[GOLD] Align PowerPC64 GOT
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
431       if (p != this->local_got_offsets_.end())
432         {
433           const Got_offset_list* got_offsets = p->second;
434           got_offsets->for_all_got_offsets(v);
435         }
436     }
437 }
438
439 // Get the address of an output section.
440
441 template<int size, bool big_endian>
442 uint64_t
443 Sized_relobj<size, big_endian>::do_output_section_address(
444     unsigned int shndx)
445 {
446   // If the input file is linked as --just-symbols, the output
447   // section address is the input section address.
448   if (this->just_symbols())
449     return this->section_address(shndx);
450
451   const Output_section* os = this->do_output_section(shndx);
452   gold_assert(os != NULL);
453   return os->address();
454 }
455
456 // Class Sized_relobj_file.
457
458 template<int size, bool big_endian>
459 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
460     const std::string& name,
461     Input_file* input_file,
462     off_t offset,
463     const elfcpp::Ehdr<size, big_endian>& ehdr)
464   : Sized_relobj<size, big_endian>(name, input_file, offset),
465     elf_file_(this, ehdr),
466     symtab_shndx_(-1U),
467     local_symbol_count_(0),
468     output_local_symbol_count_(0),
469     output_local_dynsym_count_(0),
470     symbols_(),
471     defined_count_(0),
472     local_symbol_offset_(0),
473     local_dynsym_offset_(0),
474     local_values_(),
475     local_plt_offsets_(),
476     kept_comdat_sections_(),
477     has_eh_frame_(false),
478     discarded_eh_frame_shndx_(-1U),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_()
482 {
483   this->e_type_ = ehdr.get_e_type();
484 }
485
486 template<int size, bool big_endian>
487 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
488 {
489 }
490
491 // Set up an object file based on the file header.  This sets up the
492 // section information.
493
494 template<int size, bool big_endian>
495 void
496 Sized_relobj_file<size, big_endian>::do_setup()
497 {
498   const unsigned int shnum = this->elf_file_.shnum();
499   this->set_shnum(shnum);
500 }
501
502 // Find the SHT_SYMTAB section, given the section headers.  The ELF
503 // standard says that maybe in the future there can be more than one
504 // SHT_SYMTAB section.  Until somebody figures out how that could
505 // work, we assume there is only one.
506
507 template<int size, bool big_endian>
508 void
509 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
510 {
511   const unsigned int shnum = this->shnum();
512   this->symtab_shndx_ = 0;
513   if (shnum > 0)
514     {
515       // Look through the sections in reverse order, since gas tends
516       // to put the symbol table at the end.
517       const unsigned char* p = pshdrs + shnum * This::shdr_size;
518       unsigned int i = shnum;
519       unsigned int xindex_shndx = 0;
520       unsigned int xindex_link = 0;
521       while (i > 0)
522         {
523           --i;
524           p -= This::shdr_size;
525           typename This::Shdr shdr(p);
526           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
527             {
528               this->symtab_shndx_ = i;
529               if (xindex_shndx > 0 && xindex_link == i)
530                 {
531                   Xindex* xindex =
532                     new Xindex(this->elf_file_.large_shndx_offset());
533                   xindex->read_symtab_xindex<size, big_endian>(this,
534                                                                xindex_shndx,
535                                                                pshdrs);
536                   this->set_xindex(xindex);
537                 }
538               break;
539             }
540
541           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
542           // one.  This will work if it follows the SHT_SYMTAB
543           // section.
544           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
545             {
546               xindex_shndx = i;
547               xindex_link = this->adjust_shndx(shdr.get_sh_link());
548             }
549         }
550     }
551 }
552
553 // Return the Xindex structure to use for object with lots of
554 // sections.
555
556 template<int size, bool big_endian>
557 Xindex*
558 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
559 {
560   gold_assert(this->symtab_shndx_ != -1U);
561   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
562   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
563   return xindex;
564 }
565
566 // Return whether SHDR has the right type and flags to be a GNU
567 // .eh_frame section.
568
569 template<int size, bool big_endian>
570 bool
571 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
572     const elfcpp::Shdr<size, big_endian>* shdr) const
573 {
574   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
575   return ((sh_type == elfcpp::SHT_PROGBITS
576            || sh_type == elfcpp::SHT_X86_64_UNWIND)
577           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
578 }
579
580 // Find the section header with the given name.
581
582 template<int size, bool big_endian>
583 const unsigned char*
584 Object::find_shdr(
585     const unsigned char* pshdrs,
586     const char* name,
587     const char* names,
588     section_size_type names_size,
589     const unsigned char* hdr) const
590 {
591   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
592   const unsigned int shnum = this->shnum();
593   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
594   size_t sh_name = 0;
595
596   while (1)
597     {
598       if (hdr)
599         {
600           // We found HDR last time we were called, continue looking.
601           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
602           sh_name = shdr.get_sh_name();
603         }
604       else
605         {
606           // Look for the next occurrence of NAME in NAMES.
607           // The fact that .shstrtab produced by current GNU tools is
608           // string merged means we shouldn't have both .not.foo and
609           // .foo in .shstrtab, and multiple .foo sections should all
610           // have the same sh_name.  However, this is not guaranteed
611           // by the ELF spec and not all ELF object file producers may
612           // be so clever.
613           size_t len = strlen(name) + 1;
614           const char *p = sh_name ? names + sh_name + len : names;
615           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
616                                                    name, len));
617           if (p == NULL)
618             return NULL;
619           sh_name = p - names;
620           hdr = pshdrs;
621           if (sh_name == 0)
622             return hdr;
623         }
624
625       hdr += shdr_size;
626       while (hdr < hdr_end)
627         {
628           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
629           if (shdr.get_sh_name() == sh_name)
630             return hdr;
631           hdr += shdr_size;
632         }
633       hdr = NULL;
634       if (sh_name == 0)
635         return hdr;
636     }
637 }
638
639 // Return whether there is a GNU .eh_frame section, given the section
640 // headers and the section names.
641
642 template<int size, bool big_endian>
643 bool
644 Sized_relobj_file<size, big_endian>::find_eh_frame(
645     const unsigned char* pshdrs,
646     const char* names,
647     section_size_type names_size) const
648 {
649   const unsigned char* s = NULL;
650
651   while (1)
652     {
653       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
654                                                      names, names_size, s);
655       if (s == NULL)
656         return false;
657
658       typename This::Shdr shdr(s);
659       if (this->check_eh_frame_flags(&shdr))
660         return true;
661     }
662 }
663
664 // Return TRUE if this is a section whose contents will be needed in the
665 // Add_symbols task.  This function is only called for sections that have
666 // already passed the test in is_compressed_debug_section() and the debug
667 // section name prefix, ".debug"/".zdebug", has been skipped.
668
669 static bool
670 need_decompressed_section(const char* name)
671 {
672   if (*name++ != '_')
673     return false;
674
675 #ifdef ENABLE_THREADS
676   // Decompressing these sections now will help only if we're
677   // multithreaded.
678   if (parameters->options().threads())
679     {
680       // We will need .zdebug_str if this is not an incremental link
681       // (i.e., we are processing string merge sections) or if we need
682       // to build a gdb index.
683       if ((!parameters->incremental() || parameters->options().gdb_index())
684           && strcmp(name, "str") == 0)
685         return true;
686
687       // We will need these other sections when building a gdb index.
688       if (parameters->options().gdb_index()
689           && (strcmp(name, "info") == 0
690               || strcmp(name, "types") == 0
691               || strcmp(name, "pubnames") == 0
692               || strcmp(name, "pubtypes") == 0
693               || strcmp(name, "ranges") == 0
694               || strcmp(name, "abbrev") == 0))
695         return true;
696     }
697 #endif
698
699   // Even when single-threaded, we will need .zdebug_str if this is
700   // not an incremental link and we are building a gdb index.
701   // Otherwise, we would decompress the section twice: once for
702   // string merge processing, and once for building the gdb index.
703   if (!parameters->incremental()
704       && parameters->options().gdb_index()
705       && strcmp(name, "str") == 0)
706     return true;
707
708   return false;
709 }
710
711 // Build a table for any compressed debug sections, mapping each section index
712 // to the uncompressed size and (if needed) the decompressed contents.
713
714 template<int size, bool big_endian>
715 Compressed_section_map*
716 build_compressed_section_map(
717     const unsigned char* pshdrs,
718     unsigned int shnum,
719     const char* names,
720     section_size_type names_size,
721     Object* obj,
722     bool decompress_if_needed)
723 {
724   Compressed_section_map* uncompressed_map = new Compressed_section_map();
725   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
726   const unsigned char* p = pshdrs + shdr_size;
727
728   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
729     {
730       typename elfcpp::Shdr<size, big_endian> shdr(p);
731       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
732           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
733         {
734           if (shdr.get_sh_name() >= names_size)
735             {
736               obj->error(_("bad section name offset for section %u: %lu"),
737                          i, static_cast<unsigned long>(shdr.get_sh_name()));
738               continue;
739             }
740
741           const char* name = names + shdr.get_sh_name();
742           bool is_compressed = ((shdr.get_sh_flags()
743                                  & elfcpp::SHF_COMPRESSED) != 0);
744           bool is_zcompressed = (!is_compressed
745                                  && is_compressed_debug_section(name));
746
747           if (is_zcompressed || is_compressed)
748             {
749               section_size_type len;
750               const unsigned char* contents =
751                   obj->section_contents(i, &len, false);
752               uint64_t uncompressed_size;
753               if (is_zcompressed)
754                 {
755                   // Skip over the ".zdebug" prefix.
756                   name += 7;
757                   uncompressed_size = get_uncompressed_size(contents, len);
758                 }
759               else
760                 {
761                   // Skip over the ".debug" prefix.
762                   name += 6;
763                   elfcpp::Chdr<size, big_endian> chdr(contents);
764                   uncompressed_size = chdr.get_ch_size();
765                 }
766               Compressed_section_info info;
767               info.size = convert_to_section_size_type(uncompressed_size);
768               info.flag = shdr.get_sh_flags();
769               info.contents = NULL;
770               if (uncompressed_size != -1ULL)
771                 {
772                   unsigned char* uncompressed_data = NULL;
773                   if (decompress_if_needed && need_decompressed_section(name))
774                     {
775                       uncompressed_data = new unsigned char[uncompressed_size];
776                       if (decompress_input_section(contents, len,
777                                                    uncompressed_data,
778                                                    uncompressed_size,
779                                                    size, big_endian,
780                                                    shdr.get_sh_flags()))
781                         info.contents = uncompressed_data;
782                       else
783                         delete[] uncompressed_data;
784                     }
785                   (*uncompressed_map)[i] = info;
786                 }
787             }
788         }
789     }
790   return uncompressed_map;
791 }
792
793 // Stash away info for a number of special sections.
794 // Return true if any of the sections found require local symbols to be read.
795
796 template<int size, bool big_endian>
797 bool
798 Sized_relobj_file<size, big_endian>::do_find_special_sections(
799     Read_symbols_data* sd)
800 {
801   const unsigned char* const pshdrs = sd->section_headers->data();
802   const unsigned char* namesu = sd->section_names->data();
803   const char* names = reinterpret_cast<const char*>(namesu);
804
805   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
806     this->has_eh_frame_ = true;
807
808   Compressed_section_map* compressed_sections =
809     build_compressed_section_map<size, big_endian>(
810       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
811   if (compressed_sections != NULL)
812     this->set_compressed_sections(compressed_sections);
813
814   return (this->has_eh_frame_
815           || (!parameters->options().relocatable()
816               && parameters->options().gdb_index()
817               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
818                   || memmem(names, sd->section_names_size, "debug_types",
819                             13) == 0)));
820 }
821
822 // Read the sections and symbols from an object file.
