cbe73caba2823518d983b749f795699944168e1f
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   if (this->object_merge_map_ == NULL)
289     {
290       this->object_merge_map_ =  new Object_merge_map();
291     }
292
293   this->object_merge_map_->add_mapping(output_data, shndx, offset, length,
294                                        output_offset);
295 }
296
297 bool
298 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
299                             section_offset_type *poutput) const {
300   Object_merge_map* object_merge_map = this->object_merge_map_;
301   if (object_merge_map == NULL)
302     return false;
303   return object_merge_map->get_output_offset(shndx, offset, poutput);
304 }
305
306 const Output_section_data*
307 Relobj::find_merge_section(unsigned int shndx) const {
308   Object_merge_map* object_merge_map = this->object_merge_map_;
309   if (object_merge_map == NULL)
310     return NULL;
311   return object_merge_map->find_merge_section(shndx);
312 }
313
314 // To copy the symbols data read from the file to a local data structure.
315 // This function is called from do_layout only while doing garbage
316 // collection.
317
318 void
319 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
320                           unsigned int section_header_size)
321 {
322   gc_sd->section_headers_data =
323          new unsigned char[(section_header_size)];
324   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
325          section_header_size);
326   gc_sd->section_names_data =
327          new unsigned char[sd->section_names_size];
328   memcpy(gc_sd->section_names_data, sd->section_names->data(),
329          sd->section_names_size);
330   gc_sd->section_names_size = sd->section_names_size;
331   if (sd->symbols != NULL)
332     {
333       gc_sd->symbols_data =
334              new unsigned char[sd->symbols_size];
335       memcpy(gc_sd->symbols_data, sd->symbols->data(),
336             sd->symbols_size);
337     }
338   else
339     {
340       gc_sd->symbols_data = NULL;
341     }
342   gc_sd->symbols_size = sd->symbols_size;
343   gc_sd->external_symbols_offset = sd->external_symbols_offset;
344   if (sd->symbol_names != NULL)
345     {
346       gc_sd->symbol_names_data =
347              new unsigned char[sd->symbol_names_size];
348       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
349             sd->symbol_names_size);
350     }
351   else
352     {
353       gc_sd->symbol_names_data = NULL;
354     }
355   gc_sd->symbol_names_size = sd->symbol_names_size;
356 }
357
358 // This function determines if a particular section name must be included
359 // in the link.  This is used during garbage collection to determine the
360 // roots of the worklist.
361
362 bool
363 Relobj::is_section_name_included(const char* name)
364 {
365   if (is_prefix_of(".ctors", name)
366       || is_prefix_of(".dtors", name)
367       || is_prefix_of(".note", name)
368       || is_prefix_of(".init", name)
369       || is_prefix_of(".fini", name)
370       || is_prefix_of(".gcc_except_table", name)
371       || is_prefix_of(".jcr", name)
372       || is_prefix_of(".preinit_array", name)
373       || (is_prefix_of(".text", name)
374           && strstr(name, "personality"))
375       || (is_prefix_of(".data", name)
376           && strstr(name, "personality"))
377       || (is_prefix_of(".sdata", name)
378           && strstr(name, "personality"))
379       || (is_prefix_of(".gnu.linkonce.d", name)
380           && strstr(name, "personality"))
381       || (is_prefix_of(".rodata", name)
382           && strstr(name, "nptl_version")))
383     {
384       return true;
385     }
386   return false;
387 }
388
389 // Finalize the incremental relocation information.  Allocates a block
390 // of relocation entries for each symbol, and sets the reloc_bases_
391 // array to point to the first entry in each block.  If CLEAR_COUNTS
392 // is TRUE, also clear the per-symbol relocation counters.
393
394 void
395 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
396 {
397   unsigned int nsyms = this->get_global_symbols()->size();
398   this->reloc_bases_ = new unsigned int[nsyms];
399
400   gold_assert(this->reloc_bases_ != NULL);
401   gold_assert(layout->incremental_inputs() != NULL);
402
403   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
404   for (unsigned int i = 0; i < nsyms; ++i)
405     {
406       this->reloc_bases_[i] = rindex;
407       rindex += this->reloc_counts_[i];
408       if (clear_counts)
409         this->reloc_counts_[i] = 0;
410     }
411   layout->incremental_inputs()->set_reloc_count(rindex);
412 }
413
414 // Class Sized_relobj.
415
416 // Iterate over local symbols, calling a visitor class V for each GOT offset
417 // associated with a local symbol.
418
419 template<int size, bool big_endian>
420 void
421 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
422     Got_offset_list::Visitor* v) const
423 {
424   unsigned int nsyms = this->local_symbol_count();
425   for (unsigned int i = 0; i < nsyms; i++)
426     {
427       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
428       if (p != this->local_got_offsets_.end())
429         {
430           const Got_offset_list* got_offsets = p->second;
431           got_offsets->for_all_got_offsets(v);
432         }
433     }
434 }
435
436 // Get the address of an output section.
437
438 template<int size, bool big_endian>
439 uint64_t
440 Sized_relobj<size, big_endian>::do_output_section_address(
441     unsigned int shndx)
442 {
443   // If the input file is linked as --just-symbols, the output
444   // section address is the input section address.
445   if (this->just_symbols())
446     return this->section_address(shndx);
447
448   const Output_section* os = this->do_output_section(shndx);
449   gold_assert(os != NULL);
450   return os->address();
451 }
452
453 // Class Sized_relobj_file.
454
455 template<int size, bool big_endian>
456 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
457     const std::string& name,
458     Input_file* input_file,
459     off_t offset,
460     const elfcpp::Ehdr<size, big_endian>& ehdr)
461   : Sized_relobj<size, big_endian>(name, input_file, offset),
462     elf_file_(this, ehdr),
463     symtab_shndx_(-1U),
464     local_symbol_count_(0),
465     output_local_symbol_count_(0),
466     output_local_dynsym_count_(0),
467     symbols_(),
468     defined_count_(0),
469     local_symbol_offset_(0),
470     local_dynsym_offset_(0),
471     local_values_(),
472     local_plt_offsets_(),
473     kept_comdat_sections_(),
474     has_eh_frame_(false),
475     discarded_eh_frame_shndx_(-1U),
476     is_deferred_layout_(false),
477     deferred_layout_(),
478     deferred_layout_relocs_()
479 {
480   this->e_type_ = ehdr.get_e_type();
481 }
482
483 template<int size, bool big_endian>
484 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
485 {
486 }
487
488 // Set up an object file based on the file header.  This sets up the
489 // section information.
490
491 template<int size, bool big_endian>
492 void
493 Sized_relobj_file<size, big_endian>::do_setup()
494 {
495   const unsigned int shnum = this->elf_file_.shnum();
496   this->set_shnum(shnum);
497 }
498
499 // Find the SHT_SYMTAB section, given the section headers.  The ELF
500 // standard says that maybe in the future there can be more than one
501 // SHT_SYMTAB section.  Until somebody figures out how that could
502 // work, we assume there is only one.
503
504 template<int size, bool big_endian>
505 void
506 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
507 {
508   const unsigned int shnum = this->shnum();
509   this->symtab_shndx_ = 0;
510   if (shnum > 0)
511     {
512       // Look through the sections in reverse order, since gas tends
513       // to put the symbol table at the end.
514       const unsigned char* p = pshdrs + shnum * This::shdr_size;
515       unsigned int i = shnum;
516       unsigned int xindex_shndx = 0;
517       unsigned int xindex_link = 0;
518       while (i > 0)
519         {
520           --i;
521           p -= This::shdr_size;
522           typename This::Shdr shdr(p);
523           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
524             {
525               this->symtab_shndx_ = i;
526               if (xindex_shndx > 0 && xindex_link == i)
527                 {
528                   Xindex* xindex =
529                     new Xindex(this->elf_file_.large_shndx_offset());
530                   xindex->read_symtab_xindex<size, big_endian>(this,
531                                                                xindex_shndx,
532                                                                pshdrs);
533                   this->set_xindex(xindex);
534                 }
535               break;
536             }
537
538           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
539           // one.  This will work if it follows the SHT_SYMTAB
540           // section.
541           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
542             {
543               xindex_shndx = i;
544               xindex_link = this->adjust_shndx(shdr.get_sh_link());
545             }
546         }
547     }
548 }
549
550 // Return the Xindex structure to use for object with lots of
551 // sections.
552
553 template<int size, bool big_endian>
554 Xindex*
555 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
556 {
557   gold_assert(this->symtab_shndx_ != -1U);
558   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
559   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
560   return xindex;
561 }
562
563 // Return whether SHDR has the right type and flags to be a GNU
564 // .eh_frame section.
565
566 template<int size, bool big_endian>
567 bool
568 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
569     const elfcpp::Shdr<size, big_endian>* shdr) const
570 {
571   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
572   return ((sh_type == elfcpp::SHT_PROGBITS
573            || sh_type == elfcpp::SHT_X86_64_UNWIND)
574           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
575 }
576
577 // Find the section header with the given name.
578
579 template<int size, bool big_endian>
580 const unsigned char*
581 Object::find_shdr(
582     const unsigned char* pshdrs,
583     const char* name,
584     const char* names,
585     section_size_type names_size,
586     const unsigned char* hdr) const
587 {
588   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
589   const unsigned int shnum = this->shnum();
590   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
591   size_t sh_name = 0;
592
593   while (1)
594     {
595       if (hdr)
596         {
597           // We found HDR last time we were called, continue looking.
598           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
599           sh_name = shdr.get_sh_name();
600         }
601       else
602         {
603           // Look for the next occurrence of NAME in NAMES.
604           // The fact that .shstrtab produced by current GNU tools is
605           // string merged means we shouldn't have both .not.foo and
606           // .foo in .shstrtab, and multiple .foo sections should all
607           // have the same sh_name.  However, this is not guaranteed
608           // by the ELF spec and not all ELF object file producers may
609           // be so clever.
610           size_t len = strlen(name) + 1;
611           const char *p = sh_name ? names + sh_name + len : names;
612           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
613                                                    name, len));
614           if (p == NULL)
615             return NULL;
616           sh_name = p - names;
617           hdr = pshdrs;
618           if (sh_name == 0)
619             return hdr;
620         }
621
622       hdr += shdr_size;
623       while (hdr < hdr_end)
624         {
625           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
626           if (shdr.get_sh_name() == sh_name)
627             return hdr;
628           hdr += shdr_size;
629         }
630       hdr = NULL;
631       if (sh_name == 0)
632         return hdr;
633     }
634 }
635
636 // Return whether there is a GNU .eh_frame section, given the section
637 // headers and the section names.
638
639 template<int size, bool big_endian>
640 bool
641 Sized_relobj_file<size, big_endian>::find_eh_frame(
642     const unsigned char* pshdrs,
643     const char* names,
644     section_size_type names_size) const
645 {
646   const unsigned char* s = NULL;
647
648   while (1)
649     {
650       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
651                                                      names, names_size, s);
652       if (s == NULL)
653         return false;
654
655       typename This::Shdr shdr(s);
656       if (this->check_eh_frame_flags(&shdr))
657         return true;
658     }
659 }
660
661 // Return TRUE if this is a section whose contents will be needed in the
662 // Add_symbols task.  This function is only called for sections that have
663 // already passed the test in is_compressed_debug_section(), so we know
664 // that the section name begins with ".zdebug".
665
666 static bool
667 need_decompressed_section(const char* name)
668 {
669   // Skip over the ".zdebug" and a quick check for the "_".
670   name += 7;
671   if (*name++ != '_')
672     return false;
673
674 #ifdef ENABLE_THREADS
675   // Decompressing these sections now will help only if we're
676   // multithreaded.
677   if (parameters->options().threads())
678     {
679       // We will need .zdebug_str if this is not an incremental link
680       // (i.e., we are processing string merge sections) or if we need
681       // to build a gdb index.
682       if ((!parameters->incremental() || parameters->options().gdb_index())
683           && strcmp(name, "str") == 0)
684         return true;
685
686       // We will need these other sections when building a gdb index.
