbols_size,
1926                                         sd.symbol_names->data(),
1927                                         sd.symbol_names_size,
1928                                         deferred->shndx_,
1929                                         shdr,
1930                                         deferred->reloc_shndx_,
1931                                         deferred->reloc_type_);
1932           continue;
1933         }
1934
1935       // If the section is not included, it is because the garbage collector
1936       // decided it is not needed.  Avoid reverting that decision.
1937       if (!this->is_section_included(deferred->shndx_))
1938         continue;
1939
1940       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1941                            shdr, deferred->reloc_shndx_,
1942                            deferred->reloc_type_);
1943     }
1944
1945   this->deferred_layout_.clear();
1946
1947   // Now handle the deferred relocation sections.
1948
1949   Output_sections& out_sections(this->output_sections());
1950   std::vector<Address>& out_section_offsets(this->section_offsets());
1951
1952   for (deferred = this->deferred_layout_relocs_.begin();
1953        deferred != this->deferred_layout_relocs_.end();
1954        ++deferred)
1955     {
1956       unsigned int shndx = deferred->shndx_;
1957       typename This::Shdr shdr(deferred->shdr_data_);
1958       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1959
1960       Output_section* data_section = out_sections[data_shndx];
1961       if (data_section == NULL)
1962         {
1963           out_sections[shndx] = NULL;
1964           out_section_offsets[shndx] = invalid_address;
1965           continue;
1966         }
1967
1968       Relocatable_relocs* rr = new Relocatable_relocs();
1969       this->set_relocatable_relocs(shndx, rr);
1970
1971       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1972                                                 data_section, rr);
1973       out_sections[shndx] = os;
1974       out_section_offsets[shndx] = invalid_address;
1975     }
1976 }
1977
1978 // Add the symbols to the symbol table.
1979
1980 template<int size, bool big_endian>
1981 void
1982 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1983                                                     Read_symbols_data* sd,
1984                                                     Layout*)
1985 {
1986   if (sd->symbols == NULL)
1987     {
1988       gold_assert(sd->symbol_names == NULL);
1989       return;
1990     }
1991
1992   const int sym_size = This::sym_size;
1993   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1994                      / sym_size);
1995   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1996     {
1997       this->error(_("size of symbols is not multiple of symbol size"));
1998       return;
1999     }
2000
2001   this->symbols_.resize(symcount);
2002
2003   const char* sym_names =
2004     reinterpret_cast<const char*>(sd->symbol_names->data());
2005   symtab->add_from_relobj(this,
2006                           sd->symbols->data() + sd->external_symbols_offset,
2007                           symcount, this->local_symbol_count_,
2008                           sym_names, sd->symbol_names_size,
2009                           &this->symbols_,
2010                           &this->defined_count_);
2011
2012   delete sd->symbols;
2013   sd->symbols = NULL;
2014   delete sd->symbol_names;
2015   sd->symbol_names = NULL;
2016 }
2017
2018 // Find out if this object, that is a member of a lib group, should be included
2019 // in the link. We check every symbol defined by this object. If the symbol
2020 // table has a strong undefined reference to that symbol, we have to include
2021 // the object.
2022
2023 template<int size, bool big_endian>
2024 Archive::Should_include
2025 Sized_relobj_file<size, big_endian>::do_should_include_member(
2026     Symbol_table* symtab,
2027     Layout* layout,
2028     Read_symbols_data* sd,
2029     std::string* why)
2030 {
2031   char* tmpbuf = NULL;
2032   size_t tmpbuflen = 0;
2033   const char* sym_names =
2034       reinterpret_cast<const char*>(sd->symbol_names->data());
2035   const unsigned char* syms =
2036       sd->symbols->data() + sd->external_symbols_offset;
2037   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2038   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2039                          / sym_size);
2040
2041   const unsigned char* p = syms;
2042
2043   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2044     {
2045       elfcpp::Sym<size, big_endian> sym(p);
2046       unsigned int st_shndx = sym.get_st_shndx();
2047       if (st_shndx == elfcpp::SHN_UNDEF)
2048         continue;
2049
2050       unsigned int st_name = sym.get_st_name();
2051       const char* name = sym_names + st_name;
2052       Symbol* symbol;
2053       Archive::Should_include t = Archive::should_include_member(symtab,
2054                                                                  layout,
2055                                                                  name,
2056                                                                  &symbol, why,
2057                                                                  &tmpbuf,
2058                                                                  &tmpbuflen);
2059       if (t == Archive::SHOULD_INCLUDE_YES)
2060         {
2061           if (tmpbuf != NULL)
2062             free(tmpbuf);
2063           return t;
2064         }
2065     }
2066   if (tmpbuf != NULL)
2067     free(tmpbuf);
2068   return Archive::SHOULD_INCLUDE_UNKNOWN;
2069 }
2070
2071 // Iterate over global defined symbols, calling a visitor class V for each.
2072
2073 template<int size, bool big_endian>
2074 void
2075 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2076     Read_symbols_data* sd,
2077     Library_base::Symbol_visitor_base* v)
2078 {
2079   const char* sym_names =
2080       reinterpret_cast<const char*>(sd->symbol_names->data());
2081   const unsigned char* syms =
2082       sd->symbols->data() + sd->external_symbols_offset;
2083   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2084   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2085                      / sym_size);
2086   const unsigned char* p = syms;
2087
2088   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2089     {
2090       elfcpp::Sym<size, big_endian> sym(p);
2091       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2092         v->visit(sym_names + sym.get_st_name());
2093     }
2094 }
2095
2096 // Return whether the local symbol SYMNDX has a PLT offset.
