b034ee209acc311f13516cbaec15c1cc6a538b3f
[platform/upstream/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42
43 namespace gold
44 {
45
46 // Struct Read_symbols_data.
47
48 // Destroy any remaining File_view objects.
49
50 Read_symbols_data::~Read_symbols_data()
51 {
52   if (this->section_headers != NULL)
53     delete this->section_headers;
54   if (this->section_names != NULL)
55     delete this->section_names;
56   if (this->symbols != NULL)
57     delete this->symbols;
58   if (this->symbol_names != NULL)
59     delete this->symbol_names;
60   if (this->versym != NULL)
61     delete this->versym;
62   if (this->verdef != NULL)
63     delete this->verdef;
64   if (this->verneed != NULL)
65     delete this->verneed;
66 }
67
68 // Class Xindex.
69
70 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
71 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
72 // table we care about.
73
74 template<int size, bool big_endian>
75 void
76 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
77 {
78   if (!this->symtab_xindex_.empty())
79     return;
80
81   gold_assert(symtab_shndx != 0);
82
83   // Look through the sections in reverse order, on the theory that it
84   // is more likely to be near the end than the beginning.
85   unsigned int i = object->shnum();
86   while (i > 0)
87     {
88       --i;
89       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
90           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
91         {
92           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
93           return;
94         }
95     }
96
97   object->error(_("missing SHT_SYMTAB_SHNDX section"));
98 }
99
100 // Read in the symtab_xindex_ array, given the section index of the
101 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
102 // section headers.
103
104 template<int size, bool big_endian>
105 void
106 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
107                            const unsigned char* pshdrs)
108 {
109   section_size_type bytecount;
110   const unsigned char* contents;
111   if (pshdrs == NULL)
112     contents = object->section_contents(xindex_shndx, &bytecount, false);
113   else
114     {
115       const unsigned char* p = (pshdrs
116                                 + (xindex_shndx
117                                    * elfcpp::Elf_sizes<size>::shdr_size));
118       typename elfcpp::Shdr<size, big_endian> shdr(p);
119       bytecount = convert_to_section_size_type(shdr.get_sh_size());
120       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
121     }
122
123   gold_assert(this->symtab_xindex_.empty());
124   this->symtab_xindex_.reserve(bytecount / 4);
125   for (section_size_type i = 0; i < bytecount; i += 4)
126     {
127       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
128       // We preadjust the section indexes we save.
129       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
130     }
131 }
132
133 // Symbol symndx has a section of SHN_XINDEX; return the real section
134 // index.
135
136 unsigned int
137 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
138 {
139   if (symndx >= this->symtab_xindex_.size())
140     {
141       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
142                     symndx);
143       return elfcpp::SHN_UNDEF;
144     }
145   unsigned int shndx = this->symtab_xindex_[symndx];
146   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
147     {
148       object->error(_("extended index for symbol %u out of range: %u"),
149                     symndx, shndx);
150       return elfcpp::SHN_UNDEF;
151     }
152   return shndx;
153 }
154
155 // Class Object.
156
157 // Report an error for this object file.  This is used by the
158 // elfcpp::Elf_file interface, and also called by the Object code
159 // itself.
160
161 void
162 Object::error(const char* format, ...) const
163 {
164   va_list args;
165   va_start(args, format);
166   char* buf = NULL;
167   if (vasprintf(&buf, format, args) < 0)
168     gold_nomem();
169   va_end(args);
170   gold_error(_("%s: %s"), this->name().c_str(), buf);
171   free(buf);
172 }
173
174 // Return a view of the contents of a section.
175
176 const unsigned char*
177 Object::section_contents(unsigned int shndx, section_size_type* plen,
178                          bool cache)
179 {
180   Location loc(this->do_section_contents(shndx));
181   *plen = convert_to_section_size_type(loc.data_size);
182   if (*plen == 0)
183     {
184       static const unsigned char empty[1] = { '\0' };
185       return empty;
186     }
187   return this->get_view(loc.file_offset, *plen, true, cache);
188 }
189
190 // Read the section data into SD.  This is code common to Sized_relobj
191 // and Sized_dynobj, so we put it into Object.
192
193 template<int size, bool big_endian>
194 void
195 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
196                           Read_symbols_data* sd)
197 {
198   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
199
200   // Read the section headers.
201   const off_t shoff = elf_file->shoff();
202   const unsigned int shnum = this->shnum();
203   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
204                                                true, true);
205
206   // Read the section names.
207   const unsigned char* pshdrs = sd->section_headers->data();
208   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
209   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
210
211   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
212     this->error(_("section name section has wrong type: %u"),
213                 static_cast<unsigned int>(shdrnames.get_sh_type()));
214
215   sd->section_names_size =
216     convert_to_section_size_type(shdrnames.get_sh_size());
217   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
218                                              sd->section_names_size, false,
219                                              false);
220 }
221
222 // If NAME is the name of a special .gnu.warning section, arrange for
223 // the warning to be issued.  SHNDX is the section index.  Return
224 // whether it is a warning section.
225
226 bool
227 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
228                                    Symbol_table* symtab)
229 {
230   const char warn_prefix[] = ".gnu.warning.";
231   const int warn_prefix_len = sizeof warn_prefix - 1;
232   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
233     {
234       // Read the section contents to get the warning text.  It would
235       // be nicer if we only did this if we have to actually issue a
236       // warning.  Unfortunately, warnings are issued as we relocate
237       // sections.  That means that we can not lock the object then,
238       // as we might try to issue the same warning multiple times
239       // simultaneously.
240       section_size_type len;
241       const unsigned char* contents = this->section_contents(shndx, &len,
242                                                              false);
243       if (len == 0)
244         {
245           const char* warning = name + warn_prefix_len;
246           contents = reinterpret_cast<const unsigned char*>(warning);
247           len = strlen(warning);
248         }
249       std::string warning(reinterpret_cast<const char*>(contents), len);
250       symtab->add_warning(name + warn_prefix_len, this, warning);
251       return true;
252     }
253   return false;
254 }
255
256 // If NAME is the name of the special section which indicates that
257 // this object was compiled with -fstack-split, mark it accordingly.
258
259 bool
260 Object::handle_split_stack_section(const char* name)
261 {
262   if (strcmp(name, ".note.GNU-split-stack") == 0)
263     {
264       this->uses_split_stack_ = true;
265       return true;
266     }
267   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
268     {
269       this->has_no_split_stack_ = true;
270       return true;
271     }
272   return false;
273 }
274
275 // Class Relobj
276
277 // To copy the symbols data read from the file to a local data structure.
278 // This function is called from do_layout only while doing garbage 
279 // collection.
280
281 void
282 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
283                           unsigned int section_header_size)
284 {
285   gc_sd->section_headers_data = 
286          new unsigned char[(section_header_size)];
287   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
288          section_header_size);
289   gc_sd->section_names_data = 
290          new unsigned char[sd->section_names_size];
291   memcpy(gc_sd->section_names_data, sd->section_names->data(),
292          sd->section_names_size);
293   gc_sd->section_names_size = sd->section_names_size;
294   if (sd->symbols != NULL)
295     {
296       gc_sd->symbols_data = 
297              new unsigned char[sd->symbols_size];
298       memcpy(gc_sd->symbols_data, sd->symbols->data(),
299             sd->symbols_size);
300     }
301   else
302     {
303       gc_sd->symbols_data = NULL;
304     }
305   gc_sd->symbols_size = sd->symbols_size;
306   gc_sd->external_symbols_offset = sd->external_symbols_offset;
307   if (sd->symbol_names != NULL)
308     {
309       gc_sd->symbol_names_data =
310              new unsigned char[sd->symbol_names_size];
311       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
312             sd->symbol_names_size);
313     }
314   else
315     {
316       gc_sd->symbol_names_data = NULL;
317     }
318   gc_sd->symbol_names_size = sd->symbol_names_size;
319 }
320
321 // This function determines if a particular section name must be included
322 // in the link.  This is used during garbage collection to determine the
323 // roots of the worklist.
324
325 bool
326 Relobj::is_section_name_included(const char* name)
327 {
328   if (is_prefix_of(".ctors", name) 
329       || is_prefix_of(".dtors", name) 
330       || is_prefix_of(".note", name) 
331       || is_prefix_of(".init", name) 
332       || is_prefix_of(".fini", name) 
333       || is_prefix_of(".gcc_except_table", name) 
334       || is_prefix_of(".jcr", name) 
335       || is_prefix_of(".preinit_array", name) 
336       || (is_prefix_of(".text", name) 
337           && strstr(name, "personality")) 
338       || (is_prefix_of(".data", name) 
339           &&  strstr(name, "personality")) 
340       || (is_prefix_of(".gnu.linkonce.d", name)
341           && strstr(name, "personality")))
342     {
343       return true; 
344     }
345   return false;
346 }
347
348 // Class Sized_relobj.
349
350 template<int size, bool big_endian>
351 Sized_relobj<size, big_endian>::Sized_relobj(
352     const std::string& name,
353     Input_file* input_file,
354     off_t offset,
355     const elfcpp::Ehdr<size, big_endian>& ehdr)
356   : Relobj(name, input_file, offset),
357     elf_file_(this, ehdr),
358     symtab_shndx_(-1U),
359     local_symbol_count_(0),
360     output_local_symbol_count_(0),
361     output_local_dynsym_count_(0),
362     symbols_(),
363     defined_count_(0),
364     local_symbol_offset_(0),
365     local_dynsym_offset_(0),
366     local_values_(),
367     local_got_offsets_(),
368     kept_comdat_sections_(),
369     has_eh_frame_(false),
370     discarded_eh_frame_shndx_(-1U)
371 {
372 }
373
374 template<int size, bool big_endian>
375 Sized_relobj<size, big_endian>::~Sized_relobj()
376 {
377 }
378
379 // Set up an object file based on the file header.  This sets up the
380 // section information.
381
382 template<int size, bool big_endian>
383 void
384 Sized_relobj<size, big_endian>::do_setup()
385 {
386   const unsigned int shnum = this->elf_file_.shnum();
387   this->set_shnum(shnum);
388 }
389
390 // Find the SHT_SYMTAB section, given the section headers.  The ELF
391 // standard says that maybe in the future there can be more than one
392 // SHT_SYMTAB section.  Until somebody figures out how that could
393 // work, we assume there is only one.
