Automatic date update in version.in
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433         {
434           const Got_offset_list* got_offsets = p->second;
435           got_offsets->for_all_got_offsets(v);
436         }
437     }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_(),
482     output_views_(NULL)
483 {
484   this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header.  This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499   const unsigned int shnum = this->elf_file_.shnum();
500   this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers.  The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section.  Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512   const unsigned int shnum = this->shnum();
513   this->symtab_shndx_ = 0;
514   if (shnum > 0)
515     {
516       // Look through the sections in reverse order, since gas tends
517       // to put the symbol table at the end.
518       const unsigned char* p = pshdrs + shnum * This::shdr_size;
519       unsigned int i = shnum;
520       unsigned int xindex_shndx = 0;
521       unsigned int xindex_link = 0;
522       while (i > 0)
523         {
524           --i;
525           p -= This::shdr_size;
526           typename This::Shdr shdr(p);
527           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528             {
529               this->symtab_shndx_ = i;
530               if (xindex_shndx > 0 && xindex_link == i)
531                 {
532                   Xindex* xindex =
533                     new Xindex(this->elf_file_.large_shndx_offset());
534                   xindex->read_symtab_xindex<size, big_endian>(this,
535                                                                xindex_shndx,
536                                                                pshdrs);
537                   this->set_xindex(xindex);
538                 }
539               break;
540             }
541
542           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543           // one.  This will work if it follows the SHT_SYMTAB
544           // section.
545           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546             {
547               xindex_shndx = i;
548               xindex_link = this->adjust_shndx(shdr.get_sh_link());
549             }
550         }
551     }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561   gold_assert(this->symtab_shndx_ != -1U);
562   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564   return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573     const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576   return ((sh_type == elfcpp::SHT_PROGBITS
577            || sh_type == parameters->target().unwind_section_type())
578           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586     const unsigned char* pshdrs,
587     const char* name,
588     const char* names,
589     section_size_type names_size,
590     const unsigned char* hdr) const
591 {
592   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593   const unsigned int shnum = this->shnum();
594   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595   size_t sh_name = 0;
596
597   while (1)
598     {
599       if (hdr)
600         {
601           // We found HDR last time we were called, continue looking.
602           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603           sh_name = shdr.get_sh_name();
604         }
605       else
606         {
607           // Look for the next occurrence of NAME in NAMES.
608           // The fact that .shstrtab produced by current GNU tools is
609           // string merged means we shouldn't have both .not.foo and
610           // .foo in .shstrtab, and multiple .foo sections should all
611           // have the same sh_name.  However, this is not guaranteed
612           // by the ELF spec and not all ELF object file producers may
613           // be so clever.
614           size_t len = strlen(name) + 1;
615           const char *p = sh_name ? names + sh_name + len : names;
616           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617                                                    name, len));
618           if (p == NULL)
619             return NULL;
620           sh_name = p - names;
621           hdr = pshdrs;
622           if (sh_name == 0)
623             return hdr;
624         }
625
626       hdr += shdr_size;
627       while (hdr < hdr_end)
628         {
629           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630           if (shdr.get_sh_name() == sh_name)
631             return hdr;
632           hdr += shdr_size;
633         }
634       hdr = NULL;
635       if (sh_name == 0)
636         return hdr;
637     }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646     const unsigned char* pshdrs,
647     const char* names,
648     section_size_type names_size) const
649 {
650   const unsigned char* s = NULL;
651
652   while (1)
653     {
654       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655                                                      names, names_size, s);
656       if (s == NULL)
657         return false;
658
659       typename This::Shdr shdr(s);
660       if (this->check_eh_frame_flags(&shdr))
661         return true;
662     }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task.  This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673   if (*name++ != '_')
674     return false;
675
676 #ifdef ENABLE_THREADS
677   // Decompressing these sections now will help only if we're
678   // multithreaded.
679   if (parameters->options().threads())
680     {
681       // We will need .zdebug_str if this is not an incremental link
682       // (i.e., we are processing string merge sections) or if we need
683       // to build a gdb index.
684       if ((!parameters->incremental() || parameters->options().gdb_index())
685           && strcmp(name, "str") == 0)
686         return true;
687
688       // We will need these other sections when building a gdb index.
689       if (parameters->options().gdb_index()
690           && (strcmp(name, "info") == 0
691               || strcmp(name, "types") == 0
692               || strcmp(name, "pubnames") == 0
693               || strcmp(name, "pubtypes") == 0
694               || strcmp(name, "ranges") == 0
695               || strcmp(name, "abbrev") == 0))
696         return true;
697     }
698 #endif
699
700   // Even when single-threaded, we will need .zdebug_str if this is
701   // not an incremental link and we are building a gdb index.
702   // Otherwise, we would decompress the section twice: once for
703   // string merge processing, and once for building the gdb index.
704   if (!parameters->incremental()
705       && parameters->options().gdb_index()
706       && strcmp(name, "str") == 0)
707     return true;
708
709   return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718     const unsigned char* pshdrs,
719     unsigned int shnum,
720     const char* names,
721     section_size_type names_size,
722     Object* obj,
723     bool decompress_if_needed)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734         {
735           if (shdr.get_sh_name() >= names_size)
736             {
737               obj->error(_("bad section name offset for section %u: %lu"),
738                          i, static_cast<unsigned long>(shdr.get_sh_name()));
739               continue;
740             }
741
742           const char* name = names + shdr.get_sh_name();
743           bool is_compressed = ((shdr.get_sh_flags()
744                                  & elfcpp::SHF_COMPRESSED) != 0);
745           bool is_zcompressed = (!is_compressed
746                                  && is_compressed_debug_section(name));
747
748           if (is_zcompressed || is_compressed)
749             {
750               section_size_type len;
751               const unsigned char* contents =
752                   obj->section_contents(i, &len, false);
753               uint64_t uncompressed_size;
754               if (is_zcompressed)
755                 {
756                   // Skip over the ".zdebug" prefix.
757                   name += 7;
758                   uncompressed_size = get_uncompressed_size(contents, len);
759                 }
760               else
761                 {
762                   // Skip over the ".debug" prefix.
763                   name += 6;
764                   elfcpp::Chdr<size, big_endian> chdr(contents);
765                   uncompressed_size = chdr.get_ch_size();
766                 }
767               Compressed_section_info info;
768               info.size = convert_to_section_size_type(uncompressed_size);
769               info.flag = shdr.get_sh_flags();
770               info.contents = NULL;
771               if (uncompressed_size != -1ULL)
772                 {
773                   unsigned char* uncompressed_data = NULL;
774                   if (decompress_if_needed && need_decompressed_section(name))
775                     {
776                       uncompressed_data = new unsigned char[uncompressed_size];
777                       if (decompress_input_section(contents, len,
778                                                    uncompressed_data,
779                                                    uncompressed_size,
780                                                    size, big_endian,
781                                                    shdr.get_sh_flags()))
782                         info.contents = uncompressed_data;
783                       else
784                         delete[] uncompressed_data;
785                     }
786                   (*uncompressed_map)[i] = info;
787                 }
788             }
789         }
790     }
791   return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800     Read_symbols_data* sd)
801 {
802   const unsigned char* const pshdrs = sd->section_headers->data();
803   const unsigned char* namesu = sd->section_names->data();
804   const char* names = reinterpret_cast<const char*>(namesu);
805
806   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807     this->has_eh_frame_ = true;
808
809   Compressed_section_map* compressed_sections =
810     build_compressed_section_map<size, big_endian>(
811       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812   if (compressed_sections != NULL)
813     this->set_compressed_sections(compressed_sections);
814
815   return (this->has_eh_frame_
816           || (!parameters->options().relocatable()
817               && parameters->options().gdb_index()
818               && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819                   || memmem(names, sd->section_names_size,
820                             "debug_types", 12) != NULL)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829   this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file.  This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839   this->read_section_data(&this->elf_file_, sd);
840
841   const unsigned char* const pshdrs = sd->section_headers->data();
842
843   this->find_symtab(pshdrs);
844
845   bool need_local_symbols = this->do_find_special_sections(sd);
846
847   sd->symbols = NULL;
848   sd->symbols_size = 0;
849   sd->external_symbols_offset = 0;
850   sd->symbol_names = NULL;
851   sd->symbol_names_size = 0;
852
853   if (this->symtab_shndx_ == 0)
854     {
855       // No symbol table.  Weird but legal.
856       return;
857     }
858
859   // Get the symbol table section header.
860   typename This::Shdr symtabshdr(pshdrs
861                                  + this->symtab_shndx_ * This::shdr_size);
862   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864   // If this object has a .eh_frame section, or if building a .gdb_index
865   // section and there is debug info, we need all the symbols.
866   // Otherwise we only need the external symbols.  While it would be
867   // simpler to just always read all the symbols, I've seen object
868   // files with well over 2000 local symbols, which for a 64-bit
869   // object file format is over 5 pages that we don't need to read
870   // now.
871
872   const int sym_size = This::sym_size;
873   const unsigned int loccount = symtabshdr.get_sh_info();
874   this->local_symbol_count_ = loccount;
875   this->local_values_.resize(loccount);
876   section_offset_type locsize = loccount * sym_size;
877   off_t dataoff = symtabshdr.get_sh_offset();
878   section_size_type datasize =
879     convert_to_section_size_type(symtabshdr.get_sh_size());
880   off_t extoff = dataoff + locsize;
881   section_size_type extsize = datasize - locsize;
882
883   off_t readoff = need_local_symbols ? dataoff : extoff;
884   section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886   if (readsize == 0)
887     {
888       // No external symbols.  Also weird but also legal.
889       return;
890     }
891
892   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894   // Read the section header for the symbol names.
895   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896   if (strtab_shndx >= this->shnum())
897     {
898       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899       return;
900     }
901   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903     {
904       this->error(_("symbol table name section has wrong type: %u"),
905                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
906       return;
907     }
908
909   // Read the symbol names.
910   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911                                                strtabshdr.get_sh_size(),
912                                                false, true);
913
914   sd->symbols = fvsymtab;
915   sd->symbols_size = readsize;
916   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917   sd->symbol_names = fvstrtab;
918   sd->symbol_names_size =
919     convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM.  Set *VALUE to its value in
923 // the object file.  Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932                                                               Address* value,
933                                                               bool* is_ordinary)
934 {
935   section_size_type symbols_size;
936   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937                                                         &symbols_size,
938                                                         false);
939
940   const size_t count = symbols_size / This::sym_size;
941   gold_assert(sym < count);
942
943   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944   *value = elfsym.get_st_value();
945
946   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link.  LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header.  If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958     Symbol_table* symtab,
959     Layout* layout,
960     unsigned int index,
961     const char* name,
962     const unsigned char* shdrs,
963     const char* section_names,
964     section_size_type section_names_size,
965     std::vector<bool>* omit)
966 {
967   // Read the section contents.
968   typename This::Shdr shdr(shdrs + index * This::shdr_size);
969   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970                                              shdr.get_sh_size(), true, false);
971   const elfcpp::Elf_Word* pword =
972     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974   // The first word contains flags.  We only care about COMDAT section
975   // groups.  Other section groups are always included in the link
976   // just like ordinary sections.
977   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979   // Look up the group signature, which is the name of a symbol.  ELF
980   // uses a symbol name because some group signatures are long, and
981   // the name is generally already in the symbol table, so it makes
982   // sense to put the long string just once in .strtab rather than in
983   // both .strtab and .shstrtab.
984
985   // Get the appropriate symbol table header (this will normally be
986   // the single SHT_SYMTAB section, but in principle it need not be).
987   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990   // Read the symbol table entry.
991   unsigned int symndx = shdr.get_sh_info();
992   if (symndx >= symshdr.get_sh_size() / This::sym_size)
993     {
994       this->error(_("section group %u info %u out of range"),
995                   index, symndx);
996       return false;
997     }
998   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000                                              false);
1001   elfcpp::Sym<size, big_endian> sym(psym);
1002
1003   // Read the symbol table names.
