1 // object.cc -- support for an object file for linking in gold
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
48 // Struct Read_symbols_data.
50 // Destroy any remaining File_view objects and buffers of decompressed
53 Read_symbols_data::~Read_symbols_data()
55 if (this->section_headers != NULL)
56 delete this->section_headers;
57 if (this->section_names != NULL)
58 delete this->section_names;
59 if (this->symbols != NULL)
61 if (this->symbol_names != NULL)
62 delete this->symbol_names;
63 if (this->versym != NULL)
65 if (this->verdef != NULL)
67 if (this->verneed != NULL)
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
77 template<int size, bool big_endian>
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 if (!this->symtab_xindex_.empty())
84 gold_assert(symtab_shndx != 0);
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i = object->shnum();
92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
100 object->error(_("missing SHT_SYMTAB_SHNDX section"));
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
107 template<int size, bool big_endian>
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 const unsigned char* pshdrs)
112 section_size_type bytecount;
113 const unsigned char* contents;
115 contents = object->section_contents(xindex_shndx, &bytecount, false);
118 const unsigned char* p = (pshdrs
120 * elfcpp::Elf_sizes<size>::shdr_size));
121 typename elfcpp::Shdr<size, big_endian> shdr(p);
122 bytecount = convert_to_section_size_type(shdr.get_sh_size());
123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
126 gold_assert(this->symtab_xindex_.empty());
127 this->symtab_xindex_.reserve(bytecount / 4);
128 for (section_size_type i = 0; i < bytecount; i += 4)
130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 if (symndx >= this->symtab_xindex_.size())
144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 return elfcpp::SHN_UNDEF;
148 unsigned int shndx = this->symtab_xindex_[symndx];
149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 object->error(_("extended index for symbol %u out of range: %u"),
153 return elfcpp::SHN_UNDEF;
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
165 Object::error(const char* format, ...) const
168 va_start(args, format);
170 if (vasprintf(&buf, format, args) < 0)
173 gold_error(_("%s: %s"), this->name().c_str(), buf);
177 // Return a view of the contents of a section.
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 { return this->do_section_contents(shndx, plen, cache); }
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
187 template<int size, bool big_endian>
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 Read_symbols_data* sd)
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194 // Read the section headers.
195 const off_t shoff = elf_file->shoff();
196 const unsigned int shnum = this->shnum();
197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
200 // Read the section names.
201 const unsigned char* pshdrs = sd->section_headers->data();
202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames.get_sh_type()));
209 sd->section_names_size =
210 convert_to_section_size_type(shdrnames.get_sh_size());
211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 sd->section_names_size, false,
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 Symbol_table* symtab)
224 const char warn_prefix[] = ".gnu.warning.";
225 const int warn_prefix_len = sizeof warn_prefix - 1;
226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
234 section_size_type len;
235 const unsigned char* contents = this->section_contents(shndx, &len,
239 const char* warning = name + warn_prefix_len;
240 contents = reinterpret_cast<const unsigned char*>(warning);
241 len = strlen(warning);
243 std::string warning(reinterpret_cast<const char*>(contents), len);
244 symtab->add_warning(name + warn_prefix_len, this, warning);
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
254 Object::handle_split_stack_section(const char* name)
256 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 this->uses_split_stack_ = true;
261 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 this->has_no_split_stack_ = true;
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 unsigned int section_header_size)
279 gc_sd->section_headers_data =
280 new unsigned char[(section_header_size)];
281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 section_header_size);
283 gc_sd->section_names_data =
284 new unsigned char[sd->section_names_size];
285 memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 sd->section_names_size);
287 gc_sd->section_names_size = sd->section_names_size;
288 if (sd->symbols != NULL)
290 gc_sd->symbols_data =
291 new unsigned char[sd->symbols_size];
292 memcpy(gc_sd->symbols_data, sd->symbols->data(),
297 gc_sd->symbols_data = NULL;
299 gc_sd->symbols_size = sd->symbols_size;
300 gc_sd->external_symbols_offset = sd->external_symbols_offset;
301 if (sd->symbol_names != NULL)
303 gc_sd->symbol_names_data =
304 new unsigned char[sd->symbol_names_size];
305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 sd->symbol_names_size);
310 gc_sd->symbol_names_data = NULL;
312 gc_sd->symbol_names_size = sd->symbol_names_size;
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
320 Relobj::is_section_name_included(const char* name)
322 if (is_prefix_of(".ctors", name)
323 || is_prefix_of(".dtors", name)
324 || is_prefix_of(".note", name)
325 || is_prefix_of(".init", name)
326 || is_prefix_of(".fini", name)
327 || is_prefix_of(".gcc_except_table", name)
328 || is_prefix_of(".jcr", name)
329 || is_prefix_of(".preinit_array", name)
330 || (is_prefix_of(".text", name)
331 && strstr(name, "personality"))
332 || (is_prefix_of(".data", name)
333 && strstr(name, "personality"))
334 || (is_prefix_of(".sdata", name)
335 && strstr(name, "personality"))
336 || (is_prefix_of(".gnu.linkonce.d", name)
337 && strstr(name, "personality")))
344 // Finalize the incremental relocation information. Allocates a block
345 // of relocation entries for each symbol, and sets the reloc_bases_
346 // array to point to the first entry in each block. If CLEAR_COUNTS
347 // is TRUE, also clear the per-symbol relocation counters.
350 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
352 unsigned int nsyms = this->get_global_symbols()->size();
353 this->reloc_bases_ = new unsigned int[nsyms];
355 gold_assert(this->reloc_bases_ != NULL);
356 gold_assert(layout->incremental_inputs() != NULL);
358 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
359 for (unsigned int i = 0; i < nsyms; ++i)
361 this->reloc_bases_[i] = rindex;
362 rindex += this->reloc_counts_[i];
364 this->reloc_counts_[i] = 0;
366 layout->incremental_inputs()->set_reloc_count(rindex);
369 // Class Sized_relobj.
371 // Iterate over local symbols, calling a visitor class V for each GOT offset
372 // associated with a local symbol.
374 template<int size, bool big_endian>
376 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
377 Got_offset_list::Visitor* v) const
379 unsigned int nsyms = this->local_symbol_count();
380 for (unsigned int i = 0; i < nsyms; i++)
382 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
383 if (p != this->local_got_offsets_.end())
385 const Got_offset_list* got_offsets = p->second;
386 got_offsets->for_all_got_offsets(v);
391 // Get the address of an output section.
393 template<int size, bool big_endian>
395 Sized_relobj<size, big_endian>::do_output_section_address(
398 // If the input file is linked as --just-symbols, the output
399 // section address is the input section address.
400 if (this->just_symbols())
401 return this->section_address(shndx);
403 const Output_section* os = this->do_output_section(shndx);
404 gold_assert(os != NULL);
405 return os->address();
408 // Class Sized_relobj_file.
410 template<int size, bool big_endian>
411 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
412 const std::string& name,
413 Input_file* input_file,
415 const elfcpp::Ehdr<size, big_endian>& ehdr)
416 : Sized_relobj<size, big_endian>(name, input_file, offset),
417 elf_file_(this, ehdr),
419 local_symbol_count_(0),
420 output_local_symbol_count_(0),
421 output_local_dynsym_count_(0),
424 local_symbol_offset_(0),
425 local_dynsym_offset_(0),
427 local_plt_offsets_(),
428 kept_comdat_sections_(),
429 has_eh_frame_(false),
430 discarded_eh_frame_shndx_(-1U),
432 deferred_layout_relocs_(),
433 compressed_sections_()
435 this->e_type_ = ehdr.get_e_type();
438 template<int size, bool big_endian>
439 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
443 // Set up an object file based on the file header. This sets up the
444 // section information.
446 template<int size, bool big_endian>
448 Sized_relobj_file<size, big_endian>::do_setup()
450 const unsigned int shnum = this->elf_file_.shnum();
451 this->set_shnum(shnum);
454 // Find the SHT_SYMTAB section, given the section headers. The ELF
455 // standard says that maybe in the future there can be more than one
456 // SHT_SYMTAB section. Until somebody figures out how that could
457 // work, we assume there is only one.
459 template<int size, bool big_endian>
461 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
463 const unsigned int shnum = this->shnum();
464 this->symtab_shndx_ = 0;
467 // Look through the sections in reverse order, since gas tends
468 // to put the symbol table at the end.
469 const unsigned char* p = pshdrs + shnum * This::shdr_size;
470 unsigned int i = shnum;
471 unsigned int xindex_shndx = 0;
472 unsigned int xindex_link = 0;
476 p -= This::shdr_size;
477 typename This::Shdr shdr(p);
478 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
480 this->symtab_shndx_ = i;
481 if (xindex_shndx > 0 && xindex_link == i)
484 new Xindex(this->elf_file_.large_shndx_offset());
485 xindex->read_symtab_xindex<size, big_endian>(this,
488 this->set_xindex(xindex);
493 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
494 // one. This will work if it follows the SHT_SYMTAB
496 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
499 xindex_link = this->adjust_shndx(shdr.get_sh_link());
505 // Return the Xindex structure to use for object with lots of
508 template<int size, bool big_endian>
510 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
512 gold_assert(this->symtab_shndx_ != -1U);
513 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
514 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
518 // Return whether SHDR has the right type and flags to be a GNU
519 // .eh_frame section.
521 template<int size, bool big_endian>
523 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
524 const elfcpp::Shdr<size, big_endian>* shdr) const
526 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
527 return ((sh_type == elfcpp::SHT_PROGBITS
528 || sh_type == elfcpp::SHT_X86_64_UNWIND)
529 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
532 // Find the section header with the given name.
534 template<int size, bool big_endian>
537 const unsigned char* pshdrs,
540 section_size_type names_size,
541 const unsigned char* hdr) const
543 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
544 const unsigned int shnum = this->shnum();
545 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
552 // We found HDR last time we were called, continue looking.