394
395 template<int size, bool big_endian>
396 void
397 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
398 {
399   const unsigned int shnum = this->shnum();
400   this->symtab_shndx_ = 0;
401   if (shnum > 0)
402     {
403       // Look through the sections in reverse order, since gas tends
404       // to put the symbol table at the end.
405       const unsigned char* p = pshdrs + shnum * This::shdr_size;
406       unsigned int i = shnum;
407       unsigned int xindex_shndx = 0;
408       unsigned int xindex_link = 0;
409       while (i > 0)
410         {
411           --i;
412           p -= This::shdr_size;
413           typename This::Shdr shdr(p);
414           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
415             {
416               this->symtab_shndx_ = i;
417               if (xindex_shndx > 0 && xindex_link == i)
418                 {
419                   Xindex* xindex =
420                     new Xindex(this->elf_file_.large_shndx_offset());
421                   xindex->read_symtab_xindex<size, big_endian>(this,
422                                                                xindex_shndx,
423                                                                pshdrs);
424                   this->set_xindex(xindex);
425                 }
426               break;
427             }
428
429           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
430           // one.  This will work if it follows the SHT_SYMTAB
431           // section.
432           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
433             {
434               xindex_shndx = i;
435               xindex_link = this->adjust_shndx(shdr.get_sh_link());
436             }
437         }
438     }
439 }
440
441 // Return the Xindex structure to use for object with lots of
442 // sections.
443
444 template<int size, bool big_endian>
445 Xindex*
446 Sized_relobj<size, big_endian>::do_initialize_xindex()
447 {
448   gold_assert(this->symtab_shndx_ != -1U);
449   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
450   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
451   return xindex;
452 }
453
454 // Return whether SHDR has the right type and flags to be a GNU
455 // .eh_frame section.
456
457 template<int size, bool big_endian>
458 bool
459 Sized_relobj<size, big_endian>::check_eh_frame_flags(
460     const elfcpp::Shdr<size, big_endian>* shdr) const
461 {
462   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
463           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
464 }
465
466 // Return whether there is a GNU .eh_frame section, given the section
467 // headers and the section names.
468
469 template<int size, bool big_endian>
470 bool
471 Sized_relobj<size, big_endian>::find_eh_frame(
472     const unsigned char* pshdrs,
473     const char* names,
474     section_size_type names_size) const
475 {
476   const unsigned int shnum = this->shnum();
477   const unsigned char* p = pshdrs + This::shdr_size;
478   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
479     {
480       typename This::Shdr shdr(p);
481       if (this->check_eh_frame_flags(&shdr))
482         {
483           if (shdr.get_sh_name() >= names_size)
484             {
485               this->error(_("bad section name offset for section %u: %lu"),
486                           i, static_cast<unsigned long>(shdr.get_sh_name()));
487               continue;
488             }
489
490           const char* name = names + shdr.get_sh_name();
491           if (strcmp(name, ".eh_frame") == 0)
492             return true;
493         }
494     }
495   return false;
496 }
497
498 // Read the sections and symbols from an object file.
499
500 template<int size, bool big_endian>
501 void
502 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
503 {
504   this->read_section_data(&this->elf_file_, sd);
505
506   const unsigned char* const pshdrs = sd->section_headers->data();
507
508   this->find_symtab(pshdrs);
509
510   const unsigned char* namesu = sd->section_names->data();
511   const char* names = reinterpret_cast<const char*>(namesu);
512   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
513     {
514       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
515         this->has_eh_frame_ = true;
516     }
517
518   sd->symbols = NULL;
519   sd->symbols_size = 0;
520   sd->external_symbols_offset = 0;
521   sd->symbol_names = NULL;
522   sd->symbol_names_size = 0;
523
524   if (this->symtab_shndx_ == 0)
525     {
526       // No symbol table.  Weird but legal.
527       return;
528     }
529
530   // Get the symbol table section header.
531   typename This::Shdr symtabshdr(pshdrs
532                                  + this->symtab_shndx_ * This::shdr_size);
533   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
534
535   // If this object has a .eh_frame section, we need all the symbols.
536   // Otherwise we only need the external symbols.  While it would be
537   // simpler to just always read all the symbols, I've seen object
538   // files with well over 2000 local symbols, which for a 64-bit
539   // object file format is over 5 pages that we don't need to read
540   // now.
541
542   const int sym_size = This::sym_size;
543   const unsigned int loccount = symtabshdr.get_sh_info();
544   this->local_symbol_count_ = loccount;
545   this->local_values_.resize(loccount);
546   section_offset_type locsize = loccount * sym_size;
547   off_t dataoff = symtabshdr.get_sh_offset();
548   section_size_type datasize =
549     convert_to_section_size_type(symtabshdr.get_sh_size());
550   off_t extoff = dataoff + locsize;
551   section_size_type extsize = datasize - locsize;
552
553   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
554   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
555
556   if (readsize == 0)
557     {
558       // No external symbols.  Also weird but also legal.
559       return;
560     }
561
562   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
563
564   // Read the section header for the symbol names.
565   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
566   if (strtab_shndx >= this->shnum())
567     {
568       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
569       return;
570     }
571   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
572   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
573     {
574       this->error(_("symbol table name section has wrong type: %u"),
575                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
576       return;
577     }
578
579   // Read the symbol names.
580   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
581                                                strtabshdr.get_sh_size(),
582                                                false, true);
583
584   sd->symbols = fvsymtab;
585   sd->symbols_size = readsize;
586   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
587   sd->symbol_names = fvstrtab;
588   sd->symbol_names_size =
589     convert_to_section_size_type(strtabshdr.get_sh_size());
590 }
591
592 // Return the section index of symbol SYM.  Set *VALUE to its value in
593 // the object file.  Set *IS_ORDINARY if this is an ordinary section
594 // index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
595 // Note that for a symbol which is not defined in this object file,
596 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
597 // the final value of the symbol in the link.
598
599 template<int size, bool big_endian>
600 unsigned int
601 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
602                                                          Address* value,
603                                                          bool* is_ordinary)
604 {
605   section_size_type symbols_size;
606   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
607                                                         &symbols_size,
608                                                         false);
609
610   const size_t count = symbols_size / This::sym_size;
611   gold_assert(sym < count);
612
613   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
614   *value = elfsym.get_st_value();
615
616   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
617 }
618
619 // Return whether to include a section group in the link.  LAYOUT is
620 // used to keep track of which section groups we have already seen.
621 // INDEX is the index of the section group and SHDR is the section
622 // header.  If we do not want to include this group, we set bits in
623 // OMIT for each section which should be discarded.
624
625 template<int size, bool big_endian>
626 bool
627 Sized_relobj<size, big_endian>::include_section_group(
628     Symbol_table* symtab,
629     Layout* layout,
630     unsigned int index,
631     const char* name,
632     const unsigned char* shdrs,
633     const char* section_names,
634     section_size_type section_names_size,
635     std::vector<bool>* omit)
636 {
637   // Read the section contents.
638   typename This::Shdr shdr(shdrs + index * This::shdr_size);
639   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
640                                              shdr.get_sh_size(), true, false);
641   const elfcpp::Elf_Word* pword =
642     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
643
644   // The first word contains flags.  We only care about COMDAT section
645   // groups.  Other section groups are always included in the link
646   // just like ordinary sections.
647   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
648
649   // Look up the group signature, which is the name of a symbol.  This
650   // is a lot of effort to go to to read a string.  Why didn't they
651   // just have the group signature point into the string table, rather
652   // than indirect through a symbol?
653
654   // Get the appropriate symbol table header (this will normally be
655   // the single SHT_SYMTAB section, but in principle it need not be).
656   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
657   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
658
659   // Read the symbol table entry.
660   unsigned int symndx = shdr.get_sh_info();
661   if (symndx >= symshdr.get_sh_size() / This::sym_size)
662     {
663       this->error(_("section group %u info %u out of range"),
664                   index, symndx);
665       return false;
666     }
667   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
668   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
669                                              false);
670   elfcpp::Sym<size, big_endian> sym(psym);
671
672   // Read the symbol table names.
673   section_size_type symnamelen;
674   const unsigned char* psymnamesu;
675   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
676                                       &symnamelen, true);
677   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
678
679   // Get the section group signature.
680   if (sym.get_st_name() >= symnamelen)
681     {
682       this->error(_("symbol %u name offset %u out of range"),
683                   symndx, sym.get_st_name());
684       return false;
685     }
686
687   std::string signature(psymnames + sym.get_st_name());
688
689   // It seems that some versions of gas will create a section group
690   // associated with a section symbol, and then fail to give a name to
691   // the section symbol.  In such a case, use the name of the section.
692   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
693     {
694       bool is_ordinary;
695       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
696                                                       sym.get_st_shndx(),
697                                                       &is_ordinary);
698       if (!is_ordinary || sym_shndx >= this->shnum())
699         {
700           this->error(_("symbol %u invalid section index %u"),
701                       symndx, sym_shndx);
702           return false;
703         }
704       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
705       if (member_shdr.get_sh_name() < section_names_size)
706         signature = section_names + member_shdr.get_sh_name();
707     }
708
709   // Record this section group in the layout, and see whether we've already
710   // seen one with the same signature.
711   bool include_group;
712   bool is_comdat;
713   Kept_section* kept_section = NULL;
714
715   if ((flags & elfcpp::GRP_COMDAT) == 0)
716     {
717       include_group = true;
718       is_comdat = false;
719     }
720   else
721     {
722       include_group = layout->find_or_add_kept_section(signature,
723                                                        this, index, true,
724                                                        true, &kept_section);
725       is_comdat = true;
726     }
727
728   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
729
730   std::vector<unsigned int> shndxes;
731   bool relocate_group = include_group && parameters->options().relocatable();
732   if (relocate_group)
733     shndxes.reserve(count - 1);
734
735   for (size_t i = 1; i < count; ++i)
736     {
737       elfcpp::Elf_Word shndx =
738         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
739
740       if (relocate_group)
741         shndxes.push_back(shndx);
742
743       if (shndx >= this->shnum())
744         {
745           this->error(_("section %u in section group %u out of range"),
746                       shndx, index);
747           continue;
748         }
749
750       // Check for an earlier section number, since we're going to get
751       // it wrong--we may have already decided to include the section.