2097
2098 template<int size, bool big_endian>
2099 bool
2100 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2101     unsigned int symndx) const
2102 {
2103   typename Local_plt_offsets::const_iterator p =
2104     this->local_plt_offsets_.find(symndx);
2105   return p != this->local_plt_offsets_.end();
2106 }
2107
2108 // Get the PLT offset of a local symbol.
2109
2110 template<int size, bool big_endian>
2111 unsigned int
2112 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2113     unsigned int symndx) const
2114 {
2115   typename Local_plt_offsets::const_iterator p =
2116     this->local_plt_offsets_.find(symndx);
2117   gold_assert(p != this->local_plt_offsets_.end());
2118   return p->second;
2119 }
2120
2121 // Set the PLT offset of a local symbol.
2122
2123 template<int size, bool big_endian>
2124 void
2125 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2126     unsigned int symndx, unsigned int plt_offset)
2127 {
2128   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2129     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2130   gold_assert(ins.second);
2131 }
2132
2133 // First pass over the local symbols.  Here we add their names to
2134 // *POOL and *DYNPOOL, and we store the symbol value in
2135 // THIS->LOCAL_VALUES_.  This function is always called from a
2136 // singleton thread.  This is followed by a call to
2137 // finalize_local_symbols.
2138
2139 template<int size, bool big_endian>
2140 void
2141 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2142                                                             Stringpool* dynpool)
2143 {
2144   gold_assert(this->symtab_shndx_ != -1U);
2145   if (this->symtab_shndx_ == 0)
2146     {
2147       // This object has no symbols.  Weird but legal.
2148       return;
2149     }
2150
2151   // Read the symbol table section header.
2152   const unsigned int symtab_shndx = this->symtab_shndx_;
2153   typename This::Shdr symtabshdr(this,
2154                                  this->elf_file_.section_header(symtab_shndx));
2155   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2156
2157   // Read the local symbols.
2158   const int sym_size = This::sym_size;
2159   const unsigned int loccount = this->local_symbol_count_;
2160   gold_assert(loccount == symtabshdr.get_sh_info());
2161   off_t locsize = loccount * sym_size;
2162   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2163                                               locsize, true, true);
2164
2165   // Read the symbol names.
2166   const unsigned int strtab_shndx =
2167     this->adjust_shndx(symtabshdr.get_sh_link());
2168   section_size_type strtab_size;
2169   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2170                                                         &strtab_size,
2171                                                         true);
2172   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2173
2174   // Loop over the local symbols.
2175
2176   const Output_sections& out_sections(this->output_sections());
2177   unsigned int shnum = this->shnum();
2178   unsigned int count = 0;
2179   unsigned int dyncount = 0;
2180   // Skip the first, dummy, symbol.
2181   psyms += sym_size;
2182   bool strip_all = parameters->options().strip_all();
2183   bool discard_all = parameters->options().discard_all();
2184   bool discard_locals = parameters->options().discard_locals();
2185   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2186     {
2187       elfcpp::Sym<size, big_endian> sym(psyms);
2188
2189       Symbol_value<size>& lv(this->local_values_[i]);
2190
2191       bool is_ordinary;
2192       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2193                                                   &is_ordinary);
2194       lv.set_input_shndx(shndx, is_ordinary);
2195
2196       if (sym.get_st_type() == elfcpp::STT_SECTION)
2197         lv.set_is_section_symbol();
2198       else if (sym.get_st_type() == elfcpp::STT_TLS)
2199         lv.set_is_tls_symbol();
2200       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2201         lv.set_is_ifunc_symbol();
2202
2203       // Save the input symbol value for use in do_finalize_local_symbols().
2204       lv.set_input_value(sym.get_st_value());
2205
2206       // Decide whether this symbol should go into the output file.
2207
2208       if ((shndx < shnum && out_sections[shndx] == NULL)
2209           || shndx == this->discarded_eh_frame_shndx_)
2210         {
2211           lv.set_no_output_symtab_entry();
2212           gold_assert(!lv.needs_output_dynsym_entry());
2213           continue;
2214         }
2215
2216       if (sym.get_st_type() == elfcpp::STT_SECTION
2217           || !this->adjust_local_symbol(&lv))
2218         {
2219           lv.set_no_output_symtab_entry();
2220           gold_assert(!lv.needs_output_dynsym_entry());
2221           continue;
2222         }
2223
2224       if (sym.get_st_name() >= strtab_size)
2225         {
2226           this->error(_("local symbol %u section name out of range: %u >= %u"),
2227                       i, sym.get_st_name(),
2228                       static_cast<unsigned int>(strtab_size));
2229           lv.set_no_output_symtab_entry();
2230           continue;
2231         }
2232
2233       const char* name = pnames + sym.get_st_name();
2234
2235       // If needed, add the symbol to the dynamic symbol table string pool.
2236       if (lv.needs_output_dynsym_entry())
2237         {
2238           dynpool->add(name, true, NULL);
2239           ++dyncount;
2240         }
2241
2242       if (strip_all
2243           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2244         {
2245           lv.set_no_output_symtab_entry();
2246           continue;
2247         }
2248
2249       // If --discard-locals option is used, discard all temporary local
2250       // symbols.  These symbols start with system-specific local label
2251       // prefixes, typically .L for ELF system.  We want to be compatible
2252       // with GNU ld so here we essentially use the same check in
2253       // bfd_is_local_label().  The code is different because we already
2254       // know that:
2255       //
2256       //   - the symbol is local and thus cannot have global or weak binding.
2257       //   - the symbol is not a section symbol.
2258       //   - the symbol has a name.
2259       //
2260       // We do not discard a symbol if it needs a dynamic symbol entry.
2261       if (discard_locals
2262           && sym.get_st_type() != elfcpp::STT_FILE
2263           && !lv.needs_output_dynsym_entry()
2264           && lv.may_be_discarded_from_output_symtab()
2265           && parameters->target().is_local_label_name(name))
2266         {
2267           lv.set_no_output_symtab_entry();
2268           continue;
2269         }
2270
2271       // Discard the local symbol if -retain_symbols_file is specified
2272       // and the local symbol is not in that file.
