* incremental.cc (Sized_incremental_binary::do_file_has_changed):
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header.  This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438   const unsigned int shnum = this->elf_file_.shnum();
439   this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers.  The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section.  Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451   const unsigned int shnum = this->shnum();
452   this->symtab_shndx_ = 0;
453   if (shnum > 0)
454     {
455       // Look through the sections in reverse order, since gas tends
456       // to put the symbol table at the end.
457       const unsigned char* p = pshdrs + shnum * This::shdr_size;
458       unsigned int i = shnum;
459       unsigned int xindex_shndx = 0;
460       unsigned int xindex_link = 0;
461       while (i > 0)
462         {
463           --i;
464           p -= This::shdr_size;
465           typename This::Shdr shdr(p);
466           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467             {
468               this->symtab_shndx_ = i;
469               if (xindex_shndx > 0 && xindex_link == i)
470                 {
471                   Xindex* xindex =
472                     new Xindex(this->elf_file_.large_shndx_offset());
473                   xindex->read_symtab_xindex<size, big_endian>(this,
474                                                                xindex_shndx,
475                                                                pshdrs);
476                   this->set_xindex(xindex);
477                 }
478               break;
479             }
480
481           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482           // one.  This will work if it follows the SHT_SYMTAB
483           // section.
484           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485             {
486               xindex_shndx = i;
487               xindex_link = this->adjust_shndx(shdr.get_sh_link());
488             }
489         }
490     }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500   gold_assert(this->symtab_shndx_ != -1U);
501   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503   return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512     const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
515   return ((sh_type == elfcpp::SHT_PROGBITS
516            || sh_type == elfcpp::SHT_X86_64_UNWIND)
517           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
518 }
519
520 // Return whether there is a GNU .eh_frame section, given the section
521 // headers and the section names.
522
523 template<int size, bool big_endian>
524 bool
525 Sized_relobj_file<size, big_endian>::find_eh_frame(
526     const unsigned char* pshdrs,
527     const char* names,
528     section_size_type names_size) const
529 {
530   const unsigned int shnum = this->shnum();
531   const unsigned char* p = pshdrs + This::shdr_size;
532   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
533     {
534       typename This::Shdr shdr(p);
535       if (this->check_eh_frame_flags(&shdr))
536         {
537           if (shdr.get_sh_name() >= names_size)
538             {
539               this->error(_("bad section name offset for section %u: %lu"),
540                           i, static_cast<unsigned long>(shdr.get_sh_name()));
541               continue;
542             }
543
544           const char* name = names + shdr.get_sh_name();
545           if (strcmp(name, ".eh_frame") == 0)
546             return true;
547         }
548     }
549   return false;
550 }
551
552 // Build a table for any compressed debug sections, mapping each section index
553 // to the uncompressed size.
554
555 template<int size, bool big_endian>
556 Compressed_section_map*
557 build_compressed_section_map(
558     const unsigned char* pshdrs,
559     unsigned int shnum,
560     const char* names,
561     section_size_type names_size,
562     Sized_relobj_file<size, big_endian>* obj)
563 {
564   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
565   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
566   const unsigned char* p = pshdrs + shdr_size;
567   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
568     {
569       typename elfcpp::Shdr<size, big_endian> shdr(p);
570       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
571           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
572         {
573           if (shdr.get_sh_name() >= names_size)
574             {
575               obj->error(_("bad section name offset for section %u: %lu"),
576                          i, static_cast<unsigned long>(shdr.get_sh_name()));
577               continue;
578             }
579
580           const char* name = names + shdr.get_sh_name();
581           if (is_compressed_debug_section(name))
582             {
583               section_size_type len;
584               const unsigned char* contents =
585                   obj->section_contents(i, &len, false);
586               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
587               if (uncompressed_size != -1ULL)
588                 (*uncompressed_sizes)[i] =
589                     convert_to_section_size_type(uncompressed_size);
590             }
591         }
592     }
593   return uncompressed_sizes;
594 }
595
596 // Read the sections and symbols from an object file.
597
598 template<int size, bool big_endian>
599 void
600 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
601 {
602   this->read_section_data(&this->elf_file_, sd);
603
604   const unsigned char* const pshdrs = sd->section_headers->data();
605
606   this->find_symtab(pshdrs);
607
608   const unsigned char* namesu = sd->section_names->data();
609   const char* names = reinterpret_cast<const char*>(namesu);
610   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
611     {
612       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
613         this->has_eh_frame_ = true;
614     }
615   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
616     this->compressed_sections_ =
617         build_compressed_section_map(pshdrs, this->shnum(), names,
618                                      sd->section_names_size, this);
619
620   sd->symbols = NULL;
621   sd->symbols_size = 0;
622   sd->external_symbols_offset = 0;
623   sd->symbol_names = NULL;
624   sd->symbol_names_size = 0;
625
626   if (this->symtab_shndx_ == 0)
627     {
628       // No symbol table.  Weird but legal.
629       return;
630     }
631
632   // Get the symbol table section header.
633   typename This::Shdr symtabshdr(pshdrs
634                                  + this->symtab_shndx_ * This::shdr_size);
635   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
636
637   // If this object has a .eh_frame section, we need all the symbols.
638   // Otherwise we only need the external symbols.  While it would be
639   // simpler to just always read all the symbols, I've seen object
640   // files with well over 2000 local symbols, which for a 64-bit
641   // object file format is over 5 pages that we don't need to read
642   // now.
643
644   const int sym_size = This::sym_size;
645   const unsigned int loccount = symtabshdr.get_sh_info();
646   this->local_symbol_count_ = loccount;
647   this->local_values_.resize(loccount);
648   section_offset_type locsize = loccount * sym_size;
649   off_t dataoff = symtabshdr.get_sh_offset();
650   section_size_type datasize =
651     convert_to_section_size_type(symtabshdr.get_sh_size());
652   off_t extoff = dataoff + locsize;
653   section_size_type extsize = datasize - locsize;
654
655   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
656   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
657
658   if (readsize == 0)
659     {
660       // No external symbols.  Also weird but also legal.
661       return;
662     }
663
664   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
665
666   // Read the section header for the symbol names.
667   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
668   if (strtab_shndx >= this->shnum())
669     {
670       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
671       return;
672     }
673   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
674   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
675     {
676       this->error(_("symbol table name section has wrong type: %u"),
677                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
678       return;
679     }
680
681   // Read the symbol names.
682   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
683                                                strtabshdr.get_sh_size(),
684                                                false, true);
685
686   sd->symbols = fvsymtab;
687   sd->symbols_size = readsize;
688   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
689   sd->symbol_names = fvstrtab;
690   sd->symbol_names_size =
691     convert_to_section_size_type(strtabshdr.get_sh_size());
692 }
693
694 // Return the section index of symbol SYM.  Set *VALUE to its value in
695 // the object file.  Set *IS_ORDINARY if this is an ordinary section
696 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
697 // Note that for a symbol which is not defined in this object file,
698 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
699 // the final value of the symbol in the link.
700
701 template<int size, bool big_endian>
702 unsigned int
703 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
704                                                               Address* value,
705                                                               bool* is_ordinary)
706 {
707   section_size_type symbols_size;
708   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
709                                                         &symbols_size,
710                                                         false);
711
712   const size_t count = symbols_size / This::sym_size;
713   gold_assert(sym < count);
714
715   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
716   *value = elfsym.get_st_value();
717
718   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
719 }
720
721 // Return whether to include a section group in the link.  LAYOUT is
722 // used to keep track of which section groups we have already seen.
723 // INDEX is the index of the section group and SHDR is the section
724 // header.  If we do not want to include this group, we set bits in
725 // OMIT for each section which should be discarded.
726
727 template<int size, bool big_endian>
728 bool
729 Sized_relobj_file<size, big_endian>::include_section_group(
730     Symbol_table* symtab,
731     Layout* layout,
732     unsigned int index,
733     const char* name,
734     const unsigned char* shdrs,
735     const char* section_names,
736     section_size_type section_names_size,
737     std::vector<bool>* omit)
738 {
739   // Read the section contents.
740   typename This::Shdr shdr(shdrs + index * This::shdr_size);
741   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
742                                              shdr.get_sh_size(), true, false);
743   const elfcpp::Elf_Word* pword =
744     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
745
746   // The first word contains flags.  We only care about COMDAT section
747   // groups.  Other section groups are always included in the link
748   // just like ordinary sections.
749   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
750
751   // Look up the group signature, which is the name of a symbol.  ELF
752   // uses a symbol name because some group signatures are long, and
753   // the name is generally already in the symbol table, so it makes
754   // sense to put the long string just once in .strtab rather than in
755   // both .strtab and .shstrtab.
756
757   // Get the appropriate symbol table header (this will normally be
758   // the single SHT_SYMTAB section, but in principle it need not be).
759   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
760   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
761
762   // Read the symbol table entry.
763   unsigned int symndx = shdr.get_sh_info();
764   if (symndx >= symshdr.get_sh_size() / This::sym_size)
765     {
766       this->error(_("section group %u info %u out of range"),
767                   index, symndx);
768       return false;
769     }
770   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
771   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
772                                              false);
773   elfcpp::Sym<size, big_endian> sym(psym);
774
775   // Read the symbol table names.
776   section_size_type symnamelen;
777   const unsigned char* psymnamesu;
778   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
779                                       &symnamelen, true);
780   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
781
782   // Get the section group signature.
783   if (sym.get_st_name() >= symnamelen)
784     {
785       this->error(_("symbol %u name offset %u out of range"),
786                   symndx, sym.get_st_name());
787       return false;
788     }
789
790   std::string signature(psymnames + sym.get_st_name());
791
792   // It seems that some versions of gas will create a section group
793   // associated with a section symbol, and then fail to give a name to
794   // the section symbol.  In such a case, use the name of the section.
