b3d987056c73119633a51498818c489b84520392
[platform/upstream/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fstack-split, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  Returns the next
353 // available reloation index.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       this->reloc_counts_[i] = 0;
370     }
371   layout->incremental_inputs()->set_reloc_count(rindex);
372 }
373
374 // Class Sized_relobj.
375
376 template<int size, bool big_endian>
377 Sized_relobj<size, big_endian>::Sized_relobj(
378     const std::string& name,
379     Input_file* input_file,
380     off_t offset,
381     const elfcpp::Ehdr<size, big_endian>& ehdr)
382   : Relobj(name, input_file, offset),
383     elf_file_(this, ehdr),
384     symtab_shndx_(-1U),
385     local_symbol_count_(0),
386     output_local_symbol_count_(0),
387     output_local_dynsym_count_(0),
388     symbols_(),
389     defined_count_(0),
390     local_symbol_offset_(0),
391     local_dynsym_offset_(0),
392     local_values_(),
393     local_got_offsets_(),
394     kept_comdat_sections_(),
395     has_eh_frame_(false),
396     discarded_eh_frame_shndx_(-1U),
397     deferred_layout_(),
398     deferred_layout_relocs_(),
399     compressed_sections_()
400 {
401 }
402
403 template<int size, bool big_endian>
404 Sized_relobj<size, big_endian>::~Sized_relobj()
405 {
406 }
407
408 // Set up an object file based on the file header.  This sets up the
409 // section information.
410
411 template<int size, bool big_endian>
412 void
413 Sized_relobj<size, big_endian>::do_setup()
414 {
415   const unsigned int shnum = this->elf_file_.shnum();
416   this->set_shnum(shnum);
417 }
418
419 // Find the SHT_SYMTAB section, given the section headers.  The ELF
420 // standard says that maybe in the future there can be more than one
421 // SHT_SYMTAB section.  Until somebody figures out how that could
422 // work, we assume there is only one.
423
424 template<int size, bool big_endian>
425 void
426 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
427 {
428   const unsigned int shnum = this->shnum();
429   this->symtab_shndx_ = 0;
430   if (shnum > 0)
431     {
432       // Look through the sections in reverse order, since gas tends
433       // to put the symbol table at the end.
434       const unsigned char* p = pshdrs + shnum * This::shdr_size;
435       unsigned int i = shnum;
436       unsigned int xindex_shndx = 0;
437       unsigned int xindex_link = 0;
438       while (i > 0)
439         {
440           --i;
441           p -= This::shdr_size;
442           typename This::Shdr shdr(p);
443           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
444             {
445               this->symtab_shndx_ = i;
446               if (xindex_shndx > 0 && xindex_link == i)
447                 {
448                   Xindex* xindex =
449                     new Xindex(this->elf_file_.large_shndx_offset());
450                   xindex->read_symtab_xindex<size, big_endian>(this,
451                                                                xindex_shndx,
452                                                                pshdrs);
453                   this->set_xindex(xindex);
454                 }
455               break;
456             }
457
458           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
459           // one.  This will work if it follows the SHT_SYMTAB
460           // section.
461           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
462             {
463               xindex_shndx = i;
464               xindex_link = this->adjust_shndx(shdr.get_sh_link());
465             }
466         }
467     }
468 }
469
470 // Return the Xindex structure to use for object with lots of
471 // sections.
472
473 template<int size, bool big_endian>
474 Xindex*
475 Sized_relobj<size, big_endian>::do_initialize_xindex()
476 {
477   gold_assert(this->symtab_shndx_ != -1U);
478   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
479   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
480   return xindex;
481 }
482
483 // Return whether SHDR has the right type and flags to be a GNU
484 // .eh_frame section.
485
486 template<int size, bool big_endian>
487 bool
488 Sized_relobj<size, big_endian>::check_eh_frame_flags(
489     const elfcpp::Shdr<size, big_endian>* shdr) const
490 {
491   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
492           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
493 }
494
495 // Return whether there is a GNU .eh_frame section, given the section
496 // headers and the section names.
497
498 template<int size, bool big_endian>
499 bool
500 Sized_relobj<size, big_endian>::find_eh_frame(
501     const unsigned char* pshdrs,
502     const char* names,
503     section_size_type names_size) const
504 {
505   const unsigned int shnum = this->shnum();
506   const unsigned char* p = pshdrs + This::shdr_size;
507   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
508     {
509       typename This::Shdr shdr(p);
510       if (this->check_eh_frame_flags(&shdr))
511         {
512           if (shdr.get_sh_name() >= names_size)
513             {
514               this->error(_("bad section name offset for section %u: %lu"),
515                           i, static_cast<unsigned long>(shdr.get_sh_name()));
516               continue;
517             }
518
519           const char* name = names + shdr.get_sh_name();
520           if (strcmp(name, ".eh_frame") == 0)
521             return true;
522         }
523     }
524   return false;
525 }
526
527 // Build a table for any compressed debug sections, mapping each section index
528 // to the uncompressed size.
529
530 template<int size, bool big_endian>
531 Compressed_section_map*
532 build_compressed_section_map(
533     const unsigned char* pshdrs,
534     unsigned int shnum,
535     const char* names,
536     section_size_type names_size,
537     Sized_relobj<size, big_endian>* obj)
538 {
539   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
540   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
541   const unsigned char* p = pshdrs + shdr_size;
542   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
543     {
544       typename elfcpp::Shdr<size, big_endian> shdr(p);
545       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
546           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
547         {
548           if (shdr.get_sh_name() >= names_size)
549             {
550               obj->error(_("bad section name offset for section %u: %lu"),
551                          i, static_cast<unsigned long>(shdr.get_sh_name()));
552               continue;
553             }
554
555           const char* name = names + shdr.get_sh_name();
556           if (is_compressed_debug_section(name))
557             {
558               section_size_type len;
559               const unsigned char* contents =
560                   obj->section_contents(i, &len, false);
561               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
562               if (uncompressed_size != -1ULL)
563                 (*uncompressed_sizes)[i] =
564                     convert_to_section_size_type(uncompressed_size);
565             }
566         }
567     }
568   return uncompressed_sizes;
569 }
570
571 // Read the sections and symbols from an object file.
572
573 template<int size, bool big_endian>
574 void
575 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
576 {
577   this->read_section_data(&this->elf_file_, sd);
578
579   const unsigned char* const pshdrs = sd->section_headers->data();
580
581   this->find_symtab(pshdrs);
582
583   const unsigned char* namesu = sd->section_names->data();
584   const char* names = reinterpret_cast<const char*>(namesu);
585   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
586     {
587       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
588         this->has_eh_frame_ = true;
589     }
590   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
591     this->compressed_sections_ =
592         build_compressed_section_map(pshdrs, this->shnum(), names,
593                                      sd->section_names_size, this);
594
595   sd->symbols = NULL;
596   sd->symbols_size = 0;
597   sd->external_symbols_offset = 0;
598   sd->symbol_names = NULL;
599   sd->symbol_names_size = 0;
600
601   if (this->symtab_shndx_ == 0)
602     {
603       // No symbol table.  Weird but legal.
604       return;
605     }
606
607   // Get the symbol table section header.
608   typename This::Shdr symtabshdr(pshdrs
609                                  + this->symtab_shndx_ * This::shdr_size);
610   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
611
612   // If this object has a .eh_frame section, we need all the symbols.
613   // Otherwise we only need the external symbols.  While it would be
614   // simpler to just always read all the symbols, I've seen object
615   // files with well over 2000 local symbols, which for a 64-bit
616   // object file format is over 5 pages that we don't need to read
617   // now.
618
619   const int sym_size = This::sym_size;
620   const unsigned int loccount = symtabshdr.get_sh_info();
621   this->local_symbol_count_ = loccount;
622   this->local_values_.resize(loccount);
623   section_offset_type locsize = loccount * sym_size;
624   off_t dataoff = symtabshdr.get_sh_offset();
625   section_size_type datasize =
626     convert_to_section_size_type(symtabshdr.get_sh_size());
627   off_t extoff = dataoff + locsize;
628   section_size_type extsize = datasize - locsize;
629
630   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
631   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
632
633   if (readsize == 0)
634     {
635       // No external symbols.  Also weird but also legal.
636       return;
637     }
638
639   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
640
641   // Read the section header for the symbol names.
642   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
643   if (strtab_shndx >= this->shnum())
644     {
645       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
646       return;
647     }
648   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
649   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
650     {
651       this->error(_("symbol table name section has wrong type: %u"),
652                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
653       return;
654     }
655
656   // Read the symbol names.
657   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
658                                                strtabshdr.get_sh_size(),
659                                                false, true);
660
661   sd->symbols = fvsymtab;
662   sd->symbols_size = readsize;
663   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
664   sd->symbol_names = fvstrtab;
665   sd->symbol_names_size =
666     convert_to_section_size_type(strtabshdr.get_sh_size());
667 }
668
669 // Return the section index of symbol SYM.  Set *VALUE to its value in
670 // the object file.  Set *IS_ORDINARY if this is an ordinary section
671 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
672 // Note that for a symbol which is not defined in this object file,
673 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
674 // the final value of the symbol in the link.
675
676 template<int size, bool big_endian>
677 unsigned int
678 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
679                                                          Address* value,
680                                                          bool* is_ordinary)
681 {
682   section_size_type symbols_size;
683   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
684                                                         &symbols_size,
685                                                         false);
686
687   const size_t count = symbols_size / This::sym_size;
688   gold_assert(sym < count);
689
690   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
691   *value = elfsym.get_st_value();
692
693   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
694 }
695
696 // Return whether to include a section group in the link.  LAYOUT is
697 // used to keep track of which section groups we have already seen.