553 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
554 sh_name = shdr.get_sh_name();
558 // Look for the next occurrence of NAME in NAMES.
559 // The fact that .shstrtab produced by current GNU tools is
560 // string merged means we shouldn't have both .not.foo and
561 // .foo in .shstrtab, and multiple .foo sections should all
562 // have the same sh_name. However, this is not guaranteed
563 // by the ELF spec and not all ELF object file producers may
565 size_t len = strlen(name) + 1;
566 const char *p = sh_name ? names + sh_name + len : names;
567 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
578 while (hdr < hdr_end)
580 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
581 if (shdr.get_sh_name() == sh_name)
591 // Return whether there is a GNU .eh_frame section, given the section
592 // headers and the section names.
594 template<int size, bool big_endian>
596 Sized_relobj_file<size, big_endian>::find_eh_frame(
597 const unsigned char* pshdrs,
599 section_size_type names_size) const
601 const unsigned char* s = NULL;
605 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
606 names, names_size, s);
610 typename This::Shdr shdr(s);
611 if (this->check_eh_frame_flags(&shdr))
616 // Return TRUE if this is a section whose contents will be needed in the
617 // Add_symbols task. This function is only called for sections that have
618 // already passed the test in is_compressed_debug_section(), so we know
619 // that the section name begins with ".zdebug".
622 need_decompressed_section(const char* name)
624 // Skip over the ".zdebug" and a quick check for the "_".
629 #ifdef ENABLE_THREADS
630 // Decompressing these sections now will help only if we're
632 if (parameters->options().threads())
634 // We will need .zdebug_str if this is not an incremental link
635 // (i.e., we are processing string merge sections) or if we need
636 // to build a gdb index.
637 if ((!parameters->incremental() || parameters->options().gdb_index())
638 && strcmp(name, "str") == 0)
641 // We will need these other sections when building a gdb index.
642 if (parameters->options().gdb_index()
643 && (strcmp(name, "info") == 0
644 || strcmp(name, "types") == 0
645 || strcmp(name, "pubnames") == 0
646 || strcmp(name, "pubtypes") == 0
647 || strcmp(name, "ranges") == 0
648 || strcmp(name, "abbrev") == 0))
653 // Even when single-threaded, we will need .zdebug_str if this is
654 // not an incremental link and we are building a gdb index.
655 // Otherwise, we would decompress the section twice: once for
656 // string merge processing, and once for building the gdb index.
657 if (!parameters->incremental()
658 && parameters->options().gdb_index()
659 && strcmp(name, "str") == 0)
665 // Build a table for any compressed debug sections, mapping each section index
666 // to the uncompressed size and (if needed) the decompressed contents.
668 template<int size, bool big_endian>
669 Compressed_section_map*
670 build_compressed_section_map(
671 const unsigned char* pshdrs,
674 section_size_type names_size,
675 Sized_relobj_file<size, big_endian>* obj)
677 Compressed_section_map* uncompressed_map = new Compressed_section_map();
678 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
679 const unsigned char* p = pshdrs + shdr_size;
681 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
683 typename elfcpp::Shdr<size, big_endian> shdr(p);
684 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
685 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
687 if (shdr.get_sh_name() >= names_size)
689 obj->error(_("bad section name offset for section %u: %lu"),
690 i, static_cast<unsigned long>(shdr.get_sh_name()));
694 const char* name = names + shdr.get_sh_name();
695 if (is_compressed_debug_section(name))
697 section_size_type len;
698 const unsigned char* contents =
699 obj->section_contents(i, &len, false);
700 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
701 Compressed_section_info info;
702 info.size = convert_to_section_size_type(uncompressed_size);
703 info.contents = NULL;
704 if (uncompressed_size != -1ULL)
706 unsigned char* uncompressed_data = NULL;
707 if (need_decompressed_section(name))
709 uncompressed_data = new unsigned char[uncompressed_size];
710 if (decompress_input_section(contents, len,
713 info.contents = uncompressed_data;
715 delete[] uncompressed_data;
717 (*uncompressed_map)[i] = info;
722 return uncompressed_map;
725 // Stash away info for a number of special sections.
726 // Return true if any of the sections found require local symbols to be read.
728 template<int size, bool big_endian>
730 Sized_relobj_file<size, big_endian>::do_find_special_sections(
731 Read_symbols_data* sd)
733 const unsigned char* const pshdrs = sd->section_headers->data();
734 const unsigned char* namesu = sd->section_names->data();
735 const char* names = reinterpret_cast<const char*>(namesu);
737 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
738 this->has_eh_frame_ = true;
740 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
741 this->compressed_sections_
742 = build_compressed_section_map(pshdrs, this->shnum(), names,
743 sd->section_names_size, this);
744 return (this->has_eh_frame_
745 || (!parameters->options().relocatable()
746 && parameters->options().gdb_index()
747 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
748 || memmem(names, sd->section_names_size, "debug_types",
752 // Read the sections and symbols from an object file.
754 template<int size, bool big_endian>
756 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
758 this->read_section_data(&this->elf_file_, sd);
760 const unsigned char* const pshdrs = sd->section_headers->data();
762 this->find_symtab(pshdrs);
764 bool need_local_symbols = this->do_find_special_sections(sd);
767 sd->symbols_size = 0;
768 sd->external_symbols_offset = 0;
769 sd->symbol_names = NULL;
770 sd->symbol_names_size = 0;
772 if (this->symtab_shndx_ == 0)
774 // No symbol table. Weird but legal.
778 // Get the symbol table section header.
779 typename This::Shdr symtabshdr(pshdrs
780 + this->symtab_shndx_ * This::shdr_size);
781 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
783 // If this object has a .eh_frame section, or if building a .gdb_index
784 // section and there is debug info, we need all the symbols.
785 // Otherwise we only need the external symbols. While it would be
786 // simpler to just always read all the symbols, I've seen object
787 // files with well over 2000 local symbols, which for a 64-bit
788 // object file format is over 5 pages that we don't need to read
791 const int sym_size = This::sym_size;
792 const unsigned int loccount = symtabshdr.get_sh_info();
793 this->local_symbol_count_ = loccount;
794 this->local_values_.resize(loccount);
795 section_offset_type locsize = loccount * sym_size;
796 off_t dataoff = symtabshdr.get_sh_offset();
797 section_size_type datasize =
798 convert_to_section_size_type(symtabshdr.get_sh_size());
799 off_t extoff = dataoff + locsize;
800 section_size_type extsize = datasize - locsize;
802 off_t readoff = need_local_symbols ? dataoff : extoff;
803 section_size_type readsize = need_local_symbols ? datasize : extsize;
807 // No external symbols. Also weird but also legal.
811 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
813 // Read the section header for the symbol names.
814 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
815 if (strtab_shndx >= this->shnum())
817 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
820 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
821 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
823 this->error(_("symbol table name section has wrong type: %u"),
824 static_cast<unsigned int>(strtabshdr.get_sh_type()));
828 // Read the symbol names.
829 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
830 strtabshdr.get_sh_size(),
833 sd->symbols = fvsymtab;
834 sd->symbols_size = readsize;
835 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
836 sd->symbol_names = fvstrtab;
837 sd->symbol_names_size =
838 convert_to_section_size_type(strtabshdr.get_sh_size());
841 // Return the section index of symbol SYM. Set *VALUE to its value in
842 // the object file. Set *IS_ORDINARY if this is an ordinary section
843 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
844 // Note that for a symbol which is not defined in this object file,
845 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
846 // the final value of the symbol in the link.
848 template<int size, bool big_endian>
850 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
854 section_size_type symbols_size;
855 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
859 const size_t count = symbols_size / This::sym_size;
860 gold_assert(sym < count);
862 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
863 *value = elfsym.get_st_value();
865 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
868 // Return whether to include a section group in the link. LAYOUT is
869 // used to keep track of which section groups we have already seen.
870 // INDEX is the index of the section group and SHDR is the section
871 // header. If we do not want to include this group, we set bits in
872 // OMIT for each section which should be discarded.
874 template<int size, bool big_endian>
876 Sized_relobj_file<size, big_endian>::include_section_group(
877 Symbol_table* symtab,
881 const unsigned char* shdrs,
882 const char* section_names,
883 section_size_type section_names_size,
884 std::vector<bool>* omit)
886 // Read the section contents.
887 typename This::Shdr shdr(shdrs + index * This::shdr_size);
888 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
889 shdr.get_sh_size(), true, false);
890 const elfcpp::Elf_Word* pword =
891 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
893 // The first word contains flags. We only care about COMDAT section
894 // groups. Other section groups are always included in the link
895 // just like ordinary sections.
896 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
898 // Look up the group signature, which is the name of a symbol. ELF
899 // uses a symbol name because some group signatures are long, and
900 // the name is generally already in the symbol table, so it makes
901 // sense to put the long string just once in .strtab rather than in
902 // both .strtab and .shstrtab.
904 // Get the appropriate symbol table header (this will normally be
905 // the single SHT_SYMTAB section, but in principle it need not be).
906 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
907 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
909 // Read the symbol table entry.
910 unsigned int symndx = shdr.get_sh_info();
911 if (symndx >= symshdr.get_sh_size() / This::sym_size)
913 this->error(_("section group %u info %u out of range"),
917 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
918 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
920 elfcpp::Sym<size, big_endian> sym(psym);
922 // Read the symbol table names.
923 section_size_type symnamelen;
924 const unsigned char* psymnamesu;
925 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
927 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
929 // Get the section group signature.
930 if (sym.get_st_name() >= symnamelen)
932 this->error(_("symbol %u name offset %u out of range"),
933 symndx, sym.get_st_name());
937 std::string signature(psymnames + sym.get_st_name());
939 // It seems that some versions of gas will create a section group
940 // associated with a section symbol, and then fail to give a name to
941 // the section symbol. In such a case, use the name of the section.