795   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
796     {
797       bool is_ordinary;
798       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
799                                                       sym.get_st_shndx(),
800                                                       &is_ordinary);
801       if (!is_ordinary || sym_shndx >= this->shnum())
802         {
803           this->error(_("symbol %u invalid section index %u"),
804                       symndx, sym_shndx);
805           return false;
806         }
807       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
808       if (member_shdr.get_sh_name() < section_names_size)
809         signature = section_names + member_shdr.get_sh_name();
810     }
811
812   // Record this section group in the layout, and see whether we've already
813   // seen one with the same signature.
814   bool include_group;
815   bool is_comdat;
816   Kept_section* kept_section = NULL;
817
818   if ((flags & elfcpp::GRP_COMDAT) == 0)
819     {
820       include_group = true;
821       is_comdat = false;
822     }
823   else
824     {
825       include_group = layout->find_or_add_kept_section(signature,
826                                                        this, index, true,
827                                                        true, &kept_section);
828       is_comdat = true;
829     }
830
831   if (is_comdat && include_group)
832     {
833       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
834       if (incremental_inputs != NULL)
835         incremental_inputs->report_comdat_group(this, signature.c_str());
836     }
837
838   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
839
840   std::vector<unsigned int> shndxes;
841   bool relocate_group = include_group && parameters->options().relocatable();
842   if (relocate_group)
843     shndxes.reserve(count - 1);
844
845   for (size_t i = 1; i < count; ++i)
846     {
847       elfcpp::Elf_Word shndx =
848         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
849
850       if (relocate_group)
851         shndxes.push_back(shndx);
852
853       if (shndx >= this->shnum())
854         {
855           this->error(_("section %u in section group %u out of range"),
856                       shndx, index);
857           continue;
858         }
859
860       // Check for an earlier section number, since we're going to get
861       // it wrong--we may have already decided to include the section.
862       if (shndx < index)
863         this->error(_("invalid section group %u refers to earlier section %u"),
864                     index, shndx);
865
866       // Get the name of the member section.
867       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
868       if (member_shdr.get_sh_name() >= section_names_size)
869         {
870           // This is an error, but it will be diagnosed eventually
871           // in do_layout, so we don't need to do anything here but
872           // ignore it.
873           continue;
874         }
875       std::string mname(section_names + member_shdr.get_sh_name());
876
877       if (include_group)
878         {
879           if (is_comdat)
880             kept_section->add_comdat_section(mname, shndx,
881                                              member_shdr.get_sh_size());
882         }
883       else
884         {
885           (*omit)[shndx] = true;
886
887           if (is_comdat)
888             {
889               Relobj* kept_object = kept_section->object();
890               if (kept_section->is_comdat())
891                 {
892                   // Find the corresponding kept section, and store
893                   // that info in the discarded section table.
894                   unsigned int kept_shndx;
895                   uint64_t kept_size;
896                   if (kept_section->find_comdat_section(mname, &kept_shndx,
897                                                         &kept_size))
898                     {
899                       // We don't keep a mapping for this section if
900                       // it has a different size.  The mapping is only
901                       // used for relocation processing, and we don't
902                       // want to treat the sections as similar if the
903                       // sizes are different.  Checking the section
904                       // size is the approach used by the GNU linker.
905                       if (kept_size == member_shdr.get_sh_size())
906                         this->set_kept_comdat_section(shndx, kept_object,
907                                                       kept_shndx);
908                     }
909                 }
910               else
911                 {
912                   // The existing section is a linkonce section.  Add
913                   // a mapping if there is exactly one section in the
914                   // group (which is true when COUNT == 2) and if it
915                   // is the same size.
916                   if (count == 2
917                       && (kept_section->linkonce_size()
918                           == member_shdr.get_sh_size()))
919                     this->set_kept_comdat_section(shndx, kept_object,
920                                                   kept_section->shndx());
921                 }
922             }
923         }
924     }
925
926   if (relocate_group)
927     layout->layout_group(symtab, this, index, name, signature.c_str(),
928                          shdr, flags, &shndxes);
929
930   return include_group;
931 }
932
933 // Whether to include a linkonce section in the link.  NAME is the
934 // name of the section and SHDR is the section header.
935
936 // Linkonce sections are a GNU extension implemented in the original
937 // GNU linker before section groups were defined.  The semantics are
938 // that we only include one linkonce section with a given name.  The
939 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
940 // where T is the type of section and SYMNAME is the name of a symbol.
941 // In an attempt to make linkonce sections interact well with section
942 // groups, we try to identify SYMNAME and use it like a section group
943 // signature.  We want to block section groups with that signature,
944 // but not other linkonce sections with that signature.  We also use
945 // the full name of the linkonce section as a normal section group
946 // signature.
947
948 template<int size, bool big_endian>
949 bool
950 Sized_relobj_file<size, big_endian>::include_linkonce_section(
951     Layout* layout,
952     unsigned int index,
953     const char* name,
954     const elfcpp::Shdr<size, big_endian>& shdr)
955 {
956   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
957   // In general the symbol name we want will be the string following
958   // the last '.'.  However, we have to handle the case of
959   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
960   // some versions of gcc.  So we use a heuristic: if the name starts
961   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
962   // we look for the last '.'.  We can't always simply skip
963   // ".gnu.linkonce.X", because we have to deal with cases like
964   // ".gnu.linkonce.d.rel.ro.local".
965   const char* const linkonce_t = ".gnu.linkonce.t.";
966   const char* symname;
967   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
968     symname = name + strlen(linkonce_t);
969   else
970     symname = strrchr(name, '.') + 1;
971   std::string sig1(symname);
972   std::string sig2(name);
973   Kept_section* kept1;
974   Kept_section* kept2;
975   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
976                                                    false, &kept1);
977   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
978                                                    true, &kept2);
979
980   if (!include2)
981     {
982       // We are not including this section because we already saw the
983       // name of the section as a signature.  This normally implies
984       // that the kept section is another linkonce section.  If it is
985       // the same size, record it as the section which corresponds to
986       // this one.
987       if (kept2->object() != NULL
988           && !kept2->is_comdat()
989           && kept2->linkonce_size() == sh_size)
990         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
991     }
992   else if (!include1)
993     {
994       // The section is being discarded on the basis of its symbol
995       // name.  This means that the corresponding kept section was
996       // part of a comdat group, and it will be difficult to identify
997       // the specific section within that group that corresponds to
998       // this linkonce section.  We'll handle the simple case where
999       // the group has only one member section.  Otherwise, it's not
1000       // worth the effort.
1001       unsigned int kept_shndx;
1002       uint64_t kept_size;
1003       if (kept1->object() != NULL
1004           && kept1->is_comdat()
1005           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1006           && kept_size == sh_size)
1007         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1008     }
1009   else
1010     {
1011       kept1->set_linkonce_size(sh_size);
1012       kept2->set_linkonce_size(sh_size);
1013     }
1014
1015   return include1 && include2;
1016 }
1017
1018 // Layout an input section.
1019
1020 template<int size, bool big_endian>
1021 inline void
1022 Sized_relobj_file<size, big_endian>::layout_section(
1023     Layout* layout,
1024     unsigned int shndx,
1025     const char* name,
1026     const typename This::Shdr& shdr,
1027     unsigned int reloc_shndx,
1028     unsigned int reloc_type)
1029 {
1030   off_t offset;
1031   Output_section* os = layout->layout(this, shndx, name, shdr,
1032                                           reloc_shndx, reloc_type, &offset);
1033
1034   this->output_sections()[shndx] = os;
1035   if (offset == -1)
1036     this->section_offsets()[shndx] = invalid_address;
1037   else
1038     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1039
1040   // If this section requires special handling, and if there are
1041   // relocs that apply to it, then we must do the special handling
1042   // before we apply the relocs.
1043   if (offset == -1 && reloc_shndx != 0)
1044     this->set_relocs_must_follow_section_writes();
1045 }
1046
1047 // Layout an input .eh_frame section.
1048
1049 template<int size, bool big_endian>
1050 void
1051 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1052     Layout* layout,
1053     const unsigned char* symbols_data,
1054     section_size_type symbols_size,
1055     const unsigned char* symbol_names_data,
1056     section_size_type symbol_names_size,
1057     unsigned int shndx,
1058     const typename This::Shdr& shdr,
1059     unsigned int reloc_shndx,
1060     unsigned int reloc_type)
1061 {
1062   gold_assert(this->has_eh_frame_);
1063
1064   off_t offset;
1065   Output_section* os = layout->layout_eh_frame(this,
1066                                                symbols_data,
1067                                                symbols_size,
1068                                                symbol_names_data,
1069                                                symbol_names_size,
1070                                                shndx,
1071                                                shdr,
1072                                                reloc_shndx,
1073                                                reloc_type,
1074                                                &offset);
1075   this->output_sections()[shndx] = os;
1076   if (os == NULL || offset == -1)
1077     {
1078       // An object can contain at most one section holding exception
1079       // frame information.
1080       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1081       this->discarded_eh_frame_shndx_ = shndx;
1082       this->section_offsets()[shndx] = invalid_address;
1083     }
1084   else
1085     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1086
1087   // If this section requires special handling, and if there are
1088   // relocs that aply to it, then we must do the special handling
1089   // before we apply the relocs.
1090   if (os != NULL && offset == -1 && reloc_shndx != 0)
1091     this->set_relocs_must_follow_section_writes();
1092 }
1093
1094 // Lay out the input sections.  We walk through the sections and check
1095 // whether they should be included in the link.  If they should, we
1096 // pass them to the Layout object, which will return an output section
1097 // and an offset.  
1098 // During garbage collection (--gc-sections) and identical code folding 
1099 // (--icf), this function is called twice.  When it is called the first 
1100 // time, it is for setting up some sections as roots to a work-list for
1101 // --gc-sections and to do comdat processing.  Actual layout happens the 
1102 // second time around after all the relevant sections have been determined.  
1103 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1104 // set to true after the garbage collection worklist or identical code 
1105 // folding is processed and the relevant sections to be kept are 
1106 // determined.  Then, this function is called again to layout the sections.