2273       if (!parameters->options().should_retain_symbol(name))
2274         {
2275           lv.set_no_output_symtab_entry();
2276           continue;
2277         }
2278
2279       // Add the symbol to the symbol table string pool.
2280       pool->add(name, true, NULL);
2281       ++count;
2282     }
2283
2284   this->output_local_symbol_count_ = count;
2285   this->output_local_dynsym_count_ = dyncount;
2286 }
2287
2288 // Compute the final value of a local symbol.
2289
2290 template<int size, bool big_endian>
2291 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2292 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2293     unsigned int r_sym,
2294     const Symbol_value<size>* lv_in,
2295     Symbol_value<size>* lv_out,
2296     bool relocatable,
2297     const Output_sections& out_sections,
2298     const std::vector<Address>& out_offsets,
2299     const Symbol_table* symtab)
2300 {
2301   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2302   // we may have a memory leak.
2303   gold_assert(lv_out->has_output_value());
2304
2305   bool is_ordinary;
2306   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2307
2308   // Set the output symbol value.
2309
2310   if (!is_ordinary)
2311     {
2312       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2313         lv_out->set_output_value(lv_in->input_value());
2314       else
2315         {
2316           this->error(_("unknown section index %u for local symbol %u"),
2317                       shndx, r_sym);
2318           lv_out->set_output_value(0);
2319           return This::CFLV_ERROR;
2320         }
2321     }
2322   else
2323     {
2324       if (shndx >= this->shnum())
2325         {
2326           this->error(_("local symbol %u section index %u out of range"),
2327                       r_sym, shndx);
2328           lv_out->set_output_value(0);
2329           return This::CFLV_ERROR;
2330         }
2331
2332       Output_section* os = out_sections[shndx];
2333       Address secoffset = out_offsets[shndx];
2334       if (symtab->is_section_folded(this, shndx))
2335         {
2336           gold_assert(os == NULL && secoffset == invalid_address);
2337           // Get the os of the section it is folded onto.
2338           Section_id folded = symtab->icf()->get_folded_section(this,
2339                                                                 shndx);
2340           gold_assert(folded.first != NULL);
2341           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2342             <Sized_relobj_file<size, big_endian>*>(folded.first);
2343           os = folded_obj->output_section(folded.second);
2344           gold_assert(os != NULL);
2345           secoffset = folded_obj->get_output_section_offset(folded.second);
2346
2347           // This could be a relaxed input section.
2348           if (secoffset == invalid_address)
2349             {
2350               const Output_relaxed_input_section* relaxed_section =
2351                 os->find_relaxed_input_section(folded_obj, folded.second);
2352               gold_assert(relaxed_section != NULL);
2353               secoffset = relaxed_section->address() - os->address();
2354             }
2355         }
2356
2357       if (os == NULL)
2358         {
2359           // This local symbol belongs to a section we are discarding.
2360           // In some cases when applying relocations later, we will
2361           // attempt to match it to the corresponding kept section,
2362           // so we leave the input value unchanged here.
2363           return This::CFLV_DISCARDED;
2364         }
2365       else if (secoffset == invalid_address)
2366         {
2367           uint64_t start;
2368
2369           // This is a SHF_MERGE section or one which otherwise
2370           // requires special handling.
2371           if (shndx == this->discarded_eh_frame_shndx_)
2372             {
2373               // This local symbol belongs to a discarded .eh_frame
2374               // section.  Just treat it like the case in which
2375               // os == NULL above.
2376               gold_assert(this->has_eh_frame_);
2377               return This::CFLV_DISCARDED;
2378             }
2379           else if (!lv_in->is_section_symbol())
2380             {
2381               // This is not a section symbol.  We can determine
2382               // the final value now.
2383               lv_out->set_output_value(
2384                   os->output_address(this, shndx, lv_in->input_value()));
2385             }
2386           else if (!os->find_starting_output_address(this, shndx, &start))
2387             {
2388               // This is a section symbol, but apparently not one in a
2389               // merged section.  First check to see if this is a relaxed
2390               // input section.  If so, use its address.  Otherwise just
2391               // use the start of the output section.  This happens with
2392               // relocatable links when the input object has section
2393               // symbols for arbitrary non-merge sections.
2394               const Output_section_data* posd =
2395                 os->find_relaxed_input_section(this, shndx);
2396               if (posd != NULL)
2397                 {
2398                   Address relocatable_link_adjustment =
2399                     relocatable ? os->address() : 0;
2400                   lv_out->set_output_value(posd->address()
2401                                            - relocatable_link_adjustment);
2402                 }
2403               else
2404                 lv_out->set_output_value(os->address());
2405             }
2406           else
2407             {
2408               // We have to consider the addend to determine the
2409               // value to use in a relocation.  START is the start
2410               // of this input section.  If we are doing a relocatable
2411               // link, use offset from start output section instead of
2412               // address.
2413               Address adjusted_start =
2414                 relocatable ? start - os->address() : start;
2415               Merged_symbol_value<size>* msv =
2416                 new Merged_symbol_value<size>(lv_in->input_value(),
2417                                               adjusted_start);
2418               lv_out->set_merged_symbol_value(msv);
2419             }
2420         }
2421       else if (lv_in->is_tls_symbol()
2422                || (lv_in->is_section_symbol()
2423                    && (os->flags() & elfcpp::SHF_TLS)))
2424         lv_out->set_output_value(os->tls_offset()
2425                                  + secoffset
2426                                  + lv_in->input_value());
2427       else
2428         lv_out->set_output_value((relocatable ? 0 : os->address())
2429                                  + secoffset
2430                                  + lv_in->input_value());
2431     }
2432   return This::CFLV_OK;
2433 }
2434
2435 // Compute final local symbol value.  R_SYM is the index of a local
2436 // symbol in symbol table.  LV points to a symbol value, which is
2437 // expected to hold the input value and to be over-written by the
2438 // final value.  SYMTAB points to a symbol table.  Some targets may want
2439 // to know would-be-finalized local symbol values in relaxation.