942 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
945 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
948 if (!is_ordinary || sym_shndx >= this->shnum())
950 this->error(_("symbol %u invalid section index %u"),
954 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
955 if (member_shdr.get_sh_name() < section_names_size)
956 signature = section_names + member_shdr.get_sh_name();
959 // Record this section group in the layout, and see whether we've already
960 // seen one with the same signature.
963 Kept_section* kept_section = NULL;
965 if ((flags & elfcpp::GRP_COMDAT) == 0)
967 include_group = true;
972 include_group = layout->find_or_add_kept_section(signature,
974 true, &kept_section);
978 if (is_comdat && include_group)
980 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
981 if (incremental_inputs != NULL)
982 incremental_inputs->report_comdat_group(this, signature.c_str());
985 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
987 std::vector<unsigned int> shndxes;
988 bool relocate_group = include_group && parameters->options().relocatable();
990 shndxes.reserve(count - 1);
992 for (size_t i = 1; i < count; ++i)
994 elfcpp::Elf_Word shndx =
995 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
998 shndxes.push_back(shndx);
1000 if (shndx >= this->shnum())
1002 this->error(_("section %u in section group %u out of range"),
1007 // Check for an earlier section number, since we're going to get
1008 // it wrong--we may have already decided to include the section.
1010 this->error(_("invalid section group %u refers to earlier section %u"),
1013 // Get the name of the member section.
1014 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1015 if (member_shdr.get_sh_name() >= section_names_size)
1017 // This is an error, but it will be diagnosed eventually
1018 // in do_layout, so we don't need to do anything here but
1022 std::string mname(section_names + member_shdr.get_sh_name());
1027 kept_section->add_comdat_section(mname, shndx,
1028 member_shdr.get_sh_size());
1032 (*omit)[shndx] = true;
1036 Relobj* kept_object = kept_section->object();
1037 if (kept_section->is_comdat())
1039 // Find the corresponding kept section, and store
1040 // that info in the discarded section table.
1041 unsigned int kept_shndx;
1043 if (kept_section->find_comdat_section(mname, &kept_shndx,
1046 // We don't keep a mapping for this section if
1047 // it has a different size. The mapping is only
1048 // used for relocation processing, and we don't
1049 // want to treat the sections as similar if the
1050 // sizes are different. Checking the section
1051 // size is the approach used by the GNU linker.
1052 if (kept_size == member_shdr.get_sh_size())
1053 this->set_kept_comdat_section(shndx, kept_object,
1059 // The existing section is a linkonce section. Add
1060 // a mapping if there is exactly one section in the
1061 // group (which is true when COUNT == 2) and if it
1062 // is the same size.
1064 && (kept_section->linkonce_size()
1065 == member_shdr.get_sh_size()))
1066 this->set_kept_comdat_section(shndx, kept_object,
1067 kept_section->shndx());
1074 layout->layout_group(symtab, this, index, name, signature.c_str(),
1075 shdr, flags, &shndxes);
1077 return include_group;
1080 // Whether to include a linkonce section in the link. NAME is the
1081 // name of the section and SHDR is the section header.
1083 // Linkonce sections are a GNU extension implemented in the original
1084 // GNU linker before section groups were defined. The semantics are
1085 // that we only include one linkonce section with a given name. The
1086 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1087 // where T is the type of section and SYMNAME is the name of a symbol.
1088 // In an attempt to make linkonce sections interact well with section
1089 // groups, we try to identify SYMNAME and use it like a section group
1090 // signature. We want to block section groups with that signature,
1091 // but not other linkonce sections with that signature. We also use
1092 // the full name of the linkonce section as a normal section group
1095 template<int size, bool big_endian>
1097 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1101 const elfcpp::Shdr<size, big_endian>& shdr)
1103 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1104 // In general the symbol name we want will be the string following
1105 // the last '.'. However, we have to handle the case of
1106 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1107 // some versions of gcc. So we use a heuristic: if the name starts
1108 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1109 // we look for the last '.'. We can't always simply skip
1110 // ".gnu.linkonce.X", because we have to deal with cases like
1111 // ".gnu.linkonce.d.rel.ro.local".
1112 const char* const linkonce_t = ".gnu.linkonce.t.";
1113 const char* symname;
1114 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1115 symname = name + strlen(linkonce_t);
1117 symname = strrchr(name, '.') + 1;
1118 std::string sig1(symname);
1119 std::string sig2(name);
1120 Kept_section* kept1;
1121 Kept_section* kept2;
1122 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1124 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1129 // We are not including this section because we already saw the
1130 // name of the section as a signature. This normally implies
1131 // that the kept section is another linkonce section. If it is
1132 // the same size, record it as the section which corresponds to
1134 if (kept2->object() != NULL
1135 && !kept2->is_comdat()
1136 && kept2->linkonce_size() == sh_size)
1137 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1141 // The section is being discarded on the basis of its symbol
1142 // name. This means that the corresponding kept section was
1143 // part of a comdat group, and it will be difficult to identify
1144 // the specific section within that group that corresponds to
1145 // this linkonce section. We'll handle the simple case where
1146 // the group has only one member section. Otherwise, it's not
1147 // worth the effort.
1148 unsigned int kept_shndx;
1150 if (kept1->object() != NULL
1151 && kept1->is_comdat()
1152 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1153 && kept_size == sh_size)
1154 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1158 kept1->set_linkonce_size(sh_size);
1159 kept2->set_linkonce_size(sh_size);
1162 return include1 && include2;
1165 // Layout an input section.
1167 template<int size, bool big_endian>
1169 Sized_relobj_file<size, big_endian>::layout_section(
1173 const typename This::Shdr& shdr,
1174 unsigned int reloc_shndx,
1175 unsigned int reloc_type)
1178 Output_section* os = layout->layout(this, shndx, name, shdr,
1179 reloc_shndx, reloc_type, &offset);
1181 this->output_sections()[shndx] = os;
1183 this->section_offsets()[shndx] = invalid_address;
1185 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1187 // If this section requires special handling, and if there are
1188 // relocs that apply to it, then we must do the special handling
1189 // before we apply the relocs.
1190 if (offset == -1 && reloc_shndx != 0)
1191 this->set_relocs_must_follow_section_writes();
1194 // Layout an input .eh_frame section.
1196 template<int size, bool big_endian>
1198 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1200 const unsigned char* symbols_data,
1201 section_size_type symbols_size,
1202 const unsigned char* symbol_names_data,
1203 section_size_type symbol_names_size,
1205 const typename This::Shdr& shdr,
1206 unsigned int reloc_shndx,
1207 unsigned int reloc_type)
1209 gold_assert(this->has_eh_frame_);
1212 Output_section* os = layout->layout_eh_frame(this,
1222 this->output_sections()[shndx] = os;
1223 if (os == NULL || offset == -1)
1225 // An object can contain at most one section holding exception
1226 // frame information.
1227 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1228 this->discarded_eh_frame_shndx_ = shndx;
1229 this->section_offsets()[shndx] = invalid_address;
1232 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1234 // If this section requires special handling, and if there are
1235 // relocs that aply to it, then we must do the special handling
1236 // before we apply the relocs.
1237 if (os != NULL && offset == -1 && reloc_shndx != 0)
1238 this->set_relocs_must_follow_section_writes();
1241 // Lay out the input sections. We walk through the sections and check
1242 // whether they should be included in the link. If they should, we
1243 // pass them to the Layout object, which will return an output section
1245 // This function is called twice sometimes, two passes, when mapping
1246 // of input sections to output sections must be delayed.
1247 // This is true for the following :
1248 // * Garbage collection (--gc-sections): Some input sections will be
1249 // discarded and hence the assignment must wait until the second pass.
1250 // In the first pass, it is for setting up some sections as roots to
1251 // a work-list for --gc-sections and to do comdat processing.
1252 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1253 // will be folded and hence the assignment must wait.
1254 // * Using plugins to map some sections to unique segments: Mapping
1255 // some sections to unique segments requires mapping them to unique
1256 // output sections too. This can be done via plugins now and this
1257 // information is not available in the first pass.
1259 template<int size, bool big_endian>
1261 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1263 Read_symbols_data* sd)
1265 const unsigned int shnum = this->shnum();
1267 /* Should this function be called twice? */
1268 bool is_two_pass = (parameters->options().gc_sections()
1269 || parameters->options().icf_enabled()
1270 || layout->is_unique_segment_for_sections_specified());
1272 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1273 a two-pass approach is not needed. */
1274 bool is_pass_one = false;
1275 bool is_pass_two = false;
1277 Symbols_data* gc_sd = NULL;
1279 /* Check if do_layout needs to be two-pass. If so, find out which pass
1280 should happen. In the first pass, the data in sd is saved to be used
1281 later in the second pass. */
1284 gc_sd = this->get_symbols_data();
1287 gold_assert(sd != NULL);
1292 if (parameters->options().gc_sections())
1293 gold_assert(symtab->gc()->is_worklist_ready());
1294 if (parameters->options().icf_enabled())
1295 gold_assert(symtab->icf()->is_icf_ready());
1305 // During garbage collection save the symbols data to use it when
1306 // re-entering this function.