698 // INDEX is the index of the section group and SHDR is the section
699 // header.  If we do not want to include this group, we set bits in
700 // OMIT for each section which should be discarded.
701
702 template<int size, bool big_endian>
703 bool
704 Sized_relobj<size, big_endian>::include_section_group(
705     Symbol_table* symtab,
706     Layout* layout,
707     unsigned int index,
708     const char* name,
709     const unsigned char* shdrs,
710     const char* section_names,
711     section_size_type section_names_size,
712     std::vector<bool>* omit)
713 {
714   // Read the section contents.
715   typename This::Shdr shdr(shdrs + index * This::shdr_size);
716   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
717                                              shdr.get_sh_size(), true, false);
718   const elfcpp::Elf_Word* pword =
719     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
720
721   // The first word contains flags.  We only care about COMDAT section
722   // groups.  Other section groups are always included in the link
723   // just like ordinary sections.
724   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
725
726   // Look up the group signature, which is the name of a symbol.  This
727   // is a lot of effort to go to to read a string.  Why didn't they
728   // just have the group signature point into the string table, rather
729   // than indirect through a symbol?
730
731   // Get the appropriate symbol table header (this will normally be
732   // the single SHT_SYMTAB section, but in principle it need not be).
733   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
734   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
735
736   // Read the symbol table entry.
737   unsigned int symndx = shdr.get_sh_info();
738   if (symndx >= symshdr.get_sh_size() / This::sym_size)
739     {
740       this->error(_("section group %u info %u out of range"),
741                   index, symndx);
742       return false;
743     }
744   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
745   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
746                                              false);
747   elfcpp::Sym<size, big_endian> sym(psym);
748
749   // Read the symbol table names.
750   section_size_type symnamelen;
751   const unsigned char* psymnamesu;
752   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
753                                       &symnamelen, true);
754   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
755
756   // Get the section group signature.
757   if (sym.get_st_name() >= symnamelen)
758     {
759       this->error(_("symbol %u name offset %u out of range"),
760                   symndx, sym.get_st_name());
761       return false;
762     }
763
764   std::string signature(psymnames + sym.get_st_name());
765
766   // It seems that some versions of gas will create a section group
767   // associated with a section symbol, and then fail to give a name to
768   // the section symbol.  In such a case, use the name of the section.
769   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
770     {
771       bool is_ordinary;
772       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
773                                                       sym.get_st_shndx(),
774                                                       &is_ordinary);
775       if (!is_ordinary || sym_shndx >= this->shnum())
776         {
777           this->error(_("symbol %u invalid section index %u"),
778                       symndx, sym_shndx);
779           return false;
780         }
781       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
782       if (member_shdr.get_sh_name() < section_names_size)
783         signature = section_names + member_shdr.get_sh_name();
784     }
785
786   // Record this section group in the layout, and see whether we've already
787   // seen one with the same signature.
788   bool include_group;
789   bool is_comdat;
790   Kept_section* kept_section = NULL;
791
792   if ((flags & elfcpp::GRP_COMDAT) == 0)
793     {
794       include_group = true;
795       is_comdat = false;
796     }
797   else
798     {
799       include_group = layout->find_or_add_kept_section(signature,
800                                                        this, index, true,
801                                                        true, &kept_section);
802       is_comdat = true;
803     }
804
805   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
806
807   std::vector<unsigned int> shndxes;
808   bool relocate_group = include_group && parameters->options().relocatable();
809   if (relocate_group)
810     shndxes.reserve(count - 1);
811
812   for (size_t i = 1; i < count; ++i)
813     {
814       elfcpp::Elf_Word shndx =
815         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
816
817       if (relocate_group)
818         shndxes.push_back(shndx);
819
820       if (shndx >= this->shnum())
821         {
822           this->error(_("section %u in section group %u out of range"),
823                       shndx, index);
824           continue;
825         }
826
827       // Check for an earlier section number, since we're going to get
828       // it wrong--we may have already decided to include the section.
829       if (shndx < index)
830         this->error(_("invalid section group %u refers to earlier section %u"),
831                     index, shndx);
832
833       // Get the name of the member section.
834       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
835       if (member_shdr.get_sh_name() >= section_names_size)
836         {
837           // This is an error, but it will be diagnosed eventually
838           // in do_layout, so we don't need to do anything here but
839           // ignore it.
840           continue;
841         }
842       std::string mname(section_names + member_shdr.get_sh_name());
843
844       if (include_group)
845         {
846           if (is_comdat)
847             kept_section->add_comdat_section(mname, shndx,
848                                              member_shdr.get_sh_size());
849         }
850       else
851         {
852           (*omit)[shndx] = true;
853
854           if (is_comdat)
855             {
856               Relobj* kept_object = kept_section->object();
857               if (kept_section->is_comdat())
858                 {
859                   // Find the corresponding kept section, and store
860                   // that info in the discarded section table.
861                   unsigned int kept_shndx;
862                   uint64_t kept_size;
863                   if (kept_section->find_comdat_section(mname, &kept_shndx,
864                                                         &kept_size))
865                     {
866                       // We don't keep a mapping for this section if
867                       // it has a different size.  The mapping is only
868                       // used for relocation processing, and we don't
869                       // want to treat the sections as similar if the
870                       // sizes are different.  Checking the section
871                       // size is the approach used by the GNU linker.
872                       if (kept_size == member_shdr.get_sh_size())
873                         this->set_kept_comdat_section(shndx, kept_object,
874                                                       kept_shndx);
875                     }
876                 }
877               else
878                 {
879                   // The existing section is a linkonce section.  Add
880                   // a mapping if there is exactly one section in the
881                   // group (which is true when COUNT == 2) and if it
882                   // is the same size.
883                   if (count == 2
884                       && (kept_section->linkonce_size()
885                           == member_shdr.get_sh_size()))
886                     this->set_kept_comdat_section(shndx, kept_object,
887                                                   kept_section->shndx());
888                 }
889             }
890         }
891     }
892
893   if (relocate_group)
894     layout->layout_group(symtab, this, index, name, signature.c_str(),
895                          shdr, flags, &shndxes);
896
897   return include_group;
898 }
899
900 // Whether to include a linkonce section in the link.  NAME is the
901 // name of the section and SHDR is the section header.
902
903 // Linkonce sections are a GNU extension implemented in the original
904 // GNU linker before section groups were defined.  The semantics are
905 // that we only include one linkonce section with a given name.  The
906 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
907 // where T is the type of section and SYMNAME is the name of a symbol.
908 // In an attempt to make linkonce sections interact well with section
909 // groups, we try to identify SYMNAME and use it like a section group
910 // signature.  We want to block section groups with that signature,
911 // but not other linkonce sections with that signature.  We also use
912 // the full name of the linkonce section as a normal section group
913 // signature.
914
915 template<int size, bool big_endian>
916 bool
917 Sized_relobj<size, big_endian>::include_linkonce_section(
918     Layout* layout,
919     unsigned int index,
920     const char* name,
921     const elfcpp::Shdr<size, big_endian>& shdr)
922 {
923   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
924   // In general the symbol name we want will be the string following
925   // the last '.'.  However, we have to handle the case of
926   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
927   // some versions of gcc.  So we use a heuristic: if the name starts
928   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
929   // we look for the last '.'.  We can't always simply skip
930   // ".gnu.linkonce.X", because we have to deal with cases like
931   // ".gnu.linkonce.d.rel.ro.local".
932   const char* const linkonce_t = ".gnu.linkonce.t.";
933   const char* symname;
934   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
935     symname = name + strlen(linkonce_t);
936   else
937     symname = strrchr(name, '.') + 1;
938   std::string sig1(symname);
939   std::string sig2(name);
940   Kept_section* kept1;
941   Kept_section* kept2;
942   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
943                                                    false, &kept1);
944   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
945                                                    true, &kept2);
946
947   if (!include2)
948     {
949       // We are not including this section because we already saw the
950       // name of the section as a signature.  This normally implies
951       // that the kept section is another linkonce section.  If it is
952       // the same size, record it as the section which corresponds to
953       // this one.
954       if (kept2->object() != NULL
955           && !kept2->is_comdat()
956           && kept2->linkonce_size() == sh_size)
957         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
958     }
959   else if (!include1)
960     {
961       // The section is being discarded on the basis of its symbol
962       // name.  This means that the corresponding kept section was
963       // part of a comdat group, and it will be difficult to identify
964       // the specific section within that group that corresponds to
965       // this linkonce section.  We'll handle the simple case where
966       // the group has only one member section.  Otherwise, it's not
967       // worth the effort.
968       unsigned int kept_shndx;
969       uint64_t kept_size;
970       if (kept1->object() != NULL
971           && kept1->is_comdat()
972           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
973           && kept_size == sh_size)
974         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
975     }
976   else
977     {
978       kept1->set_linkonce_size(sh_size);
979       kept2->set_linkonce_size(sh_size);
980     }
981
982   return include1 && include2;
983 }
984
985 // Layout an input section.