2440 // Hence we provide this method.  Since this method updates *LV, a
2441 // callee should make a copy of the original local symbol value and
2442 // use the copy instead of modifying an object's local symbols before
2443 // everything is finalized.  The caller should also free up any allocated
2444 // memory in the return value in *LV.
2445 template<int size, bool big_endian>
2446 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2447 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2448     unsigned int r_sym,
2449     const Symbol_value<size>* lv_in,
2450     Symbol_value<size>* lv_out,
2451     const Symbol_table* symtab)
2452 {
2453   // This is just a wrapper of compute_final_local_value_internal.
2454   const bool relocatable = parameters->options().relocatable();
2455   const Output_sections& out_sections(this->output_sections());
2456   const std::vector<Address>& out_offsets(this->section_offsets());
2457   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2458                                                   relocatable, out_sections,
2459                                                   out_offsets, symtab);
2460 }
2461
2462 // Finalize the local symbols.  Here we set the final value in
2463 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2464 // This function is always called from a singleton thread.  The actual
2465 // output of the local symbols will occur in a separate task.
2466
2467 template<int size, bool big_endian>
2468 unsigned int
2469 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2470     unsigned int index,
2471     off_t off,
2472     Symbol_table* symtab)
2473 {
2474   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2475
2476   const unsigned int loccount = this->local_symbol_count_;
2477   this->local_symbol_offset_ = off;
2478
2479   const bool relocatable = parameters->options().relocatable();
2480   const Output_sections& out_sections(this->output_sections());
2481   const std::vector<Address>& out_offsets(this->section_offsets());
2482
2483   for (unsigned int i = 1; i < loccount; ++i)
2484     {
2485       Symbol_value<size>* lv = &this->local_values_[i];
2486
2487       Compute_final_local_value_status cflv_status =
2488         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2489                                                  out_sections, out_offsets,
2490                                                  symtab);
2491       switch (cflv_status)
2492         {
2493         case CFLV_OK:
2494           if (!lv->is_output_symtab_index_set())
2495             {
2496               lv->set_output_symtab_index(index);
2497               ++index;
2498             }
2499           break;
2500         case CFLV_DISCARDED:
2501         case CFLV_ERROR:
2502           // Do nothing.
2503           break;
2504         default:
2505           gold_unreachable();
2506         }
2507     }
2508   return index;
2509 }
2510
2511 // Set the output dynamic symbol table indexes for the local variables.
2512
2513 template<int size, bool big_endian>
2514 unsigned int
2515 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2516     unsigned int index)
2517 {
2518   const unsigned int loccount = this->local_symbol_count_;
2519   for (unsigned int i = 1; i < loccount; ++i)
2520     {
2521       Symbol_value<size>& lv(this->local_values_[i]);
2522       if (lv.needs_output_dynsym_entry())
2523         {
2524           lv.set_output_dynsym_index(index);
2525           ++index;
2526         }
2527     }
2528   return index;
2529 }
2530
2531 // Set the offset where local dynamic symbol information will be stored.
2532 // Returns the count of local symbols contributed to the symbol table by
2533 // this object.
2534
2535 template<int size, bool big_endian>
2536 unsigned int
2537 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2538 {
2539   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2540   this->local_dynsym_offset_ = off;
2541   return this->output_local_dynsym_count_;
2542 }
2543
2544 // If Symbols_data is not NULL get the section flags from here otherwise
2545 // get it from the file.
2546
2547 template<int size, bool big_endian>
2548 uint64_t
2549 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2550 {
2551   Symbols_data* sd = this->get_symbols_data();
2552   if (sd != NULL)
2553     {
2554       const unsigned char* pshdrs = sd->section_headers_data
2555                                     + This::shdr_size * shndx;
2556       typename This::Shdr shdr(pshdrs);
2557       return shdr.get_sh_flags();
2558     }
2559   // If sd is NULL, read the section header from the file.
2560   return this->elf_file_.section_flags(shndx);
2561 }
2562
2563 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2564 // in icf.cc
2565
2566 template<int size, bool big_endian>
2567 uint64_t
2568 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2569 {
2570   Symbols_data* sd = this->get_symbols_data();
2571   gold_assert(sd != NULL);
2572
2573   const unsigned char* pshdrs = sd->section_headers_data
2574                                 + This::shdr_size * shndx;
2575   typename This::Shdr shdr(pshdrs);
2576   return shdr.get_sh_entsize();
2577 }
2578
2579 // Write out the local symbols.
2580
2581 template<int size, bool big_endian>
2582 void
2583 Sized_relobj_file<size, big_endian>::write_local_symbols(
2584     Output_file* of,
2585     const Stringpool* sympool,
2586     const Stringpool* dynpool,
2587     Output_symtab_xindex* symtab_xindex,
2588     Output_symtab_xindex* dynsym_xindex,
2589     off_t symtab_off)
2590 {
2591   const bool strip_all = parameters->options().strip_all();
2592   if (strip_all)
2593     {
2594       if (this->output_local_dynsym_count_ == 0)
2595         return;
2596       this->output_local_symbol_count_ = 0;
2597     }
2598
2599   gold_assert(this->symtab_shndx_ != -1U);
2600   if (this->symtab_shndx_ == 0)
2601     {
2602       // This object has no symbols.  Weird but legal.