1004   section_size_type symnamelen;
1005   const unsigned char* psymnamesu;
1006   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007                                       &symnamelen, true);
1008   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010   // Get the section group signature.
1011   if (sym.get_st_name() >= symnamelen)
1012     {
1013       this->error(_("symbol %u name offset %u out of range"),
1014                   symndx, sym.get_st_name());
1015       return false;
1016     }
1017
1018   std::string signature(psymnames + sym.get_st_name());
1019
1020   // It seems that some versions of gas will create a section group
1021   // associated with a section symbol, and then fail to give a name to
1022   // the section symbol.  In such a case, use the name of the section.
1023   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024     {
1025       bool is_ordinary;
1026       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027                                                       sym.get_st_shndx(),
1028                                                       &is_ordinary);
1029       if (!is_ordinary || sym_shndx >= this->shnum())
1030         {
1031           this->error(_("symbol %u invalid section index %u"),
1032                       symndx, sym_shndx);
1033           return false;
1034         }
1035       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036       if (member_shdr.get_sh_name() < section_names_size)
1037         signature = section_names + member_shdr.get_sh_name();
1038     }
1039
1040   // Record this section group in the layout, and see whether we've already
1041   // seen one with the same signature.
1042   bool include_group;
1043   bool is_comdat;
1044   Kept_section* kept_section = NULL;
1045
1046   if ((flags & elfcpp::GRP_COMDAT) == 0)
1047     {
1048       include_group = true;
1049       is_comdat = false;
1050     }
1051   else
1052     {
1053       include_group = layout->find_or_add_kept_section(signature,
1054                                                        this, index, true,
1055                                                        true, &kept_section);
1056       is_comdat = true;
1057     }
1058
1059   if (is_comdat && include_group)
1060     {
1061       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062       if (incremental_inputs != NULL)
1063         incremental_inputs->report_comdat_group(this, signature.c_str());
1064     }
1065
1066   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068   std::vector<unsigned int> shndxes;
1069   bool relocate_group = include_group && parameters->options().relocatable();
1070   if (relocate_group)
1071     shndxes.reserve(count - 1);
1072
1073   for (size_t i = 1; i < count; ++i)
1074     {
1075       elfcpp::Elf_Word shndx =
1076         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078       if (relocate_group)
1079         shndxes.push_back(shndx);
1080
1081       if (shndx >= this->shnum())
1082         {
1083           this->error(_("section %u in section group %u out of range"),
1084                       shndx, index);
1085           continue;
1086         }
1087
1088       // Check for an earlier section number, since we're going to get
1089       // it wrong--we may have already decided to include the section.
1090       if (shndx < index)
1091         this->error(_("invalid section group %u refers to earlier section %u"),
1092                     index, shndx);
1093
1094       // Get the name of the member section.
1095       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096       if (member_shdr.get_sh_name() >= section_names_size)
1097         {
1098           // This is an error, but it will be diagnosed eventually
1099           // in do_layout, so we don't need to do anything here but
1100           // ignore it.
1101           continue;
1102         }
1103       std::string mname(section_names + member_shdr.get_sh_name());
1104
1105       if (include_group)
1106         {
1107           if (is_comdat)
1108             kept_section->add_comdat_section(mname, shndx,
1109                                              member_shdr.get_sh_size());
1110         }
1111       else
1112         {
1113           (*omit)[shndx] = true;
1114
1115           // Store a mapping from this section to the Kept_section
1116           // information for the group.  This mapping is used for
1117           // relocation processing and diagnostics.
1118           // If the kept section is a linkonce section, we don't
1119           // bother with it unless the comdat group contains just
1120           // a single section, making it easy to match up.
1121           if (is_comdat
1122               && (kept_section->is_comdat() || count == 2))
1123             this->set_kept_comdat_section(shndx, true, symndx,
1124                                           member_shdr.get_sh_size(),
1125                                           kept_section);
1126         }
1127     }
1128
1129   if (relocate_group)
1130     layout->layout_group(symtab, this, index, name, signature.c_str(),
1131                          shdr, flags, &shndxes);
1132
1133   return include_group;
1134 }
1135
1136 // Whether to include a linkonce section in the link.  NAME is the
1137 // name of the section and SHDR is the section header.
1138
1139 // Linkonce sections are a GNU extension implemented in the original
1140 // GNU linker before section groups were defined.  The semantics are
1141 // that we only include one linkonce section with a given name.  The
1142 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1143 // where T is the type of section and SYMNAME is the name of a symbol.
1144 // In an attempt to make linkonce sections interact well with section
1145 // groups, we try to identify SYMNAME and use it like a section group
1146 // signature.  We want to block section groups with that signature,
1147 // but not other linkonce sections with that signature.  We also use
1148 // the full name of the linkonce section as a normal section group
1149 // signature.
1150
1151 template<int size, bool big_endian>
1152 bool
1153 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1154     Layout* layout,
1155     unsigned int index,
1156     const char* name,
1157     const elfcpp::Shdr<size, big_endian>& shdr)
1158 {
1159   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1160   // In general the symbol name we want will be the string following
1161   // the last '.'.  However, we have to handle the case of
1162   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1163   // some versions of gcc.  So we use a heuristic: if the name starts
1164   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1165   // we look for the last '.'.  We can't always simply skip
1166   // ".gnu.linkonce.X", because we have to deal with cases like
1167   // ".gnu.linkonce.d.rel.ro.local".
1168   const char* const linkonce_t = ".gnu.linkonce.t.";
1169   const char* symname;
1170   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1171     symname = name + strlen(linkonce_t);
1172   else
1173     symname = strrchr(name, '.') + 1;
1174   std::string sig1(symname);
1175   std::string sig2(name);
1176   Kept_section* kept1;
1177   Kept_section* kept2;
1178   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1179                                                    false, &kept1);
1180   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1181                                                    true, &kept2);
1182
1183   if (!include2)
1184     {
1185       // We are not including this section because we already saw the
1186       // name of the section as a signature.  This normally implies
1187       // that the kept section is another linkonce section.  If it is
1188       // the same size, record it as the section which corresponds to
1189       // this one.
1190       if (kept2->object() != NULL && !kept2->is_comdat())
1191         this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1192     }
1193   else if (!include1)
1194     {
1195       // The section is being discarded on the basis of its symbol
1196       // name.  This means that the corresponding kept section was
1197       // part of a comdat group, and it will be difficult to identify
1198       // the specific section within that group that corresponds to
1199       // this linkonce section.  We'll handle the simple case where
1200       // the group has only one member section.  Otherwise, it's not
1201       // worth the effort.
1202       if (kept1->object() != NULL && kept1->is_comdat())
1203         this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1204     }
1205   else
1206     {
1207       kept1->set_linkonce_size(sh_size);
1208       kept2->set_linkonce_size(sh_size);
1209     }
1210
1211   return include1 && include2;
1212 }
1213
1214 // Layout an input section.
1215
1216 template<int size, bool big_endian>
1217 inline void
1218 Sized_relobj_file<size, big_endian>::layout_section(
1219     Layout* layout,
1220     unsigned int shndx,
1221     const char* name,
1222     const typename This::Shdr& shdr,
1223     unsigned int sh_type,
1224     unsigned int reloc_shndx,
1225     unsigned int reloc_type)
1226 {
1227   off_t offset;
1228   Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1229                                       reloc_shndx, reloc_type, &offset);
1230
1231   this->output_sections()[shndx] = os;
1232   if (offset == -1)
1233     this->section_offsets()[shndx] = invalid_address;
1234   else
1235     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1236
1237   // If this section requires special handling, and if there are
1238   // relocs that apply to it, then we must do the special handling
1239   // before we apply the relocs.
1240   if (offset == -1 && reloc_shndx != 0)
1241     this->set_relocs_must_follow_section_writes();
1242 }
1243
1244 // Layout an input .eh_frame section.
1245
1246 template<int size, bool big_endian>
1247 void
1248 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1249     Layout* layout,
1250     const unsigned char* symbols_data,
1251     section_size_type symbols_size,
1252     const unsigned char* symbol_names_data,
1253     section_size_type symbol_names_size,
1254     unsigned int shndx,
1255     const typename This::Shdr& shdr,
1256     unsigned int reloc_shndx,
1257     unsigned int reloc_type)
1258 {
1259   gold_assert(this->has_eh_frame_);
1260
1261   off_t offset;
1262   Output_section* os = layout->layout_eh_frame(this,
1263                                                symbols_data,
1264                                                symbols_size,
1265                                                symbol_names_data,
1266                                                symbol_names_size,
1267                                                shndx,
1268                                                shdr,
1269                                                reloc_shndx,
1270                                                reloc_type,
1271                                                &offset);
1272   this->output_sections()[shndx] = os;
1273   if (os == NULL || offset == -1)
1274     this->section_offsets()[shndx] = invalid_address;
1275   else
1276     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1277
1278   // If this section requires special handling, and if there are
1279   // relocs that aply to it, then we must do the special handling
1280   // before we apply the relocs.
1281   if (os != NULL && offset == -1 && reloc_shndx != 0)
1282     this->set_relocs_must_follow_section_writes();
1283 }
1284
1285 // Layout an input .note.gnu.property section.
1286
1287 // This note section has an *extremely* non-standard layout.
1288 // The gABI spec says that ELF-64 files should have 8-byte fields and
1289 // 8-byte alignment in the note section, but the Gnu tools generally
1290 // use 4-byte fields and 4-byte alignment (see the comment for
1291 // Layout::create_note).  This section uses 4-byte fields (i.e.,
1292 // namesz, descsz, and type are always 4 bytes), the name field is
1293 // padded to a multiple of 4 bytes, but the desc field is padded
1294 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1295 // The individual properties within the desc field always use
1296 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1297 // a multiple of 4 or 8 bytes, depending on the ELF class.
1298
1299 template<int size, bool big_endian>
1300 void
1301 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1302     Layout* layout,
1303     unsigned int shndx)
1304 {
1305   section_size_type contents_len;
1306   const unsigned char* pcontents = this->section_contents(shndx,
1307                                                           &contents_len,
1308                                                           false);
1309   const unsigned char* pcontents_end = pcontents + contents_len;
1310
1311   // Loop over all the notes in this section.
1312   while (pcontents < pcontents_end)
1313     {
1314       if (pcontents + 16 > pcontents_end)
1315         {
1316           gold_warning(_("%s: corrupt .note.gnu.property section "
1317                          "(note too short)"),
1318                        this->name().c_str());
1319           return;
1320         }
1321
1322       size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1323       size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1324       unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1325       const unsigned char* pname = pcontents + 12;
1326
1327       if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1328         {
1329           gold_warning(_("%s: corrupt .note.gnu.property section "
1330                          "(name is not 'GNU')"),
1331                        this->name().c_str());
1332           return;
1333         }
1334
1335       if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1336         {
1337           gold_warning(_("%s: unsupported note type %d "
1338                          "in .note.gnu.property section"),
1339                        this->name().c_str(), ntype);
1340           return;
1341         }
1342
1343       size_t aligned_namesz = align_address(namesz, 4);
1344       const unsigned char* pdesc = pname + aligned_namesz;
1345
1346       if (pdesc + descsz > pcontents + contents_len)
1347         {
1348           gold_warning(_("%s: corrupt .note.gnu.property section"),
1349                        this->name().c_str());
1350           return;
1351         }
1352
1353       const unsigned char* pprop = pdesc;
1354
1355       // Loop over the program properties in this note.
1356       while (pprop < pdesc + descsz)
1357         {
1358           if (pprop + 8 > pdesc + descsz)
1359             {
1360               gold_warning(_("%s: corrupt .note.gnu.property section"),
1361                            this->name().c_str());
1362               return;
1363             }
1364           unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1365           size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1366           pprop += 8;
1367           if (pprop + pr_datasz > pdesc + descsz)
1368             {
1369               gold_warning(_("%s: corrupt .note.gnu.property section"),
1370                            this->name().c_str());
1371               return;
1372             }
1373           layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1374           pprop += align_address(pr_datasz, size / 8);
1375         }
1376
1377       pcontents = pdesc + align_address(descsz, size / 8);
1378     }
1379 }
1380
1381 // Lay out the input sections.  We walk through the sections and check
1382 // whether they should be included in the link.  If they should, we
1383 // pass them to the Layout object, which will return an output section
1384 // and an offset.