1307 gc_sd = new Symbols_data;
1308 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1309 this->set_symbols_data(gc_sd);
1312 const unsigned char* section_headers_data = NULL;
1313 section_size_type section_names_size;
1314 const unsigned char* symbols_data = NULL;
1315 section_size_type symbols_size;
1316 const unsigned char* symbol_names_data = NULL;
1317 section_size_type symbol_names_size;
1321 section_headers_data = gc_sd->section_headers_data;
1322 section_names_size = gc_sd->section_names_size;
1323 symbols_data = gc_sd->symbols_data;
1324 symbols_size = gc_sd->symbols_size;
1325 symbol_names_data = gc_sd->symbol_names_data;
1326 symbol_names_size = gc_sd->symbol_names_size;
1330 section_headers_data = sd->section_headers->data();
1331 section_names_size = sd->section_names_size;
1332 if (sd->symbols != NULL)
1333 symbols_data = sd->symbols->data();
1334 symbols_size = sd->symbols_size;
1335 if (sd->symbol_names != NULL)
1336 symbol_names_data = sd->symbol_names->data();
1337 symbol_names_size = sd->symbol_names_size;
1340 // Get the section headers.
1341 const unsigned char* shdrs = section_headers_data;
1342 const unsigned char* pshdrs;
1344 // Get the section names.
1345 const unsigned char* pnamesu = (is_two_pass
1346 ? gc_sd->section_names_data
1347 : sd->section_names->data());
1349 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1351 // If any input files have been claimed by plugins, we need to defer
1352 // actual layout until the replacement files have arrived.
1353 const bool should_defer_layout =
1354 (parameters->options().has_plugins()
1355 && parameters->options().plugins()->should_defer_layout());
1356 unsigned int num_sections_to_defer = 0;
1358 // For each section, record the index of the reloc section if any.
1359 // Use 0 to mean that there is no reloc section, -1U to mean that
1360 // there is more than one.
1361 std::vector<unsigned int> reloc_shndx(shnum, 0);
1362 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1363 // Skip the first, dummy, section.
1364 pshdrs = shdrs + This::shdr_size;
1365 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1367 typename This::Shdr shdr(pshdrs);
1369 // Count the number of sections whose layout will be deferred.
1370 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1371 ++num_sections_to_defer;
1373 unsigned int sh_type = shdr.get_sh_type();
1374 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1376 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1377 if (target_shndx == 0 || target_shndx >= shnum)
1379 this->error(_("relocation section %u has bad info %u"),
1384 if (reloc_shndx[target_shndx] != 0)
1385 reloc_shndx[target_shndx] = -1U;
1388 reloc_shndx[target_shndx] = i;
1389 reloc_type[target_shndx] = sh_type;
1394 Output_sections& out_sections(this->output_sections());
1395 std::vector<Address>& out_section_offsets(this->section_offsets());
1399 out_sections.resize(shnum);
1400 out_section_offsets.resize(shnum);
1403 // If we are only linking for symbols, then there is nothing else to
1405 if (this->input_file()->just_symbols())
1409 delete sd->section_headers;
1410 sd->section_headers = NULL;
1411 delete sd->section_names;
1412 sd->section_names = NULL;
1417 if (num_sections_to_defer > 0)
1419 parameters->options().plugins()->add_deferred_layout_object(this);
1420 this->deferred_layout_.reserve(num_sections_to_defer);
1423 // Whether we've seen a .note.GNU-stack section.
1424 bool seen_gnu_stack = false;
1425 // The flags of a .note.GNU-stack section.
1426 uint64_t gnu_stack_flags = 0;
1428 // Keep track of which sections to omit.
1429 std::vector<bool> omit(shnum, false);
1431 // Keep track of reloc sections when emitting relocations.
1432 const bool relocatable = parameters->options().relocatable();
1433 const bool emit_relocs = (relocatable
1434 || parameters->options().emit_relocs());
1435 std::vector<unsigned int> reloc_sections;
1437 // Keep track of .eh_frame sections.
1438 std::vector<unsigned int> eh_frame_sections;
1440 // Keep track of .debug_info and .debug_types sections.
1441 std::vector<unsigned int> debug_info_sections;
1442 std::vector<unsigned int> debug_types_sections;
1444 // Skip the first, dummy, section.
1445 pshdrs = shdrs + This::shdr_size;
1446 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1448 typename This::Shdr shdr(pshdrs);
1450 if (shdr.get_sh_name() >= section_names_size)
1452 this->error(_("bad section name offset for section %u: %lu"),
1453 i, static_cast<unsigned long>(shdr.get_sh_name()));
1457 const char* name = pnames + shdr.get_sh_name();
1461 if (this->handle_gnu_warning_section(name, i, symtab))
1463 if (!relocatable && !parameters->options().shared())
1467 // The .note.GNU-stack section is special. It gives the
1468 // protection flags that this object file requires for the stack
1470 if (strcmp(name, ".note.GNU-stack") == 0)
1472 seen_gnu_stack = true;
1473 gnu_stack_flags |= shdr.get_sh_flags();
1477 // The .note.GNU-split-stack section is also special. It
1478 // indicates that the object was compiled with
1480 if (this->handle_split_stack_section(name))
1482 if (!relocatable && !parameters->options().shared())
1486 // Skip attributes section.
1487 if (parameters->target().is_attributes_section(name))
1492 bool discard = omit[i];
1495 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1497 if (!this->include_section_group(symtab, layout, i, name,
1503 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1504 && Layout::is_linkonce(name))
1506 if (!this->include_linkonce_section(layout, i, name, shdr))
1511 // Add the section to the incremental inputs layout.
1512 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1513 if (incremental_inputs != NULL
1515 && can_incremental_update(shdr.get_sh_type()))
1517 off_t sh_size = shdr.get_sh_size();
1518 section_size_type uncompressed_size;
1519 if (this->section_is_compressed(i, &uncompressed_size))
1520 sh_size = uncompressed_size;
1521 incremental_inputs->report_input_section(this, i, name, sh_size);
1526 // Do not include this section in the link.
1527 out_sections[i] = NULL;
1528 out_section_offsets[i] = invalid_address;
1533 if (is_pass_one && parameters->options().gc_sections())
1535 if (this->is_section_name_included(name)
1536 || layout->keep_input_section (this, name)
1537 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1538 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1540 symtab->gc()->worklist().push(Section_id(this, i));
1542 // If the section name XXX can be represented as a C identifier
1543 // it cannot be discarded if there are references to
1544 // __start_XXX and __stop_XXX symbols. These need to be
1545 // specially handled.
1546 if (is_cident(name))
1548 symtab->gc()->add_cident_section(name, Section_id(this, i));
1552 // When doing a relocatable link we are going to copy input
1553 // reloc sections into the output. We only want to copy the
1554 // ones associated with sections which are not being discarded.
1555 // However, we don't know that yet for all sections. So save
1556 // reloc sections and process them later. Garbage collection is
1557 // not triggered when relocatable code is desired.
1559 && (shdr.get_sh_type() == elfcpp::SHT_REL
1560 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1562 reloc_sections.push_back(i);
1566 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1569 // The .eh_frame section is special. It holds exception frame
1570 // information that we need to read in order to generate the
1571 // exception frame header. We process these after all the other
1572 // sections so that the exception frame reader can reliably
1573 // determine which sections are being discarded, and discard the
1574 // corresponding information.
1576 && strcmp(name, ".eh_frame") == 0
1577 && this->check_eh_frame_flags(&shdr))
1581 out_sections[i] = reinterpret_cast<Output_section*>(1);
1582 out_section_offsets[i] = invalid_address;
1584 else if (should_defer_layout)
1585 this->deferred_layout_.push_back(Deferred_layout(i, name,
1590 eh_frame_sections.push_back(i);
1594 if (is_pass_two && parameters->options().gc_sections())
1596 // This is executed during the second pass of garbage
1597 // collection. do_layout has been called before and some
1598 // sections have been already discarded. Simply ignore
1599 // such sections this time around.
1600 if (out_sections[i] == NULL)
1602 gold_assert(out_section_offsets[i] == invalid_address);
1605 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1606 && symtab->gc()->is_section_garbage(this, i))
1608 if (parameters->options().print_gc_sections())
1609 gold_info(_("%s: removing unused section from '%s'"
1611 program_name, this->section_name(i).c_str(),
1612 this->name().c_str());
1613 out_sections[i] = NULL;
1614 out_section_offsets[i] = invalid_address;
1619 if (is_pass_two && parameters->options().icf_enabled())
1621 if (out_sections[i] == NULL)
1623 gold_assert(out_section_offsets[i] == invalid_address);
1626 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1627 && symtab->icf()->is_section_folded(this, i))
1629 if (parameters->options().print_icf_sections())
1632 symtab->icf()->get_folded_section(this, i);
1633 Relobj* folded_obj =
1634 reinterpret_cast<Relobj*>(folded.first);
1635 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1636 "into '%s' in file '%s'"),
1637 program_name, this->section_name(i).c_str(),
1638 this->name().c_str(),
1639 folded_obj->section_name(folded.second).c_str(),
1640 folded_obj->name().c_str());
1642 out_sections[i] = NULL;
1643 out_section_offsets[i] = invalid_address;
1648 // Defer layout here if input files are claimed by plugins. When gc
1649 // is turned on this function is called twice. For the second call
1650 // should_defer_layout should be false.
1651 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1653 gold_assert(!is_pass_two);
1654 this->deferred_layout_.push_back(Deferred_layout(i, name,
1658 // Put dummy values here; real values will be supplied by
1659 // do_layout_deferred_sections.
1660 out_sections[i] = reinterpret_cast<Output_section*>(2);
1661 out_section_offsets[i] = invalid_address;
1665 // During gc_pass_two if a section that was previously deferred is
1666 // found, do not layout the section as layout_deferred_sections will
1667 // do it later from gold.cc.
1669 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1674 // This is during garbage collection. The out_sections are
1675 // assigned in the second call to this function.
1676 out_sections[i] = reinterpret_cast<Output_section*>(1);
1677 out_section_offsets[i] = invalid_address;
1681 // When garbage collection is switched on the actual layout
1682 // only happens in the second call.
1683 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1686 // When generating a .gdb_index section, we do additional
1687 // processing of .debug_info and .debug_types sections after all
1688 // the other sections for the same reason as above.