986
987 template<int size, bool big_endian>
988 inline void
989 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
990                                                unsigned int shndx,
991                                                const char* name,
992                                                typename This::Shdr& shdr,
993                                                unsigned int reloc_shndx,
994                                                unsigned int reloc_type)
995 {
996   off_t offset;
997   Output_section* os = layout->layout(this, shndx, name, shdr,
998                                           reloc_shndx, reloc_type, &offset);
999
1000   this->output_sections()[shndx] = os;
1001   if (offset == -1)
1002     this->section_offsets_[shndx] = invalid_address;
1003   else
1004     this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
1005
1006   // If this section requires special handling, and if there are
1007   // relocs that apply to it, then we must do the special handling
1008   // before we apply the relocs.
1009   if (offset == -1 && reloc_shndx != 0)
1010     this->set_relocs_must_follow_section_writes();
1011 }
1012
1013 // Lay out the input sections.  We walk through the sections and check
1014 // whether they should be included in the link.  If they should, we
1015 // pass them to the Layout object, which will return an output section
1016 // and an offset.  
1017 // During garbage collection (--gc-sections) and identical code folding 
1018 // (--icf), this function is called twice.  When it is called the first 
1019 // time, it is for setting up some sections as roots to a work-list for
1020 // --gc-sections and to do comdat processing.  Actual layout happens the 
1021 // second time around after all the relevant sections have been determined.  
1022 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1023 // set to true after the garbage collection worklist or identical code 
1024 // folding is processed and the relevant sections to be kept are 
1025 // determined.  Then, this function is called again to layout the sections.
1026
1027 template<int size, bool big_endian>
1028 void
1029 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
1030                                           Layout* layout,
1031                                           Read_symbols_data* sd)
1032 {
1033   const unsigned int shnum = this->shnum();
1034   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1035                           && !symtab->gc()->is_worklist_ready())
1036                          || (parameters->options().icf_enabled()
1037                              && !symtab->icf()->is_icf_ready()));
1038  
1039   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1040                           && symtab->gc()->is_worklist_ready())
1041                          || (parameters->options().icf_enabled()
1042                              && symtab->icf()->is_icf_ready()));
1043
1044   bool is_gc_or_icf = (parameters->options().gc_sections()
1045                        || parameters->options().icf_enabled()); 
1046
1047   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1048   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1049
1050   if (shnum == 0)
1051     return;
1052   Symbols_data* gc_sd = NULL;
1053   if (is_gc_pass_one)
1054     {
1055       // During garbage collection save the symbols data to use it when 
1056       // re-entering this function.   
1057       gc_sd = new Symbols_data;
1058       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1059       this->set_symbols_data(gc_sd);
1060     }
1061   else if (is_gc_pass_two)
1062     {
1063       gc_sd = this->get_symbols_data();
1064     }
1065
1066   const unsigned char* section_headers_data = NULL;
1067   section_size_type section_names_size;
1068   const unsigned char* symbols_data = NULL;
1069   section_size_type symbols_size;
1070   section_offset_type external_symbols_offset;
1071   const unsigned char* symbol_names_data = NULL;
1072   section_size_type symbol_names_size;
1073  
1074   if (is_gc_or_icf)
1075     {
1076       section_headers_data = gc_sd->section_headers_data;
1077       section_names_size = gc_sd->section_names_size;
1078       symbols_data = gc_sd->symbols_data;
1079       symbols_size = gc_sd->symbols_size;
1080       external_symbols_offset = gc_sd->external_symbols_offset;
1081       symbol_names_data = gc_sd->symbol_names_data;
1082       symbol_names_size = gc_sd->symbol_names_size;
1083     }
1084   else
1085     {
1086       section_headers_data = sd->section_headers->data();
1087       section_names_size = sd->section_names_size;
1088       if (sd->symbols != NULL)
1089         symbols_data = sd->symbols->data();
1090       symbols_size = sd->symbols_size;
1091       external_symbols_offset = sd->external_symbols_offset;
1092       if (sd->symbol_names != NULL)
1093         symbol_names_data = sd->symbol_names->data();
1094       symbol_names_size = sd->symbol_names_size;
1095     }
1096
1097   // Get the section headers.
1098   const unsigned char* shdrs = section_headers_data;
1099   const unsigned char* pshdrs;
1100
1101   // Get the section names.
1102   const unsigned char* pnamesu = (is_gc_or_icf) 
1103                                  ? gc_sd->section_names_data
1104                                  : sd->section_names->data();
1105
1106   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1107
1108   // If any input files have been claimed by plugins, we need to defer
1109   // actual layout until the replacement files have arrived.
1110   const bool should_defer_layout =
1111       (parameters->options().has_plugins()
1112        && parameters->options().plugins()->should_defer_layout());
1113   unsigned int num_sections_to_defer = 0;
1114
1115   // For each section, record the index of the reloc section if any.
1116   // Use 0 to mean that there is no reloc section, -1U to mean that
1117   // there is more than one.
1118   std::vector<unsigned int> reloc_shndx(shnum, 0);
1119   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1120   // Skip the first, dummy, section.
1121   pshdrs = shdrs + This::shdr_size;
1122   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1123     {
1124       typename This::Shdr shdr(pshdrs);
1125
1126       // Count the number of sections whose layout will be deferred.
1127       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1128         ++num_sections_to_defer;
1129
1130       unsigned int sh_type = shdr.get_sh_type();
1131       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1132         {
1133           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1134           if (target_shndx == 0 || target_shndx >= shnum)
1135             {
1136               this->error(_("relocation section %u has bad info %u"),
1137                           i, target_shndx);
1138               continue;
1139             }
1140
1141           if (reloc_shndx[target_shndx] != 0)
1142             reloc_shndx[target_shndx] = -1U;
1143           else
1144             {
1145               reloc_shndx[target_shndx] = i;
1146               reloc_type[target_shndx] = sh_type;
1147             }
1148         }
1149     }
1150
1151   Output_sections& out_sections(this->output_sections());
1152   std::vector<Address>& out_section_offsets(this->section_offsets_);
1153
1154   if (!is_gc_pass_two)
1155     {
1156       out_sections.resize(shnum);
1157       out_section_offsets.resize(shnum);
1158     }
1159
1160   // If we are only linking for symbols, then there is nothing else to
1161   // do here.
1162   if (this->input_file()->just_symbols())
1163     {
1164       if (!is_gc_pass_two)
1165         {
1166           delete sd->section_headers;
1167           sd->section_headers = NULL;
1168           delete sd->section_names;
1169           sd->section_names = NULL;
1170         }
1171       return;
1172     }
1173
1174   if (num_sections_to_defer > 0)
1175     {
1176       parameters->options().plugins()->add_deferred_layout_object(this);
1177       this->deferred_layout_.reserve(num_sections_to_defer);
1178     }
1179
1180   // Whether we've seen a .note.GNU-stack section.
1181   bool seen_gnu_stack = false;
1182   // The flags of a .note.GNU-stack section.
1183   uint64_t gnu_stack_flags = 0;
1184
1185   // Keep track of which sections to omit.
1186   std::vector<bool> omit(shnum, false);
1187
1188   // Keep track of reloc sections when emitting relocations.
1189   const bool relocatable = parameters->options().relocatable();
1190   const bool emit_relocs = (relocatable
1191                             || parameters->options().emit_relocs());
1192   std::vector<unsigned int> reloc_sections;
1193
1194   // Keep track of .eh_frame sections.
1195   std::vector<unsigned int> eh_frame_sections;
1196
1197   // Skip the first, dummy, section.
1198   pshdrs = shdrs + This::shdr_size;
1199   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1200     {
1201       typename This::Shdr shdr(pshdrs);
1202
1203       if (shdr.get_sh_name() >= section_names_size)
1204         {
1205           this->error(_("bad section name offset for section %u: %lu"),
1206                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1207           return;
1208         }
1209
1210       const char* name = pnames + shdr.get_sh_name();
1211
1212       if (!is_gc_pass_two)
1213         { 
1214           if (this->handle_gnu_warning_section(name, i, symtab))
1215             { 
1216               if (!relocatable)
1217                 omit[i] = true;
1218             }
1219
1220           // The .note.GNU-stack section is special.  It gives the
1221           // protection flags that this object file requires for the stack
1222           // in memory.
1223           if (strcmp(name, ".note.GNU-stack") == 0)
1224             {
1225               seen_gnu_stack = true;
1226               gnu_stack_flags |= shdr.get_sh_flags();
1227               omit[i] = true;
1228             }
1229
1230           // The .note.GNU-split-stack section is also special.  It
1231           // indicates that the object was compiled with
1232           // -fsplit-stack.
1233           if (this->handle_split_stack_section(name))
1234             {
1235               if (!parameters->options().relocatable()
1236                   && !parameters->options().shared())
1237                 omit[i] = true;
1238             }
1239
1240           // Skip attributes section.
1241           if (parameters->target().is_attributes_section(name))
1242             {
1243               omit[i] = true;
1244             }
1245
1246           bool discard = omit[i];
1247           if (!discard)
1248             {
1249               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1250                 {
1251                   if (!this->include_section_group(symtab, layout, i, name, 
1252                                                    shdrs, pnames, 
1253                                                    section_names_size,
1254                                                    &omit))
1255                     discard = true;
1256                 }
1257               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1258                        && Layout::is_linkonce(name))
1259                 {
1260                   if (!this->include_linkonce_section(layout, i, name, shdr))
1261                     discard = true;
1262                 }
1263             }
1264
1265           // Add the section to the incremental inputs layout.
1266           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1267           if (incremental_inputs != NULL)
1268             incremental_inputs->report_input_section(this, i,
1269                                                      discard ? NULL : name,
1270                                                      shdr.get_sh_size());
1271
1272           if (discard)
1273             {
1274               // Do not include this section in the link.