1107
1108 template<int size, bool big_endian>
1109 void
1110 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1111                                                Layout* layout,
1112                                                Read_symbols_data* sd)
1113 {
1114   const unsigned int shnum = this->shnum();
1115   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1116                           && !symtab->gc()->is_worklist_ready())
1117                          || (parameters->options().icf_enabled()
1118                              && !symtab->icf()->is_icf_ready()));
1119  
1120   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1121                           && symtab->gc()->is_worklist_ready())
1122                          || (parameters->options().icf_enabled()
1123                              && symtab->icf()->is_icf_ready()));
1124
1125   bool is_gc_or_icf = (parameters->options().gc_sections()
1126                        || parameters->options().icf_enabled()); 
1127
1128   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1129   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1130
1131   if (shnum == 0)
1132     return;
1133   Symbols_data* gc_sd = NULL;
1134   if (is_gc_pass_one)
1135     {
1136       // During garbage collection save the symbols data to use it when 
1137       // re-entering this function.   
1138       gc_sd = new Symbols_data;
1139       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1140       this->set_symbols_data(gc_sd);
1141     }
1142   else if (is_gc_pass_two)
1143     {
1144       gc_sd = this->get_symbols_data();
1145     }
1146
1147   const unsigned char* section_headers_data = NULL;
1148   section_size_type section_names_size;
1149   const unsigned char* symbols_data = NULL;
1150   section_size_type symbols_size;
1151   section_offset_type external_symbols_offset;
1152   const unsigned char* symbol_names_data = NULL;
1153   section_size_type symbol_names_size;
1154  
1155   if (is_gc_or_icf)
1156     {
1157       section_headers_data = gc_sd->section_headers_data;
1158       section_names_size = gc_sd->section_names_size;
1159       symbols_data = gc_sd->symbols_data;
1160       symbols_size = gc_sd->symbols_size;
1161       external_symbols_offset = gc_sd->external_symbols_offset;
1162       symbol_names_data = gc_sd->symbol_names_data;
1163       symbol_names_size = gc_sd->symbol_names_size;
1164     }
1165   else
1166     {
1167       section_headers_data = sd->section_headers->data();
1168       section_names_size = sd->section_names_size;
1169       if (sd->symbols != NULL)
1170         symbols_data = sd->symbols->data();
1171       symbols_size = sd->symbols_size;
1172       external_symbols_offset = sd->external_symbols_offset;
1173       if (sd->symbol_names != NULL)
1174         symbol_names_data = sd->symbol_names->data();
1175       symbol_names_size = sd->symbol_names_size;
1176     }
1177
1178   // Get the section headers.
1179   const unsigned char* shdrs = section_headers_data;
1180   const unsigned char* pshdrs;
1181
1182   // Get the section names.
1183   const unsigned char* pnamesu = (is_gc_or_icf) 
1184                                  ? gc_sd->section_names_data
1185                                  : sd->section_names->data();
1186
1187   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1188
1189   // If any input files have been claimed by plugins, we need to defer
1190   // actual layout until the replacement files have arrived.
1191   const bool should_defer_layout =
1192       (parameters->options().has_plugins()
1193        && parameters->options().plugins()->should_defer_layout());
1194   unsigned int num_sections_to_defer = 0;
1195
1196   // For each section, record the index of the reloc section if any.
1197   // Use 0 to mean that there is no reloc section, -1U to mean that
1198   // there is more than one.
1199   std::vector<unsigned int> reloc_shndx(shnum, 0);
1200   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1201   // Skip the first, dummy, section.
1202   pshdrs = shdrs + This::shdr_size;
1203   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1204     {
1205       typename This::Shdr shdr(pshdrs);
1206
1207       // Count the number of sections whose layout will be deferred.
1208       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1209         ++num_sections_to_defer;
1210
1211       unsigned int sh_type = shdr.get_sh_type();
1212       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1213         {
1214           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1215           if (target_shndx == 0 || target_shndx >= shnum)
1216             {
1217               this->error(_("relocation section %u has bad info %u"),
1218                           i, target_shndx);
1219               continue;
1220             }
1221
1222           if (reloc_shndx[target_shndx] != 0)
1223             reloc_shndx[target_shndx] = -1U;
1224           else
1225             {
1226               reloc_shndx[target_shndx] = i;
1227               reloc_type[target_shndx] = sh_type;
1228             }
1229         }
1230     }
1231
1232   Output_sections& out_sections(this->output_sections());
1233   std::vector<Address>& out_section_offsets(this->section_offsets());
1234
1235   if (!is_gc_pass_two)
1236     {
1237       out_sections.resize(shnum);
1238       out_section_offsets.resize(shnum);
1239     }
1240
1241   // If we are only linking for symbols, then there is nothing else to
1242   // do here.
1243   if (this->input_file()->just_symbols())
1244     {
1245       if (!is_gc_pass_two)
1246         {
1247           delete sd->section_headers;
1248           sd->section_headers = NULL;
1249           delete sd->section_names;
1250           sd->section_names = NULL;
1251         }
1252       return;
1253     }
1254
1255   if (num_sections_to_defer > 0)
1256     {
1257       parameters->options().plugins()->add_deferred_layout_object(this);
1258       this->deferred_layout_.reserve(num_sections_to_defer);
1259     }
1260
1261   // Whether we've seen a .note.GNU-stack section.
1262   bool seen_gnu_stack = false;
1263   // The flags of a .note.GNU-stack section.
1264   uint64_t gnu_stack_flags = 0;
1265
1266   // Keep track of which sections to omit.
1267   std::vector<bool> omit(shnum, false);
1268
1269   // Keep track of reloc sections when emitting relocations.
1270   const bool relocatable = parameters->options().relocatable();
1271   const bool emit_relocs = (relocatable
1272                             || parameters->options().emit_relocs());
1273   std::vector<unsigned int> reloc_sections;
1274
1275   // Keep track of .eh_frame sections.
1276   std::vector<unsigned int> eh_frame_sections;
1277
1278   // Skip the first, dummy, section.
1279   pshdrs = shdrs + This::shdr_size;
1280   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1281     {
1282       typename This::Shdr shdr(pshdrs);
1283
1284       if (shdr.get_sh_name() >= section_names_size)
1285         {
1286           this->error(_("bad section name offset for section %u: %lu"),
1287                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1288           return;
1289         }
1290
1291       const char* name = pnames + shdr.get_sh_name();
1292
1293       if (!is_gc_pass_two)
1294         { 
1295           if (this->handle_gnu_warning_section(name, i, symtab))
1296             { 
1297               if (!relocatable && !parameters->options().shared())
1298                 omit[i] = true;
1299             }
1300
1301           // The .note.GNU-stack section is special.  It gives the
1302           // protection flags that this object file requires for the stack
1303           // in memory.
1304           if (strcmp(name, ".note.GNU-stack") == 0)
1305             {
1306               seen_gnu_stack = true;
1307               gnu_stack_flags |= shdr.get_sh_flags();
1308               omit[i] = true;
1309             }
1310
1311           // The .note.GNU-split-stack section is also special.  It
1312           // indicates that the object was compiled with
1313           // -fsplit-stack.
1314           if (this->handle_split_stack_section(name))
1315             {
1316               if (!relocatable && !parameters->options().shared())
1317                 omit[i] = true;
1318             }
1319
1320           // Skip attributes section.
1321           if (parameters->target().is_attributes_section(name))
1322             {
1323               omit[i] = true;
1324             }
1325
1326           bool discard = omit[i];
1327           if (!discard)
1328             {
1329               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1330                 {
1331                   if (!this->include_section_group(symtab, layout, i, name, 
1332                                                    shdrs, pnames, 
1333                                                    section_names_size,
1334                                                    &omit))
1335                     discard = true;
1336                 }
1337               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1338                        && Layout::is_linkonce(name))
1339                 {
1340                   if (!this->include_linkonce_section(layout, i, name, shdr))
1341                     discard = true;
1342                 }
1343             }
1344
1345           // Add the section to the incremental inputs layout.
1346           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1347           if (incremental_inputs != NULL
1348               && !discard
1349               && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1350                   || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1351                   || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1352             {
1353               off_t sh_size = shdr.get_sh_size();
1354               section_size_type uncompressed_size;
1355               if (this->section_is_compressed(i, &uncompressed_size))
1356                 sh_size = uncompressed_size;
1357               incremental_inputs->report_input_section(this, i, name, sh_size);
1358             }
1359
1360           if (discard)
1361             {
1362               // Do not include this section in the link.
1363               out_sections[i] = NULL;
1364               out_section_offsets[i] = invalid_address;
1365               continue;
1366             }
1367         }
1368  
1369       if (is_gc_pass_one && parameters->options().gc_sections())
1370         {
1371           if (this->is_section_name_included(name)
1372               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1373               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1374             {
1375               symtab->gc()->worklist().push(Section_id(this, i)); 
1376             }
1377           // If the section name XXX can be represented as a C identifier
1378           // it cannot be discarded if there are references to
1379           // __start_XXX and __stop_XXX symbols.  These need to be
1380           // specially handled.
1381           if (is_cident(name))
1382             {
1383               symtab->gc()->add_cident_section(name, Section_id(this, i));
1384             }
1385         }
1386
1387       // When doing a relocatable link we are going to copy input
1388       // reloc sections into the output.  We only want to copy the
1389       // ones associated with sections which are not being discarded.
1390       // However, we don't know that yet for all sections.  So save
1391       // reloc sections and process them later. Garbage collection is
1392       // not triggered when relocatable code is desired.
1393       if (emit_relocs
1394           && (shdr.get_sh_type() == elfcpp::SHT_REL
1395               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1396         {
1397           reloc_sections.push_back(i);
1398           continue;
1399         }
1400
1401       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1402         continue;
1403
1404       // The .eh_frame section is special.  It holds exception frame
1405       // information that we need to read in order to generate the
1406       // exception frame header.  We process these after all the other
1407       // sections so that the exception frame reader can reliably
1408       // determine which sections are being discarded, and discard the
1409       // corresponding information.