687       if (parameters->options().gdb_index()
688           && (strcmp(name, "info") == 0
689               || strcmp(name, "types") == 0
690               || strcmp(name, "pubnames") == 0
691               || strcmp(name, "pubtypes") == 0
692               || strcmp(name, "ranges") == 0
693               || strcmp(name, "abbrev") == 0))
694         return true;
695     }
696 #endif
697
698   // Even when single-threaded, we will need .zdebug_str if this is
699   // not an incremental link and we are building a gdb index.
700   // Otherwise, we would decompress the section twice: once for
701   // string merge processing, and once for building the gdb index.
702   if (!parameters->incremental()
703       && parameters->options().gdb_index()
704       && strcmp(name, "str") == 0)
705     return true;
706
707   return false;
708 }
709
710 // Build a table for any compressed debug sections, mapping each section index
711 // to the uncompressed size and (if needed) the decompressed contents.
712
713 template<int size, bool big_endian>
714 Compressed_section_map*
715 build_compressed_section_map(
716     const unsigned char* pshdrs,
717     unsigned int shnum,
718     const char* names,
719     section_size_type names_size,
720     Object* obj,
721     bool decompress_if_needed)
722 {
723   Compressed_section_map* uncompressed_map = new Compressed_section_map();
724   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
725   const unsigned char* p = pshdrs + shdr_size;
726
727   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
728     {
729       typename elfcpp::Shdr<size, big_endian> shdr(p);
730       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
731           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
732         {
733           if (shdr.get_sh_name() >= names_size)
734             {
735               obj->error(_("bad section name offset for section %u: %lu"),
736                          i, static_cast<unsigned long>(shdr.get_sh_name()));
737               continue;
738             }
739
740           const char* name = names + shdr.get_sh_name();
741           if (is_compressed_debug_section(name))
742             {
743               section_size_type len;
744               const unsigned char* contents =
745                   obj->section_contents(i, &len, false);
746               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
747               Compressed_section_info info;
748               info.size = convert_to_section_size_type(uncompressed_size);
749               info.contents = NULL;
750               if (uncompressed_size != -1ULL)
751                 {
752                   unsigned char* uncompressed_data = NULL;
753                   if (decompress_if_needed && need_decompressed_section(name))
754                     {
755                       uncompressed_data = new unsigned char[uncompressed_size];
756                       if (decompress_input_section(contents, len,
757                                                    uncompressed_data,
758                                                    uncompressed_size))
759                         info.contents = uncompressed_data;
760                       else
761                         delete[] uncompressed_data;
762                     }
763                   (*uncompressed_map)[i] = info;
764                 }
765             }
766         }
767     }
768   return uncompressed_map;
769 }
770
771 // Stash away info for a number of special sections.
772 // Return true if any of the sections found require local symbols to be read.
773
774 template<int size, bool big_endian>
775 bool
776 Sized_relobj_file<size, big_endian>::do_find_special_sections(
777     Read_symbols_data* sd)
778 {
779   const unsigned char* const pshdrs = sd->section_headers->data();
780   const unsigned char* namesu = sd->section_names->data();
781   const char* names = reinterpret_cast<const char*>(namesu);
782
783   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
784     this->has_eh_frame_ = true;
785
786   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
787     {
788       Compressed_section_map* compressed_sections =
789           build_compressed_section_map<size, big_endian>(
790               pshdrs, this->shnum(), names, sd->section_names_size, this, true);
791       if (compressed_sections != NULL)
792         this->set_compressed_sections(compressed_sections);
793     }
794
795   return (this->has_eh_frame_
796           || (!parameters->options().relocatable()
797               && parameters->options().gdb_index()
798               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
799                   || memmem(names, sd->section_names_size, "debug_types",
800                             13) == 0)));
801 }
802
803 // Read the sections and symbols from an object file.
804
805 template<int size, bool big_endian>
806 void
807 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
808 {
809   this->base_read_symbols(sd);
810 }
811
812 // Read the sections and symbols from an object file.  This is common
813 // code for all target-specific overrides of do_read_symbols().
814
815 template<int size, bool big_endian>
816 void
817 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
818 {
819   this->read_section_data(&this->elf_file_, sd);
820
821   const unsigned char* const pshdrs = sd->section_headers->data();
822
823   this->find_symtab(pshdrs);
824
825   bool need_local_symbols = this->do_find_special_sections(sd);
826
827   sd->symbols = NULL;
828   sd->symbols_size = 0;
829   sd->external_symbols_offset = 0;
830   sd->symbol_names = NULL;
831   sd->symbol_names_size = 0;
832
833   if (this->symtab_shndx_ == 0)
834     {
835       // No symbol table.  Weird but legal.
836       return;
837     }
838
839   // Get the symbol table section header.
840   typename This::Shdr symtabshdr(pshdrs
841                                  + this->symtab_shndx_ * This::shdr_size);
842   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
843
844   // If this object has a .eh_frame section, or if building a .gdb_index
845   // section and there is debug info, we need all the symbols.
846   // Otherwise we only need the external symbols.  While it would be
847   // simpler to just always read all the symbols, I've seen object
848   // files with well over 2000 local symbols, which for a 64-bit
849   // object file format is over 5 pages that we don't need to read
850   // now.
851
852   const int sym_size = This::sym_size;
853   const unsigned int loccount = symtabshdr.get_sh_info();
854   this->local_symbol_count_ = loccount;
855   this->local_values_.resize(loccount);
856   section_offset_type locsize = loccount * sym_size;
857   off_t dataoff = symtabshdr.get_sh_offset();
858   section_size_type datasize =
859     convert_to_section_size_type(symtabshdr.get_sh_size());
860   off_t extoff = dataoff + locsize;
861   section_size_type extsize = datasize - locsize;
862
863   off_t readoff = need_local_symbols ? dataoff : extoff;
864   section_size_type readsize = need_local_symbols ? datasize : extsize;
865
866   if (readsize == 0)
867     {
868       // No external symbols.  Also weird but also legal.
869       return;
870     }
871
872   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
873
874   // Read the section header for the symbol names.
875   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
876   if (strtab_shndx >= this->shnum())
877     {
878       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
879       return;
880     }
881   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
882   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
883     {
884       this->error(_("symbol table name section has wrong type: %u"),
885                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
886       return;
887     }
888
889   // Read the symbol names.
890   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
891                                                strtabshdr.get_sh_size(),
892                                                false, true);
893
894   sd->symbols = fvsymtab;
895   sd->symbols_size = readsize;
896   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
897   sd->symbol_names = fvstrtab;
898   sd->symbol_names_size =
899     convert_to_section_size_type(strtabshdr.get_sh_size());
900 }
901
902 // Return the section index of symbol SYM.  Set *VALUE to its value in
903 // the object file.  Set *IS_ORDINARY if this is an ordinary section
904 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
905 // Note that for a symbol which is not defined in this object file,
906 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
907 // the final value of the symbol in the link.
908
909 template<int size, bool big_endian>
910 unsigned int
911 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
912                                                               Address* value,
913                                                               bool* is_ordinary)
914 {
915   section_size_type symbols_size;
916   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
917                                                         &symbols_size,
918                                                         false);
919
920   const size_t count = symbols_size / This::sym_size;
921   gold_assert(sym < count);
922
923   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
924   *value = elfsym.get_st_value();
925
926   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
927 }
928
929 // Return whether to include a section group in the link.  LAYOUT is
930 // used to keep track of which section groups we have already seen.
931 // INDEX is the index of the section group and SHDR is the section
932 // header.  If we do not want to include this group, we set bits in
933 // OMIT for each section which should be discarded.
934
935 template<int size, bool big_endian>
936 bool
937 Sized_relobj_file<size, big_endian>::include_section_group(
938     Symbol_table* symtab,
939     Layout* layout,
940     unsigned int index,
941     const char* name,
942     const unsigned char* shdrs,
943     const char* section_names,
944     section_size_type section_names_size,
945     std::vector<bool>* omit)
946 {
947   // Read the section contents.
948   typename This::Shdr shdr(shdrs + index * This::shdr_size);
949   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
950                                              shdr.get_sh_size(), true, false);
951   const elfcpp::Elf_Word* pword =
952     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
953
954   // The first word contains flags.  We only care about COMDAT section
955   // groups.  Other section groups are always included in the link
956   // just like ordinary sections.
957   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
958
959   // Look up the group signature, which is the name of a symbol.  ELF
960   // uses a symbol name because some group signatures are long, and
961   // the name is generally already in the symbol table, so it makes
962   // sense to put the long string just once in .strtab rather than in
963   // both .strtab and .shstrtab.
964
965   // Get the appropriate symbol table header (this will normally be
966   // the single SHT_SYMTAB section, but in principle it need not be).
967   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
968   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
969
970   // Read the symbol table entry.
971   unsigned int symndx = shdr.get_sh_info();
972   if (symndx >= symshdr.get_sh_size() / This::sym_size)
973     {
974       this->error(_("section group %u info %u out of range"),
975                   index, symndx);
976       return false;
977     }
978   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
979   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
980                                              false);
981   elfcpp::Sym<size, big_endian> sym(psym);
982
983   // Read the symbol table names.
984   section_size_type symnamelen;
985   const unsigned char* psymnamesu;
986   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
987                                       &symnamelen, true);
988   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
989
990   // Get the section group signature.
991   if (sym.get_st_name() >= symnamelen)
992     {
993       this->error(_("symbol %u name offset %u out of range"),
994                   symndx, sym.get_st_name());
995       return false;
996     }
997
998   std::string signature(psymnames + sym.get_st_name());
999
1000   // It seems that some versions of gas will create a section group
1001   // associated with a section symbol, and then fail to give a name to
1002   // the section symbol.  In such a case, use the name of the section.
1003   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1004     {
1005       bool is_ordinary;
1006       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1007                                                       sym.get_st_shndx(),
1008                                                       &is_ordinary);
1009       if (!is_ordinary || sym_shndx >= this->shnum())
1010         {
1011           this->error(_("symbol %u invalid section index %u"),
1012                       symndx, sym_shndx);
1013           return false;
1014         }
1015       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1016       if (member_shdr.get_sh_name() < section_names_size)
1017         signature = section_names + member_shdr.get_sh_name();
1018     }
1019
1020   // Record this section group in the layout, and see whether we've already
1021   // seen one with the same signature.
1022   bool include_group;
1023   bool is_comdat;
1024   Kept_section* kept_section = NULL;
1025
1026   if ((flags & elfcpp::GRP_COMDAT) == 0)
1027     {
1028       include_group = true;
1029       is_comdat = false;
1030     }
1031   else
1032     {
1033       include_group = layout->find_or_add_kept_section(signature,
1034                                                        this, index, true,
1035                                                        true, &kept_section);
1036       is_comdat = true;
1037     }
1038
1039   if (is_comdat && include_group)
1040     {
1041       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1042       if (incremental_inputs != NULL)
1043         incremental_inputs->report_comdat_group(this, signature.c_str());
1044     }
1045
1046   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1047
1048   std::vector<unsigned int> shndxes;
1049   bool relocate_group = include_group && parameters->options().relocatable();
1050   if (relocate_group)
1051     shndxes.reserve(count - 1);
1052
1053   for (size_t i = 1; i < count; ++i)
1054     {
1055       elfcpp::Elf_Word shndx =
1056         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1057
1058       if (relocate_group)
1059         shndxes.push_back(shndx);
1060
1061       if (shndx >= this->shnum())
1062         {
1063           this->error(_("section %u in section group %u out of range"),
1064                       shndx, index);
1065           continue;
1066         }
1067
1068       // Check for an earlier section number, since we're going to get
1069       // it wrong--we may have already decided to include the section.
1070       if (shndx < index)
1071         this->error(_("invalid section group %u refers to earlier section %u"),
1072                     index, shndx);
1073
1074       // Get the name of the member section.
1075       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1076       if (member_shdr.get_sh_name() >= section_names_size)
1077         {
1078           // This is an error, but it will be diagnosed eventually
1079           // in do_layout, so we don't need to do anything here but
1080           // ignore it.
1081           continue;
1082         }
1083       std::string mname(section_names + member_shdr.get_sh_name());
1084
1085       if (include_group)
1086         {
1087           if (is_comdat)
1088             kept_section->add_comdat_section(mname, shndx,
1089                                              member_shdr.get_sh_size());
1090         }
1091       else
1092         {
1093           (*omit)[shndx] = true;
1094
1095           if (is_comdat)
1096             {
1097               Relobj* kept_object = kept_section->object();
1098               if (kept_section->is_comdat())
1099                 {
1100                   // Find the corresponding kept section, and store
1101                   // that info in the discarded section table.