1275               out_sections[i] = NULL;
1276               out_section_offsets[i] = invalid_address;
1277               continue;
1278             }
1279         }
1280  
1281       if (is_gc_pass_one && parameters->options().gc_sections())
1282         {
1283           if (is_section_name_included(name)
1284               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1285               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1286             {
1287               symtab->gc()->worklist().push(Section_id(this, i)); 
1288             }
1289           // If the section name XXX can be represented as a C identifier
1290           // it cannot be discarded if there are references to
1291           // __start_XXX and __stop_XXX symbols.  These need to be
1292           // specially handled.
1293           if (is_cident(name))
1294             {
1295               symtab->gc()->add_cident_section(name, Section_id(this, i));
1296             }
1297         }
1298
1299       // When doing a relocatable link we are going to copy input
1300       // reloc sections into the output.  We only want to copy the
1301       // ones associated with sections which are not being discarded.
1302       // However, we don't know that yet for all sections.  So save
1303       // reloc sections and process them later. Garbage collection is
1304       // not triggered when relocatable code is desired.
1305       if (emit_relocs
1306           && (shdr.get_sh_type() == elfcpp::SHT_REL
1307               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1308         {
1309           reloc_sections.push_back(i);
1310           continue;
1311         }
1312
1313       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1314         continue;
1315
1316       // The .eh_frame section is special.  It holds exception frame
1317       // information that we need to read in order to generate the
1318       // exception frame header.  We process these after all the other
1319       // sections so that the exception frame reader can reliably
1320       // determine which sections are being discarded, and discard the
1321       // corresponding information.
1322       if (!relocatable
1323           && strcmp(name, ".eh_frame") == 0
1324           && this->check_eh_frame_flags(&shdr))
1325         {
1326           if (is_gc_pass_one)
1327             {
1328               out_sections[i] = reinterpret_cast<Output_section*>(1);
1329               out_section_offsets[i] = invalid_address;
1330             }
1331           else
1332             eh_frame_sections.push_back(i);
1333           continue;
1334         }
1335
1336       if (is_gc_pass_two && parameters->options().gc_sections())
1337         {
1338           // This is executed during the second pass of garbage 
1339           // collection. do_layout has been called before and some 
1340           // sections have been already discarded. Simply ignore 
1341           // such sections this time around.
1342           if (out_sections[i] == NULL)
1343             {
1344               gold_assert(out_section_offsets[i] == invalid_address);
1345               continue; 
1346             }
1347           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1348               && symtab->gc()->is_section_garbage(this, i))
1349               {
1350                 if (parameters->options().print_gc_sections())
1351                   gold_info(_("%s: removing unused section from '%s'" 
1352                               " in file '%s'"),
1353                             program_name, this->section_name(i).c_str(), 
1354                             this->name().c_str());
1355                 out_sections[i] = NULL;
1356                 out_section_offsets[i] = invalid_address;
1357                 continue;
1358               }
1359         }
1360
1361       if (is_gc_pass_two && parameters->options().icf_enabled())
1362         {
1363           if (out_sections[i] == NULL)
1364             {
1365               gold_assert(out_section_offsets[i] == invalid_address);
1366               continue;
1367             }
1368           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1369               && symtab->icf()->is_section_folded(this, i))
1370               {
1371                 if (parameters->options().print_icf_sections())
1372                   {
1373                     Section_id folded =
1374                                 symtab->icf()->get_folded_section(this, i);
1375                     Relobj* folded_obj =
1376                                 reinterpret_cast<Relobj*>(folded.first);
1377                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1378                                 "into '%s' in file '%s'"),
1379                               program_name, this->section_name(i).c_str(),
1380                               this->name().c_str(),
1381                               folded_obj->section_name(folded.second).c_str(),
1382                               folded_obj->name().c_str());
1383                   }
1384                 out_sections[i] = NULL;
1385                 out_section_offsets[i] = invalid_address;
1386                 continue;
1387               }
1388         }
1389
1390       // Defer layout here if input files are claimed by plugins.  When gc
1391       // is turned on this function is called twice.  For the second call
1392       // should_defer_layout should be false.
1393       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1394         {
1395           gold_assert(!is_gc_pass_two);
1396           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1397                                                            pshdrs,
1398                                                            reloc_shndx[i],
1399                                                            reloc_type[i]));
1400           // Put dummy values here; real values will be supplied by
1401           // do_layout_deferred_sections.
1402           out_sections[i] = reinterpret_cast<Output_section*>(2);
1403           out_section_offsets[i] = invalid_address;
1404           continue;
1405         }
1406
1407       // During gc_pass_two if a section that was previously deferred is
1408       // found, do not layout the section as layout_deferred_sections will
1409       // do it later from gold.cc.
1410       if (is_gc_pass_two 
1411           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1412         continue;
1413
1414       if (is_gc_pass_one)
1415         {
1416           // This is during garbage collection. The out_sections are 
1417           // assigned in the second call to this function. 
1418           out_sections[i] = reinterpret_cast<Output_section*>(1);
1419           out_section_offsets[i] = invalid_address;
1420         }
1421       else
1422         {
1423           // When garbage collection is switched on the actual layout
1424           // only happens in the second call.
1425           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1426                                reloc_type[i]);
1427         }
1428     }
1429
1430   if (!is_gc_pass_two)
1431     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1432
1433   // When doing a relocatable link handle the reloc sections at the
1434   // end.  Garbage collection  and Identical Code Folding is not 
1435   // turned on for relocatable code. 
1436   if (emit_relocs)
1437     this->size_relocatable_relocs();
1438
1439   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1440
1441   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1442        p != reloc_sections.end();
1443        ++p)
1444     {
1445       unsigned int i = *p;
1446       const unsigned char* pshdr;
1447       pshdr = section_headers_data + i * This::shdr_size;
1448       typename This::Shdr shdr(pshdr);
1449
1450       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1451       if (data_shndx >= shnum)
1452         {
1453           // We already warned about this above.
1454           continue;
1455         }
1456
1457       Output_section* data_section = out_sections[data_shndx];
1458       if (data_section == reinterpret_cast<Output_section*>(2))
1459         {
1460           // The layout for the data section was deferred, so we need
1461           // to defer the relocation section, too.
1462           const char* name = pnames + shdr.get_sh_name();
1463           this->deferred_layout_relocs_.push_back(
1464               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1465           out_sections[i] = reinterpret_cast<Output_section*>(2);
1466           out_section_offsets[i] = invalid_address;
1467           continue;
1468         }
1469       if (data_section == NULL)
1470         {
1471           out_sections[i] = NULL;
1472           out_section_offsets[i] = invalid_address;
1473           continue;
1474         }
1475
1476       Relocatable_relocs* rr = new Relocatable_relocs();
1477       this->set_relocatable_relocs(i, rr);
1478
1479       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1480                                                 rr);
1481       out_sections[i] = os;
1482       out_section_offsets[i] = invalid_address;
1483     }
1484
1485   // Handle the .eh_frame sections at the end.
1486   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1487   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1488        p != eh_frame_sections.end();
1489        ++p)
1490     {
1491       gold_assert(this->has_eh_frame_);
1492       gold_assert(external_symbols_offset != 0);
1493
1494       unsigned int i = *p;
1495       const unsigned char *pshdr;
1496       pshdr = section_headers_data + i * This::shdr_size;
1497       typename This::Shdr shdr(pshdr);
1498
1499       off_t offset;
1500       Output_section* os = layout->layout_eh_frame(this,
1501                                                    symbols_data,
1502                                                    symbols_size,
1503                                                    symbol_names_data,
1504                                                    symbol_names_size,
1505                                                    i, shdr,
1506                                                    reloc_shndx[i],
1507                                                    reloc_type[i],
1508                                                    &offset);
1509       out_sections[i] = os;
1510       if (os == NULL || offset == -1)
1511         {
1512           // An object can contain at most one section holding exception
1513           // frame information.
1514           gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1515           this->discarded_eh_frame_shndx_ = i;
1516           out_section_offsets[i] = invalid_address;
1517         }
1518       else
1519         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1520
1521       // If this section requires special handling, and if there are
1522       // relocs that apply to it, then we must do the special handling
1523       // before we apply the relocs.
1524       if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1525         this->set_relocs_must_follow_section_writes();
1526     }
1527
1528   if (is_gc_pass_two)
1529     {
1530       delete[] gc_sd->section_headers_data;
1531       delete[] gc_sd->section_names_data;
1532       delete[] gc_sd->symbols_data;
1533       delete[] gc_sd->symbol_names_data;
1534       this->set_symbols_data(NULL);
1535     }
1536   else
1537     {
1538       delete sd->section_headers;
1539       sd->section_headers = NULL;
1540       delete sd->section_names;
1541       sd->section_names = NULL;
1542     }
1543 }
1544
1545 // Layout sections whose layout was deferred while waiting for
1546 // input files from a plugin.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1551 {
1552   typename std::vector<Deferred_layout>::iterator deferred;
1553
1554   for (deferred = this->deferred_layout_.begin();
1555        deferred != this->deferred_layout_.end();
1556        ++deferred)
1557     {
1558       typename This::Shdr shdr(deferred->shdr_data_);
1559       // If the section is not included, it is because the garbage collector
1560       // decided it is not needed.  Avoid reverting that decision.