2603       return;
2604     }
2605
2606   // Read the symbol table section header.
2607   const unsigned int symtab_shndx = this->symtab_shndx_;
2608   typename This::Shdr symtabshdr(this,
2609                                  this->elf_file_.section_header(symtab_shndx));
2610   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2611   const unsigned int loccount = this->local_symbol_count_;
2612   gold_assert(loccount == symtabshdr.get_sh_info());
2613
2614   // Read the local symbols.
2615   const int sym_size = This::sym_size;
2616   off_t locsize = loccount * sym_size;
2617   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2618                                               locsize, true, false);
2619
2620   // Read the symbol names.
2621   const unsigned int strtab_shndx =
2622     this->adjust_shndx(symtabshdr.get_sh_link());
2623   section_size_type strtab_size;
2624   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2625                                                         &strtab_size,
2626                                                         false);
2627   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2628
2629   // Get views into the output file for the portions of the symbol table
2630   // and the dynamic symbol table that we will be writing.
2631   off_t output_size = this->output_local_symbol_count_ * sym_size;
2632   unsigned char* oview = NULL;
2633   if (output_size > 0)
2634     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2635                                 output_size);
2636
2637   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2638   unsigned char* dyn_oview = NULL;
2639   if (dyn_output_size > 0)
2640     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2641                                     dyn_output_size);
2642
2643   const Output_sections& out_sections(this->output_sections());
2644
2645   gold_assert(this->local_values_.size() == loccount);
2646
2647   unsigned char* ov = oview;
2648   unsigned char* dyn_ov = dyn_oview;
2649   psyms += sym_size;
2650   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2651     {
2652       elfcpp::Sym<size, big_endian> isym(psyms);
2653
2654       Symbol_value<size>& lv(this->local_values_[i]);
2655
2656       bool is_ordinary;
2657       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2658                                                      &is_ordinary);
2659       if (is_ordinary)
2660         {
2661           gold_assert(st_shndx < out_sections.size());
2662           if (out_sections[st_shndx] == NULL)
2663             continue;
2664           st_shndx = out_sections[st_shndx]->out_shndx();
2665           if (st_shndx >= elfcpp::SHN_LORESERVE)
2666             {
2667               if (lv.has_output_symtab_entry())
2668                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2669               if (lv.has_output_dynsym_entry())
2670                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2671               st_shndx = elfcpp::SHN_XINDEX;
2672             }
2673         }
2674
2675       // Write the symbol to the output symbol table.
2676       if (lv.has_output_symtab_entry())
2677         {
2678           elfcpp::Sym_write<size, big_endian> osym(ov);
2679
2680           gold_assert(isym.get_st_name() < strtab_size);
2681           const char* name = pnames + isym.get_st_name();
2682           osym.put_st_name(sympool->get_offset(name));
2683           osym.put_st_value(this->local_values_[i].value(this, 0));
2684           osym.put_st_size(isym.get_st_size());
2685           osym.put_st_info(isym.get_st_info());
2686           osym.put_st_other(isym.get_st_other());
2687           osym.put_st_shndx(st_shndx);
2688
2689           ov += sym_size;
2690         }
2691
2692       // Write the symbol to the output dynamic symbol table.
2693       if (lv.has_output_dynsym_entry())
2694         {
2695           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2696           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2697
2698           gold_assert(isym.get_st_name() < strtab_size);
2699           const char* name = pnames + isym.get_st_name();
2700           osym.put_st_name(dynpool->get_offset(name));
2701           osym.put_st_value(this->local_values_[i].value(this, 0));
2702           osym.put_st_size(isym.get_st_size());
2703           osym.put_st_info(isym.get_st_info());
2704           osym.put_st_other(isym.get_st_other());
2705           osym.put_st_shndx(st_shndx);
2706
2707           dyn_ov += sym_size;
2708         }
2709     }
2710
2711
2712   if (output_size > 0)
2713     {
2714       gold_assert(ov - oview == output_size);
2715       of->write_output_view(symtab_off + this->local_symbol_offset_,
2716                             output_size, oview);
2717     }
2718
2719   if (dyn_output_size > 0)
2720     {
2721       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2722       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2723                             dyn_oview);
2724     }
2725 }
2726
2727 // Set *INFO to symbolic information about the offset OFFSET in the
2728 // section SHNDX.  Return true if we found something, false if we
2729 // found nothing.
2730
2731 template<int size, bool big_endian>
2732 bool
2733 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2734     unsigned int shndx,
2735     off_t offset,
2736     Symbol_location_info* info)
2737 {
2738   if (this->symtab_shndx_ == 0)
2739     return false;
2740
2741   section_size_type symbols_size;
2742   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2743                                                         &symbols_size,
2744                                                         false);
2745
2746   unsigned int symbol_names_shndx =
2747     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2748   section_size_type names_size;
2749   const unsigned char* symbol_names_u =
2750     this->section_contents(symbol_names_shndx, &names_size, false);
2751   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2752
2753   const int sym_size = This::sym_size;
2754   const size_t count = symbols_size / sym_size;
2755
2756   const unsigned char* p = symbols;
2757   for (size_t i = 0; i < count; ++i, p += sym_size)
2758     {
2759       elfcpp::Sym<size, big_endian> sym(p);
2760
2761       if (sym.get_st_type() == elfcpp::STT_FILE)
2762         {
2763           if (sym.get_st_name() >= names_size)
2764             info->source_file = "(invalid)";
2765           else
2766             info->source_file = symbol_names + sym.get_st_name();
2767           continue;
2768         }
2769
2770       bool is_ordinary;
2771       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2772                                                      &is_ordinary);
2773       if (is_ordinary
2774           && st_shndx == shndx
2775           && static_cast<off_t>(sym.get_st_value()) <= offset
2776           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2777               > offset))
2778         {
2779           info->enclosing_symbol_type = sym.get_st_type();
2780           if (sym.get_st_name() > names_size)
2781             info->enclosing_symbol_name = "(invalid)";
2782           else
2783             {
2784               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2785               if (parameters->options().do_demangle())
2786                 {
2787                   char* demangled_name = cplus_demangle(
2788                       info->enclosing_symbol_name.c_str(),
2789                       DMGL_ANSI | DMGL_PARAMS);
2790                   if (demangled_name != NULL)
2791                     {
2792                       info->enclosing_symbol_name.assign(demangled_name);
2793                       free(demangled_name);
2794                     }
2795                 }
2796             }
2797           return true;
2798         }
2799     }
2800
2801   return false;
2802 }
2803
2804 // Look for a kept section corresponding to the given discarded section,
2805 // and return its output address.  This is used only for relocations in
2806 // debugging sections.  If we can't find the kept section, return 0.
