Remove info message for every erratum 843419 found and fixed.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433         {
434           const Got_offset_list* got_offsets = p->second;
435           got_offsets->for_all_got_offsets(v);
436         }
437     }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     discarded_eh_frame_shndx_(-1U),
480     is_deferred_layout_(false),
481     deferred_layout_(),
482     deferred_layout_relocs_(),
483     output_views_(NULL)
484 {
485   this->e_type_ = ehdr.get_e_type();
486 }
487
488 template<int size, bool big_endian>
489 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
490 {
491 }
492
493 // Set up an object file based on the file header.  This sets up the
494 // section information.
495
496 template<int size, bool big_endian>
497 void
498 Sized_relobj_file<size, big_endian>::do_setup()
499 {
500   const unsigned int shnum = this->elf_file_.shnum();
501   this->set_shnum(shnum);
502 }
503
504 // Find the SHT_SYMTAB section, given the section headers.  The ELF
505 // standard says that maybe in the future there can be more than one
506 // SHT_SYMTAB section.  Until somebody figures out how that could
507 // work, we assume there is only one.
508
509 template<int size, bool big_endian>
510 void
511 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
512 {
513   const unsigned int shnum = this->shnum();
514   this->symtab_shndx_ = 0;
515   if (shnum > 0)
516     {
517       // Look through the sections in reverse order, since gas tends
518       // to put the symbol table at the end.
519       const unsigned char* p = pshdrs + shnum * This::shdr_size;
520       unsigned int i = shnum;
521       unsigned int xindex_shndx = 0;
522       unsigned int xindex_link = 0;
523       while (i > 0)
524         {
525           --i;
526           p -= This::shdr_size;
527           typename This::Shdr shdr(p);
528           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
529             {
530               this->symtab_shndx_ = i;
531               if (xindex_shndx > 0 && xindex_link == i)
532                 {
533                   Xindex* xindex =
534                     new Xindex(this->elf_file_.large_shndx_offset());
535                   xindex->read_symtab_xindex<size, big_endian>(this,
536                                                                xindex_shndx,
537                                                                pshdrs);
538                   this->set_xindex(xindex);
539                 }
540               break;
541             }
542
543           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
544           // one.  This will work if it follows the SHT_SYMTAB
545           // section.
546           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
547             {
548               xindex_shndx = i;
549               xindex_link = this->adjust_shndx(shdr.get_sh_link());
550             }
551         }
552     }
553 }
554
555 // Return the Xindex structure to use for object with lots of
556 // sections.
557
558 template<int size, bool big_endian>
559 Xindex*
560 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
561 {
562   gold_assert(this->symtab_shndx_ != -1U);
563   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
564   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
565   return xindex;
566 }
567
568 // Return whether SHDR has the right type and flags to be a GNU
569 // .eh_frame section.
570
571 template<int size, bool big_endian>
572 bool
573 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
574     const elfcpp::Shdr<size, big_endian>* shdr) const
575 {
576   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
577   return ((sh_type == elfcpp::SHT_PROGBITS
578            || sh_type == elfcpp::SHT_X86_64_UNWIND)
579           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
580 }
581
582 // Find the section header with the given name.
583
584 template<int size, bool big_endian>
585 const unsigned char*
586 Object::find_shdr(
587     const unsigned char* pshdrs,
588     const char* name,
589     const char* names,
590     section_size_type names_size,
591     const unsigned char* hdr) const
592 {
593   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
594   const unsigned int shnum = this->shnum();
595   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
596   size_t sh_name = 0;
597
598   while (1)
599     {
600       if (hdr)
601         {
602           // We found HDR last time we were called, continue looking.
603           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
604           sh_name = shdr.get_sh_name();
605         }
606       else
607         {
608           // Look for the next occurrence of NAME in NAMES.
609           // The fact that .shstrtab produced by current GNU tools is
610           // string merged means we shouldn't have both .not.foo and
611           // .foo in .shstrtab, and multiple .foo sections should all
612           // have the same sh_name.  However, this is not guaranteed
613           // by the ELF spec and not all ELF object file producers may
614           // be so clever.
615           size_t len = strlen(name) + 1;
616           const char *p = sh_name ? names + sh_name + len : names;
617           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
618                                                    name, len));
619           if (p == NULL)
620             return NULL;
621           sh_name = p - names;
622           hdr = pshdrs;
623           if (sh_name == 0)
624             return hdr;
625         }
626
627       hdr += shdr_size;
628       while (hdr < hdr_end)
629         {
630           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
631           if (shdr.get_sh_name() == sh_name)
632             return hdr;
633           hdr += shdr_size;
634         }
635       hdr = NULL;
636       if (sh_name == 0)
637         return hdr;
638     }
639 }
640
641 // Return whether there is a GNU .eh_frame section, given the section
642 // headers and the section names.
643
644 template<int size, bool big_endian>
645 bool
646 Sized_relobj_file<size, big_endian>::find_eh_frame(
647     const unsigned char* pshdrs,
648     const char* names,
649     section_size_type names_size) const
650 {
651   const unsigned char* s = NULL;
652
653   while (1)
654     {
655       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
656                                                      names, names_size, s);
657       if (s == NULL)
658         return false;
659
660       typename This::Shdr shdr(s);
661       if (this->check_eh_frame_flags(&shdr))
662         return true;
663     }
664 }
665
666 // Return TRUE if this is a section whose contents will be needed in the
667 // Add_symbols task.  This function is only called for sections that have
668 // already passed the test in is_compressed_debug_section() and the debug
669 // section name prefix, ".debug"/".zdebug", has been skipped.
670
671 static bool
672 need_decompressed_section(const char* name)
673 {
674   if (*name++ != '_')
675     return false;
676
677 #ifdef ENABLE_THREADS
678   // Decompressing these sections now will help only if we're
679   // multithreaded.
680   if (parameters->options().threads())
681     {
682       // We will need .zdebug_str if this is not an incremental link
683       // (i.e., we are processing string merge sections) or if we need
684       // to build a gdb index.
685       if ((!parameters->incremental() || parameters->options().gdb_index())
686           && strcmp(name, "str") == 0)
687         return true;
688
689       // We will need these other sections when building a gdb index.
690       if (parameters->options().gdb_index()
691           && (strcmp(name, "info") == 0
692               || strcmp(name, "types") == 0
693               || strcmp(name, "pubnames") == 0
694               || strcmp(name, "pubtypes") == 0
695               || strcmp(name, "ranges") == 0
696               || strcmp(name, "abbrev") == 0))
697         return true;
698     }
699 #endif
700
701   // Even when single-threaded, we will need .zdebug_str if this is
702   // not an incremental link and we are building a gdb index.
703   // Otherwise, we would decompress the section twice: once for
704   // string merge processing, and once for building the gdb index.
705   if (!parameters->incremental()
706       && parameters->options().gdb_index()
707       && strcmp(name, "str") == 0)
708     return true;
709
710   return false;
711 }
712
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719     const unsigned char* pshdrs,
720     unsigned int shnum,
721     const char* names,
722     section_size_type names_size,
723     Object* obj,
724     bool decompress_if_needed)
725 {
726   Compressed_section_map* uncompressed_map = new Compressed_section_map();
727   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
728   const unsigned char* p = pshdrs + shdr_size;
729
730   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
731     {
732       typename elfcpp::Shdr<size, big_endian> shdr(p);
733       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
734           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735         {
736           if (shdr.get_sh_name() >= names_size)
737             {
738               obj->error(_("bad section name offset for section %u: %lu"),
739                          i, static_cast<unsigned long>(shdr.get_sh_name()));
740               continue;
741             }
742
743           const char* name = names + shdr.get_sh_name();
744           bool is_compressed = ((shdr.get_sh_flags()
745                                  & elfcpp::SHF_COMPRESSED) != 0);
746           bool is_zcompressed = (!is_compressed
747                                  && is_compressed_debug_section(name));
748
749           if (is_zcompressed || is_compressed)
750             {
751               section_size_type len;
752               const unsigned char* contents =
753                   obj->section_contents(i, &len, false);
754               uint64_t uncompressed_size;
755               if (is_zcompressed)
756                 {
757                   // Skip over the ".zdebug" prefix.
758                   name += 7;
759                   uncompressed_size = get_uncompressed_size(contents, len);
760                 }
761               else
762                 {
763                   // Skip over the ".debug" prefix.
764                   name += 6;
765                   elfcpp::Chdr<size, big_endian> chdr(contents);
766                   uncompressed_size = chdr.get_ch_size();
767                 }
768               Compressed_section_info info;
769               info.size = convert_to_section_size_type(uncompressed_size);
770               info.flag = shdr.get_sh_flags();
771               info.contents = NULL;
772               if (uncompressed_size != -1ULL)
773                 {
774                   unsigned char* uncompressed_data = NULL;
775                   if (decompress_if_needed && need_decompressed_section(name))
776                     {
777                       uncompressed_data = new unsigned char[uncompressed_size];
778                       if (decompress_input_section(contents, len,
779                                                    uncompressed_data,
780                                                    uncompressed_size,
781                                                    size, big_endian,
782                                                    shdr.get_sh_flags()))
783                         info.contents = uncompressed_data;
784                       else
785                         delete[] uncompressed_data;
786                     }
787                   (*uncompressed_map)[i] = info;
788                 }
789             }
790         }
791     }
792   return uncompressed_map;
793 }
794
795 // Stash away info for a number of special sections.
796 // Return true if any of the sections found require local symbols to be read.
797
798 template<int size, bool big_endian>
799 bool
800 Sized_relobj_file<size, big_endian>::do_find_special_sections(
801     Read_symbols_data* sd)
802 {
803   const unsigned char* const pshdrs = sd->section_headers->data();
804   const unsigned char* namesu = sd->section_names->data();
805   const char* names = reinterpret_cast<const char*>(namesu);
806
807   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
808     this->has_eh_frame_ = true;
809
810   Compressed_section_map* compressed_sections =
811     build_compressed_section_map<size, big_endian>(
812       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
813   if (compressed_sections != NULL)
814     this->set_compressed_sections(compressed_sections);
815
816   return (this->has_eh_frame_
817           || (!parameters->options().relocatable()
818               && parameters->options().gdb_index()
819               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
820                   || memmem(names, sd->section_names_size, "debug_types",
821                             13) == 0)));
822 }
823
824 // Read the sections and symbols from an object file.
825
826 template<int size, bool big_endian>
827 void
828 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
829 {
830   this->base_read_symbols(sd);
831 }
832
833 // Read the sections and symbols from an object file.  This is common
834 // code for all target-specific overrides of do_read_symbols().
835
836 template<int size, bool big_endian>
837 void
838 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
839 {
840   this->read_section_data(&this->elf_file_, sd);
841
842   const unsigned char* const pshdrs = sd->section_headers->data();
843
844   this->find_symtab(pshdrs);
845
846   bool need_local_symbols = this->do_find_special_sections(sd);
847
848   sd->symbols = NULL;
849   sd->symbols_size = 0;
850   sd->external_symbols_offset = 0;
851   sd->symbol_names = NULL;
852   sd->symbol_names_size = 0;
853
854   if (this->symtab_shndx_ == 0)
855     {
856       // No symbol table.  Weird but legal.
857       return;
858     }
859
860   // Get the symbol table section header.
861   typename This::Shdr symtabshdr(pshdrs
862                                  + this->symtab_shndx_ * This::shdr_size);
863   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
864
865   // If this object has a .eh_frame section, or if building a .gdb_index
866   // section and there is debug info, we need all the symbols.
867   // Otherwise we only need the external symbols.  While it would be
868   // simpler to just always read all the symbols, I've seen object
869   // files with well over 2000 local symbols, which for a 64-bit
870   // object file format is over 5 pages that we don't need to read
871   // now.