752       if (shndx < index)
753         this->error(_("invalid section group %u refers to earlier section %u"),
754                     index, shndx);
755
756       // Get the name of the member section.
757       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
758       if (member_shdr.get_sh_name() >= section_names_size)
759         {
760           // This is an error, but it will be diagnosed eventually
761           // in do_layout, so we don't need to do anything here but
762           // ignore it.
763           continue;
764         }
765       std::string mname(section_names + member_shdr.get_sh_name());
766
767       if (include_group)
768         {
769           if (is_comdat)
770             kept_section->add_comdat_section(mname, shndx,
771                                              member_shdr.get_sh_size());
772         }
773       else
774         {
775           (*omit)[shndx] = true;
776
777           if (is_comdat)
778             {
779               Relobj* kept_object = kept_section->object();
780               if (kept_section->is_comdat())
781                 {
782                   // Find the corresponding kept section, and store
783                   // that info in the discarded section table.
784                   unsigned int kept_shndx;
785                   uint64_t kept_size;
786                   if (kept_section->find_comdat_section(mname, &kept_shndx,
787                                                         &kept_size))
788                     {
789                       // We don't keep a mapping for this section if
790                       // it has a different size.  The mapping is only
791                       // used for relocation processing, and we don't
792                       // want to treat the sections as similar if the
793                       // sizes are different.  Checking the section
794                       // size is the approach used by the GNU linker.
795                       if (kept_size == member_shdr.get_sh_size())
796                         this->set_kept_comdat_section(shndx, kept_object,
797                                                       kept_shndx);
798                     }
799                 }
800               else
801                 {
802                   // The existing section is a linkonce section.  Add
803                   // a mapping if there is exactly one section in the
804                   // group (which is true when COUNT == 2) and if it
805                   // is the same size.
806                   if (count == 2
807                       && (kept_section->linkonce_size()
808                           == member_shdr.get_sh_size()))
809                     this->set_kept_comdat_section(shndx, kept_object,
810                                                   kept_section->shndx());
811                 }
812             }
813         }
814     }
815
816   if (relocate_group)
817     layout->layout_group(symtab, this, index, name, signature.c_str(),
818                          shdr, flags, &shndxes);
819
820   return include_group;
821 }
822
823 // Whether to include a linkonce section in the link.  NAME is the
824 // name of the section and SHDR is the section header.
825
826 // Linkonce sections are a GNU extension implemented in the original
827 // GNU linker before section groups were defined.  The semantics are
828 // that we only include one linkonce section with a given name.  The
829 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
830 // where T is the type of section and SYMNAME is the name of a symbol.
831 // In an attempt to make linkonce sections interact well with section
832 // groups, we try to identify SYMNAME and use it like a section group
833 // signature.  We want to block section groups with that signature,
834 // but not other linkonce sections with that signature.  We also use
835 // the full name of the linkonce section as a normal section group
836 // signature.
837
838 template<int size, bool big_endian>
839 bool
840 Sized_relobj<size, big_endian>::include_linkonce_section(
841     Layout* layout,
842     unsigned int index,
843     const char* name,
844     const elfcpp::Shdr<size, big_endian>& shdr)
845 {
846   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
847   // In general the symbol name we want will be the string following
848   // the last '.'.  However, we have to handle the case of
849   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
850   // some versions of gcc.  So we use a heuristic: if the name starts
851   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
852   // we look for the last '.'.  We can't always simply skip
853   // ".gnu.linkonce.X", because we have to deal with cases like
854   // ".gnu.linkonce.d.rel.ro.local".
855   const char* const linkonce_t = ".gnu.linkonce.t.";
856   const char* symname;
857   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
858     symname = name + strlen(linkonce_t);
859   else
860     symname = strrchr(name, '.') + 1;
861   std::string sig1(symname);
862   std::string sig2(name);
863   Kept_section* kept1;
864   Kept_section* kept2;
865   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
866                                                    false, &kept1);
867   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
868                                                    true, &kept2);
869
870   if (!include2)
871     {
872       // We are not including this section because we already saw the
873       // name of the section as a signature.  This normally implies
874       // that the kept section is another linkonce section.  If it is
875       // the same size, record it as the section which corresponds to
876       // this one.
877       if (kept2->object() != NULL
878           && !kept2->is_comdat()
879           && kept2->linkonce_size() == sh_size)
880         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
881     }
882   else if (!include1)
883     {
884       // The section is being discarded on the basis of its symbol
885       // name.  This means that the corresponding kept section was
886       // part of a comdat group, and it will be difficult to identify
887       // the specific section within that group that corresponds to
888       // this linkonce section.  We'll handle the simple case where
889       // the group has only one member section.  Otherwise, it's not
890       // worth the effort.
891       unsigned int kept_shndx;
892       uint64_t kept_size;
893       if (kept1->object() != NULL
894           && kept1->is_comdat()
895           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
896           && kept_size == sh_size)
897         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
898     }
899   else
900     {
901       kept1->set_linkonce_size(sh_size);
902       kept2->set_linkonce_size(sh_size);
903     }
904
905   return include1 && include2;
906 }
907
908 // Layout an input section.
909
910 template<int size, bool big_endian>
911 inline void
912 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
913                                                unsigned int shndx,
914                                                const char* name,
915                                                typename This::Shdr& shdr,
916                                                unsigned int reloc_shndx,
917                                                unsigned int reloc_type)
918 {
919   off_t offset;
920   Output_section* os = layout->layout(this, shndx, name, shdr,
921                                           reloc_shndx, reloc_type, &offset);
922
923   this->output_sections()[shndx] = os;
924   if (offset == -1)
925     this->section_offsets_[shndx] = invalid_address;
926   else
927     this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
928
929   // If this section requires special handling, and if there are
930   // relocs that apply to it, then we must do the special handling
931   // before we apply the relocs.
932   if (offset == -1 && reloc_shndx != 0)
933     this->set_relocs_must_follow_section_writes();
934 }
935
936 // Lay out the input sections.  We walk through the sections and check
937 // whether they should be included in the link.  If they should, we
938 // pass them to the Layout object, which will return an output section
939 // and an offset.  
940 // During garbage collection (--gc-sections) and identical code folding 
941 // (--icf), this function is called twice.  When it is called the first 
942 // time, it is for setting up some sections as roots to a work-list for
943 // --gc-sections and to do comdat processing.  Actual layout happens the 
944 // second time around after all the relevant sections have been determined.  
945 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
946 // set to true after the garbage collection worklist or identical code 
947 // folding is processed and the relevant sections to be kept are 
948 // determined.  Then, this function is called again to layout the sections.
949
950 template<int size, bool big_endian>
951 void
952 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
953                                           Layout* layout,
954                                           Read_symbols_data* sd)
955 {
956   const unsigned int shnum = this->shnum();
957   bool is_gc_pass_one = ((parameters->options().gc_sections() 
958                           && !symtab->gc()->is_worklist_ready())
959                          || (parameters->options().icf_enabled()
960                              && !symtab->icf()->is_icf_ready()));
961  
962   bool is_gc_pass_two = ((parameters->options().gc_sections() 
963                           && symtab->gc()->is_worklist_ready())
964                          || (parameters->options().icf_enabled()
965                              && symtab->icf()->is_icf_ready()));
966
967   bool is_gc_or_icf = (parameters->options().gc_sections()
968                        || parameters->options().icf_enabled()); 
969
970   // Both is_gc_pass_one and is_gc_pass_two should not be true.
971   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
972
973   if (shnum == 0)
974     return;
975   Symbols_data* gc_sd = NULL;
976   if (is_gc_pass_one)
977     {
978       // During garbage collection save the symbols data to use it when 
979       // re-entering this function.   
980       gc_sd = new Symbols_data;
981       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
982       this->set_symbols_data(gc_sd);
983     }
984   else if (is_gc_pass_two)
985     {
986       gc_sd = this->get_symbols_data();
987     }
988
989   const unsigned char* section_headers_data = NULL;
990   section_size_type section_names_size;
991   const unsigned char* symbols_data = NULL;
992   section_size_type symbols_size;
993   section_offset_type external_symbols_offset;
994   const unsigned char* symbol_names_data = NULL;
995   section_size_type symbol_names_size;
996  
997   if (is_gc_or_icf)
998     {
999       section_headers_data = gc_sd->section_headers_data;
1000       section_names_size = gc_sd->section_names_size;
1001       symbols_data = gc_sd->symbols_data;
1002       symbols_size = gc_sd->symbols_size;
1003       external_symbols_offset = gc_sd->external_symbols_offset;
1004       symbol_names_data = gc_sd->symbol_names_data;
1005       symbol_names_size = gc_sd->symbol_names_size;
1006     }
1007   else
1008     {
1009       section_headers_data = sd->section_headers->data();
1010       section_names_size = sd->section_names_size;
1011       if (sd->symbols != NULL)
1012         symbols_data = sd->symbols->data();
1013       symbols_size = sd->symbols_size;
1014       external_symbols_offset = sd->external_symbols_offset;
1015       if (sd->symbol_names != NULL)
1016         symbol_names_data = sd->symbol_names->data();
1017       symbol_names_size = sd->symbol_names_size;
1018     }
1019
1020   // Get the section headers.
1021   const unsigned char* shdrs = section_headers_data;
1022   const unsigned char* pshdrs;
1023
1024   // Get the section names.
1025   const unsigned char* pnamesu = (is_gc_or_icf) 
1026                                  ? gc_sd->section_names_data
1027                                  : sd->section_names->data();
1028
1029   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1030
1031   // If any input files have been claimed by plugins, we need to defer
1032   // actual layout until the replacement files have arrived.
1033   const bool should_defer_layout =
1034       (parameters->options().has_plugins()
1035        && parameters->options().plugins()->should_defer_layout());
1036   unsigned int num_sections_to_defer = 0;
1037
1038   // For each section, record the index of the reloc section if any.
1039   // Use 0 to mean that there is no reloc section, -1U to mean that
1040   // there is more than one.
1041   std::vector<unsigned int> reloc_shndx(shnum, 0);
1042   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1043   // Skip the first, dummy, section.
1044   pshdrs = shdrs + This::shdr_size;
1045   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1046     {
1047       typename This::Shdr shdr(pshdrs);
1048
1049       // Count the number of sections whose layout will be deferred.