1690 && parameters->options().gdb_index()
1691 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1693 if (strcmp(name, ".debug_info") == 0
1694 || strcmp(name, ".zdebug_info") == 0)
1695 debug_info_sections.push_back(i);
1696 else if (strcmp(name, ".debug_types") == 0
1697 || strcmp(name, ".zdebug_types") == 0)
1698 debug_types_sections.push_back(i);
1704 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1706 // Handle the .eh_frame sections after the other sections.
1707 gold_assert(!is_pass_one || eh_frame_sections.empty());
1708 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1709 p != eh_frame_sections.end();
1712 unsigned int i = *p;
1713 const unsigned char* pshdr;
1714 pshdr = section_headers_data + i * This::shdr_size;
1715 typename This::Shdr shdr(pshdr);
1717 this->layout_eh_frame_section(layout,
1728 // When doing a relocatable link handle the reloc sections at the
1729 // end. Garbage collection and Identical Code Folding is not
1730 // turned on for relocatable code.
1732 this->size_relocatable_relocs();
1734 gold_assert(!is_two_pass || reloc_sections.empty());
1736 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1737 p != reloc_sections.end();
1740 unsigned int i = *p;
1741 const unsigned char* pshdr;
1742 pshdr = section_headers_data + i * This::shdr_size;
1743 typename This::Shdr shdr(pshdr);
1745 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1746 if (data_shndx >= shnum)
1748 // We already warned about this above.
1752 Output_section* data_section = out_sections[data_shndx];
1753 if (data_section == reinterpret_cast<Output_section*>(2))
1755 // The layout for the data section was deferred, so we need
1756 // to defer the relocation section, too.
1757 const char* name = pnames + shdr.get_sh_name();
1758 this->deferred_layout_relocs_.push_back(
1759 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1760 out_sections[i] = reinterpret_cast<Output_section*>(2);
1761 out_section_offsets[i] = invalid_address;
1764 if (data_section == NULL)
1766 out_sections[i] = NULL;
1767 out_section_offsets[i] = invalid_address;
1771 Relocatable_relocs* rr = new Relocatable_relocs();
1772 this->set_relocatable_relocs(i, rr);
1774 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1776 out_sections[i] = os;
1777 out_section_offsets[i] = invalid_address;
1780 // When building a .gdb_index section, scan the .debug_info and
1781 // .debug_types sections.
1782 gold_assert(!is_pass_one
1783 || (debug_info_sections.empty() && debug_types_sections.empty()));
1784 for (std::vector<unsigned int>::const_iterator p
1785 = debug_info_sections.begin();
1786 p != debug_info_sections.end();
1789 unsigned int i = *p;
1790 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1791 i, reloc_shndx[i], reloc_type[i]);
1793 for (std::vector<unsigned int>::const_iterator p
1794 = debug_types_sections.begin();
1795 p != debug_types_sections.end();
1798 unsigned int i = *p;
1799 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1800 i, reloc_shndx[i], reloc_type[i]);
1805 delete[] gc_sd->section_headers_data;
1806 delete[] gc_sd->section_names_data;
1807 delete[] gc_sd->symbols_data;
1808 delete[] gc_sd->symbol_names_data;
1809 this->set_symbols_data(NULL);
1813 delete sd->section_headers;
1814 sd->section_headers = NULL;
1815 delete sd->section_names;
1816 sd->section_names = NULL;
1820 // Layout sections whose layout was deferred while waiting for
1821 // input files from a plugin.
1823 template<int size, bool big_endian>
1825 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1827 typename std::vector<Deferred_layout>::iterator deferred;
1829 for (deferred = this->deferred_layout_.begin();
1830 deferred != this->deferred_layout_.end();
1833 typename This::Shdr shdr(deferred->shdr_data_);
1835 if (!parameters->options().relocatable()
1836 && deferred->name_ == ".eh_frame"
1837 && this->check_eh_frame_flags(&shdr))
1839 // Checking is_section_included is not reliable for
1840 // .eh_frame sections, because they do not have an output
1841 // section. This is not a problem normally because we call
1842 // layout_eh_frame_section unconditionally, but when
1843 // deferring sections that is not true. We don't want to
1844 // keep all .eh_frame sections because that will cause us to
1845 // keep all sections that they refer to, which is the wrong
1846 // way around. Instead, the eh_frame code will discard
1847 // .eh_frame sections that refer to discarded sections.
1849 // Reading the symbols again here may be slow.
1850 Read_symbols_data sd;
1851 this->read_symbols(&sd);
1852 this->layout_eh_frame_section(layout,
1855 sd.symbol_names->data(),
1856 sd.symbol_names_size,
1859 deferred->reloc_shndx_,
1860 deferred->reloc_type_);
1864 // If the section is not included, it is because the garbage collector
1865 // decided it is not needed. Avoid reverting that decision.
1866 if (!this->is_section_included(deferred->shndx_))
1869 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1870 shdr, deferred->reloc_shndx_,
1871 deferred->reloc_type_);
1874 this->deferred_layout_.clear();
1876 // Now handle the deferred relocation sections.
1878 Output_sections& out_sections(this->output_sections());
1879 std::vector<Address>& out_section_offsets(this->section_offsets());
1881 for (deferred = this->deferred_layout_relocs_.begin();
1882 deferred != this->deferred_layout_relocs_.end();
1885 unsigned int shndx = deferred->shndx_;
1886 typename This::Shdr shdr(deferred->shdr_data_);
1887 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1889 Output_section* data_section = out_sections[data_shndx];
1890 if (data_section == NULL)
1892 out_sections[shndx] = NULL;
1893 out_section_offsets[shndx] = invalid_address;
1897 Relocatable_relocs* rr = new Relocatable_relocs();
1898 this->set_relocatable_relocs(shndx, rr);
1900 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1902 out_sections[shndx] = os;
1903 out_section_offsets[shndx] = invalid_address;
1907 // Add the symbols to the symbol table.
1909 template<int size, bool big_endian>
1911 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1912 Read_symbols_data* sd,
1915 if (sd->symbols == NULL)
1917 gold_assert(sd->symbol_names == NULL);
1921 const int sym_size = This::sym_size;
1922 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1924 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1926 this->error(_("size of symbols is not multiple of symbol size"));
1930 this->symbols_.resize(symcount);
1932 const char* sym_names =
1933 reinterpret_cast<const char*>(sd->symbol_names->data());
1934 symtab->add_from_relobj(this,
1935 sd->symbols->data() + sd->external_symbols_offset,
1936 symcount, this->local_symbol_count_,
1937 sym_names, sd->symbol_names_size,
1939 &this->defined_count_);
1943 delete sd->symbol_names;
1944 sd->symbol_names = NULL;
1947 // Find out if this object, that is a member of a lib group, should be included
1948 // in the link. We check every symbol defined by this object. If the symbol
1949 // table has a strong undefined reference to that symbol, we have to include
1952 template<int size, bool big_endian>
1953 Archive::Should_include
1954 Sized_relobj_file<size, big_endian>::do_should_include_member(
1955 Symbol_table* symtab,
1957 Read_symbols_data* sd,
1960 char* tmpbuf = NULL;
1961 size_t tmpbuflen = 0;
1962 const char* sym_names =
1963 reinterpret_cast<const char*>(sd->symbol_names->data());
1964 const unsigned char* syms =
1965 sd->symbols->data() + sd->external_symbols_offset;
1966 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1967 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1970 const unsigned char* p = syms;
1972 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1974 elfcpp::Sym<size, big_endian> sym(p);
1975 unsigned int st_shndx = sym.get_st_shndx();
1976 if (st_shndx == elfcpp::SHN_UNDEF)
1979 unsigned int st_name = sym.get_st_name();
1980 const char* name = sym_names + st_name;
1982 Archive::Should_include t = Archive::should_include_member(symtab,
1988 if (t == Archive::SHOULD_INCLUDE_YES)
1997 return Archive::SHOULD_INCLUDE_UNKNOWN;
2000 // Iterate over global defined symbols, calling a visitor class V for each.
2002 template<int size, bool big_endian>
2004 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2005 Read_symbols_data* sd,
2006 Library_base::Symbol_visitor_base* v)
2008 const char* sym_names =
2009 reinterpret_cast<const char*>(sd->symbol_names->data());
2010 const unsigned char* syms =
2011 sd->symbols->data() + sd->external_symbols_offset;
2012 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2013 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2015 const unsigned char* p = syms;
2017 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2019 elfcpp::Sym<size, big_endian> sym(p);
2020 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2021 v->visit(sym_names + sym.get_st_name());
2025 // Return whether the local symbol SYMNDX has a PLT offset.
2027 template<int size, bool big_endian>
2029 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2030 unsigned int symndx) const
2032 typename Local_plt_offsets::const_iterator p =
2033 this->local_plt_offsets_.find(symndx);
2034 return p != this->local_plt_offsets_.end();
2037 // Get the PLT offset of a local symbol.
2039 template<int size, bool big_endian>
2041 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2042 unsigned int symndx) const
2044 typename Local_plt_offsets::const_iterator p =
2045 this->local_plt_offsets_.find(symndx);
2046 gold_assert(p != this->local_plt_offsets_.end());
2050 // Set the PLT offset of a local symbol.
2052 template<int size, bool big_endian>
2054 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2055 unsigned int symndx, unsigned int plt_offset)
2057 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2058 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2059 gold_assert(ins.second);
2062 // First pass over the local symbols. Here we add their names to
2063 // *POOL and *DYNPOOL, and we store the symbol value in
2064 // THIS->LOCAL_VALUES_. This function is always called from a
2065 // singleton thread. This is followed by a call to
2066 // finalize_local_symbols.
2068 template<int size, bool big_endian>
2070 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2071 Stringpool* dynpool)
2073 gold_assert(this->symtab_shndx_ != -1U);
2074 if (this->symtab_shndx_ == 0)
2076 // This object has no symbols. Weird but legal.