1410       if (!relocatable
1411           && strcmp(name, ".eh_frame") == 0
1412           && this->check_eh_frame_flags(&shdr))
1413         {
1414           if (is_gc_pass_one)
1415             {
1416               out_sections[i] = reinterpret_cast<Output_section*>(1);
1417               out_section_offsets[i] = invalid_address;
1418             }
1419           else if (should_defer_layout)
1420             this->deferred_layout_.push_back(Deferred_layout(i, name,
1421                                                              pshdrs,
1422                                                              reloc_shndx[i],
1423                                                              reloc_type[i]));
1424           else
1425             eh_frame_sections.push_back(i);
1426           continue;
1427         }
1428
1429       if (is_gc_pass_two && parameters->options().gc_sections())
1430         {
1431           // This is executed during the second pass of garbage 
1432           // collection. do_layout has been called before and some 
1433           // sections have been already discarded. Simply ignore 
1434           // such sections this time around.
1435           if (out_sections[i] == NULL)
1436             {
1437               gold_assert(out_section_offsets[i] == invalid_address);
1438               continue; 
1439             }
1440           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1441               && symtab->gc()->is_section_garbage(this, i))
1442               {
1443                 if (parameters->options().print_gc_sections())
1444                   gold_info(_("%s: removing unused section from '%s'" 
1445                               " in file '%s'"),
1446                             program_name, this->section_name(i).c_str(), 
1447                             this->name().c_str());
1448                 out_sections[i] = NULL;
1449                 out_section_offsets[i] = invalid_address;
1450                 continue;
1451               }
1452         }
1453
1454       if (is_gc_pass_two && parameters->options().icf_enabled())
1455         {
1456           if (out_sections[i] == NULL)
1457             {
1458               gold_assert(out_section_offsets[i] == invalid_address);
1459               continue;
1460             }
1461           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1462               && symtab->icf()->is_section_folded(this, i))
1463               {
1464                 if (parameters->options().print_icf_sections())
1465                   {
1466                     Section_id folded =
1467                                 symtab->icf()->get_folded_section(this, i);
1468                     Relobj* folded_obj =
1469                                 reinterpret_cast<Relobj*>(folded.first);
1470                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1471                                 "into '%s' in file '%s'"),
1472                               program_name, this->section_name(i).c_str(),
1473                               this->name().c_str(),
1474                               folded_obj->section_name(folded.second).c_str(),
1475                               folded_obj->name().c_str());
1476                   }
1477                 out_sections[i] = NULL;
1478                 out_section_offsets[i] = invalid_address;
1479                 continue;
1480               }
1481         }
1482
1483       // Defer layout here if input files are claimed by plugins.  When gc
1484       // is turned on this function is called twice.  For the second call
1485       // should_defer_layout should be false.
1486       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1487         {
1488           gold_assert(!is_gc_pass_two);
1489           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1490                                                            pshdrs,
1491                                                            reloc_shndx[i],
1492                                                            reloc_type[i]));
1493           // Put dummy values here; real values will be supplied by
1494           // do_layout_deferred_sections.
1495           out_sections[i] = reinterpret_cast<Output_section*>(2);
1496           out_section_offsets[i] = invalid_address;
1497           continue;
1498         }
1499
1500       // During gc_pass_two if a section that was previously deferred is
1501       // found, do not layout the section as layout_deferred_sections will
1502       // do it later from gold.cc.
1503       if (is_gc_pass_two 
1504           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1505         continue;
1506
1507       if (is_gc_pass_one)
1508         {
1509           // This is during garbage collection. The out_sections are 
1510           // assigned in the second call to this function. 
1511           out_sections[i] = reinterpret_cast<Output_section*>(1);
1512           out_section_offsets[i] = invalid_address;
1513         }
1514       else
1515         {
1516           // When garbage collection is switched on the actual layout
1517           // only happens in the second call.
1518           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1519                                reloc_type[i]);
1520         }
1521     }
1522
1523   if (!is_gc_pass_two)
1524     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1525
1526   // When doing a relocatable link handle the reloc sections at the
1527   // end.  Garbage collection  and Identical Code Folding is not 
1528   // turned on for relocatable code. 
1529   if (emit_relocs)
1530     this->size_relocatable_relocs();
1531
1532   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1533
1534   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1535        p != reloc_sections.end();
1536        ++p)
1537     {
1538       unsigned int i = *p;
1539       const unsigned char* pshdr;
1540       pshdr = section_headers_data + i * This::shdr_size;
1541       typename This::Shdr shdr(pshdr);
1542
1543       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1544       if (data_shndx >= shnum)
1545         {
1546           // We already warned about this above.
1547           continue;
1548         }
1549
1550       Output_section* data_section = out_sections[data_shndx];
1551       if (data_section == reinterpret_cast<Output_section*>(2))
1552         {
1553           // The layout for the data section was deferred, so we need
1554           // to defer the relocation section, too.
1555           const char* name = pnames + shdr.get_sh_name();
1556           this->deferred_layout_relocs_.push_back(
1557               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1558           out_sections[i] = reinterpret_cast<Output_section*>(2);
1559           out_section_offsets[i] = invalid_address;
1560           continue;
1561         }
1562       if (data_section == NULL)
1563         {
1564           out_sections[i] = NULL;
1565           out_section_offsets[i] = invalid_address;
1566           continue;
1567         }
1568
1569       Relocatable_relocs* rr = new Relocatable_relocs();
1570       this->set_relocatable_relocs(i, rr);
1571
1572       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1573                                                 rr);
1574       out_sections[i] = os;
1575       out_section_offsets[i] = invalid_address;
1576     }
1577
1578   // Handle the .eh_frame sections at the end.
1579   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1580   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1581        p != eh_frame_sections.end();
1582        ++p)
1583     {
1584       gold_assert(external_symbols_offset != 0);
1585
1586       unsigned int i = *p;
1587       const unsigned char* pshdr;
1588       pshdr = section_headers_data + i * This::shdr_size;
1589       typename This::Shdr shdr(pshdr);
1590
1591       this->layout_eh_frame_section(layout,
1592                                     symbols_data,
1593                                     symbols_size,
1594                                     symbol_names_data,
1595                                     symbol_names_size,
1596                                     i,
1597                                     shdr,
1598                                     reloc_shndx[i],
1599                                     reloc_type[i]);
1600     }
1601
1602   if (is_gc_pass_two)
1603     {
1604       delete[] gc_sd->section_headers_data;
1605       delete[] gc_sd->section_names_data;
1606       delete[] gc_sd->symbols_data;
1607       delete[] gc_sd->symbol_names_data;
1608       this->set_symbols_data(NULL);
1609     }
1610   else
1611     {
1612       delete sd->section_headers;
1613       sd->section_headers = NULL;
1614       delete sd->section_names;
1615       sd->section_names = NULL;
1616     }
1617 }
1618
1619 // Layout sections whose layout was deferred while waiting for
1620 // input files from a plugin.
1621
1622 template<int size, bool big_endian>
1623 void
1624 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1625 {
1626   typename std::vector<Deferred_layout>::iterator deferred;
1627
1628   for (deferred = this->deferred_layout_.begin();
1629        deferred != this->deferred_layout_.end();
1630        ++deferred)
1631     {
1632       typename This::Shdr shdr(deferred->shdr_data_);
1633       // If the section is not included, it is because the garbage collector
1634       // decided it is not needed.  Avoid reverting that decision.
1635       if (!this->is_section_included(deferred->shndx_))
1636         continue;
1637
1638       if (parameters->options().relocatable()
1639           || deferred->name_ != ".eh_frame"
1640           || !this->check_eh_frame_flags(&shdr))
1641         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1642                              shdr, deferred->reloc_shndx_,
1643                              deferred->reloc_type_);
1644       else
1645         {
1646           // Reading the symbols again here may be slow.
1647           Read_symbols_data sd;
1648           this->read_symbols(&sd);
1649           this->layout_eh_frame_section(layout,
1650                                         sd.symbols->data(),
1651                                         sd.symbols_size,
1652                                         sd.symbol_names->data(),
1653                                         sd.symbol_names_size,
1654                                         deferred->shndx_,
1655                                         shdr,
1656                                         deferred->reloc_shndx_,
1657                                         deferred->reloc_type_);
1658         }
1659     }
1660
1661   this->deferred_layout_.clear();
1662
1663   // Now handle the deferred relocation sections.
1664
1665   Output_sections& out_sections(this->output_sections());
1666   std::vector<Address>& out_section_offsets(this->section_offsets());
1667
1668   for (deferred = this->deferred_layout_relocs_.begin();
1669        deferred != this->deferred_layout_relocs_.end();
1670        ++deferred)
1671     {
1672       unsigned int shndx = deferred->shndx_;
1673       typename This::Shdr shdr(deferred->shdr_data_);
1674       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1675
1676       Output_section* data_section = out_sections[data_shndx];
1677       if (data_section == NULL)
1678         {
1679           out_sections[shndx] = NULL;
1680           out_section_offsets[shndx] = invalid_address;
1681           continue;
1682         }
1683
1684       Relocatable_relocs* rr = new Relocatable_relocs();
1685       this->set_relocatable_relocs(shndx, rr);
1686
1687       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1688                                                 data_section, rr);
1689       out_sections[shndx] = os;
1690       out_section_offsets[shndx] = invalid_address;
1691     }
1692 }
1693
1694 // Add the symbols to the symbol table.