1050       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1051         ++num_sections_to_defer;
1052
1053       unsigned int sh_type = shdr.get_sh_type();
1054       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1055         {
1056           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1057           if (target_shndx == 0 || target_shndx >= shnum)
1058             {
1059               this->error(_("relocation section %u has bad info %u"),
1060                           i, target_shndx);
1061               continue;
1062             }
1063
1064           if (reloc_shndx[target_shndx] != 0)
1065             reloc_shndx[target_shndx] = -1U;
1066           else
1067             {
1068               reloc_shndx[target_shndx] = i;
1069               reloc_type[target_shndx] = sh_type;
1070             }
1071         }
1072     }
1073
1074   Output_sections& out_sections(this->output_sections());
1075   std::vector<Address>& out_section_offsets(this->section_offsets_);
1076
1077   if (!is_gc_pass_two)
1078     {
1079       out_sections.resize(shnum);
1080       out_section_offsets.resize(shnum);
1081     }
1082
1083   // If we are only linking for symbols, then there is nothing else to
1084   // do here.
1085   if (this->input_file()->just_symbols())
1086     {
1087       if (!is_gc_pass_two)
1088         {
1089           delete sd->section_headers;
1090           sd->section_headers = NULL;
1091           delete sd->section_names;
1092           sd->section_names = NULL;
1093         }
1094       return;
1095     }
1096
1097   if (num_sections_to_defer > 0)
1098     {
1099       parameters->options().plugins()->add_deferred_layout_object(this);
1100       this->deferred_layout_.reserve(num_sections_to_defer);
1101     }
1102
1103   // Whether we've seen a .note.GNU-stack section.
1104   bool seen_gnu_stack = false;
1105   // The flags of a .note.GNU-stack section.
1106   uint64_t gnu_stack_flags = 0;
1107
1108   // Keep track of which sections to omit.
1109   std::vector<bool> omit(shnum, false);
1110
1111   // Keep track of reloc sections when emitting relocations.
1112   const bool relocatable = parameters->options().relocatable();
1113   const bool emit_relocs = (relocatable
1114                             || parameters->options().emit_relocs());
1115   std::vector<unsigned int> reloc_sections;
1116
1117   // Keep track of .eh_frame sections.
1118   std::vector<unsigned int> eh_frame_sections;
1119
1120   // Skip the first, dummy, section.
1121   pshdrs = shdrs + This::shdr_size;
1122   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1123     {
1124       typename This::Shdr shdr(pshdrs);
1125
1126       if (shdr.get_sh_name() >= section_names_size)
1127         {
1128           this->error(_("bad section name offset for section %u: %lu"),
1129                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1130           return;
1131         }
1132
1133       const char* name = pnames + shdr.get_sh_name();
1134
1135       if (!is_gc_pass_two)
1136         { 
1137           if (this->handle_gnu_warning_section(name, i, symtab))
1138             { 
1139               if (!relocatable)
1140                 omit[i] = true;
1141             }
1142
1143           // The .note.GNU-stack section is special.  It gives the
1144           // protection flags that this object file requires for the stack
1145           // in memory.
1146           if (strcmp(name, ".note.GNU-stack") == 0)
1147             {
1148               seen_gnu_stack = true;
1149               gnu_stack_flags |= shdr.get_sh_flags();
1150               omit[i] = true;
1151             }
1152
1153           // The .note.GNU-split-stack section is also special.  It
1154           // indicates that the object was compiled with
1155           // -fsplit-stack.
1156           if (this->handle_split_stack_section(name))
1157             {
1158               if (!parameters->options().relocatable()
1159                   && !parameters->options().shared())
1160                 omit[i] = true;
1161             }
1162
1163           // Skip attributes section.
1164           if (parameters->target().is_attributes_section(name))
1165             {
1166               omit[i] = true;
1167             }
1168
1169           bool discard = omit[i];
1170           if (!discard)
1171             {
1172               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1173                 {
1174                   if (!this->include_section_group(symtab, layout, i, name, 
1175                                                    shdrs, pnames, 
1176                                                    section_names_size,
1177                                                    &omit))
1178                     discard = true;
1179                 }
1180               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1181                        && Layout::is_linkonce(name))
1182                 {
1183                   if (!this->include_linkonce_section(layout, i, name, shdr))
1184                     discard = true;
1185                 }
1186             }
1187
1188           if (discard)
1189             {
1190               // Do not include this section in the link.
1191               out_sections[i] = NULL;
1192               out_section_offsets[i] = invalid_address;
1193               continue;
1194             }
1195         }
1196  
1197       if (is_gc_pass_one && parameters->options().gc_sections())
1198         {
1199           if (is_section_name_included(name)
1200               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1201               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1202             {
1203               symtab->gc()->worklist().push(Section_id(this, i)); 
1204             }
1205           // If the section name XXX can be represented as a C identifier
1206           // it cannot be discarded if there are references to
1207           // __start_XXX and __stop_XXX symbols.  These need to be
1208           // specially handled.
1209           if (is_cident(name))
1210             {
1211               symtab->gc()->add_cident_section(name, Section_id(this, i));
1212             }
1213         }
1214
1215       // When doing a relocatable link we are going to copy input
1216       // reloc sections into the output.  We only want to copy the
1217       // ones associated with sections which are not being discarded.
1218       // However, we don't know that yet for all sections.  So save
1219       // reloc sections and process them later. Garbage collection is
1220       // not triggered when relocatable code is desired.
1221       if (emit_relocs
1222           && (shdr.get_sh_type() == elfcpp::SHT_REL
1223               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1224         {
1225           reloc_sections.push_back(i);
1226           continue;
1227         }
1228
1229       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1230         continue;
1231
1232       // The .eh_frame section is special.  It holds exception frame
1233       // information that we need to read in order to generate the
1234       // exception frame header.  We process these after all the other
1235       // sections so that the exception frame reader can reliably
1236       // determine which sections are being discarded, and discard the
1237       // corresponding information.
1238       if (!relocatable
1239           && strcmp(name, ".eh_frame") == 0
1240           && this->check_eh_frame_flags(&shdr))
1241         {
1242           if (is_gc_pass_one)
1243             {
1244               out_sections[i] = reinterpret_cast<Output_section*>(1);
1245               out_section_offsets[i] = invalid_address;
1246             }
1247           else
1248             eh_frame_sections.push_back(i);
1249           continue;
1250         }
1251
1252       if (is_gc_pass_two && parameters->options().gc_sections())
1253         {
1254           // This is executed during the second pass of garbage 
1255           // collection. do_layout has been called before and some 
1256           // sections have been already discarded. Simply ignore 
1257           // such sections this time around.
1258           if (out_sections[i] == NULL)
1259             {
1260               gold_assert(out_section_offsets[i] == invalid_address);
1261               continue; 
1262             }
1263           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1264               && symtab->gc()->is_section_garbage(this, i))
1265               {
1266                 if (parameters->options().print_gc_sections())
1267                   gold_info(_("%s: removing unused section from '%s'" 
1268                               " in file '%s'"),
1269                             program_name, this->section_name(i).c_str(), 
1270                             this->name().c_str());
1271                 out_sections[i] = NULL;
1272                 out_section_offsets[i] = invalid_address;
1273                 continue;
1274               }
1275         }
1276
1277       if (is_gc_pass_two && parameters->options().icf_enabled())
1278         {
1279           if (out_sections[i] == NULL)
1280             {
1281               gold_assert(out_section_offsets[i] == invalid_address);
1282               continue;
1283             }
1284           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1285               && symtab->icf()->is_section_folded(this, i))
1286               {
1287                 if (parameters->options().print_icf_sections())
1288                   {
1289                     Section_id folded =
1290                                 symtab->icf()->get_folded_section(this, i);
1291                     Relobj* folded_obj =
1292                                 reinterpret_cast<Relobj*>(folded.first);
1293                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1294                                 "into '%s' in file '%s'"),
1295                               program_name, this->section_name(i).c_str(),
1296                               this->name().c_str(),
1297                               folded_obj->section_name(folded.second).c_str(),
1298                               folded_obj->name().c_str());
1299                   }
1300                 out_sections[i] = NULL;
1301                 out_section_offsets[i] = invalid_address;
1302                 continue;
1303               }
1304         }
1305
1306       // Defer layout here if input files are claimed by plugins.  When gc
1307       // is turned on this function is called twice.  For the second call
1308       // should_defer_layout should be false.
1309       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1310         {
1311           gold_assert(!is_gc_pass_two);
1312           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1313                                                            pshdrs,
1314                                                            reloc_shndx[i],
1315                                                            reloc_type[i]));
1316           // Put dummy values here; real values will be supplied by
1317           // do_layout_deferred_sections.
1318           out_sections[i] = reinterpret_cast<Output_section*>(2);
1319           out_section_offsets[i] = invalid_address;
1320           continue;
1321         }
1322
1323       // During gc_pass_two if a section that was previously deferred is
1324       // found, do not layout the section as layout_deferred_sections will
1325       // do it later from gold.cc.
1326       if (is_gc_pass_two 
1327           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1328         continue;
1329
1330       if (is_gc_pass_one)
1331         {
1332           // This is during garbage collection. The out_sections are 
1333           // assigned in the second call to this function. 
1334           out_sections[i] = reinterpret_cast<Output_section*>(1);
1335           out_section_offsets[i] = invalid_address;
1336         }
1337       else
1338         {
1339           // When garbage collection is switched on the actual layout
1340           // only happens in the second call.
1341           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1342                                reloc_type[i]);
1343         }
1344     }
1345
1346   if (!is_gc_pass_two)
1347     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1348
1349   // When doing a relocatable link handle the reloc sections at the
1350   // end.  Garbage collection  and Identical Code Folding is not 
1351   // turned on for relocatable code. 
1352   if (emit_relocs)
1353     this->size_relocatable_relocs();
1354
1355   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1356
1357   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1358        p != reloc_sections.end();
1359        ++p)
1360     {
1361       unsigned int i = *p;
1362       const unsigned char* pshdr;
1363       pshdr = section_headers_data + i * This::shdr_size;
1364       typename This::Shdr shdr(pshdr);
1365
1366       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1367       if (data_shndx >= shnum)
1368         {
1369           // We already warned about this above.