823
824 template<int size, bool big_endian>
825 void
826 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
827 {
828   this->base_read_symbols(sd);
829 }
830
831 // Read the sections and symbols from an object file.  This is common
832 // code for all target-specific overrides of do_read_symbols().
833
834 template<int size, bool big_endian>
835 void
836 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
837 {
838   this->read_section_data(&this->elf_file_, sd);
839
840   const unsigned char* const pshdrs = sd->section_headers->data();
841
842   this->find_symtab(pshdrs);
843
844   bool need_local_symbols = this->do_find_special_sections(sd);
845
846   sd->symbols = NULL;
847   sd->symbols_size = 0;
848   sd->external_symbols_offset = 0;
849   sd->symbol_names = NULL;
850   sd->symbol_names_size = 0;
851
852   if (this->symtab_shndx_ == 0)
853     {
854       // No symbol table.  Weird but legal.
855       return;
856     }
857
858   // Get the symbol table section header.
859   typename This::Shdr symtabshdr(pshdrs
860                                  + this->symtab_shndx_ * This::shdr_size);
861   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
862
863   // If this object has a .eh_frame section, or if building a .gdb_index
864   // section and there is debug info, we need all the symbols.
865   // Otherwise we only need the external symbols.  While it would be
866   // simpler to just always read all the symbols, I've seen object
867   // files with well over 2000 local symbols, which for a 64-bit
868   // object file format is over 5 pages that we don't need to read
869   // now.
870
871   const int sym_size = This::sym_size;
872   const unsigned int loccount = symtabshdr.get_sh_info();
873   this->local_symbol_count_ = loccount;
874   this->local_values_.resize(loccount);
875   section_offset_type locsize = loccount * sym_size;
876   off_t dataoff = symtabshdr.get_sh_offset();
877   section_size_type datasize =
878     convert_to_section_size_type(symtabshdr.get_sh_size());
879   off_t extoff = dataoff + locsize;
880   section_size_type extsize = datasize - locsize;
881
882   off_t readoff = need_local_symbols ? dataoff : extoff;
883   section_size_type readsize = need_local_symbols ? datasize : extsize;
884
885   if (readsize == 0)
886     {
887       // No external symbols.  Also weird but also legal.
888       return;
889     }
890
891   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
892
893   // Read the section header for the symbol names.
894   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
895   if (strtab_shndx >= this->shnum())
896     {
897       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
898       return;
899     }
900   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
901   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
902     {
903       this->error(_("symbol table name section has wrong type: %u"),
904                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
905       return;
906     }
907
908   // Read the symbol names.
909   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
910                                                strtabshdr.get_sh_size(),
911                                                false, true);
912
913   sd->symbols = fvsymtab;
914   sd->symbols_size = readsize;
915   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
916   sd->symbol_names = fvstrtab;
917   sd->symbol_names_size =
918     convert_to_section_size_type(strtabshdr.get_sh_size());
919 }
920
921 // Return the section index of symbol SYM.  Set *VALUE to its value in
922 // the object file.  Set *IS_ORDINARY if this is an ordinary section
923 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
924 // Note that for a symbol which is not defined in this object file,
925 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
926 // the final value of the symbol in the link.
927
928 template<int size, bool big_endian>
929 unsigned int
930 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
931                                                               Address* value,
932                                                               bool* is_ordinary)
933 {
934   section_size_type symbols_size;
935   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
936                                                         &symbols_size,
937                                                         false);
938
939   const size_t count = symbols_size / This::sym_size;
940   gold_assert(sym < count);
941
942   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
943   *value = elfsym.get_st_value();
944
945   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
946 }
947
948 // Return whether to include a section group in the link.  LAYOUT is
949 // used to keep track of which section groups we have already seen.
950 // INDEX is the index of the section group and SHDR is the section
951 // header.  If we do not want to include this group, we set bits in
952 // OMIT for each section which should be discarded.
953
954 template<int size, bool big_endian>
955 bool
956 Sized_relobj_file<size, big_endian>::include_section_group(
957     Symbol_table* symtab,
958     Layout* layout,
959     unsigned int index,
960     const char* name,
961     const unsigned char* shdrs,
962     const char* section_names,
963     section_size_type section_names_size,
964     std::vector<bool>* omit)
965 {
966   // Read the section contents.
967   typename This::Shdr shdr(shdrs + index * This::shdr_size);
968   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
969                                              shdr.get_sh_size(), true, false);
970   const elfcpp::Elf_Word* pword =
971     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
972
973   // The first word contains flags.  We only care about COMDAT section
974   // groups.  Other section groups are always included in the link
975   // just like ordinary sections.
976   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
977
978   // Look up the group signature, which is the name of a symbol.  ELF
979   // uses a symbol name because some group signatures are long, and
980   // the name is generally already in the symbol table, so it makes
981   // sense to put the long string just once in .strtab rather than in
982   // both .strtab and .shstrtab.
983
984   // Get the appropriate symbol table header (this will normally be
985   // the single SHT_SYMTAB section, but in principle it need not be).
986   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
987   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
988
989   // Read the symbol table entry.
990   unsigned int symndx = shdr.get_sh_info();
991   if (symndx >= symshdr.get_sh_size() / This::sym_size)
992     {
993       this->error(_("section group %u info %u out of range"),
994                   index, symndx);
995       return false;
996     }
997   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
998   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
999                                              false);
1000   elfcpp::Sym<size, big_endian> sym(psym);
1001
1002   // Read the symbol table names.
1003   section_size_type symnamelen;
1004   const unsigned char* psymnamesu;
1005   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1006                                       &symnamelen, true);
1007   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1008
1009   // Get the section group signature.
1010   if (sym.get_st_name() >= symnamelen)
1011     {
1012       this->error(_("symbol %u name offset %u out of range"),
1013                   symndx, sym.get_st_name());
1014       return false;
1015     }
1016
1017   std::string signature(psymnames + sym.get_st_name());
1018
1019   // It seems that some versions of gas will create a section group
1020   // associated with a section symbol, and then fail to give a name to
1021   // the section symbol.  In such a case, use the name of the section.
1022   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1023     {
1024       bool is_ordinary;
1025       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1026                                                       sym.get_st_shndx(),
1027                                                       &is_ordinary);
1028       if (!is_ordinary || sym_shndx >= this->shnum())
1029         {
1030           this->error(_("symbol %u invalid section index %u"),
1031                       symndx, sym_shndx);
1032           return false;
1033         }
1034       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1035       if (member_shdr.get_sh_name() < section_names_size)
1036         signature = section_names + member_shdr.get_sh_name();
1037     }
1038
1039   // Record this section group in the layout, and see whether we've already
1040   // seen one with the same signature.
1041   bool include_group;
1042   bool is_comdat;
1043   Kept_section* kept_section = NULL;
1044
1045   if ((flags & elfcpp::GRP_COMDAT) == 0)
1046     {
1047       include_group = true;
1048       is_comdat = false;
1049     }
1050   else
1051     {
1052       include_group = layout->find_or_add_kept_section(signature,
1053                                                        this, index, true,
1054                                                        true, &kept_section);
1055       is_comdat = true;
1056     }
1057
1058   if (is_comdat && include_group)
1059     {
1060       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1061       if (incremental_inputs != NULL)
1062         incremental_inputs->report_comdat_group(this, signature.c_str());
1063     }
1064
1065   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1066
1067   std::vector<unsigned int> shndxes;
1068   bool relocate_group = include_group && parameters->options().relocatable();
1069   if (relocate_group)
1070     shndxes.reserve(count - 1);
1071
1072   for (size_t i = 1; i < count; ++i)
1073     {
1074       elfcpp::Elf_Word shndx =
1075         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1076
1077       if (relocate_group)
1078         shndxes.push_back(shndx);
1079
1080       if (shndx >= this->shnum())
1081         {
1082           this->error(_("section %u in section group %u out of range"),
1083                       shndx, index);
1084           continue;
1085         }
1086
1087       // Check for an earlier section number, since we're going to get
1088       // it wrong--we may have already decided to include the section.
1089       if (shndx < index)
1090         this->error(_("invalid section group %u refers to earlier section %u"),
1091                     index, shndx);
1092
1093       // Get the name of the member section.
1094       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1095       if (member_shdr.get_sh_name() >= section_names_size)
1096         {
1097           // This is an error, but it will be diagnosed eventually
1098           // in do_layout, so we don't need to do anything here but
1099           // ignore it.
1100           continue;
1101         }
1102       std::string mname(section_names + member_shdr.get_sh_name());
1103
1104       if (include_group)
1105         {
1106           if (is_comdat)
1107             kept_section->add_comdat_section(mname, shndx,
1108                                              member_shdr.get_sh_size());
1109         }
1110       else
1111         {
1112           (*omit)[shndx] = true;
1113
1114           if (is_comdat)
1115             {
1116               Relobj* kept_object = kept_section->object();
1117               if (kept_section->is_comdat())
1118                 {
1119                   // Find the corresponding kept section, and store
1120                   // that info in the discarded section table.
1121                   unsigned int kept_shndx;
1122                   uint64_t kept_size;
1123                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1124                                                         &kept_size))
1125                     {
1126                       // We don't keep a mapping for this section if
1127                       // it has a different size.  The mapping is only
1128                       // used for relocation processing, and we don't
1129                       // want to treat the sections as similar if the
1130                       // sizes are different.  Checking the section
1131                       // size is the approach used by the GNU linker.
1132                       if (kept_size == member_shdr.get_sh_size())
1133                         this->set_kept_comdat_section(shndx, kept_object,
1134                                                       kept_shndx);
1135                     }
1136                 }
1137               else
1138                 {
1139                   // The existing section is a linkonce section.  Add
1140                   // a mapping if there is exactly one section in the
1141                   // group (which is true when COUNT == 2) and if it
1142                   // is the same size.
1143                   if (count == 2
1144                       && (kept_section->linkonce_size()
1145                           == member_shdr.get_sh_size()))
1146                     this->set_kept_comdat_section(shndx, kept_object,
1147                                                   kept_section->shndx());
1148                 }
1149             }
1150         }
1151     }
1152
1153   if (relocate_group)
1154     layout->layout_group(symtab, this, index, name, signature.c_str(),
1155                          shdr, flags, &shndxes);
1156
1157   return include_group;
1158 }
1159
1160 // Whether to include a linkonce section in the link.  NAME is the
1161 // name of the section and SHDR is the section header.
1162
1163 // Linkonce sections are a GNU extension implemented in the original
1164 // GNU linker before section groups were defined.  The semantics are
1165 // that we only include one linkonce section with a given name.  The
1166 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1167 // where T is the type of section and SYMNAME is the name of a symbol.
1168 // In an attempt to make linkonce sections interact well with section
1169 // groups, we try to identify SYMNAME and use it like a section group
1170 // signature.  We want to block section groups with that signature,
1171 // but not other linkonce sections with that signature.  We also use
1172 // the full name of the linkonce section as a normal section group
1173 // signature.
1174
1175 template<int size, bool big_endian>
1176 bool
1177 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1178     Layout* layout,
1179     unsigned int index,
1180     const char* name,
1181     const elfcpp::Shdr<size, big_endian>& shdr)
1182 {
1183   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1184   // In general the symbol name we want will be the string following
1185   // the last '.'.  However, we have to handle the case of
1186   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1187   // some versions of gcc.  So we use a heuristic: if the name starts
1188   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1189   // we look for the last '.'.  We can't always simply skip
1190   // ".gnu.linkonce.X", because we have to deal with cases like
1191   // ".gnu.linkonce.d.rel.ro.local".
1192   const char* const linkonce_t = ".gnu.linkonce.t.";
1193   const char* symname;
1194   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1195     symname = name + strlen(linkonce_t);
1196   else
1197     symname = strrchr(name, '.') + 1;
1198   std::string sig1(symname);
1199   std::string sig2(name);
1200   Kept_section* kept1;
1201   Kept_section* kept2;
1202   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1203                                                    false, &kept1);
1204   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1205                                                    true, &kept2);
1206
1207   if (!include2)
1208     {
1209       // We are not including this section because we already saw the
1210       // name of the section as a signature.  This normally implies
1211       // that the kept section is another linkonce section.  If it is
1212       // the same size, record it as the section which corresponds to
1213       // this one.