872
873   const int sym_size = This::sym_size;
874   const unsigned int loccount = symtabshdr.get_sh_info();
875   this->local_symbol_count_ = loccount;
876   this->local_values_.resize(loccount);
877   section_offset_type locsize = loccount * sym_size;
878   off_t dataoff = symtabshdr.get_sh_offset();
879   section_size_type datasize =
880     convert_to_section_size_type(symtabshdr.get_sh_size());
881   off_t extoff = dataoff + locsize;
882   section_size_type extsize = datasize - locsize;
883
884   off_t readoff = need_local_symbols ? dataoff : extoff;
885   section_size_type readsize = need_local_symbols ? datasize : extsize;
886
887   if (readsize == 0)
888     {
889       // No external symbols.  Also weird but also legal.
890       return;
891     }
892
893   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
894
895   // Read the section header for the symbol names.
896   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
897   if (strtab_shndx >= this->shnum())
898     {
899       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
900       return;
901     }
902   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
903   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
904     {
905       this->error(_("symbol table name section has wrong type: %u"),
906                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
907       return;
908     }
909
910   // Read the symbol names.
911   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
912                                                strtabshdr.get_sh_size(),
913                                                false, true);
914
915   sd->symbols = fvsymtab;
916   sd->symbols_size = readsize;
917   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
918   sd->symbol_names = fvstrtab;
919   sd->symbol_names_size =
920     convert_to_section_size_type(strtabshdr.get_sh_size());
921 }
922
923 // Return the section index of symbol SYM.  Set *VALUE to its value in
924 // the object file.  Set *IS_ORDINARY if this is an ordinary section
925 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
926 // Note that for a symbol which is not defined in this object file,
927 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
928 // the final value of the symbol in the link.
929
930 template<int size, bool big_endian>
931 unsigned int
932 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
933                                                               Address* value,
934                                                               bool* is_ordinary)
935 {
936   section_size_type symbols_size;
937   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
938                                                         &symbols_size,
939                                                         false);
940
941   const size_t count = symbols_size / This::sym_size;
942   gold_assert(sym < count);
943
944   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
945   *value = elfsym.get_st_value();
946
947   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
948 }
949
950 // Return whether to include a section group in the link.  LAYOUT is
951 // used to keep track of which section groups we have already seen.
952 // INDEX is the index of the section group and SHDR is the section
953 // header.  If we do not want to include this group, we set bits in
954 // OMIT for each section which should be discarded.
955
956 template<int size, bool big_endian>
957 bool
958 Sized_relobj_file<size, big_endian>::include_section_group(
959     Symbol_table* symtab,
960     Layout* layout,
961     unsigned int index,
962     const char* name,
963     const unsigned char* shdrs,
964     const char* section_names,
965     section_size_type section_names_size,
966     std::vector<bool>* omit)
967 {
968   // Read the section contents.
969   typename This::Shdr shdr(shdrs + index * This::shdr_size);
970   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
971                                              shdr.get_sh_size(), true, false);
972   const elfcpp::Elf_Word* pword =
973     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
974
975   // The first word contains flags.  We only care about COMDAT section
976   // groups.  Other section groups are always included in the link
977   // just like ordinary sections.
978   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
979
980   // Look up the group signature, which is the name of a symbol.  ELF
981   // uses a symbol name because some group signatures are long, and
982   // the name is generally already in the symbol table, so it makes
983   // sense to put the long string just once in .strtab rather than in
984   // both .strtab and .shstrtab.
985
986   // Get the appropriate symbol table header (this will normally be
987   // the single SHT_SYMTAB section, but in principle it need not be).
988   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
989   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
990
991   // Read the symbol table entry.
992   unsigned int symndx = shdr.get_sh_info();
993   if (symndx >= symshdr.get_sh_size() / This::sym_size)
994     {
995       this->error(_("section group %u info %u out of range"),
996                   index, symndx);
997       return false;
998     }
999   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1000   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1001                                              false);
1002   elfcpp::Sym<size, big_endian> sym(psym);
1003
1004   // Read the symbol table names.
1005   section_size_type symnamelen;
1006   const unsigned char* psymnamesu;
1007   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1008                                       &symnamelen, true);
1009   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1010
1011   // Get the section group signature.
1012   if (sym.get_st_name() >= symnamelen)
1013     {
1014       this->error(_("symbol %u name offset %u out of range"),
1015                   symndx, sym.get_st_name());
1016       return false;
1017     }
1018
1019   std::string signature(psymnames + sym.get_st_name());
1020
1021   // It seems that some versions of gas will create a section group
1022   // associated with a section symbol, and then fail to give a name to
1023   // the section symbol.  In such a case, use the name of the section.
1024   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1025     {
1026       bool is_ordinary;
1027       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1028                                                       sym.get_st_shndx(),
1029                                                       &is_ordinary);
1030       if (!is_ordinary || sym_shndx >= this->shnum())
1031         {
1032           this->error(_("symbol %u invalid section index %u"),
1033                       symndx, sym_shndx);
1034           return false;
1035         }
1036       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1037       if (member_shdr.get_sh_name() < section_names_size)
1038         signature = section_names + member_shdr.get_sh_name();
1039     }
1040
1041   // Record this section group in the layout, and see whether we've already
1042   // seen one with the same signature.
1043   bool include_group;
1044   bool is_comdat;
1045   Kept_section* kept_section = NULL;
1046
1047   if ((flags & elfcpp::GRP_COMDAT) == 0)
1048     {
1049       include_group = true;
1050       is_comdat = false;
1051     }
1052   else
1053     {
1054       include_group = layout->find_or_add_kept_section(signature,
1055                                                        this, index, true,
1056                                                        true, &kept_section);
1057       is_comdat = true;
1058     }
1059
1060   if (is_comdat && include_group)
1061     {
1062       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1063       if (incremental_inputs != NULL)
1064         incremental_inputs->report_comdat_group(this, signature.c_str());
1065     }
1066
1067   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1068
1069   std::vector<unsigned int> shndxes;
1070   bool relocate_group = include_group && parameters->options().relocatable();
1071   if (relocate_group)
1072     shndxes.reserve(count - 1);
1073
1074   for (size_t i = 1; i < count; ++i)
1075     {
1076       elfcpp::Elf_Word shndx =
1077         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1078
1079       if (relocate_group)
1080         shndxes.push_back(shndx);
1081
1082       if (shndx >= this->shnum())
1083         {
1084           this->error(_("section %u in section group %u out of range"),
1085                       shndx, index);
1086           continue;
1087         }
1088
1089       // Check for an earlier section number, since we're going to get
1090       // it wrong--we may have already decided to include the section.
1091       if (shndx < index)
1092         this->error(_("invalid section group %u refers to earlier section %u"),
1093                     index, shndx);
1094
1095       // Get the name of the member section.
1096       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1097       if (member_shdr.get_sh_name() >= section_names_size)
1098         {
1099           // This is an error, but it will be diagnosed eventually
1100           // in do_layout, so we don't need to do anything here but
1101           // ignore it.
1102           continue;
1103         }
1104       std::string mname(section_names + member_shdr.get_sh_name());
1105
1106       if (include_group)
1107         {
1108           if (is_comdat)
1109             kept_section->add_comdat_section(mname, shndx,
1110                                              member_shdr.get_sh_size());
1111         }
1112       else
1113         {
1114           (*omit)[shndx] = true;
1115
1116           if (is_comdat)
1117             {
1118               Relobj* kept_object = kept_section->object();
1119               if (kept_section->is_comdat())
1120                 {
1121                   // Find the corresponding kept section, and store
1122                   // that info in the discarded section table.
1123                   unsigned int kept_shndx;
1124                   uint64_t kept_size;
1125                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1126                                                         &kept_size))
1127                     {
1128                       // We don't keep a mapping for this section if
1129                       // it has a different size.  The mapping is only
1130                       // used for relocation processing, and we don't
1131                       // want to treat the sections as similar if the
1132                       // sizes are different.  Checking the section
1133                       // size is the approach used by the GNU linker.
1134                       if (kept_size == member_shdr.get_sh_size())
1135                         this->set_kept_comdat_section(shndx, kept_object,
1136                                                       kept_shndx);
1137                     }
1138                 }
1139               else
1140                 {
1141                   // The existing section is a linkonce section.  Add
1142                   // a mapping if there is exactly one section in the
1143                   // group (which is true when COUNT == 2) and if it
1144                   // is the same size.
1145                   if (count == 2
1146                       && (kept_section->linkonce_size()
1147                           == member_shdr.get_sh_size()))
1148                     this->set_kept_comdat_section(shndx, kept_object,
1149                                                   kept_section->shndx());
1150                 }
1151             }
1152         }
1153     }
1154
1155   if (relocate_group)
1156     layout->layout_group(symtab, this, index, name, signature.c_str(),
1157                          shdr, flags, &shndxes);
1158
1159   return include_group;
1160 }
1161
1162 // Whether to include a linkonce section in the link.  NAME is the
1163 // name of the section and SHDR is the section header.
1164
1165 // Linkonce sections are a GNU extension implemented in the original
1166 // GNU linker before section groups were defined.  The semantics are
1167 // that we only include one linkonce section with a given name.  The
1168 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1169 // where T is the type of section and SYMNAME is the name of a symbol.
1170 // In an attempt to make linkonce sections interact well with section
1171 // groups, we try to identify SYMNAME and use it like a section group
1172 // signature.  We want to block section groups with that signature,
1173 // but not other linkonce sections with that signature.  We also use
1174 // the full name of the linkonce section as a normal section group
1175 // signature.
1176
1177 template<int size, bool big_endian>
1178 bool
1179 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1180     Layout* layout,
1181     unsigned int index,
1182     const char* name,
1183     const elfcpp::Shdr<size, big_endian>& shdr)
1184 {
1185   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1186   // In general the symbol name we want will be the string following
1187   // the last '.'.  However, we have to handle the case of
1188   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1189   // some versions of gcc.  So we use a heuristic: if the name starts
1190   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1191   // we look for the last '.'.  We can't always simply skip
1192   // ".gnu.linkonce.X", because we have to deal with cases like
1193   // ".gnu.linkonce.d.rel.ro.local".
1194   const char* const linkonce_t = ".gnu.linkonce.t.";
1195   const char* symname;
1196   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1197     symname = name + strlen(linkonce_t);
1198   else
1199     symname = strrchr(name, '.') + 1;
1200   std::string sig1(symname);
1201   std::string sig2(name);
1202   Kept_section* kept1;
1203   Kept_section* kept2;
1204   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1205                                                    false, &kept1);
1206   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1207                                                    true, &kept2);
1208
1209   if (!include2)
1210     {
1211       // We are not including this section because we already saw the
1212       // name of the section as a signature.  This normally implies
1213       // that the kept section is another linkonce section.  If it is
1214       // the same size, record it as the section which corresponds to
1215       // this one.
1216       if (kept2->object() != NULL
1217           && !kept2->is_comdat()
1218           && kept2->linkonce_size() == sh_size)
1219         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1220     }
1221   else if (!include1)
1222     {
1223       // The section is being discarded on the basis of its symbol
1224       // name.  This means that the corresponding kept section was
1225       // part of a comdat group, and it will be difficult to identify
1226       // the specific section within that group that corresponds to
1227       // this linkonce section.  We'll handle the simple case where
1228       // the group has only one member section.  Otherwise, it's not
1229       // worth the effort.