1370           continue;
1371         }
1372
1373       Output_section* data_section = out_sections[data_shndx];
1374       if (data_section == reinterpret_cast<Output_section*>(2))
1375         {
1376           // The layout for the data section was deferred, so we need
1377           // to defer the relocation section, too.
1378           const char* name = pnames + shdr.get_sh_name();
1379           this->deferred_layout_relocs_.push_back(
1380               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1381           out_sections[i] = reinterpret_cast<Output_section*>(2);
1382           out_section_offsets[i] = invalid_address;
1383           continue;
1384         }
1385       if (data_section == NULL)
1386         {
1387           out_sections[i] = NULL;
1388           out_section_offsets[i] = invalid_address;
1389           continue;
1390         }
1391
1392       Relocatable_relocs* rr = new Relocatable_relocs();
1393       this->set_relocatable_relocs(i, rr);
1394
1395       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1396                                                 rr);
1397       out_sections[i] = os;
1398       out_section_offsets[i] = invalid_address;
1399     }
1400
1401   // Handle the .eh_frame sections at the end.
1402   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1403   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1404        p != eh_frame_sections.end();
1405        ++p)
1406     {
1407       gold_assert(this->has_eh_frame_);
1408       gold_assert(external_symbols_offset != 0);
1409
1410       unsigned int i = *p;
1411       const unsigned char *pshdr;
1412       pshdr = section_headers_data + i * This::shdr_size;
1413       typename This::Shdr shdr(pshdr);
1414
1415       off_t offset;
1416       Output_section* os = layout->layout_eh_frame(this,
1417                                                    symbols_data,
1418                                                    symbols_size,
1419                                                    symbol_names_data,
1420                                                    symbol_names_size,
1421                                                    i, shdr,
1422                                                    reloc_shndx[i],
1423                                                    reloc_type[i],
1424                                                    &offset);
1425       out_sections[i] = os;
1426       if (os == NULL || offset == -1)
1427         {
1428           // An object can contain at most one section holding exception
1429           // frame information.
1430           gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1431           this->discarded_eh_frame_shndx_ = i;
1432           out_section_offsets[i] = invalid_address;
1433         }
1434       else
1435         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1436
1437       // If this section requires special handling, and if there are
1438       // relocs that apply to it, then we must do the special handling
1439       // before we apply the relocs.
1440       if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1441         this->set_relocs_must_follow_section_writes();
1442     }
1443
1444   if (is_gc_pass_two)
1445     {
1446       delete[] gc_sd->section_headers_data;
1447       delete[] gc_sd->section_names_data;
1448       delete[] gc_sd->symbols_data;
1449       delete[] gc_sd->symbol_names_data;
1450       this->set_symbols_data(NULL);
1451     }
1452   else
1453     {
1454       delete sd->section_headers;
1455       sd->section_headers = NULL;
1456       delete sd->section_names;
1457       sd->section_names = NULL;
1458     }
1459 }
1460
1461 // Layout sections whose layout was deferred while waiting for
1462 // input files from a plugin.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1467 {
1468   typename std::vector<Deferred_layout>::iterator deferred;
1469
1470   for (deferred = this->deferred_layout_.begin();
1471        deferred != this->deferred_layout_.end();
1472        ++deferred)
1473     {
1474       typename This::Shdr shdr(deferred->shdr_data_);
1475       // If the section is not included, it is because the garbage collector
1476       // decided it is not needed.  Avoid reverting that decision.
1477       if (!this->is_section_included(deferred->shndx_))
1478         continue;
1479
1480       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1481                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1482     }
1483
1484   this->deferred_layout_.clear();
1485
1486   // Now handle the deferred relocation sections.
1487
1488   Output_sections& out_sections(this->output_sections());
1489   std::vector<Address>& out_section_offsets(this->section_offsets_);
1490
1491   for (deferred = this->deferred_layout_relocs_.begin();
1492        deferred != this->deferred_layout_relocs_.end();
1493        ++deferred)
1494     {
1495       unsigned int shndx = deferred->shndx_;
1496       typename This::Shdr shdr(deferred->shdr_data_);
1497       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1498
1499       Output_section* data_section = out_sections[data_shndx];
1500       if (data_section == NULL)
1501         {
1502           out_sections[shndx] = NULL;
1503           out_section_offsets[shndx] = invalid_address;
1504           continue;
1505         }
1506
1507       Relocatable_relocs* rr = new Relocatable_relocs();
1508       this->set_relocatable_relocs(shndx, rr);
1509
1510       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1511                                                 data_section, rr);
1512       out_sections[shndx] = os;
1513       out_section_offsets[shndx] = invalid_address;
1514     }
1515 }
1516
1517 // Add the symbols to the symbol table.
1518
1519 template<int size, bool big_endian>
1520 void
1521 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1522                                                Read_symbols_data* sd,
1523                                                Layout*)
1524 {
1525   if (sd->symbols == NULL)
1526     {
1527       gold_assert(sd->symbol_names == NULL);
1528       return;
1529     }
1530
1531   const int sym_size = This::sym_size;
1532   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1533                      / sym_size);
1534   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1535     {
1536       this->error(_("size of symbols is not multiple of symbol size"));
1537       return;
1538     }
1539
1540   this->symbols_.resize(symcount);
1541
1542   const char* sym_names =
1543     reinterpret_cast<const char*>(sd->symbol_names->data());
1544   symtab->add_from_relobj(this,
1545                           sd->symbols->data() + sd->external_symbols_offset,
1546                           symcount, this->local_symbol_count_,
1547                           sym_names, sd->symbol_names_size,
1548                           &this->symbols_,
1549                           &this->defined_count_);
1550
1551   delete sd->symbols;
1552   sd->symbols = NULL;
1553   delete sd->symbol_names;
1554   sd->symbol_names = NULL;
1555 }
1556
1557 // Find out if this object, that is a member of a lib group, should be included
1558 // in the link. We check every symbol defined by this object. If the symbol
1559 // table has a strong undefined reference to that symbol, we have to include
1560 // the object.
1561
1562 template<int size, bool big_endian>
1563 Archive::Should_include
1564 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab,
1565                                                          Read_symbols_data* sd,
1566                                                          std::string* why)
1567 {
1568   char* tmpbuf = NULL;
1569   size_t tmpbuflen = 0;
1570   const char* sym_names =
1571       reinterpret_cast<const char*>(sd->symbol_names->data());
1572   const unsigned char* syms =
1573       sd->symbols->data() + sd->external_symbols_offset;
1574   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1575   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1576                          / sym_size);
1577
1578   const unsigned char* p = syms;
1579
1580   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1581     {
1582       elfcpp::Sym<size, big_endian> sym(p);
1583       unsigned int st_shndx = sym.get_st_shndx();
1584       if (st_shndx == elfcpp::SHN_UNDEF)
1585         continue;
1586
1587       unsigned int st_name = sym.get_st_name();
1588       const char* name = sym_names + st_name;
1589       Symbol* symbol;
1590       Archive::Should_include t = Archive::should_include_member(symtab, name,
1591                                                                  &symbol, why,
1592                                                                  &tmpbuf,
1593                                                                  &tmpbuflen);
1594       if (t == Archive::SHOULD_INCLUDE_YES)
1595         {
1596           if (tmpbuf != NULL)
1597             free(tmpbuf);
1598           return t;
1599         }
1600     }
1601   if (tmpbuf != NULL)
1602     free(tmpbuf);
1603   return Archive::SHOULD_INCLUDE_UNKNOWN;
1604 }
1605
1606 // First pass over the local symbols.  Here we add their names to
1607 // *POOL and *DYNPOOL, and we store the symbol value in
1608 // THIS->LOCAL_VALUES_.  This function is always called from a
1609 // singleton thread.  This is followed by a call to
1610 // finalize_local_symbols.
1611
1612 template<int size, bool big_endian>
1613 void
1614 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1615                                                        Stringpool* dynpool)
1616 {
1617   gold_assert(this->symtab_shndx_ != -1U);
1618   if (this->symtab_shndx_ == 0)
1619     {
1620       // This object has no symbols.  Weird but legal.
1621       return;
1622     }
1623
1624   // Read the symbol table section header.
1625   const unsigned int symtab_shndx = this->symtab_shndx_;
1626   typename This::Shdr symtabshdr(this,
1627                                  this->elf_file_.section_header(symtab_shndx));
1628   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1629
1630   // Read the local symbols.
1631   const int sym_size = This::sym_size;
1632   const unsigned int loccount = this->local_symbol_count_;
1633   gold_assert(loccount == symtabshdr.get_sh_info());
1634   off_t locsize = loccount * sym_size;
1635   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1636                                               locsize, true, true);
1637
1638   // Read the symbol names.
1639   const unsigned int strtab_shndx =
1640     this->adjust_shndx(symtabshdr.get_sh_link());
1641   section_size_type strtab_size;
1642   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1643                                                         &strtab_size,
1644                                                         true);
1645   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1646
1647   // Loop over the local symbols.
1648
1649   const Output_sections& out_sections(this->output_sections());
1650   unsigned int shnum = this->shnum();
1651   unsigned int count = 0;
1652   unsigned int dyncount = 0;
1653   // Skip the first, dummy, symbol.
1654   psyms += sym_size;
1655   bool discard_all = parameters->options().discard_all();
1656   bool discard_locals = parameters->options().discard_locals();
1657   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1658     {
1659       elfcpp::Sym<size, big_endian> sym(psyms);
1660
1661       Symbol_value<size>& lv(this->local_values_[i]);
1662
1663       bool is_ordinary;
1664       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1665                                                   &is_ordinary);
1666       lv.set_input_shndx(shndx, is_ordinary);
1667
1668       if (sym.get_st_type() == elfcpp::STT_SECTION)
1669         lv.set_is_section_symbol();
1670       else if (sym.get_st_type() == elfcpp::STT_TLS)
1671         lv.set_is_tls_symbol();
1672
1673       // Save the input symbol value for use in do_finalize_local_symbols().
1674       lv.set_input_value(sym.get_st_value());
1675
1676       // Decide whether this symbol should go into the output file.