1214       if (kept2->object() != NULL
1215           && !kept2->is_comdat()
1216           && kept2->linkonce_size() == sh_size)
1217         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1218     }
1219   else if (!include1)
1220     {
1221       // The section is being discarded on the basis of its symbol
1222       // name.  This means that the corresponding kept section was
1223       // part of a comdat group, and it will be difficult to identify
1224       // the specific section within that group that corresponds to
1225       // this linkonce section.  We'll handle the simple case where
1226       // the group has only one member section.  Otherwise, it's not
1227       // worth the effort.
1228       unsigned int kept_shndx;
1229       uint64_t kept_size;
1230       if (kept1->object() != NULL
1231           && kept1->is_comdat()
1232           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1233           && kept_size == sh_size)
1234         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1235     }
1236   else
1237     {
1238       kept1->set_linkonce_size(sh_size);
1239       kept2->set_linkonce_size(sh_size);
1240     }
1241
1242   return include1 && include2;
1243 }
1244
1245 // Layout an input section.
1246
1247 template<int size, bool big_endian>
1248 inline void
1249 Sized_relobj_file<size, big_endian>::layout_section(
1250     Layout* layout,
1251     unsigned int shndx,
1252     const char* name,
1253     const typename This::Shdr& shdr,
1254     unsigned int reloc_shndx,
1255     unsigned int reloc_type)
1256 {
1257   off_t offset;
1258   Output_section* os = layout->layout(this, shndx, name, shdr,
1259                                           reloc_shndx, reloc_type, &offset);
1260
1261   this->output_sections()[shndx] = os;
1262   if (offset == -1)
1263     this->section_offsets()[shndx] = invalid_address;
1264   else
1265     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1266
1267   // If this section requires special handling, and if there are
1268   // relocs that apply to it, then we must do the special handling
1269   // before we apply the relocs.
1270   if (offset == -1 && reloc_shndx != 0)
1271     this->set_relocs_must_follow_section_writes();
1272 }
1273
1274 // Layout an input .eh_frame section.
1275
1276 template<int size, bool big_endian>
1277 void
1278 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1279     Layout* layout,
1280     const unsigned char* symbols_data,
1281     section_size_type symbols_size,
1282     const unsigned char* symbol_names_data,
1283     section_size_type symbol_names_size,
1284     unsigned int shndx,
1285     const typename This::Shdr& shdr,
1286     unsigned int reloc_shndx,
1287     unsigned int reloc_type)
1288 {
1289   gold_assert(this->has_eh_frame_);
1290
1291   off_t offset;
1292   Output_section* os = layout->layout_eh_frame(this,
1293                                                symbols_data,
1294                                                symbols_size,
1295                                                symbol_names_data,
1296                                                symbol_names_size,
1297                                                shndx,
1298                                                shdr,
1299                                                reloc_shndx,
1300                                                reloc_type,
1301                                                &offset);
1302   this->output_sections()[shndx] = os;
1303   if (os == NULL || offset == -1)
1304     {
1305       // An object can contain at most one section holding exception
1306       // frame information.
1307       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1308       this->discarded_eh_frame_shndx_ = shndx;
1309       this->section_offsets()[shndx] = invalid_address;
1310     }
1311   else
1312     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1313
1314   // If this section requires special handling, and if there are
1315   // relocs that aply to it, then we must do the special handling
1316   // before we apply the relocs.
1317   if (os != NULL && offset == -1 && reloc_shndx != 0)
1318     this->set_relocs_must_follow_section_writes();
1319 }
1320
1321 // Lay out the input sections.  We walk through the sections and check
1322 // whether they should be included in the link.  If they should, we
1323 // pass them to the Layout object, which will return an output section
1324 // and an offset.
1325 // This function is called twice sometimes, two passes, when mapping
1326 // of input sections to output sections must be delayed.
1327 // This is true for the following :
1328 // * Garbage collection (--gc-sections): Some input sections will be
1329 // discarded and hence the assignment must wait until the second pass.
1330 // In the first pass,  it is for setting up some sections as roots to
1331 // a work-list for --gc-sections and to do comdat processing.
1332 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1333 // will be folded and hence the assignment must wait.
1334 // * Using plugins to map some sections to unique segments: Mapping
1335 // some sections to unique segments requires mapping them to unique
1336 // output sections too.  This can be done via plugins now and this
1337 // information is not available in the first pass.
1338
1339 template<int size, bool big_endian>
1340 void
1341 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1342                                                Layout* layout,
1343                                                Read_symbols_data* sd)
1344 {
1345   const unsigned int shnum = this->shnum();
1346
1347   /* Should this function be called twice?  */
1348   bool is_two_pass = (parameters->options().gc_sections()
1349                       || parameters->options().icf_enabled()
1350                       || layout->is_unique_segment_for_sections_specified());
1351
1352   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1353      a two-pass approach is not needed.  */
1354   bool is_pass_one = false;
1355   bool is_pass_two = false;
1356
1357   Symbols_data* gc_sd = NULL;
1358
1359   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1360      should happen.  In the first pass, the data in sd is saved to be used
1361      later in the second pass.  */
1362   if (is_two_pass)
1363     {
1364       gc_sd = this->get_symbols_data();
1365       if (gc_sd == NULL)
1366         {
1367           gold_assert(sd != NULL);
1368           is_pass_one = true;
1369         }
1370       else
1371         {
1372           if (parameters->options().gc_sections())
1373             gold_assert(symtab->gc()->is_worklist_ready());
1374           if (parameters->options().icf_enabled())
1375             gold_assert(symtab->icf()->is_icf_ready()); 
1376           is_pass_two = true;
1377         }
1378     }
1379     
1380   if (shnum == 0)
1381     return;
1382
1383   if (is_pass_one)
1384     {
1385       // During garbage collection save the symbols data to use it when
1386       // re-entering this function.
1387       gc_sd = new Symbols_data;
1388       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1389       this->set_symbols_data(gc_sd);
1390     }
1391
1392   const unsigned char* section_headers_data = NULL;
1393   section_size_type section_names_size;
1394   const unsigned char* symbols_data = NULL;
1395   section_size_type symbols_size;
1396   const unsigned char* symbol_names_data = NULL;
1397   section_size_type symbol_names_size;
1398
1399   if (is_two_pass)
1400     {
1401       section_headers_data = gc_sd->section_headers_data;
1402       section_names_size = gc_sd->section_names_size;
1403       symbols_data = gc_sd->symbols_data;
1404       symbols_size = gc_sd->symbols_size;
1405       symbol_names_data = gc_sd->symbol_names_data;
1406       symbol_names_size = gc_sd->symbol_names_size;
1407     }
1408   else
1409     {
1410       section_headers_data = sd->section_headers->data();
1411       section_names_size = sd->section_names_size;
1412       if (sd->symbols != NULL)
1413         symbols_data = sd->symbols->data();
1414       symbols_size = sd->symbols_size;
1415       if (sd->symbol_names != NULL)
1416         symbol_names_data = sd->symbol_names->data();
1417       symbol_names_size = sd->symbol_names_size;
1418     }
1419
1420   // Get the section headers.
1421   const unsigned char* shdrs = section_headers_data;
1422   const unsigned char* pshdrs;
1423
1424   // Get the section names.
1425   const unsigned char* pnamesu = (is_two_pass
1426                                   ? gc_sd->section_names_data
1427                                   : sd->section_names->data());
1428
1429   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1430
1431   // If any input files have been claimed by plugins, we need to defer
1432   // actual layout until the replacement files have arrived.
1433   const bool should_defer_layout =
1434       (parameters->options().has_plugins()
1435        && parameters->options().plugins()->should_defer_layout());
1436   unsigned int num_sections_to_defer = 0;
1437
1438   // For each section, record the index of the reloc section if any.
1439   // Use 0 to mean that there is no reloc section, -1U to mean that
1440   // there is more than one.
1441   std::vector<unsigned int> reloc_shndx(shnum, 0);
1442   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1443   // Skip the first, dummy, section.
1444   pshdrs = shdrs + This::shdr_size;
1445   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1446     {
1447       typename This::Shdr shdr(pshdrs);
1448
1449       // Count the number of sections whose layout will be deferred.
1450       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1451         ++num_sections_to_defer;
1452
1453       unsigned int sh_type = shdr.get_sh_type();
1454       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1455         {
1456           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1457           if (target_shndx == 0 || target_shndx >= shnum)
1458             {
1459               this->error(_("relocation section %u has bad info %u"),
1460                           i, target_shndx);
1461               continue;
1462             }
1463
1464           if (reloc_shndx[target_shndx] != 0)
1465             reloc_shndx[target_shndx] = -1U;
1466           else
1467             {
1468               reloc_shndx[target_shndx] = i;
1469               reloc_type[target_shndx] = sh_type;
1470             }
1471         }
1472     }
1473
1474   Output_sections& out_sections(this->output_sections());
1475   std::vector<Address>& out_section_offsets(this->section_offsets());
1476
1477   if (!is_pass_two)
1478     {
1479       out_sections.resize(shnum);
1480       out_section_offsets.resize(shnum);
1481     }
1482
1483   // If we are only linking for symbols, then there is nothing else to
1484   // do here.
1485   if (this->input_file()->just_symbols())
1486     {
1487       if (!is_pass_two)
1488         {
1489           delete sd->section_headers;
1490           sd->section_headers = NULL;
1491           delete sd->section_names;
1492           sd->section_names = NULL;
1493         }
1494       return;
1495     }
1496
1497   if (num_sections_to_defer > 0)
1498     {
1499       parameters->options().plugins()->add_deferred_layout_object(this);
1500       this->deferred_layout_.reserve(num_sections_to_defer);
1501       this->is_deferred_layout_ = true;
1502     }
1503
1504   // Whether we've seen a .note.GNU-stack section.
1505   bool seen_gnu_stack = false;
1506   // The flags of a .note.GNU-stack section.
1507   uint64_t gnu_stack_flags = 0;
1508
1509   // Keep track of which sections to omit.
1510   std::vector<bool> omit(shnum, false);
1511
1512   // Keep track of reloc sections when emitting relocations.
1513   const bool relocatable = parameters->options().relocatable();
1514   const bool emit_relocs = (relocatable
1515                             || parameters->options().emit_relocs());
1516   std::vector<unsigned int> reloc_sections;
1517
1518   // Keep track of .eh_frame sections.
1519   std::vector<unsigned int> eh_frame_sections;
1520
1521   // Keep track of .debug_info and .debug_types sections.
1522   std::vector<unsigned int> debug_info_sections;
1523   std::vector<unsigned int> debug_types_sections;
1524
1525   // Skip the first, dummy, section.
1526   pshdrs = shdrs + This::shdr_size;
1527   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1528     {
1529       typename This::Shdr shdr(pshdrs);
1530
1531       if (shdr.get_sh_name() >= section_names_size)
1532         {
1533           this->error(_("bad section name offset for section %u: %lu"),
1534                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1535           return;
1536         }
1537
1538       const char* name = pnames + shdr.get_sh_name();
1539
1540       if (!is_pass_two)
1541         {
1542           if (this->handle_gnu_warning_section(name, i, symtab))
1543             {
1544               if (!relocatable && !parameters->options().shared())
1545                 omit[i] = true;
1546             }
1547
1548           // The .note.GNU-stack section is special.  It gives the
1549           // protection flags that this object file requires for the stack
1550           // in memory.