1561       if (!this->is_section_included(deferred->shndx_))
1562         continue;
1563
1564       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1565                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1566     }
1567
1568   this->deferred_layout_.clear();
1569
1570   // Now handle the deferred relocation sections.
1571
1572   Output_sections& out_sections(this->output_sections());
1573   std::vector<Address>& out_section_offsets(this->section_offsets_);
1574
1575   for (deferred = this->deferred_layout_relocs_.begin();
1576        deferred != this->deferred_layout_relocs_.end();
1577        ++deferred)
1578     {
1579       unsigned int shndx = deferred->shndx_;
1580       typename This::Shdr shdr(deferred->shdr_data_);
1581       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1582
1583       Output_section* data_section = out_sections[data_shndx];
1584       if (data_section == NULL)
1585         {
1586           out_sections[shndx] = NULL;
1587           out_section_offsets[shndx] = invalid_address;
1588           continue;
1589         }
1590
1591       Relocatable_relocs* rr = new Relocatable_relocs();
1592       this->set_relocatable_relocs(shndx, rr);
1593
1594       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1595                                                 data_section, rr);
1596       out_sections[shndx] = os;
1597       out_section_offsets[shndx] = invalid_address;
1598     }
1599 }
1600
1601 // Add the symbols to the symbol table.
1602
1603 template<int size, bool big_endian>
1604 void
1605 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1606                                                Read_symbols_data* sd,
1607                                                Layout*)
1608 {
1609   if (sd->symbols == NULL)
1610     {
1611       gold_assert(sd->symbol_names == NULL);
1612       return;
1613     }
1614
1615   const int sym_size = This::sym_size;
1616   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1617                      / sym_size);
1618   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1619     {
1620       this->error(_("size of symbols is not multiple of symbol size"));
1621       return;
1622     }
1623
1624   this->symbols_.resize(symcount);
1625
1626   const char* sym_names =
1627     reinterpret_cast<const char*>(sd->symbol_names->data());
1628   symtab->add_from_relobj(this,
1629                           sd->symbols->data() + sd->external_symbols_offset,
1630                           symcount, this->local_symbol_count_,
1631                           sym_names, sd->symbol_names_size,
1632                           &this->symbols_,
1633                           &this->defined_count_);
1634
1635   delete sd->symbols;
1636   sd->symbols = NULL;
1637   delete sd->symbol_names;
1638   sd->symbol_names = NULL;
1639 }
1640
1641 // Find out if this object, that is a member of a lib group, should be included
1642 // in the link. We check every symbol defined by this object. If the symbol
1643 // table has a strong undefined reference to that symbol, we have to include
1644 // the object.
1645
1646 template<int size, bool big_endian>
1647 Archive::Should_include
1648 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab,
1649                                                          Layout* layout,
1650                                                          Read_symbols_data* sd,
1651                                                          std::string* why)
1652 {
1653   char* tmpbuf = NULL;
1654   size_t tmpbuflen = 0;
1655   const char* sym_names =
1656       reinterpret_cast<const char*>(sd->symbol_names->data());
1657   const unsigned char* syms =
1658       sd->symbols->data() + sd->external_symbols_offset;
1659   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1660   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1661                          / sym_size);
1662
1663   const unsigned char* p = syms;
1664
1665   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1666     {
1667       elfcpp::Sym<size, big_endian> sym(p);
1668       unsigned int st_shndx = sym.get_st_shndx();
1669       if (st_shndx == elfcpp::SHN_UNDEF)
1670         continue;
1671
1672       unsigned int st_name = sym.get_st_name();
1673       const char* name = sym_names + st_name;
1674       Symbol* symbol;
1675       Archive::Should_include t = Archive::should_include_member(symtab,
1676                                                                  layout,
1677                                                                  name,
1678                                                                  &symbol, why,
1679                                                                  &tmpbuf,
1680                                                                  &tmpbuflen);
1681       if (t == Archive::SHOULD_INCLUDE_YES)
1682         {
1683           if (tmpbuf != NULL)
1684             free(tmpbuf);
1685           return t;
1686         }
1687     }
1688   if (tmpbuf != NULL)
1689     free(tmpbuf);
1690   return Archive::SHOULD_INCLUDE_UNKNOWN;
1691 }
1692
1693 // First pass over the local symbols.  Here we add their names to
1694 // *POOL and *DYNPOOL, and we store the symbol value in
1695 // THIS->LOCAL_VALUES_.  This function is always called from a
1696 // singleton thread.  This is followed by a call to
1697 // finalize_local_symbols.
1698
1699 template<int size, bool big_endian>
1700 void
1701 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1702                                                        Stringpool* dynpool)
1703 {
1704   gold_assert(this->symtab_shndx_ != -1U);
1705   if (this->symtab_shndx_ == 0)
1706     {
1707       // This object has no symbols.  Weird but legal.
1708       return;
1709     }
1710
1711   // Read the symbol table section header.
1712   const unsigned int symtab_shndx = this->symtab_shndx_;
1713   typename This::Shdr symtabshdr(this,
1714                                  this->elf_file_.section_header(symtab_shndx));
1715   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1716
1717   // Read the local symbols.
1718   const int sym_size = This::sym_size;
1719   const unsigned int loccount = this->local_symbol_count_;
1720   gold_assert(loccount == symtabshdr.get_sh_info());
1721   off_t locsize = loccount * sym_size;
1722   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1723                                               locsize, true, true);
1724
1725   // Read the symbol names.
1726   const unsigned int strtab_shndx =
1727     this->adjust_shndx(symtabshdr.get_sh_link());
1728   section_size_type strtab_size;
1729   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1730                                                         &strtab_size,
1731                                                         true);
1732   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1733
1734   // Loop over the local symbols.
1735
1736   const Output_sections& out_sections(this->output_sections());
1737   unsigned int shnum = this->shnum();
1738   unsigned int count = 0;
1739   unsigned int dyncount = 0;
1740   // Skip the first, dummy, symbol.
1741   psyms += sym_size;
1742   bool discard_all = parameters->options().discard_all();
1743   bool discard_locals = parameters->options().discard_locals();
1744   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1745     {
1746       elfcpp::Sym<size, big_endian> sym(psyms);
1747
1748       Symbol_value<size>& lv(this->local_values_[i]);
1749
1750       bool is_ordinary;
1751       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1752                                                   &is_ordinary);
1753       lv.set_input_shndx(shndx, is_ordinary);
1754
1755       if (sym.get_st_type() == elfcpp::STT_SECTION)
1756         lv.set_is_section_symbol();
1757       else if (sym.get_st_type() == elfcpp::STT_TLS)
1758         lv.set_is_tls_symbol();
1759
1760       // Save the input symbol value for use in do_finalize_local_symbols().
1761       lv.set_input_value(sym.get_st_value());
1762
1763       // Decide whether this symbol should go into the output file.
1764
1765       if ((shndx < shnum && out_sections[shndx] == NULL)
1766           || shndx == this->discarded_eh_frame_shndx_)
1767         {
1768           lv.set_no_output_symtab_entry();
1769           gold_assert(!lv.needs_output_dynsym_entry());
1770           continue;
1771         }
1772
1773       if (sym.get_st_type() == elfcpp::STT_SECTION)
1774         {
1775           lv.set_no_output_symtab_entry();
1776           gold_assert(!lv.needs_output_dynsym_entry());
1777           continue;
1778         }
1779
1780       if (sym.get_st_name() >= strtab_size)
1781         {
1782           this->error(_("local symbol %u section name out of range: %u >= %u"),
1783                       i, sym.get_st_name(),
1784                       static_cast<unsigned int>(strtab_size));
1785           lv.set_no_output_symtab_entry();
1786           continue;
1787         }
1788
1789       const char* name = pnames + sym.get_st_name();
1790
1791       // If needed, add the symbol to the dynamic symbol table string pool.
1792       if (lv.needs_output_dynsym_entry())
1793         {
1794           dynpool->add(name, true, NULL);
1795           ++dyncount;
1796         }
1797
1798       if (discard_all && lv.may_be_discarded_from_output_symtab())
1799         {
1800           lv.set_no_output_symtab_entry();
1801           continue;
1802         }
1803
1804       // If --discard-locals option is used, discard all temporary local
1805       // symbols.  These symbols start with system-specific local label
1806       // prefixes, typically .L for ELF system.  We want to be compatible
1807       // with GNU ld so here we essentially use the same check in
1808       // bfd_is_local_label().  The code is different because we already
1809       // know that:
1810       //
1811       //   - the symbol is local and thus cannot have global or weak binding.
1812       //   - the symbol is not a section symbol.
1813       //   - the symbol has a name.
1814       //
1815       // We do not discard a symbol if it needs a dynamic symbol entry.
1816       if (discard_locals
1817           && sym.get_st_type() != elfcpp::STT_FILE
1818           && !lv.needs_output_dynsym_entry()
1819           && lv.may_be_discarded_from_output_symtab()
1820           && parameters->target().is_local_label_name(name))
1821         {
1822           lv.set_no_output_symtab_entry();
1823           continue;
1824         }
1825
1826       // Discard the local symbol if -retain_symbols_file is specified
1827       // and the local symbol is not in that file.
1828       if (!parameters->options().should_retain_symbol(name))
1829         {
1830           lv.set_no_output_symtab_entry();
1831           continue;
1832         }
1833
1834       // Add the symbol to the symbol table string pool.