1102                   unsigned int kept_shndx;
1103                   uint64_t kept_size;
1104                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1105                                                         &kept_size))
1106                     {
1107                       // We don't keep a mapping for this section if
1108                       // it has a different size.  The mapping is only
1109                       // used for relocation processing, and we don't
1110                       // want to treat the sections as similar if the
1111                       // sizes are different.  Checking the section
1112                       // size is the approach used by the GNU linker.
1113                       if (kept_size == member_shdr.get_sh_size())
1114                         this->set_kept_comdat_section(shndx, kept_object,
1115                                                       kept_shndx);
1116                     }
1117                 }
1118               else
1119                 {
1120                   // The existing section is a linkonce section.  Add
1121                   // a mapping if there is exactly one section in the
1122                   // group (which is true when COUNT == 2) and if it
1123                   // is the same size.
1124                   if (count == 2
1125                       && (kept_section->linkonce_size()
1126                           == member_shdr.get_sh_size()))
1127                     this->set_kept_comdat_section(shndx, kept_object,
1128                                                   kept_section->shndx());
1129                 }
1130             }
1131         }
1132     }
1133
1134   if (relocate_group)
1135     layout->layout_group(symtab, this, index, name, signature.c_str(),
1136                          shdr, flags, &shndxes);
1137
1138   return include_group;
1139 }
1140
1141 // Whether to include a linkonce section in the link.  NAME is the
1142 // name of the section and SHDR is the section header.
1143
1144 // Linkonce sections are a GNU extension implemented in the original
1145 // GNU linker before section groups were defined.  The semantics are
1146 // that we only include one linkonce section with a given name.  The
1147 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1148 // where T is the type of section and SYMNAME is the name of a symbol.
1149 // In an attempt to make linkonce sections interact well with section
1150 // groups, we try to identify SYMNAME and use it like a section group
1151 // signature.  We want to block section groups with that signature,
1152 // but not other linkonce sections with that signature.  We also use
1153 // the full name of the linkonce section as a normal section group
1154 // signature.
1155
1156 template<int size, bool big_endian>
1157 bool
1158 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1159     Layout* layout,
1160     unsigned int index,
1161     const char* name,
1162     const elfcpp::Shdr<size, big_endian>& shdr)
1163 {
1164   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1165   // In general the symbol name we want will be the string following
1166   // the last '.'.  However, we have to handle the case of
1167   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1168   // some versions of gcc.  So we use a heuristic: if the name starts
1169   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1170   // we look for the last '.'.  We can't always simply skip
1171   // ".gnu.linkonce.X", because we have to deal with cases like
1172   // ".gnu.linkonce.d.rel.ro.local".
1173   const char* const linkonce_t = ".gnu.linkonce.t.";
1174   const char* symname;
1175   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1176     symname = name + strlen(linkonce_t);
1177   else
1178     symname = strrchr(name, '.') + 1;
1179   std::string sig1(symname);
1180   std::string sig2(name);
1181   Kept_section* kept1;
1182   Kept_section* kept2;
1183   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1184                                                    false, &kept1);
1185   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1186                                                    true, &kept2);
1187
1188   if (!include2)
1189     {
1190       // We are not including this section because we already saw the
1191       // name of the section as a signature.  This normally implies
1192       // that the kept section is another linkonce section.  If it is
1193       // the same size, record it as the section which corresponds to
1194       // this one.
1195       if (kept2->object() != NULL
1196           && !kept2->is_comdat()
1197           && kept2->linkonce_size() == sh_size)
1198         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1199     }
1200   else if (!include1)
1201     {
1202       // The section is being discarded on the basis of its symbol
1203       // name.  This means that the corresponding kept section was
1204       // part of a comdat group, and it will be difficult to identify
1205       // the specific section within that group that corresponds to
1206       // this linkonce section.  We'll handle the simple case where
1207       // the group has only one member section.  Otherwise, it's not
1208       // worth the effort.
1209       unsigned int kept_shndx;
1210       uint64_t kept_size;
1211       if (kept1->object() != NULL
1212           && kept1->is_comdat()
1213           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1214           && kept_size == sh_size)
1215         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1216     }
1217   else
1218     {
1219       kept1->set_linkonce_size(sh_size);
1220       kept2->set_linkonce_size(sh_size);
1221     }
1222
1223   return include1 && include2;
1224 }
1225
1226 // Layout an input section.
1227
1228 template<int size, bool big_endian>
1229 inline void
1230 Sized_relobj_file<size, big_endian>::layout_section(
1231     Layout* layout,
1232     unsigned int shndx,
1233     const char* name,
1234     const typename This::Shdr& shdr,
1235     unsigned int reloc_shndx,
1236     unsigned int reloc_type)
1237 {
1238   off_t offset;
1239   Output_section* os = layout->layout(this, shndx, name, shdr,
1240                                           reloc_shndx, reloc_type, &offset);
1241
1242   this->output_sections()[shndx] = os;
1243   if (offset == -1)
1244     this->section_offsets()[shndx] = invalid_address;
1245   else
1246     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1247
1248   // If this section requires special handling, and if there are
1249   // relocs that apply to it, then we must do the special handling
1250   // before we apply the relocs.
1251   if (offset == -1 && reloc_shndx != 0)
1252     this->set_relocs_must_follow_section_writes();
1253 }
1254
1255 // Layout an input .eh_frame section.
1256
1257 template<int size, bool big_endian>
1258 void
1259 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1260     Layout* layout,
1261     const unsigned char* symbols_data,
1262     section_size_type symbols_size,
1263     const unsigned char* symbol_names_data,
1264     section_size_type symbol_names_size,
1265     unsigned int shndx,
1266     const typename This::Shdr& shdr,
1267     unsigned int reloc_shndx,
1268     unsigned int reloc_type)
1269 {
1270   gold_assert(this->has_eh_frame_);
1271
1272   off_t offset;
1273   Output_section* os = layout->layout_eh_frame(this,
1274                                                symbols_data,
1275                                                symbols_size,
1276                                                symbol_names_data,
1277                                                symbol_names_size,
1278                                                shndx,
1279                                                shdr,
1280                                                reloc_shndx,
1281                                                reloc_type,
1282                                                &offset);
1283   this->output_sections()[shndx] = os;
1284   if (os == NULL || offset == -1)
1285     {
1286       // An object can contain at most one section holding exception
1287       // frame information.
1288       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1289       this->discarded_eh_frame_shndx_ = shndx;
1290       this->section_offsets()[shndx] = invalid_address;
1291     }
1292   else
1293     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1294
1295   // If this section requires special handling, and if there are
1296   // relocs that aply to it, then we must do the special handling
1297   // before we apply the relocs.
1298   if (os != NULL && offset == -1 && reloc_shndx != 0)
1299     this->set_relocs_must_follow_section_writes();
1300 }
1301
1302 // Lay out the input sections.  We walk through the sections and check
1303 // whether they should be included in the link.  If they should, we
1304 // pass them to the Layout object, which will return an output section
1305 // and an offset.
1306 // This function is called twice sometimes, two passes, when mapping
1307 // of input sections to output sections must be delayed.
1308 // This is true for the following :
1309 // * Garbage collection (--gc-sections): Some input sections will be
1310 // discarded and hence the assignment must wait until the second pass.
1311 // In the first pass,  it is for setting up some sections as roots to
1312 // a work-list for --gc-sections and to do comdat processing.
1313 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1314 // will be folded and hence the assignment must wait.
1315 // * Using plugins to map some sections to unique segments: Mapping
1316 // some sections to unique segments requires mapping them to unique
1317 // output sections too.  This can be done via plugins now and this
1318 // information is not available in the first pass.
1319
1320 template<int size, bool big_endian>
1321 void
1322 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1323                                                Layout* layout,
1324                                                Read_symbols_data* sd)
1325 {
1326   const unsigned int shnum = this->shnum();
1327
1328   /* Should this function be called twice?  */
1329   bool is_two_pass = (parameters->options().gc_sections()
1330                       || parameters->options().icf_enabled()
1331                       || layout->is_unique_segment_for_sections_specified());
1332
1333   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1334      a two-pass approach is not needed.  */
1335   bool is_pass_one = false;
1336   bool is_pass_two = false;
1337
1338   Symbols_data* gc_sd = NULL;
1339
1340   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1341      should happen.  In the first pass, the data in sd is saved to be used
1342      later in the second pass.  */
1343   if (is_two_pass)
1344     {
1345       gc_sd = this->get_symbols_data();
1346       if (gc_sd == NULL)
1347         {
1348           gold_assert(sd != NULL);
1349           is_pass_one = true;
1350         }
1351       else
1352         {
1353           if (parameters->options().gc_sections())
1354             gold_assert(symtab->gc()->is_worklist_ready());
1355           if (parameters->options().icf_enabled())
1356             gold_assert(symtab->icf()->is_icf_ready()); 
1357           is_pass_two = true;
1358         }
1359     }
1360     
1361   if (shnum == 0)
1362     return;
1363
1364   if (is_pass_one)
1365     {
1366       // During garbage collection save the symbols data to use it when
1367       // re-entering this function.
1368       gc_sd = new Symbols_data;
1369       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1370       this->set_symbols_data(gc_sd);
1371     }
1372
1373   const unsigned char* section_headers_data = NULL;
1374   section_size_type section_names_size;
1375   const unsigned char* symbols_data = NULL;
1376   section_size_type symbols_size;
1377   const unsigned char* symbol_names_data = NULL;
1378   section_size_type symbol_names_size;
1379
1380   if (is_two_pass)
1381     {
1382       section_headers_data = gc_sd->section_headers_data;
1383       section_names_size = gc_sd->section_names_size;
1384       symbols_data = gc_sd->symbols_data;
1385       symbols_size = gc_sd->symbols_size;
1386       symbol_names_data = gc_sd->symbol_names_data;
1387       symbol_names_size = gc_sd->symbol_names_size;
1388     }
1389   else
1390     {
1391       section_headers_data = sd->section_headers->data();
1392       section_names_size = sd->section_names_size;
1393       if (sd->symbols != NULL)
1394         symbols_data = sd->symbols->data();
1395       symbols_size = sd->symbols_size;
1396       if (sd->symbol_names != NULL)
1397         symbol_names_data = sd->symbol_names->data();
1398       symbol_names_size = sd->symbol_names_size;
1399     }
1400
1401   // Get the section headers.
1402   const unsigned char* shdrs = section_headers_data;
1403   const unsigned char* pshdrs;
1404
1405   // Get the section names.
1406   const unsigned char* pnamesu = (is_two_pass
1407                                   ? gc_sd->section_names_data
1408                                   : sd->section_names->data());
1409
1410   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1411
1412   // If any input files have been claimed by plugins, we need to defer
1413   // actual layout until the replacement files have arrived.
1414   const bool should_defer_layout =
1415       (parameters->options().has_plugins()
1416        && parameters->options().plugins()->should_defer_layout());
1417   unsigned int num_sections_to_defer = 0;
1418
1419   // For each section, record the index of the reloc section if any.
1420   // Use 0 to mean that there is no reloc section, -1U to mean that
1421   // there is more than one.
1422   std::vector<unsigned int> reloc_shndx(shnum, 0);
1423   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1424   // Skip the first, dummy, section.
1425   pshdrs = shdrs + This::shdr_size;
1426   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1427     {
1428       typename This::Shdr shdr(pshdrs);
1429
1430       // Count the number of sections whose layout will be deferred.
1431       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1432         ++num_sections_to_defer;
1433
1434       unsigned int sh_type = shdr.get_sh_type();
1435       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1436         {
1437           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1438           if (target_shndx == 0 || target_shndx >= shnum)
1439             {
1440               this->error(_("relocation section %u has bad info %u"),
1441                           i, target_shndx);
1442               continue;
1443             }
1444
1445           if (reloc_shndx[target_shndx] != 0)
1446             reloc_shndx[target_shndx] = -1U;
1447           else
1448             {
1449               reloc_shndx[target_shndx] = i;
1450               reloc_type[target_shndx] = sh_type;
1451             }
1452         }
1453     }
1454
1455   Output_sections& out_sections(this->output_sections());
1456   std::vector<Address>& out_section_offsets(this->section_offsets());
1457
1458   if (!is_pass_two)
1459     {
1460       out_sections.resize(shnum);
1461       out_section_offsets.resize(shnum);
1462     }
1463
1464   // If we are only linking for symbols, then there is nothing else to
1465   // do here.