1551           if (strcmp(name, ".note.GNU-stack") == 0)
1552             {
1553               seen_gnu_stack = true;
1554               gnu_stack_flags |= shdr.get_sh_flags();
1555               omit[i] = true;
1556             }
1557
1558           // The .note.GNU-split-stack section is also special.  It
1559           // indicates that the object was compiled with
1560           // -fsplit-stack.
1561           if (this->handle_split_stack_section(name))
1562             {
1563               if (!relocatable && !parameters->options().shared())
1564                 omit[i] = true;
1565             }
1566
1567           // Skip attributes section.
1568           if (parameters->target().is_attributes_section(name))
1569             {
1570               omit[i] = true;
1571             }
1572
1573           bool discard = omit[i];
1574           if (!discard)
1575             {
1576               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1577                 {
1578                   if (!this->include_section_group(symtab, layout, i, name,
1579                                                    shdrs, pnames,
1580                                                    section_names_size,
1581                                                    &omit))
1582                     discard = true;
1583                 }
1584               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1585                        && Layout::is_linkonce(name))
1586                 {
1587                   if (!this->include_linkonce_section(layout, i, name, shdr))
1588                     discard = true;
1589                 }
1590             }
1591
1592           // Add the section to the incremental inputs layout.
1593           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1594           if (incremental_inputs != NULL
1595               && !discard
1596               && can_incremental_update(shdr.get_sh_type()))
1597             {
1598               off_t sh_size = shdr.get_sh_size();
1599               section_size_type uncompressed_size;
1600               if (this->section_is_compressed(i, &uncompressed_size))
1601                 sh_size = uncompressed_size;
1602               incremental_inputs->report_input_section(this, i, name, sh_size);
1603             }
1604
1605           if (discard)
1606             {
1607               // Do not include this section in the link.
1608               out_sections[i] = NULL;
1609               out_section_offsets[i] = invalid_address;
1610               continue;
1611             }
1612         }
1613
1614       if (is_pass_one && parameters->options().gc_sections())
1615         {
1616           if (this->is_section_name_included(name)
1617               || layout->keep_input_section (this, name)
1618               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1619               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1620             {
1621               symtab->gc()->worklist().push_back(Section_id(this, i));
1622             }
1623           // If the section name XXX can be represented as a C identifier
1624           // it cannot be discarded if there are references to
1625           // __start_XXX and __stop_XXX symbols.  These need to be
1626           // specially handled.
1627           if (is_cident(name))
1628             {
1629               symtab->gc()->add_cident_section(name, Section_id(this, i));
1630             }
1631         }
1632
1633       // When doing a relocatable link we are going to copy input
1634       // reloc sections into the output.  We only want to copy the
1635       // ones associated with sections which are not being discarded.
1636       // However, we don't know that yet for all sections.  So save
1637       // reloc sections and process them later. Garbage collection is
1638       // not triggered when relocatable code is desired.
1639       if (emit_relocs
1640           && (shdr.get_sh_type() == elfcpp::SHT_REL
1641               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1642         {
1643           reloc_sections.push_back(i);
1644           continue;
1645         }
1646
1647       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1648         continue;
1649
1650       // The .eh_frame section is special.  It holds exception frame
1651       // information that we need to read in order to generate the
1652       // exception frame header.  We process these after all the other
1653       // sections so that the exception frame reader can reliably
1654       // determine which sections are being discarded, and discard the
1655       // corresponding information.
1656       if (!relocatable
1657           && strcmp(name, ".eh_frame") == 0
1658           && this->check_eh_frame_flags(&shdr))
1659         {
1660           if (is_pass_one)
1661             {
1662               if (this->is_deferred_layout())
1663                 out_sections[i] = reinterpret_cast<Output_section*>(2);
1664               else
1665                 out_sections[i] = reinterpret_cast<Output_section*>(1);
1666               out_section_offsets[i] = invalid_address;
1667             }
1668           else if (this->is_deferred_layout())
1669             this->deferred_layout_.push_back(Deferred_layout(i, name,
1670                                                              pshdrs,
1671                                                              reloc_shndx[i],
1672                                                              reloc_type[i]));
1673           else
1674             eh_frame_sections.push_back(i);
1675           continue;
1676         }
1677
1678       if (is_pass_two && parameters->options().gc_sections())
1679         {
1680           // This is executed during the second pass of garbage
1681           // collection. do_layout has been called before and some
1682           // sections have been already discarded. Simply ignore
1683           // such sections this time around.
1684           if (out_sections[i] == NULL)
1685             {
1686               gold_assert(out_section_offsets[i] == invalid_address);
1687               continue;
1688             }
1689           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1690               && symtab->gc()->is_section_garbage(this, i))
1691               {
1692                 if (parameters->options().print_gc_sections())
1693                   gold_info(_("%s: removing unused section from '%s'"
1694                               " in file '%s'"),
1695                             program_name, this->section_name(i).c_str(),
1696                             this->name().c_str());
1697                 out_sections[i] = NULL;
1698                 out_section_offsets[i] = invalid_address;
1699                 continue;
1700               }
1701         }
1702
1703       if (is_pass_two && parameters->options().icf_enabled())
1704         {
1705           if (out_sections[i] == NULL)
1706             {
1707               gold_assert(out_section_offsets[i] == invalid_address);
1708               continue;
1709             }
1710           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1711               && symtab->icf()->is_section_folded(this, i))
1712               {
1713                 if (parameters->options().print_icf_sections())
1714                   {
1715                     Section_id folded =
1716                                 symtab->icf()->get_folded_section(this, i);
1717                     Relobj* folded_obj =
1718                                 reinterpret_cast<Relobj*>(folded.first);
1719                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1720                                 "into '%s' in file '%s'"),
1721                               program_name, this->section_name(i).c_str(),
1722                               this->name().c_str(),
1723                               folded_obj->section_name(folded.second).c_str(),
1724                               folded_obj->name().c_str());
1725                   }
1726                 out_sections[i] = NULL;
1727                 out_section_offsets[i] = invalid_address;
1728                 continue;
1729               }
1730         }
1731
1732       // Defer layout here if input files are claimed by plugins.  When gc
1733       // is turned on this function is called twice; we only want to do this
1734       // on the first pass.
1735       if (!is_pass_two
1736           && this->is_deferred_layout()
1737           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1738         {
1739           this->deferred_layout_.push_back(Deferred_layout(i, name,
1740                                                            pshdrs,
1741                                                            reloc_shndx[i],
1742                                                            reloc_type[i]));
1743           // Put dummy values here; real values will be supplied by
1744           // do_layout_deferred_sections.
1745           out_sections[i] = reinterpret_cast<Output_section*>(2);
1746           out_section_offsets[i] = invalid_address;
1747           continue;
1748         }
1749
1750       // During gc_pass_two if a section that was previously deferred is
1751       // found, do not layout the section as layout_deferred_sections will
1752       // do it later from gold.cc.
1753       if (is_pass_two
1754           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1755         continue;
1756
1757       if (is_pass_one)
1758         {
1759           // This is during garbage collection. The out_sections are
1760           // assigned in the second call to this function.
1761           out_sections[i] = reinterpret_cast<Output_section*>(1);
1762           out_section_offsets[i] = invalid_address;
1763         }
1764       else
1765         {
1766           // When garbage collection is switched on the actual layout
1767           // only happens in the second call.
1768           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1769                                reloc_type[i]);
1770
1771           // When generating a .gdb_index section, we do additional
1772           // processing of .debug_info and .debug_types sections after all
1773           // the other sections for the same reason as above.
1774           if (!relocatable
1775               && parameters->options().gdb_index()
1776               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1777             {
1778               if (strcmp(name, ".debug_info") == 0
1779                   || strcmp(name, ".zdebug_info") == 0)
1780                 debug_info_sections.push_back(i);
1781               else if (strcmp(name, ".debug_types") == 0
1782                        || strcmp(name, ".zdebug_types") == 0)
1783                 debug_types_sections.push_back(i);
1784             }
1785         }
1786     }
1787
1788   if (!is_pass_two)
1789     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1790
1791   // Handle the .eh_frame sections after the other sections.
1792   gold_assert(!is_pass_one || eh_frame_sections.empty());
1793   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1794        p != eh_frame_sections.end();
1795        ++p)
1796     {
1797       unsigned int i = *p;
1798       const unsigned char* pshdr;
1799       pshdr = section_headers_data + i * This::shdr_size;
1800       typename This::Shdr shdr(pshdr);
1801
1802       this->layout_eh_frame_section(layout,
1803                                     symbols_data,
1804                                     symbols_size,
1805                                     symbol_names_data,
1806                                     symbol_names_size,
1807                                     i,
1808                                     shdr,
1809                                     reloc_shndx[i],
1810                                     reloc_type[i]);
1811     }
1812
1813   // When doing a relocatable link handle the reloc sections at the
1814   // end.  Garbage collection  and Identical Code Folding is not
1815   // turned on for relocatable code.
1816   if (emit_relocs)
1817     this->size_relocatable_relocs();
1818
1819   gold_assert(!is_two_pass || reloc_sections.empty());
1820
1821   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1822        p != reloc_sections.end();
1823        ++p)
1824     {
1825       unsigned int i = *p;
1826       const unsigned char* pshdr;
1827       pshdr = section_headers_data + i * This::shdr_size;
1828       typename This::Shdr shdr(pshdr);
1829
1830       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1831       if (data_shndx >= shnum)
1832         {
1833           // We already warned about this above.
1834           continue;
1835         }
1836
1837       Output_section* data_section = out_sections[data_shndx];
1838       if (data_section == reinterpret_cast<Output_section*>(2))
1839         {
1840           if (is_pass_two)
1841             continue;
1842           // The layout for the data section was deferred, so we need
1843           // to defer the relocation section, too.
1844           const char* name = pnames + shdr.get_sh_name();
1845           this->deferred_layout_relocs_.push_back(
1846               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1847           out_sections[i] = reinterpret_cast<Output_section*>(2);
1848           out_section_offsets[i] = invalid_address;
1849           continue;
1850         }
1851       if (data_section == NULL)
1852         {
1853           out_sections[i] = NULL;
1854           out_section_offsets[i] = invalid_address;
1855           continue;
1856         }
1857
1858       Relocatable_relocs* rr = new Relocatable_relocs();
1859       this->set_relocatable_relocs(i, rr);
1860
1861       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1862                                                 rr);
1863       out_sections[i] = os;
1864       out_section_offsets[i] = invalid_address;
1865     }
1866
1867   // When building a .gdb_index section, scan the .debug_info and
1868   // .debug_types sections.
1869   gold_assert(!is_pass_one
1870               || (debug_info_sections.empty() && debug_types_sections.empty()));
1871   for (std::vector<unsigned int>::const_iterator p
1872            = debug_info_sections.begin();
1873        p != debug_info_sections.end();
1874        ++p)
1875     {
1876       unsigned int i = *p;
1877       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1878                                i, reloc_shndx[i], reloc_type[i]);
1879     }
1880   for (std::vector<unsigned int>::const_iterator p
1881            = debug_types_sections.begin();
1882        p != debug_types_sections.end();
1883        ++p)
1884     {
1885       unsigned int i = *p;
1886       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1887                                i, reloc_shndx[i], reloc_type[i]);
1888     }
1889
1890   if (is_pass_two)
1891     {
1892       delete[] gc_sd->section_headers_data;
1893       delete[] gc_sd->section_names_data;
1894       delete[] gc_sd->symbols_data;
1895       delete[] gc_sd->symbol_names_data;
1896       this->set_symbols_data(NULL);
1897     }
1898   else
1899     {
1900       delete sd->section_headers;
1901       sd->section_headers = NULL;
1902       delete sd->section_names;
1903       sd->section_names = NULL;
1904     }
1905 }
1906
1907 // Layout sections whose layout was deferred while waiting for
1908 // input files from a plugin.
