Automatic date update in version.in
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433         {
434           const Got_offset_list* got_offsets = p->second;
435           got_offsets->for_all_got_offsets(v);
436         }
437     }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_(),
482     output_views_(NULL)
483 {
484   this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header.  This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499   const unsigned int shnum = this->elf_file_.shnum();
500   this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers.  The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section.  Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512   const unsigned int shnum = this->shnum();
513   this->symtab_shndx_ = 0;
514   if (shnum > 0)
515     {
516       // Look through the sections in reverse order, since gas tends
517       // to put the symbol table at the end.
518       const unsigned char* p = pshdrs + shnum * This::shdr_size;
519       unsigned int i = shnum;
520       unsigned int xindex_shndx = 0;
521       unsigned int xindex_link = 0;
522       while (i > 0)
523         {
524           --i;
525           p -= This::shdr_size;
526           typename This::Shdr shdr(p);
527           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528             {
529               this->symtab_shndx_ = i;
530               if (xindex_shndx > 0 && xindex_link == i)
531                 {
532                   Xindex* xindex =
533                     new Xindex(this->elf_file_.large_shndx_offset());
534                   xindex->read_symtab_xindex<size, big_endian>(this,
535                                                                xindex_shndx,
536                                                                pshdrs);
537                   this->set_xindex(xindex);
538                 }
539               break;
540             }
541
542           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543           // one.  This will work if it follows the SHT_SYMTAB
544           // section.
545           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546             {
547               xindex_shndx = i;
548               xindex_link = this->adjust_shndx(shdr.get_sh_link());
549             }
550         }
551     }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561   gold_assert(this->symtab_shndx_ != -1U);
562   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564   return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573     const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576   return ((sh_type == elfcpp::SHT_PROGBITS
577            || sh_type == parameters->target().unwind_section_type())
578           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586     const unsigned char* pshdrs,
587     const char* name,
588     const char* names,
589     section_size_type names_size,
590     const unsigned char* hdr) const
591 {
592   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593   const unsigned int shnum = this->shnum();
594   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595   size_t sh_name = 0;
596
597   while (1)
598     {
599       if (hdr)
600         {
601           // We found HDR last time we were called, continue looking.
602           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603           sh_name = shdr.get_sh_name();
604         }
605       else
606         {
607           // Look for the next occurrence of NAME in NAMES.
608           // The fact that .shstrtab produced by current GNU tools is
609           // string merged means we shouldn't have both .not.foo and
610           // .foo in .shstrtab, and multiple .foo sections should all
611           // have the same sh_name.  However, this is not guaranteed
612           // by the ELF spec and not all ELF object file producers may
613           // be so clever.
614           size_t len = strlen(name) + 1;
615           const char *p = sh_name ? names + sh_name + len : names;
616           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617                                                    name, len));
618           if (p == NULL)
619             return NULL;
620           sh_name = p - names;
621           hdr = pshdrs;
622           if (sh_name == 0)
623             return hdr;
624         }
625
626       hdr += shdr_size;
627       while (hdr < hdr_end)
628         {
629           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630           if (shdr.get_sh_name() == sh_name)
631             return hdr;
632           hdr += shdr_size;
633         }
634       hdr = NULL;
635       if (sh_name == 0)
636         return hdr;
637     }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646     const unsigned char* pshdrs,
647     const char* names,
648     section_size_type names_size) const
649 {
650   const unsigned char* s = NULL;
651
652   while (1)
653     {
654       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655                                                      names, names_size, s);
656       if (s == NULL)
657         return false;
658
659       typename This::Shdr shdr(s);
660       if (this->check_eh_frame_flags(&shdr))
661         return true;
662     }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task.  This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673   if (*name++ != '_')
674     return false;
675
676 #ifdef ENABLE_THREADS
677   // Decompressing these sections now will help only if we're
678   // multithreaded.
679   if (parameters->options().threads())
680     {
681       // We will need .zdebug_str if this is not an incremental link
682       // (i.e., we are processing string merge sections) or if we need
683       // to build a gdb index.
684       if ((!parameters->incremental() || parameters->options().gdb_index())
685           && strcmp(name, "str") == 0)
686         return true;
687
688       // We will need these other sections when building a gdb index.
689       if (parameters->options().gdb_index()
690           && (strcmp(name, "info") == 0
691               || strcmp(name, "types") == 0
692               || strcmp(name, "pubnames") == 0
693               || strcmp(name, "pubtypes") == 0
694               || strcmp(name, "ranges") == 0
695               || strcmp(name, "abbrev") == 0))
696         return true;
697     }
698 #endif
699
700   // Even when single-threaded, we will need .zdebug_str if this is
701   // not an incremental link and we are building a gdb index.