1385 // This function is called twice sometimes, two passes, when mapping
1386 // of input sections to output sections must be delayed.
1387 // This is true for the following :
1388 // * Garbage collection (--gc-sections): Some input sections will be
1389 // discarded and hence the assignment must wait until the second pass.
1390 // In the first pass,  it is for setting up some sections as roots to
1391 // a work-list for --gc-sections and to do comdat processing.
1392 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1393 // will be folded and hence the assignment must wait.
1394 // * Using plugins to map some sections to unique segments: Mapping
1395 // some sections to unique segments requires mapping them to unique
1396 // output sections too.  This can be done via plugins now and this
1397 // information is not available in the first pass.
1398
1399 template<int size, bool big_endian>
1400 void
1401 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1402                                                Layout* layout,
1403                                                Read_symbols_data* sd)
1404 {
1405   const unsigned int unwind_section_type =
1406       parameters->target().unwind_section_type();
1407   const unsigned int shnum = this->shnum();
1408
1409   /* Should this function be called twice?  */
1410   bool is_two_pass = (parameters->options().gc_sections()
1411                       || parameters->options().icf_enabled()
1412                       || layout->is_unique_segment_for_sections_specified());
1413
1414   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1415      a two-pass approach is not needed.  */
1416   bool is_pass_one = false;
1417   bool is_pass_two = false;
1418
1419   Symbols_data* gc_sd = NULL;
1420
1421   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1422      should happen.  In the first pass, the data in sd is saved to be used
1423      later in the second pass.  */
1424   if (is_two_pass)
1425     {
1426       gc_sd = this->get_symbols_data();
1427       if (gc_sd == NULL)
1428         {
1429           gold_assert(sd != NULL);
1430           is_pass_one = true;
1431         }
1432       else
1433         {
1434           if (parameters->options().gc_sections())
1435             gold_assert(symtab->gc()->is_worklist_ready());
1436           if (parameters->options().icf_enabled())
1437             gold_assert(symtab->icf()->is_icf_ready()); 
1438           is_pass_two = true;
1439         }
1440     }
1441     
1442   if (shnum == 0)
1443     return;
1444
1445   if (is_pass_one)
1446     {
1447       // During garbage collection save the symbols data to use it when
1448       // re-entering this function.
1449       gc_sd = new Symbols_data;
1450       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1451       this->set_symbols_data(gc_sd);
1452     }
1453
1454   const unsigned char* section_headers_data = NULL;
1455   section_size_type section_names_size;
1456   const unsigned char* symbols_data = NULL;
1457   section_size_type symbols_size;
1458   const unsigned char* symbol_names_data = NULL;
1459   section_size_type symbol_names_size;
1460
1461   if (is_two_pass)
1462     {
1463       section_headers_data = gc_sd->section_headers_data;
1464       section_names_size = gc_sd->section_names_size;
1465       symbols_data = gc_sd->symbols_data;
1466       symbols_size = gc_sd->symbols_size;
1467       symbol_names_data = gc_sd->symbol_names_data;
1468       symbol_names_size = gc_sd->symbol_names_size;
1469     }
1470   else
1471     {
1472       section_headers_data = sd->section_headers->data();
1473       section_names_size = sd->section_names_size;
1474       if (sd->symbols != NULL)
1475         symbols_data = sd->symbols->data();
1476       symbols_size = sd->symbols_size;
1477       if (sd->symbol_names != NULL)
1478         symbol_names_data = sd->symbol_names->data();
1479       symbol_names_size = sd->symbol_names_size;
1480     }
1481
1482   // Get the section headers.
1483   const unsigned char* shdrs = section_headers_data;
1484   const unsigned char* pshdrs;
1485
1486   // Get the section names.
1487   const unsigned char* pnamesu = (is_two_pass
1488                                   ? gc_sd->section_names_data
1489                                   : sd->section_names->data());
1490
1491   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1492
1493   // If any input files have been claimed by plugins, we need to defer
1494   // actual layout until the replacement files have arrived.
1495   const bool should_defer_layout =
1496       (parameters->options().has_plugins()
1497        && parameters->options().plugins()->should_defer_layout());
1498   unsigned int num_sections_to_defer = 0;
1499
1500   // For each section, record the index of the reloc section if any.
1501   // Use 0 to mean that there is no reloc section, -1U to mean that
1502   // there is more than one.
1503   std::vector<unsigned int> reloc_shndx(shnum, 0);
1504   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1505   // Skip the first, dummy, section.
1506   pshdrs = shdrs + This::shdr_size;
1507   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1508     {
1509       typename This::Shdr shdr(pshdrs);
1510
1511       // Count the number of sections whose layout will be deferred.
1512       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1513         ++num_sections_to_defer;
1514
1515       unsigned int sh_type = shdr.get_sh_type();
1516       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1517         {
1518           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1519           if (target_shndx == 0 || target_shndx >= shnum)
1520             {
1521               this->error(_("relocation section %u has bad info %u"),
1522                           i, target_shndx);
1523               continue;
1524             }
1525
1526           if (reloc_shndx[target_shndx] != 0)
1527             reloc_shndx[target_shndx] = -1U;
1528           else
1529             {
1530               reloc_shndx[target_shndx] = i;
1531               reloc_type[target_shndx] = sh_type;
1532             }
1533         }
1534     }
1535
1536   Output_sections& out_sections(this->output_sections());
1537   std::vector<Address>& out_section_offsets(this->section_offsets());
1538
1539   if (!is_pass_two)
1540     {
1541       out_sections.resize(shnum);
1542       out_section_offsets.resize(shnum);
1543     }
1544
1545   // If we are only linking for symbols, then there is nothing else to
1546   // do here.
1547   if (this->input_file()->just_symbols())
1548     {
1549       if (!is_pass_two)
1550         {
1551           delete sd->section_headers;
1552           sd->section_headers = NULL;
1553           delete sd->section_names;
1554           sd->section_names = NULL;
1555         }
1556       return;
1557     }
1558
1559   if (num_sections_to_defer > 0)
1560     {
1561       parameters->options().plugins()->add_deferred_layout_object(this);
1562       this->deferred_layout_.reserve(num_sections_to_defer);
1563       this->is_deferred_layout_ = true;
1564     }
1565
1566   // Whether we've seen a .note.GNU-stack section.
1567   bool seen_gnu_stack = false;
1568   // The flags of a .note.GNU-stack section.
1569   uint64_t gnu_stack_flags = 0;
1570
1571   // Keep track of which sections to omit.
1572   std::vector<bool> omit(shnum, false);
1573
1574   // Keep track of reloc sections when emitting relocations.
1575   const bool relocatable = parameters->options().relocatable();
1576   const bool emit_relocs = (relocatable
1577                             || parameters->options().emit_relocs());
1578   std::vector<unsigned int> reloc_sections;
1579
1580   // Keep track of .eh_frame sections.
1581   std::vector<unsigned int> eh_frame_sections;
1582
1583   // Keep track of .debug_info and .debug_types sections.
1584   std::vector<unsigned int> debug_info_sections;
1585   std::vector<unsigned int> debug_types_sections;
1586
1587   // Skip the first, dummy, section.
1588   pshdrs = shdrs + This::shdr_size;
1589   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1590     {
1591       typename This::Shdr shdr(pshdrs);
1592       const unsigned int sh_name = shdr.get_sh_name();
1593       unsigned int sh_type = shdr.get_sh_type();
1594
1595       if (sh_name >= section_names_size)
1596         {
1597           this->error(_("bad section name offset for section %u: %lu"),
1598                       i, static_cast<unsigned long>(sh_name));
1599           return;
1600         }
1601
1602       const char* name = pnames + sh_name;
1603
1604       if (!is_pass_two)
1605         {
1606           if (this->handle_gnu_warning_section(name, i, symtab))
1607             {
1608               if (!relocatable && !parameters->options().shared())
1609                 omit[i] = true;
1610             }
1611
1612           // The .note.GNU-stack section is special.  It gives the
1613           // protection flags that this object file requires for the stack
1614           // in memory.
1615           if (strcmp(name, ".note.GNU-stack") == 0)
1616             {
1617               seen_gnu_stack = true;
1618               gnu_stack_flags |= shdr.get_sh_flags();
1619               omit[i] = true;
1620             }
1621
1622           // The .note.GNU-split-stack section is also special.  It
1623           // indicates that the object was compiled with
1624           // -fsplit-stack.
1625           if (this->handle_split_stack_section(name))
1626             {
1627               if (!relocatable && !parameters->options().shared())
1628                 omit[i] = true;
1629             }
1630
1631           // Skip attributes section.
1632           if (parameters->target().is_attributes_section(name))
1633             {
1634               omit[i] = true;
1635             }
1636
1637           // Handle .note.gnu.property sections.
1638           if (sh_type == elfcpp::SHT_NOTE
1639               && strcmp(name, ".note.gnu.property") == 0)
1640             {
1641               this->layout_gnu_property_section(layout, i);
1642               omit[i] = true;
1643             }
1644
1645           bool discard = omit[i];
1646           if (!discard)
1647             {
1648               if (sh_type == elfcpp::SHT_GROUP)
1649                 {
1650                   if (!this->include_section_group(symtab, layout, i, name,
1651                                                    shdrs, pnames,
1652                                                    section_names_size,
1653                                                    &omit))
1654                     discard = true;
1655                 }
1656               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1657                        && Layout::is_linkonce(name))
1658                 {
1659                   if (!this->include_linkonce_section(layout, i, name, shdr))
1660                     discard = true;
1661                 }
1662             }
1663
1664           // Add the section to the incremental inputs layout.
1665           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1666           if (incremental_inputs != NULL
1667               && !discard
1668               && can_incremental_update(sh_type))
1669             {
1670               off_t sh_size = shdr.get_sh_size();
1671               section_size_type uncompressed_size;
1672               if (this->section_is_compressed(i, &uncompressed_size))
1673                 sh_size = uncompressed_size;
1674               incremental_inputs->report_input_section(this, i, name, sh_size);
1675             }
1676
1677           if (discard)
1678             {
1679               // Do not include this section in the link.
1680               out_sections[i] = NULL;
1681               out_section_offsets[i] = invalid_address;
1682               continue;
1683             }
1684         }
1685
1686       if (is_pass_one && parameters->options().gc_sections())
1687         {
1688           if (this->is_section_name_included(name)
1689               || layout->keep_input_section (this, name)
1690               || sh_type == elfcpp::SHT_INIT_ARRAY
1691               || sh_type == elfcpp::SHT_FINI_ARRAY)
1692             {
1693               symtab->gc()->worklist().push_back(Section_id(this, i));
1694             }
1695           // If the section name XXX can be represented as a C identifier
1696           // it cannot be discarded if there are references to
1697           // __start_XXX and __stop_XXX symbols.  These need to be
1698           // specially handled.
1699           if (is_cident(name))
1700             {
1701               symtab->gc()->add_cident_section(name, Section_id(this, i));
1702             }
1703         }
1704
1705       // When doing a relocatable link we are going to copy input
1706       // reloc sections into the output.  We only want to copy the
1707       // ones associated with sections which are not being discarded.
1708       // However, we don't know that yet for all sections.  So save
1709       // reloc sections and process them later. Garbage collection is
1710       // not triggered when relocatable code is desired.
1711       if (emit_relocs
1712           && (sh_type == elfcpp::SHT_REL
1713               || sh_type == elfcpp::SHT_RELA))
1714         {
1715           reloc_sections.push_back(i);
1716           continue;
1717         }
1718
1719       if (relocatable && sh_type == elfcpp::SHT_GROUP)
1720         continue;
1721
1722       // The .eh_frame section is special.  It holds exception frame
1723       // information that we need to read in order to generate the
1724       // exception frame header.  We process these after all the other
1725       // sections so that the exception frame reader can reliably
1726       // determine which sections are being discarded, and discard the
1727       // corresponding information.