1909
1910 template<int size, bool big_endian>
1911 void
1912 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1913 {
1914   typename std::vector<Deferred_layout>::iterator deferred;
1915
1916   for (deferred = this->deferred_layout_.begin();
1917        deferred != this->deferred_layout_.end();
1918        ++deferred)
1919     {
1920       typename This::Shdr shdr(deferred->shdr_data_);
1921
1922       if (!parameters->options().relocatable()
1923           && deferred->name_ == ".eh_frame"
1924           && this->check_eh_frame_flags(&shdr))
1925         {
1926           // Checking is_section_included is not reliable for
1927           // .eh_frame sections, because they do not have an output
1928           // section.  This is not a problem normally because we call
1929           // layout_eh_frame_section unconditionally, but when
1930           // deferring sections that is not true.  We don't want to
1931           // keep all .eh_frame sections because that will cause us to
1932           // keep all sections that they refer to, which is the wrong
1933           // way around.  Instead, the eh_frame code will discard
1934           // .eh_frame sections that refer to discarded sections.
1935
1936           // Reading the symbols again here may be slow.
1937           Read_symbols_data sd;
1938           this->base_read_symbols(&sd);
1939           this->layout_eh_frame_section(layout,
1940                                         sd.symbols->data(),
1941                                         sd.symbols_size,
1942                                         sd.symbol_names->data(),
1943                                         sd.symbol_names_size,
1944                                         deferred->shndx_,
1945                                         shdr,
1946                                         deferred->reloc_shndx_,
1947                                         deferred->reloc_type_);
1948           continue;
1949         }
1950
1951       // If the section is not included, it is because the garbage collector
1952       // decided it is not needed.  Avoid reverting that decision.
1953       if (!this->is_section_included(deferred->shndx_))
1954         continue;
1955
1956       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1957                            shdr, deferred->reloc_shndx_,
1958                            deferred->reloc_type_);
1959     }
1960
1961   this->deferred_layout_.clear();
1962
1963   // Now handle the deferred relocation sections.
1964
1965   Output_sections& out_sections(this->output_sections());
1966   std::vector<Address>& out_section_offsets(this->section_offsets());
1967
1968   for (deferred = this->deferred_layout_relocs_.begin();
1969        deferred != this->deferred_layout_relocs_.end();
1970        ++deferred)
1971     {
1972       unsigned int shndx = deferred->shndx_;
1973       typename This::Shdr shdr(deferred->shdr_data_);
1974       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1975
1976       Output_section* data_section = out_sections[data_shndx];
1977       if (data_section == NULL)
1978         {
1979           out_sections[shndx] = NULL;
1980           out_section_offsets[shndx] = invalid_address;
1981           continue;
1982         }
1983
1984       Relocatable_relocs* rr = new Relocatable_relocs();
1985       this->set_relocatable_relocs(shndx, rr);
1986
1987       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1988                                                 data_section, rr);
1989       out_sections[shndx] = os;
1990       out_section_offsets[shndx] = invalid_address;
1991     }
1992 }
1993
1994 // Add the symbols to the symbol table.
1995
1996 template<int size, bool big_endian>
1997 void
1998 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1999                                                     Read_symbols_data* sd,
2000                                                     Layout*)
2001 {
2002   if (sd->symbols == NULL)
2003     {
2004       gold_assert(sd->symbol_names == NULL);
2005       return;
2006     }
2007
2008   const int sym_size = This::sym_size;
2009   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2010                      / sym_size);
2011   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2012     {
2013       this->error(_("size of symbols is not multiple of symbol size"));
2014       return;
2015     }
2016
2017   this->symbols_.resize(symcount);
2018
2019   const char* sym_names =
2020     reinterpret_cast<const char*>(sd->symbol_names->data());
2021   symtab->add_from_relobj(this,
2022                           sd->symbols->data() + sd->external_symbols_offset,
2023                           symcount, this->local_symbol_count_,
2024                           sym_names, sd->symbol_names_size,
2025                           &this->symbols_,
2026                           &this->defined_count_);
2027
2028   delete sd->symbols;
2029   sd->symbols = NULL;
2030   delete sd->symbol_names;
2031   sd->symbol_names = NULL;
2032 }
2033
2034 // Find out if this object, that is a member of a lib group, should be included
2035 // in the link. We check every symbol defined by this object. If the symbol
2036 // table has a strong undefined reference to that symbol, we have to include
2037 // the object.
2038
2039 template<int size, bool big_endian>
2040 Archive::Should_include
2041 Sized_relobj_file<size, big_endian>::do_should_include_member(
2042     Symbol_table* symtab,
2043     Layout* layout,
2044     Read_symbols_data* sd,
2045     std::string* why)
2046 {
2047   char* tmpbuf = NULL;
2048   size_t tmpbuflen = 0;
2049   const char* sym_names =
2050       reinterpret_cast<const char*>(sd->symbol_names->data());
2051   const unsigned char* syms =
2052       sd->symbols->data() + sd->external_symbols_offset;
2053   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2054   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2055                          / sym_size);
2056
2057   const unsigned char* p = syms;
2058
2059   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2060     {
2061       elfcpp::Sym<size, big_endian> sym(p);
2062       unsigned int st_shndx = sym.get_st_shndx();
2063       if (st_shndx == elfcpp::SHN_UNDEF)
2064         continue;
2065
2066       unsigned int st_name = sym.get_st_name();
2067       const char* name = sym_names + st_name;
2068       Symbol* symbol;
2069       Archive::Should_include t = Archive::should_include_member(symtab,
2070                                                                  layout,
2071                                                                  name,
2072                                                                  &symbol, why,
2073                                                                  &tmpbuf,
2074                                                                  &tmpbuflen);
2075       if (t == Archive::SHOULD_INCLUDE_YES)
2076         {
2077           if (tmpbuf != NULL)
2078             free(tmpbuf);
2079           return t;
2080         }
2081     }
2082   if (tmpbuf != NULL)
2083     free(tmpbuf);
2084   return Archive::SHOULD_INCLUDE_UNKNOWN;
2085 }
2086
2087 // Iterate over global defined symbols, calling a visitor class V for each.
2088
2089 template<int size, bool big_endian>
2090 void
2091 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2092     Read_symbols_data* sd,
2093     Library_base::Symbol_visitor_base* v)
2094 {
2095   const char* sym_names =
2096       reinterpret_cast<const char*>(sd->symbol_names->data());
2097   const unsigned char* syms =
2098       sd->symbols->data() + sd->external_symbols_offset;
2099   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2100   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2101                      / sym_size);
2102   const unsigned char* p = syms;
2103
2104   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2105     {
2106       elfcpp::Sym<size, big_endian> sym(p);
2107       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2108         v->visit(sym_names + sym.get_st_name());
2109     }
2110 }
2111
2112 // Return whether the local symbol SYMNDX has a PLT offset.
2113
2114 template<int size, bool big_endian>
2115 bool
2116 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2117     unsigned int symndx) const
2118 {
2119   typename Local_plt_offsets::const_iterator p =
2120     this->local_plt_offsets_.find(symndx);
2121   return p != this->local_plt_offsets_.end();
2122 }
2123
2124 // Get the PLT offset of a local symbol.
2125
2126 template<int size, bool big_endian>
2127 unsigned int
2128 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2129     unsigned int symndx) const
2130 {
2131   typename Local_plt_offsets::const_iterator p =
2132     this->local_plt_offsets_.find(symndx);
2133   gold_assert(p != this->local_plt_offsets_.end());
2134   return p->second;
2135 }
2136
2137 // Set the PLT offset of a local symbol.
2138
2139 template<int size, bool big_endian>
2140 void
2141 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2142     unsigned int symndx, unsigned int plt_offset)
2143 {
2144   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2145     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2146   gold_assert(ins.second);
2147 }
2148
2149 // First pass over the local symbols.  Here we add their names to
2150 // *POOL and *DYNPOOL, and we store the symbol value in
2151 // THIS->LOCAL_VALUES_.  This function is always called from a
2152 // singleton thread.  This is followed by a call to
2153 // finalize_local_symbols.
2154
2155 template<int size, bool big_endian>
2156 void
2157 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2158                                                             Stringpool* dynpool)
2159 {
2160   gold_assert(this->symtab_shndx_ != -1U);
2161   if (this->symtab_shndx_ == 0)
2162     {
2163       // This object has no symbols.  Weird but legal.
2164       return;
2165     }
2166
2167   // Read the symbol table section header.
2168   const unsigned int symtab_shndx = this->symtab_shndx_;
2169   typename This::Shdr symtabshdr(this,
2170                                  this->elf_file_.section_header(symtab_shndx));
2171   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2172
2173   // Read the local symbols.
2174   const int sym_size = This::sym_size;
2175   const unsigned int loccount = this->local_symbol_count_;
2176   gold_assert(loccount == symtabshdr.get_sh_info());
2177   off_t locsize = loccount * sym_size;
2178   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2179                                               locsize, true, true);
2180
2181   // Read the symbol names.
2182   const unsigned int strtab_shndx =
2183     this->adjust_shndx(symtabshdr.get_sh_link());
2184   section_size_type strtab_size;
2185   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2186                                                         &strtab_size,
2187                                                         true);
2188   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2189
2190   // Loop over the local symbols.
2191
2192   const Output_sections& out_sections(this->output_sections());
2193   std::vector<Address>& out_section_offsets(this->section_offsets());
2194   unsigned int shnum = this->shnum();
2195   unsigned int count = 0;
2196   unsigned int dyncount = 0;
2197   // Skip the first, dummy, symbol.
2198   psyms += sym_size;
2199   bool strip_all = parameters->options().strip_all();
2200   bool discard_all = parameters->options().discard_all();
2201   bool discard_locals = parameters->options().discard_locals();
2202   bool discard_sec_merge = parameters->options().discard_sec_merge();
2203   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2204     {
2205       elfcpp::Sym<size, big_endian> sym(psyms);
2206
2207       Symbol_value<size>& lv(this->local_values_[i]);
2208
2209       bool is_ordinary;
2210       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2211                                                   &is_ordinary);
2212       lv.set_input_shndx(shndx, is_ordinary);
2213
2214       if (sym.get_st_type() == elfcpp::STT_SECTION)
2215         lv.set_is_section_symbol();
2216       else if (sym.get_st_type() == elfcpp::STT_TLS)
2217         lv.set_is_tls_symbol();
2218       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2219         lv.set_is_ifunc_symbol();
2220
2221       // Save the input symbol value for use in do_finalize_local_symbols().
2222       lv.set_input_value(sym.get_st_value());
2223
2224       // Decide whether this symbol should go into the output file.
2225
2226       if ((shndx < shnum && out_sections[shndx] == NULL)
2227           || shndx == this->discarded_eh_frame_shndx_)
2228         {
2229           lv.set_no_output_symtab_entry();
2230           gold_assert(!lv.needs_output_dynsym_entry());
2231           continue;
2232         }
2233
2234       if (sym.get_st_type() == elfcpp::STT_SECTION
2235           || !this->adjust_local_symbol(&lv))
2236         {
2237           lv.set_no_output_symtab_entry();
2238           gold_assert(!lv.needs_output_dynsym_entry());
2239           continue;
2240         }
2241
2242       if (sym.get_st_name() >= strtab_size)
2243         {
2244           this->error(_("local symbol %u section name out of range: %u >= %u"),
2245                       i, sym.get_st_name(),
2246                       static_cast<unsigned int>(strtab_size));
2247           lv.set_no_output_symtab_entry();
2248           continue;
2249         }
2250
2251       const char* name = pnames + sym.get_st_name();
2252
2253       // If needed, add the symbol to the dynamic symbol table string pool.
2254       if (lv.needs_output_dynsym_entry())
2255         {
2256           dynpool->add(name, true, NULL);
2257           ++dyncount;
2258         }
2259
2260       if (strip_all
2261           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2262         {
2263           lv.set_no_output_symtab_entry();
2264           continue;
2265         }
2266
2267       // By default, discard temporary local symbols in merge sections.