1230       unsigned int kept_shndx;
1231       uint64_t kept_size;
1232       if (kept1->object() != NULL
1233           && kept1->is_comdat()
1234           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1235           && kept_size == sh_size)
1236         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1237     }
1238   else
1239     {
1240       kept1->set_linkonce_size(sh_size);
1241       kept2->set_linkonce_size(sh_size);
1242     }
1243
1244   return include1 && include2;
1245 }
1246
1247 // Layout an input section.
1248
1249 template<int size, bool big_endian>
1250 inline void
1251 Sized_relobj_file<size, big_endian>::layout_section(
1252     Layout* layout,
1253     unsigned int shndx,
1254     const char* name,
1255     const typename This::Shdr& shdr,
1256     unsigned int reloc_shndx,
1257     unsigned int reloc_type)
1258 {
1259   off_t offset;
1260   Output_section* os = layout->layout(this, shndx, name, shdr,
1261                                           reloc_shndx, reloc_type, &offset);
1262
1263   this->output_sections()[shndx] = os;
1264   if (offset == -1)
1265     this->section_offsets()[shndx] = invalid_address;
1266   else
1267     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1268
1269   // If this section requires special handling, and if there are
1270   // relocs that apply to it, then we must do the special handling
1271   // before we apply the relocs.
1272   if (offset == -1 && reloc_shndx != 0)
1273     this->set_relocs_must_follow_section_writes();
1274 }
1275
1276 // Layout an input .eh_frame section.
1277
1278 template<int size, bool big_endian>
1279 void
1280 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1281     Layout* layout,
1282     const unsigned char* symbols_data,
1283     section_size_type symbols_size,
1284     const unsigned char* symbol_names_data,
1285     section_size_type symbol_names_size,
1286     unsigned int shndx,
1287     const typename This::Shdr& shdr,
1288     unsigned int reloc_shndx,
1289     unsigned int reloc_type)
1290 {
1291   gold_assert(this->has_eh_frame_);
1292
1293   off_t offset;
1294   Output_section* os = layout->layout_eh_frame(this,
1295                                                symbols_data,
1296                                                symbols_size,
1297                                                symbol_names_data,
1298                                                symbol_names_size,
1299                                                shndx,
1300                                                shdr,
1301                                                reloc_shndx,
1302                                                reloc_type,
1303                                                &offset);
1304   this->output_sections()[shndx] = os;
1305   if (os == NULL || offset == -1)
1306     {
1307       // An object can contain at most one section holding exception
1308       // frame information.
1309       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1310       this->discarded_eh_frame_shndx_ = shndx;
1311       this->section_offsets()[shndx] = invalid_address;
1312     }
1313   else
1314     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1315
1316   // If this section requires special handling, and if there are
1317   // relocs that aply to it, then we must do the special handling
1318   // before we apply the relocs.
1319   if (os != NULL && offset == -1 && reloc_shndx != 0)
1320     this->set_relocs_must_follow_section_writes();
1321 }
1322
1323 // Lay out the input sections.  We walk through the sections and check
1324 // whether they should be included in the link.  If they should, we
1325 // pass them to the Layout object, which will return an output section
1326 // and an offset.
1327 // This function is called twice sometimes, two passes, when mapping
1328 // of input sections to output sections must be delayed.
1329 // This is true for the following :
1330 // * Garbage collection (--gc-sections): Some input sections will be
1331 // discarded and hence the assignment must wait until the second pass.
1332 // In the first pass,  it is for setting up some sections as roots to
1333 // a work-list for --gc-sections and to do comdat processing.
1334 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1335 // will be folded and hence the assignment must wait.
1336 // * Using plugins to map some sections to unique segments: Mapping
1337 // some sections to unique segments requires mapping them to unique
1338 // output sections too.  This can be done via plugins now and this
1339 // information is not available in the first pass.
1340
1341 template<int size, bool big_endian>
1342 void
1343 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1344                                                Layout* layout,
1345                                                Read_symbols_data* sd)
1346 {
1347   const unsigned int shnum = this->shnum();
1348
1349   /* Should this function be called twice?  */
1350   bool is_two_pass = (parameters->options().gc_sections()
1351                       || parameters->options().icf_enabled()
1352                       || layout->is_unique_segment_for_sections_specified());
1353
1354   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1355      a two-pass approach is not needed.  */
1356   bool is_pass_one = false;
1357   bool is_pass_two = false;
1358
1359   Symbols_data* gc_sd = NULL;
1360
1361   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1362      should happen.  In the first pass, the data in sd is saved to be used
1363      later in the second pass.  */
1364   if (is_two_pass)
1365     {
1366       gc_sd = this->get_symbols_data();
1367       if (gc_sd == NULL)
1368         {
1369           gold_assert(sd != NULL);
1370           is_pass_one = true;
1371         }
1372       else
1373         {
1374           if (parameters->options().gc_sections())
1375             gold_assert(symtab->gc()->is_worklist_ready());
1376           if (parameters->options().icf_enabled())
1377             gold_assert(symtab->icf()->is_icf_ready()); 
1378           is_pass_two = true;
1379         }
1380     }
1381     
1382   if (shnum == 0)
1383     return;
1384
1385   if (is_pass_one)
1386     {
1387       // During garbage collection save the symbols data to use it when
1388       // re-entering this function.
1389       gc_sd = new Symbols_data;
1390       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1391       this->set_symbols_data(gc_sd);
1392     }
1393
1394   const unsigned char* section_headers_data = NULL;
1395   section_size_type section_names_size;
1396   const unsigned char* symbols_data = NULL;
1397   section_size_type symbols_size;
1398   const unsigned char* symbol_names_data = NULL;
1399   section_size_type symbol_names_size;
1400
1401   if (is_two_pass)
1402     {
1403       section_headers_data = gc_sd->section_headers_data;
1404       section_names_size = gc_sd->section_names_size;
1405       symbols_data = gc_sd->symbols_data;
1406       symbols_size = gc_sd->symbols_size;
1407       symbol_names_data = gc_sd->symbol_names_data;
1408       symbol_names_size = gc_sd->symbol_names_size;
1409     }
1410   else
1411     {
1412       section_headers_data = sd->section_headers->data();
1413       section_names_size = sd->section_names_size;
1414       if (sd->symbols != NULL)
1415         symbols_data = sd->symbols->data();
1416       symbols_size = sd->symbols_size;
1417       if (sd->symbol_names != NULL)
1418         symbol_names_data = sd->symbol_names->data();
1419       symbol_names_size = sd->symbol_names_size;
1420     }
1421
1422   // Get the section headers.
1423   const unsigned char* shdrs = section_headers_data;
1424   const unsigned char* pshdrs;
1425
1426   // Get the section names.
1427   const unsigned char* pnamesu = (is_two_pass
1428                                   ? gc_sd->section_names_data
1429                                   : sd->section_names->data());
1430
1431   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1432
1433   // If any input files have been claimed by plugins, we need to defer
1434   // actual layout until the replacement files have arrived.
1435   const bool should_defer_layout =
1436       (parameters->options().has_plugins()
1437        && parameters->options().plugins()->should_defer_layout());
1438   unsigned int num_sections_to_defer = 0;
1439
1440   // For each section, record the index of the reloc section if any.
1441   // Use 0 to mean that there is no reloc section, -1U to mean that
1442   // there is more than one.
1443   std::vector<unsigned int> reloc_shndx(shnum, 0);
1444   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1445   // Skip the first, dummy, section.
1446   pshdrs = shdrs + This::shdr_size;
1447   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1448     {
1449       typename This::Shdr shdr(pshdrs);
1450
1451       // Count the number of sections whose layout will be deferred.
1452       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1453         ++num_sections_to_defer;
1454
1455       unsigned int sh_type = shdr.get_sh_type();
1456       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1457         {
1458           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1459           if (target_shndx == 0 || target_shndx >= shnum)
1460             {
1461               this->error(_("relocation section %u has bad info %u"),
1462                           i, target_shndx);
1463               continue;
1464             }
1465
1466           if (reloc_shndx[target_shndx] != 0)
1467             reloc_shndx[target_shndx] = -1U;
1468           else
1469             {
1470               reloc_shndx[target_shndx] = i;
1471               reloc_type[target_shndx] = sh_type;
1472             }
1473         }
1474     }
1475
1476   Output_sections& out_sections(this->output_sections());
1477   std::vector<Address>& out_section_offsets(this->section_offsets());
1478
1479   if (!is_pass_two)
1480     {
1481       out_sections.resize(shnum);
1482       out_section_offsets.resize(shnum);
1483     }
1484
1485   // If we are only linking for symbols, then there is nothing else to
1486   // do here.
1487   if (this->input_file()->just_symbols())
1488     {
1489       if (!is_pass_two)
1490         {
1491           delete sd->section_headers;
1492           sd->section_headers = NULL;
1493           delete sd->section_names;
1494           sd->section_names = NULL;
1495         }
1496       return;
1497     }
1498
1499   if (num_sections_to_defer > 0)
1500     {
1501       parameters->options().plugins()->add_deferred_layout_object(this);
1502       this->deferred_layout_.reserve(num_sections_to_defer);
1503       this->is_deferred_layout_ = true;
1504     }
1505
1506   // Whether we've seen a .note.GNU-stack section.
1507   bool seen_gnu_stack = false;
1508   // The flags of a .note.GNU-stack section.
1509   uint64_t gnu_stack_flags = 0;
1510
1511   // Keep track of which sections to omit.
1512   std::vector<bool> omit(shnum, false);
1513
1514   // Keep track of reloc sections when emitting relocations.
1515   const bool relocatable = parameters->options().relocatable();
1516   const bool emit_relocs = (relocatable
1517                             || parameters->options().emit_relocs());
1518   std::vector<unsigned int> reloc_sections;
1519
1520   // Keep track of .eh_frame sections.
1521   std::vector<unsigned int> eh_frame_sections;
1522
1523   // Keep track of .debug_info and .debug_types sections.
1524   std::vector<unsigned int> debug_info_sections;
1525   std::vector<unsigned int> debug_types_sections;
1526
1527   // Skip the first, dummy, section.
1528   pshdrs = shdrs + This::shdr_size;
1529   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1530     {
1531       typename This::Shdr shdr(pshdrs);
1532
1533       if (shdr.get_sh_name() >= section_names_size)
1534         {
1535           this->error(_("bad section name offset for section %u: %lu"),
1536                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1537           return;
1538         }
1539
1540       const char* name = pnames + shdr.get_sh_name();
1541
1542       if (!is_pass_two)
1543         {
1544           if (this->handle_gnu_warning_section(name, i, symtab))
1545             {
1546               if (!relocatable && !parameters->options().shared())
1547                 omit[i] = true;
1548             }
1549
1550           // The .note.GNU-stack section is special.  It gives the
1551           // protection flags that this object file requires for the stack
1552           // in memory.
1553           if (strcmp(name, ".note.GNU-stack") == 0)
1554             {
1555               seen_gnu_stack = true;
1556               gnu_stack_flags |= shdr.get_sh_flags();
1557               omit[i] = true;
1558             }
1559
1560           // The .note.GNU-split-stack section is also special.  It
1561           // indicates that the object was compiled with
1562           // -fsplit-stack.
1563           if (this->handle_split_stack_section(name))
1564             {
1565               if (!relocatable && !parameters->options().shared())
1566                 omit[i] = true;
1567             }
1568
1569           // Skip attributes section.
1570           if (parameters->target().is_attributes_section(name))
1571             {
1572               omit[i] = true;
1573             }
1574
1575           bool discard = omit[i];
1576           if (!discard)
1577             {
1578               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1579                 {
1580                   if (!this->include_section_group(symtab, layout, i, name,
1581                                                    shdrs, pnames,
1582                                                    section_names_size,
1583                                                    &omit))
1584                     discard = true;
1585                 }
1586               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1587                        && Layout::is_linkonce(name))
1588                 {
1589                   if (!this->include_linkonce_section(layout, i, name, shdr))
1590                     discard = true;
1591                 }
1592             }
1593
1594           // Add the section to the incremental inputs layout.