2080 // Read the symbol table section header.
2081 const unsigned int symtab_shndx = this->symtab_shndx_;
2082 typename This::Shdr symtabshdr(this,
2083 this->elf_file_.section_header(symtab_shndx));
2084 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2086 // Read the local symbols.
2087 const int sym_size = This::sym_size;
2088 const unsigned int loccount = this->local_symbol_count_;
2089 gold_assert(loccount == symtabshdr.get_sh_info());
2090 off_t locsize = loccount * sym_size;
2091 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2092 locsize, true, true);
2094 // Read the symbol names.
2095 const unsigned int strtab_shndx =
2096 this->adjust_shndx(symtabshdr.get_sh_link());
2097 section_size_type strtab_size;
2098 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2101 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2103 // Loop over the local symbols.
2105 const Output_sections& out_sections(this->output_sections());
2106 unsigned int shnum = this->shnum();
2107 unsigned int count = 0;
2108 unsigned int dyncount = 0;
2109 // Skip the first, dummy, symbol.
2111 bool strip_all = parameters->options().strip_all();
2112 bool discard_all = parameters->options().discard_all();
2113 bool discard_locals = parameters->options().discard_locals();
2114 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2116 elfcpp::Sym<size, big_endian> sym(psyms);
2118 Symbol_value<size>& lv(this->local_values_[i]);
2121 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2123 lv.set_input_shndx(shndx, is_ordinary);
2125 if (sym.get_st_type() == elfcpp::STT_SECTION)
2126 lv.set_is_section_symbol();
2127 else if (sym.get_st_type() == elfcpp::STT_TLS)
2128 lv.set_is_tls_symbol();
2129 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2130 lv.set_is_ifunc_symbol();
2132 // Save the input symbol value for use in do_finalize_local_symbols().
2133 lv.set_input_value(sym.get_st_value());
2135 // Decide whether this symbol should go into the output file.
2137 if ((shndx < shnum && out_sections[shndx] == NULL)
2138 || shndx == this->discarded_eh_frame_shndx_)
2140 lv.set_no_output_symtab_entry();
2141 gold_assert(!lv.needs_output_dynsym_entry());
2145 if (sym.get_st_type() == elfcpp::STT_SECTION
2146 || !this->adjust_local_symbol(&lv))
2148 lv.set_no_output_symtab_entry();
2149 gold_assert(!lv.needs_output_dynsym_entry());
2153 if (sym.get_st_name() >= strtab_size)
2155 this->error(_("local symbol %u section name out of range: %u >= %u"),
2156 i, sym.get_st_name(),
2157 static_cast<unsigned int>(strtab_size));
2158 lv.set_no_output_symtab_entry();
2162 const char* name = pnames + sym.get_st_name();
2164 // If needed, add the symbol to the dynamic symbol table string pool.
2165 if (lv.needs_output_dynsym_entry())
2167 dynpool->add(name, true, NULL);
2172 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2174 lv.set_no_output_symtab_entry();
2178 // If --discard-locals option is used, discard all temporary local
2179 // symbols. These symbols start with system-specific local label
2180 // prefixes, typically .L for ELF system. We want to be compatible
2181 // with GNU ld so here we essentially use the same check in
2182 // bfd_is_local_label(). The code is different because we already
2185 // - the symbol is local and thus cannot have global or weak binding.
2186 // - the symbol is not a section symbol.
2187 // - the symbol has a name.
2189 // We do not discard a symbol if it needs a dynamic symbol entry.
2191 && sym.get_st_type() != elfcpp::STT_FILE
2192 && !lv.needs_output_dynsym_entry()
2193 && lv.may_be_discarded_from_output_symtab()
2194 && parameters->target().is_local_label_name(name))
2196 lv.set_no_output_symtab_entry();
2200 // Discard the local symbol if -retain_symbols_file is specified
2201 // and the local symbol is not in that file.
2202 if (!parameters->options().should_retain_symbol(name))
2204 lv.set_no_output_symtab_entry();
2208 // Add the symbol to the symbol table string pool.
2209 pool->add(name, true, NULL);
2213 this->output_local_symbol_count_ = count;
2214 this->output_local_dynsym_count_ = dyncount;
2217 // Compute the final value of a local symbol.
2219 template<int size, bool big_endian>
2220 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2221 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2223 const Symbol_value<size>* lv_in,
2224 Symbol_value<size>* lv_out,
2226 const Output_sections& out_sections,
2227 const std::vector<Address>& out_offsets,
2228 const Symbol_table* symtab)
2230 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2231 // we may have a memory leak.
2232 gold_assert(lv_out->has_output_value());
2235 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2237 // Set the output symbol value.
2241 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2242 lv_out->set_output_value(lv_in->input_value());
2245 this->error(_("unknown section index %u for local symbol %u"),
2247 lv_out->set_output_value(0);
2248 return This::CFLV_ERROR;
2253 if (shndx >= this->shnum())
2255 this->error(_("local symbol %u section index %u out of range"),
2257 lv_out->set_output_value(0);
2258 return This::CFLV_ERROR;
2261 Output_section* os = out_sections[shndx];
2262 Address secoffset = out_offsets[shndx];
2263 if (symtab->is_section_folded(this, shndx))
2265 gold_assert(os == NULL && secoffset == invalid_address);
2266 // Get the os of the section it is folded onto.
2267 Section_id folded = symtab->icf()->get_folded_section(this,
2269 gold_assert(folded.first != NULL);
2270 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2271 <Sized_relobj_file<size, big_endian>*>(folded.first);
2272 os = folded_obj->output_section(folded.second);
2273 gold_assert(os != NULL);
2274 secoffset = folded_obj->get_output_section_offset(folded.second);
2276 // This could be a relaxed input section.
2277 if (secoffset == invalid_address)
2279 const Output_relaxed_input_section* relaxed_section =
2280 os->find_relaxed_input_section(folded_obj, folded.second);
2281 gold_assert(relaxed_section != NULL);
2282 secoffset = relaxed_section->address() - os->address();
2288 // This local symbol belongs to a section we are discarding.
2289 // In some cases when applying relocations later, we will
2290 // attempt to match it to the corresponding kept section,
2291 // so we leave the input value unchanged here.
2292 return This::CFLV_DISCARDED;
2294 else if (secoffset == invalid_address)
2298 // This is a SHF_MERGE section or one which otherwise
2299 // requires special handling.
2300 if (shndx == this->discarded_eh_frame_shndx_)
2302 // This local symbol belongs to a discarded .eh_frame
2303 // section. Just treat it like the case in which
2304 // os == NULL above.
2305 gold_assert(this->has_eh_frame_);
2306 return This::CFLV_DISCARDED;
2308 else if (!lv_in->is_section_symbol())
2310 // This is not a section symbol. We can determine
2311 // the final value now.
2312 lv_out->set_output_value(
2313 os->output_address(this, shndx, lv_in->input_value()));
2315 else if (!os->find_starting_output_address(this, shndx, &start))
2317 // This is a section symbol, but apparently not one in a
2318 // merged section. First check to see if this is a relaxed
2319 // input section. If so, use its address. Otherwise just
2320 // use the start of the output section. This happens with
2321 // relocatable links when the input object has section
2322 // symbols for arbitrary non-merge sections.
2323 const Output_section_data* posd =
2324 os->find_relaxed_input_section(this, shndx);
2327 Address relocatable_link_adjustment =
2328 relocatable ? os->address() : 0;
2329 lv_out->set_output_value(posd->address()
2330 - relocatable_link_adjustment);
2333 lv_out->set_output_value(os->address());
2337 // We have to consider the addend to determine the
2338 // value to use in a relocation. START is the start
2339 // of this input section. If we are doing a relocatable
2340 // link, use offset from start output section instead of
2342 Address adjusted_start =
2343 relocatable ? start - os->address() : start;
2344 Merged_symbol_value<size>* msv =
2345 new Merged_symbol_value<size>(lv_in->input_value(),
2347 lv_out->set_merged_symbol_value(msv);
2350 else if (lv_in->is_tls_symbol())
2351 lv_out->set_output_value(os->tls_offset()
2353 + lv_in->input_value());
2355 lv_out->set_output_value((relocatable ? 0 : os->address())
2357 + lv_in->input_value());
2359 return This::CFLV_OK;
2362 // Compute final local symbol value. R_SYM is the index of a local
2363 // symbol in symbol table. LV points to a symbol value, which is
2364 // expected to hold the input value and to be over-written by the
2365 // final value. SYMTAB points to a symbol table. Some targets may want
2366 // to know would-be-finalized local symbol values in relaxation.
2367 // Hence we provide this method. Since this method updates *LV, a
2368 // callee should make a copy of the original local symbol value and
2369 // use the copy instead of modifying an object's local symbols before
2370 // everything is finalized. The caller should also free up any allocated
2371 // memory in the return value in *LV.
2372 template<int size, bool big_endian>
2373 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2374 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2376 const Symbol_value<size>* lv_in,
2377 Symbol_value<size>* lv_out,
2378 const Symbol_table* symtab)
2380 // This is just a wrapper of compute_final_local_value_internal.
2381 const bool relocatable = parameters->options().relocatable();
2382 const Output_sections& out_sections(this->output_sections());
2383 const std::vector<Address>& out_offsets(this->section_offsets());
2384 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2385 relocatable, out_sections,
2386 out_offsets, symtab);
2389 // Finalize the local symbols. Here we set the final value in
2390 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2391 // This function is always called from a singleton thread. The actual
2392 // output of the local symbols will occur in a separate task.