2268       // If --discard-locals option is used, discard all temporary local
2269       // symbols.  These symbols start with system-specific local label
2270       // prefixes, typically .L for ELF system.  We want to be compatible
2271       // with GNU ld so here we essentially use the same check in
2272       // bfd_is_local_label().  The code is different because we already
2273       // know that:
2274       //
2275       //   - the symbol is local and thus cannot have global or weak binding.
2276       //   - the symbol is not a section symbol.
2277       //   - the symbol has a name.
2278       //
2279       // We do not discard a symbol if it needs a dynamic symbol entry.
2280       if ((discard_locals
2281            || (discard_sec_merge
2282                && is_ordinary
2283                && out_section_offsets[shndx] == invalid_address))
2284           && sym.get_st_type() != elfcpp::STT_FILE
2285           && !lv.needs_output_dynsym_entry()
2286           && lv.may_be_discarded_from_output_symtab()
2287           && parameters->target().is_local_label_name(name))
2288         {
2289           lv.set_no_output_symtab_entry();
2290           continue;
2291         }
2292
2293       // Discard the local symbol if -retain_symbols_file is specified
2294       // and the local symbol is not in that file.
2295       if (!parameters->options().should_retain_symbol(name))
2296         {
2297           lv.set_no_output_symtab_entry();
2298           continue;
2299         }
2300
2301       // Add the symbol to the symbol table string pool.
2302       pool->add(name, true, NULL);
2303       ++count;
2304     }
2305
2306   this->output_local_symbol_count_ = count;
2307   this->output_local_dynsym_count_ = dyncount;
2308 }
2309
2310 // Compute the final value of a local symbol.
2311
2312 template<int size, bool big_endian>
2313 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2314 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2315     unsigned int r_sym,
2316     const Symbol_value<size>* lv_in,
2317     Symbol_value<size>* lv_out,
2318     bool relocatable,
2319     const Output_sections& out_sections,
2320     const std::vector<Address>& out_offsets,
2321     const Symbol_table* symtab)
2322 {
2323   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2324   // we may have a memory leak.
2325   gold_assert(lv_out->has_output_value());
2326
2327   bool is_ordinary;
2328   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2329
2330   // Set the output symbol value.
2331
2332   if (!is_ordinary)
2333     {
2334       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2335         lv_out->set_output_value(lv_in->input_value());
2336       else
2337         {
2338           this->error(_("unknown section index %u for local symbol %u"),
2339                       shndx, r_sym);
2340           lv_out->set_output_value(0);
2341           return This::CFLV_ERROR;
2342         }
2343     }
2344   else
2345     {
2346       if (shndx >= this->shnum())
2347         {
2348           this->error(_("local symbol %u section index %u out of range"),
2349                       r_sym, shndx);
2350           lv_out->set_output_value(0);
2351           return This::CFLV_ERROR;
2352         }
2353
2354       Output_section* os = out_sections[shndx];
2355       Address secoffset = out_offsets[shndx];
2356       if (symtab->is_section_folded(this, shndx))
2357         {
2358           gold_assert(os == NULL && secoffset == invalid_address);
2359           // Get the os of the section it is folded onto.
2360           Section_id folded = symtab->icf()->get_folded_section(this,
2361                                                                 shndx);
2362           gold_assert(folded.first != NULL);
2363           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2364             <Sized_relobj_file<size, big_endian>*>(folded.first);
2365           os = folded_obj->output_section(folded.second);
2366           gold_assert(os != NULL);
2367           secoffset = folded_obj->get_output_section_offset(folded.second);
2368
2369           // This could be a relaxed input section.
2370           if (secoffset == invalid_address)
2371             {
2372               const Output_relaxed_input_section* relaxed_section =
2373                 os->find_relaxed_input_section(folded_obj, folded.second);
2374               gold_assert(relaxed_section != NULL);
2375               secoffset = relaxed_section->address() - os->address();
2376             }
2377         }
2378
2379       if (os == NULL)
2380         {
2381           // This local symbol belongs to a section we are discarding.
2382           // In some cases when applying relocations later, we will
2383           // attempt to match it to the corresponding kept section,
2384           // so we leave the input value unchanged here.
2385           return This::CFLV_DISCARDED;
2386         }
2387       else if (secoffset == invalid_address)
2388         {
2389           uint64_t start;
2390
2391           // This is a SHF_MERGE section or one which otherwise
2392           // requires special handling.
2393           if (shndx == this->discarded_eh_frame_shndx_)
2394             {
2395               // This local symbol belongs to a discarded .eh_frame
2396               // section.  Just treat it like the case in which
2397               // os == NULL above.
2398               gold_assert(this->has_eh_frame_);
2399               return This::CFLV_DISCARDED;
2400             }
2401           else if (!lv_in->is_section_symbol())
2402             {
2403               // This is not a section symbol.  We can determine
2404               // the final value now.
2405               lv_out->set_output_value(
2406                   os->output_address(this, shndx, lv_in->input_value()));
2407             }
2408           else if (!os->find_starting_output_address(this, shndx, &start))
2409             {
2410               // This is a section symbol, but apparently not one in a
2411               // merged section.  First check to see if this is a relaxed
2412               // input section.  If so, use its address.  Otherwise just
2413               // use the start of the output section.  This happens with
2414               // relocatable links when the input object has section
2415               // symbols for arbitrary non-merge sections.
2416               const Output_section_data* posd =
2417                 os->find_relaxed_input_section(this, shndx);
2418               if (posd != NULL)
2419                 {
2420                   Address relocatable_link_adjustment =
2421                     relocatable ? os->address() : 0;
2422                   lv_out->set_output_value(posd->address()
2423                                            - relocatable_link_adjustment);
2424                 }
2425               else
2426                 lv_out->set_output_value(os->address());
2427             }
2428           else
2429             {
2430               // We have to consider the addend to determine the
2431               // value to use in a relocation.  START is the start
2432               // of this input section.  If we are doing a relocatable
2433               // link, use offset from start output section instead of
2434               // address.
2435               Address adjusted_start =
2436                 relocatable ? start - os->address() : start;
2437               Merged_symbol_value<size>* msv =
2438                 new Merged_symbol_value<size>(lv_in->input_value(),
2439                                               adjusted_start);
2440               lv_out->set_merged_symbol_value(msv);
2441             }
2442         }
2443       else if (lv_in->is_tls_symbol()
2444                || (lv_in->is_section_symbol()
2445                    && (os->flags() & elfcpp::SHF_TLS)))
2446         lv_out->set_output_value(os->tls_offset()
2447                                  + secoffset
2448                                  + lv_in->input_value());
2449       else
2450         lv_out->set_output_value((relocatable ? 0 : os->address())
2451                                  + secoffset
2452                                  + lv_in->input_value());
2453     }
2454   return This::CFLV_OK;
2455 }
2456
2457 // Compute final local symbol value.  R_SYM is the index of a local
2458 // symbol in symbol table.  LV points to a symbol value, which is
2459 // expected to hold the input value and to be over-written by the
2460 // final value.  SYMTAB points to a symbol table.  Some targets may want
2461 // to know would-be-finalized local symbol values in relaxation.
2462 // Hence we provide this method.  Since this method updates *LV, a
2463 // callee should make a copy of the original local symbol value and
2464 // use the copy instead of modifying an object's local symbols before
2465 // everything is finalized.  The caller should also free up any allocated
2466 // memory in the return value in *LV.
2467 template<int size, bool big_endian>
2468 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2469 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2470     unsigned int r_sym,
2471     const Symbol_value<size>* lv_in,
2472     Symbol_value<size>* lv_out,
2473     const Symbol_table* symtab)
2474 {
2475   // This is just a wrapper of compute_final_local_value_internal.
2476   const bool relocatable = parameters->options().relocatable();
2477   const Output_sections& out_sections(this->output_sections());
2478   const std::vector<Address>& out_offsets(this->section_offsets());
2479   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2480                                                   relocatable, out_sections,
2481                                                   out_offsets, symtab);
2482 }
2483
2484 // Finalize the local symbols.  Here we set the final value in
2485 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2486 // This function is always called from a singleton thread.  The actual
2487 // output of the local symbols will occur in a separate task.
2488
2489 template<int size, bool big_endian>
2490 unsigned int
2491 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2492     unsigned int index,
2493     off_t off,
2494     Symbol_table* symtab)
2495 {
2496   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2497
2498   const unsigned int loccount = this->local_symbol_count_;
2499   this->local_symbol_offset_ = off;
2500
2501   const bool relocatable = parameters->options().relocatable();
2502   const Output_sections& out_sections(this->output_sections());
2503   const std::vector<Address>& out_offsets(this->section_offsets());
2504
2505   for (unsigned int i = 1; i < loccount; ++i)
2506     {
2507       Symbol_value<size>* lv = &this->local_values_[i];
2508
2509       Compute_final_local_value_status cflv_status =
2510         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2511                                                  out_sections, out_offsets,
2512                                                  symtab);
2513       switch (cflv_status)
2514         {
2515         case CFLV_OK:
2516           if (!lv->is_output_symtab_index_set())
2517             {
2518               lv->set_output_symtab_index(index);
2519               ++index;
2520             }
2521           break;
2522         case CFLV_DISCARDED:
2523         case CFLV_ERROR:
2524           // Do nothing.
2525           break;
2526         default:
2527           gold_unreachable();
2528         }
2529     }
2530   return index;
2531 }
2532
2533 // Set the output dynamic symbol table indexes for the local variables.
2534
2535 template<int size, bool big_endian>
2536 unsigned int
2537 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2538     unsigned int index)
2539 {
2540   const unsigned int loccount = this->local_symbol_count_;
2541   for (unsigned int i = 1; i < loccount; ++i)
2542     {
2543       Symbol_value<size>& lv(this->local_values_[i]);
2544       if (lv.needs_output_dynsym_entry())
2545         {
2546           lv.set_output_dynsym_index(index);
2547           ++index;
2548         }
2549     }
2550   return index;
2551 }
2552
2553 // Set the offset where local dynamic symbol information will be stored.
2554 // Returns the count of local symbols contributed to the symbol table by
2555 // this object.
2556
2557 template<int size, bool big_endian>
2558 unsigned int
2559 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2560 {
2561   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2562   this->local_dynsym_offset_ = off;
2563   return this->output_local_dynsym_count_;
2564 }
2565
2566 // If Symbols_data is not NULL get the section flags from here otherwise
2567 // get it from the file.
2568
2569 template<int size, bool big_endian>
2570 uint64_t
2571 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2572 {
2573   Symbols_data* sd = this->get_symbols_data();
2574   if (sd != NULL)
2575     {
2576       const unsigned char* pshdrs = sd->section_headers_data
2577                                     + This::shdr_size * shndx;
2578       typename This::Shdr shdr(pshdrs);
2579       return shdr.get_sh_flags();
2580     }
2581   // If sd is NULL, read the section header from the file.
2582   return this->elf_file_.section_flags(shndx);
2583 }
2584
2585 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2586 // in icf.cc
2587
2588 template<int size, bool big_endian>
2589 uint64_t
2590 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2591 {
2592   Symbols_data* sd = this->get_symbols_data();
2593   gold_assert(sd != NULL);
2594
2595   const unsigned char* pshdrs = sd->section_headers_data
2596                                 + This::shdr_size * shndx;
2597   typename This::Shdr shdr(pshdrs);
2598   return shdr.get_sh_entsize();
2599 }
2600
2601 // Write out the local symbols.