1595           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1596           if (incremental_inputs != NULL
1597               && !discard
1598               && can_incremental_update(shdr.get_sh_type()))
1599             {
1600               off_t sh_size = shdr.get_sh_size();
1601               section_size_type uncompressed_size;
1602               if (this->section_is_compressed(i, &uncompressed_size))
1603                 sh_size = uncompressed_size;
1604               incremental_inputs->report_input_section(this, i, name, sh_size);
1605             }
1606
1607           if (discard)
1608             {
1609               // Do not include this section in the link.
1610               out_sections[i] = NULL;
1611               out_section_offsets[i] = invalid_address;
1612               continue;
1613             }
1614         }
1615
1616       if (is_pass_one && parameters->options().gc_sections())
1617         {
1618           if (this->is_section_name_included(name)
1619               || layout->keep_input_section (this, name)
1620               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1621               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1622             {
1623               symtab->gc()->worklist().push_back(Section_id(this, i));
1624             }
1625           // If the section name XXX can be represented as a C identifier
1626           // it cannot be discarded if there are references to
1627           // __start_XXX and __stop_XXX symbols.  These need to be
1628           // specially handled.
1629           if (is_cident(name))
1630             {
1631               symtab->gc()->add_cident_section(name, Section_id(this, i));
1632             }
1633         }
1634
1635       // When doing a relocatable link we are going to copy input
1636       // reloc sections into the output.  We only want to copy the
1637       // ones associated with sections which are not being discarded.
1638       // However, we don't know that yet for all sections.  So save
1639       // reloc sections and process them later. Garbage collection is
1640       // not triggered when relocatable code is desired.
1641       if (emit_relocs
1642           && (shdr.get_sh_type() == elfcpp::SHT_REL
1643               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1644         {
1645           reloc_sections.push_back(i);
1646           continue;
1647         }
1648
1649       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1650         continue;
1651
1652       // The .eh_frame section is special.  It holds exception frame
1653       // information that we need to read in order to generate the
1654       // exception frame header.  We process these after all the other
1655       // sections so that the exception frame reader can reliably
1656       // determine which sections are being discarded, and discard the
1657       // corresponding information.
1658       if (!relocatable
1659           && strcmp(name, ".eh_frame") == 0
1660           && this->check_eh_frame_flags(&shdr))
1661         {
1662           if (is_pass_one)
1663             {
1664               if (this->is_deferred_layout())
1665                 out_sections[i] = reinterpret_cast<Output_section*>(2);
1666               else
1667                 out_sections[i] = reinterpret_cast<Output_section*>(1);
1668               out_section_offsets[i] = invalid_address;
1669             }
1670           else if (this->is_deferred_layout())
1671             this->deferred_layout_.push_back(Deferred_layout(i, name,
1672                                                              pshdrs,
1673                                                              reloc_shndx[i],
1674                                                              reloc_type[i]));
1675           else
1676             eh_frame_sections.push_back(i);
1677           continue;
1678         }
1679
1680       if (is_pass_two && parameters->options().gc_sections())
1681         {
1682           // This is executed during the second pass of garbage
1683           // collection. do_layout has been called before and some
1684           // sections have been already discarded. Simply ignore
1685           // such sections this time around.
1686           if (out_sections[i] == NULL)
1687             {
1688               gold_assert(out_section_offsets[i] == invalid_address);
1689               continue;
1690             }
1691           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1692               && symtab->gc()->is_section_garbage(this, i))
1693               {
1694                 if (parameters->options().print_gc_sections())
1695                   gold_info(_("%s: removing unused section from '%s'"
1696                               " in file '%s'"),
1697                             program_name, this->section_name(i).c_str(),
1698                             this->name().c_str());
1699                 out_sections[i] = NULL;
1700                 out_section_offsets[i] = invalid_address;
1701                 continue;
1702               }
1703         }
1704
1705       if (is_pass_two && parameters->options().icf_enabled())
1706         {
1707           if (out_sections[i] == NULL)
1708             {
1709               gold_assert(out_section_offsets[i] == invalid_address);
1710               continue;
1711             }
1712           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1713               && symtab->icf()->is_section_folded(this, i))
1714               {
1715                 if (parameters->options().print_icf_sections())
1716                   {
1717                     Section_id folded =
1718                                 symtab->icf()->get_folded_section(this, i);
1719                     Relobj* folded_obj =
1720                                 reinterpret_cast<Relobj*>(folded.first);
1721                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1722                                 "into '%s' in file '%s'"),
1723                               program_name, this->section_name(i).c_str(),
1724                               this->name().c_str(),
1725                               folded_obj->section_name(folded.second).c_str(),
1726                               folded_obj->name().c_str());
1727                   }
1728                 out_sections[i] = NULL;
1729                 out_section_offsets[i] = invalid_address;
1730                 continue;
1731               }
1732         }
1733
1734       // Defer layout here if input files are claimed by plugins.  When gc
1735       // is turned on this function is called twice; we only want to do this
1736       // on the first pass.
1737       if (!is_pass_two
1738           && this->is_deferred_layout()
1739           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1740         {
1741           this->deferred_layout_.push_back(Deferred_layout(i, name,
1742                                                            pshdrs,
1743                                                            reloc_shndx[i],
1744                                                            reloc_type[i]));
1745           // Put dummy values here; real values will be supplied by
1746           // do_layout_deferred_sections.
1747           out_sections[i] = reinterpret_cast<Output_section*>(2);
1748           out_section_offsets[i] = invalid_address;
1749           continue;
1750         }
1751
1752       // During gc_pass_two if a section that was previously deferred is
1753       // found, do not layout the section as layout_deferred_sections will
1754       // do it later from gold.cc.
1755       if (is_pass_two
1756           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1757         continue;
1758
1759       if (is_pass_one)
1760         {
1761           // This is during garbage collection. The out_sections are
1762           // assigned in the second call to this function.
1763           out_sections[i] = reinterpret_cast<Output_section*>(1);
1764           out_section_offsets[i] = invalid_address;
1765         }
1766       else
1767         {
1768           // When garbage collection is switched on the actual layout
1769           // only happens in the second call.
1770           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1771                                reloc_type[i]);
1772
1773           // When generating a .gdb_index section, we do additional
1774           // processing of .debug_info and .debug_types sections after all
1775           // the other sections for the same reason as above.
1776           if (!relocatable
1777               && parameters->options().gdb_index()
1778               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1779             {
1780               if (strcmp(name, ".debug_info") == 0
1781                   || strcmp(name, ".zdebug_info") == 0)
1782                 debug_info_sections.push_back(i);
1783               else if (strcmp(name, ".debug_types") == 0
1784                        || strcmp(name, ".zdebug_types") == 0)
1785                 debug_types_sections.push_back(i);
1786             }
1787         }
1788     }
1789
1790   if (!is_pass_two)
1791     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1792
1793   // Handle the .eh_frame sections after the other sections.
1794   gold_assert(!is_pass_one || eh_frame_sections.empty());
1795   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1796        p != eh_frame_sections.end();
1797        ++p)
1798     {
1799       unsigned int i = *p;
1800       const unsigned char* pshdr;
1801       pshdr = section_headers_data + i * This::shdr_size;
1802       typename This::Shdr shdr(pshdr);
1803
1804       this->layout_eh_frame_section(layout,
1805                                     symbols_data,
1806                                     symbols_size,
1807                                     symbol_names_data,
1808                                     symbol_names_size,
1809                                     i,
1810                                     shdr,
1811                                     reloc_shndx[i],
1812                                     reloc_type[i]);
1813     }
1814
1815   // When doing a relocatable link handle the reloc sections at the
1816   // end.  Garbage collection  and Identical Code Folding is not
1817   // turned on for relocatable code.
1818   if (emit_relocs)
1819     this->size_relocatable_relocs();
1820
1821   gold_assert(!is_two_pass || reloc_sections.empty());
1822
1823   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1824        p != reloc_sections.end();
1825        ++p)
1826     {
1827       unsigned int i = *p;
1828       const unsigned char* pshdr;
1829       pshdr = section_headers_data + i * This::shdr_size;
1830       typename This::Shdr shdr(pshdr);
1831
1832       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1833       if (data_shndx >= shnum)
1834         {
1835           // We already warned about this above.
1836           continue;
1837         }
1838
1839       Output_section* data_section = out_sections[data_shndx];
1840       if (data_section == reinterpret_cast<Output_section*>(2))
1841         {
1842           if (is_pass_two)
1843             continue;
1844           // The layout for the data section was deferred, so we need
1845           // to defer the relocation section, too.
1846           const char* name = pnames + shdr.get_sh_name();
1847           this->deferred_layout_relocs_.push_back(
1848               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1849           out_sections[i] = reinterpret_cast<Output_section*>(2);
1850           out_section_offsets[i] = invalid_address;
1851           continue;
1852         }
1853       if (data_section == NULL)
1854         {
1855           out_sections[i] = NULL;
1856           out_section_offsets[i] = invalid_address;
1857           continue;
1858         }
1859
1860       Relocatable_relocs* rr = new Relocatable_relocs();
1861       this->set_relocatable_relocs(i, rr);
1862
1863       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1864                                                 rr);
1865       out_sections[i] = os;
1866       out_section_offsets[i] = invalid_address;
1867     }
1868
1869   // When building a .gdb_index section, scan the .debug_info and
1870   // .debug_types sections.
1871   gold_assert(!is_pass_one
1872               || (debug_info_sections.empty() && debug_types_sections.empty()));
1873   for (std::vector<unsigned int>::const_iterator p
1874            = debug_info_sections.begin();
1875        p != debug_info_sections.end();
1876        ++p)
1877     {
1878       unsigned int i = *p;
1879       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1880                                i, reloc_shndx[i], reloc_type[i]);
1881     }
1882   for (std::vector<unsigned int>::const_iterator p
1883            = debug_types_sections.begin();
1884        p != debug_types_sections.end();
1885        ++p)
1886     {
1887       unsigned int i = *p;
1888       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1889                                i, reloc_shndx[i], reloc_type[i]);
1890     }
1891
1892   if (is_pass_two)
1893     {
1894       delete[] gc_sd->section_headers_data;
1895       delete[] gc_sd->section_names_data;
1896       delete[] gc_sd->symbols_data;
1897       delete[] gc_sd->symbol_names_data;
1898       this->set_symbols_data(NULL);
1899     }
1900   else
1901     {
1902       delete sd->section_headers;
1903       sd->section_headers = NULL;
1904       delete sd->section_names;
1905       sd->section_names = NULL;
1906     }
1907 }
1908
1909 // Layout sections whose layout was deferred while waiting for
1910 // input files from a plugin.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1915 {
1916   typename std::vector<Deferred_layout>::iterator deferred;
1917
1918   for (deferred = this->deferred_layout_.begin();
1919        deferred != this->deferred_layout_.end();
1920        ++deferred)
1921     {
1922       typename This::Shdr shdr(deferred->shdr_data_);
1923
1924       if (!parameters->options().relocatable()
1925           && deferred->name_ == ".eh_frame"
1926           && this->check_eh_frame_flags(&shdr))
1927         {
1928           // Checking is_section_included is not reliable for
1929           // .eh_frame sections, because they do not have an output
1930           // section.  This is not a problem normally because we call
1931           // layout_eh_frame_section unconditionally, but when
1932           // deferring sections that is not true.  We don't want to
1933           // keep all .eh_frame sections because that will cause us to
1934           // keep all sections that they refer to, which is the wrong
1935           // way around.  Instead, the eh_frame code will discard
1936           // .eh_frame sections that refer to discarded sections.