2394 template<int size, bool big_endian>
2396 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2399 Symbol_table* symtab)
2401 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2403 const unsigned int loccount = this->local_symbol_count_;
2404 this->local_symbol_offset_ = off;
2406 const bool relocatable = parameters->options().relocatable();
2407 const Output_sections& out_sections(this->output_sections());
2408 const std::vector<Address>& out_offsets(this->section_offsets());
2410 for (unsigned int i = 1; i < loccount; ++i)
2412 Symbol_value<size>* lv = &this->local_values_[i];
2414 Compute_final_local_value_status cflv_status =
2415 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2416 out_sections, out_offsets,
2418 switch (cflv_status)
2421 if (!lv->is_output_symtab_index_set())
2423 lv->set_output_symtab_index(index);
2427 case CFLV_DISCARDED:
2438 // Set the output dynamic symbol table indexes for the local variables.
2440 template<int size, bool big_endian>
2442 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2445 const unsigned int loccount = this->local_symbol_count_;
2446 for (unsigned int i = 1; i < loccount; ++i)
2448 Symbol_value<size>& lv(this->local_values_[i]);
2449 if (lv.needs_output_dynsym_entry())
2451 lv.set_output_dynsym_index(index);
2458 // Set the offset where local dynamic symbol information will be stored.
2459 // Returns the count of local symbols contributed to the symbol table by
2462 template<int size, bool big_endian>
2464 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2466 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2467 this->local_dynsym_offset_ = off;
2468 return this->output_local_dynsym_count_;
2471 // If Symbols_data is not NULL get the section flags from here otherwise
2472 // get it from the file.
2474 template<int size, bool big_endian>
2476 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2478 Symbols_data* sd = this->get_symbols_data();
2481 const unsigned char* pshdrs = sd->section_headers_data
2482 + This::shdr_size * shndx;
2483 typename This::Shdr shdr(pshdrs);
2484 return shdr.get_sh_flags();
2486 // If sd is NULL, read the section header from the file.
2487 return this->elf_file_.section_flags(shndx);
2490 // Get the section's ent size from Symbols_data. Called by get_section_contents
2493 template<int size, bool big_endian>
2495 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2497 Symbols_data* sd = this->get_symbols_data();
2498 gold_assert(sd != NULL);
2500 const unsigned char* pshdrs = sd->section_headers_data
2501 + This::shdr_size * shndx;
2502 typename This::Shdr shdr(pshdrs);
2503 return shdr.get_sh_entsize();
2506 // Write out the local symbols.
2508 template<int size, bool big_endian>
2510 Sized_relobj_file<size, big_endian>::write_local_symbols(
2512 const Stringpool* sympool,
2513 const Stringpool* dynpool,
2514 Output_symtab_xindex* symtab_xindex,
2515 Output_symtab_xindex* dynsym_xindex,
2518 const bool strip_all = parameters->options().strip_all();
2521 if (this->output_local_dynsym_count_ == 0)
2523 this->output_local_symbol_count_ = 0;
2526 gold_assert(this->symtab_shndx_ != -1U);
2527 if (this->symtab_shndx_ == 0)
2529 // This object has no symbols. Weird but legal.
2533 // Read the symbol table section header.
2534 const unsigned int symtab_shndx = this->symtab_shndx_;
2535 typename This::Shdr symtabshdr(this,
2536 this->elf_file_.section_header(symtab_shndx));
2537 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2538 const unsigned int loccount = this->local_symbol_count_;
2539 gold_assert(loccount == symtabshdr.get_sh_info());
2541 // Read the local symbols.
2542 const int sym_size = This::sym_size;
2543 off_t locsize = loccount * sym_size;
2544 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2545 locsize, true, false);
2547 // Read the symbol names.
2548 const unsigned int strtab_shndx =
2549 this->adjust_shndx(symtabshdr.get_sh_link());
2550 section_size_type strtab_size;
2551 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2554 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2556 // Get views into the output file for the portions of the symbol table
2557 // and the dynamic symbol table that we will be writing.
2558 off_t output_size = this->output_local_symbol_count_ * sym_size;
2559 unsigned char* oview = NULL;
2560 if (output_size > 0)
2561 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2564 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2565 unsigned char* dyn_oview = NULL;
2566 if (dyn_output_size > 0)
2567 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2570 const Output_sections out_sections(this->output_sections());
2572 gold_assert(this->local_values_.size() == loccount);
2574 unsigned char* ov = oview;
2575 unsigned char* dyn_ov = dyn_oview;
2577 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2579 elfcpp::Sym<size, big_endian> isym(psyms);
2581 Symbol_value<size>& lv(this->local_values_[i]);
2584 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2588 gold_assert(st_shndx < out_sections.size());
2589 if (out_sections[st_shndx] == NULL)
2591 st_shndx = out_sections[st_shndx]->out_shndx();
2592 if (st_shndx >= elfcpp::SHN_LORESERVE)
2594 if (lv.has_output_symtab_entry())
2595 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2596 if (lv.has_output_dynsym_entry())
2597 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2598 st_shndx = elfcpp::SHN_XINDEX;
2602 // Write the symbol to the output symbol table.
2603 if (lv.has_output_symtab_entry())
2605 elfcpp::Sym_write<size, big_endian> osym(ov);
2607 gold_assert(isym.get_st_name() < strtab_size);
2608 const char* name = pnames + isym.get_st_name();
2609 osym.put_st_name(sympool->get_offset(name));
2610 osym.put_st_value(this->local_values_[i].value(this, 0));
2611 osym.put_st_size(isym.get_st_size());
2612 osym.put_st_info(isym.get_st_info());
2613 osym.put_st_other(isym.get_st_other());
2614 osym.put_st_shndx(st_shndx);
2619 // Write the symbol to the output dynamic symbol table.
2620 if (lv.has_output_dynsym_entry())
2622 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2623 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2625 gold_assert(isym.get_st_name() < strtab_size);
2626 const char* name = pnames + isym.get_st_name();
2627 osym.put_st_name(dynpool->get_offset(name));
2628 osym.put_st_value(this->local_values_[i].value(this, 0));
2629 osym.put_st_size(isym.get_st_size());
2630 osym.put_st_info(isym.get_st_info());
2631 osym.put_st_other(isym.get_st_other());
2632 osym.put_st_shndx(st_shndx);
2639 if (output_size > 0)
2641 gold_assert(ov - oview == output_size);
2642 of->write_output_view(symtab_off + this->local_symbol_offset_,
2643 output_size, oview);
2646 if (dyn_output_size > 0)
2648 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2649 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2654 // Set *INFO to symbolic information about the offset OFFSET in the
2655 // section SHNDX. Return true if we found something, false if we
2658 template<int size, bool big_endian>
2660 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2663 Symbol_location_info* info)
2665 if (this->symtab_shndx_ == 0)
2668 section_size_type symbols_size;
2669 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2673 unsigned int symbol_names_shndx =
2674 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2675 section_size_type names_size;
2676 const unsigned char* symbol_names_u =
2677 this->section_contents(symbol_names_shndx, &names_size, false);
2678 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2680 const int sym_size = This::sym_size;
2681 const size_t count = symbols_size / sym_size;
2683 const unsigned char* p = symbols;
2684 for (size_t i = 0; i < count; ++i, p += sym_size)
2686 elfcpp::Sym<size, big_endian> sym(p);
2688 if (sym.get_st_type() == elfcpp::STT_FILE)
2690 if (sym.get_st_name() >= names_size)
2691 info->source_file = "(invalid)";
2693 info->source_file = symbol_names + sym.get_st_name();
2698 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2701 && st_shndx == shndx
2702 && static_cast<off_t>(sym.get_st_value()) <= offset
2703 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2706 info->enclosing_symbol_type = sym.get_st_type();
2707 if (sym.get_st_name() > names_size)
2708 info->enclosing_symbol_name = "(invalid)";
2711 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2712 if (parameters->options().do_demangle())
2714 char* demangled_name = cplus_demangle(
2715 info->enclosing_symbol_name.c_str(),
2716 DMGL_ANSI | DMGL_PARAMS);
2717 if (demangled_name != NULL)
2719 info->enclosing_symbol_name.assign(demangled_name);
2720 free(demangled_name);
2731 // Look for a kept section corresponding to the given discarded section,
2732 // and return its output address. This is used only for relocations in
2733 // debugging sections. If we can't find the kept section, return 0.
2735 template<int size, bool big_endian>
2736 typename Sized_relobj_file<size, big_endian>::Address
2737 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2741 Relobj* kept_object;
2742 unsigned int kept_shndx;
2743 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2745 Sized_relobj_file<size, big_endian>* kept_relobj =
2746 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2747 Output_section* os = kept_relobj->output_section(kept_shndx);
2748 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2749 if (os != NULL && offset != invalid_address)
2752 return os->address() + offset;
2759 // Get symbol counts.
2761 template<int size, bool big_endian>
2763 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2764 const Symbol_table*,
2768 *defined = this->defined_count_;
2770 for (typename Symbols::const_iterator p = this->symbols_.begin();
2771 p != this->symbols_.end();
2774 && (*p)->source() == Symbol::FROM_OBJECT
2775 && (*p)->object() == this
2776 && (*p)->is_defined())
2781 // Return a view of the decompressed contents of a section. Set *PLEN
2782 // to the size. Set *IS_NEW to true if the contents need to be freed
2785 template<int size, bool big_endian>
2786 const unsigned char*
2787 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2789 section_size_type* plen,
2792 section_size_type buffer_size;
2793 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2796 if (this->compressed_sections_ == NULL)
2798 *plen = buffer_size;
2803 Compressed_section_map::const_iterator p =
2804 this->compressed_sections_->find(shndx);
2805 if (p == this->compressed_sections_->end())
2807 *plen = buffer_size;
2812 section_size_type uncompressed_size = p->second.size;
2813 if (p->second.contents != NULL)
2815 *plen = uncompressed_size;
2817 return p->second.contents;
2820 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2821 if (!decompress_input_section(buffer,
2825 this->error(_("could not decompress section %s"),
2826 this->do_section_name(shndx).c_str());
2828 // We could cache the results in p->second.contents and store
2829 // false in *IS_NEW, but build_compressed_section_map() would
2830 // have done so if it had expected it to be profitable. If
2831 // we reach this point, we expect to need the contents only
2832 // once in this pass.