1677
1678       if ((shndx < shnum && out_sections[shndx] == NULL)
1679           || shndx == this->discarded_eh_frame_shndx_)
1680         {
1681           lv.set_no_output_symtab_entry();
1682           gold_assert(!lv.needs_output_dynsym_entry());
1683           continue;
1684         }
1685
1686       if (sym.get_st_type() == elfcpp::STT_SECTION)
1687         {
1688           lv.set_no_output_symtab_entry();
1689           gold_assert(!lv.needs_output_dynsym_entry());
1690           continue;
1691         }
1692
1693       if (sym.get_st_name() >= strtab_size)
1694         {
1695           this->error(_("local symbol %u section name out of range: %u >= %u"),
1696                       i, sym.get_st_name(),
1697                       static_cast<unsigned int>(strtab_size));
1698           lv.set_no_output_symtab_entry();
1699           continue;
1700         }
1701
1702       const char* name = pnames + sym.get_st_name();
1703
1704       // If needed, add the symbol to the dynamic symbol table string pool.
1705       if (lv.needs_output_dynsym_entry())
1706         {
1707           dynpool->add(name, true, NULL);
1708           ++dyncount;
1709         }
1710
1711       if (discard_all && lv.may_be_discarded_from_output_symtab())
1712         {
1713           lv.set_no_output_symtab_entry();
1714           continue;
1715         }
1716
1717       // If --discard-locals option is used, discard all temporary local
1718       // symbols.  These symbols start with system-specific local label
1719       // prefixes, typically .L for ELF system.  We want to be compatible
1720       // with GNU ld so here we essentially use the same check in
1721       // bfd_is_local_label().  The code is different because we already
1722       // know that:
1723       //
1724       //   - the symbol is local and thus cannot have global or weak binding.
1725       //   - the symbol is not a section symbol.
1726       //   - the symbol has a name.
1727       //
1728       // We do not discard a symbol if it needs a dynamic symbol entry.
1729       if (discard_locals
1730           && sym.get_st_type() != elfcpp::STT_FILE
1731           && !lv.needs_output_dynsym_entry()
1732           && lv.may_be_discarded_from_output_symtab()
1733           && parameters->target().is_local_label_name(name))
1734         {
1735           lv.set_no_output_symtab_entry();
1736           continue;
1737         }
1738
1739       // Discard the local symbol if -retain_symbols_file is specified
1740       // and the local symbol is not in that file.
1741       if (!parameters->options().should_retain_symbol(name))
1742         {
1743           lv.set_no_output_symtab_entry();
1744           continue;
1745         }
1746
1747       // Add the symbol to the symbol table string pool.
1748       pool->add(name, true, NULL);
1749       ++count;
1750     }
1751
1752   this->output_local_symbol_count_ = count;
1753   this->output_local_dynsym_count_ = dyncount;
1754 }
1755
1756 // Finalize the local symbols.  Here we set the final value in
1757 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1758 // This function is always called from a singleton thread.  The actual
1759 // output of the local symbols will occur in a separate task.
1760
1761 template<int size, bool big_endian>
1762 unsigned int
1763 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1764                                                           off_t off,
1765                                                           Symbol_table* symtab)
1766 {
1767   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1768
1769   const unsigned int loccount = this->local_symbol_count_;
1770   this->local_symbol_offset_ = off;
1771
1772   const bool relocatable = parameters->options().relocatable();
1773   const Output_sections& out_sections(this->output_sections());
1774   const std::vector<Address>& out_offsets(this->section_offsets_);
1775   unsigned int shnum = this->shnum();
1776
1777   for (unsigned int i = 1; i < loccount; ++i)
1778     {
1779       Symbol_value<size>& lv(this->local_values_[i]);
1780
1781       bool is_ordinary;
1782       unsigned int shndx = lv.input_shndx(&is_ordinary);
1783
1784       // Set the output symbol value.
1785
1786       if (!is_ordinary)
1787         {
1788           if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1789             lv.set_output_value(lv.input_value());
1790           else
1791             {
1792               this->error(_("unknown section index %u for local symbol %u"),
1793                           shndx, i);
1794               lv.set_output_value(0);
1795             }
1796         }
1797       else
1798         {
1799           if (shndx >= shnum)
1800             {
1801               this->error(_("local symbol %u section index %u out of range"),
1802                           i, shndx);
1803               shndx = 0;
1804             }
1805
1806           Output_section* os = out_sections[shndx];
1807           Address secoffset = out_offsets[shndx];
1808           if (symtab->is_section_folded(this, shndx))
1809             {
1810               gold_assert (os == NULL && secoffset == invalid_address);
1811               // Get the os of the section it is folded onto.
1812               Section_id folded = symtab->icf()->get_folded_section(this,
1813                                                                     shndx);
1814               gold_assert(folded.first != NULL);
1815               Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1816                 <Sized_relobj<size, big_endian>*>(folded.first);
1817               os = folded_obj->output_section(folded.second);
1818               gold_assert(os != NULL);
1819               secoffset = folded_obj->get_output_section_offset(folded.second);
1820
1821               // This could be a relaxed input section.
1822               if (secoffset == invalid_address)
1823                 {
1824                   const Output_relaxed_input_section* relaxed_section =
1825                     os->find_relaxed_input_section(folded_obj, folded.second);
1826                   gold_assert(relaxed_section != NULL);
1827                   secoffset = relaxed_section->address() - os->address();
1828                 }
1829             }
1830
1831           if (os == NULL)
1832             {
1833               // This local symbol belongs to a section we are discarding.
1834               // In some cases when applying relocations later, we will
1835               // attempt to match it to the corresponding kept section,
1836               // so we leave the input value unchanged here.
1837               continue;
1838             }
1839           else if (secoffset == invalid_address)
1840             {
1841               uint64_t start;
1842
1843               // This is a SHF_MERGE section or one which otherwise
1844               // requires special handling.
1845               if (shndx == this->discarded_eh_frame_shndx_)
1846                 {
1847                   // This local symbol belongs to a discarded .eh_frame
1848                   // section.  Just treat it like the case in which
1849                   // os == NULL above.
1850                   gold_assert(this->has_eh_frame_);
1851                   continue;
1852                 }
1853               else if (!lv.is_section_symbol())
1854                 {
1855                   // This is not a section symbol.  We can determine
1856                   // the final value now.
1857                   lv.set_output_value(os->output_address(this, shndx,
1858                                                          lv.input_value()));
1859                 }
1860               else if (!os->find_starting_output_address(this, shndx, &start))
1861                 {
1862                   // This is a section symbol, but apparently not one in a
1863                   // merged section.  First check to see if this is a relaxed
1864                   // input section.  If so, use its address.  Otherwise just
1865                   // use the start of the output section.  This happens with
1866                   // relocatable links when the input object has section
1867                   // symbols for arbitrary non-merge sections.
1868                   const Output_section_data* posd =
1869                     os->find_relaxed_input_section(this, shndx);
1870                   if (posd != NULL)
1871                     {
1872                       Address relocatable_link_adjustment =
1873                         relocatable ? os->address() : 0;
1874                       lv.set_output_value(posd->address()
1875                                           - relocatable_link_adjustment);
1876                     }
1877                   else
1878                     lv.set_output_value(os->address());
1879                 }
1880               else
1881                 {
1882                   // We have to consider the addend to determine the
1883                   // value to use in a relocation.  START is the start
1884                   // of this input section.  If we are doing a relocatable
1885                   // link, use offset from start output section instead of
1886                   // address.
1887                   Address adjusted_start =
1888                     relocatable ? start - os->address() : start;
1889                   Merged_symbol_value<size>* msv =
1890                     new Merged_symbol_value<size>(lv.input_value(),
1891                                                   adjusted_start);
1892                   lv.set_merged_symbol_value(msv);
1893                 }
1894             }
1895           else if (lv.is_tls_symbol())
1896             lv.set_output_value(os->tls_offset()
1897                                 + secoffset
1898                                 + lv.input_value());
1899           else
1900             lv.set_output_value((relocatable ? 0 : os->address())
1901                                 + secoffset
1902                                 + lv.input_value());
1903         }
1904
1905       if (!lv.is_output_symtab_index_set())
1906         {
1907           lv.set_output_symtab_index(index);
1908           ++index;
1909         }
1910     }
1911   return index;
1912 }
1913
1914 // Set the output dynamic symbol table indexes for the local variables.
1915
1916 template<int size, bool big_endian>
1917 unsigned int
1918 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1919 {
1920   const unsigned int loccount = this->local_symbol_count_;
1921   for (unsigned int i = 1; i < loccount; ++i)
1922     {
1923       Symbol_value<size>& lv(this->local_values_[i]);
1924       if (lv.needs_output_dynsym_entry())
1925         {
1926           lv.set_output_dynsym_index(index);
1927           ++index;
1928         }
1929     }
1930   return index;
1931 }
1932
1933 // Set the offset where local dynamic symbol information will be stored.
1934 // Returns the count of local symbols contributed to the symbol table by
1935 // this object.
1936
1937 template<int size, bool big_endian>
1938 unsigned int
1939 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1940 {
1941   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1942   this->local_dynsym_offset_ = off;
1943   return this->output_local_dynsym_count_;
1944 }
1945
1946 // If Symbols_data is not NULL get the section flags from here otherwise
1947 // get it from the file.
1948
1949 template<int size, bool big_endian>
1950 uint64_t
1951 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
1952 {
1953   Symbols_data* sd = this->get_symbols_data();
1954   if (sd != NULL)
1955     {
1956       const unsigned char* pshdrs = sd->section_headers_data
1957                                     + This::shdr_size * shndx;
1958       typename This::Shdr shdr(pshdrs);
1959       return shdr.get_sh_flags(); 
1960     }
1961   // If sd is NULL, read the section header from the file.
1962   return this->elf_file_.section_flags(shndx); 
1963 }
1964
1965 // Get the section's ent size from Symbols_data.  Called by get_section_contents
1966 // in icf.cc
1967
1968 template<int size, bool big_endian>
1969 uint64_t
1970 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
1971 {
1972   Symbols_data* sd = this->get_symbols_data();
1973   gold_assert (sd != NULL);
1974
1975   const unsigned char* pshdrs = sd->section_headers_data
1976                                 + This::shdr_size * shndx;
1977   typename This::Shdr shdr(pshdrs);
1978   return shdr.get_sh_entsize(); 
1979 }
1980
1981
1982 // Write out the local symbols.