1728       if (this->check_eh_frame_flags(&shdr)
1729           && strcmp(name, ".eh_frame") == 0)
1730         {
1731           // If the target has a special unwind section type, let's
1732           // canonicalize it here.
1733           sh_type = unwind_section_type;
1734           if (!relocatable)
1735             {
1736               if (is_pass_one)
1737                 {
1738                   if (this->is_deferred_layout())
1739                     out_sections[i] = reinterpret_cast<Output_section*>(2);
1740                   else
1741                     out_sections[i] = reinterpret_cast<Output_section*>(1);
1742                   out_section_offsets[i] = invalid_address;
1743                 }
1744               else if (this->is_deferred_layout())
1745                 {
1746                   out_sections[i] = reinterpret_cast<Output_section*>(2);
1747                   out_section_offsets[i] = invalid_address;
1748                   this->deferred_layout_.push_back(
1749                       Deferred_layout(i, name, sh_type, pshdrs,
1750                                       reloc_shndx[i], reloc_type[i]));
1751                 }
1752               else
1753                 eh_frame_sections.push_back(i);
1754               continue;
1755             }
1756         }
1757
1758       if (is_pass_two && parameters->options().gc_sections())
1759         {
1760           // This is executed during the second pass of garbage
1761           // collection. do_layout has been called before and some
1762           // sections have been already discarded. Simply ignore
1763           // such sections this time around.
1764           if (out_sections[i] == NULL)
1765             {
1766               gold_assert(out_section_offsets[i] == invalid_address);
1767               continue;
1768             }
1769           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1770               && symtab->gc()->is_section_garbage(this, i))
1771               {
1772                 if (parameters->options().print_gc_sections())
1773                   gold_info(_("%s: removing unused section from '%s'"
1774                               " in file '%s'"),
1775                             program_name, this->section_name(i).c_str(),
1776                             this->name().c_str());
1777                 out_sections[i] = NULL;
1778                 out_section_offsets[i] = invalid_address;
1779                 continue;
1780               }
1781         }
1782
1783       if (is_pass_two && parameters->options().icf_enabled())
1784         {
1785           if (out_sections[i] == NULL)
1786             {
1787               gold_assert(out_section_offsets[i] == invalid_address);
1788               continue;
1789             }
1790           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1791               && symtab->icf()->is_section_folded(this, i))
1792               {
1793                 if (parameters->options().print_icf_sections())
1794                   {
1795                     Section_id folded =
1796                                 symtab->icf()->get_folded_section(this, i);
1797                     Relobj* folded_obj =
1798                                 reinterpret_cast<Relobj*>(folded.first);
1799                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1800                                 "into '%s' in file '%s'"),
1801                               program_name, this->section_name(i).c_str(),
1802                               this->name().c_str(),
1803                               folded_obj->section_name(folded.second).c_str(),
1804                               folded_obj->name().c_str());
1805                   }
1806                 out_sections[i] = NULL;
1807                 out_section_offsets[i] = invalid_address;
1808                 continue;
1809               }
1810         }
1811
1812       // Defer layout here if input files are claimed by plugins.  When gc
1813       // is turned on this function is called twice; we only want to do this
1814       // on the first pass.
1815       if (!is_pass_two
1816           && this->is_deferred_layout()
1817           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1818         {
1819           this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1820                                                            pshdrs,
1821                                                            reloc_shndx[i],
1822                                                            reloc_type[i]));
1823           // Put dummy values here; real values will be supplied by
1824           // do_layout_deferred_sections.
1825           out_sections[i] = reinterpret_cast<Output_section*>(2);
1826           out_section_offsets[i] = invalid_address;
1827           continue;
1828         }
1829
1830       // During gc_pass_two if a section that was previously deferred is
1831       // found, do not layout the section as layout_deferred_sections will
1832       // do it later from gold.cc.
1833       if (is_pass_two
1834           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1835         continue;
1836
1837       if (is_pass_one)
1838         {
1839           // This is during garbage collection. The out_sections are
1840           // assigned in the second call to this function.
1841           out_sections[i] = reinterpret_cast<Output_section*>(1);
1842           out_section_offsets[i] = invalid_address;
1843         }
1844       else
1845         {
1846           // When garbage collection is switched on the actual layout
1847           // only happens in the second call.
1848           this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1849                                reloc_type[i]);
1850
1851           // When generating a .gdb_index section, we do additional
1852           // processing of .debug_info and .debug_types sections after all
1853           // the other sections for the same reason as above.
1854           if (!relocatable
1855               && parameters->options().gdb_index()
1856               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1857             {
1858               if (strcmp(name, ".debug_info") == 0
1859                   || strcmp(name, ".zdebug_info") == 0)
1860                 debug_info_sections.push_back(i);
1861               else if (strcmp(name, ".debug_types") == 0
1862                        || strcmp(name, ".zdebug_types") == 0)
1863                 debug_types_sections.push_back(i);
1864             }
1865         }
1866     }
1867
1868   if (!is_pass_two)
1869     {
1870       layout->merge_gnu_properties(this);
1871       layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1872     }
1873
1874   // Handle the .eh_frame sections after the other sections.
1875   gold_assert(!is_pass_one || eh_frame_sections.empty());
1876   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1877        p != eh_frame_sections.end();
1878        ++p)
1879     {
1880       unsigned int i = *p;
1881       const unsigned char* pshdr;
1882       pshdr = section_headers_data + i * This::shdr_size;
1883       typename This::Shdr shdr(pshdr);
1884
1885       this->layout_eh_frame_section(layout,
1886                                     symbols_data,
1887                                     symbols_size,
1888                                     symbol_names_data,
1889                                     symbol_names_size,
1890                                     i,
1891                                     shdr,
1892                                     reloc_shndx[i],
1893                                     reloc_type[i]);
1894     }
1895
1896   // When doing a relocatable link handle the reloc sections at the
1897   // end.  Garbage collection  and Identical Code Folding is not
1898   // turned on for relocatable code.
1899   if (emit_relocs)
1900     this->size_relocatable_relocs();
1901
1902   gold_assert(!is_two_pass || reloc_sections.empty());
1903
1904   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1905        p != reloc_sections.end();
1906        ++p)
1907     {
1908       unsigned int i = *p;
1909       const unsigned char* pshdr;
1910       pshdr = section_headers_data + i * This::shdr_size;
1911       typename This::Shdr shdr(pshdr);
1912
1913       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1914       if (data_shndx >= shnum)
1915         {
1916           // We already warned about this above.
1917           continue;
1918         }
1919
1920       Output_section* data_section = out_sections[data_shndx];
1921       if (data_section == reinterpret_cast<Output_section*>(2))
1922         {
1923           if (is_pass_two)
1924             continue;
1925           // The layout for the data section was deferred, so we need
1926           // to defer the relocation section, too.
1927           const char* name = pnames + shdr.get_sh_name();
1928           this->deferred_layout_relocs_.push_back(
1929               Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1930                               elfcpp::SHT_NULL));
1931           out_sections[i] = reinterpret_cast<Output_section*>(2);
1932           out_section_offsets[i] = invalid_address;
1933           continue;
1934         }
1935       if (data_section == NULL)
1936         {
1937           out_sections[i] = NULL;
1938           out_section_offsets[i] = invalid_address;
1939           continue;
1940         }
1941
1942       Relocatable_relocs* rr = new Relocatable_relocs();
1943       this->set_relocatable_relocs(i, rr);
1944
1945       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1946                                                 rr);
1947       out_sections[i] = os;
1948       out_section_offsets[i] = invalid_address;
1949     }
1950
1951   // When building a .gdb_index section, scan the .debug_info and
1952   // .debug_types sections.
1953   gold_assert(!is_pass_one
1954               || (debug_info_sections.empty() && debug_types_sections.empty()));
1955   for (std::vector<unsigned int>::const_iterator p
1956            = debug_info_sections.begin();
1957        p != debug_info_sections.end();
1958        ++p)
1959     {
1960       unsigned int i = *p;
1961       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1962                                i, reloc_shndx[i], reloc_type[i]);
1963     }
1964   for (std::vector<unsigned int>::const_iterator p
1965            = debug_types_sections.begin();
1966        p != debug_types_sections.end();
1967        ++p)
1968     {
1969       unsigned int i = *p;
1970       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1971                                i, reloc_shndx[i], reloc_type[i]);
1972     }
1973
1974   if (is_pass_two)
1975     {
1976       delete[] gc_sd->section_headers_data;
1977       delete[] gc_sd->section_names_data;
1978       delete[] gc_sd->symbols_data;
1979       delete[] gc_sd->symbol_names_data;
1980       this->set_symbols_data(NULL);
1981     }
1982   else
1983     {
1984       delete sd->section_headers;
1985       sd->section_headers = NULL;
1986       delete sd->section_names;
1987       sd->section_names = NULL;
1988     }
1989 }
1990
1991 // Layout sections whose layout was deferred while waiting for
1992 // input files from a plugin.
1993
1994 template<int size, bool big_endian>
1995 void
1996 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1997 {
1998   typename std::vector<Deferred_layout>::iterator deferred;
1999
2000   for (deferred = this->deferred_layout_.begin();
2001        deferred != this->deferred_layout_.end();
2002        ++deferred)
2003     {
2004       typename This::Shdr shdr(deferred->shdr_data_);
2005
2006       if (!parameters->options().relocatable()
2007           && deferred->name_ == ".eh_frame"
2008           && this->check_eh_frame_flags(&shdr))
2009         {
2010           // Checking is_section_included is not reliable for
2011           // .eh_frame sections, because they do not have an output
2012           // section.  This is not a problem normally because we call
2013           // layout_eh_frame_section unconditionally, but when
2014           // deferring sections that is not true.  We don't want to
2015           // keep all .eh_frame sections because that will cause us to
2016           // keep all sections that they refer to, which is the wrong
2017           // way around.  Instead, the eh_frame code will discard
2018           // .eh_frame sections that refer to discarded sections.
2019
2020           // Reading the symbols again here may be slow.
2021           Read_symbols_data sd;
2022           this->base_read_symbols(&sd);
2023           this->layout_eh_frame_section(layout,
2024                                         sd.symbols->data(),
2025                                         sd.symbols_size,
2026                                         sd.symbol_names->data(),
2027                                         sd.symbol_names_size,
2028                                         deferred->shndx_,
2029                                         shdr,
2030                                         deferred->reloc_shndx_,
2031                                         deferred->reloc_type_);
2032           continue;
2033         }
2034
2035       // If the section is not included, it is because the garbage collector
2036       // decided it is not needed.  Avoid reverting that decision.
2037       if (!this->is_section_included(deferred->shndx_))
2038         continue;
2039
2040       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2041                            shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2042                            deferred->reloc_type_);
2043     }
2044
2045   this->deferred_layout_.clear();
2046
2047   // Now handle the deferred relocation sections.
2048
2049   Output_sections& out_sections(this->output_sections());
2050   std::vector<Address>& out_section_offsets(this->section_offsets());
2051
2052   for (deferred = this->deferred_layout_relocs_.begin();
2053        deferred != this->deferred_layout_relocs_.end();
2054        ++deferred)
2055     {
2056       unsigned int shndx = deferred->shndx_;
2057       typename This::Shdr shdr(deferred->shdr_data_);
2058       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2059
2060       Output_section* data_section = out_sections[data_shndx];
2061       if (data_section == NULL)
2062         {
2063           out_sections[shndx] = NULL;
2064           out_section_offsets[shndx] = invalid_address;
2065           continue;
2066         }
2067
2068       Relocatable_relocs* rr = new Relocatable_relocs();
2069       this->set_relocatable_relocs(shndx, rr);
2070
2071       Output_section* os = layout->layout_reloc(this, shndx, shdr,
2072                                                 data_section, rr);
2073       out_sections[shndx] = os;
2074       out_section_offsets[shndx] = invalid_address;
2075     }
2076 }
2077
2078 // Add the symbols to the symbol table.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2083                                                     Read_symbols_data* sd,
2084                                                     Layout*)
2085 {
2086   if (sd->symbols == NULL)
2087     {
2088       gold_assert(sd->symbol_names == NULL);
2089       return;
2090     }
2091
2092   const int sym_size = This::sym_size;
2093   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2094                      / sym_size);
2095   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2096     {
2097       this->error(_("size of symbols is not multiple of symbol size"));
2098       return;
2099     }
2100
2101   this->symbols_.resize(symcount);
2102
2103   const char* sym_names =
2104     reinterpret_cast<const char*>(sd->symbol_names->data());
2105   symtab->add_from_relobj(this,
2106                           sd->symbols->data() + sd->external_symbols_offset,
2107                           symcount, this->local_symbol_count_,
2108                           sym_names, sd->symbol_names_size,
2109                           &this->symbols_,
2110                           &this->defined_count_);
2111
2112   delete sd->symbols;
2113   sd->symbols = NULL;
2114   delete sd->symbol_names;
2115   sd->symbol_names = NULL;
2116 }
2117
2118 // Find out if this object, that is a member of a lib group, should be included
2119 // in the link. We check every symbol defined by this object. If the symbol
2120 // table has a strong undefined reference to that symbol, we have to include
2121 // the object.