1466   if (this->input_file()->just_symbols())
1467     {
1468       if (!is_pass_two)
1469         {
1470           delete sd->section_headers;
1471           sd->section_headers = NULL;
1472           delete sd->section_names;
1473           sd->section_names = NULL;
1474         }
1475       return;
1476     }
1477
1478   if (num_sections_to_defer > 0)
1479     {
1480       parameters->options().plugins()->add_deferred_layout_object(this);
1481       this->deferred_layout_.reserve(num_sections_to_defer);
1482       this->is_deferred_layout_ = true;
1483     }
1484
1485   // Whether we've seen a .note.GNU-stack section.
1486   bool seen_gnu_stack = false;
1487   // The flags of a .note.GNU-stack section.
1488   uint64_t gnu_stack_flags = 0;
1489
1490   // Keep track of which sections to omit.
1491   std::vector<bool> omit(shnum, false);
1492
1493   // Keep track of reloc sections when emitting relocations.
1494   const bool relocatable = parameters->options().relocatable();
1495   const bool emit_relocs = (relocatable
1496                             || parameters->options().emit_relocs());
1497   std::vector<unsigned int> reloc_sections;
1498
1499   // Keep track of .eh_frame sections.
1500   std::vector<unsigned int> eh_frame_sections;
1501
1502   // Keep track of .debug_info and .debug_types sections.
1503   std::vector<unsigned int> debug_info_sections;
1504   std::vector<unsigned int> debug_types_sections;
1505
1506   // Skip the first, dummy, section.
1507   pshdrs = shdrs + This::shdr_size;
1508   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1509     {
1510       typename This::Shdr shdr(pshdrs);
1511
1512       if (shdr.get_sh_name() >= section_names_size)
1513         {
1514           this->error(_("bad section name offset for section %u: %lu"),
1515                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1516           return;
1517         }
1518
1519       const char* name = pnames + shdr.get_sh_name();
1520
1521       if (!is_pass_two)
1522         {
1523           if (this->handle_gnu_warning_section(name, i, symtab))
1524             {
1525               if (!relocatable && !parameters->options().shared())
1526                 omit[i] = true;
1527             }
1528
1529           // The .note.GNU-stack section is special.  It gives the
1530           // protection flags that this object file requires for the stack
1531           // in memory.
1532           if (strcmp(name, ".note.GNU-stack") == 0)
1533             {
1534               seen_gnu_stack = true;
1535               gnu_stack_flags |= shdr.get_sh_flags();
1536               omit[i] = true;
1537             }
1538
1539           // The .note.GNU-split-stack section is also special.  It
1540           // indicates that the object was compiled with
1541           // -fsplit-stack.
1542           if (this->handle_split_stack_section(name))
1543             {
1544               if (!relocatable && !parameters->options().shared())
1545                 omit[i] = true;
1546             }
1547
1548           // Skip attributes section.
1549           if (parameters->target().is_attributes_section(name))
1550             {
1551               omit[i] = true;
1552             }
1553
1554           bool discard = omit[i];
1555           if (!discard)
1556             {
1557               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1558                 {
1559                   if (!this->include_section_group(symtab, layout, i, name,
1560                                                    shdrs, pnames,
1561                                                    section_names_size,
1562                                                    &omit))
1563                     discard = true;
1564                 }
1565               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1566                        && Layout::is_linkonce(name))
1567                 {
1568                   if (!this->include_linkonce_section(layout, i, name, shdr))
1569                     discard = true;
1570                 }
1571             }
1572
1573           // Add the section to the incremental inputs layout.
1574           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1575           if (incremental_inputs != NULL
1576               && !discard
1577               && can_incremental_update(shdr.get_sh_type()))
1578             {
1579               off_t sh_size = shdr.get_sh_size();
1580               section_size_type uncompressed_size;
1581               if (this->section_is_compressed(i, &uncompressed_size))
1582                 sh_size = uncompressed_size;
1583               incremental_inputs->report_input_section(this, i, name, sh_size);
1584             }
1585
1586           if (discard)
1587             {
1588               // Do not include this section in the link.
1589               out_sections[i] = NULL;
1590               out_section_offsets[i] = invalid_address;
1591               continue;
1592             }
1593         }
1594
1595       if (is_pass_one && parameters->options().gc_sections())
1596         {
1597           if (this->is_section_name_included(name)
1598               || layout->keep_input_section (this, name)
1599               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1600               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1601             {
1602               symtab->gc()->worklist().push(Section_id(this, i));
1603             }
1604           // If the section name XXX can be represented as a C identifier
1605           // it cannot be discarded if there are references to
1606           // __start_XXX and __stop_XXX symbols.  These need to be
1607           // specially handled.
1608           if (is_cident(name))
1609             {
1610               symtab->gc()->add_cident_section(name, Section_id(this, i));
1611             }
1612         }
1613
1614       // When doing a relocatable link we are going to copy input
1615       // reloc sections into the output.  We only want to copy the
1616       // ones associated with sections which are not being discarded.
1617       // However, we don't know that yet for all sections.  So save
1618       // reloc sections and process them later. Garbage collection is
1619       // not triggered when relocatable code is desired.
1620       if (emit_relocs
1621           && (shdr.get_sh_type() == elfcpp::SHT_REL
1622               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1623         {
1624           reloc_sections.push_back(i);
1625           continue;
1626         }
1627
1628       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1629         continue;
1630
1631       // The .eh_frame section is special.  It holds exception frame
1632       // information that we need to read in order to generate the
1633       // exception frame header.  We process these after all the other
1634       // sections so that the exception frame reader can reliably
1635       // determine which sections are being discarded, and discard the
1636       // corresponding information.
1637       if (!relocatable
1638           && strcmp(name, ".eh_frame") == 0
1639           && this->check_eh_frame_flags(&shdr))
1640         {
1641           if (is_pass_one)
1642             {
1643               if (this->is_deferred_layout())
1644                 out_sections[i] = reinterpret_cast<Output_section*>(2);
1645               else
1646                 out_sections[i] = reinterpret_cast<Output_section*>(1);
1647               out_section_offsets[i] = invalid_address;
1648             }
1649           else if (this->is_deferred_layout())
1650             this->deferred_layout_.push_back(Deferred_layout(i, name,
1651                                                              pshdrs,
1652                                                              reloc_shndx[i],
1653                                                              reloc_type[i]));
1654           else
1655             eh_frame_sections.push_back(i);
1656           continue;
1657         }
1658
1659       if (is_pass_two && parameters->options().gc_sections())
1660         {
1661           // This is executed during the second pass of garbage
1662           // collection. do_layout has been called before and some
1663           // sections have been already discarded. Simply ignore
1664           // such sections this time around.
1665           if (out_sections[i] == NULL)
1666             {
1667               gold_assert(out_section_offsets[i] == invalid_address);
1668               continue;
1669             }
1670           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1671               && symtab->gc()->is_section_garbage(this, i))
1672               {
1673                 if (parameters->options().print_gc_sections())
1674                   gold_info(_("%s: removing unused section from '%s'"
1675                               " in file '%s'"),
1676                             program_name, this->section_name(i).c_str(),
1677                             this->name().c_str());
1678                 out_sections[i] = NULL;
1679                 out_section_offsets[i] = invalid_address;
1680                 continue;
1681               }
1682         }
1683
1684       if (is_pass_two && parameters->options().icf_enabled())
1685         {
1686           if (out_sections[i] == NULL)
1687             {
1688               gold_assert(out_section_offsets[i] == invalid_address);
1689               continue;
1690             }
1691           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1692               && symtab->icf()->is_section_folded(this, i))
1693               {
1694                 if (parameters->options().print_icf_sections())
1695                   {
1696                     Section_id folded =
1697                                 symtab->icf()->get_folded_section(this, i);
1698                     Relobj* folded_obj =
1699                                 reinterpret_cast<Relobj*>(folded.first);
1700                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1701                                 "into '%s' in file '%s'"),
1702                               program_name, this->section_name(i).c_str(),
1703                               this->name().c_str(),
1704                               folded_obj->section_name(folded.second).c_str(),
1705                               folded_obj->name().c_str());
1706                   }
1707                 out_sections[i] = NULL;
1708                 out_section_offsets[i] = invalid_address;
1709                 continue;
1710               }
1711         }
1712
1713       // Defer layout here if input files are claimed by plugins.  When gc
1714       // is turned on this function is called twice; we only want to do this
1715       // on the first pass.
1716       if (!is_pass_two
1717           && this->is_deferred_layout()
1718           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1719         {
1720           this->deferred_layout_.push_back(Deferred_layout(i, name,
1721                                                            pshdrs,
1722                                                            reloc_shndx[i],
1723                                                            reloc_type[i]));
1724           // Put dummy values here; real values will be supplied by
1725           // do_layout_deferred_sections.
1726           out_sections[i] = reinterpret_cast<Output_section*>(2);
1727           out_section_offsets[i] = invalid_address;
1728           continue;
1729         }
1730
1731       // During gc_pass_two if a section that was previously deferred is
1732       // found, do not layout the section as layout_deferred_sections will
1733       // do it later from gold.cc.
1734       if (is_pass_two
1735           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1736         continue;
1737
1738       if (is_pass_one)
1739         {
1740           // This is during garbage collection. The out_sections are
1741           // assigned in the second call to this function.
1742           out_sections[i] = reinterpret_cast<Output_section*>(1);
1743           out_section_offsets[i] = invalid_address;
1744         }
1745       else
1746         {
1747           // When garbage collection is switched on the actual layout
1748           // only happens in the second call.
1749           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1750                                reloc_type[i]);
1751
1752           // When generating a .gdb_index section, we do additional
1753           // processing of .debug_info and .debug_types sections after all
1754           // the other sections for the same reason as above.
1755           if (!relocatable
1756               && parameters->options().gdb_index()
1757               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1758             {
1759               if (strcmp(name, ".debug_info") == 0
1760                   || strcmp(name, ".zdebug_info") == 0)
1761                 debug_info_sections.push_back(i);
1762               else if (strcmp(name, ".debug_types") == 0
1763                        || strcmp(name, ".zdebug_types") == 0)
1764                 debug_types_sections.push_back(i);
1765             }
1766         }
1767     }
1768
1769   if (!is_pass_two)
1770     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1771
1772   // Handle the .eh_frame sections after the other sections.
1773   gold_assert(!is_pass_one || eh_frame_sections.empty());
1774   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1775        p != eh_frame_sections.end();
1776        ++p)
1777     {
1778       unsigned int i = *p;
1779       const unsigned char* pshdr;
1780       pshdr = section_headers_data + i * This::shdr_size;
1781       typename This::Shdr shdr(pshdr);
1782
1783       this->layout_eh_frame_section(layout,
1784                                     symbols_data,
1785                                     symbols_size,
1786                                     symbol_names_data,
1787                                     symbol_names_size,
1788                                     i,
1789                                     shdr,
1790                                     reloc_shndx[i],
1791                                     reloc_type[i]);
1792     }
1793
1794   // When doing a relocatable link handle the reloc sections at the
1795   // end.  Garbage collection  and Identical Code Folding is not
1796   // turned on for relocatable code.
1797   if (emit_relocs)
1798     this->size_relocatable_relocs();
1799
1800   gold_assert(!is_two_pass || reloc_sections.empty());
1801
1802   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1803        p != reloc_sections.end();
1804        ++p)
1805     {
1806       unsigned int i = *p;
1807       const unsigned char* pshdr;
1808       pshdr = section_headers_data + i * This::shdr_size;
1809       typename This::Shdr shdr(pshdr);
1810
1811       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1812       if (data_shndx >= shnum)
1813         {
1814           // We already warned about this above.
1815           continue;
1816         }
1817
1818       Output_section* data_section = out_sections[data_shndx];
1819       if (data_section == reinterpret_cast<Output_section*>(2))
1820         {
1821           if (is_pass_two)
1822             continue;
1823           // The layout for the data section was deferred, so we need
1824           // to defer the relocation section, too.