2833 *plen = uncompressed_size;
2835 return uncompressed_data;
2838 // Discard any buffers of uncompressed sections. This is done
2839 // at the end of the Add_symbols task.
2841 template<int size, bool big_endian>
2843 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2845 if (this->compressed_sections_ == NULL)
2848 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2849 p != this->compressed_sections_->end();
2852 if (p->second.contents != NULL)
2854 delete[] p->second.contents;
2855 p->second.contents = NULL;
2860 // Input_objects methods.
2862 // Add a regular relocatable object to the list. Return false if this
2863 // object should be ignored.
2866 Input_objects::add_object(Object* obj)
2868 // Print the filename if the -t/--trace option is selected.
2869 if (parameters->options().trace())
2870 gold_info("%s", obj->name().c_str());
2872 if (!obj->is_dynamic())
2873 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2876 // See if this is a duplicate SONAME.
2877 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2878 const char* soname = dynobj->soname();
2880 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2881 this->sonames_.insert(soname);
2884 // We have already seen a dynamic object with this soname.
2888 this->dynobj_list_.push_back(dynobj);
2891 // Add this object to the cross-referencer if requested.
2892 if (parameters->options().user_set_print_symbol_counts()
2893 || parameters->options().cref())
2895 if (this->cref_ == NULL)
2896 this->cref_ = new Cref();
2897 this->cref_->add_object(obj);
2903 // For each dynamic object, record whether we've seen all of its
2904 // explicit dependencies.
2907 Input_objects::check_dynamic_dependencies() const
2909 bool issued_copy_dt_needed_error = false;
2910 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2911 p != this->dynobj_list_.end();
2914 const Dynobj::Needed& needed((*p)->needed());
2915 bool found_all = true;
2916 Dynobj::Needed::const_iterator pneeded;
2917 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2919 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2925 (*p)->set_has_unknown_needed_entries(!found_all);
2927 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2928 // that gold does not support. However, they cause no trouble
2929 // unless there is a DT_NEEDED entry that we don't know about;
2930 // warn only in that case.
2932 && !issued_copy_dt_needed_error
2933 && (parameters->options().copy_dt_needed_entries()
2934 || parameters->options().add_needed()))
2936 const char* optname;
2937 if (parameters->options().copy_dt_needed_entries())
2938 optname = "--copy-dt-needed-entries";
2940 optname = "--add-needed";
2941 gold_error(_("%s is not supported but is required for %s in %s"),
2942 optname, (*pneeded).c_str(), (*p)->name().c_str());
2943 issued_copy_dt_needed_error = true;
2948 // Start processing an archive.
2951 Input_objects::archive_start(Archive* archive)
2953 if (parameters->options().user_set_print_symbol_counts()
2954 || parameters->options().cref())
2956 if (this->cref_ == NULL)
2957 this->cref_ = new Cref();
2958 this->cref_->add_archive_start(archive);
2962 // Stop processing an archive.
2965 Input_objects::archive_stop(Archive* archive)
2967 if (parameters->options().user_set_print_symbol_counts()
2968 || parameters->options().cref())
2969 this->cref_->add_archive_stop(archive);
2972 // Print symbol counts
2975 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2977 if (parameters->options().user_set_print_symbol_counts()
2978 && this->cref_ != NULL)
2979 this->cref_->print_symbol_counts(symtab);
2982 // Print a cross reference table.
2985 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2987 if (parameters->options().cref() && this->cref_ != NULL)
2988 this->cref_->print_cref(symtab, f);
2991 // Relocate_info methods.
2993 // Return a string describing the location of a relocation when file
2994 // and lineno information is not available. This is only used in
2997 template<int size, bool big_endian>
2999 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3001 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3002 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3006 ret = this->object->name();
3008 Symbol_location_info info;
3009 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3011 if (!info.source_file.empty())
3014 ret += info.source_file;
3017 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3018 ret += _("function ");
3019 ret += info.enclosing_symbol_name;
3024 ret += this->object->section_name(this->data_shndx);
3026 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3031 } // End namespace gold.
3036 using namespace gold;
3038 // Read an ELF file with the header and return the appropriate
3039 // instance of Object.
3041 template<int size, bool big_endian>
3043 make_elf_sized_object(const std::string& name, Input_file* input_file,
3044 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3045 bool* punconfigured)
3047 Target* target = select_target(input_file, offset,
3048 ehdr.get_e_machine(), size, big_endian,
3049 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3050 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3052 gold_fatal(_("%s: unsupported ELF machine number %d"),
3053 name.c_str(), ehdr.get_e_machine());
3055 if (!parameters->target_valid())
3056 set_parameters_target(target);
3057 else if (target != ¶meters->target())
3059 if (punconfigured != NULL)
3060 *punconfigured = true;
3062 gold_error(_("%s: incompatible target"), name.c_str());
3066 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3070 } // End anonymous namespace.
3075 // Return whether INPUT_FILE is an ELF object.
3078 is_elf_object(Input_file* input_file, off_t offset,
3079 const unsigned char** start, int* read_size)
3081 off_t filesize = input_file->file().filesize();
3082 int want = elfcpp::Elf_recognizer::max_header_size;
3083 if (filesize - offset < want)
3084 want = filesize - offset;
3086 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3091 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3094 // Read an ELF file and return the appropriate instance of Object.
3097 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3098 const unsigned char* p, section_offset_type bytes,
3099 bool* punconfigured)
3101 if (punconfigured != NULL)
3102 *punconfigured = false;
3105 bool big_endian = false;
3107 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3108 &big_endian, &error))
3110 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3118 #ifdef HAVE_TARGET_32_BIG
3119 elfcpp::Ehdr<32, true> ehdr(p);
3120 return make_elf_sized_object<32, true>(name, input_file,
3121 offset, ehdr, punconfigured);
3123 if (punconfigured != NULL)
3124 *punconfigured = true;
3126 gold_error(_("%s: not configured to support "
3127 "32-bit big-endian object"),
3134 #ifdef HAVE_TARGET_32_LITTLE
3135 elfcpp::Ehdr<32, false> ehdr(p);
3136 return make_elf_sized_object<32, false>(name, input_file,
3137 offset, ehdr, punconfigured);
3139 if (punconfigured != NULL)
3140 *punconfigured = true;
3142 gold_error(_("%s: not configured to support "
3143 "32-bit little-endian object"),
3149 else if (size == 64)
3153 #ifdef HAVE_TARGET_64_BIG
3154 elfcpp::Ehdr<64, true> ehdr(p);
3155 return make_elf_sized_object<64, true>(name, input_file,
3156 offset, ehdr, punconfigured);
3158 if (punconfigured != NULL)
3159 *punconfigured = true;
3161 gold_error(_("%s: not configured to support "
3162 "64-bit big-endian object"),
3169 #ifdef HAVE_TARGET_64_LITTLE
3170 elfcpp::Ehdr<64, false> ehdr(p);
3171 return make_elf_sized_object<64, false>(name, input_file,
3172 offset, ehdr, punconfigured);
3174 if (punconfigured != NULL)
3175 *punconfigured = true;
3177 gold_error(_("%s: not configured to support "
3178 "64-bit little-endian object"),
3188 // Instantiate the templates we need.
3190 #ifdef HAVE_TARGET_32_LITTLE
3193 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3194 Read_symbols_data*);
3196 const unsigned char*
3197 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3198 section_size_type, const unsigned char*) const;
3201 #ifdef HAVE_TARGET_32_BIG
3204 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3205 Read_symbols_data*);
3207 const unsigned char*
3208 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3209 section_size_type, const unsigned char*) const;
3212 #ifdef HAVE_TARGET_64_LITTLE
3215 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3216 Read_symbols_data*);
3218 const unsigned char*
3219 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3220 section_size_type, const unsigned char*) const;
3223 #ifdef HAVE_TARGET_64_BIG
3226 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3227 Read_symbols_data*);
3229 const unsigned char*
3230 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3231 section_size_type, const unsigned char*) const;
3234 #ifdef HAVE_TARGET_32_LITTLE
3236 class Sized_relobj<32, false>;
3239 class Sized_relobj_file<32, false>;
3242 #ifdef HAVE_TARGET_32_BIG
3244 class Sized_relobj<32, true>;
3247 class Sized_relobj_file<32, true>;
3250 #ifdef HAVE_TARGET_64_LITTLE
3252 class Sized_relobj<64, false>;
3255 class Sized_relobj_file<64, false>;
3258 #ifdef HAVE_TARGET_64_BIG
3260 class Sized_relobj<64, true>;
3263 class Sized_relobj_file<64, true>;
3266 #ifdef HAVE_TARGET_32_LITTLE
3268 struct Relocate_info<32, false>;
3271 #ifdef HAVE_TARGET_32_BIG
3273 struct Relocate_info<32, true>;
3276 #ifdef HAVE_TARGET_64_LITTLE
3278 struct Relocate_info<64, false>;
3281 #ifdef HAVE_TARGET_64_BIG
3283 struct Relocate_info<64, true>;
3286 #ifdef HAVE_TARGET_32_LITTLE
3289 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3293 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3294 const unsigned char*);
3297 #ifdef HAVE_TARGET_32_BIG
3300 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3304 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3305 const unsigned char*);
3308 #ifdef HAVE_TARGET_64_LITTLE
3311 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3315 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3316 const unsigned char*);
3319 #ifdef HAVE_TARGET_64_BIG
3322 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3326 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3327 const unsigned char*);
3330 } // End namespace gold.