1937
1938           // Reading the symbols again here may be slow.
1939           Read_symbols_data sd;
1940           this->base_read_symbols(&sd);
1941           this->layout_eh_frame_section(layout,
1942                                         sd.symbols->data(),
1943                                         sd.symbols_size,
1944                                         sd.symbol_names->data(),
1945                                         sd.symbol_names_size,
1946                                         deferred->shndx_,
1947                                         shdr,
1948                                         deferred->reloc_shndx_,
1949                                         deferred->reloc_type_);
1950           continue;
1951         }
1952
1953       // If the section is not included, it is because the garbage collector
1954       // decided it is not needed.  Avoid reverting that decision.
1955       if (!this->is_section_included(deferred->shndx_))
1956         continue;
1957
1958       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1959                            shdr, deferred->reloc_shndx_,
1960                            deferred->reloc_type_);
1961     }
1962
1963   this->deferred_layout_.clear();
1964
1965   // Now handle the deferred relocation sections.
1966
1967   Output_sections& out_sections(this->output_sections());
1968   std::vector<Address>& out_section_offsets(this->section_offsets());
1969
1970   for (deferred = this->deferred_layout_relocs_.begin();
1971        deferred != this->deferred_layout_relocs_.end();
1972        ++deferred)
1973     {
1974       unsigned int shndx = deferred->shndx_;
1975       typename This::Shdr shdr(deferred->shdr_data_);
1976       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1977
1978       Output_section* data_section = out_sections[data_shndx];
1979       if (data_section == NULL)
1980         {
1981           out_sections[shndx] = NULL;
1982           out_section_offsets[shndx] = invalid_address;
1983           continue;
1984         }
1985
1986       Relocatable_relocs* rr = new Relocatable_relocs();
1987       this->set_relocatable_relocs(shndx, rr);
1988
1989       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1990                                                 data_section, rr);
1991       out_sections[shndx] = os;
1992       out_section_offsets[shndx] = invalid_address;
1993     }
1994 }
1995
1996 // Add the symbols to the symbol table.
1997
1998 template<int size, bool big_endian>
1999 void
2000 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2001                                                     Read_symbols_data* sd,
2002                                                     Layout*)
2003 {
2004   if (sd->symbols == NULL)
2005     {
2006       gold_assert(sd->symbol_names == NULL);
2007       return;
2008     }
2009
2010   const int sym_size = This::sym_size;
2011   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2012                      / sym_size);
2013   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2014     {
2015       this->error(_("size of symbols is not multiple of symbol size"));
2016       return;
2017     }
2018
2019   this->symbols_.resize(symcount);
2020
2021   const char* sym_names =
2022     reinterpret_cast<const char*>(sd->symbol_names->data());
2023   symtab->add_from_relobj(this,
2024                           sd->symbols->data() + sd->external_symbols_offset,
2025                           symcount, this->local_symbol_count_,
2026                           sym_names, sd->symbol_names_size,
2027                           &this->symbols_,
2028                           &this->defined_count_);
2029
2030   delete sd->symbols;
2031   sd->symbols = NULL;
2032   delete sd->symbol_names;
2033   sd->symbol_names = NULL;
2034 }
2035
2036 // Find out if this object, that is a member of a lib group, should be included
2037 // in the link. We check every symbol defined by this object. If the symbol
2038 // table has a strong undefined reference to that symbol, we have to include
2039 // the object.
2040
2041 template<int size, bool big_endian>
2042 Archive::Should_include
2043 Sized_relobj_file<size, big_endian>::do_should_include_member(
2044     Symbol_table* symtab,
2045     Layout* layout,
2046     Read_symbols_data* sd,
2047     std::string* why)
2048 {
2049   char* tmpbuf = NULL;
2050   size_t tmpbuflen = 0;
2051   const char* sym_names =
2052       reinterpret_cast<const char*>(sd->symbol_names->data());
2053   const unsigned char* syms =
2054       sd->symbols->data() + sd->external_symbols_offset;
2055   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2056   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2057                          / sym_size);
2058
2059   const unsigned char* p = syms;
2060
2061   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2062     {
2063       elfcpp::Sym<size, big_endian> sym(p);
2064       unsigned int st_shndx = sym.get_st_shndx();
2065       if (st_shndx == elfcpp::SHN_UNDEF)
2066         continue;
2067
2068       unsigned int st_name = sym.get_st_name();
2069       const char* name = sym_names + st_name;
2070       Symbol* symbol;
2071       Archive::Should_include t = Archive::should_include_member(symtab,
2072                                                                  layout,
2073                                                                  name,
2074                                                                  &symbol, why,
2075                                                                  &tmpbuf,
2076                                                                  &tmpbuflen);
2077       if (t == Archive::SHOULD_INCLUDE_YES)
2078         {
2079           if (tmpbuf != NULL)
2080             free(tmpbuf);
2081           return t;
2082         }
2083     }
2084   if (tmpbuf != NULL)
2085     free(tmpbuf);
2086   return Archive::SHOULD_INCLUDE_UNKNOWN;
2087 }
2088
2089 // Iterate over global defined symbols, calling a visitor class V for each.
2090
2091 template<int size, bool big_endian>
2092 void
2093 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2094     Read_symbols_data* sd,
2095     Library_base::Symbol_visitor_base* v)
2096 {
2097   const char* sym_names =
2098       reinterpret_cast<const char*>(sd->symbol_names->data());
2099   const unsigned char* syms =
2100       sd->symbols->data() + sd->external_symbols_offset;
2101   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2102   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2103                      / sym_size);
2104   const unsigned char* p = syms;
2105
2106   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2107     {
2108       elfcpp::Sym<size, big_endian> sym(p);
2109       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2110         v->visit(sym_names + sym.get_st_name());
2111     }
2112 }
2113
2114 // Return whether the local symbol SYMNDX has a PLT offset.
2115
2116 template<int size, bool big_endian>
2117 bool
2118 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2119     unsigned int symndx) const
2120 {
2121   typename Local_plt_offsets::const_iterator p =
2122     this->local_plt_offsets_.find(symndx);
2123   return p != this->local_plt_offsets_.end();
2124 }
2125
2126 // Get the PLT offset of a local symbol.
2127
2128 template<int size, bool big_endian>
2129 unsigned int
2130 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2131     unsigned int symndx) const
2132 {
2133   typename Local_plt_offsets::const_iterator p =
2134     this->local_plt_offsets_.find(symndx);
2135   gold_assert(p != this->local_plt_offsets_.end());
2136   return p->second;
2137 }
2138
2139 // Set the PLT offset of a local symbol.
2140
2141 template<int size, bool big_endian>
2142 void
2143 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2144     unsigned int symndx, unsigned int plt_offset)
2145 {
2146   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2147     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2148   gold_assert(ins.second);
2149 }
2150
2151 // First pass over the local symbols.  Here we add their names to
2152 // *POOL and *DYNPOOL, and we store the symbol value in
2153 // THIS->LOCAL_VALUES_.  This function is always called from a
2154 // singleton thread.  This is followed by a call to
2155 // finalize_local_symbols.
2156
2157 template<int size, bool big_endian>
2158 void
2159 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2160                                                             Stringpool* dynpool)
2161 {
2162   gold_assert(this->symtab_shndx_ != -1U);
2163   if (this->symtab_shndx_ == 0)
2164     {
2165       // This object has no symbols.  Weird but legal.
2166       return;
2167     }
2168
2169   // Read the symbol table section header.
2170   const unsigned int symtab_shndx = this->symtab_shndx_;
2171   typename This::Shdr symtabshdr(this,
2172                                  this->elf_file_.section_header(symtab_shndx));
2173   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2174
2175   // Read the local symbols.
2176   const int sym_size = This::sym_size;
2177   const unsigned int loccount = this->local_symbol_count_;
2178   gold_assert(loccount == symtabshdr.get_sh_info());
2179   off_t locsize = loccount * sym_size;
2180   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2181                                               locsize, true, true);
2182
2183   // Read the symbol names.
2184   const unsigned int strtab_shndx =
2185     this->adjust_shndx(symtabshdr.get_sh_link());
2186   section_size_type strtab_size;
2187   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2188                                                         &strtab_size,
2189                                                         true);
2190   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2191
2192   // Loop over the local symbols.
2193
2194   const Output_sections& out_sections(this->output_sections());
2195   std::vector<Address>& out_section_offsets(this->section_offsets());
2196   unsigned int shnum = this->shnum();
2197   unsigned int count = 0;
2198   unsigned int dyncount = 0;
2199   // Skip the first, dummy, symbol.
2200   psyms += sym_size;
2201   bool strip_all = parameters->options().strip_all();
2202   bool discard_all = parameters->options().discard_all();
2203   bool discard_locals = parameters->options().discard_locals();
2204   bool discard_sec_merge = parameters->options().discard_sec_merge();
2205   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2206     {
2207       elfcpp::Sym<size, big_endian> sym(psyms);
2208
2209       Symbol_value<size>& lv(this->local_values_[i]);
2210
2211       bool is_ordinary;
2212       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2213                                                   &is_ordinary);
2214       lv.set_input_shndx(shndx, is_ordinary);
2215
2216       if (sym.get_st_type() == elfcpp::STT_SECTION)
2217         lv.set_is_section_symbol();
2218       else if (sym.get_st_type() == elfcpp::STT_TLS)
2219         lv.set_is_tls_symbol();
2220       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2221         lv.set_is_ifunc_symbol();
2222
2223       // Save the input symbol value for use in do_finalize_local_symbols().
2224       lv.set_input_value(sym.get_st_value());
2225
2226       // Decide whether this symbol should go into the output file.
2227
2228       if ((shndx < shnum && out_sections[shndx] == NULL)
2229           || shndx == this->discarded_eh_frame_shndx_)
2230         {
2231           lv.set_no_output_symtab_entry();
2232           gold_assert(!lv.needs_output_dynsym_entry());
2233           continue;
2234         }
2235
2236       if (sym.get_st_type() == elfcpp::STT_SECTION
2237           || !this->adjust_local_symbol(&lv))
2238         {
2239           lv.set_no_output_symtab_entry();
2240           gold_assert(!lv.needs_output_dynsym_entry());
2241           continue;
2242         }
2243
2244       if (sym.get_st_name() >= strtab_size)
2245         {
2246           this->error(_("local symbol %u section name out of range: %u >= %u"),
2247                       i, sym.get_st_name(),
2248                       static_cast<unsigned int>(strtab_size));
2249           lv.set_no_output_symtab_entry();
2250           continue;
2251         }
2252
2253       const char* name = pnames + sym.get_st_name();
2254
2255       // If needed, add the symbol to the dynamic symbol table string pool.
2256       if (lv.needs_output_dynsym_entry())
2257         {
2258           dynpool->add(name, true, NULL);
2259           ++dyncount;
2260         }
2261
2262       if (strip_all
2263           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2264         {
2265           lv.set_no_output_symtab_entry();
2266           continue;
2267         }
2268
2269       // By default, discard temporary local symbols in merge sections.
2270       // If --discard-locals option is used, discard all temporary local
2271       // symbols.  These symbols start with system-specific local label
2272       // prefixes, typically .L for ELF system.  We want to be compatible
2273       // with GNU ld so here we essentially use the same check in
2274       // bfd_is_local_label().  The code is different because we already
2275       // know that:
2276       //
2277       //   - the symbol is local and thus cannot have global or weak binding.
2278       //   - the symbol is not a section symbol.
2279       //   - the symbol has a name.
2280       //
2281       // We do not discard a symbol if it needs a dynamic symbol entry.