1825           const char* name = pnames + shdr.get_sh_name();
1826           this->deferred_layout_relocs_.push_back(
1827               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1828           out_sections[i] = reinterpret_cast<Output_section*>(2);
1829           out_section_offsets[i] = invalid_address;
1830           continue;
1831         }
1832       if (data_section == NULL)
1833         {
1834           out_sections[i] = NULL;
1835           out_section_offsets[i] = invalid_address;
1836           continue;
1837         }
1838
1839       Relocatable_relocs* rr = new Relocatable_relocs();
1840       this->set_relocatable_relocs(i, rr);
1841
1842       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1843                                                 rr);
1844       out_sections[i] = os;
1845       out_section_offsets[i] = invalid_address;
1846     }
1847
1848   // When building a .gdb_index section, scan the .debug_info and
1849   // .debug_types sections.
1850   gold_assert(!is_pass_one
1851               || (debug_info_sections.empty() && debug_types_sections.empty()));
1852   for (std::vector<unsigned int>::const_iterator p
1853            = debug_info_sections.begin();
1854        p != debug_info_sections.end();
1855        ++p)
1856     {
1857       unsigned int i = *p;
1858       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1859                                i, reloc_shndx[i], reloc_type[i]);
1860     }
1861   for (std::vector<unsigned int>::const_iterator p
1862            = debug_types_sections.begin();
1863        p != debug_types_sections.end();
1864        ++p)
1865     {
1866       unsigned int i = *p;
1867       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1868                                i, reloc_shndx[i], reloc_type[i]);
1869     }
1870
1871   if (is_pass_two)
1872     {
1873       delete[] gc_sd->section_headers_data;
1874       delete[] gc_sd->section_names_data;
1875       delete[] gc_sd->symbols_data;
1876       delete[] gc_sd->symbol_names_data;
1877       this->set_symbols_data(NULL);
1878     }
1879   else
1880     {
1881       delete sd->section_headers;
1882       sd->section_headers = NULL;
1883       delete sd->section_names;
1884       sd->section_names = NULL;
1885     }
1886 }
1887
1888 // Layout sections whose layout was deferred while waiting for
1889 // input files from a plugin.
1890
1891 template<int size, bool big_endian>
1892 void
1893 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1894 {
1895   typename std::vector<Deferred_layout>::iterator deferred;
1896
1897   for (deferred = this->deferred_layout_.begin();
1898        deferred != this->deferred_layout_.end();
1899        ++deferred)
1900     {
1901       typename This::Shdr shdr(deferred->shdr_data_);
1902
1903       if (!parameters->options().relocatable()
1904           && deferred->name_ == ".eh_frame"
1905           && this->check_eh_frame_flags(&shdr))
1906         {
1907           // Checking is_section_included is not reliable for
1908           // .eh_frame sections, because they do not have an output
1909           // section.  This is not a problem normally because we call
1910           // layout_eh_frame_section unconditionally, but when
1911           // deferring sections that is not true.  We don't want to
1912           // keep all .eh_frame sections because that will cause us to
1913           // keep all sections that they refer to, which is the wrong
1914           // way around.  Instead, the eh_frame code will discard
1915           // .eh_frame sections that refer to discarded sections.
1916
1917           // Reading the symbols again here may be slow.
1918           Read_symbols_data sd;
1919           this->base_read_symbols(&sd);
1920           this->layout_eh_frame_section(layout,
1921                                         sd.symbols->data(),
1922                                         sd.symbols_size,
1923                                         sd.symbol_names->data(),
1924                                         sd.symbol_names_size,
1925                                         deferred->shndx_,
1926                                         shdr,
1927                                         deferred->reloc_shndx_,
1928                                         deferred->reloc_type_);
1929           continue;
1930         }
1931
1932       // If the section is not included, it is because the garbage collector
1933       // decided it is not needed.  Avoid reverting that decision.
1934       if (!this->is_section_included(deferred->shndx_))
1935         continue;
1936
1937       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1938                            shdr, deferred->reloc_shndx_,
1939                            deferred->reloc_type_);
1940     }
1941
1942   this->deferred_layout_.clear();
1943
1944   // Now handle the deferred relocation sections.
1945
1946   Output_sections& out_sections(this->output_sections());
1947   std::vector<Address>& out_section_offsets(this->section_offsets());
1948
1949   for (deferred = this->deferred_layout_relocs_.begin();
1950        deferred != this->deferred_layout_relocs_.end();
1951        ++deferred)
1952     {
1953       unsigned int shndx = deferred->shndx_;
1954       typename This::Shdr shdr(deferred->shdr_data_);
1955       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1956
1957       Output_section* data_section = out_sections[data_shndx];
1958       if (data_section == NULL)
1959         {
1960           out_sections[shndx] = NULL;
1961           out_section_offsets[shndx] = invalid_address;
1962           continue;
1963         }
1964
1965       Relocatable_relocs* rr = new Relocatable_relocs();
1966       this->set_relocatable_relocs(shndx, rr);
1967
1968       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1969                                                 data_section, rr);
1970       out_sections[shndx] = os;
1971       out_section_offsets[shndx] = invalid_address;
1972     }
1973 }
1974
1975 // Add the symbols to the symbol table.
1976
1977 template<int size, bool big_endian>
1978 void
1979 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1980                                                     Read_symbols_data* sd,
1981                                                     Layout*)
1982 {
1983   if (sd->symbols == NULL)
1984     {
1985       gold_assert(sd->symbol_names == NULL);
1986       return;
1987     }
1988
1989   const int sym_size = This::sym_size;
1990   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1991                      / sym_size);
1992   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1993     {
1994       this->error(_("size of symbols is not multiple of symbol size"));
1995       return;
1996     }
1997
1998   this->symbols_.resize(symcount);
1999
2000   const char* sym_names =
2001     reinterpret_cast<const char*>(sd->symbol_names->data());
2002   symtab->add_from_relobj(this,
2003                           sd->symbols->data() + sd->external_symbols_offset,
2004                           symcount, this->local_symbol_count_,
2005                           sym_names, sd->symbol_names_size,
2006                           &this->symbols_,
2007                           &this->defined_count_);
2008
2009   delete sd->symbols;
2010   sd->symbols = NULL;
2011   delete sd->symbol_names;
2012   sd->symbol_names = NULL;
2013 }
2014
2015 // Find out if this object, that is a member of a lib group, should be included
2016 // in the link. We check every symbol defined by this object. If the symbol
2017 // table has a strong undefined reference to that symbol, we have to include
2018 // the object.
2019
2020 template<int size, bool big_endian>
2021 Archive::Should_include
2022 Sized_relobj_file<size, big_endian>::do_should_include_member(
2023     Symbol_table* symtab,
2024     Layout* layout,
2025     Read_symbols_data* sd,
2026     std::string* why)
2027 {
2028   char* tmpbuf = NULL;
2029   size_t tmpbuflen = 0;
2030   const char* sym_names =
2031       reinterpret_cast<const char*>(sd->symbol_names->data());
2032   const unsigned char* syms =
2033       sd->symbols->data() + sd->external_symbols_offset;
2034   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2035   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2036                          / sym_size);
2037
2038   const unsigned char* p = syms;
2039
2040   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2041     {
2042       elfcpp::Sym<size, big_endian> sym(p);
2043       unsigned int st_shndx = sym.get_st_shndx();
2044       if (st_shndx == elfcpp::SHN_UNDEF)
2045         continue;
2046
2047       unsigned int st_name = sym.get_st_name();
2048       const char* name = sym_names + st_name;
2049       Symbol* symbol;
2050       Archive::Should_include t = Archive::should_include_member(symtab,
2051                                                                  layout,
2052                                                                  name,
2053                                                                  &symbol, why,
2054                                                                  &tmpbuf,
2055                                                                  &tmpbuflen);
2056       if (t == Archive::SHOULD_INCLUDE_YES)
2057         {
2058           if (tmpbuf != NULL)
2059             free(tmpbuf);
2060           return t;
2061         }
2062     }
2063   if (tmpbuf != NULL)
2064     free(tmpbuf);
2065   return Archive::SHOULD_INCLUDE_UNKNOWN;
2066 }
2067
2068 // Iterate over global defined symbols, calling a visitor class V for each.
2069
2070 template<int size, bool big_endian>
2071 void
2072 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2073     Read_symbols_data* sd,
2074     Library_base::Symbol_visitor_base* v)
2075 {
2076   const char* sym_names =
2077       reinterpret_cast<const char*>(sd->symbol_names->data());
2078   const unsigned char* syms =
2079       sd->symbols->data() + sd->external_symbols_offset;
2080   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2081   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2082                      / sym_size);
2083   const unsigned char* p = syms;
2084
2085   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2086     {
2087       elfcpp::Sym<size, big_endian> sym(p);
2088       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2089         v->visit(sym_names + sym.get_st_name());
2090     }
2091 }
2092
2093 // Return whether the local symbol SYMNDX has a PLT offset.
2094
2095 template<int size, bool big_endian>
2096 bool
2097 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2098     unsigned int symndx) const
2099 {
2100   typename Local_plt_offsets::const_iterator p =
2101     this->local_plt_offsets_.find(symndx);
2102   return p != this->local_plt_offsets_.end();
2103 }
2104
2105 // Get the PLT offset of a local symbol.
2106
2107 template<int size, bool big_endian>
2108 unsigned int
2109 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2110     unsigned int symndx) const
2111 {
2112   typename Local_plt_offsets::const_iterator p =
2113     this->local_plt_offsets_.find(symndx);
2114   gold_assert(p != this->local_plt_offsets_.end());
2115   return p->second;
2116 }
2117
2118 // Set the PLT offset of a local symbol.
2119
2120 template<int size, bool big_endian>
2121 void
2122 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2123     unsigned int symndx, unsigned int plt_offset)
2124 {
2125   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2126     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2127   gold_assert(ins.second);
2128 }
2129
2130 // First pass over the local symbols.  Here we add their names to
2131 // *POOL and *DYNPOOL, and we store the symbol value in
2132 // THIS->LOCAL_VALUES_.  This function is always called from a
2133 // singleton thread.  This is followed by a call to
2134 // finalize_local_symbols.
2135
2136 template<int size, bool big_endian>
2137 void
2138 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2139                                                             Stringpool* dynpool)
2140 {
2141   gold_assert(this->symtab_shndx_ != -1U);
2142   if (this->symtab_shndx_ == 0)
2143     {
2144       // This object has no symbols.  Weird but legal.
2145       return;
2146     }
2147
2148   // Read the symbol table section header.
2149   const unsigned int symtab_shndx = this->symtab_shndx_;
2150   typename This::Shdr symtabshdr(this,
2151                                  this->elf_file_.section_header(symtab_shndx));
2152   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2153
2154   // Read the local symbols.
2155   const int sym_size = This::sym_size;
2156   const unsigned int loccount = this->local_symbol_count_;
2157   gold_assert(loccount == symtabshdr.get_sh_info());
2158   off_t locsize = loccount * sym_size;
2159   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2160                                               locsize, true, true);
2161
2162   // Read the symbol names.
2163   const unsigned int strtab_shndx =
2164     this->adjust_shndx(symtabshdr.get_sh_link());
2165   section_size_type strtab_size;
2166   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2167                                                         &strtab_size,
2168                                                         true);
2169   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2170
2171   // Loop over the local symbols.
2172
2173   const Output_sections& out_sections(this->output_sections());
2174   unsigned int shnum = this->shnum();
2175   unsigned int count = 0;
2176   unsigned int dyncount = 0;
2177   // Skip the first, dummy, symbol.
2178   psyms += sym_size;
2179   bool strip_all = parameters->options().strip_all();
2180   bool discard_all = parameters->options().discard_all();
2181   bool discard_locals = parameters->options().discard_locals();
2182   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2183     {
2184       elfcpp::Sym<size, big_endian> sym(psyms);
2185
2186       Symbol_value<size>& lv(this->local_values_[i]);
2187
2188       bool is_ordinary;
2189       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2190                                                   &is_ordinary);
2191       lv.set_input_shndx(shndx, is_ordinary);
2192
2193       if (sym.get_st_type() == elfcpp::STT_SECTION)
2194         lv.set_is_section_symbol();
2195       else if (sym.get_st_type() == elfcpp::STT_TLS)
2196         lv.set_is_tls_symbol();
2197       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2198         lv.set_is_ifunc_symbol();
2199
2200       // Save the input symbol value for use in do_finalize_local_symbols().