1695
1696 template<int size, bool big_endian>
1697 void
1698 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1699                                                     Read_symbols_data* sd,
1700                                                     Layout*)
1701 {
1702   if (sd->symbols == NULL)
1703     {
1704       gold_assert(sd->symbol_names == NULL);
1705       return;
1706     }
1707
1708   const int sym_size = This::sym_size;
1709   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1710                      / sym_size);
1711   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1712     {
1713       this->error(_("size of symbols is not multiple of symbol size"));
1714       return;
1715     }
1716
1717   this->symbols_.resize(symcount);
1718
1719   const char* sym_names =
1720     reinterpret_cast<const char*>(sd->symbol_names->data());
1721   symtab->add_from_relobj(this,
1722                           sd->symbols->data() + sd->external_symbols_offset,
1723                           symcount, this->local_symbol_count_,
1724                           sym_names, sd->symbol_names_size,
1725                           &this->symbols_,
1726                           &this->defined_count_);
1727
1728   delete sd->symbols;
1729   sd->symbols = NULL;
1730   delete sd->symbol_names;
1731   sd->symbol_names = NULL;
1732 }
1733
1734 // Find out if this object, that is a member of a lib group, should be included
1735 // in the link. We check every symbol defined by this object. If the symbol
1736 // table has a strong undefined reference to that symbol, we have to include
1737 // the object.
1738
1739 template<int size, bool big_endian>
1740 Archive::Should_include
1741 Sized_relobj_file<size, big_endian>::do_should_include_member(
1742     Symbol_table* symtab,
1743     Layout* layout,
1744     Read_symbols_data* sd,
1745     std::string* why)
1746 {
1747   char* tmpbuf = NULL;
1748   size_t tmpbuflen = 0;
1749   const char* sym_names =
1750       reinterpret_cast<const char*>(sd->symbol_names->data());
1751   const unsigned char* syms =
1752       sd->symbols->data() + sd->external_symbols_offset;
1753   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1754   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1755                          / sym_size);
1756
1757   const unsigned char* p = syms;
1758
1759   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1760     {
1761       elfcpp::Sym<size, big_endian> sym(p);
1762       unsigned int st_shndx = sym.get_st_shndx();
1763       if (st_shndx == elfcpp::SHN_UNDEF)
1764         continue;
1765
1766       unsigned int st_name = sym.get_st_name();
1767       const char* name = sym_names + st_name;
1768       Symbol* symbol;
1769       Archive::Should_include t = Archive::should_include_member(symtab,
1770                                                                  layout,
1771                                                                  name,
1772                                                                  &symbol, why,
1773                                                                  &tmpbuf,
1774                                                                  &tmpbuflen);
1775       if (t == Archive::SHOULD_INCLUDE_YES)
1776         {
1777           if (tmpbuf != NULL)
1778             free(tmpbuf);
1779           return t;
1780         }
1781     }
1782   if (tmpbuf != NULL)
1783     free(tmpbuf);
1784   return Archive::SHOULD_INCLUDE_UNKNOWN;
1785 }
1786
1787 // Iterate over global defined symbols, calling a visitor class V for each.
1788
1789 template<int size, bool big_endian>
1790 void
1791 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1792     Read_symbols_data* sd,
1793     Library_base::Symbol_visitor_base* v)
1794 {
1795   const char* sym_names =
1796       reinterpret_cast<const char*>(sd->symbol_names->data());
1797   const unsigned char* syms =
1798       sd->symbols->data() + sd->external_symbols_offset;
1799   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1800   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1801                      / sym_size);
1802   const unsigned char* p = syms;
1803
1804   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1805     {
1806       elfcpp::Sym<size, big_endian> sym(p);
1807       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1808         v->visit(sym_names + sym.get_st_name());
1809     }
1810 }
1811
1812 // Return whether the local symbol SYMNDX has a PLT offset.
1813
1814 template<int size, bool big_endian>
1815 bool
1816 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1817     unsigned int symndx) const
1818 {
1819   typename Local_plt_offsets::const_iterator p =
1820     this->local_plt_offsets_.find(symndx);
1821   return p != this->local_plt_offsets_.end();
1822 }
1823
1824 // Get the PLT offset of a local symbol.
1825
1826 template<int size, bool big_endian>
1827 unsigned int
1828 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1829 {
1830   typename Local_plt_offsets::const_iterator p =
1831     this->local_plt_offsets_.find(symndx);
1832   gold_assert(p != this->local_plt_offsets_.end());
1833   return p->second;
1834 }
1835
1836 // Set the PLT offset of a local symbol.
1837
1838 template<int size, bool big_endian>
1839 void
1840 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1841     unsigned int symndx, unsigned int plt_offset)
1842 {
1843   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1844     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1845   gold_assert(ins.second);
1846 }
1847
1848 // First pass over the local symbols.  Here we add their names to
1849 // *POOL and *DYNPOOL, and we store the symbol value in
1850 // THIS->LOCAL_VALUES_.  This function is always called from a
1851 // singleton thread.  This is followed by a call to
1852 // finalize_local_symbols.
1853
1854 template<int size, bool big_endian>
1855 void
1856 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1857                                                             Stringpool* dynpool)
1858 {
1859   gold_assert(this->symtab_shndx_ != -1U);
1860   if (this->symtab_shndx_ == 0)
1861     {
1862       // This object has no symbols.  Weird but legal.
1863       return;
1864     }
1865
1866   // Read the symbol table section header.
1867   const unsigned int symtab_shndx = this->symtab_shndx_;
1868   typename This::Shdr symtabshdr(this,
1869                                  this->elf_file_.section_header(symtab_shndx));
1870   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1871
1872   // Read the local symbols.
1873   const int sym_size = This::sym_size;
1874   const unsigned int loccount = this->local_symbol_count_;
1875   gold_assert(loccount == symtabshdr.get_sh_info());
1876   off_t locsize = loccount * sym_size;
1877   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1878                                               locsize, true, true);
1879
1880   // Read the symbol names.
1881   const unsigned int strtab_shndx =
1882     this->adjust_shndx(symtabshdr.get_sh_link());
1883   section_size_type strtab_size;
1884   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1885                                                         &strtab_size,
1886                                                         true);
1887   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1888
1889   // Loop over the local symbols.
1890
1891   const Output_sections& out_sections(this->output_sections());
1892   unsigned int shnum = this->shnum();
1893   unsigned int count = 0;
1894   unsigned int dyncount = 0;
1895   // Skip the first, dummy, symbol.
1896   psyms += sym_size;
1897   bool strip_all = parameters->options().strip_all();
1898   bool discard_all = parameters->options().discard_all();
1899   bool discard_locals = parameters->options().discard_locals();
1900   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1901     {
1902       elfcpp::Sym<size, big_endian> sym(psyms);
1903
1904       Symbol_value<size>& lv(this->local_values_[i]);
1905
1906       bool is_ordinary;
1907       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1908                                                   &is_ordinary);
1909       lv.set_input_shndx(shndx, is_ordinary);
1910
1911       if (sym.get_st_type() == elfcpp::STT_SECTION)
1912         lv.set_is_section_symbol();
1913       else if (sym.get_st_type() == elfcpp::STT_TLS)
1914         lv.set_is_tls_symbol();
1915       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1916         lv.set_is_ifunc_symbol();
1917
1918       // Save the input symbol value for use in do_finalize_local_symbols().
1919       lv.set_input_value(sym.get_st_value());
1920
1921       // Decide whether this symbol should go into the output file.
1922
1923       if ((shndx < shnum && out_sections[shndx] == NULL)
1924           || shndx == this->discarded_eh_frame_shndx_)
1925         {
1926           lv.set_no_output_symtab_entry();
1927           gold_assert(!lv.needs_output_dynsym_entry());
1928           continue;
1929         }
1930
1931       if (sym.get_st_type() == elfcpp::STT_SECTION)
1932         {
1933           lv.set_no_output_symtab_entry();
1934           gold_assert(!lv.needs_output_dynsym_entry());
1935           continue;
1936         }
1937
1938       if (sym.get_st_name() >= strtab_size)
1939         {
1940           this->error(_("local symbol %u section name out of range: %u >= %u"),
1941                       i, sym.get_st_name(),
1942                       static_cast<unsigned int>(strtab_size));
1943           lv.set_no_output_symtab_entry();
1944           continue;
1945         }
1946
1947       const char* name = pnames + sym.get_st_name();
1948
1949       // If needed, add the symbol to the dynamic symbol table string pool.
1950       if (lv.needs_output_dynsym_entry())
1951         {
1952           dynpool->add(name, true, NULL);
1953           ++dyncount;
1954         }
1955
1956       if (strip_all
1957           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1958         {
1959           lv.set_no_output_symtab_entry();
1960           continue;
1961         }
1962
1963       // If --discard-locals option is used, discard all temporary local
1964       // symbols.  These symbols start with system-specific local label
1965       // prefixes, typically .L for ELF system.  We want to be compatible
1966       // with GNU ld so here we essentially use the same check in
1967       // bfd_is_local_label().  The code is different because we already
1968       // know that:
1969       //
1970       //   - the symbol is local and thus cannot have global or weak binding.
1971       //   - the symbol is not a section symbol.
1972       //   - the symbol has a name.
1973       //
1974       // We do not discard a symbol if it needs a dynamic symbol entry.
1975       if (discard_locals
1976           && sym.get_st_type() != elfcpp::STT_FILE
1977           && !lv.needs_output_dynsym_entry()
1978           && lv.may_be_discarded_from_output_symtab()
1979           && parameters->target().is_local_label_name(name))
1980         {
1981           lv.set_no_output_symtab_entry();
1982           continue;
1983         }
1984
1985       // Discard the local symbol if -retain_symbols_file is specified
1986       // and the local symbol is not in that file.
1987       if (!parameters->options().should_retain_symbol(name))
1988         {
1989           lv.set_no_output_symtab_entry();
1990           continue;
1991         }
1992
1993       // Add the symbol to the symbol table string pool.
1994       pool->add(name, true, NULL);
1995       ++count;
1996     }
1997
1998   this->output_local_symbol_count_ = count;
1999   this->output_local_dynsym_count_ = dyncount;
2000 }
2001
2002 // Compute the final value of a local symbol.
2003
2004 template<int size, bool big_endian>
2005 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2006 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2007     unsigned int r_sym,
2008     const Symbol_value<size>* lv_in,
2009     Symbol_value<size>* lv_out,
2010     bool relocatable,
2011     const Output_sections& out_sections,
2012     const std::vector<Address>& out_offsets,
2013     const Symbol_table* symtab)
2014 {
2015   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2016   // we may have a memory leak.