2282       if ((discard_locals
2283            || (discard_sec_merge
2284                && is_ordinary
2285                && out_section_offsets[shndx] == invalid_address))
2286           && sym.get_st_type() != elfcpp::STT_FILE
2287           && !lv.needs_output_dynsym_entry()
2288           && lv.may_be_discarded_from_output_symtab()
2289           && parameters->target().is_local_label_name(name))
2290         {
2291           lv.set_no_output_symtab_entry();
2292           continue;
2293         }
2294
2295       // Discard the local symbol if -retain_symbols_file is specified
2296       // and the local symbol is not in that file.
2297       if (!parameters->options().should_retain_symbol(name))
2298         {
2299           lv.set_no_output_symtab_entry();
2300           continue;
2301         }
2302
2303       // Add the symbol to the symbol table string pool.
2304       pool->add(name, true, NULL);
2305       ++count;
2306     }
2307
2308   this->output_local_symbol_count_ = count;
2309   this->output_local_dynsym_count_ = dyncount;
2310 }
2311
2312 // Compute the final value of a local symbol.
2313
2314 template<int size, bool big_endian>
2315 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2316 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2317     unsigned int r_sym,
2318     const Symbol_value<size>* lv_in,
2319     Symbol_value<size>* lv_out,
2320     bool relocatable,
2321     const Output_sections& out_sections,
2322     const std::vector<Address>& out_offsets,
2323     const Symbol_table* symtab)
2324 {
2325   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2326   // we may have a memory leak.
2327   gold_assert(lv_out->has_output_value());
2328
2329   bool is_ordinary;
2330   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2331
2332   // Set the output symbol value.
2333
2334   if (!is_ordinary)
2335     {
2336       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2337         lv_out->set_output_value(lv_in->input_value());
2338       else
2339         {
2340           this->error(_("unknown section index %u for local symbol %u"),
2341                       shndx, r_sym);
2342           lv_out->set_output_value(0);
2343           return This::CFLV_ERROR;
2344         }
2345     }
2346   else
2347     {
2348       if (shndx >= this->shnum())
2349         {
2350           this->error(_("local symbol %u section index %u out of range"),
2351                       r_sym, shndx);
2352           lv_out->set_output_value(0);
2353           return This::CFLV_ERROR;
2354         }
2355
2356       Output_section* os = out_sections[shndx];
2357       Address secoffset = out_offsets[shndx];
2358       if (symtab->is_section_folded(this, shndx))
2359         {
2360           gold_assert(os == NULL && secoffset == invalid_address);
2361           // Get the os of the section it is folded onto.
2362           Section_id folded = symtab->icf()->get_folded_section(this,
2363                                                                 shndx);
2364           gold_assert(folded.first != NULL);
2365           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2366             <Sized_relobj_file<size, big_endian>*>(folded.first);
2367           os = folded_obj->output_section(folded.second);
2368           gold_assert(os != NULL);
2369           secoffset = folded_obj->get_output_section_offset(folded.second);
2370
2371           // This could be a relaxed input section.
2372           if (secoffset == invalid_address)
2373             {
2374               const Output_relaxed_input_section* relaxed_section =
2375                 os->find_relaxed_input_section(folded_obj, folded.second);
2376               gold_assert(relaxed_section != NULL);
2377               secoffset = relaxed_section->address() - os->address();
2378             }
2379         }
2380
2381       if (os == NULL)
2382         {
2383           // This local symbol belongs to a section we are discarding.
2384           // In some cases when applying relocations later, we will
2385           // attempt to match it to the corresponding kept section,
2386           // so we leave the input value unchanged here.
2387           return This::CFLV_DISCARDED;
2388         }
2389       else if (secoffset == invalid_address)
2390         {
2391           uint64_t start;
2392
2393           // This is a SHF_MERGE section or one which otherwise
2394           // requires special handling.
2395           if (shndx == this->discarded_eh_frame_shndx_)
2396             {
2397               // This local symbol belongs to a discarded .eh_frame
2398               // section.  Just treat it like the case in which
2399               // os == NULL above.
2400               gold_assert(this->has_eh_frame_);
2401               return This::CFLV_DISCARDED;
2402             }
2403           else if (!lv_in->is_section_symbol())
2404             {
2405               // This is not a section symbol.  We can determine
2406               // the final value now.
2407               lv_out->set_output_value(
2408                   os->output_address(this, shndx, lv_in->input_value()));
2409             }
2410           else if (!os->find_starting_output_address(this, shndx, &start))
2411             {
2412               // This is a section symbol, but apparently not one in a
2413               // merged section.  First check to see if this is a relaxed
2414               // input section.  If so, use its address.  Otherwise just
2415               // use the start of the output section.  This happens with
2416               // relocatable links when the input object has section
2417               // symbols for arbitrary non-merge sections.
2418               const Output_section_data* posd =
2419                 os->find_relaxed_input_section(this, shndx);
2420               if (posd != NULL)
2421                 {
2422                   Address relocatable_link_adjustment =
2423                     relocatable ? os->address() : 0;
2424                   lv_out->set_output_value(posd->address()
2425                                            - relocatable_link_adjustment);
2426                 }
2427               else
2428                 lv_out->set_output_value(os->address());
2429             }
2430           else
2431             {
2432               // We have to consider the addend to determine the
2433               // value to use in a relocation.  START is the start
2434               // of this input section.  If we are doing a relocatable
2435               // link, use offset from start output section instead of
2436               // address.
2437               Address adjusted_start =
2438                 relocatable ? start - os->address() : start;
2439               Merged_symbol_value<size>* msv =
2440                 new Merged_symbol_value<size>(lv_in->input_value(),
2441                                               adjusted_start);
2442               lv_out->set_merged_symbol_value(msv);
2443             }
2444         }
2445       else if (lv_in->is_tls_symbol()
2446                || (lv_in->is_section_symbol()
2447                    && (os->flags() & elfcpp::SHF_TLS)))
2448         lv_out->set_output_value(os->tls_offset()
2449                                  + secoffset
2450                                  + lv_in->input_value());
2451       else
2452         lv_out->set_output_value((relocatable ? 0 : os->address())
2453                                  + secoffset
2454                                  + lv_in->input_value());
2455     }
2456   return This::CFLV_OK;
2457 }
2458
2459 // Compute final local symbol value.  R_SYM is the index of a local
2460 // symbol in symbol table.  LV points to a symbol value, which is
2461 // expected to hold the input value and to be over-written by the
2462 // final value.  SYMTAB points to a symbol table.  Some targets may want
2463 // to know would-be-finalized local symbol values in relaxation.
2464 // Hence we provide this method.  Since this method updates *LV, a
2465 // callee should make a copy of the original local symbol value and
2466 // use the copy instead of modifying an object's local symbols before
2467 // everything is finalized.  The caller should also free up any allocated
2468 // memory in the return value in *LV.
2469 template<int size, bool big_endian>
2470 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2471 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2472     unsigned int r_sym,
2473     const Symbol_value<size>* lv_in,
2474     Symbol_value<size>* lv_out,
2475     const Symbol_table* symtab)
2476 {
2477   // This is just a wrapper of compute_final_local_value_internal.
2478   const bool relocatable = parameters->options().relocatable();
2479   const Output_sections& out_sections(this->output_sections());
2480   const std::vector<Address>& out_offsets(this->section_offsets());
2481   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2482                                                   relocatable, out_sections,
2483                                                   out_offsets, symtab);
2484 }
2485
2486 // Finalize the local symbols.  Here we set the final value in
2487 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2488 // This function is always called from a singleton thread.  The actual
2489 // output of the local symbols will occur in a separate task.
2490
2491 template<int size, bool big_endian>
2492 unsigned int
2493 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2494     unsigned int index,
2495     off_t off,
2496     Symbol_table* symtab)
2497 {
2498   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2499
2500   const unsigned int loccount = this->local_symbol_count_;
2501   this->local_symbol_offset_ = off;
2502
2503   const bool relocatable = parameters->options().relocatable();
2504   const Output_sections& out_sections(this->output_sections());
2505   const std::vector<Address>& out_offsets(this->section_offsets());
2506
2507   for (unsigned int i = 1; i < loccount; ++i)
2508     {
2509       Symbol_value<size>* lv = &this->local_values_[i];
2510
2511       Compute_final_local_value_status cflv_status =
2512         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2513                                                  out_sections, out_offsets,
2514                                                  symtab);
2515       switch (cflv_status)
2516         {
2517         case CFLV_OK:
2518           if (!lv->is_output_symtab_index_set())
2519             {
2520               lv->set_output_symtab_index(index);
2521               ++index;
2522             }
2523           break;
2524         case CFLV_DISCARDED:
2525         case CFLV_ERROR:
2526           // Do nothing.
2527           break;
2528         default:
2529           gold_unreachable();
2530         }
2531     }
2532   return index;
2533 }
2534
2535 // Set the output dynamic symbol table indexes for the local variables.
2536
2537 template<int size, bool big_endian>
2538 unsigned int
2539 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2540     unsigned int index)
2541 {
2542   const unsigned int loccount = this->local_symbol_count_;
2543   for (unsigned int i = 1; i < loccount; ++i)
2544     {
2545       Symbol_value<size>& lv(this->local_values_[i]);
2546       if (lv.needs_output_dynsym_entry())
2547         {
2548           lv.set_output_dynsym_index(index);
2549           ++index;
2550         }
2551     }
2552   return index;
2553 }
2554
2555 // Set the offset where local dynamic symbol information will be stored.
2556 // Returns the count of local symbols contributed to the symbol table by
2557 // this object.
2558
2559 template<int size, bool big_endian>
2560 unsigned int
2561 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2562 {
2563   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2564   this->local_dynsym_offset_ = off;
2565   return this->output_local_dynsym_count_;
2566 }
2567
2568 // If Symbols_data is not NULL get the section flags from here otherwise
2569 // get it from the file.
2570
2571 template<int size, bool big_endian>
2572 uint64_t
2573 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2574 {
2575   Symbols_data* sd = this->get_symbols_data();
2576   if (sd != NULL)
2577     {
2578       const unsigned char* pshdrs = sd->section_headers_data
2579                                     + This::shdr_size * shndx;
2580       typename This::Shdr shdr(pshdrs);
2581       return shdr.get_sh_flags();
2582     }
2583   // If sd is NULL, read the section header from the file.
2584   return this->elf_file_.section_flags(shndx);
2585 }
2586
2587 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2588 // in icf.cc
2589
2590 template<int size, bool big_endian>
2591 uint64_t
2592 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2593 {
2594   Symbols_data* sd = this->get_symbols_data();
2595   gold_assert(sd != NULL);
2596
2597   const unsigned char* pshdrs = sd->section_headers_data
2598                                 + This::shdr_size * shndx;
2599   typename This::Shdr shdr(pshdrs);
2600   return shdr.get_sh_entsize();
2601 }
2602
2603 // Write out the local symbols.
2604
2605 template<int size, bool big_endian>
2606 void
2607 Sized_relobj_file<size, big_endian>::write_local_symbols(
2608     Output_file* of,
2609     const Stringpool* sympool,
2610     const Stringpool* dynpool,
2611     Output_symtab_xindex* symtab_xindex,
2612     Output_symtab_xindex* dynsym_xindex,
2613     off_t symtab_off)
2614 {
2615   const bool strip_all = parameters->options().strip_all();
2616   if (strip_all)
2617     {
2618       if (this->output_local_dynsym_count_ == 0)
2619         return;
2620       this->output_local_symbol_count_ = 0;
2621     }
2622
2623   gold_assert(this->symtab_shndx_ != -1U);
2624   if (this->symtab_shndx_ == 0)
2625     {
2626       // This object has no symbols.  Weird but legal.