2122
2123 template<int size, bool big_endian>
2124 Archive::Should_include
2125 Sized_relobj_file<size, big_endian>::do_should_include_member(
2126     Symbol_table* symtab,
2127     Layout* layout,
2128     Read_symbols_data* sd,
2129     std::string* why)
2130 {
2131   char* tmpbuf = NULL;
2132   size_t tmpbuflen = 0;
2133   const char* sym_names =
2134       reinterpret_cast<const char*>(sd->symbol_names->data());
2135   const unsigned char* syms =
2136       sd->symbols->data() + sd->external_symbols_offset;
2137   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2138   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2139                          / sym_size);
2140
2141   const unsigned char* p = syms;
2142
2143   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2144     {
2145       elfcpp::Sym<size, big_endian> sym(p);
2146       unsigned int st_shndx = sym.get_st_shndx();
2147       if (st_shndx == elfcpp::SHN_UNDEF)
2148         continue;
2149
2150       unsigned int st_name = sym.get_st_name();
2151       const char* name = sym_names + st_name;
2152       Symbol* symbol;
2153       Archive::Should_include t = Archive::should_include_member(symtab,
2154                                                                  layout,
2155                                                                  name,
2156                                                                  &symbol, why,
2157                                                                  &tmpbuf,
2158                                                                  &tmpbuflen);
2159       if (t == Archive::SHOULD_INCLUDE_YES)
2160         {
2161           if (tmpbuf != NULL)
2162             free(tmpbuf);
2163           return t;
2164         }
2165     }
2166   if (tmpbuf != NULL)
2167     free(tmpbuf);
2168   return Archive::SHOULD_INCLUDE_UNKNOWN;
2169 }
2170
2171 // Iterate over global defined symbols, calling a visitor class V for each.
2172
2173 template<int size, bool big_endian>
2174 void
2175 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2176     Read_symbols_data* sd,
2177     Library_base::Symbol_visitor_base* v)
2178 {
2179   const char* sym_names =
2180       reinterpret_cast<const char*>(sd->symbol_names->data());
2181   const unsigned char* syms =
2182       sd->symbols->data() + sd->external_symbols_offset;
2183   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2184   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2185                      / sym_size);
2186   const unsigned char* p = syms;
2187
2188   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2189     {
2190       elfcpp::Sym<size, big_endian> sym(p);
2191       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2192         v->visit(sym_names + sym.get_st_name());
2193     }
2194 }
2195
2196 // Return whether the local symbol SYMNDX has a PLT offset.
2197
2198 template<int size, bool big_endian>
2199 bool
2200 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2201     unsigned int symndx) const
2202 {
2203   typename Local_plt_offsets::const_iterator p =
2204     this->local_plt_offsets_.find(symndx);
2205   return p != this->local_plt_offsets_.end();
2206 }
2207
2208 // Get the PLT offset of a local symbol.
2209
2210 template<int size, bool big_endian>
2211 unsigned int
2212 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2213     unsigned int symndx) const
2214 {
2215   typename Local_plt_offsets::const_iterator p =
2216     this->local_plt_offsets_.find(symndx);
2217   gold_assert(p != this->local_plt_offsets_.end());
2218   return p->second;
2219 }
2220
2221 // Set the PLT offset of a local symbol.
2222
2223 template<int size, bool big_endian>
2224 void
2225 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2226     unsigned int symndx, unsigned int plt_offset)
2227 {
2228   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2229     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2230   gold_assert(ins.second);
2231 }
2232
2233 // First pass over the local symbols.  Here we add their names to
2234 // *POOL and *DYNPOOL, and we store the symbol value in
2235 // THIS->LOCAL_VALUES_.  This function is always called from a
2236 // singleton thread.  This is followed by a call to
2237 // finalize_local_symbols.
2238
2239 template<int size, bool big_endian>
2240 void
2241 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2242                                                             Stringpool* dynpool)
2243 {
2244   gold_assert(this->symtab_shndx_ != -1U);
2245   if (this->symtab_shndx_ == 0)
2246     {
2247       // This object has no symbols.  Weird but legal.
2248       return;
2249     }
2250
2251   // Read the symbol table section header.
2252   const unsigned int symtab_shndx = this->symtab_shndx_;
2253   typename This::Shdr symtabshdr(this,
2254                                  this->elf_file_.section_header(symtab_shndx));
2255   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2256
2257   // Read the local symbols.
2258   const int sym_size = This::sym_size;
2259   const unsigned int loccount = this->local_symbol_count_;
2260   gold_assert(loccount == symtabshdr.get_sh_info());
2261   off_t locsize = loccount * sym_size;
2262   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2263                                               locsize, true, true);
2264
2265   // Read the symbol names.
2266   const unsigned int strtab_shndx =
2267     this->adjust_shndx(symtabshdr.get_sh_link());
2268   section_size_type strtab_size;
2269   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2270                                                         &strtab_size,
2271                                                         true);
2272   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2273
2274   // Loop over the local symbols.
2275
2276   const Output_sections& out_sections(this->output_sections());
2277   std::vector<Address>& out_section_offsets(this->section_offsets());
2278   unsigned int shnum = this->shnum();
2279   unsigned int count = 0;
2280   unsigned int dyncount = 0;
2281   // Skip the first, dummy, symbol.
2282   psyms += sym_size;
2283   bool strip_all = parameters->options().strip_all();
2284   bool discard_all = parameters->options().discard_all();
2285   bool discard_locals = parameters->options().discard_locals();
2286   bool discard_sec_merge = parameters->options().discard_sec_merge();
2287   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2288     {
2289       elfcpp::Sym<size, big_endian> sym(psyms);
2290
2291       Symbol_value<size>& lv(this->local_values_[i]);
2292
2293       bool is_ordinary;
2294       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2295                                                   &is_ordinary);
2296       lv.set_input_shndx(shndx, is_ordinary);
2297
2298       if (sym.get_st_type() == elfcpp::STT_SECTION)
2299         lv.set_is_section_symbol();
2300       else if (sym.get_st_type() == elfcpp::STT_TLS)
2301         lv.set_is_tls_symbol();
2302       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2303         lv.set_is_ifunc_symbol();
2304
2305       // Save the input symbol value for use in do_finalize_local_symbols().
2306       lv.set_input_value(sym.get_st_value());
2307
2308       // Decide whether this symbol should go into the output file.
2309
2310       if (is_ordinary
2311           && shndx < shnum
2312           && (out_sections[shndx] == NULL
2313               || (out_sections[shndx]->order() == ORDER_EHFRAME
2314                   && out_section_offsets[shndx] == invalid_address)))
2315         {
2316           // This is either a discarded section or an optimized .eh_frame
2317           // section.
2318           lv.set_no_output_symtab_entry();
2319           gold_assert(!lv.needs_output_dynsym_entry());
2320           continue;
2321         }
2322
2323       if (sym.get_st_type() == elfcpp::STT_SECTION
2324           || !this->adjust_local_symbol(&lv))
2325         {
2326           lv.set_no_output_symtab_entry();
2327           gold_assert(!lv.needs_output_dynsym_entry());
2328           continue;
2329         }
2330
2331       if (sym.get_st_name() >= strtab_size)
2332         {
2333           this->error(_("local symbol %u section name out of range: %u >= %u"),
2334                       i, sym.get_st_name(),
2335                       static_cast<unsigned int>(strtab_size));
2336           lv.set_no_output_symtab_entry();
2337           continue;
2338         }
2339
2340       const char* name = pnames + sym.get_st_name();
2341
2342       // If needed, add the symbol to the dynamic symbol table string pool.
2343       if (lv.needs_output_dynsym_entry())
2344         {
2345           dynpool->add(name, true, NULL);
2346           ++dyncount;
2347         }
2348
2349       if (strip_all
2350           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2351         {
2352           lv.set_no_output_symtab_entry();
2353           continue;
2354         }
2355
2356       // By default, discard temporary local symbols in merge sections.
2357       // If --discard-locals option is used, discard all temporary local
2358       // symbols.  These symbols start with system-specific local label
2359       // prefixes, typically .L for ELF system.  We want to be compatible
2360       // with GNU ld so here we essentially use the same check in
2361       // bfd_is_local_label().  The code is different because we already
2362       // know that:
2363       //
2364       //   - the symbol is local and thus cannot have global or weak binding.
2365       //   - the symbol is not a section symbol.
2366       //   - the symbol has a name.
2367       //
2368       // We do not discard a symbol if it needs a dynamic symbol entry.
2369       if ((discard_locals
2370            || (discard_sec_merge
2371                && is_ordinary
2372                && out_section_offsets[shndx] == invalid_address))
2373           && sym.get_st_type() != elfcpp::STT_FILE
2374           && !lv.needs_output_dynsym_entry()
2375           && lv.may_be_discarded_from_output_symtab()
2376           && parameters->target().is_local_label_name(name))
2377         {
2378           lv.set_no_output_symtab_entry();
2379           continue;
2380         }
2381
2382       // Discard the local symbol if -retain_symbols_file is specified
2383       // and the local symbol is not in that file.
2384       if (!parameters->options().should_retain_symbol(name))
2385         {
2386           lv.set_no_output_symtab_entry();
2387           continue;
2388         }
2389
2390       // Add the symbol to the symbol table string pool.
2391       pool->add(name, true, NULL);
2392       ++count;
2393     }
2394
2395   this->output_local_symbol_count_ = count;
2396   this->output_local_dynsym_count_ = dyncount;
2397 }
2398
2399 // Compute the final value of a local symbol.
2400
2401 template<int size, bool big_endian>
2402 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2403 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2404     unsigned int r_sym,
2405     const Symbol_value<size>* lv_in,
2406     Symbol_value<size>* lv_out,
2407     bool relocatable,
2408     const Output_sections& out_sections,
2409     const std::vector<Address>& out_offsets,
2410     const Symbol_table* symtab)
2411 {
2412   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2413   // we may have a memory leak.
2414   gold_assert(lv_out->has_output_value());
2415
2416   bool is_ordinary;
2417   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2418
2419   // Set the output symbol value.
2420
2421   if (!is_ordinary)
2422     {
2423       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2424         lv_out->set_output_value(lv_in->input_value());
2425       else
2426         {
2427           this->error(_("unknown section index %u for local symbol %u"),
2428                       shndx, r_sym);
2429           lv_out->set_output_value(0);
2430           return This::CFLV_ERROR;
2431         }
2432     }
2433   else
2434     {
2435       if (shndx >= this->shnum())
2436         {
2437           this->error(_("local symbol %u section index %u out of range"),
2438                       r_sym, shndx);
2439           lv_out->set_output_value(0);
2440           return This::CFLV_ERROR;
2441         }
2442
2443       Output_section* os = out_sections[shndx];
2444       Address secoffset = out_offsets[shndx];
2445       if (symtab->is_section_folded(this, shndx))
2446         {
2447           gold_assert(os == NULL && secoffset == invalid_address);
2448           // Get the os of the section it is folded onto.