2017   gold_assert(lv_out->has_output_value());
2018
2019   bool is_ordinary;
2020   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2021   
2022   // Set the output symbol value.
2023   
2024   if (!is_ordinary)
2025     {
2026       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2027         lv_out->set_output_value(lv_in->input_value());
2028       else
2029         {
2030           this->error(_("unknown section index %u for local symbol %u"),
2031                       shndx, r_sym);
2032           lv_out->set_output_value(0);
2033           return This::CFLV_ERROR;
2034         }
2035     }
2036   else
2037     {
2038       if (shndx >= this->shnum())
2039         {
2040           this->error(_("local symbol %u section index %u out of range"),
2041                       r_sym, shndx);
2042           lv_out->set_output_value(0);
2043           return This::CFLV_ERROR;
2044         }
2045       
2046       Output_section* os = out_sections[shndx];
2047       Address secoffset = out_offsets[shndx];
2048       if (symtab->is_section_folded(this, shndx))
2049         {
2050           gold_assert(os == NULL && secoffset == invalid_address);
2051           // Get the os of the section it is folded onto.
2052           Section_id folded = symtab->icf()->get_folded_section(this,
2053                                                                 shndx);
2054           gold_assert(folded.first != NULL);
2055           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2056             <Sized_relobj_file<size, big_endian>*>(folded.first);
2057           os = folded_obj->output_section(folded.second);
2058           gold_assert(os != NULL);
2059           secoffset = folded_obj->get_output_section_offset(folded.second);
2060           
2061           // This could be a relaxed input section.
2062           if (secoffset == invalid_address)
2063             {
2064               const Output_relaxed_input_section* relaxed_section =
2065                 os->find_relaxed_input_section(folded_obj, folded.second);
2066               gold_assert(relaxed_section != NULL);
2067               secoffset = relaxed_section->address() - os->address();
2068             }
2069         }
2070       
2071       if (os == NULL)
2072         {
2073           // This local symbol belongs to a section we are discarding.
2074           // In some cases when applying relocations later, we will
2075           // attempt to match it to the corresponding kept section,
2076           // so we leave the input value unchanged here.
2077           return This::CFLV_DISCARDED;
2078         }
2079       else if (secoffset == invalid_address)
2080         {
2081           uint64_t start;
2082           
2083           // This is a SHF_MERGE section or one which otherwise
2084           // requires special handling.
2085           if (shndx == this->discarded_eh_frame_shndx_)
2086             {
2087               // This local symbol belongs to a discarded .eh_frame
2088               // section.  Just treat it like the case in which
2089               // os == NULL above.
2090               gold_assert(this->has_eh_frame_);
2091               return This::CFLV_DISCARDED;
2092             }
2093           else if (!lv_in->is_section_symbol())
2094             {
2095               // This is not a section symbol.  We can determine
2096               // the final value now.
2097               lv_out->set_output_value(
2098                   os->output_address(this, shndx, lv_in->input_value()));
2099             }
2100           else if (!os->find_starting_output_address(this, shndx, &start))
2101             {
2102               // This is a section symbol, but apparently not one in a
2103               // merged section.  First check to see if this is a relaxed
2104               // input section.  If so, use its address.  Otherwise just
2105               // use the start of the output section.  This happens with
2106               // relocatable links when the input object has section
2107               // symbols for arbitrary non-merge sections.
2108               const Output_section_data* posd =
2109                 os->find_relaxed_input_section(this, shndx);
2110               if (posd != NULL)
2111                 {
2112                   Address relocatable_link_adjustment =
2113                     relocatable ? os->address() : 0;
2114                   lv_out->set_output_value(posd->address()
2115                                            - relocatable_link_adjustment);
2116                 }
2117               else
2118                 lv_out->set_output_value(os->address());
2119             }
2120           else
2121             {
2122               // We have to consider the addend to determine the
2123               // value to use in a relocation.  START is the start
2124               // of this input section.  If we are doing a relocatable
2125               // link, use offset from start output section instead of
2126               // address.
2127               Address adjusted_start =
2128                 relocatable ? start - os->address() : start;
2129               Merged_symbol_value<size>* msv =
2130                 new Merged_symbol_value<size>(lv_in->input_value(),
2131                                               adjusted_start);
2132               lv_out->set_merged_symbol_value(msv);
2133             }
2134         }
2135       else if (lv_in->is_tls_symbol())
2136         lv_out->set_output_value(os->tls_offset()
2137                                  + secoffset
2138                                  + lv_in->input_value());
2139       else
2140         lv_out->set_output_value((relocatable ? 0 : os->address())
2141                                  + secoffset
2142                                  + lv_in->input_value());
2143     }
2144   return This::CFLV_OK;
2145 }
2146
2147 // Compute final local symbol value.  R_SYM is the index of a local
2148 // symbol in symbol table.  LV points to a symbol value, which is
2149 // expected to hold the input value and to be over-written by the
2150 // final value.  SYMTAB points to a symbol table.  Some targets may want
2151 // to know would-be-finalized local symbol values in relaxation.
2152 // Hence we provide this method.  Since this method updates *LV, a
2153 // callee should make a copy of the original local symbol value and
2154 // use the copy instead of modifying an object's local symbols before
2155 // everything is finalized.  The caller should also free up any allocated
2156 // memory in the return value in *LV.
2157 template<int size, bool big_endian>
2158 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2159 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2160     unsigned int r_sym,
2161     const Symbol_value<size>* lv_in,
2162     Symbol_value<size>* lv_out,
2163     const Symbol_table* symtab)
2164 {
2165   // This is just a wrapper of compute_final_local_value_internal.
2166   const bool relocatable = parameters->options().relocatable();
2167   const Output_sections& out_sections(this->output_sections());
2168   const std::vector<Address>& out_offsets(this->section_offsets());
2169   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2170                                                   relocatable, out_sections,
2171                                                   out_offsets, symtab);
2172 }
2173
2174 // Finalize the local symbols.  Here we set the final value in
2175 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2176 // This function is always called from a singleton thread.  The actual
2177 // output of the local symbols will occur in a separate task.
2178
2179 template<int size, bool big_endian>
2180 unsigned int
2181 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2182     unsigned int index,
2183     off_t off,
2184     Symbol_table* symtab)
2185 {
2186   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2187
2188   const unsigned int loccount = this->local_symbol_count_;
2189   this->local_symbol_offset_ = off;
2190
2191   const bool relocatable = parameters->options().relocatable();
2192   const Output_sections& out_sections(this->output_sections());
2193   const std::vector<Address>& out_offsets(this->section_offsets());
2194
2195   for (unsigned int i = 1; i < loccount; ++i)
2196     {
2197       Symbol_value<size>* lv = &this->local_values_[i];
2198
2199       Compute_final_local_value_status cflv_status =
2200         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2201                                                  out_sections, out_offsets,
2202                                                  symtab);
2203       switch (cflv_status)
2204         {
2205         case CFLV_OK:
2206           if (!lv->is_output_symtab_index_set())
2207             {
2208               lv->set_output_symtab_index(index);
2209               ++index;
2210             }
2211           break;
2212         case CFLV_DISCARDED:
2213         case CFLV_ERROR:
2214           // Do nothing.
2215           break;
2216         default:
2217           gold_unreachable();
2218         }
2219     }
2220   return index;
2221 }
2222
2223 // Set the output dynamic symbol table indexes for the local variables.
2224
2225 template<int size, bool big_endian>
2226 unsigned int
2227 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2228     unsigned int index)
2229 {
2230   const unsigned int loccount = this->local_symbol_count_;
2231   for (unsigned int i = 1; i < loccount; ++i)
2232     {
2233       Symbol_value<size>& lv(this->local_values_[i]);
2234       if (lv.needs_output_dynsym_entry())
2235         {
2236           lv.set_output_dynsym_index(index);
2237           ++index;
2238         }
2239     }
2240   return index;
2241 }
2242
2243 // Set the offset where local dynamic symbol information will be stored.
2244 // Returns the count of local symbols contributed to the symbol table by
2245 // this object.
2246
2247 template<int size, bool big_endian>
2248 unsigned int
2249 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2250 {
2251   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2252   this->local_dynsym_offset_ = off;
2253   return this->output_local_dynsym_count_;
2254 }
2255
2256 // If Symbols_data is not NULL get the section flags from here otherwise
2257 // get it from the file.
2258
2259 template<int size, bool big_endian>
2260 uint64_t
2261 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2262 {
2263   Symbols_data* sd = this->get_symbols_data();
2264   if (sd != NULL)
2265     {
2266       const unsigned char* pshdrs = sd->section_headers_data
2267                                     + This::shdr_size * shndx;
2268       typename This::Shdr shdr(pshdrs);
2269       return shdr.get_sh_flags(); 
2270     }
2271   // If sd is NULL, read the section header from the file.
2272   return this->elf_file_.section_flags(shndx); 
2273 }
2274
2275 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2276 // in icf.cc
2277
2278 template<int size, bool big_endian>
2279 uint64_t
2280 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2281 {
2282   Symbols_data* sd = this->get_symbols_data();
2283   gold_assert(sd != NULL);
2284
2285   const unsigned char* pshdrs = sd->section_headers_data
2286                                 + This::shdr_size * shndx;
2287   typename This::Shdr shdr(pshdrs);
2288   return shdr.get_sh_entsize(); 
2289 }
2290
2291 // Write out the local symbols.
2292
2293 template<int size, bool big_endian>
2294 void
2295 Sized_relobj_file<size, big_endian>::write_local_symbols(
2296     Output_file* of,
2297     const Stringpool* sympool,
2298     const Stringpool* dynpool,
2299     Output_symtab_xindex* symtab_xindex,
2300     Output_symtab_xindex* dynsym_xindex,
2301     off_t symtab_off)
2302 {
2303   const bool strip_all = parameters->options().strip_all();
2304   if (strip_all)
2305     {
2306       if (this->output_local_dynsym_count_ == 0)
2307         return;
2308       this->output_local_symbol_count_ = 0;
2309     }
2310
2311   gold_assert(this->symtab_shndx_ != -1U);
2312   if (this->symtab_shndx_ == 0)
2313     {
2314       // This object has no symbols.  Weird but legal.