2201       lv.set_input_value(sym.get_st_value());
2202
2203       // Decide whether this symbol should go into the output file.
2204
2205       if ((shndx < shnum && out_sections[shndx] == NULL)
2206           || shndx == this->discarded_eh_frame_shndx_)
2207         {
2208           lv.set_no_output_symtab_entry();
2209           gold_assert(!lv.needs_output_dynsym_entry());
2210           continue;
2211         }
2212
2213       if (sym.get_st_type() == elfcpp::STT_SECTION
2214           || !this->adjust_local_symbol(&lv))
2215         {
2216           lv.set_no_output_symtab_entry();
2217           gold_assert(!lv.needs_output_dynsym_entry());
2218           continue;
2219         }
2220
2221       if (sym.get_st_name() >= strtab_size)
2222         {
2223           this->error(_("local symbol %u section name out of range: %u >= %u"),
2224                       i, sym.get_st_name(),
2225                       static_cast<unsigned int>(strtab_size));
2226           lv.set_no_output_symtab_entry();
2227           continue;
2228         }
2229
2230       const char* name = pnames + sym.get_st_name();
2231
2232       // If needed, add the symbol to the dynamic symbol table string pool.
2233       if (lv.needs_output_dynsym_entry())
2234         {
2235           dynpool->add(name, true, NULL);
2236           ++dyncount;
2237         }
2238
2239       if (strip_all
2240           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2241         {
2242           lv.set_no_output_symtab_entry();
2243           continue;
2244         }
2245
2246       // If --discard-locals option is used, discard all temporary local
2247       // symbols.  These symbols start with system-specific local label
2248       // prefixes, typically .L for ELF system.  We want to be compatible
2249       // with GNU ld so here we essentially use the same check in
2250       // bfd_is_local_label().  The code is different because we already
2251       // know that:
2252       //
2253       //   - the symbol is local and thus cannot have global or weak binding.
2254       //   - the symbol is not a section symbol.
2255       //   - the symbol has a name.
2256       //
2257       // We do not discard a symbol if it needs a dynamic symbol entry.
2258       if (discard_locals
2259           && sym.get_st_type() != elfcpp::STT_FILE
2260           && !lv.needs_output_dynsym_entry()
2261           && lv.may_be_discarded_from_output_symtab()
2262           && parameters->target().is_local_label_name(name))
2263         {
2264           lv.set_no_output_symtab_entry();
2265           continue;
2266         }
2267
2268       // Discard the local symbol if -retain_symbols_file is specified
2269       // and the local symbol is not in that file.
2270       if (!parameters->options().should_retain_symbol(name))
2271         {
2272           lv.set_no_output_symtab_entry();
2273           continue;
2274         }
2275
2276       // Add the symbol to the symbol table string pool.
2277       pool->add(name, true, NULL);
2278       ++count;
2279     }
2280
2281   this->output_local_symbol_count_ = count;
2282   this->output_local_dynsym_count_ = dyncount;
2283 }
2284
2285 // Compute the final value of a local symbol.
2286
2287 template<int size, bool big_endian>
2288 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2289 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2290     unsigned int r_sym,
2291     const Symbol_value<size>* lv_in,
2292     Symbol_value<size>* lv_out,
2293     bool relocatable,
2294     const Output_sections& out_sections,
2295     const std::vector<Address>& out_offsets,
2296     const Symbol_table* symtab)
2297 {
2298   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2299   // we may have a memory leak.
2300   gold_assert(lv_out->has_output_value());
2301
2302   bool is_ordinary;
2303   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2304
2305   // Set the output symbol value.
2306
2307   if (!is_ordinary)
2308     {
2309       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2310         lv_out->set_output_value(lv_in->input_value());
2311       else
2312         {
2313           this->error(_("unknown section index %u for local symbol %u"),
2314                       shndx, r_sym);
2315           lv_out->set_output_value(0);
2316           return This::CFLV_ERROR;
2317         }
2318     }
2319   else
2320     {
2321       if (shndx >= this->shnum())
2322         {
2323           this->error(_("local symbol %u section index %u out of range"),
2324                       r_sym, shndx);
2325           lv_out->set_output_value(0);
2326           return This::CFLV_ERROR;
2327         }
2328
2329       Output_section* os = out_sections[shndx];
2330       Address secoffset = out_offsets[shndx];
2331       if (symtab->is_section_folded(this, shndx))
2332         {
2333           gold_assert(os == NULL && secoffset == invalid_address);
2334           // Get the os of the section it is folded onto.
2335           Section_id folded = symtab->icf()->get_folded_section(this,
2336                                                                 shndx);
2337           gold_assert(folded.first != NULL);
2338           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2339             <Sized_relobj_file<size, big_endian>*>(folded.first);
2340           os = folded_obj->output_section(folded.second);
2341           gold_assert(os != NULL);
2342           secoffset = folded_obj->get_output_section_offset(folded.second);
2343
2344           // This could be a relaxed input section.
2345           if (secoffset == invalid_address)
2346             {
2347               const Output_relaxed_input_section* relaxed_section =
2348                 os->find_relaxed_input_section(folded_obj, folded.second);
2349               gold_assert(relaxed_section != NULL);
2350               secoffset = relaxed_section->address() - os->address();
2351             }
2352         }
2353
2354       if (os == NULL)
2355         {
2356           // This local symbol belongs to a section we are discarding.
2357           // In some cases when applying relocations later, we will
2358           // attempt to match it to the corresponding kept section,
2359           // so we leave the input value unchanged here.
2360           return This::CFLV_DISCARDED;
2361         }
2362       else if (secoffset == invalid_address)
2363         {
2364           uint64_t start;
2365
2366           // This is a SHF_MERGE section or one which otherwise
2367           // requires special handling.
2368           if (shndx == this->discarded_eh_frame_shndx_)
2369             {
2370               // This local symbol belongs to a discarded .eh_frame
2371               // section.  Just treat it like the case in which
2372               // os == NULL above.
2373               gold_assert(this->has_eh_frame_);
2374               return This::CFLV_DISCARDED;
2375             }
2376           else if (!lv_in->is_section_symbol())
2377             {
2378               // This is not a section symbol.  We can determine
2379               // the final value now.
2380               lv_out->set_output_value(
2381                   os->output_address(this, shndx, lv_in->input_value()));
2382             }
2383           else if (!os->find_starting_output_address(this, shndx, &start))
2384             {
2385               // This is a section symbol, but apparently not one in a
2386               // merged section.  First check to see if this is a relaxed
2387               // input section.  If so, use its address.  Otherwise just
2388               // use the start of the output section.  This happens with
2389               // relocatable links when the input object has section
2390               // symbols for arbitrary non-merge sections.
2391               const Output_section_data* posd =
2392                 os->find_relaxed_input_section(this, shndx);
2393               if (posd != NULL)
2394                 {
2395                   Address relocatable_link_adjustment =
2396                     relocatable ? os->address() : 0;
2397                   lv_out->set_output_value(posd->address()
2398                                            - relocatable_link_adjustment);
2399                 }
2400               else
2401                 lv_out->set_output_value(os->address());
2402             }
2403           else
2404             {
2405               // We have to consider the addend to determine the
2406               // value to use in a relocation.  START is the start
2407               // of this input section.  If we are doing a relocatable
2408               // link, use offset from start output section instead of
2409               // address.
2410               Address adjusted_start =
2411                 relocatable ? start - os->address() : start;
2412               Merged_symbol_value<size>* msv =
2413                 new Merged_symbol_value<size>(lv_in->input_value(),
2414                                               adjusted_start);
2415               lv_out->set_merged_symbol_value(msv);
2416             }
2417         }
2418       else if (lv_in->is_tls_symbol()
2419                || (lv_in->is_section_symbol()
2420                    && (os->flags() & elfcpp::SHF_TLS)))
2421         lv_out->set_output_value(os->tls_offset()
2422                                  + secoffset
2423                                  + lv_in->input_value());
2424       else
2425         lv_out->set_output_value((relocatable ? 0 : os->address())
2426                                  + secoffset
2427                                  + lv_in->input_value());
2428     }
2429   return This::CFLV_OK;
2430 }
2431
2432 // Compute final local symbol value.  R_SYM is the index of a local
2433 // symbol in symbol table.  LV points to a symbol value, which is
2434 // expected to hold the input value and to be over-written by the
2435 // final value.  SYMTAB points to a symbol table.  Some targets may want
2436 // to know would-be-finalized local symbol values in relaxation.
2437 // Hence we provide this method.  Since this method updates *LV, a
2438 // callee should make a copy of the original local symbol value and
2439 // use the copy instead of modifying an object's local symbols before
2440 // everything is finalized.  The caller should also free up any allocated
2441 // memory in the return value in *LV.
2442 template<int size, bool big_endian>
2443 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2444 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2445     unsigned int r_sym,
2446     const Symbol_value<size>* lv_in,
2447     Symbol_value<size>* lv_out,
2448     const Symbol_table* symtab)
2449 {
2450   // This is just a wrapper of compute_final_local_value_internal.
2451   const bool relocatable = parameters->options().relocatable();
2452   const Output_sections& out_sections(this->output_sections());
2453   const std::vector<Address>& out_offsets(this->section_offsets());
2454   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2455                                                   relocatable, out_sections,
2456                                                   out_offsets, symtab);
2457 }
2458
2459 // Finalize the local symbols.  Here we set the final value in
2460 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2461 // This function is always called from a singleton thread.  The actual
2462 // output of the local symbols will occur in a separate task.
2463
2464 template<int size, bool big_endian>
2465 unsigned int
2466 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2467     unsigned int index,
2468     off_t off,
2469     Symbol_table* symtab)
2470 {
2471   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2472
2473   const unsigned int loccount = this->local_symbol_count_;
2474   this->local_symbol_offset_ = off;
2475
2476   const bool relocatable = parameters->options().relocatable();
2477   const Output_sections& out_sections(this->output_sections());
2478   const std::vector<Address>& out_offsets(this->section_offsets());
2479
2480   for (unsigned int i = 1; i < loccount; ++i)
2481     {
2482       Symbol_value<size>* lv = &this->local_values_[i];
2483
2484       Compute_final_local_value_status cflv_status =
2485         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2486                                                  out_sections, out_offsets,
2487                                                  symtab);
2488       switch (cflv_status)
2489         {
2490         case CFLV_OK:
2491           if (!lv->is_output_symtab_index_set())
2492             {
2493               lv->set_output_symtab_index(index);
2494               ++index;
2495             }
2496           break;
2497         case CFLV_DISCARDED:
2498         case CFLV_ERROR:
2499           // Do nothing.
2500           break;
2501         default:
2502           gold_unreachable();
2503         }
2504     }
2505   return index;
2506 }
2507
2508 // Set the output dynamic symbol table indexes for the local variables.
2509
2510 template<int size, bool big_endian>
2511 unsigned int
2512 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2513     unsigned int index)
2514 {
2515   const unsigned int loccount = this->local_symbol_count_;
2516   for (unsigned int i = 1; i < loccount; ++i)
2517     {
2518       Symbol_value<size>& lv(this->local_values_[i]);
2519       if (lv.needs_output_dynsym_entry())
2520         {
2521           lv.set_output_dynsym_index(index);
2522           ++index;
2523         }
2524     }
2525   return index;
2526 }
2527
2528 // Set the offset where local dynamic symbol information will be stored.
2529 // Returns the count of local symbols contributed to the symbol table by
2530 // this object.
2531
2532 template<int size, bool big_endian>
2533 unsigned int
2534 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2535 {
2536   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2537   this->local_dynsym_offset_ = off;
2538   return this->output_local_dynsym_count_;
2539 }
2540
2541 // If Symbols_data is not NULL get the section flags from here otherwise
2542 // get it from the file.