2449           Section_id folded = symtab->icf()->get_folded_section(this,
2450                                                                 shndx);
2451           gold_assert(folded.first != NULL);
2452           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2453             <Sized_relobj_file<size, big_endian>*>(folded.first);
2454           os = folded_obj->output_section(folded.second);
2455           gold_assert(os != NULL);
2456           secoffset = folded_obj->get_output_section_offset(folded.second);
2457
2458           // This could be a relaxed input section.
2459           if (secoffset == invalid_address)
2460             {
2461               const Output_relaxed_input_section* relaxed_section =
2462                 os->find_relaxed_input_section(folded_obj, folded.second);
2463               gold_assert(relaxed_section != NULL);
2464               secoffset = relaxed_section->address() - os->address();
2465             }
2466         }
2467
2468       if (os == NULL)
2469         {
2470           // This local symbol belongs to a section we are discarding.
2471           // In some cases when applying relocations later, we will
2472           // attempt to match it to the corresponding kept section,
2473           // so we leave the input value unchanged here.
2474           return This::CFLV_DISCARDED;
2475         }
2476       else if (secoffset == invalid_address)
2477         {
2478           uint64_t start;
2479
2480           // This is a SHF_MERGE section or one which otherwise
2481           // requires special handling.
2482           if (os->order() == ORDER_EHFRAME)
2483             {
2484               // This local symbol belongs to a discarded or optimized
2485               // .eh_frame section.  Just treat it like the case in which
2486               // os == NULL above.
2487               gold_assert(this->has_eh_frame_);
2488               return This::CFLV_DISCARDED;
2489             }
2490           else if (!lv_in->is_section_symbol())
2491             {
2492               // This is not a section symbol.  We can determine
2493               // the final value now.
2494               uint64_t value =
2495                 os->output_address(this, shndx, lv_in->input_value());
2496               if (relocatable)
2497                 value -= os->address();
2498               lv_out->set_output_value(value);
2499             }
2500           else if (!os->find_starting_output_address(this, shndx, &start))
2501             {
2502               // This is a section symbol, but apparently not one in a
2503               // merged section.  First check to see if this is a relaxed
2504               // input section.  If so, use its address.  Otherwise just
2505               // use the start of the output section.  This happens with
2506               // relocatable links when the input object has section
2507               // symbols for arbitrary non-merge sections.
2508               const Output_section_data* posd =
2509                 os->find_relaxed_input_section(this, shndx);
2510               if (posd != NULL)
2511                 {
2512                   uint64_t value = posd->address();
2513                   if (relocatable)
2514                     value -= os->address();
2515                   lv_out->set_output_value(value);
2516                 }
2517               else
2518                 lv_out->set_output_value(os->address());
2519             }
2520           else
2521             {
2522               // We have to consider the addend to determine the
2523               // value to use in a relocation.  START is the start
2524               // of this input section.  If we are doing a relocatable
2525               // link, use offset from start output section instead of
2526               // address.
2527               Address adjusted_start =
2528                 relocatable ? start - os->address() : start;
2529               Merged_symbol_value<size>* msv =
2530                 new Merged_symbol_value<size>(lv_in->input_value(),
2531                                               adjusted_start);
2532               lv_out->set_merged_symbol_value(msv);
2533             }
2534         }
2535       else if (lv_in->is_tls_symbol()
2536                || (lv_in->is_section_symbol()
2537                    && (os->flags() & elfcpp::SHF_TLS)))
2538         lv_out->set_output_value(os->tls_offset()
2539                                  + secoffset
2540                                  + lv_in->input_value());
2541       else
2542         lv_out->set_output_value((relocatable ? 0 : os->address())
2543                                  + secoffset
2544                                  + lv_in->input_value());
2545     }
2546   return This::CFLV_OK;
2547 }
2548
2549 // Compute final local symbol value.  R_SYM is the index of a local
2550 // symbol in symbol table.  LV points to a symbol value, which is
2551 // expected to hold the input value and to be over-written by the
2552 // final value.  SYMTAB points to a symbol table.  Some targets may want
2553 // to know would-be-finalized local symbol values in relaxation.
2554 // Hence we provide this method.  Since this method updates *LV, a
2555 // callee should make a copy of the original local symbol value and
2556 // use the copy instead of modifying an object's local symbols before
2557 // everything is finalized.  The caller should also free up any allocated
2558 // memory in the return value in *LV.
2559 template<int size, bool big_endian>
2560 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2561 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2562     unsigned int r_sym,
2563     const Symbol_value<size>* lv_in,
2564     Symbol_value<size>* lv_out,
2565     const Symbol_table* symtab)
2566 {
2567   // This is just a wrapper of compute_final_local_value_internal.
2568   const bool relocatable = parameters->options().relocatable();
2569   const Output_sections& out_sections(this->output_sections());
2570   const std::vector<Address>& out_offsets(this->section_offsets());
2571   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2572                                                   relocatable, out_sections,
2573                                                   out_offsets, symtab);
2574 }
2575
2576 // Finalize the local symbols.  Here we set the final value in
2577 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2578 // This function is always called from a singleton thread.  The actual
2579 // output of the local symbols will occur in a separate task.
2580
2581 template<int size, bool big_endian>
2582 unsigned int
2583 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2584     unsigned int index,
2585     off_t off,
2586     Symbol_table* symtab)
2587 {
2588   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2589
2590   const unsigned int loccount = this->local_symbol_count_;
2591   this->local_symbol_offset_ = off;
2592
2593   const bool relocatable = parameters->options().relocatable();
2594   const Output_sections& out_sections(this->output_sections());
2595   const std::vector<Address>& out_offsets(this->section_offsets());
2596
2597   for (unsigned int i = 1; i < loccount; ++i)
2598     {
2599       Symbol_value<size>* lv = &this->local_values_[i];
2600
2601       Compute_final_local_value_status cflv_status =
2602         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2603                                                  out_sections, out_offsets,
2604                                                  symtab);
2605       switch (cflv_status)
2606         {
2607         case CFLV_OK:
2608           if (!lv->is_output_symtab_index_set())
2609             {
2610               lv->set_output_symtab_index(index);
2611               ++index;
2612             }
2613           break;
2614         case CFLV_DISCARDED:
2615         case CFLV_ERROR:
2616           // Do nothing.
2617           break;
2618         default:
2619           gold_unreachable();
2620         }
2621     }
2622   return index;
2623 }
2624
2625 // Set the output dynamic symbol table indexes for the local variables.
2626
2627 template<int size, bool big_endian>
2628 unsigned int
2629 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2630     unsigned int index)
2631 {
2632   const unsigned int loccount = this->local_symbol_count_;
2633   for (unsigned int i = 1; i < loccount; ++i)
2634     {
2635       Symbol_value<size>& lv(this->local_values_[i]);
2636       if (lv.needs_output_dynsym_entry())
2637         {
2638           lv.set_output_dynsym_index(index);
2639           ++index;
2640         }
2641     }
2642   return index;
2643 }
2644
2645 // Set the offset where local dynamic symbol information will be stored.
2646 // Returns the count of local symbols contributed to the symbol table by
2647 // this object.
2648
2649 template<int size, bool big_endian>
2650 unsigned int
2651 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2652 {
2653   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2654   this->local_dynsym_offset_ = off;
2655   return this->output_local_dynsym_count_;
2656 }
2657
2658 // If Symbols_data is not NULL get the section flags from here otherwise
2659 // get it from the file.
2660
2661 template<int size, bool big_endian>
2662 uint64_t
2663 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2664 {
2665   Symbols_data* sd = this->get_symbols_data();
2666   if (sd != NULL)
2667     {
2668       const unsigned char* pshdrs = sd->section_headers_data
2669                                     + This::shdr_size * shndx;
2670       typename This::Shdr shdr(pshdrs);
2671       return shdr.get_sh_flags();
2672     }
2673   // If sd is NULL, read the section header from the file.
2674   return this->elf_file_.section_flags(shndx);
2675 }
2676
2677 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2678 // in icf.cc
2679
2680 template<int size, bool big_endian>
2681 uint64_t
2682 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2683 {
2684   Symbols_data* sd = this->get_symbols_data();
2685   gold_assert(sd != NULL);
2686
2687   const unsigned char* pshdrs = sd->section_headers_data
2688                                 + This::shdr_size * shndx;
2689   typename This::Shdr shdr(pshdrs);
2690   return shdr.get_sh_entsize();
2691 }
2692
2693 // Write out the local symbols.
2694
2695 template<int size, bool big_endian>
2696 void
2697 Sized_relobj_file<size, big_endian>::write_local_symbols(
2698     Output_file* of,
2699     const Stringpool* sympool,
2700     const Stringpool* dynpool,
2701     Output_symtab_xindex* symtab_xindex,
2702     Output_symtab_xindex* dynsym_xindex,
2703     off_t symtab_off)
2704 {
2705   const bool strip_all = parameters->options().strip_all();
2706   if (strip_all)
2707     {
2708       if (this->output_local_dynsym_count_ == 0)
2709         return;
2710       this->output_local_symbol_count_ = 0;
2711     }
2712
2713   gold_assert(this->symtab_shndx_ != -1U);
2714   if (this->symtab_shndx_ == 0)
2715     {
2716       // This object has no symbols.  Weird but legal.
2717       return;
2718     }
2719
2720   // Read the symbol table section header.
2721   const unsigned int symtab_shndx = this->symtab_shndx_;
2722   typename This::Shdr symtabshdr(this,
2723                                  this->elf_file_.section_header(symtab_shndx));
2724   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2725   const unsigned int loccount = this->local_symbol_count_;
2726   gold_assert(loccount == symtabshdr.get_sh_info());
2727
2728   // Read the local symbols.
2729   const int sym_size = This::sym_size;
2730   off_t locsize = loccount * sym_size;
2731   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2732                                               locsize, true, false);
2733
2734   // Read the symbol names.
2735   const unsigned int strtab_shndx =
2736     this->adjust_shndx(symtabshdr.get_sh_link());
2737   section_size_type strtab_size;
2738   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2739                                                         &strtab_size,
2740                                                         false);
2741   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2742
2743   // Get views into the output file for the portions of the symbol table
2744   // and the dynamic symbol table that we will be writing.
2745   off_t output_size = this->output_local_symbol_count_ * sym_size;
2746   unsigned char* oview = NULL;
2747   if (output_size > 0)
2748     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2749                                 output_size);
2750
2751   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2752   unsigned char* dyn_oview = NULL;
2753   if (dyn_output_size > 0)
2754     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2755                                     dyn_output_size);
2756
2757   const Output_sections& out_sections(this->output_sections());
2758
2759   gold_assert(this->local_values_.size() == loccount);
2760
2761   unsigned char* ov = oview;
2762   unsigned char* dyn_ov = dyn_oview;
2763   psyms += sym_size;
2764   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2765     {
2766       elfcpp::Sym<size, big_endian> isym(psyms);
2767
2768       Symbol_value<size>& lv(this->local_values_[i]);
2769
2770       bool is_ordinary;
2771       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2772                                                      &is_ordinary);
2773       if (is_ordinary)
2774         {
2775           gold_assert(st_shndx < out_sections.size());
2776           if (out_sections[st_shndx] == NULL)
2777             continue;
2778           st_shndx = out_sections[st_shndx]->out_shndx();
2779           if (st_shndx >= elfcpp::SHN_LORESERVE)
2780             {
2781               if (lv.has_output_symtab_entry())
2782                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2783               if (lv.has_output_dynsym_entry())
2784                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2785               st_shndx = elfcpp::SHN_XINDEX;
2786             }
2787         }
2788
2789       // Write the symbol to the output symbol table.