2807
2808 template<int size, bool big_endian>
2809 typename Sized_relobj_file<size, big_endian>::Address
2810 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2811     unsigned int shndx,
2812     bool* found) const
2813 {
2814   Relobj* kept_object;
2815   unsigned int kept_shndx;
2816   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2817     {
2818       Sized_relobj_file<size, big_endian>* kept_relobj =
2819         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2820       Output_section* os = kept_relobj->output_section(kept_shndx);
2821       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2822       if (os != NULL && offset != invalid_address)
2823         {
2824           *found = true;
2825           return os->address() + offset;
2826         }
2827     }
2828   *found = false;
2829   return 0;
2830 }
2831
2832 // Get symbol counts.
2833
2834 template<int size, bool big_endian>
2835 void
2836 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2837     const Symbol_table*,
2838     size_t* defined,
2839     size_t* used) const
2840 {
2841   *defined = this->defined_count_;
2842   size_t count = 0;
2843   for (typename Symbols::const_iterator p = this->symbols_.begin();
2844        p != this->symbols_.end();
2845        ++p)
2846     if (*p != NULL
2847         && (*p)->source() == Symbol::FROM_OBJECT
2848         && (*p)->object() == this
2849         && (*p)->is_defined())
2850       ++count;
2851   *used = count;
2852 }
2853
2854 // Return a view of the decompressed contents of a section.  Set *PLEN
2855 // to the size.  Set *IS_NEW to true if the contents need to be freed
2856 // by the caller.
2857
2858 const unsigned char*
2859 Object::decompressed_section_contents(
2860     unsigned int shndx,
2861     section_size_type* plen,
2862     bool* is_new)
2863 {
2864   section_size_type buffer_size;
2865   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2866                                                           false);
2867
2868   if (this->compressed_sections_ == NULL)
2869     {
2870       *plen = buffer_size;
2871       *is_new = false;
2872       return buffer;
2873     }
2874
2875   Compressed_section_map::const_iterator p =
2876       this->compressed_sections_->find(shndx);
2877   if (p == this->compressed_sections_->end())
2878     {
2879       *plen = buffer_size;
2880       *is_new = false;
2881       return buffer;
2882     }
2883
2884   section_size_type uncompressed_size = p->second.size;
2885   if (p->second.contents != NULL)
2886     {
2887       *plen = uncompressed_size;
2888       *is_new = false;
2889       return p->second.contents;
2890     }
2891
2892   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2893   if (!decompress_input_section(buffer,
2894                                 buffer_size,
2895                                 uncompressed_data,
2896                                 uncompressed_size))
2897     this->error(_("could not decompress section %s"),
2898                 this->do_section_name(shndx).c_str());
2899
2900   // We could cache the results in p->second.contents and store
2901   // false in *IS_NEW, but build_compressed_section_map() would
2902   // have done so if it had expected it to be profitable.  If
2903   // we reach this point, we expect to need the contents only
2904   // once in this pass.
2905   *plen = uncompressed_size;
2906   *is_new = true;
2907   return uncompressed_data;
2908 }
2909
2910 // Discard any buffers of uncompressed sections.  This is done
2911 // at the end of the Add_symbols task.
2912
2913 void
2914 Object::discard_decompressed_sections()
2915 {
2916   if (this->compressed_sections_ == NULL)
2917     return;
2918
2919   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2920        p != this->compressed_sections_->end();
2921        ++p)
2922     {
2923       if (p->second.contents != NULL)
2924         {
2925           delete[] p->second.contents;
2926           p->second.contents = NULL;
2927         }
2928     }
2929 }
2930
2931 // Input_objects methods.
2932
2933 // Add a regular relocatable object to the list.  Return false if this
2934 // object should be ignored.
2935
2936 bool
2937 Input_objects::add_object(Object* obj)
2938 {
2939   // Print the filename if the -t/--trace option is selected.
2940   if (parameters->options().trace())
2941     gold_info("%s", obj->name().c_str());
2942
2943   if (!obj->is_dynamic())
2944     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2945   else
2946     {
2947       // See if this is a duplicate SONAME.
2948       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2949       const char* soname = dynobj->soname();
2950
2951       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2952         this->sonames_.insert(soname);
2953       if (!ins.second)
2954         {
2955           // We have already seen a dynamic object with this soname.
2956           return false;
2957         }
2958
2959       this->dynobj_list_.push_back(dynobj);
2960     }
2961
2962   // Add this object to the cross-referencer if requested.
2963   if (parameters->options().user_set_print_symbol_counts()
2964       || parameters->options().cref())
2965     {
2966       if (this->cref_ == NULL)
2967         this->cref_ = new Cref();
2968       this->cref_->add_object(obj);
2969     }
2970
2971   return true;
2972 }
2973
2974 // For each dynamic object, record whether we've seen all of its
2975 // explicit dependencies.