1835       pool->add(name, true, NULL);
1836       ++count;
1837     }
1838
1839   this->output_local_symbol_count_ = count;
1840   this->output_local_dynsym_count_ = dyncount;
1841 }
1842
1843 // Finalize the local symbols.  Here we set the final value in
1844 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1845 // This function is always called from a singleton thread.  The actual
1846 // output of the local symbols will occur in a separate task.
1847
1848 template<int size, bool big_endian>
1849 unsigned int
1850 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1851                                                           off_t off,
1852                                                           Symbol_table* symtab)
1853 {
1854   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1855
1856   const unsigned int loccount = this->local_symbol_count_;
1857   this->local_symbol_offset_ = off;
1858
1859   const bool relocatable = parameters->options().relocatable();
1860   const Output_sections& out_sections(this->output_sections());
1861   const std::vector<Address>& out_offsets(this->section_offsets_);
1862   unsigned int shnum = this->shnum();
1863
1864   for (unsigned int i = 1; i < loccount; ++i)
1865     {
1866       Symbol_value<size>& lv(this->local_values_[i]);
1867
1868       bool is_ordinary;
1869       unsigned int shndx = lv.input_shndx(&is_ordinary);
1870
1871       // Set the output symbol value.
1872
1873       if (!is_ordinary)
1874         {
1875           if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1876             lv.set_output_value(lv.input_value());
1877           else
1878             {
1879               this->error(_("unknown section index %u for local symbol %u"),
1880                           shndx, i);
1881               lv.set_output_value(0);
1882             }
1883         }
1884       else
1885         {
1886           if (shndx >= shnum)
1887             {
1888               this->error(_("local symbol %u section index %u out of range"),
1889                           i, shndx);
1890               shndx = 0;
1891             }
1892
1893           Output_section* os = out_sections[shndx];
1894           Address secoffset = out_offsets[shndx];
1895           if (symtab->is_section_folded(this, shndx))
1896             {
1897               gold_assert (os == NULL && secoffset == invalid_address);
1898               // Get the os of the section it is folded onto.
1899               Section_id folded = symtab->icf()->get_folded_section(this,
1900                                                                     shndx);
1901               gold_assert(folded.first != NULL);
1902               Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1903                 <Sized_relobj<size, big_endian>*>(folded.first);
1904               os = folded_obj->output_section(folded.second);
1905               gold_assert(os != NULL);
1906               secoffset = folded_obj->get_output_section_offset(folded.second);
1907
1908               // This could be a relaxed input section.
1909               if (secoffset == invalid_address)
1910                 {
1911                   const Output_relaxed_input_section* relaxed_section =
1912                     os->find_relaxed_input_section(folded_obj, folded.second);
1913                   gold_assert(relaxed_section != NULL);
1914                   secoffset = relaxed_section->address() - os->address();
1915                 }
1916             }
1917
1918           if (os == NULL)
1919             {
1920               // This local symbol belongs to a section we are discarding.
1921               // In some cases when applying relocations later, we will
1922               // attempt to match it to the corresponding kept section,
1923               // so we leave the input value unchanged here.
1924               continue;
1925             }
1926           else if (secoffset == invalid_address)
1927             {
1928               uint64_t start;
1929
1930               // This is a SHF_MERGE section or one which otherwise
1931               // requires special handling.
1932               if (shndx == this->discarded_eh_frame_shndx_)
1933                 {
1934                   // This local symbol belongs to a discarded .eh_frame
1935                   // section.  Just treat it like the case in which
1936                   // os == NULL above.
1937                   gold_assert(this->has_eh_frame_);
1938                   continue;
1939                 }
1940               else if (!lv.is_section_symbol())
1941                 {
1942                   // This is not a section symbol.  We can determine
1943                   // the final value now.
1944                   lv.set_output_value(os->output_address(this, shndx,
1945                                                          lv.input_value()));
1946                 }
1947               else if (!os->find_starting_output_address(this, shndx, &start))
1948                 {
1949                   // This is a section symbol, but apparently not one in a
1950                   // merged section.  First check to see if this is a relaxed
1951                   // input section.  If so, use its address.  Otherwise just
1952                   // use the start of the output section.  This happens with
1953                   // relocatable links when the input object has section
1954                   // symbols for arbitrary non-merge sections.
1955                   const Output_section_data* posd =
1956                     os->find_relaxed_input_section(this, shndx);
1957                   if (posd != NULL)
1958                     {
1959                       Address relocatable_link_adjustment =
1960                         relocatable ? os->address() : 0;
1961                       lv.set_output_value(posd->address()
1962                                           - relocatable_link_adjustment);
1963                     }
1964                   else
1965                     lv.set_output_value(os->address());
1966                 }
1967               else
1968                 {
1969                   // We have to consider the addend to determine the
1970                   // value to use in a relocation.  START is the start
1971                   // of this input section.  If we are doing a relocatable
1972                   // link, use offset from start output section instead of
1973                   // address.
1974                   Address adjusted_start =
1975                     relocatable ? start - os->address() : start;
1976                   Merged_symbol_value<size>* msv =
1977                     new Merged_symbol_value<size>(lv.input_value(),
1978                                                   adjusted_start);
1979                   lv.set_merged_symbol_value(msv);
1980                 }
1981             }
1982           else if (lv.is_tls_symbol())
1983             lv.set_output_value(os->tls_offset()
1984                                 + secoffset
1985                                 + lv.input_value());
1986           else
1987             lv.set_output_value((relocatable ? 0 : os->address())
1988                                 + secoffset
1989                                 + lv.input_value());
1990         }
1991
1992       if (!lv.is_output_symtab_index_set())
1993         {
1994           lv.set_output_symtab_index(index);
1995           ++index;
1996         }
1997     }
1998   return index;
1999 }
2000
2001 // Set the output dynamic symbol table indexes for the local variables.
2002
2003 template<int size, bool big_endian>
2004 unsigned int
2005 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
2006 {
2007   const unsigned int loccount = this->local_symbol_count_;
2008   for (unsigned int i = 1; i < loccount; ++i)
2009     {
2010       Symbol_value<size>& lv(this->local_values_[i]);
2011       if (lv.needs_output_dynsym_entry())
2012         {
2013           lv.set_output_dynsym_index(index);
2014           ++index;
2015         }
2016     }
2017   return index;
2018 }
2019
2020 // Set the offset where local dynamic symbol information will be stored.
2021 // Returns the count of local symbols contributed to the symbol table by
2022 // this object.
2023
2024 template<int size, bool big_endian>
2025 unsigned int
2026 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2027 {
2028   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2029   this->local_dynsym_offset_ = off;
2030   return this->output_local_dynsym_count_;
2031 }
2032
2033 // If Symbols_data is not NULL get the section flags from here otherwise
2034 // get it from the file.
2035
2036 template<int size, bool big_endian>
2037 uint64_t
2038 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
2039 {
2040   Symbols_data* sd = this->get_symbols_data();
2041   if (sd != NULL)
2042     {
2043       const unsigned char* pshdrs = sd->section_headers_data
2044                                     + This::shdr_size * shndx;
2045       typename This::Shdr shdr(pshdrs);
2046       return shdr.get_sh_flags(); 
2047     }
2048   // If sd is NULL, read the section header from the file.
2049   return this->elf_file_.section_flags(shndx); 
2050 }
2051
2052 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2053 // in icf.cc
2054
2055 template<int size, bool big_endian>
2056 uint64_t
2057 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
2058 {
2059   Symbols_data* sd = this->get_symbols_data();
2060   gold_assert (sd != NULL);
2061
2062   const unsigned char* pshdrs = sd->section_headers_data
2063                                 + This::shdr_size * shndx;
2064   typename This::Shdr shdr(pshdrs);
2065   return shdr.get_sh_entsize(); 
2066 }
2067
2068
2069 // Write out the local symbols.
2070
2071 template<int size, bool big_endian>
2072 void
2073 Sized_relobj<size, big_endian>::write_local_symbols(
2074     Output_file* of,
2075     const Stringpool* sympool,
2076     const Stringpool* dynpool,
2077     Output_symtab_xindex* symtab_xindex,
2078     Output_symtab_xindex* dynsym_xindex)
2079 {
2080   const bool strip_all = parameters->options().strip_all();
2081   if (strip_all)
2082     {
2083       if (this->output_local_dynsym_count_ == 0)
2084         return;
2085       this->output_local_symbol_count_ = 0;
2086     }
2087
2088   gold_assert(this->symtab_shndx_ != -1U);
2089   if (this->symtab_shndx_ == 0)
2090     {
2091       // This object has no symbols.  Weird but legal.
2092       return;
2093     }
2094
2095   // Read the symbol table section header.
2096   const unsigned int symtab_shndx = this->symtab_shndx_;
2097   typename This::Shdr symtabshdr(this,
2098                                  this->elf_file_.section_header(symtab_shndx));
2099   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2100   const unsigned int loccount = this->local_symbol_count_;
2101   gold_assert(loccount == symtabshdr.get_sh_info());
2102
2103   // Read the local symbols.
2104   const int sym_size = This::sym_size;
2105   off_t locsize = loccount * sym_size;
2106   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2107                                               locsize, true, false);
2108
2109   // Read the symbol names.
2110   const unsigned int strtab_shndx =
2111     this->adjust_shndx(symtabshdr.get_sh_link());
2112   section_size_type strtab_size;
2113   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2114                                                         &strtab_size,
2115                                                         false);
2116   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2117
2118   // Get views into the output file for the portions of the symbol table
2119   // and the dynamic symbol table that we will be writing.