2790       if (lv.has_output_symtab_entry())
2791         {
2792           elfcpp::Sym_write<size, big_endian> osym(ov);
2793
2794           gold_assert(isym.get_st_name() < strtab_size);
2795           const char* name = pnames + isym.get_st_name();
2796           osym.put_st_name(sympool->get_offset(name));
2797           osym.put_st_value(lv.value(this, 0));
2798           osym.put_st_size(isym.get_st_size());
2799           osym.put_st_info(isym.get_st_info());
2800           osym.put_st_other(isym.get_st_other());
2801           osym.put_st_shndx(st_shndx);
2802
2803           ov += sym_size;
2804         }
2805
2806       // Write the symbol to the output dynamic symbol table.
2807       if (lv.has_output_dynsym_entry())
2808         {
2809           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2810           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2811
2812           gold_assert(isym.get_st_name() < strtab_size);
2813           const char* name = pnames + isym.get_st_name();
2814           osym.put_st_name(dynpool->get_offset(name));
2815           osym.put_st_value(lv.value(this, 0));
2816           osym.put_st_size(isym.get_st_size());
2817           osym.put_st_info(isym.get_st_info());
2818           osym.put_st_other(isym.get_st_other());
2819           osym.put_st_shndx(st_shndx);
2820
2821           dyn_ov += sym_size;
2822         }
2823     }
2824
2825
2826   if (output_size > 0)
2827     {
2828       gold_assert(ov - oview == output_size);
2829       of->write_output_view(symtab_off + this->local_symbol_offset_,
2830                             output_size, oview);
2831     }
2832
2833   if (dyn_output_size > 0)
2834     {
2835       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2836       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2837                             dyn_oview);
2838     }
2839 }
2840
2841 // Set *INFO to symbolic information about the offset OFFSET in the
2842 // section SHNDX.  Return true if we found something, false if we
2843 // found nothing.
2844
2845 template<int size, bool big_endian>
2846 bool
2847 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2848     unsigned int shndx,
2849     off_t offset,
2850     Symbol_location_info* info)
2851 {
2852   if (this->symtab_shndx_ == 0)
2853     return false;
2854
2855   section_size_type symbols_size;
2856   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2857                                                         &symbols_size,
2858                                                         false);
2859
2860   unsigned int symbol_names_shndx =
2861     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2862   section_size_type names_size;
2863   const unsigned char* symbol_names_u =
2864     this->section_contents(symbol_names_shndx, &names_size, false);
2865   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2866
2867   const int sym_size = This::sym_size;
2868   const size_t count = symbols_size / sym_size;
2869
2870   const unsigned char* p = symbols;
2871   for (size_t i = 0; i < count; ++i, p += sym_size)
2872     {
2873       elfcpp::Sym<size, big_endian> sym(p);
2874
2875       if (sym.get_st_type() == elfcpp::STT_FILE)
2876         {
2877           if (sym.get_st_name() >= names_size)
2878             info->source_file = "(invalid)";
2879           else
2880             info->source_file = symbol_names + sym.get_st_name();
2881           continue;
2882         }
2883
2884       bool is_ordinary;
2885       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2886                                                      &is_ordinary);
2887       if (is_ordinary
2888           && st_shndx == shndx
2889           && static_cast<off_t>(sym.get_st_value()) <= offset
2890           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2891               > offset))
2892         {
2893           info->enclosing_symbol_type = sym.get_st_type();
2894           if (sym.get_st_name() > names_size)
2895             info->enclosing_symbol_name = "(invalid)";
2896           else
2897             {
2898               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2899               if (parameters->options().do_demangle())
2900                 {
2901                   char* demangled_name = cplus_demangle(
2902                       info->enclosing_symbol_name.c_str(),
2903                       DMGL_ANSI | DMGL_PARAMS);
2904                   if (demangled_name != NULL)
2905                     {
2906                       info->enclosing_symbol_name.assign(demangled_name);
2907                       free(demangled_name);
2908                     }
2909                 }
2910             }
2911           return true;
2912         }
2913     }
2914
2915   return false;
2916 }
2917
2918 // Look for a kept section corresponding to the given discarded section,
2919 // and return its output address.  This is used only for relocations in
2920 // debugging sections.  If we can't find the kept section, return 0.
2921
2922 template<int size, bool big_endian>
2923 typename Sized_relobj_file<size, big_endian>::Address
2924 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2925     unsigned int shndx,
2926     std::string& section_name,
2927     bool* pfound) const
2928 {
2929   Kept_section* kept_section;
2930   bool is_comdat;
2931   uint64_t sh_size;
2932   unsigned int symndx;
2933   bool found = false;
2934
2935   if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2936                                     &kept_section))
2937     {
2938       Relobj* kept_object = kept_section->object();
2939       unsigned int kept_shndx = 0;
2940       if (!kept_section->is_comdat())
2941         {
2942           // The kept section is a linkonce section.
2943           if (sh_size == kept_section->linkonce_size())
2944             found = true;
2945         }
2946       else
2947         {
2948           if (is_comdat)
2949             {
2950               // Find the corresponding kept section.
2951               // Since we're using this mapping for relocation processing,
2952               // we don't want to match sections unless they have the same
2953               // size.
2954               uint64_t kept_size = 0;
2955               if (kept_section->find_comdat_section(section_name, &kept_shndx,
2956                                                     &kept_size))
2957                 {
2958                   if (sh_size == kept_size)
2959                     found = true;
2960                 }
2961             }
2962           else
2963             {
2964               uint64_t kept_size = 0;
2965               if (kept_section->find_single_comdat_section(&kept_shndx,
2966                                                            &kept_size)
2967                   && sh_size == kept_size)
2968                 found = true;
2969             }
2970         }
2971
2972       if (found)
2973         {
2974           Sized_relobj_file<size, big_endian>* kept_relobj =
2975             static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2976           Output_section* os = kept_relobj->output_section(kept_shndx);
2977           Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2978           if (os != NULL && offset != invalid_address)
2979             {
2980               *pfound = true;
2981               return os->address() + offset;
2982             }
2983         }
2984     }
2985   *pfound = false;
2986   return 0;
2987 }
2988
2989 // Look for a kept section corresponding to the given discarded section,
2990 // and return its object file.
2991
2992 template<int size, bool big_endian>
2993 Relobj*
2994 Sized_relobj_file<size, big_endian>::find_kept_section_object(
2995     unsigned int shndx, unsigned int *symndx_p) const
2996 {
2997   Kept_section* kept_section;
2998   bool is_comdat;
2999   uint64_t sh_size;
3000   if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3001                                     &kept_section))
3002     return kept_section->object();
3003   return NULL;
3004 }
3005
3006 // Return the name of symbol SYMNDX.
3007
3008 template<int size, bool big_endian>
3009 const char*
3010 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3011 {
3012   if (this->symtab_shndx_ == 0)
3013     return NULL;
3014
3015   section_size_type symbols_size;
3016   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3017                                                         &symbols_size,
3018                                                         false);
3019
3020   unsigned int symbol_names_shndx =
3021     this->adjust_shndx(this->section_link(this->symtab_shndx_));
3022   section_size_type names_size;
3023   const unsigned char* symbol_names_u =
3024     this->section_contents(symbol_names_shndx, &names_size, false);
3025   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3026
3027   const unsigned char* p = symbols + symndx * This::sym_size;
3028
3029   if (p >= symbols + symbols_size)
3030     return NULL;
3031
3032   elfcpp::Sym<size, big_endian> sym(p);
3033
3034   return symbol_names + sym.get_st_name();
3035 }
3036
3037 // Get symbol counts.
3038
3039 template<int size, bool big_endian>
3040 void
3041 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3042     const Symbol_table*,
3043     size_t* defined,
3044     size_t* used) const
3045 {
3046   *defined = this->defined_count_;
3047   size_t count = 0;
3048   for (typename Symbols::const_iterator p = this->symbols_.begin();
3049        p != this->symbols_.end();
3050        ++p)
3051     if (*p != NULL
3052         && (*p)->source() == Symbol::FROM_OBJECT
3053         && (*p)->object() == this
3054         && (*p)->is_defined())
3055       ++count;
3056   *used = count;
3057 }
3058
3059 // Return a view of the decompressed contents of a section.  Set *PLEN
3060 // to the size.  Set *IS_NEW to true if the contents need to be freed
3061 // by the caller.
3062
3063 const unsigned char*
3064 Object::decompressed_section_contents(
3065     unsigned int shndx,
3066     section_size_type* plen,
3067     bool* is_new)
3068 {
3069   section_size_type buffer_size;
3070   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3071                                                           false);
3072
3073   if (this->compressed_sections_ == NULL)
3074     {
3075       *plen = buffer_size;
3076       *is_new = false;
3077       return buffer;
3078     }
3079
3080   Compressed_section_map::const_iterator p =
3081       this->compressed_sections_->find(shndx);
3082   if (p == this->compressed_sections_->end())
3083     {
3084       *plen = buffer_size;
3085       *is_new = false;
3086       return buffer;
3087     }
3088
3089   section_size_type uncompressed_size = p->second.size;
3090   if (p->second.contents != NULL)
3091     {
3092       *plen = uncompressed_size;
3093       *is_new = false;
3094       return p->second.contents;
3095     }
3096
3097   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3098   if (!decompress_input_section(buffer,
3099                                 buffer_size,
3100                                 uncompressed_data,
3101                                 uncompressed_size,
3102                                 elfsize(),
3103                                 is_big_endian(),
3104                                 p->second.flag))
3105     this->error(_("could not decompress section %s"),
3106                 this->do_section_name(shndx).c_str());
3107
3108   // We could cache the results in p->second.contents and store
3109   // false in *IS_NEW, but build_compressed_section_map() would
3110   // have done so if it had expected it to be profitable.  If
3111   // we reach this point, we expect to need the contents only
3112   // once in this pass.
3113   *plen = uncompressed_size;
3114   *is_new = true;
3115   return uncompressed_data;
3116 }
3117
3118 // Discard any buffers of uncompressed sections.  This is done
3119 // at the end of the Add_symbols task.
3120
3121 void
3122 Object::discard_decompressed_sections()
3123 {
3124   if (this->compressed_sections_ == NULL)
3125     return;
3126
3127   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3128        p != this->compressed_sections_->end();
3129        ++p)
3130     {
3131       if (p->second.contents != NULL)
3132         {
3133           delete[] p->second.contents;
3134           p->second.contents = NULL;
3135         }
3136     }
3137 }
3138
3139 // Input_objects methods.
3140
3141 // Add a regular relocatable object to the list.  Return false if this
3142 // object should be ignored.
3143
3144 bool
3145 Input_objects::add_object(Object* obj)
3146 {
3147   // Print the filename if the -t/--trace option is selected.
3148   if (parameters->options().trace())
3149     gold_info("%s", obj->name().c_str());
3150
3151   if (!obj->is_dynamic())
3152     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3153   else
3154     {
3155       // See if this is a duplicate SONAME.
3156       Dynobj* dynobj = static_cast<Dynobj*>(obj);
3157       const char* soname = dynobj->soname();
3158
3159       Unordered_map<std::string, Object*>::value_type val(soname, obj);
3160       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3161         this->sonames_.insert(val);
3162       if (!ins.second)
3163         {
3164           // We have already seen a dynamic object with this soname.
3165           // If any instances of this object on the command line have
3166           // the --no-as-needed flag, make sure the one we keep is
3167           // marked so.
3168           if (!obj->as_needed())
3169             {
3170               gold_assert(ins.first->second != NULL);
3171               ins.first->second->clear_as_needed();
3172             }
3173           return false;
3174         }
3175
3176       this->dynobj_list_.push_back(dynobj);
3177     }
3178
3179   // Add this object to the cross-referencer if requested.
3180   if (parameters->options().user_set_print_symbol_counts()
3181       || parameters->options().cref())
3182     {
3183       if (this->cref_ == NULL)
3184         this->cref_ = new Cref();
3185       this->cref_->add_object(obj);
3186     }
3187
3188   return true;
3189 }
3190
3191 // For each dynamic object, record whether we've seen all of its
3192 // explicit dependencies.