2976
2977 void
2978 Input_objects::check_dynamic_dependencies() const
2979 {
2980   bool issued_copy_dt_needed_error = false;
2981   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2982        p != this->dynobj_list_.end();
2983        ++p)
2984     {
2985       const Dynobj::Needed& needed((*p)->needed());
2986       bool found_all = true;
2987       Dynobj::Needed::const_iterator pneeded;
2988       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2989         {
2990           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2991             {
2992               found_all = false;
2993               break;
2994             }
2995         }
2996       (*p)->set_has_unknown_needed_entries(!found_all);
2997
2998       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2999       // that gold does not support.  However, they cause no trouble
3000       // unless there is a DT_NEEDED entry that we don't know about;
3001       // warn only in that case.
3002       if (!found_all
3003           && !issued_copy_dt_needed_error
3004           && (parameters->options().copy_dt_needed_entries()
3005               || parameters->options().add_needed()))
3006         {
3007           const char* optname;
3008           if (parameters->options().copy_dt_needed_entries())
3009             optname = "--copy-dt-needed-entries";
3010           else
3011             optname = "--add-needed";
3012           gold_error(_("%s is not supported but is required for %s in %s"),
3013                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3014           issued_copy_dt_needed_error = true;
3015         }
3016     }
3017 }
3018
3019 // Start processing an archive.
3020
3021 void
3022 Input_objects::archive_start(Archive* archive)
3023 {
3024   if (parameters->options().user_set_print_symbol_counts()
3025       || parameters->options().cref())
3026     {
3027       if (this->cref_ == NULL)
3028         this->cref_ = new Cref();
3029       this->cref_->add_archive_start(archive);
3030     }
3031 }
3032
3033 // Stop processing an archive.
3034
3035 void
3036 Input_objects::archive_stop(Archive* archive)
3037 {
3038   if (parameters->options().user_set_print_symbol_counts()
3039       || parameters->options().cref())
3040     this->cref_->add_archive_stop(archive);
3041 }
3042
3043 // Print symbol counts
3044
3045 void
3046 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3047 {
3048   if (parameters->options().user_set_print_symbol_counts()
3049       && this->cref_ != NULL)
3050     this->cref_->print_symbol_counts(symtab);
3051 }
3052
3053 // Print a cross reference table.
3054
3055 void
3056 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3057 {
3058   if (parameters->options().cref() && this->cref_ != NULL)
3059     this->cref_->print_cref(symtab, f);
3060 }
3061
3062 // Relocate_info methods.
3063
3064 // Return a string describing the location of a relocation when file
3065 // and lineno information is not available.  This is only used in
3066 // error messages.
3067
3068 template<int size, bool big_endian>
3069 std::string
3070 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3071 {
3072   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3073   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3074   if (!ret.empty())
3075     return ret;
3076
3077   ret = this->object->name();
3078
3079   Symbol_location_info info;
3080   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3081     {
3082       if (!info.source_file.empty())
3083         {
3084           ret += ":";
3085           ret += info.source_file;
3086         }
3087       ret += ":";
3088       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3089         ret += _("function ");
3090       ret += info.enclosing_symbol_name;
3091       return ret;
3092     }
3093
3094   ret += "(";
3095   ret += this->object->section_name(this->data_shndx);
3096   char buf[100];
3097   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3098   ret += buf;
3099   return ret;
3100 }
3101
3102 } // End namespace gold.
3103
3104 namespace
3105 {
3106
3107 using namespace gold;
3108
3109 // Read an ELF file with the header and return the appropriate
3110 // instance of Object.
3111
3112 template<int size, bool big_endian>
3113 Object*
3114 make_elf_sized_object(const std::string& name, Input_file* input_file,
3115                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3116                       bool* punconfigured)
3117 {
3118   Target* target = select_target(input_file, offset,
3119                                  ehdr.get_e_machine(), size, big_endian,
3120                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3121                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3122   if (target == NULL)
3123     gold_fatal(_("%s: unsupported ELF machine number %d"),
3124                name.c_str(), ehdr.get_e_machine());
3125
3126   if (!parameters->target_valid())
3127     set_parameters_target(target);
3128   else if (target != &parameters->target())
3129     {
3130       if (punconfigured != NULL)
3131         *punconfigured = true;
3132       else
3133         gold_error(_("%s: incompatible target"), name.c_str());
3134       return NULL;
3135     }
3136
3137   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3138                                                    ehdr);
3139 }
3140
3141 } // End anonymous namespace.
3142
3143 namespace gold
3144 {
3145
3146 // Return whether INPUT_FILE is an ELF object.
3147
3148 bool
3149 is_elf_object(Input_file* input_file, off_t offset,
3150               const unsigned char** start, int* read_size)
3151 {
3152   off_t filesize = input_file->file().filesize();
3153   int want = elfcpp::Elf_recognizer::max_header_size;
3154   if (filesize - offset < want)
3155     want = filesize - offset;
3156
3157   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3158                                                        true, false);
3159   *start = p;
3160   *read_size = want;
3161
3162   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3163 }
3164
3165 // Read an ELF file and return the appropriate instance of Object.