2602
2603 template<int size, bool big_endian>
2604 void
2605 Sized_relobj_file<size, big_endian>::write_local_symbols(
2606     Output_file* of,
2607     const Stringpool* sympool,
2608     const Stringpool* dynpool,
2609     Output_symtab_xindex* symtab_xindex,
2610     Output_symtab_xindex* dynsym_xindex,
2611     off_t symtab_off)
2612 {
2613   const bool strip_all = parameters->options().strip_all();
2614   if (strip_all)
2615     {
2616       if (this->output_local_dynsym_count_ == 0)
2617         return;
2618       this->output_local_symbol_count_ = 0;
2619     }
2620
2621   gold_assert(this->symtab_shndx_ != -1U);
2622   if (this->symtab_shndx_ == 0)
2623     {
2624       // This object has no symbols.  Weird but legal.
2625       return;
2626     }
2627
2628   // Read the symbol table section header.
2629   const unsigned int symtab_shndx = this->symtab_shndx_;
2630   typename This::Shdr symtabshdr(this,
2631                                  this->elf_file_.section_header(symtab_shndx));
2632   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2633   const unsigned int loccount = this->local_symbol_count_;
2634   gold_assert(loccount == symtabshdr.get_sh_info());
2635
2636   // Read the local symbols.
2637   const int sym_size = This::sym_size;
2638   off_t locsize = loccount * sym_size;
2639   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2640                                               locsize, true, false);
2641
2642   // Read the symbol names.
2643   const unsigned int strtab_shndx =
2644     this->adjust_shndx(symtabshdr.get_sh_link());
2645   section_size_type strtab_size;
2646   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2647                                                         &strtab_size,
2648                                                         false);
2649   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2650
2651   // Get views into the output file for the portions of the symbol table
2652   // and the dynamic symbol table that we will be writing.
2653   off_t output_size = this->output_local_symbol_count_ * sym_size;
2654   unsigned char* oview = NULL;
2655   if (output_size > 0)
2656     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2657                                 output_size);
2658
2659   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2660   unsigned char* dyn_oview = NULL;
2661   if (dyn_output_size > 0)
2662     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2663                                     dyn_output_size);
2664
2665   const Output_sections& out_sections(this->output_sections());
2666
2667   gold_assert(this->local_values_.size() == loccount);
2668
2669   unsigned char* ov = oview;
2670   unsigned char* dyn_ov = dyn_oview;
2671   psyms += sym_size;
2672   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2673     {
2674       elfcpp::Sym<size, big_endian> isym(psyms);
2675
2676       Symbol_value<size>& lv(this->local_values_[i]);
2677
2678       bool is_ordinary;
2679       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2680                                                      &is_ordinary);
2681       if (is_ordinary)
2682         {
2683           gold_assert(st_shndx < out_sections.size());
2684           if (out_sections[st_shndx] == NULL)
2685             continue;
2686           st_shndx = out_sections[st_shndx]->out_shndx();
2687           if (st_shndx >= elfcpp::SHN_LORESERVE)
2688             {
2689               if (lv.has_output_symtab_entry())
2690                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2691               if (lv.has_output_dynsym_entry())
2692                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2693               st_shndx = elfcpp::SHN_XINDEX;
2694             }
2695         }
2696
2697       // Write the symbol to the output symbol table.
2698       if (lv.has_output_symtab_entry())
2699         {
2700           elfcpp::Sym_write<size, big_endian> osym(ov);
2701
2702           gold_assert(isym.get_st_name() < strtab_size);
2703           const char* name = pnames + isym.get_st_name();
2704           osym.put_st_name(sympool->get_offset(name));
2705           osym.put_st_value(this->local_values_[i].value(this, 0));
2706           osym.put_st_size(isym.get_st_size());
2707           osym.put_st_info(isym.get_st_info());
2708           osym.put_st_other(isym.get_st_other());
2709           osym.put_st_shndx(st_shndx);
2710
2711           ov += sym_size;
2712         }
2713
2714       // Write the symbol to the output dynamic symbol table.
2715       if (lv.has_output_dynsym_entry())
2716         {
2717           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2718           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2719
2720           gold_assert(isym.get_st_name() < strtab_size);
2721           const char* name = pnames + isym.get_st_name();
2722           osym.put_st_name(dynpool->get_offset(name));
2723           osym.put_st_value(this->local_values_[i].value(this, 0));
2724           osym.put_st_size(isym.get_st_size());
2725           osym.put_st_info(isym.get_st_info());
2726           osym.put_st_other(isym.get_st_other());
2727           osym.put_st_shndx(st_shndx);
2728
2729           dyn_ov += sym_size;
2730         }
2731     }
2732
2733
2734   if (output_size > 0)
2735     {
2736       gold_assert(ov - oview == output_size);
2737       of->write_output_view(symtab_off + this->local_symbol_offset_,
2738                             output_size, oview);
2739     }
2740
2741   if (dyn_output_size > 0)
2742     {
2743       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2744       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2745                             dyn_oview);
2746     }
2747 }
2748
2749 // Set *INFO to symbolic information about the offset OFFSET in the
2750 // section SHNDX.  Return true if we found something, false if we
2751 // found nothing.
2752
2753 template<int size, bool big_endian>
2754 bool
2755 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2756     unsigned int shndx,
2757     off_t offset,
2758     Symbol_location_info* info)
2759 {
2760   if (this->symtab_shndx_ == 0)
2761     return false;
2762
2763   section_size_type symbols_size;
2764   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2765                                                         &symbols_size,
2766                                                         false);
2767
2768   unsigned int symbol_names_shndx =
2769     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2770   section_size_type names_size;
2771   const unsigned char* symbol_names_u =
2772     this->section_contents(symbol_names_shndx, &names_size, false);
2773   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2774
2775   const int sym_size = This::sym_size;
2776   const size_t count = symbols_size / sym_size;
2777
2778   const unsigned char* p = symbols;
2779   for (size_t i = 0; i < count; ++i, p += sym_size)
2780     {
2781       elfcpp::Sym<size, big_endian> sym(p);
2782
2783       if (sym.get_st_type() == elfcpp::STT_FILE)
2784         {
2785           if (sym.get_st_name() >= names_size)
2786             info->source_file = "(invalid)";
2787           else
2788             info->source_file = symbol_names + sym.get_st_name();
2789           continue;
2790         }
2791
2792       bool is_ordinary;
2793       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2794                                                      &is_ordinary);
2795       if (is_ordinary
2796           && st_shndx == shndx
2797           && static_cast<off_t>(sym.get_st_value()) <= offset
2798           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2799               > offset))
2800         {
2801           info->enclosing_symbol_type = sym.get_st_type();
2802           if (sym.get_st_name() > names_size)
2803             info->enclosing_symbol_name = "(invalid)";
2804           else
2805             {
2806               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2807               if (parameters->options().do_demangle())
2808                 {
2809                   char* demangled_name = cplus_demangle(
2810                       info->enclosing_symbol_name.c_str(),
2811                       DMGL_ANSI | DMGL_PARAMS);
2812                   if (demangled_name != NULL)
2813                     {
2814                       info->enclosing_symbol_name.assign(demangled_name);
2815                       free(demangled_name);
2816                     }
2817                 }
2818             }
2819           return true;
2820         }
2821     }
2822
2823   return false;
2824 }
2825
2826 // Look for a kept section corresponding to the given discarded section,
2827 // and return its output address.  This is used only for relocations in
2828 // debugging sections.  If we can't find the kept section, return 0.
2829
2830 template<int size, bool big_endian>
2831 typename Sized_relobj_file<size, big_endian>::Address
2832 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2833     unsigned int shndx,
2834     bool* found) const
2835 {
2836   Relobj* kept_object;
2837   unsigned int kept_shndx;
2838   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2839     {
2840       Sized_relobj_file<size, big_endian>* kept_relobj =
2841         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2842       Output_section* os = kept_relobj->output_section(kept_shndx);
2843       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2844       if (os != NULL && offset != invalid_address)
2845         {
2846           *found = true;
2847           return os->address() + offset;
2848         }
2849     }
2850   *found = false;
2851   return 0;
2852 }
2853
2854 // Get symbol counts.
2855
2856 template<int size, bool big_endian>
2857 void
2858 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2859     const Symbol_table*,
2860     size_t* defined,
2861     size_t* used) const
2862 {
2863   *defined = this->defined_count_;
2864   size_t count = 0;
2865   for (typename Symbols::const_iterator p = this->symbols_.begin();
2866        p != this->symbols_.end();
2867        ++p)
2868     if (*p != NULL
2869         && (*p)->source() == Symbol::FROM_OBJECT
2870         && (*p)->object() == this
2871         && (*p)->is_defined())
2872       ++count;
2873   *used = count;
2874 }
2875
2876 // Return a view of the decompressed contents of a section.  Set *PLEN
2877 // to the size.  Set *IS_NEW to true if the contents need to be freed
2878 // by the caller.
2879
2880 const unsigned char*
2881 Object::decompressed_section_contents(
2882     unsigned int shndx,
2883     section_size_type* plen,
2884     bool* is_new)
2885 {
2886   section_size_type buffer_size;
2887   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2888                                                           false);
2889
2890   if (this->compressed_sections_ == NULL)
2891     {
2892       *plen = buffer_size;
2893       *is_new = false;
2894       return buffer;
2895     }
2896
2897   Compressed_section_map::const_iterator p =
2898       this->compressed_sections_->find(shndx);
2899   if (p == this->compressed_sections_->end())
2900     {
2901       *plen = buffer_size;
2902       *is_new = false;
2903       return buffer;
2904     }
2905
2906   section_size_type uncompressed_size = p->second.size;
2907   if (p->second.contents != NULL)
2908     {
2909       *plen = uncompressed_size;
2910       *is_new = false;
2911       return p->second.contents;
2912     }
2913
2914   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2915   if (!decompress_input_section(buffer,
2916                                 buffer_size,
2917                                 uncompressed_data,
2918                                 uncompressed_size,
2919                                 elfsize(),
2920                                 is_big_endian(),
2921                                 p->second.flag))
2922     this->error(_("could not decompress section %s"),
2923                 this->do_section_name(shndx).c_str());
2924
2925   // We could cache the results in p->second.contents and store
2926   // false in *IS_NEW, but build_compressed_section_map() would
2927   // have done so if it had expected it to be profitable.  If
2928   // we reach this point, we expect to need the contents only
2929   // once in this pass.
2930   *plen = uncompressed_size;
2931   *is_new = true;
2932   return uncompressed_data;
2933 }
2934
2935 // Discard any buffers of uncompressed sections.  This is done
2936 // at the end of the Add_symbols task.
2937
2938 void
2939 Object::discard_decompressed_sections()
2940 {
2941   if (this->compressed_sections_ == NULL)
2942     return;
2943
2944   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2945        p != this->compressed_sections_->end();
2946        ++p)
2947     {
2948       if (p->second.contents != NULL)
2949         {
2950           delete[] p->second.contents;
2951           p->second.contents = NULL;
2952         }
2953     }
2954 }
2955
2956 // Input_objects methods.
2957
2958 // Add a regular relocatable object to the list.  Return false if this
2959 // object should be ignored.
2960
2961 bool
2962 Input_objects::add_object(Object* obj)
2963 {
2964   // Print the filename if the -t/--trace option is selected.
2965   if (parameters->options().trace())
2966     gold_info("%s", obj->name().c_str());
2967
2968   if (!obj->is_dynamic())
2969     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2970   else
2971     {
2972       // See if this is a duplicate SONAME.
2973       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2974       const char* soname = dynobj->soname();
2975
2976       Unordered_map<std::string, Object*>::value_type val(soname, obj);
2977       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2978         this->sonames_.insert(val);
2979       if (!ins.second)
2980         {
2981           // We have already seen a dynamic object with this soname.
2982           // If any instances of this object on the command line have
2983           // the --no-as-needed flag, make sure the one we keep is
2984           // marked so.
2985           if (!obj->as_needed())
2986             {
2987               gold_assert(ins.first->second != NULL);
2988               ins.first->second->clear_as_needed();
2989             }
2990           return false;
2991         }
2992
2993       this->dynobj_list_.push_back(dynobj);
2994     }
2995
2996   // Add this object to the cross-referencer if requested.