1983
1984 template<int size, bool big_endian>
1985 void
1986 Sized_relobj<size, big_endian>::write_local_symbols(
1987     Output_file* of,
1988     const Stringpool* sympool,
1989     const Stringpool* dynpool,
1990     Output_symtab_xindex* symtab_xindex,
1991     Output_symtab_xindex* dynsym_xindex)
1992 {
1993   const bool strip_all = parameters->options().strip_all();
1994   if (strip_all)
1995     {
1996       if (this->output_local_dynsym_count_ == 0)
1997         return;
1998       this->output_local_symbol_count_ = 0;
1999     }
2000
2001   gold_assert(this->symtab_shndx_ != -1U);
2002   if (this->symtab_shndx_ == 0)
2003     {
2004       // This object has no symbols.  Weird but legal.
2005       return;
2006     }
2007
2008   // Read the symbol table section header.
2009   const unsigned int symtab_shndx = this->symtab_shndx_;
2010   typename This::Shdr symtabshdr(this,
2011                                  this->elf_file_.section_header(symtab_shndx));
2012   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2013   const unsigned int loccount = this->local_symbol_count_;
2014   gold_assert(loccount == symtabshdr.get_sh_info());
2015
2016   // Read the local symbols.
2017   const int sym_size = This::sym_size;
2018   off_t locsize = loccount * sym_size;
2019   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2020                                               locsize, true, false);
2021
2022   // Read the symbol names.
2023   const unsigned int strtab_shndx =
2024     this->adjust_shndx(symtabshdr.get_sh_link());
2025   section_size_type strtab_size;
2026   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2027                                                         &strtab_size,
2028                                                         false);
2029   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2030
2031   // Get views into the output file for the portions of the symbol table
2032   // and the dynamic symbol table that we will be writing.
2033   off_t output_size = this->output_local_symbol_count_ * sym_size;
2034   unsigned char* oview = NULL;
2035   if (output_size > 0)
2036     oview = of->get_output_view(this->local_symbol_offset_, output_size);
2037
2038   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2039   unsigned char* dyn_oview = NULL;
2040   if (dyn_output_size > 0)
2041     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2042                                     dyn_output_size);
2043
2044   const Output_sections out_sections(this->output_sections());
2045
2046   gold_assert(this->local_values_.size() == loccount);
2047
2048   unsigned char* ov = oview;
2049   unsigned char* dyn_ov = dyn_oview;
2050   psyms += sym_size;
2051   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2052     {
2053       elfcpp::Sym<size, big_endian> isym(psyms);
2054
2055       Symbol_value<size>& lv(this->local_values_[i]);
2056
2057       bool is_ordinary;
2058       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2059                                                      &is_ordinary);
2060       if (is_ordinary)
2061         {
2062           gold_assert(st_shndx < out_sections.size());
2063           if (out_sections[st_shndx] == NULL)
2064             continue;
2065           st_shndx = out_sections[st_shndx]->out_shndx();
2066           if (st_shndx >= elfcpp::SHN_LORESERVE)
2067             {
2068               if (lv.has_output_symtab_entry())
2069                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2070               if (lv.has_output_dynsym_entry())
2071                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2072               st_shndx = elfcpp::SHN_XINDEX;
2073             }
2074         }
2075
2076       // Write the symbol to the output symbol table.
2077       if (lv.has_output_symtab_entry())
2078         {
2079           elfcpp::Sym_write<size, big_endian> osym(ov);
2080
2081           gold_assert(isym.get_st_name() < strtab_size);
2082           const char* name = pnames + isym.get_st_name();
2083           osym.put_st_name(sympool->get_offset(name));
2084           osym.put_st_value(this->local_values_[i].value(this, 0));
2085           osym.put_st_size(isym.get_st_size());
2086           osym.put_st_info(isym.get_st_info());
2087           osym.put_st_other(isym.get_st_other());
2088           osym.put_st_shndx(st_shndx);
2089
2090           ov += sym_size;
2091         }
2092
2093       // Write the symbol to the output dynamic symbol table.
2094       if (lv.has_output_dynsym_entry())
2095         {
2096           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2097           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2098
2099           gold_assert(isym.get_st_name() < strtab_size);
2100           const char* name = pnames + isym.get_st_name();
2101           osym.put_st_name(dynpool->get_offset(name));
2102           osym.put_st_value(this->local_values_[i].value(this, 0));
2103           osym.put_st_size(isym.get_st_size());
2104           osym.put_st_info(isym.get_st_info());
2105           osym.put_st_other(isym.get_st_other());
2106           osym.put_st_shndx(st_shndx);
2107
2108           dyn_ov += sym_size;
2109         }
2110     }
2111
2112
2113   if (output_size > 0)
2114     {
2115       gold_assert(ov - oview == output_size);
2116       of->write_output_view(this->local_symbol_offset_, output_size, oview);
2117     }
2118
2119   if (dyn_output_size > 0)
2120     {
2121       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2122       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2123                             dyn_oview);
2124     }
2125 }
2126
2127 // Set *INFO to symbolic information about the offset OFFSET in the
2128 // section SHNDX.  Return true if we found something, false if we
2129 // found nothing.
2130
2131 template<int size, bool big_endian>
2132 bool
2133 Sized_relobj<size, big_endian>::get_symbol_location_info(
2134     unsigned int shndx,
2135     off_t offset,
2136     Symbol_location_info* info)
2137 {
2138   if (this->symtab_shndx_ == 0)
2139     return false;
2140
2141   section_size_type symbols_size;
2142   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2143                                                         &symbols_size,
2144                                                         false);
2145
2146   unsigned int symbol_names_shndx =
2147     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2148   section_size_type names_size;
2149   const unsigned char* symbol_names_u =
2150     this->section_contents(symbol_names_shndx, &names_size, false);
2151   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2152
2153   const int sym_size = This::sym_size;
2154   const size_t count = symbols_size / sym_size;
2155
2156   const unsigned char* p = symbols;
2157   for (size_t i = 0; i < count; ++i, p += sym_size)
2158     {
2159       elfcpp::Sym<size, big_endian> sym(p);
2160
2161       if (sym.get_st_type() == elfcpp::STT_FILE)
2162         {
2163           if (sym.get_st_name() >= names_size)
2164             info->source_file = "(invalid)";
2165           else
2166             info->source_file = symbol_names + sym.get_st_name();
2167           continue;
2168         }
2169
2170       bool is_ordinary;
2171       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2172                                                      &is_ordinary);
2173       if (is_ordinary
2174           && st_shndx == shndx
2175           && static_cast<off_t>(sym.get_st_value()) <= offset
2176           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2177               > offset))
2178         {
2179           if (sym.get_st_name() > names_size)
2180             info->enclosing_symbol_name = "(invalid)";
2181           else
2182             {
2183               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2184               if (parameters->options().do_demangle())
2185                 {
2186                   char* demangled_name = cplus_demangle(
2187                       info->enclosing_symbol_name.c_str(),
2188                       DMGL_ANSI | DMGL_PARAMS);
2189                   if (demangled_name != NULL)
2190                     {
2191                       info->enclosing_symbol_name.assign(demangled_name);
2192                       free(demangled_name);
2193                     }
2194                 }
2195             }
2196           return true;
2197         }
2198     }
2199
2200   return false;
2201 }
2202
2203 // Look for a kept section corresponding to the given discarded section,
2204 // and return its output address.  This is used only for relocations in
2205 // debugging sections.  If we can't find the kept section, return 0.
2206
2207 template<int size, bool big_endian>
2208 typename Sized_relobj<size, big_endian>::Address
2209 Sized_relobj<size, big_endian>::map_to_kept_section(
2210     unsigned int shndx,
2211     bool* found) const
2212 {
2213   Relobj* kept_object;
2214   unsigned int kept_shndx;
2215   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2216     {
2217       Sized_relobj<size, big_endian>* kept_relobj =
2218         static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2219       Output_section* os = kept_relobj->output_section(kept_shndx);
2220       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2221       if (os != NULL && offset != invalid_address)
2222         {
2223           *found = true;
2224           return os->address() + offset;
2225         }
2226     }
2227   *found = false;
2228   return 0;
2229 }
2230
2231 // Get symbol counts.
2232
2233 template<int size, bool big_endian>
2234 void
2235 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2236     const Symbol_table*,
2237     size_t* defined,
2238     size_t* used) const
2239 {
2240   *defined = this->defined_count_;
2241   size_t count = 0;
2242   for (Symbols::const_iterator p = this->symbols_.begin();
2243        p != this->symbols_.end();
2244        ++p)
2245     if (*p != NULL
2246         && (*p)->source() == Symbol::FROM_OBJECT
2247         && (*p)->object() == this
2248         && (*p)->is_defined())
2249       ++count;
2250   *used = count;
2251 }
2252
2253 // Input_objects methods.
2254
2255 // Add a regular relocatable object to the list.  Return false if this
2256 // object should be ignored.
2257
2258 bool
2259 Input_objects::add_object(Object* obj)
2260 {
2261   // Print the filename if the -t/--trace option is selected.
2262   if (parameters->options().trace())
2263     gold_info("%s", obj->name().c_str());
2264
2265   if (!obj->is_dynamic())
2266     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2267   else
2268     {
2269       // See if this is a duplicate SONAME.
2270       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2271       const char* soname = dynobj->soname();
2272
2273       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2274         this->sonames_.insert(soname);
2275       if (!ins.second)
2276         {
2277           // We have already seen a dynamic object with this soname.
2278           return false;
2279         }
2280
2281       this->dynobj_list_.push_back(dynobj);
2282     }
2283
2284   // Add this object to the cross-referencer if requested.
2285   if (parameters->options().user_set_print_symbol_counts()
2286       || parameters->options().cref())
2287     {
2288       if (this->cref_ == NULL)
2289         this->cref_ = new Cref();
2290       this->cref_->add_object(obj);
2291     }
2292
2293   return true;
2294 }
2295
2296 // For each dynamic object, record whether we've seen all of its
2297 // explicit dependencies.
2298
2299 void
2300 Input_objects::check_dynamic_dependencies() const
2301 {
2302   bool issued_copy_dt_needed_error = false;
2303   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2304        p != this->dynobj_list_.end();
2305        ++p)
2306     {
2307       const Dynobj::Needed& needed((*p)->needed());
2308       bool found_all = true;
2309       Dynobj::Needed::const_iterator pneeded;
2310       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2311         {
2312           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2313             {
2314               found_all = false;
2315               break;
2316             }
2317         }
2318       (*p)->set_has_unknown_needed_entries(!found_all);
2319
2320       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2321       // that gold does not support.  However, they cause no trouble
2322       // unless there is a DT_NEEDED entry that we don't know about;
2323       // warn only in that case.