3166
3167 Object*
3168 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3169                 const unsigned char* p, section_offset_type bytes,
3170                 bool* punconfigured)
3171 {
3172   if (punconfigured != NULL)
3173     *punconfigured = false;
3174
3175   std::string error;
3176   bool big_endian = false;
3177   int size = 0;
3178   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3179                                                &big_endian, &error))
3180     {
3181       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3182       return NULL;
3183     }
3184
3185   if (size == 32)
3186     {
3187       if (big_endian)
3188         {
3189 #ifdef HAVE_TARGET_32_BIG
3190           elfcpp::Ehdr<32, true> ehdr(p);
3191           return make_elf_sized_object<32, true>(name, input_file,
3192                                                  offset, ehdr, punconfigured);
3193 #else
3194           if (punconfigured != NULL)
3195             *punconfigured = true;
3196           else
3197             gold_error(_("%s: not configured to support "
3198                          "32-bit big-endian object"),
3199                        name.c_str());
3200           return NULL;
3201 #endif
3202         }
3203       else
3204         {
3205 #ifdef HAVE_TARGET_32_LITTLE
3206           elfcpp::Ehdr<32, false> ehdr(p);
3207           return make_elf_sized_object<32, false>(name, input_file,
3208                                                   offset, ehdr, punconfigured);
3209 #else
3210           if (punconfigured != NULL)
3211             *punconfigured = true;
3212           else
3213             gold_error(_("%s: not configured to support "
3214                          "32-bit little-endian object"),
3215                        name.c_str());
3216           return NULL;
3217 #endif
3218         }
3219     }
3220   else if (size == 64)
3221     {
3222       if (big_endian)
3223         {
3224 #ifdef HAVE_TARGET_64_BIG
3225           elfcpp::Ehdr<64, true> ehdr(p);
3226           return make_elf_sized_object<64, true>(name, input_file,
3227                                                  offset, ehdr, punconfigured);
3228 #else
3229           if (punconfigured != NULL)
3230             *punconfigured = true;
3231           else
3232             gold_error(_("%s: not configured to support "
3233                          "64-bit big-endian object"),
3234                        name.c_str());
3235           return NULL;
3236 #endif
3237         }
3238       else
3239         {
3240 #ifdef HAVE_TARGET_64_LITTLE
3241           elfcpp::Ehdr<64, false> ehdr(p);
3242           return make_elf_sized_object<64, false>(name, input_file,
3243                                                   offset, ehdr, punconfigured);
3244 #else
3245           if (punconfigured != NULL)
3246             *punconfigured = true;
3247           else
3248             gold_error(_("%s: not configured to support "
3249                          "64-bit little-endian object"),
3250                        name.c_str());
3251           return NULL;
3252 #endif
3253         }
3254     }
3255   else
3256     gold_unreachable();
3257 }
3258
3259 // Instantiate the templates we need.
3260
3261 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3262 template
3263 void
3264 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3265       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3266       Unordered_map<section_offset_type,
3267       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3268 #endif
3269
3270 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3271 template
3272 void
3273 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3274       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3275       Unordered_map<section_offset_type,
3276       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3277 #endif
3278
3279 #ifdef HAVE_TARGET_32_LITTLE
3280 template
3281 void
3282 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3283                                      Read_symbols_data*);
3284 template
3285 const unsigned char*
3286 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3287                             section_size_type, const unsigned char*) const;
3288 #endif
3289
3290 #ifdef HAVE_TARGET_32_BIG
3291 template
3292 void
3293 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3294                                     Read_symbols_data*);
3295 template
3296 const unsigned char*
3297 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3298                            section_size_type, const unsigned char*) const;
3299 #endif
3300
3301 #ifdef HAVE_TARGET_64_LITTLE
3302 template
3303 void
3304 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3305                                      Read_symbols_data*);
3306 template
3307 const unsigned char*
3308 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3309                             section_size_type, const unsigned char*) const;
3310 #endif
3311
3312 #ifdef HAVE_TARGET_64_BIG
3313 template
3314 void
3315 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3316                                     Read_symbols_data*);
3317 template
3318 const unsigned char*
3319 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3320                            section_size_type, const unsigned char*) const;
3321 #endif
3322
3323 #ifdef HAVE_TARGET_32_LITTLE
3324 template
3325 class Sized_relobj<32, false>;
3326
3327 template
3328 class Sized_relobj_file<32, false>;
3329 #endif
3330
3331 #ifdef HAVE_TARGET_32_BIG
3332 template
3333 class Sized_relobj<32, true>;
3334
3335 template
3336 class Sized_relobj_file<32, true>;
3337 #endif
3338
3339 #ifdef HAVE_TARGET_64_LITTLE
3340 template
3341 class Sized_relobj<64, false>;
3342
3343 template
3344 class Sized_relobj_file<64, false>;
3345 #endif
3346
3347 #ifdef HAVE_TARGET_64_BIG
3348 template
3349 class Sized_relobj<64, true>;
3350
3351 template
3352 class Sized_relobj_file<64, true>;
3353 #endif
3354
3355 #ifdef HAVE_TARGET_32_LITTLE
3356 template
3357 struct Relocate_info<32, false>;
3358 #endif
3359
3360 #ifdef HAVE_TARGET_32_BIG
3361 template
3362 struct Relocate_info<32, true>;
3363 #endif
3364
3365 #ifdef HAVE_TARGET_64_LITTLE
3366 template
3367 struct Relocate_info<64, false>;
3368 #endif
3369
3370 #ifdef HAVE_TARGET_64_BIG
3371 template
3372 struct Relocate_info<64, true>;
3373 #endif
3374
3375 #ifdef HAVE_TARGET_32_LITTLE
3376 template
3377 void
3378 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3379
3380 template
3381 void
3382 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3383                                       const unsigned char*);
3384 #endif
3385
3386 #ifdef HAVE_TARGET_32_BIG
3387 template
3388 void
3389 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3390
3391 template
3392 void
3393 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3394                                      const unsigned char*);
3395 #endif
3396
3397 #ifdef HAVE_TARGET_64_LITTLE
3398 template
3399 void
3400 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3401
3402 template
3403 void
3404 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3405                                       const unsigned char*);
3406 #endif
3407
3408 #ifdef HAVE_TARGET_64_BIG
3409 template
3410 void
3411 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3412
3413 template
3414 void
3415 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3416                                      const unsigned char*);
3417 #endif
3418
3419 } // End namespace gold.