2627       return;
2628     }
2629
2630   // Read the symbol table section header.
2631   const unsigned int symtab_shndx = this->symtab_shndx_;
2632   typename This::Shdr symtabshdr(this,
2633                                  this->elf_file_.section_header(symtab_shndx));
2634   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2635   const unsigned int loccount = this->local_symbol_count_;
2636   gold_assert(loccount == symtabshdr.get_sh_info());
2637
2638   // Read the local symbols.
2639   const int sym_size = This::sym_size;
2640   off_t locsize = loccount * sym_size;
2641   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2642                                               locsize, true, false);
2643
2644   // Read the symbol names.
2645   const unsigned int strtab_shndx =
2646     this->adjust_shndx(symtabshdr.get_sh_link());
2647   section_size_type strtab_size;
2648   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2649                                                         &strtab_size,
2650                                                         false);
2651   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2652
2653   // Get views into the output file for the portions of the symbol table
2654   // and the dynamic symbol table that we will be writing.
2655   off_t output_size = this->output_local_symbol_count_ * sym_size;
2656   unsigned char* oview = NULL;
2657   if (output_size > 0)
2658     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2659                                 output_size);
2660
2661   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2662   unsigned char* dyn_oview = NULL;
2663   if (dyn_output_size > 0)
2664     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2665                                     dyn_output_size);
2666
2667   const Output_sections& out_sections(this->output_sections());
2668
2669   gold_assert(this->local_values_.size() == loccount);
2670
2671   unsigned char* ov = oview;
2672   unsigned char* dyn_ov = dyn_oview;
2673   psyms += sym_size;
2674   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2675     {
2676       elfcpp::Sym<size, big_endian> isym(psyms);
2677
2678       Symbol_value<size>& lv(this->local_values_[i]);
2679       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = lv.value(this, 0);
2680
2681       bool is_ordinary;
2682       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2683                                                      &is_ordinary);
2684       if (is_ordinary)
2685         {
2686           gold_assert(st_shndx < out_sections.size());
2687           if (out_sections[st_shndx] == NULL)
2688             continue;
2689           // In relocatable object files symbol values are section relative.
2690           if (parameters->options().relocatable())
2691             sym_value -= out_sections[st_shndx]->address();
2692           st_shndx = out_sections[st_shndx]->out_shndx();
2693           if (st_shndx >= elfcpp::SHN_LORESERVE)
2694             {
2695               if (lv.has_output_symtab_entry())
2696                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2697               if (lv.has_output_dynsym_entry())
2698                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2699               st_shndx = elfcpp::SHN_XINDEX;
2700             }
2701         }
2702
2703       // Write the symbol to the output symbol table.
2704       if (lv.has_output_symtab_entry())
2705         {
2706           elfcpp::Sym_write<size, big_endian> osym(ov);
2707
2708           gold_assert(isym.get_st_name() < strtab_size);
2709           const char* name = pnames + isym.get_st_name();
2710           osym.put_st_name(sympool->get_offset(name));
2711           osym.put_st_value(sym_value);
2712           osym.put_st_size(isym.get_st_size());
2713           osym.put_st_info(isym.get_st_info());
2714           osym.put_st_other(isym.get_st_other());
2715           osym.put_st_shndx(st_shndx);
2716
2717           ov += sym_size;
2718         }
2719
2720       // Write the symbol to the output dynamic symbol table.
2721       if (lv.has_output_dynsym_entry())
2722         {
2723           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2724           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2725
2726           gold_assert(isym.get_st_name() < strtab_size);
2727           const char* name = pnames + isym.get_st_name();
2728           osym.put_st_name(dynpool->get_offset(name));
2729           osym.put_st_value(sym_value);
2730           osym.put_st_size(isym.get_st_size());
2731           osym.put_st_info(isym.get_st_info());
2732           osym.put_st_other(isym.get_st_other());
2733           osym.put_st_shndx(st_shndx);
2734
2735           dyn_ov += sym_size;
2736         }
2737     }
2738
2739
2740   if (output_size > 0)
2741     {
2742       gold_assert(ov - oview == output_size);
2743       of->write_output_view(symtab_off + this->local_symbol_offset_,
2744                             output_size, oview);
2745     }
2746
2747   if (dyn_output_size > 0)
2748     {
2749       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2750       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2751                             dyn_oview);
2752     }
2753 }
2754
2755 // Set *INFO to symbolic information about the offset OFFSET in the
2756 // section SHNDX.  Return true if we found something, false if we
2757 // found nothing.
2758
2759 template<int size, bool big_endian>
2760 bool
2761 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2762     unsigned int shndx,
2763     off_t offset,
2764     Symbol_location_info* info)
2765 {
2766   if (this->symtab_shndx_ == 0)
2767     return false;
2768
2769   section_size_type symbols_size;
2770   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2771                                                         &symbols_size,
2772                                                         false);
2773
2774   unsigned int symbol_names_shndx =
2775     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2776   section_size_type names_size;
2777   const unsigned char* symbol_names_u =
2778     this->section_contents(symbol_names_shndx, &names_size, false);
2779   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2780
2781   const int sym_size = This::sym_size;
2782   const size_t count = symbols_size / sym_size;
2783
2784   const unsigned char* p = symbols;
2785   for (size_t i = 0; i < count; ++i, p += sym_size)
2786     {
2787       elfcpp::Sym<size, big_endian> sym(p);
2788
2789       if (sym.get_st_type() == elfcpp::STT_FILE)
2790         {
2791           if (sym.get_st_name() >= names_size)
2792             info->source_file = "(invalid)";
2793           else
2794             info->source_file = symbol_names + sym.get_st_name();
2795           continue;
2796         }
2797
2798       bool is_ordinary;
2799       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2800                                                      &is_ordinary);
2801       if (is_ordinary
2802           && st_shndx == shndx
2803           && static_cast<off_t>(sym.get_st_value()) <= offset
2804           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2805               > offset))
2806         {
2807           info->enclosing_symbol_type = sym.get_st_type();
2808           if (sym.get_st_name() > names_size)
2809             info->enclosing_symbol_name = "(invalid)";
2810           else
2811             {
2812               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2813               if (parameters->options().do_demangle())
2814                 {
2815                   char* demangled_name = cplus_demangle(
2816                       info->enclosing_symbol_name.c_str(),
2817                       DMGL_ANSI | DMGL_PARAMS);
2818                   if (demangled_name != NULL)
2819                     {
2820                       info->enclosing_symbol_name.assign(demangled_name);
2821                       free(demangled_name);
2822                     }
2823                 }
2824             }
2825           return true;
2826         }
2827     }
2828
2829   return false;
2830 }
2831
2832 // Look for a kept section corresponding to the given discarded section,
2833 // and return its output address.  This is used only for relocations in
2834 // debugging sections.  If we can't find the kept section, return 0.
2835
2836 template<int size, bool big_endian>
2837 typename Sized_relobj_file<size, big_endian>::Address
2838 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2839     unsigned int shndx,
2840     bool* found) const
2841 {
2842   Relobj* kept_object;
2843   unsigned int kept_shndx;
2844   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2845     {
2846       Sized_relobj_file<size, big_endian>* kept_relobj =
2847         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2848       Output_section* os = kept_relobj->output_section(kept_shndx);
2849       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2850       if (os != NULL && offset != invalid_address)
2851         {
2852           *found = true;
2853           return os->address() + offset;
2854         }
2855     }
2856   *found = false;
2857   return 0;
2858 }
2859
2860 // Get symbol counts.
2861
2862 template<int size, bool big_endian>
2863 void
2864 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2865     const Symbol_table*,
2866     size_t* defined,
2867     size_t* used) const
2868 {
2869   *defined = this->defined_count_;
2870   size_t count = 0;
2871   for (typename Symbols::const_iterator p = this->symbols_.begin();
2872        p != this->symbols_.end();
2873        ++p)
2874     if (*p != NULL
2875         && (*p)->source() == Symbol::FROM_OBJECT
2876         && (*p)->object() == this
2877         && (*p)->is_defined())
2878       ++count;
2879   *used = count;
2880 }
2881
2882 // Return a view of the decompressed contents of a section.  Set *PLEN
2883 // to the size.  Set *IS_NEW to true if the contents need to be freed
2884 // by the caller.
2885
2886 const unsigned char*
2887 Object::decompressed_section_contents(
2888     unsigned int shndx,
2889     section_size_type* plen,
2890     bool* is_new)
2891 {
2892   section_size_type buffer_size;
2893   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2894                                                           false);
2895
2896   if (this->compressed_sections_ == NULL)
2897     {
2898       *plen = buffer_size;
2899       *is_new = false;
2900       return buffer;
2901     }
2902
2903   Compressed_section_map::const_iterator p =
2904       this->compressed_sections_->find(shndx);
2905   if (p == this->compressed_sections_->end())
2906     {
2907       *plen = buffer_size;
2908       *is_new = false;
2909       return buffer;
2910     }
2911
2912   section_size_type uncompressed_size = p->second.size;
2913   if (p->second.contents != NULL)
2914     {
2915       *plen = uncompressed_size;
2916       *is_new = false;
2917       return p->second.contents;
2918     }
2919
2920   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2921   if (!decompress_input_section(buffer,
2922                                 buffer_size,
2923                                 uncompressed_data,
2924                                 uncompressed_size,
2925                                 elfsize(),
2926                                 is_big_endian(),
2927                                 p->second.flag))
2928     this->error(_("could not decompress section %s"),
2929                 this->do_section_name(shndx).c_str());
2930
2931   // We could cache the results in p->second.contents and store
2932   // false in *IS_NEW, but build_compressed_section_map() would
2933   // have done so if it had expected it to be profitable.  If
2934   // we reach this point, we expect to need the contents only
2935   // once in this pass.
2936   *plen = uncompressed_size;
2937   *is_new = true;
2938   return uncompressed_data;
2939 }
2940
2941 // Discard any buffers of uncompressed sections.  This is done
2942 // at the end of the Add_symbols task.
2943
2944 void
2945 Object::discard_decompressed_sections()
2946 {
2947   if (this->compressed_sections_ == NULL)
2948     return;
2949
2950   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2951        p != this->compressed_sections_->end();
2952        ++p)
2953     {
2954       if (p->second.contents != NULL)
2955         {
2956           delete[] p->second.contents;
2957           p->second.contents = NULL;
2958         }
2959     }
2960 }
2961
2962 // Input_objects methods.
2963
2964 // Add a regular relocatable object to the list.  Return false if this
2965 // object should be ignored.
2966
2967 bool
2968 Input_objects::add_object(Object* obj)
2969 {
2970   // Print the filename if the -t/--trace option is selected.
2971   if (parameters->options().trace())
2972     gold_info("%s", obj->name().c_str());
2973
2974   if (!obj->is_dynamic())
2975     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2976   else
2977     {
2978       // See if this is a duplicate SONAME.
2979       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2980       const char* soname = dynobj->soname();
2981
2982       Unordered_map<std::string, Object*>::value_type val(soname, obj);
2983       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2984         this->sonames_.insert(val);
2985       if (!ins.second)
2986         {
2987           // We have already seen a dynamic object with this soname.
2988           // If any instances of this object on the command line have
2989           // the --no-as-needed flag, make sure the one we keep is
2990           // marked so.
2991           if (!obj->as_needed())
2992             {
2993               gold_assert(ins.first->second != NULL);
2994               ins.first->second->clear_as_needed();
2995             }
2996           return false;
2997         }
2998
2999       this->dynobj_list_.push_back(dynobj);
3000     }
3001
3002   // Add this object to the cross-referencer if requested.