2543
2544 template<int size, bool big_endian>
2545 uint64_t
2546 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2547 {
2548   Symbols_data* sd = this->get_symbols_data();
2549   if (sd != NULL)
2550     {
2551       const unsigned char* pshdrs = sd->section_headers_data
2552                                     + This::shdr_size * shndx;
2553       typename This::Shdr shdr(pshdrs);
2554       return shdr.get_sh_flags();
2555     }
2556   // If sd is NULL, read the section header from the file.
2557   return this->elf_file_.section_flags(shndx);
2558 }
2559
2560 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2561 // in icf.cc
2562
2563 template<int size, bool big_endian>
2564 uint64_t
2565 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2566 {
2567   Symbols_data* sd = this->get_symbols_data();
2568   gold_assert(sd != NULL);
2569
2570   const unsigned char* pshdrs = sd->section_headers_data
2571                                 + This::shdr_size * shndx;
2572   typename This::Shdr shdr(pshdrs);
2573   return shdr.get_sh_entsize();
2574 }
2575
2576 // Write out the local symbols.
2577
2578 template<int size, bool big_endian>
2579 void
2580 Sized_relobj_file<size, big_endian>::write_local_symbols(
2581     Output_file* of,
2582     const Stringpool* sympool,
2583     const Stringpool* dynpool,
2584     Output_symtab_xindex* symtab_xindex,
2585     Output_symtab_xindex* dynsym_xindex,
2586     off_t symtab_off)
2587 {
2588   const bool strip_all = parameters->options().strip_all();
2589   if (strip_all)
2590     {
2591       if (this->output_local_dynsym_count_ == 0)
2592         return;
2593       this->output_local_symbol_count_ = 0;
2594     }
2595
2596   gold_assert(this->symtab_shndx_ != -1U);
2597   if (this->symtab_shndx_ == 0)
2598     {
2599       // This object has no symbols.  Weird but legal.
2600       return;
2601     }
2602
2603   // Read the symbol table section header.
2604   const unsigned int symtab_shndx = this->symtab_shndx_;
2605   typename This::Shdr symtabshdr(this,
2606                                  this->elf_file_.section_header(symtab_shndx));
2607   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2608   const unsigned int loccount = this->local_symbol_count_;
2609   gold_assert(loccount == symtabshdr.get_sh_info());
2610
2611   // Read the local symbols.
2612   const int sym_size = This::sym_size;
2613   off_t locsize = loccount * sym_size;
2614   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2615                                               locsize, true, false);
2616
2617   // Read the symbol names.
2618   const unsigned int strtab_shndx =
2619     this->adjust_shndx(symtabshdr.get_sh_link());
2620   section_size_type strtab_size;
2621   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2622                                                         &strtab_size,
2623                                                         false);
2624   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2625
2626   // Get views into the output file for the portions of the symbol table
2627   // and the dynamic symbol table that we will be writing.
2628   off_t output_size = this->output_local_symbol_count_ * sym_size;
2629   unsigned char* oview = NULL;
2630   if (output_size > 0)
2631     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2632                                 output_size);
2633
2634   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2635   unsigned char* dyn_oview = NULL;
2636   if (dyn_output_size > 0)
2637     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2638                                     dyn_output_size);
2639
2640   const Output_sections& out_sections(this->output_sections());
2641
2642   gold_assert(this->local_values_.size() == loccount);
2643
2644   unsigned char* ov = oview;
2645   unsigned char* dyn_ov = dyn_oview;
2646   psyms += sym_size;
2647   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2648     {
2649       elfcpp::Sym<size, big_endian> isym(psyms);
2650
2651       Symbol_value<size>& lv(this->local_values_[i]);
2652
2653       bool is_ordinary;
2654       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2655                                                      &is_ordinary);
2656       if (is_ordinary)
2657         {
2658           gold_assert(st_shndx < out_sections.size());
2659           if (out_sections[st_shndx] == NULL)
2660             continue;
2661           st_shndx = out_sections[st_shndx]->out_shndx();
2662           if (st_shndx >= elfcpp::SHN_LORESERVE)
2663             {
2664               if (lv.has_output_symtab_entry())
2665                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2666               if (lv.has_output_dynsym_entry())
2667                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2668               st_shndx = elfcpp::SHN_XINDEX;
2669             }
2670         }
2671
2672       // Write the symbol to the output symbol table.
2673       if (lv.has_output_symtab_entry())
2674         {
2675           elfcpp::Sym_write<size, big_endian> osym(ov);
2676
2677           gold_assert(isym.get_st_name() < strtab_size);
2678           const char* name = pnames + isym.get_st_name();
2679           osym.put_st_name(sympool->get_offset(name));
2680           osym.put_st_value(this->local_values_[i].value(this, 0));
2681           osym.put_st_size(isym.get_st_size());
2682           osym.put_st_info(isym.get_st_info());
2683           osym.put_st_other(isym.get_st_other());
2684           osym.put_st_shndx(st_shndx);
2685
2686           ov += sym_size;
2687         }
2688
2689       // Write the symbol to the output dynamic symbol table.
2690       if (lv.has_output_dynsym_entry())
2691         {
2692           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2693           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2694
2695           gold_assert(isym.get_st_name() < strtab_size);
2696           const char* name = pnames + isym.get_st_name();
2697           osym.put_st_name(dynpool->get_offset(name));
2698           osym.put_st_value(this->local_values_[i].value(this, 0));
2699           osym.put_st_size(isym.get_st_size());
2700           osym.put_st_info(isym.get_st_info());
2701           osym.put_st_other(isym.get_st_other());
2702           osym.put_st_shndx(st_shndx);
2703
2704           dyn_ov += sym_size;
2705         }
2706     }
2707
2708
2709   if (output_size > 0)
2710     {
2711       gold_assert(ov - oview == output_size);
2712       of->write_output_view(symtab_off + this->local_symbol_offset_,
2713                             output_size, oview);
2714     }
2715
2716   if (dyn_output_size > 0)
2717     {
2718       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2719       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2720                             dyn_oview);
2721     }
2722 }
2723
2724 // Set *INFO to symbolic information about the offset OFFSET in the
2725 // section SHNDX.  Return true if we found something, false if we
2726 // found nothing.
2727
2728 template<int size, bool big_endian>
2729 bool
2730 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2731     unsigned int shndx,
2732     off_t offset,
2733     Symbol_location_info* info)
2734 {
2735   if (this->symtab_shndx_ == 0)
2736     return false;
2737
2738   section_size_type symbols_size;
2739   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2740                                                         &symbols_size,
2741                                                         false);
2742
2743   unsigned int symbol_names_shndx =
2744     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2745   section_size_type names_size;
2746   const unsigned char* symbol_names_u =
2747     this->section_contents(symbol_names_shndx, &names_size, false);
2748   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2749
2750   const int sym_size = This::sym_size;
2751   const size_t count = symbols_size / sym_size;
2752
2753   const unsigned char* p = symbols;
2754   for (size_t i = 0; i < count; ++i, p += sym_size)
2755     {
2756       elfcpp::Sym<size, big_endian> sym(p);
2757
2758       if (sym.get_st_type() == elfcpp::STT_FILE)
2759         {
2760           if (sym.get_st_name() >= names_size)
2761             info->source_file = "(invalid)";
2762           else
2763             info->source_file = symbol_names + sym.get_st_name();
2764           continue;
2765         }
2766
2767       bool is_ordinary;
2768       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2769                                                      &is_ordinary);
2770       if (is_ordinary
2771           && st_shndx == shndx
2772           && static_cast<off_t>(sym.get_st_value()) <= offset
2773           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2774               > offset))
2775         {
2776           info->enclosing_symbol_type = sym.get_st_type();
2777           if (sym.get_st_name() > names_size)
2778             info->enclosing_symbol_name = "(invalid)";
2779           else
2780             {
2781               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2782               if (parameters->options().do_demangle())
2783                 {
2784                   char* demangled_name = cplus_demangle(
2785                       info->enclosing_symbol_name.c_str(),
2786                       DMGL_ANSI | DMGL_PARAMS);
2787                   if (demangled_name != NULL)
2788                     {
2789                       info->enclosing_symbol_name.assign(demangled_name);
2790                       free(demangled_name);
2791                     }
2792                 }
2793             }
2794           return true;
2795         }
2796     }
2797
2798   return false;
2799 }
2800
2801 // Look for a kept section corresponding to the given discarded section,
2802 // and return its output address.  This is used only for relocations in
2803 // debugging sections.  If we can't find the kept section, return 0.
2804
2805 template<int size, bool big_endian>
2806 typename Sized_relobj_file<size, big_endian>::Address
2807 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2808     unsigned int shndx,
2809     bool* found) const
2810 {
2811   Relobj* kept_object;
2812   unsigned int kept_shndx;
2813   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2814     {
2815       Sized_relobj_file<size, big_endian>* kept_relobj =
2816         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2817       Output_section* os = kept_relobj->output_section(kept_shndx);
2818       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2819       if (os != NULL && offset != invalid_address)
2820         {
2821           *found = true;
2822           return os->address() + offset;
2823         }
2824     }
2825   *found = false;
2826   return 0;
2827 }
2828
2829 // Get symbol counts.
2830
2831 template<int size, bool big_endian>
2832 void
2833 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2834     const Symbol_table*,
2835     size_t* defined,
2836     size_t* used) const
2837 {
2838   *defined = this->defined_count_;
2839   size_t count = 0;
2840   for (typename Symbols::const_iterator p = this->symbols_.begin();
2841        p != this->symbols_.end();
2842        ++p)
2843     if (*p != NULL
2844         && (*p)->source() == Symbol::FROM_OBJECT
2845         && (*p)->object() == this
2846         && (*p)->is_defined())
2847       ++count;
2848   *used = count;
2849 }
2850
2851 // Return a view of the decompressed contents of a section.  Set *PLEN
2852 // to the size.  Set *IS_NEW to true if the contents need to be freed
2853 // by the caller.
2854
2855 const unsigned char*
2856 Object::decompressed_section_contents(
2857     unsigned int shndx,
2858     section_size_type* plen,
2859     bool* is_new)
2860 {
2861   section_size_type buffer_size;
2862   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2863                                                           false);
2864
2865   if (this->compressed_sections_ == NULL)
2866     {
2867       *plen = buffer_size;
2868       *is_new = false;
2869       return buffer;
2870     }
2871
2872   Compressed_section_map::const_iterator p =
2873       this->compressed_sections_->find(shndx);
2874   if (p == this->compressed_sections_->end())
2875     {
2876       *plen = buffer_size;
2877       *is_new = false;
2878       return buffer;
2879     }
2880
2881   section_size_type uncompressed_size = p->second.size;
2882   if (p->second.contents != NULL)
2883     {
2884       *plen = uncompressed_size;
2885       *is_new = false;
2886       return p->second.contents;
2887     }
2888
2889   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2890   if (!decompress_input_section(buffer,
2891                                 buffer_size,
2892                                 uncompressed_data,
2893                                 uncompressed_size))
2894     this->error(_("could not decompress section %s"),
2895                 this->do_section_name(shndx).c_str());
2896
2897   // We could cache the results in p->second.contents and store
2898   // false in *IS_NEW, but build_compressed_section_map() would
2899   // have done so if it had expected it to be profitable.  If
2900   // we reach this point, we expect to need the contents only
2901   // once in this pass.
2902   *plen = uncompressed_size;
2903   *is_new = true;
2904   return uncompressed_data;
2905 }
2906
2907 // Discard any buffers of uncompressed sections.  This is done
2908 // at the end of the Add_symbols task.
2909
2910 void
2911 Object::discard_decompressed_sections()
2912 {
2913   if (this->compressed_sections_ == NULL)
2914     return;
2915
2916   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2917        p != this->compressed_sections_->end();
2918        ++p)
2919     {
2920       if (p->second.contents != NULL)
2921         {
2922           delete[] p->second.contents;
2923           p->second.contents = NULL;
2924         }
2925     }
2926 }
2927
2928 // Input_objects methods.
2929
2930 // Add a regular relocatable object to the list.  Return false if this
2931 // object should be ignored.
2932
2933 bool
2934 Input_objects::add_object(Object* obj)
2935 {
2936   // Print the filename if the -t/--trace option is selected.
2937   if (parameters->options().trace())
2938     gold_info("%s", obj->name().c_str());
2939
2940   if (!obj->is_dynamic())
2941     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2942   else
2943     {
2944       // See if this is a duplicate SONAME.