3193
3194 void
3195 Input_objects::check_dynamic_dependencies() const
3196 {
3197   bool issued_copy_dt_needed_error = false;
3198   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3199        p != this->dynobj_list_.end();
3200        ++p)
3201     {
3202       const Dynobj::Needed& needed((*p)->needed());
3203       bool found_all = true;
3204       Dynobj::Needed::const_iterator pneeded;
3205       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3206         {
3207           if (this->sonames_.find(*pneeded) == this->sonames_.end())
3208             {
3209               found_all = false;
3210               break;
3211             }
3212         }
3213       (*p)->set_has_unknown_needed_entries(!found_all);
3214
3215       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3216       // that gold does not support.  However, they cause no trouble
3217       // unless there is a DT_NEEDED entry that we don't know about;
3218       // warn only in that case.
3219       if (!found_all
3220           && !issued_copy_dt_needed_error
3221           && (parameters->options().copy_dt_needed_entries()
3222               || parameters->options().add_needed()))
3223         {
3224           const char* optname;
3225           if (parameters->options().copy_dt_needed_entries())
3226             optname = "--copy-dt-needed-entries";
3227           else
3228             optname = "--add-needed";
3229           gold_error(_("%s is not supported but is required for %s in %s"),
3230                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3231           issued_copy_dt_needed_error = true;
3232         }
3233     }
3234 }
3235
3236 // Start processing an archive.
3237
3238 void
3239 Input_objects::archive_start(Archive* archive)
3240 {
3241   if (parameters->options().user_set_print_symbol_counts()
3242       || parameters->options().cref())
3243     {
3244       if (this->cref_ == NULL)
3245         this->cref_ = new Cref();
3246       this->cref_->add_archive_start(archive);
3247     }
3248 }
3249
3250 // Stop processing an archive.
3251
3252 void
3253 Input_objects::archive_stop(Archive* archive)
3254 {
3255   if (parameters->options().user_set_print_symbol_counts()
3256       || parameters->options().cref())
3257     this->cref_->add_archive_stop(archive);
3258 }
3259
3260 // Print symbol counts
3261
3262 void
3263 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3264 {
3265   if (parameters->options().user_set_print_symbol_counts()
3266       && this->cref_ != NULL)
3267     this->cref_->print_symbol_counts(symtab);
3268 }
3269
3270 // Print a cross reference table.
3271
3272 void
3273 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3274 {
3275   if (parameters->options().cref() && this->cref_ != NULL)
3276     this->cref_->print_cref(symtab, f);
3277 }
3278
3279 // Relocate_info methods.
3280
3281 // Return a string describing the location of a relocation when file
3282 // and lineno information is not available.  This is only used in
3283 // error messages.
3284
3285 template<int size, bool big_endian>
3286 std::string
3287 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3288 {
3289   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3290   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3291   if (!ret.empty())
3292     return ret;
3293
3294   ret = this->object->name();
3295
3296   Symbol_location_info info;
3297   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3298     {
3299       if (!info.source_file.empty())
3300         {
3301           ret += ":";
3302           ret += info.source_file;
3303         }
3304       ret += ":";
3305       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3306         ret += _("function ");
3307       ret += info.enclosing_symbol_name;
3308       return ret;
3309     }
3310
3311   ret += "(";
3312   ret += this->object->section_name(this->data_shndx);
3313   char buf[100];
3314   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3315   ret += buf;
3316   return ret;
3317 }
3318
3319 } // End namespace gold.
3320
3321 namespace
3322 {
3323
3324 using namespace gold;
3325
3326 // Read an ELF file with the header and return the appropriate
3327 // instance of Object.
3328
3329 template<int size, bool big_endian>
3330 Object*
3331 make_elf_sized_object(const std::string& name, Input_file* input_file,
3332                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3333                       bool* punconfigured)
3334 {
3335   Target* target = select_target(input_file, offset,
3336                                  ehdr.get_e_machine(), size, big_endian,
3337                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3338                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3339   if (target == NULL)
3340     gold_fatal(_("%s: unsupported ELF machine number %d"),
3341                name.c_str(), ehdr.get_e_machine());
3342
3343   if (!parameters->target_valid())
3344     set_parameters_target(target);
3345   else if (target != &parameters->target())
3346     {
3347       if (punconfigured != NULL)
3348         *punconfigured = true;
3349       else
3350         gold_error(_("%s: incompatible target"), name.c_str());
3351       return NULL;
3352     }
3353
3354   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3355                                                    ehdr);
3356 }
3357
3358 } // End anonymous namespace.
3359
3360 namespace gold
3361 {
3362
3363 // Return whether INPUT_FILE is an ELF object.
3364
3365 bool
3366 is_elf_object(Input_file* input_file, off_t offset,
3367               const unsigned char** start, int* read_size)
3368 {
3369   off_t filesize = input_file->file().filesize();
3370   int want = elfcpp::Elf_recognizer::max_header_size;
3371   if (filesize - offset < want)
3372     want = filesize - offset;
3373
3374   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3375                                                        true, false);
3376   *start = p;
3377   *read_size = want;
3378
3379   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3380 }
3381
3382 // Read an ELF file and return the appropriate instance of Object.
3383
3384 Object*
3385 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3386                 const unsigned char* p, section_offset_type bytes,
3387                 bool* punconfigured)
3388 {
3389   if (punconfigured != NULL)
3390     *punconfigured = false;
3391
3392   std::string error;
3393   bool big_endian = false;
3394   int size = 0;
3395   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3396                                                &big_endian, &error))
3397     {
3398       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3399       return NULL;
3400     }
3401
3402   if (size == 32)
3403     {
3404       if (big_endian)
3405         {
3406 #ifdef HAVE_TARGET_32_BIG
3407           elfcpp::Ehdr<32, true> ehdr(p);
3408           return make_elf_sized_object<32, true>(name, input_file,
3409                                                  offset, ehdr, punconfigured);
3410 #else
3411           if (punconfigured != NULL)
3412             *punconfigured = true;
3413           else
3414             gold_error(_("%s: not configured to support "
3415                          "32-bit big-endian object"),
3416                        name.c_str());
3417           return NULL;
3418 #endif
3419         }
3420       else
3421         {
3422 #ifdef HAVE_TARGET_32_LITTLE
3423           elfcpp::Ehdr<32, false> ehdr(p);
3424           return make_elf_sized_object<32, false>(name, input_file,
3425                                                   offset, ehdr, punconfigured);
3426 #else
3427           if (punconfigured != NULL)
3428             *punconfigured = true;
3429           else
3430             gold_error(_("%s: not configured to support "
3431                          "32-bit little-endian object"),
3432                        name.c_str());
3433           return NULL;
3434 #endif
3435         }
3436     }
3437   else if (size == 64)
3438     {
3439       if (big_endian)
3440         {
3441 #ifdef HAVE_TARGET_64_BIG
3442           elfcpp::Ehdr<64, true> ehdr(p);
3443           return make_elf_sized_object<64, true>(name, input_file,
3444                                                  offset, ehdr, punconfigured);
3445 #else
3446           if (punconfigured != NULL)
3447             *punconfigured = true;
3448           else
3449             gold_error(_("%s: not configured to support "
3450                          "64-bit big-endian object"),
3451                        name.c_str());
3452           return NULL;
3453 #endif
3454         }
3455       else
3456         {
3457 #ifdef HAVE_TARGET_64_LITTLE
3458           elfcpp::Ehdr<64, false> ehdr(p);
3459           return make_elf_sized_object<64, false>(name, input_file,
3460                                                   offset, ehdr, punconfigured);
3461 #else
3462           if (punconfigured != NULL)
3463             *punconfigured = true;
3464           else
3465             gold_error(_("%s: not configured to support "
3466                          "64-bit little-endian object"),
3467                        name.c_str());
3468           return NULL;
3469 #endif
3470         }
3471     }
3472   else
3473     gold_unreachable();
3474 }
3475
3476 // Instantiate the templates we need.
3477
3478 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3479 template
3480 void
3481 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3482       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3483       Unordered_map<section_offset_type,
3484       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3485 #endif
3486
3487 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3488 template
3489 void
3490 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3491       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3492       Unordered_map<section_offset_type,
3493       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3494 #endif
3495
3496 #ifdef HAVE_TARGET_32_LITTLE
3497 template
3498 void
3499 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3500                                      Read_symbols_data*);
3501 template
3502 const unsigned char*
3503 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3504                             section_size_type, const unsigned char*) const;
3505 #endif
3506
3507 #ifdef HAVE_TARGET_32_BIG
3508 template
3509 void
3510 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3511                                     Read_symbols_data*);
3512 template
3513 const unsigned char*
3514 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3515                            section_size_type, const unsigned char*) const;
3516 #endif
3517
3518 #ifdef HAVE_TARGET_64_LITTLE
3519 template
3520 void
3521 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3522                                      Read_symbols_data*);
3523 template
3524 const unsigned char*
3525 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3526                             section_size_type, const unsigned char*) const;
3527 #endif
3528
3529 #ifdef HAVE_TARGET_64_BIG
3530 template
3531 void
3532 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3533                                     Read_symbols_data*);
3534 template
3535 const unsigned char*
3536 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3537                            section_size_type, const unsigned char*) const;
3538 #endif
3539
3540 #ifdef HAVE_TARGET_32_LITTLE
3541 template
3542 class Sized_relobj<32, false>;
3543
3544 template
3545 class Sized_relobj_file<32, false>;
3546 #endif
3547
3548 #ifdef HAVE_TARGET_32_BIG
3549 template
3550 class Sized_relobj<32, true>;
3551
3552 template
3553 class Sized_relobj_file<32, true>;
3554 #endif
3555
3556 #ifdef HAVE_TARGET_64_LITTLE
3557 template
3558 class Sized_relobj<64, false>;
3559
3560 template
3561 class Sized_relobj_file<64, false>;
3562 #endif
3563
3564 #ifdef HAVE_TARGET_64_BIG
3565 template
3566 class Sized_relobj<64, true>;
3567
3568 template
3569 class Sized_relobj_file<64, true>;
3570 #endif
3571
3572 #ifdef HAVE_TARGET_32_LITTLE
3573 template
3574 struct Relocate_info<32, false>;
3575 #endif
3576
3577 #ifdef HAVE_TARGET_32_BIG
3578 template
3579 struct Relocate_info<32, true>;
3580 #endif
3581
3582 #ifdef HAVE_TARGET_64_LITTLE
3583 template
3584 struct Relocate_info<64, false>;
3585 #endif
3586
3587 #ifdef HAVE_TARGET_64_BIG
3588 template
3589 struct Relocate_info<64, true>;
3590 #endif
3591
3592 #ifdef HAVE_TARGET_32_LITTLE
3593 template
3594 void
3595 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3596
3597 template
3598 void
3599 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3600                                       const unsigned char*);
3601 #endif
3602
3603 #ifdef HAVE_TARGET_32_BIG
3604 template
3605 void
3606 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3607
3608 template
3609 void
3610 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3611                                      const unsigned char*);
3612 #endif
3613
3614 #ifdef HAVE_TARGET_64_LITTLE
3615 template
3616 void
3617 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3618
3619 template
3620 void
3621 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3622                                       const unsigned char*);
3623 #endif
3624
3625 #ifdef HAVE_TARGET_64_BIG
3626 template
3627 void
3628 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3629
3630 template
3631 void
3632 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3633                                      const unsigned char*);
3634 #endif
3635
3636 #ifdef HAVE_TARGET_32_LITTLE
3637 template
3638 Compressed_section_map*
3639 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3640                                         const char*, section_size_type, 
3641                                         Object*, bool);
3642 #endif
3643
3644 #ifdef HAVE_TARGET_32_BIG
3645 template
3646 Compressed_section_map*
3647 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3648                                         const char*, section_size_type, 
3649                                         Object*, bool);
3650 #endif
3651
3652 #ifdef HAVE_TARGET_64_LITTLE
3653 template
3654 Compressed_section_map*
3655 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3656                                         const char*, section_size_type, 
3657                                         Object*, bool);
3658 #endif
3659
3660 #ifdef HAVE_TARGET_64_BIG
3661 template
3662 Compressed_section_map*
3663 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3664                                         const char*, section_size_type, 
3665                                         Object*, bool);
3666 #endif
3667
3668 } // End namespace gold.