2324       if (!found_all
2325           && !issued_copy_dt_needed_error
2326           && (parameters->options().copy_dt_needed_entries()
2327               || parameters->options().add_needed()))
2328         {
2329           const char* optname;
2330           if (parameters->options().copy_dt_needed_entries())
2331             optname = "--copy-dt-needed-entries";
2332           else
2333             optname = "--add-needed";
2334           gold_error(_("%s is not supported but is required for %s in %s"),
2335                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2336           issued_copy_dt_needed_error = true;
2337         }
2338     }
2339 }
2340
2341 // Start processing an archive.
2342
2343 void
2344 Input_objects::archive_start(Archive* archive)
2345 {
2346   if (parameters->options().user_set_print_symbol_counts()
2347       || parameters->options().cref())
2348     {
2349       if (this->cref_ == NULL)
2350         this->cref_ = new Cref();
2351       this->cref_->add_archive_start(archive);
2352     }
2353 }
2354
2355 // Stop processing an archive.
2356
2357 void
2358 Input_objects::archive_stop(Archive* archive)
2359 {
2360   if (parameters->options().user_set_print_symbol_counts()
2361       || parameters->options().cref())
2362     this->cref_->add_archive_stop(archive);
2363 }
2364
2365 // Print symbol counts
2366
2367 void
2368 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2369 {
2370   if (parameters->options().user_set_print_symbol_counts()
2371       && this->cref_ != NULL)
2372     this->cref_->print_symbol_counts(symtab);
2373 }
2374
2375 // Print a cross reference table.
2376
2377 void
2378 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2379 {
2380   if (parameters->options().cref() && this->cref_ != NULL)
2381     this->cref_->print_cref(symtab, f);
2382 }
2383
2384 // Relocate_info methods.
2385
2386 // Return a string describing the location of a relocation.  This is
2387 // only used in error messages.
2388
2389 template<int size, bool big_endian>
2390 std::string
2391 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2392 {
2393   // See if we can get line-number information from debugging sections.
2394   std::string filename;
2395   std::string file_and_lineno;   // Better than filename-only, if available.
2396
2397   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2398   // This will be "" if we failed to parse the debug info for any reason.
2399   file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2400
2401   std::string ret(this->object->name());
2402   ret += ':';
2403   Symbol_location_info info;
2404   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2405     {
2406       ret += " in function ";
2407       ret += info.enclosing_symbol_name;
2408       ret += ":";
2409       filename = info.source_file;
2410     }
2411
2412   if (!file_and_lineno.empty())
2413     ret += file_and_lineno;
2414   else
2415     {
2416       if (!filename.empty())
2417         ret += filename;
2418       ret += "(";
2419       ret += this->object->section_name(this->data_shndx);
2420       char buf[100];
2421       // Offsets into sections have to be positive.
2422       snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2423       ret += buf;
2424       ret += ")";
2425     }
2426   return ret;
2427 }
2428
2429 } // End namespace gold.
2430
2431 namespace
2432 {
2433
2434 using namespace gold;
2435
2436 // Read an ELF file with the header and return the appropriate
2437 // instance of Object.
2438
2439 template<int size, bool big_endian>
2440 Object*
2441 make_elf_sized_object(const std::string& name, Input_file* input_file,
2442                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2443                       bool* punconfigured)
2444 {
2445   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2446                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2447                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2448   if (target == NULL)
2449     gold_fatal(_("%s: unsupported ELF machine number %d"),
2450                name.c_str(), ehdr.get_e_machine());
2451
2452   if (!parameters->target_valid())
2453     set_parameters_target(target);
2454   else if (target != &parameters->target())
2455     {
2456       if (punconfigured != NULL)
2457         *punconfigured = true;
2458       else
2459         gold_error(_("%s: incompatible target"), name.c_str());
2460       return NULL;
2461     }
2462
2463   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2464                                                    ehdr);
2465 }
2466
2467 } // End anonymous namespace.
2468
2469 namespace gold
2470 {
2471
2472 // Return whether INPUT_FILE is an ELF object.
2473
2474 bool
2475 is_elf_object(Input_file* input_file, off_t offset,
2476               const unsigned char** start, int *read_size)
2477 {
2478   off_t filesize = input_file->file().filesize();
2479   int want = elfcpp::Elf_recognizer::max_header_size;
2480   if (filesize - offset < want)
2481     want = filesize - offset;
2482
2483   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2484                                                        true, false);
2485   *start = p;
2486   *read_size = want;
2487
2488   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2489 }
2490
2491 // Read an ELF file and return the appropriate instance of Object.
2492
2493 Object*
2494 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2495                 const unsigned char* p, section_offset_type bytes,
2496                 bool* punconfigured)
2497 {
2498   if (punconfigured != NULL)
2499     *punconfigured = false;
2500
2501   std::string error;
2502   bool big_endian = false;
2503   int size = 0;
2504   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2505                                                &big_endian, &error))
2506     {
2507       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2508       return NULL;
2509     }
2510
2511   if (size == 32)
2512     {
2513       if (big_endian)
2514         {
2515 #ifdef HAVE_TARGET_32_BIG
2516           elfcpp::Ehdr<32, true> ehdr(p);
2517           return make_elf_sized_object<32, true>(name, input_file,
2518                                                  offset, ehdr, punconfigured);
2519 #else
2520           if (punconfigured != NULL)
2521             *punconfigured = true;
2522           else
2523             gold_error(_("%s: not configured to support "
2524                          "32-bit big-endian object"),
2525                        name.c_str());
2526           return NULL;
2527 #endif
2528         }
2529       else
2530         {
2531 #ifdef HAVE_TARGET_32_LITTLE
2532           elfcpp::Ehdr<32, false> ehdr(p);
2533           return make_elf_sized_object<32, false>(name, input_file,
2534                                                   offset, ehdr, punconfigured);
2535 #else
2536           if (punconfigured != NULL)
2537             *punconfigured = true;
2538           else
2539             gold_error(_("%s: not configured to support "
2540                          "32-bit little-endian object"),
2541                        name.c_str());
2542           return NULL;
2543 #endif
2544         }
2545     }
2546   else if (size == 64)
2547     {
2548       if (big_endian)
2549         {
2550 #ifdef HAVE_TARGET_64_BIG
2551           elfcpp::Ehdr<64, true> ehdr(p);
2552           return make_elf_sized_object<64, true>(name, input_file,
2553                                                  offset, ehdr, punconfigured);
2554 #else
2555           if (punconfigured != NULL)
2556             *punconfigured = true;
2557           else
2558             gold_error(_("%s: not configured to support "
2559                          "64-bit big-endian object"),
2560                        name.c_str());
2561           return NULL;
2562 #endif
2563         }
2564       else
2565         {
2566 #ifdef HAVE_TARGET_64_LITTLE
2567           elfcpp::Ehdr<64, false> ehdr(p);
2568           return make_elf_sized_object<64, false>(name, input_file,
2569                                                   offset, ehdr, punconfigured);
2570 #else
2571           if (punconfigured != NULL)
2572             *punconfigured = true;
2573           else
2574             gold_error(_("%s: not configured to support "
2575                          "64-bit little-endian object"),
2576                        name.c_str());
2577           return NULL;
2578 #endif
2579         }
2580     }
2581   else
2582     gold_unreachable();
2583 }
2584
2585 // Instantiate the templates we need.
2586
2587 #ifdef HAVE_TARGET_32_LITTLE
2588 template
2589 void
2590 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2591                                      Read_symbols_data*);
2592 #endif
2593
2594 #ifdef HAVE_TARGET_32_BIG
2595 template
2596 void
2597 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2598                                     Read_symbols_data*);
2599 #endif
2600
2601 #ifdef HAVE_TARGET_64_LITTLE
2602 template
2603 void
2604 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2605                                      Read_symbols_data*);
2606 #endif
2607
2608 #ifdef HAVE_TARGET_64_BIG
2609 template
2610 void
2611 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2612                                     Read_symbols_data*);
2613 #endif
2614
2615 #ifdef HAVE_TARGET_32_LITTLE
2616 template
2617 class Sized_relobj<32, false>;
2618 #endif
2619
2620 #ifdef HAVE_TARGET_32_BIG
2621 template
2622 class Sized_relobj<32, true>;
2623 #endif
2624
2625 #ifdef HAVE_TARGET_64_LITTLE
2626 template
2627 class Sized_relobj<64, false>;
2628 #endif
2629
2630 #ifdef HAVE_TARGET_64_BIG
2631 template
2632 class Sized_relobj<64, true>;
2633 #endif
2634
2635 #ifdef HAVE_TARGET_32_LITTLE
2636 template
2637 struct Relocate_info<32, false>;
2638 #endif
2639
2640 #ifdef HAVE_TARGET_32_BIG
2641 template
2642 struct Relocate_info<32, true>;
2643 #endif
2644
2645 #ifdef HAVE_TARGET_64_LITTLE
2646 template
2647 struct Relocate_info<64, false>;
2648 #endif
2649
2650 #ifdef HAVE_TARGET_64_BIG
2651 template
2652 struct Relocate_info<64, true>;
2653 #endif
2654
2655 #ifdef HAVE_TARGET_32_LITTLE
2656 template
2657 void
2658 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2659
2660 template
2661 void
2662 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2663                                       const unsigned char*);
2664 #endif
2665
2666 #ifdef HAVE_TARGET_32_BIG
2667 template
2668 void
2669 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2670
2671 template
2672 void
2673 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2674                                      const unsigned char*);
2675 #endif
2676
2677 #ifdef HAVE_TARGET_64_LITTLE
2678 template
2679 void
2680 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2681
2682 template
2683 void
2684 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2685                                       const unsigned char*);
2686 #endif
2687
2688 #ifdef HAVE_TARGET_64_BIG
2689 template
2690 void
2691 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2692
2693 template
2694 void
2695 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2696                                      const unsigned char*);
2697 #endif
2698
2699 } // End namespace gold.