2315       return;
2316     }
2317
2318   // Read the symbol table section header.
2319   const unsigned int symtab_shndx = this->symtab_shndx_;
2320   typename This::Shdr symtabshdr(this,
2321                                  this->elf_file_.section_header(symtab_shndx));
2322   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2323   const unsigned int loccount = this->local_symbol_count_;
2324   gold_assert(loccount == symtabshdr.get_sh_info());
2325
2326   // Read the local symbols.
2327   const int sym_size = This::sym_size;
2328   off_t locsize = loccount * sym_size;
2329   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2330                                               locsize, true, false);
2331
2332   // Read the symbol names.
2333   const unsigned int strtab_shndx =
2334     this->adjust_shndx(symtabshdr.get_sh_link());
2335   section_size_type strtab_size;
2336   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2337                                                         &strtab_size,
2338                                                         false);
2339   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2340
2341   // Get views into the output file for the portions of the symbol table
2342   // and the dynamic symbol table that we will be writing.
2343   off_t output_size = this->output_local_symbol_count_ * sym_size;
2344   unsigned char* oview = NULL;
2345   if (output_size > 0)
2346     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2347                                 output_size);
2348
2349   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2350   unsigned char* dyn_oview = NULL;
2351   if (dyn_output_size > 0)
2352     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2353                                     dyn_output_size);
2354
2355   const Output_sections out_sections(this->output_sections());
2356
2357   gold_assert(this->local_values_.size() == loccount);
2358
2359   unsigned char* ov = oview;
2360   unsigned char* dyn_ov = dyn_oview;
2361   psyms += sym_size;
2362   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2363     {
2364       elfcpp::Sym<size, big_endian> isym(psyms);
2365
2366       Symbol_value<size>& lv(this->local_values_[i]);
2367
2368       bool is_ordinary;
2369       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2370                                                      &is_ordinary);
2371       if (is_ordinary)
2372         {
2373           gold_assert(st_shndx < out_sections.size());
2374           if (out_sections[st_shndx] == NULL)
2375             continue;
2376           st_shndx = out_sections[st_shndx]->out_shndx();
2377           if (st_shndx >= elfcpp::SHN_LORESERVE)
2378             {
2379               if (lv.has_output_symtab_entry())
2380                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2381               if (lv.has_output_dynsym_entry())
2382                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2383               st_shndx = elfcpp::SHN_XINDEX;
2384             }
2385         }
2386
2387       // Write the symbol to the output symbol table.
2388       if (lv.has_output_symtab_entry())
2389         {
2390           elfcpp::Sym_write<size, big_endian> osym(ov);
2391
2392           gold_assert(isym.get_st_name() < strtab_size);
2393           const char* name = pnames + isym.get_st_name();
2394           osym.put_st_name(sympool->get_offset(name));
2395           osym.put_st_value(this->local_values_[i].value(this, 0));
2396           osym.put_st_size(isym.get_st_size());
2397           osym.put_st_info(isym.get_st_info());
2398           osym.put_st_other(isym.get_st_other());
2399           osym.put_st_shndx(st_shndx);
2400
2401           ov += sym_size;
2402         }
2403
2404       // Write the symbol to the output dynamic symbol table.
2405       if (lv.has_output_dynsym_entry())
2406         {
2407           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2408           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2409
2410           gold_assert(isym.get_st_name() < strtab_size);
2411           const char* name = pnames + isym.get_st_name();
2412           osym.put_st_name(dynpool->get_offset(name));
2413           osym.put_st_value(this->local_values_[i].value(this, 0));
2414           osym.put_st_size(isym.get_st_size());
2415           osym.put_st_info(isym.get_st_info());
2416           osym.put_st_other(isym.get_st_other());
2417           osym.put_st_shndx(st_shndx);
2418
2419           dyn_ov += sym_size;
2420         }
2421     }
2422
2423
2424   if (output_size > 0)
2425     {
2426       gold_assert(ov - oview == output_size);
2427       of->write_output_view(symtab_off + this->local_symbol_offset_,
2428                             output_size, oview);
2429     }
2430
2431   if (dyn_output_size > 0)
2432     {
2433       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2434       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2435                             dyn_oview);
2436     }
2437 }
2438
2439 // Set *INFO to symbolic information about the offset OFFSET in the
2440 // section SHNDX.  Return true if we found something, false if we
2441 // found nothing.
2442
2443 template<int size, bool big_endian>
2444 bool
2445 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2446     unsigned int shndx,
2447     off_t offset,
2448     Symbol_location_info* info)
2449 {
2450   if (this->symtab_shndx_ == 0)
2451     return false;
2452
2453   section_size_type symbols_size;
2454   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2455                                                         &symbols_size,
2456                                                         false);
2457
2458   unsigned int symbol_names_shndx =
2459     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2460   section_size_type names_size;
2461   const unsigned char* symbol_names_u =
2462     this->section_contents(symbol_names_shndx, &names_size, false);
2463   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2464
2465   const int sym_size = This::sym_size;
2466   const size_t count = symbols_size / sym_size;
2467
2468   const unsigned char* p = symbols;
2469   for (size_t i = 0; i < count; ++i, p += sym_size)
2470     {
2471       elfcpp::Sym<size, big_endian> sym(p);
2472
2473       if (sym.get_st_type() == elfcpp::STT_FILE)
2474         {
2475           if (sym.get_st_name() >= names_size)
2476             info->source_file = "(invalid)";
2477           else
2478             info->source_file = symbol_names + sym.get_st_name();
2479           continue;
2480         }
2481
2482       bool is_ordinary;
2483       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2484                                                      &is_ordinary);
2485       if (is_ordinary
2486           && st_shndx == shndx
2487           && static_cast<off_t>(sym.get_st_value()) <= offset
2488           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2489               > offset))
2490         {
2491           if (sym.get_st_name() > names_size)
2492             info->enclosing_symbol_name = "(invalid)";
2493           else
2494             {
2495               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2496               if (parameters->options().do_demangle())
2497                 {
2498                   char* demangled_name = cplus_demangle(
2499                       info->enclosing_symbol_name.c_str(),
2500                       DMGL_ANSI | DMGL_PARAMS);
2501                   if (demangled_name != NULL)
2502                     {
2503                       info->enclosing_symbol_name.assign(demangled_name);
2504                       free(demangled_name);
2505                     }
2506                 }
2507             }
2508           return true;
2509         }
2510     }
2511
2512   return false;
2513 }
2514
2515 // Look for a kept section corresponding to the given discarded section,
2516 // and return its output address.  This is used only for relocations in
2517 // debugging sections.  If we can't find the kept section, return 0.
2518
2519 template<int size, bool big_endian>
2520 typename Sized_relobj_file<size, big_endian>::Address
2521 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2522     unsigned int shndx,
2523     bool* found) const
2524 {
2525   Relobj* kept_object;
2526   unsigned int kept_shndx;
2527   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2528     {
2529       Sized_relobj_file<size, big_endian>* kept_relobj =
2530         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2531       Output_section* os = kept_relobj->output_section(kept_shndx);
2532       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2533       if (os != NULL && offset != invalid_address)
2534         {
2535           *found = true;
2536           return os->address() + offset;
2537         }
2538     }
2539   *found = false;
2540   return 0;
2541 }
2542
2543 // Get symbol counts.
2544
2545 template<int size, bool big_endian>
2546 void
2547 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2548     const Symbol_table*,
2549     size_t* defined,
2550     size_t* used) const
2551 {
2552   *defined = this->defined_count_;
2553   size_t count = 0;
2554   for (typename Symbols::const_iterator p = this->symbols_.begin();
2555        p != this->symbols_.end();
2556        ++p)
2557     if (*p != NULL
2558         && (*p)->source() == Symbol::FROM_OBJECT
2559         && (*p)->object() == this
2560         && (*p)->is_defined())
2561       ++count;
2562   *used = count;
2563 }
2564
2565 // Input_objects methods.
2566
2567 // Add a regular relocatable object to the list.  Return false if this
2568 // object should be ignored.
2569
2570 bool
2571 Input_objects::add_object(Object* obj)
2572 {
2573   // Print the filename if the -t/--trace option is selected.
2574   if (parameters->options().trace())
2575     gold_info("%s", obj->name().c_str());
2576
2577   if (!obj->is_dynamic())
2578     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2579   else
2580     {
2581       // See if this is a duplicate SONAME.
2582       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2583       const char* soname = dynobj->soname();
2584
2585       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2586         this->sonames_.insert(soname);
2587       if (!ins.second)
2588         {
2589           // We have already seen a dynamic object with this soname.
2590           return false;
2591         }
2592
2593       this->dynobj_list_.push_back(dynobj);
2594     }
2595
2596   // Add this object to the cross-referencer if requested.
2597   if (parameters->options().user_set_print_symbol_counts()
2598       || parameters->options().cref())
2599     {
2600       if (this->cref_ == NULL)
2601         this->cref_ = new Cref();
2602       this->cref_->add_object(obj);
2603     }
2604
2605   return true;
2606 }
2607
2608 // For each dynamic object, record whether we've seen all of its
2609 // explicit dependencies.
2610
2611 void
2612 Input_objects::check_dynamic_dependencies() const
2613 {
2614   bool issued_copy_dt_needed_error = false;
2615   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2616        p != this->dynobj_list_.end();
2617        ++p)
2618     {
2619       const Dynobj::Needed& needed((*p)->needed());
2620       bool found_all = true;
2621       Dynobj::Needed::const_iterator pneeded;
2622       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2623         {
2624           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2625             {
2626               found_all = false;
2627               break;
2628             }
2629         }
2630       (*p)->set_has_unknown_needed_entries(!found_all);
2631
2632       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2633       // that gold does not support.  However, they cause no trouble
2634       // unless there is a DT_NEEDED entry that we don't know about;
2635       // warn only in that case.