3003   if (parameters->options().user_set_print_symbol_counts()
3004       || parameters->options().cref())
3005     {
3006       if (this->cref_ == NULL)
3007         this->cref_ = new Cref();
3008       this->cref_->add_object(obj);
3009     }
3010
3011   return true;
3012 }
3013
3014 // For each dynamic object, record whether we've seen all of its
3015 // explicit dependencies.
3016
3017 void
3018 Input_objects::check_dynamic_dependencies() const
3019 {
3020   bool issued_copy_dt_needed_error = false;
3021   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3022        p != this->dynobj_list_.end();
3023        ++p)
3024     {
3025       const Dynobj::Needed& needed((*p)->needed());
3026       bool found_all = true;
3027       Dynobj::Needed::const_iterator pneeded;
3028       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3029         {
3030           if (this->sonames_.find(*pneeded) == this->sonames_.end())
3031             {
3032               found_all = false;
3033               break;
3034             }
3035         }
3036       (*p)->set_has_unknown_needed_entries(!found_all);
3037
3038       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3039       // that gold does not support.  However, they cause no trouble
3040       // unless there is a DT_NEEDED entry that we don't know about;
3041       // warn only in that case.
3042       if (!found_all
3043           && !issued_copy_dt_needed_error
3044           && (parameters->options().copy_dt_needed_entries()
3045               || parameters->options().add_needed()))
3046         {
3047           const char* optname;
3048           if (parameters->options().copy_dt_needed_entries())
3049             optname = "--copy-dt-needed-entries";
3050           else
3051             optname = "--add-needed";
3052           gold_error(_("%s is not supported but is required for %s in %s"),
3053                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3054           issued_copy_dt_needed_error = true;
3055         }
3056     }
3057 }
3058
3059 // Start processing an archive.
3060
3061 void
3062 Input_objects::archive_start(Archive* archive)
3063 {
3064   if (parameters->options().user_set_print_symbol_counts()
3065       || parameters->options().cref())
3066     {
3067       if (this->cref_ == NULL)
3068         this->cref_ = new Cref();
3069       this->cref_->add_archive_start(archive);
3070     }
3071 }
3072
3073 // Stop processing an archive.
3074
3075 void
3076 Input_objects::archive_stop(Archive* archive)
3077 {
3078   if (parameters->options().user_set_print_symbol_counts()
3079       || parameters->options().cref())
3080     this->cref_->add_archive_stop(archive);
3081 }
3082
3083 // Print symbol counts
3084
3085 void
3086 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3087 {
3088   if (parameters->options().user_set_print_symbol_counts()
3089       && this->cref_ != NULL)
3090     this->cref_->print_symbol_counts(symtab);
3091 }
3092
3093 // Print a cross reference table.
3094
3095 void
3096 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3097 {
3098   if (parameters->options().cref() && this->cref_ != NULL)
3099     this->cref_->print_cref(symtab, f);
3100 }
3101
3102 // Relocate_info methods.
3103
3104 // Return a string describing the location of a relocation when file
3105 // and lineno information is not available.  This is only used in
3106 // error messages.
3107
3108 template<int size, bool big_endian>
3109 std::string
3110 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3111 {
3112   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3113   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3114   if (!ret.empty())
3115     return ret;
3116
3117   ret = this->object->name();
3118
3119   Symbol_location_info info;
3120   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3121     {
3122       if (!info.source_file.empty())
3123         {
3124           ret += ":";
3125           ret += info.source_file;
3126         }
3127       ret += ":";
3128       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3129         ret += _("function ");
3130       ret += info.enclosing_symbol_name;
3131       return ret;
3132     }
3133
3134   ret += "(";
3135   ret += this->object->section_name(this->data_shndx);
3136   char buf[100];
3137   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3138   ret += buf;
3139   return ret;
3140 }
3141
3142 } // End namespace gold.
3143
3144 namespace
3145 {
3146
3147 using namespace gold;
3148
3149 // Read an ELF file with the header and return the appropriate
3150 // instance of Object.
3151
3152 template<int size, bool big_endian>
3153 Object*
3154 make_elf_sized_object(const std::string& name, Input_file* input_file,
3155                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3156                       bool* punconfigured)
3157 {
3158   Target* target = select_target(input_file, offset,
3159                                  ehdr.get_e_machine(), size, big_endian,
3160                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3161                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3162   if (target == NULL)
3163     gold_fatal(_("%s: unsupported ELF machine number %d"),
3164                name.c_str(), ehdr.get_e_machine());
3165
3166   if (!parameters->target_valid())
3167     set_parameters_target(target);
3168   else if (target != &parameters->target())
3169     {
3170       if (punconfigured != NULL)
3171         *punconfigured = true;
3172       else
3173         gold_error(_("%s: incompatible target"), name.c_str());
3174       return NULL;
3175     }
3176
3177   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3178                                                    ehdr);
3179 }
3180
3181 } // End anonymous namespace.
3182
3183 namespace gold
3184 {
3185
3186 // Return whether INPUT_FILE is an ELF object.
3187
3188 bool
3189 is_elf_object(Input_file* input_file, off_t offset,
3190               const unsigned char** start, int* read_size)
3191 {
3192   off_t filesize = input_file->file().filesize();
3193   int want = elfcpp::Elf_recognizer::max_header_size;
3194   if (filesize - offset < want)
3195     want = filesize - offset;
3196
3197   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3198                                                        true, false);
3199   *start = p;
3200   *read_size = want;
3201
3202   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3203 }
3204
3205 // Read an ELF file and return the appropriate instance of Object.
3206
3207 Object*
3208 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3209                 const unsigned char* p, section_offset_type bytes,
3210                 bool* punconfigured)
3211 {
3212   if (punconfigured != NULL)
3213     *punconfigured = false;
3214
3215   std::string error;
3216   bool big_endian = false;
3217   int size = 0;
3218   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3219                                                &big_endian, &error))
3220     {
3221       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3222       return NULL;
3223     }
3224
3225   if (size == 32)
3226     {
3227       if (big_endian)
3228         {
3229 #ifdef HAVE_TARGET_32_BIG
3230           elfcpp::Ehdr<32, true> ehdr(p);
3231           return make_elf_sized_object<32, true>(name, input_file,
3232                                                  offset, ehdr, punconfigured);
3233 #else
3234           if (punconfigured != NULL)
3235             *punconfigured = true;
3236           else
3237             gold_error(_("%s: not configured to support "
3238                          "32-bit big-endian object"),
3239                        name.c_str());
3240           return NULL;
3241 #endif
3242         }
3243       else
3244         {
3245 #ifdef HAVE_TARGET_32_LITTLE
3246           elfcpp::Ehdr<32, false> ehdr(p);
3247           return make_elf_sized_object<32, false>(name, input_file,
3248                                                   offset, ehdr, punconfigured);
3249 #else
3250           if (punconfigured != NULL)
3251             *punconfigured = true;
3252           else
3253             gold_error(_("%s: not configured to support "
3254                          "32-bit little-endian object"),
3255                        name.c_str());
3256           return NULL;
3257 #endif
3258         }
3259     }
3260   else if (size == 64)
3261     {
3262       if (big_endian)
3263         {
3264 #ifdef HAVE_TARGET_64_BIG
3265           elfcpp::Ehdr<64, true> ehdr(p);
3266           return make_elf_sized_object<64, true>(name, input_file,
3267                                                  offset, ehdr, punconfigured);
3268 #else
3269           if (punconfigured != NULL)
3270             *punconfigured = true;
3271           else
3272             gold_error(_("%s: not configured to support "
3273                          "64-bit big-endian object"),
3274                        name.c_str());
3275           return NULL;
3276 #endif
3277         }
3278       else
3279         {
3280 #ifdef HAVE_TARGET_64_LITTLE
3281           elfcpp::Ehdr<64, false> ehdr(p);
3282           return make_elf_sized_object<64, false>(name, input_file,
3283                                                   offset, ehdr, punconfigured);
3284 #else
3285           if (punconfigured != NULL)
3286             *punconfigured = true;
3287           else
3288             gold_error(_("%s: not configured to support "
3289                          "64-bit little-endian object"),
3290                        name.c_str());
3291           return NULL;
3292 #endif
3293         }
3294     }
3295   else
3296     gold_unreachable();
3297 }
3298
3299 // Instantiate the templates we need.
3300
3301 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3302 template
3303 void
3304 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3305       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3306       Unordered_map<section_offset_type,
3307       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3308 #endif
3309
3310 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3311 template
3312 void
3313 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3314       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3315       Unordered_map<section_offset_type,
3316       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3317 #endif
3318
3319 #ifdef HAVE_TARGET_32_LITTLE
3320 template
3321 void
3322 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3323                                      Read_symbols_data*);
3324 template
3325 const unsigned char*
3326 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3327                             section_size_type, const unsigned char*) const;
3328 #endif
3329
3330 #ifdef HAVE_TARGET_32_BIG
3331 template
3332 void
3333 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3334                                     Read_symbols_data*);
3335 template
3336 const unsigned char*
3337 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3338                            section_size_type, const unsigned char*) const;
3339 #endif
3340
3341 #ifdef HAVE_TARGET_64_LITTLE
3342 template
3343 void
3344 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3345                                      Read_symbols_data*);
3346 template
3347 const unsigned char*
3348 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3349                             section_size_type, const unsigned char*) const;
3350 #endif
3351
3352 #ifdef HAVE_TARGET_64_BIG
3353 template
3354 void
3355 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3356                                     Read_symbols_data*);
3357 template
3358 const unsigned char*
3359 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3360                            section_size_type, const unsigned char*) const;
3361 #endif
3362
3363 #ifdef HAVE_TARGET_32_LITTLE
3364 template
3365 class Sized_relobj<32, false>;
3366
3367 template
3368 class Sized_relobj_file<32, false>;
3369 #endif
3370
3371 #ifdef HAVE_TARGET_32_BIG
3372 template
3373 class Sized_relobj<32, true>;
3374
3375 template
3376 class Sized_relobj_file<32, true>;
3377 #endif
3378
3379 #ifdef HAVE_TARGET_64_LITTLE
3380 template
3381 class Sized_relobj<64, false>;
3382
3383 template
3384 class Sized_relobj_file<64, false>;
3385 #endif
3386
3387 #ifdef HAVE_TARGET_64_BIG
3388 template
3389 class Sized_relobj<64, true>;
3390
3391 template
3392 class Sized_relobj_file<64, true>;
3393 #endif
3394
3395 #ifdef HAVE_TARGET_32_LITTLE
3396 template
3397 struct Relocate_info<32, false>;
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_BIG
3401 template
3402 struct Relocate_info<32, true>;
3403 #endif
3404
3405 #ifdef HAVE_TARGET_64_LITTLE
3406 template
3407 struct Relocate_info<64, false>;
3408 #endif
3409
3410 #ifdef HAVE_TARGET_64_BIG
3411 template
3412 struct Relocate_info<64, true>;
3413 #endif
3414
3415 #ifdef HAVE_TARGET_32_LITTLE
3416 template
3417 void
3418 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3419
3420 template
3421 void
3422 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3423                                       const unsigned char*);
3424 #endif
3425
3426 #ifdef HAVE_TARGET_32_BIG
3427 template
3428 void
3429 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3430
3431 template
3432 void
3433 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3434                                      const unsigned char*);
3435 #endif
3436
3437 #ifdef HAVE_TARGET_64_LITTLE
3438 template
3439 void
3440 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3441
3442 template
3443 void
3444 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3445                                       const unsigned char*);
3446 #endif
3447
3448 #ifdef HAVE_TARGET_64_BIG
3449 template
3450 void
3451 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3452
3453 template
3454 void
3455 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3456                                      const unsigned char*);
3457 #endif
3458
3459 } // End namespace gold.