2120   off_t output_size = this->output_local_symbol_count_ * sym_size;
2121   unsigned char* oview = NULL;
2122   if (output_size > 0)
2123     oview = of->get_output_view(this->local_symbol_offset_, output_size);
2124
2125   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2126   unsigned char* dyn_oview = NULL;
2127   if (dyn_output_size > 0)
2128     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2129                                     dyn_output_size);
2130
2131   const Output_sections out_sections(this->output_sections());
2132
2133   gold_assert(this->local_values_.size() == loccount);
2134
2135   unsigned char* ov = oview;
2136   unsigned char* dyn_ov = dyn_oview;
2137   psyms += sym_size;
2138   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2139     {
2140       elfcpp::Sym<size, big_endian> isym(psyms);
2141
2142       Symbol_value<size>& lv(this->local_values_[i]);
2143
2144       bool is_ordinary;
2145       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2146                                                      &is_ordinary);
2147       if (is_ordinary)
2148         {
2149           gold_assert(st_shndx < out_sections.size());
2150           if (out_sections[st_shndx] == NULL)
2151             continue;
2152           st_shndx = out_sections[st_shndx]->out_shndx();
2153           if (st_shndx >= elfcpp::SHN_LORESERVE)
2154             {
2155               if (lv.has_output_symtab_entry())
2156                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2157               if (lv.has_output_dynsym_entry())
2158                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2159               st_shndx = elfcpp::SHN_XINDEX;
2160             }
2161         }
2162
2163       // Write the symbol to the output symbol table.
2164       if (lv.has_output_symtab_entry())
2165         {
2166           elfcpp::Sym_write<size, big_endian> osym(ov);
2167
2168           gold_assert(isym.get_st_name() < strtab_size);
2169           const char* name = pnames + isym.get_st_name();
2170           osym.put_st_name(sympool->get_offset(name));
2171           osym.put_st_value(this->local_values_[i].value(this, 0));
2172           osym.put_st_size(isym.get_st_size());
2173           osym.put_st_info(isym.get_st_info());
2174           osym.put_st_other(isym.get_st_other());
2175           osym.put_st_shndx(st_shndx);
2176
2177           ov += sym_size;
2178         }
2179
2180       // Write the symbol to the output dynamic symbol table.
2181       if (lv.has_output_dynsym_entry())
2182         {
2183           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2184           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2185
2186           gold_assert(isym.get_st_name() < strtab_size);
2187           const char* name = pnames + isym.get_st_name();
2188           osym.put_st_name(dynpool->get_offset(name));
2189           osym.put_st_value(this->local_values_[i].value(this, 0));
2190           osym.put_st_size(isym.get_st_size());
2191           osym.put_st_info(isym.get_st_info());
2192           osym.put_st_other(isym.get_st_other());
2193           osym.put_st_shndx(st_shndx);
2194
2195           dyn_ov += sym_size;
2196         }
2197     }
2198
2199
2200   if (output_size > 0)
2201     {
2202       gold_assert(ov - oview == output_size);
2203       of->write_output_view(this->local_symbol_offset_, output_size, oview);
2204     }
2205
2206   if (dyn_output_size > 0)
2207     {
2208       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2209       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2210                             dyn_oview);
2211     }
2212 }
2213
2214 // Set *INFO to symbolic information about the offset OFFSET in the
2215 // section SHNDX.  Return true if we found something, false if we
2216 // found nothing.
2217
2218 template<int size, bool big_endian>
2219 bool
2220 Sized_relobj<size, big_endian>::get_symbol_location_info(
2221     unsigned int shndx,
2222     off_t offset,
2223     Symbol_location_info* info)
2224 {
2225   if (this->symtab_shndx_ == 0)
2226     return false;
2227
2228   section_size_type symbols_size;
2229   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2230                                                         &symbols_size,
2231                                                         false);
2232
2233   unsigned int symbol_names_shndx =
2234     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2235   section_size_type names_size;
2236   const unsigned char* symbol_names_u =
2237     this->section_contents(symbol_names_shndx, &names_size, false);
2238   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2239
2240   const int sym_size = This::sym_size;
2241   const size_t count = symbols_size / sym_size;
2242
2243   const unsigned char* p = symbols;
2244   for (size_t i = 0; i < count; ++i, p += sym_size)
2245     {
2246       elfcpp::Sym<size, big_endian> sym(p);
2247
2248       if (sym.get_st_type() == elfcpp::STT_FILE)
2249         {
2250           if (sym.get_st_name() >= names_size)
2251             info->source_file = "(invalid)";
2252           else
2253             info->source_file = symbol_names + sym.get_st_name();
2254           continue;
2255         }
2256
2257       bool is_ordinary;
2258       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2259                                                      &is_ordinary);
2260       if (is_ordinary
2261           && st_shndx == shndx
2262           && static_cast<off_t>(sym.get_st_value()) <= offset
2263           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2264               > offset))
2265         {
2266           if (sym.get_st_name() > names_size)
2267             info->enclosing_symbol_name = "(invalid)";
2268           else
2269             {
2270               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2271               if (parameters->options().do_demangle())
2272                 {
2273                   char* demangled_name = cplus_demangle(
2274                       info->enclosing_symbol_name.c_str(),
2275                       DMGL_ANSI | DMGL_PARAMS);
2276                   if (demangled_name != NULL)
2277                     {
2278                       info->enclosing_symbol_name.assign(demangled_name);
2279                       free(demangled_name);
2280                     }
2281                 }
2282             }
2283           return true;
2284         }
2285     }
2286
2287   return false;
2288 }
2289
2290 // Look for a kept section corresponding to the given discarded section,
2291 // and return its output address.  This is used only for relocations in
2292 // debugging sections.  If we can't find the kept section, return 0.
2293
2294 template<int size, bool big_endian>
2295 typename Sized_relobj<size, big_endian>::Address
2296 Sized_relobj<size, big_endian>::map_to_kept_section(
2297     unsigned int shndx,
2298     bool* found) const
2299 {
2300   Relobj* kept_object;
2301   unsigned int kept_shndx;
2302   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2303     {
2304       Sized_relobj<size, big_endian>* kept_relobj =
2305         static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2306       Output_section* os = kept_relobj->output_section(kept_shndx);
2307       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2308       if (os != NULL && offset != invalid_address)
2309         {
2310           *found = true;
2311           return os->address() + offset;
2312         }
2313     }
2314   *found = false;
2315   return 0;
2316 }
2317
2318 // Get symbol counts.
2319
2320 template<int size, bool big_endian>
2321 void
2322 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2323     const Symbol_table*,
2324     size_t* defined,
2325     size_t* used) const
2326 {
2327   *defined = this->defined_count_;
2328   size_t count = 0;
2329   for (Symbols::const_iterator p = this->symbols_.begin();
2330        p != this->symbols_.end();
2331        ++p)
2332     if (*p != NULL
2333         && (*p)->source() == Symbol::FROM_OBJECT
2334         && (*p)->object() == this
2335         && (*p)->is_defined())
2336       ++count;
2337   *used = count;
2338 }
2339
2340 // Input_objects methods.
2341
2342 // Add a regular relocatable object to the list.  Return false if this
2343 // object should be ignored.
2344
2345 bool
2346 Input_objects::add_object(Object* obj)
2347 {
2348   // Print the filename if the -t/--trace option is selected.
2349   if (parameters->options().trace())
2350     gold_info("%s", obj->name().c_str());
2351
2352   if (!obj->is_dynamic())
2353     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2354   else
2355     {
2356       // See if this is a duplicate SONAME.
2357       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2358       const char* soname = dynobj->soname();
2359
2360       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2361         this->sonames_.insert(soname);
2362       if (!ins.second)
2363         {
2364           // We have already seen a dynamic object with this soname.
2365           return false;
2366         }
2367
2368       this->dynobj_list_.push_back(dynobj);
2369     }
2370
2371   // Add this object to the cross-referencer if requested.
2372   if (parameters->options().user_set_print_symbol_counts()
2373       || parameters->options().cref())
2374     {
2375       if (this->cref_ == NULL)
2376         this->cref_ = new Cref();
2377       this->cref_->add_object(obj);
2378     }
2379
2380   return true;
2381 }
2382
2383 // For each dynamic object, record whether we've seen all of its
2384 // explicit dependencies.
2385
2386 void
2387 Input_objects::check_dynamic_dependencies() const
2388 {
2389   bool issued_copy_dt_needed_error = false;
2390   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2391        p != this->dynobj_list_.end();
2392        ++p)
2393     {
2394       const Dynobj::Needed& needed((*p)->needed());
2395       bool found_all = true;
2396       Dynobj::Needed::const_iterator pneeded;
2397       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2398         {
2399           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2400             {
2401               found_all = false;
2402               break;
2403             }
2404         }
2405       (*p)->set_has_unknown_needed_entries(!found_all);
2406
2407       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2408       // that gold does not support.  However, they cause no trouble
2409       // unless there is a DT_NEEDED entry that we don't know about;
2410       // warn only in that case.
2411       if (!found_all
2412           && !issued_copy_dt_needed_error
2413           && (parameters->options().copy_dt_needed_entries()
2414               || parameters->options().add_needed()))
2415         {
2416           const char* optname;
2417           if (parameters->options().copy_dt_needed_entries())
2418             optname = "--copy-dt-needed-entries";
2419           else
2420             optname = "--add-needed";
2421           gold_error(_("%s is not supported but is required for %s in %s"),
2422                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2423           issued_copy_dt_needed_error = true;
2424         }
2425     }
2426 }
2427
2428 // Start processing an archive.