2636       if (!found_all
2637           && !issued_copy_dt_needed_error
2638           && (parameters->options().copy_dt_needed_entries()
2639               || parameters->options().add_needed()))
2640         {
2641           const char* optname;
2642           if (parameters->options().copy_dt_needed_entries())
2643             optname = "--copy-dt-needed-entries";
2644           else
2645             optname = "--add-needed";
2646           gold_error(_("%s is not supported but is required for %s in %s"),
2647                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2648           issued_copy_dt_needed_error = true;
2649         }
2650     }
2651 }
2652
2653 // Start processing an archive.
2654
2655 void
2656 Input_objects::archive_start(Archive* archive)
2657 {
2658   if (parameters->options().user_set_print_symbol_counts()
2659       || parameters->options().cref())
2660     {
2661       if (this->cref_ == NULL)
2662         this->cref_ = new Cref();
2663       this->cref_->add_archive_start(archive);
2664     }
2665 }
2666
2667 // Stop processing an archive.
2668
2669 void
2670 Input_objects::archive_stop(Archive* archive)
2671 {
2672   if (parameters->options().user_set_print_symbol_counts()
2673       || parameters->options().cref())
2674     this->cref_->add_archive_stop(archive);
2675 }
2676
2677 // Print symbol counts
2678
2679 void
2680 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2681 {
2682   if (parameters->options().user_set_print_symbol_counts()
2683       && this->cref_ != NULL)
2684     this->cref_->print_symbol_counts(symtab);
2685 }
2686
2687 // Print a cross reference table.
2688
2689 void
2690 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2691 {
2692   if (parameters->options().cref() && this->cref_ != NULL)
2693     this->cref_->print_cref(symtab, f);
2694 }
2695
2696 // Relocate_info methods.
2697
2698 // Return a string describing the location of a relocation when file
2699 // and lineno information is not available.  This is only used in
2700 // error messages.
2701
2702 template<int size, bool big_endian>
2703 std::string
2704 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2705 {
2706   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2707   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2708   if (!ret.empty())
2709     return ret;
2710
2711   ret = this->object->name();
2712
2713   Symbol_location_info info;
2714   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2715     {
2716       if (!info.source_file.empty())
2717         {
2718           ret += ":";
2719           ret += info.source_file;
2720         }
2721       size_t len = info.enclosing_symbol_name.length() + 100;
2722       char* buf = new char[len];
2723       snprintf(buf, len, _(":function %s"),
2724                info.enclosing_symbol_name.c_str());
2725       ret += buf;
2726       delete[] buf;
2727       return ret;
2728     }
2729
2730   ret += "(";
2731   ret += this->object->section_name(this->data_shndx);
2732   char buf[100];
2733   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2734   ret += buf;
2735   return ret;
2736 }
2737
2738 } // End namespace gold.
2739
2740 namespace
2741 {
2742
2743 using namespace gold;
2744
2745 // Read an ELF file with the header and return the appropriate
2746 // instance of Object.
2747
2748 template<int size, bool big_endian>
2749 Object*
2750 make_elf_sized_object(const std::string& name, Input_file* input_file,
2751                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2752                       bool* punconfigured)
2753 {
2754   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2755                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2756                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2757   if (target == NULL)
2758     gold_fatal(_("%s: unsupported ELF machine number %d"),
2759                name.c_str(), ehdr.get_e_machine());
2760
2761   if (!parameters->target_valid())
2762     set_parameters_target(target);
2763   else if (target != &parameters->target())
2764     {
2765       if (punconfigured != NULL)
2766         *punconfigured = true;
2767       else
2768         gold_error(_("%s: incompatible target"), name.c_str());
2769       return NULL;
2770     }
2771
2772   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2773                                                    ehdr);
2774 }
2775
2776 } // End anonymous namespace.
2777
2778 namespace gold
2779 {
2780
2781 // Return whether INPUT_FILE is an ELF object.
2782
2783 bool
2784 is_elf_object(Input_file* input_file, off_t offset,
2785               const unsigned char** start, int* read_size)
2786 {
2787   off_t filesize = input_file->file().filesize();
2788   int want = elfcpp::Elf_recognizer::max_header_size;
2789   if (filesize - offset < want)
2790     want = filesize - offset;
2791
2792   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2793                                                        true, false);
2794   *start = p;
2795   *read_size = want;
2796
2797   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2798 }
2799
2800 // Read an ELF file and return the appropriate instance of Object.
2801
2802 Object*
2803 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2804                 const unsigned char* p, section_offset_type bytes,
2805                 bool* punconfigured)
2806 {
2807   if (punconfigured != NULL)
2808     *punconfigured = false;
2809
2810   std::string error;
2811   bool big_endian = false;
2812   int size = 0;
2813   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2814                                                &big_endian, &error))
2815     {
2816       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2817       return NULL;
2818     }
2819
2820   if (size == 32)
2821     {
2822       if (big_endian)
2823         {
2824 #ifdef HAVE_TARGET_32_BIG
2825           elfcpp::Ehdr<32, true> ehdr(p);
2826           return make_elf_sized_object<32, true>(name, input_file,
2827                                                  offset, ehdr, punconfigured);
2828 #else
2829           if (punconfigured != NULL)
2830             *punconfigured = true;
2831           else
2832             gold_error(_("%s: not configured to support "
2833                          "32-bit big-endian object"),
2834                        name.c_str());
2835           return NULL;
2836 #endif
2837         }
2838       else
2839         {
2840 #ifdef HAVE_TARGET_32_LITTLE
2841           elfcpp::Ehdr<32, false> ehdr(p);
2842           return make_elf_sized_object<32, false>(name, input_file,
2843                                                   offset, ehdr, punconfigured);
2844 #else
2845           if (punconfigured != NULL)
2846             *punconfigured = true;
2847           else
2848             gold_error(_("%s: not configured to support "
2849                          "32-bit little-endian object"),
2850                        name.c_str());
2851           return NULL;
2852 #endif
2853         }
2854     }
2855   else if (size == 64)
2856     {
2857       if (big_endian)
2858         {
2859 #ifdef HAVE_TARGET_64_BIG
2860           elfcpp::Ehdr<64, true> ehdr(p);
2861           return make_elf_sized_object<64, true>(name, input_file,
2862                                                  offset, ehdr, punconfigured);
2863 #else
2864           if (punconfigured != NULL)
2865             *punconfigured = true;
2866           else
2867             gold_error(_("%s: not configured to support "
2868                          "64-bit big-endian object"),
2869                        name.c_str());
2870           return NULL;
2871 #endif
2872         }
2873       else
2874         {
2875 #ifdef HAVE_TARGET_64_LITTLE
2876           elfcpp::Ehdr<64, false> ehdr(p);
2877           return make_elf_sized_object<64, false>(name, input_file,
2878                                                   offset, ehdr, punconfigured);
2879 #else
2880           if (punconfigured != NULL)
2881             *punconfigured = true;
2882           else
2883             gold_error(_("%s: not configured to support "
2884                          "64-bit little-endian object"),
2885                        name.c_str());
2886           return NULL;
2887 #endif
2888         }
2889     }
2890   else
2891     gold_unreachable();
2892 }
2893
2894 // Instantiate the templates we need.
2895
2896 #ifdef HAVE_TARGET_32_LITTLE
2897 template
2898 void
2899 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2900                                      Read_symbols_data*);
2901 #endif
2902
2903 #ifdef HAVE_TARGET_32_BIG
2904 template
2905 void
2906 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2907                                     Read_symbols_data*);
2908 #endif
2909
2910 #ifdef HAVE_TARGET_64_LITTLE
2911 template
2912 void
2913 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2914                                      Read_symbols_data*);
2915 #endif
2916
2917 #ifdef HAVE_TARGET_64_BIG
2918 template
2919 void
2920 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2921                                     Read_symbols_data*);
2922 #endif
2923
2924 #ifdef HAVE_TARGET_32_LITTLE
2925 template
2926 class Sized_relobj_file<32, false>;
2927 #endif
2928
2929 #ifdef HAVE_TARGET_32_BIG
2930 template
2931 class Sized_relobj_file<32, true>;
2932 #endif
2933
2934 #ifdef HAVE_TARGET_64_LITTLE
2935 template
2936 class Sized_relobj_file<64, false>;
2937 #endif
2938
2939 #ifdef HAVE_TARGET_64_BIG
2940 template
2941 class Sized_relobj_file<64, true>;
2942 #endif
2943
2944 #ifdef HAVE_TARGET_32_LITTLE
2945 template
2946 struct Relocate_info<32, false>;
2947 #endif
2948
2949 #ifdef HAVE_TARGET_32_BIG
2950 template
2951 struct Relocate_info<32, true>;
2952 #endif
2953
2954 #ifdef HAVE_TARGET_64_LITTLE
2955 template
2956 struct Relocate_info<64, false>;
2957 #endif
2958
2959 #ifdef HAVE_TARGET_64_BIG
2960 template
2961 struct Relocate_info<64, true>;
2962 #endif
2963
2964 #ifdef HAVE_TARGET_32_LITTLE
2965 template
2966 void
2967 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2968
2969 template
2970 void
2971 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2972                                       const unsigned char*);
2973 #endif
2974
2975 #ifdef HAVE_TARGET_32_BIG
2976 template
2977 void
2978 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2979
2980 template
2981 void
2982 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2983                                      const unsigned char*);
2984 #endif
2985
2986 #ifdef HAVE_TARGET_64_LITTLE
2987 template
2988 void
2989 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2990
2991 template
2992 void
2993 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2994                                       const unsigned char*);
2995 #endif
2996
2997 #ifdef HAVE_TARGET_64_BIG
2998 template
2999 void
3000 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3001
3002 template
3003 void
3004 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3005                                      const unsigned char*);
3006 #endif
3007
3008 } // End namespace gold.