2997   if (parameters->options().user_set_print_symbol_counts()
2998       || parameters->options().cref())
2999     {
3000       if (this->cref_ == NULL)
3001         this->cref_ = new Cref();
3002       this->cref_->add_object(obj);
3003     }
3004
3005   return true;
3006 }
3007
3008 // For each dynamic object, record whether we've seen all of its
3009 // explicit dependencies.
3010
3011 void
3012 Input_objects::check_dynamic_dependencies() const
3013 {
3014   bool issued_copy_dt_needed_error = false;
3015   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3016        p != this->dynobj_list_.end();
3017        ++p)
3018     {
3019       const Dynobj::Needed& needed((*p)->needed());
3020       bool found_all = true;
3021       Dynobj::Needed::const_iterator pneeded;
3022       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3023         {
3024           if (this->sonames_.find(*pneeded) == this->sonames_.end())
3025             {
3026               found_all = false;
3027               break;
3028             }
3029         }
3030       (*p)->set_has_unknown_needed_entries(!found_all);
3031
3032       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3033       // that gold does not support.  However, they cause no trouble
3034       // unless there is a DT_NEEDED entry that we don't know about;
3035       // warn only in that case.
3036       if (!found_all
3037           && !issued_copy_dt_needed_error
3038           && (parameters->options().copy_dt_needed_entries()
3039               || parameters->options().add_needed()))
3040         {
3041           const char* optname;
3042           if (parameters->options().copy_dt_needed_entries())
3043             optname = "--copy-dt-needed-entries";
3044           else
3045             optname = "--add-needed";
3046           gold_error(_("%s is not supported but is required for %s in %s"),
3047                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3048           issued_copy_dt_needed_error = true;
3049         }
3050     }
3051 }
3052
3053 // Start processing an archive.
3054
3055 void
3056 Input_objects::archive_start(Archive* archive)
3057 {
3058   if (parameters->options().user_set_print_symbol_counts()
3059       || parameters->options().cref())
3060     {
3061       if (this->cref_ == NULL)
3062         this->cref_ = new Cref();
3063       this->cref_->add_archive_start(archive);
3064     }
3065 }
3066
3067 // Stop processing an archive.
3068
3069 void
3070 Input_objects::archive_stop(Archive* archive)
3071 {
3072   if (parameters->options().user_set_print_symbol_counts()
3073       || parameters->options().cref())
3074     this->cref_->add_archive_stop(archive);
3075 }
3076
3077 // Print symbol counts
3078
3079 void
3080 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3081 {
3082   if (parameters->options().user_set_print_symbol_counts()
3083       && this->cref_ != NULL)
3084     this->cref_->print_symbol_counts(symtab);
3085 }
3086
3087 // Print a cross reference table.
3088
3089 void
3090 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3091 {
3092   if (parameters->options().cref() && this->cref_ != NULL)
3093     this->cref_->print_cref(symtab, f);
3094 }
3095
3096 // Relocate_info methods.
3097
3098 // Return a string describing the location of a relocation when file
3099 // and lineno information is not available.  This is only used in
3100 // error messages.
3101
3102 template<int size, bool big_endian>
3103 std::string
3104 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3105 {
3106   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3107   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3108   if (!ret.empty())
3109     return ret;
3110
3111   ret = this->object->name();
3112
3113   Symbol_location_info info;
3114   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3115     {
3116       if (!info.source_file.empty())
3117         {
3118           ret += ":";
3119           ret += info.source_file;
3120         }
3121       ret += ":";
3122       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3123         ret += _("function ");
3124       ret += info.enclosing_symbol_name;
3125       return ret;
3126     }
3127
3128   ret += "(";
3129   ret += this->object->section_name(this->data_shndx);
3130   char buf[100];
3131   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3132   ret += buf;
3133   return ret;
3134 }
3135
3136 } // End namespace gold.
3137
3138 namespace
3139 {
3140
3141 using namespace gold;
3142
3143 // Read an ELF file with the header and return the appropriate
3144 // instance of Object.
3145
3146 template<int size, bool big_endian>
3147 Object*
3148 make_elf_sized_object(const std::string& name, Input_file* input_file,
3149                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3150                       bool* punconfigured)
3151 {
3152   Target* target = select_target(input_file, offset,
3153                                  ehdr.get_e_machine(), size, big_endian,
3154                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3155                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3156   if (target == NULL)
3157     gold_fatal(_("%s: unsupported ELF machine number %d"),
3158                name.c_str(), ehdr.get_e_machine());
3159
3160   if (!parameters->target_valid())
3161     set_parameters_target(target);
3162   else if (target != &parameters->target())
3163     {
3164       if (punconfigured != NULL)
3165         *punconfigured = true;
3166       else
3167         gold_error(_("%s: incompatible target"), name.c_str());
3168       return NULL;
3169     }
3170
3171   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3172                                                    ehdr);
3173 }
3174
3175 } // End anonymous namespace.
3176
3177 namespace gold
3178 {
3179
3180 // Return whether INPUT_FILE is an ELF object.
3181
3182 bool
3183 is_elf_object(Input_file* input_file, off_t offset,
3184               const unsigned char** start, int* read_size)
3185 {
3186   off_t filesize = input_file->file().filesize();
3187   int want = elfcpp::Elf_recognizer::max_header_size;
3188   if (filesize - offset < want)
3189     want = filesize - offset;
3190
3191   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3192                                                        true, false);
3193   *start = p;
3194   *read_size = want;
3195
3196   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3197 }
3198
3199 // Read an ELF file and return the appropriate instance of Object.
3200
3201 Object*
3202 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3203                 const unsigned char* p, section_offset_type bytes,
3204                 bool* punconfigured)
3205 {
3206   if (punconfigured != NULL)
3207     *punconfigured = false;
3208
3209   std::string error;
3210   bool big_endian = false;
3211   int size = 0;
3212   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3213                                                &big_endian, &error))
3214     {
3215       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3216       return NULL;
3217     }
3218
3219   if (size == 32)
3220     {
3221       if (big_endian)
3222         {
3223 #ifdef HAVE_TARGET_32_BIG
3224           elfcpp::Ehdr<32, true> ehdr(p);
3225           return make_elf_sized_object<32, true>(name, input_file,
3226                                                  offset, ehdr, punconfigured);
3227 #else
3228           if (punconfigured != NULL)
3229             *punconfigured = true;
3230           else
3231             gold_error(_("%s: not configured to support "
3232                          "32-bit big-endian object"),
3233                        name.c_str());
3234           return NULL;
3235 #endif
3236         }
3237       else
3238         {
3239 #ifdef HAVE_TARGET_32_LITTLE
3240           elfcpp::Ehdr<32, false> ehdr(p);
3241           return make_elf_sized_object<32, false>(name, input_file,
3242                                                   offset, ehdr, punconfigured);
3243 #else
3244           if (punconfigured != NULL)
3245             *punconfigured = true;
3246           else
3247             gold_error(_("%s: not configured to support "
3248                          "32-bit little-endian object"),
3249                        name.c_str());
3250           return NULL;
3251 #endif
3252         }
3253     }
3254   else if (size == 64)
3255     {
3256       if (big_endian)
3257         {
3258 #ifdef HAVE_TARGET_64_BIG
3259           elfcpp::Ehdr<64, true> ehdr(p);
3260           return make_elf_sized_object<64, true>(name, input_file,
3261                                                  offset, ehdr, punconfigured);
3262 #else
3263           if (punconfigured != NULL)
3264             *punconfigured = true;
3265           else
3266             gold_error(_("%s: not configured to support "
3267                          "64-bit big-endian object"),
3268                        name.c_str());
3269           return NULL;
3270 #endif
3271         }
3272       else
3273         {
3274 #ifdef HAVE_TARGET_64_LITTLE
3275           elfcpp::Ehdr<64, false> ehdr(p);
3276           return make_elf_sized_object<64, false>(name, input_file,
3277                                                   offset, ehdr, punconfigured);
3278 #else
3279           if (punconfigured != NULL)
3280             *punconfigured = true;
3281           else
3282             gold_error(_("%s: not configured to support "
3283                          "64-bit little-endian object"),
3284                        name.c_str());
3285           return NULL;
3286 #endif
3287         }
3288     }
3289   else
3290     gold_unreachable();
3291 }
3292
3293 // Instantiate the templates we need.
3294
3295 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3296 template
3297 void
3298 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3299       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3300       Unordered_map<section_offset_type,
3301       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3302 #endif
3303
3304 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3305 template
3306 void
3307 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3308       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3309       Unordered_map<section_offset_type,
3310       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3311 #endif
3312
3313 #ifdef HAVE_TARGET_32_LITTLE
3314 template
3315 void
3316 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3317                                      Read_symbols_data*);
3318 template
3319 const unsigned char*
3320 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3321                             section_size_type, const unsigned char*) const;
3322 #endif
3323
3324 #ifdef HAVE_TARGET_32_BIG
3325 template
3326 void
3327 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3328                                     Read_symbols_data*);
3329 template
3330 const unsigned char*
3331 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3332                            section_size_type, const unsigned char*) const;
3333 #endif
3334
3335 #ifdef HAVE_TARGET_64_LITTLE
3336 template
3337 void
3338 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3339                                      Read_symbols_data*);
3340 template
3341 const unsigned char*
3342 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3343                             section_size_type, const unsigned char*) const;
3344 #endif
3345
3346 #ifdef HAVE_TARGET_64_BIG
3347 template
3348 void
3349 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3350                                     Read_symbols_data*);
3351 template
3352 const unsigned char*
3353 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3354                            section_size_type, const unsigned char*) const;
3355 #endif
3356
3357 #ifdef HAVE_TARGET_32_LITTLE
3358 template
3359 class Sized_relobj<32, false>;
3360
3361 template
3362 class Sized_relobj_file<32, false>;
3363 #endif
3364
3365 #ifdef HAVE_TARGET_32_BIG
3366 template
3367 class Sized_relobj<32, true>;
3368
3369 template
3370 class Sized_relobj_file<32, true>;
3371 #endif
3372
3373 #ifdef HAVE_TARGET_64_LITTLE
3374 template
3375 class Sized_relobj<64, false>;
3376
3377 template
3378 class Sized_relobj_file<64, false>;
3379 #endif
3380
3381 #ifdef HAVE_TARGET_64_BIG
3382 template
3383 class Sized_relobj<64, true>;
3384
3385 template
3386 class Sized_relobj_file<64, true>;
3387 #endif
3388
3389 #ifdef HAVE_TARGET_32_LITTLE
3390 template
3391 struct Relocate_info<32, false>;
3392 #endif
3393
3394 #ifdef HAVE_TARGET_32_BIG
3395 template
3396 struct Relocate_info<32, true>;
3397 #endif
3398
3399 #ifdef HAVE_TARGET_64_LITTLE
3400 template
3401 struct Relocate_info<64, false>;
3402 #endif
3403
3404 #ifdef HAVE_TARGET_64_BIG
3405 template
3406 struct Relocate_info<64, true>;
3407 #endif
3408
3409 #ifdef HAVE_TARGET_32_LITTLE
3410 template
3411 void
3412 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3413
3414 template
3415 void
3416 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3417                                       const unsigned char*);
3418 #endif
3419
3420 #ifdef HAVE_TARGET_32_BIG
3421 template
3422 void
3423 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3424
3425 template
3426 void
3427 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3428                                      const unsigned char*);
3429 #endif
3430
3431 #ifdef HAVE_TARGET_64_LITTLE
3432 template
3433 void
3434 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3435
3436 template
3437 void
3438 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3439                                       const unsigned char*);
3440 #endif
3441
3442 #ifdef HAVE_TARGET_64_BIG
3443 template
3444 void
3445 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3446
3447 template
3448 void
3449 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3450                                      const unsigned char*);
3451 #endif
3452
3453 } // End namespace gold.