2429
2430 void
2431 Input_objects::archive_start(Archive* archive)
2432 {
2433   if (parameters->options().user_set_print_symbol_counts()
2434       || parameters->options().cref())
2435     {
2436       if (this->cref_ == NULL)
2437         this->cref_ = new Cref();
2438       this->cref_->add_archive_start(archive);
2439     }
2440 }
2441
2442 // Stop processing an archive.
2443
2444 void
2445 Input_objects::archive_stop(Archive* archive)
2446 {
2447   if (parameters->options().user_set_print_symbol_counts()
2448       || parameters->options().cref())
2449     this->cref_->add_archive_stop(archive);
2450 }
2451
2452 // Print symbol counts
2453
2454 void
2455 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2456 {
2457   if (parameters->options().user_set_print_symbol_counts()
2458       && this->cref_ != NULL)
2459     this->cref_->print_symbol_counts(symtab);
2460 }
2461
2462 // Print a cross reference table.
2463
2464 void
2465 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2466 {
2467   if (parameters->options().cref() && this->cref_ != NULL)
2468     this->cref_->print_cref(symtab, f);
2469 }
2470
2471 // Relocate_info methods.
2472
2473 // Return a string describing the location of a relocation.  This is
2474 // only used in error messages.
2475
2476 template<int size, bool big_endian>
2477 std::string
2478 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2479 {
2480   // See if we can get line-number information from debugging sections.
2481   std::string filename;
2482   std::string file_and_lineno;   // Better than filename-only, if available.
2483
2484   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2485   // This will be "" if we failed to parse the debug info for any reason.
2486   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2487
2488   std::string ret(this->object->name());
2489   ret += ':';
2490   Symbol_location_info info;
2491   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2492     {
2493       ret += " in function ";
2494       ret += info.enclosing_symbol_name;
2495       ret += ":";
2496       filename = info.source_file;
2497     }
2498
2499   if (!file_and_lineno.empty())
2500     ret += file_and_lineno;
2501   else
2502     {
2503       if (!filename.empty())
2504         ret += filename;
2505       ret += "(";
2506       ret += this->object->section_name(this->data_shndx);
2507       char buf[100];
2508       // Offsets into sections have to be positive.
2509       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2510       ret += buf;
2511       ret += ")";
2512     }
2513   return ret;
2514 }
2515
2516 } // End namespace gold.
2517
2518 namespace
2519 {
2520
2521 using namespace gold;
2522
2523 // Read an ELF file with the header and return the appropriate
2524 // instance of Object.
2525
2526 template<int size, bool big_endian>
2527 Object*
2528 make_elf_sized_object(const std::string& name, Input_file* input_file,
2529                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2530                       bool* punconfigured)
2531 {
2532   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2533                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2534                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2535   if (target == NULL)
2536     gold_fatal(_("%s: unsupported ELF machine number %d"),
2537                name.c_str(), ehdr.get_e_machine());
2538
2539   if (!parameters->target_valid())
2540     set_parameters_target(target);
2541   else if (target != &parameters->target())
2542     {
2543       if (punconfigured != NULL)
2544         *punconfigured = true;
2545       else
2546         gold_error(_("%s: incompatible target"), name.c_str());
2547       return NULL;
2548     }
2549
2550   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2551                                                    ehdr);
2552 }
2553
2554 } // End anonymous namespace.
2555
2556 namespace gold
2557 {
2558
2559 // Return whether INPUT_FILE is an ELF object.
2560
2561 bool
2562 is_elf_object(Input_file* input_file, off_t offset,
2563               const unsigned char** start, int *read_size)
2564 {
2565   off_t filesize = input_file->file().filesize();
2566   int want = elfcpp::Elf_recognizer::max_header_size;
2567   if (filesize - offset < want)
2568     want = filesize - offset;
2569
2570   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2571                                                        true, false);
2572   *start = p;
2573   *read_size = want;
2574
2575   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2576 }
2577
2578 // Read an ELF file and return the appropriate instance of Object.
2579
2580 Object*
2581 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2582                 const unsigned char* p, section_offset_type bytes,
2583                 bool* punconfigured)
2584 {
2585   if (punconfigured != NULL)
2586     *punconfigured = false;
2587
2588   std::string error;
2589   bool big_endian = false;
2590   int size = 0;
2591   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2592                                                &big_endian, &error))
2593     {
2594       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2595       return NULL;
2596     }
2597
2598   if (size == 32)
2599     {
2600       if (big_endian)
2601         {
2602 #ifdef HAVE_TARGET_32_BIG
2603           elfcpp::Ehdr<32, true> ehdr(p);
2604           return make_elf_sized_object<32, true>(name, input_file,
2605                                                  offset, ehdr, punconfigured);
2606 #else
2607           if (punconfigured != NULL)
2608             *punconfigured = true;
2609           else
2610             gold_error(_("%s: not configured to support "
2611                          "32-bit big-endian object"),
2612                        name.c_str());
2613           return NULL;
2614 #endif
2615         }
2616       else
2617         {
2618 #ifdef HAVE_TARGET_32_LITTLE
2619           elfcpp::Ehdr<32, false> ehdr(p);
2620           return make_elf_sized_object<32, false>(name, input_file,
2621                                                   offset, ehdr, punconfigured);
2622 #else
2623           if (punconfigured != NULL)
2624             *punconfigured = true;
2625           else
2626             gold_error(_("%s: not configured to support "
2627                          "32-bit little-endian object"),
2628                        name.c_str());
2629           return NULL;
2630 #endif
2631         }
2632     }
2633   else if (size == 64)
2634     {
2635       if (big_endian)
2636         {
2637 #ifdef HAVE_TARGET_64_BIG
2638           elfcpp::Ehdr<64, true> ehdr(p);
2639           return make_elf_sized_object<64, true>(name, input_file,
2640                                                  offset, ehdr, punconfigured);
2641 #else
2642           if (punconfigured != NULL)
2643             *punconfigured = true;
2644           else
2645             gold_error(_("%s: not configured to support "
2646                          "64-bit big-endian object"),
2647                        name.c_str());
2648           return NULL;
2649 #endif
2650         }
2651       else
2652         {
2653 #ifdef HAVE_TARGET_64_LITTLE
2654           elfcpp::Ehdr<64, false> ehdr(p);
2655           return make_elf_sized_object<64, false>(name, input_file,
2656                                                   offset, ehdr, punconfigured);
2657 #else
2658           if (punconfigured != NULL)
2659             *punconfigured = true;
2660           else
2661             gold_error(_("%s: not configured to support "
2662                          "64-bit little-endian object"),
2663                        name.c_str());
2664           return NULL;
2665 #endif
2666         }
2667     }
2668   else
2669     gold_unreachable();
2670 }
2671
2672 // Instantiate the templates we need.
2673
2674 #ifdef HAVE_TARGET_32_LITTLE
2675 template
2676 void
2677 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2678                                      Read_symbols_data*);
2679 #endif
2680
2681 #ifdef HAVE_TARGET_32_BIG
2682 template
2683 void
2684 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2685                                     Read_symbols_data*);
2686 #endif
2687
2688 #ifdef HAVE_TARGET_64_LITTLE
2689 template
2690 void
2691 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2692                                      Read_symbols_data*);
2693 #endif
2694
2695 #ifdef HAVE_TARGET_64_BIG
2696 template
2697 void
2698 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2699                                     Read_symbols_data*);
2700 #endif
2701
2702 #ifdef HAVE_TARGET_32_LITTLE
2703 template
2704 class Sized_relobj<32, false>;
2705 #endif
2706
2707 #ifdef HAVE_TARGET_32_BIG
2708 template
2709 class Sized_relobj<32, true>;
2710 #endif
2711
2712 #ifdef HAVE_TARGET_64_LITTLE
2713 template
2714 class Sized_relobj<64, false>;
2715 #endif
2716
2717 #ifdef HAVE_TARGET_64_BIG
2718 template
2719 class Sized_relobj<64, true>;
2720 #endif
2721
2722 #ifdef HAVE_TARGET_32_LITTLE
2723 template
2724 struct Relocate_info<32, false>;
2725 #endif
2726
2727 #ifdef HAVE_TARGET_32_BIG
2728 template
2729 struct Relocate_info<32, true>;
2730 #endif
2731
2732 #ifdef HAVE_TARGET_64_LITTLE
2733 template
2734 struct Relocate_info<64, false>;
2735 #endif
2736
2737 #ifdef HAVE_TARGET_64_BIG
2738 template
2739 struct Relocate_info<64, true>;
2740 #endif
2741
2742 #ifdef HAVE_TARGET_32_LITTLE
2743 template
2744 void
2745 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2746
2747 template
2748 void
2749 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2750                                       const unsigned char*);
2751 #endif
2752
2753 #ifdef HAVE_TARGET_32_BIG
2754 template
2755 void
2756 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2757
2758 template
2759 void
2760 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2761                                      const unsigned char*);
2762 #endif
2763
2764 #ifdef HAVE_TARGET_64_LITTLE
2765 template
2766 void
2767 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2768
2769 template
2770 void
2771 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2772                                       const unsigned char*);
2773 #endif
2774
2775 #ifdef HAVE_TARGET_64_BIG
2776 template
2777 void
2778 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2779
2780 template
2781 void
2782 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2783                                      const unsigned char*);
2784 #endif
2785
2786 } // End namespace gold.