2945       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2946       const char* soname = dynobj->soname();
2947
2948       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2949         this->sonames_.insert(soname);
2950       if (!ins.second)
2951         {
2952           // We have already seen a dynamic object with this soname.
2953           return false;
2954         }
2955
2956       this->dynobj_list_.push_back(dynobj);
2957     }
2958
2959   // Add this object to the cross-referencer if requested.
2960   if (parameters->options().user_set_print_symbol_counts()
2961       || parameters->options().cref())
2962     {
2963       if (this->cref_ == NULL)
2964         this->cref_ = new Cref();
2965       this->cref_->add_object(obj);
2966     }
2967
2968   return true;
2969 }
2970
2971 // For each dynamic object, record whether we've seen all of its
2972 // explicit dependencies.
2973
2974 void
2975 Input_objects::check_dynamic_dependencies() const
2976 {
2977   bool issued_copy_dt_needed_error = false;
2978   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2979        p != this->dynobj_list_.end();
2980        ++p)
2981     {
2982       const Dynobj::Needed& needed((*p)->needed());
2983       bool found_all = true;
2984       Dynobj::Needed::const_iterator pneeded;
2985       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2986         {
2987           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2988             {
2989               found_all = false;
2990               break;
2991             }
2992         }
2993       (*p)->set_has_unknown_needed_entries(!found_all);
2994
2995       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2996       // that gold does not support.  However, they cause no trouble
2997       // unless there is a DT_NEEDED entry that we don't know about;
2998       // warn only in that case.
2999       if (!found_all
3000           && !issued_copy_dt_needed_error
3001           && (parameters->options().copy_dt_needed_entries()
3002               || parameters->options().add_needed()))
3003         {
3004           const char* optname;
3005           if (parameters->options().copy_dt_needed_entries())
3006             optname = "--copy-dt-needed-entries";
3007           else
3008             optname = "--add-needed";
3009           gold_error(_("%s is not supported but is required for %s in %s"),
3010                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3011           issued_copy_dt_needed_error = true;
3012         }
3013     }
3014 }
3015
3016 // Start processing an archive.
3017
3018 void
3019 Input_objects::archive_start(Archive* archive)
3020 {
3021   if (parameters->options().user_set_print_symbol_counts()
3022       || parameters->options().cref())
3023     {
3024       if (this->cref_ == NULL)
3025         this->cref_ = new Cref();
3026       this->cref_->add_archive_start(archive);
3027     }
3028 }
3029
3030 // Stop processing an archive.
3031
3032 void
3033 Input_objects::archive_stop(Archive* archive)
3034 {
3035   if (parameters->options().user_set_print_symbol_counts()
3036       || parameters->options().cref())
3037     this->cref_->add_archive_stop(archive);
3038 }
3039
3040 // Print symbol counts
3041
3042 void
3043 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3044 {
3045   if (parameters->options().user_set_print_symbol_counts()
3046       && this->cref_ != NULL)
3047     this->cref_->print_symbol_counts(symtab);
3048 }
3049
3050 // Print a cross reference table.
3051
3052 void
3053 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3054 {
3055   if (parameters->options().cref() && this->cref_ != NULL)
3056     this->cref_->print_cref(symtab, f);
3057 }
3058
3059 // Relocate_info methods.
3060
3061 // Return a string describing the location of a relocation when file
3062 // and lineno information is not available.  This is only used in
3063 // error messages.
3064
3065 template<int size, bool big_endian>
3066 std::string
3067 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3068 {
3069   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3070   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3071   if (!ret.empty())
3072     return ret;
3073
3074   ret = this->object->name();
3075
3076   Symbol_location_info info;
3077   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3078     {
3079       if (!info.source_file.empty())
3080         {
3081           ret += ":";
3082           ret += info.source_file;
3083         }
3084       ret += ":";
3085       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3086         ret += _("function ");
3087       ret += info.enclosing_symbol_name;
3088       return ret;
3089     }
3090
3091   ret += "(";
3092   ret += this->object->section_name(this->data_shndx);
3093   char buf[100];
3094   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3095   ret += buf;
3096   return ret;
3097 }
3098
3099 } // End namespace gold.
3100
3101 namespace
3102 {
3103
3104 using namespace gold;
3105
3106 // Read an ELF file with the header and return the appropriate
3107 // instance of Object.
3108
3109 template<int size, bool big_endian>
3110 Object*
3111 make_elf_sized_object(const std::string& name, Input_file* input_file,
3112                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3113                       bool* punconfigured)
3114 {
3115   Target* target = select_target(input_file, offset,
3116                                  ehdr.get_e_machine(), size, big_endian,
3117                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3118                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3119   if (target == NULL)
3120     gold_fatal(_("%s: unsupported ELF machine number %d"),
3121                name.c_str(), ehdr.get_e_machine());
3122
3123   if (!parameters->target_valid())
3124     set_parameters_target(target);
3125   else if (target != &parameters->target())
3126     {
3127       if (punconfigured != NULL)
3128         *punconfigured = true;
3129       else
3130         gold_error(_("%s: incompatible target"), name.c_str());
3131       return NULL;
3132     }
3133
3134   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3135                                                    ehdr);
3136 }
3137
3138 } // End anonymous namespace.
3139
3140 namespace gold
3141 {
3142
3143 // Return whether INPUT_FILE is an ELF object.
3144
3145 bool
3146 is_elf_object(Input_file* input_file, off_t offset,
3147               const unsigned char** start, int* read_size)
3148 {
3149   off_t filesize = input_file->file().filesize();
3150   int want = elfcpp::Elf_recognizer::max_header_size;
3151   if (filesize - offset < want)
3152     want = filesize - offset;
3153
3154   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3155                                                        true, false);
3156   *start = p;
3157   *read_size = want;
3158
3159   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3160 }
3161
3162 // Read an ELF file and return the appropriate instance of Object.
3163
3164 Object*
3165 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3166                 const unsigned char* p, section_offset_type bytes,
3167                 bool* punconfigured)
3168 {
3169   if (punconfigured != NULL)
3170     *punconfigured = false;
3171
3172   std::string error;
3173   bool big_endian = false;
3174   int size = 0;
3175   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3176                                                &big_endian, &error))
3177     {
3178       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3179       return NULL;
3180     }
3181
3182   if (size == 32)
3183     {
3184       if (big_endian)
3185         {
3186 #ifdef HAVE_TARGET_32_BIG
3187           elfcpp::Ehdr<32, true> ehdr(p);
3188           return make_elf_sized_object<32, true>(name, input_file,
3189                                                  offset, ehdr, punconfigured);
3190 #else
3191           if (punconfigured != NULL)
3192             *punconfigured = true;
3193           else
3194             gold_error(_("%s: not configured to support "
3195                          "32-bit big-endian object"),
3196                        name.c_str());
3197           return NULL;
3198 #endif
3199         }
3200       else
3201         {
3202 #ifdef HAVE_TARGET_32_LITTLE
3203           elfcpp::Ehdr<32, false> ehdr(p);
3204           return make_elf_sized_object<32, false>(name, input_file,
3205                                                   offset, ehdr, punconfigured);
3206 #else
3207           if (punconfigured != NULL)
3208             *punconfigured = true;
3209           else
3210             gold_error(_("%s: not configured to support "
3211                          "32-bit little-endian object"),
3212                        name.c_str());
3213           return NULL;
3214 #endif
3215         }
3216     }
3217   else if (size == 64)
3218     {
3219       if (big_endian)
3220         {
3221 #ifdef HAVE_TARGET_64_BIG
3222           elfcpp::Ehdr<64, true> ehdr(p);
3223           return make_elf_sized_object<64, true>(name, input_file,
3224                                                  offset, ehdr, punconfigured);
3225 #else
3226           if (punconfigured != NULL)
3227             *punconfigured = true;
3228           else
3229             gold_error(_("%s: not configured to support "
3230                          "64-bit big-endian object"),
3231                        name.c_str());
3232           return NULL;
3233 #endif
3234         }
3235       else
3236         {
3237 #ifdef HAVE_TARGET_64_LITTLE
3238           elfcpp::Ehdr<64, false> ehdr(p);
3239           return make_elf_sized_object<64, false>(name, input_file,
3240                                                   offset, ehdr, punconfigured);
3241 #else
3242           if (punconfigured != NULL)
3243             *punconfigured = true;
3244           else
3245             gold_error(_("%s: not configured to support "
3246                          "64-bit little-endian object"),
3247                        name.c_str());
3248           return NULL;
3249 #endif
3250         }
3251     }
3252   else
3253     gold_unreachable();
3254 }
3255
3256 // Instantiate the templates we need.
3257
3258 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3259 template
3260 void
3261 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3262       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3263       Unordered_map<section_offset_type,
3264       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3265 #endif
3266
3267 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3268 template
3269 void
3270 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3271       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3272       Unordered_map<section_offset_type,
3273       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3274 #endif
3275
3276 #ifdef HAVE_TARGET_32_LITTLE
3277 template
3278 void
3279 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3280                                      Read_symbols_data*);
3281 template
3282 const unsigned char*
3283 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3284                             section_size_type, const unsigned char*) const;
3285 #endif
3286
3287 #ifdef HAVE_TARGET_32_BIG
3288 template
3289 void
3290 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3291                                     Read_symbols_data*);
3292 template
3293 const unsigned char*
3294 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3295                            section_size_type, const unsigned char*) const;
3296 #endif
3297
3298 #ifdef HAVE_TARGET_64_LITTLE
3299 template
3300 void
3301 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3302                                      Read_symbols_data*);
3303 template
3304 const unsigned char*
3305 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3306                             section_size_type, const unsigned char*) const;
3307 #endif
3308
3309 #ifdef HAVE_TARGET_64_BIG
3310 template
3311 void
3312 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3313                                     Read_symbols_data*);
3314 template
3315 const unsigned char*
3316 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3317                            section_size_type, const unsigned char*) const;
3318 #endif
3319
3320 #ifdef HAVE_TARGET_32_LITTLE
3321 template
3322 class Sized_relobj<32, false>;
3323
3324 template
3325 class Sized_relobj_file<32, false>;
3326 #endif
3327
3328 #ifdef HAVE_TARGET_32_BIG
3329 template
3330 class Sized_relobj<32, true>;
3331
3332 template
3333 class Sized_relobj_file<32, true>;
3334 #endif
3335
3336 #ifdef HAVE_TARGET_64_LITTLE
3337 template
3338 class Sized_relobj<64, false>;
3339
3340 template
3341 class Sized_relobj_file<64, false>;
3342 #endif
3343
3344 #ifdef HAVE_TARGET_64_BIG
3345 template
3346 class Sized_relobj<64, true>;
3347
3348 template
3349 class Sized_relobj_file<64, true>;
3350 #endif
3351
3352 #ifdef HAVE_TARGET_32_LITTLE
3353 template
3354 struct Relocate_info<32, false>;
3355 #endif
3356
3357 #ifdef HAVE_TARGET_32_BIG
3358 template
3359 struct Relocate_info<32, true>;
3360 #endif
3361
3362 #ifdef HAVE_TARGET_64_LITTLE
3363 template
3364 struct Relocate_info<64, false>;
3365 #endif
3366
3367 #ifdef HAVE_TARGET_64_BIG
3368 template
3369 struct Relocate_info<64, true>;
3370 #endif
3371
3372 #ifdef HAVE_TARGET_32_LITTLE
3373 template
3374 void
3375 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3376
3377 template
3378 void
3379 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3380                                       const unsigned char*);
3381 #endif
3382
3383 #ifdef HAVE_TARGET_32_BIG
3384 template
3385 void
3386 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3387
3388 template
3389 void
3390 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3391                                      const unsigned char*);
3392 #endif
3393
3394 #ifdef HAVE_TARGET_64_LITTLE
3395 template
3396 void
3397 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3398
3399 template
3400 void
3401 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3402                                       const unsigned char*);
3403 #endif
3404
3405 #ifdef HAVE_TARGET_64_BIG
3406 template
3407 void
3408 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3409
3410 template
3411 void
3412 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3413                                      const unsigned char*);
3414 #endif
3415
3416 } // End namespace gold.