702   // Otherwise, we would decompress the section twice: once for
703   // string merge processing, and once for building the gdb index.
704   if (!parameters->incremental()
705       && parameters->options().gdb_index()
706       && strcmp(name, "str") == 0)
707     return true;
708
709   return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718     const unsigned char* pshdrs,
719     unsigned int shnum,
720     const char* names,
721     section_size_type names_size,
722     Object* obj,
723     bool decompress_if_needed)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734         {
735           if (shdr.get_sh_name() >= names_size)
736             {
737               obj->error(_("bad section name offset for section %u: %lu"),
738                          i, static_cast<unsigned long>(shdr.get_sh_name()));
739               continue;
740             }
741
742           const char* name = names + shdr.get_sh_name();
743           bool is_compressed = ((shdr.get_sh_flags()
744                                  & elfcpp::SHF_COMPRESSED) != 0);
745           bool is_zcompressed = (!is_compressed
746                                  && is_compressed_debug_section(name));
747
748           if (is_zcompressed || is_compressed)
749             {
750               section_size_type len;
751               const unsigned char* contents =
752                   obj->section_contents(i, &len, false);
753               uint64_t uncompressed_size;
754               Compressed_section_info info;
755               if (is_zcompressed)
756                 {
757                   // Skip over the ".zdebug" prefix.
758                   name += 7;
759                   uncompressed_size = get_uncompressed_size(contents, len);
760                   info.addralign = shdr.get_sh_addralign();
761                 }
762               else
763                 {
764                   // Skip over the ".debug" prefix.
765                   name += 6;
766                   elfcpp::Chdr<size, big_endian> chdr(contents);
767                   uncompressed_size = chdr.get_ch_size();
768                   info.addralign = chdr.get_ch_addralign();
769                 }
770               info.size = convert_to_section_size_type(uncompressed_size);
771               info.flag = shdr.get_sh_flags();
772               info.contents = NULL;
773               if (uncompressed_size != -1ULL)
774                 {
775                   unsigned char* uncompressed_data = NULL;
776                   if (decompress_if_needed && need_decompressed_section(name))
777                     {
778                       uncompressed_data = new unsigned char[uncompressed_size];
779                       if (decompress_input_section(contents, len,
780                                                    uncompressed_data,
781                                                    uncompressed_size,
782                                                    size, big_endian,
783                                                    shdr.get_sh_flags()))
784                         info.contents = uncompressed_data;
785                       else
786                         delete[] uncompressed_data;
787                     }
788                   (*uncompressed_map)[i] = info;
789                 }
790             }
791         }
792     }
793   return uncompressed_map;
794 }
795
796 // Stash away info for a number of special sections.
797 // Return true if any of the sections found require local symbols to be read.
798
799 template<int size, bool big_endian>
800 bool
801 Sized_relobj_file<size, big_endian>::do_find_special_sections(
802     Read_symbols_data* sd)
803 {
804   const unsigned char* const pshdrs = sd->section_headers->data();
805   const unsigned char* namesu = sd->section_names->data();
806   const char* names = reinterpret_cast<const char*>(namesu);
807
808   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
809     this->has_eh_frame_ = true;
810
811   Compressed_section_map* compressed_sections =
812     build_compressed_section_map<size, big_endian>(
813       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
814   if (compressed_sections != NULL)
815     this->set_compressed_sections(compressed_sections);
816
817   return (this->has_eh_frame_
818           || (!parameters->options().relocatable()
819               && parameters->options().gdb_index()
820               && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
821                   || memmem(names, sd->section_names_size,
822                             "debug_types", 12) != NULL)));
823 }
824
825 // Read the sections and symbols from an object file.
826
827 template<int size, bool big_endian>
828 void
829 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
830 {
831   this->base_read_symbols(sd);
832 }
833
834 // Read the sections and symbols from an object file.  This is common
835 // code for all target-specific overrides of do_read_symbols().
836
837 template<int size, bool big_endian>
838 void
839 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
840 {
841   this->read_section_data(&this->elf_file_, sd);
842
843   const unsigned char* const pshdrs = sd->section_headers->data();
844
845   this->find_symtab(pshdrs);
846
847   bool need_local_symbols = this->do_find_special_sections(sd);
848
849   sd->symbols = NULL;
850   sd->symbols_size = 0;
851   sd->external_symbols_offset = 0;
852   sd->symbol_names = NULL;
853   sd->symbol_names_size = 0;
854
855   if (this->symtab_shndx_ == 0)
856     {
857       // No symbol table.  Weird but legal.
858       return;
859     }
860
861   // Get the symbol table section header.
862   typename This::Shdr symtabshdr(pshdrs
863                                  + this->symtab_shndx_ * This::shdr_size);
864   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
865
866   // If this object has a .eh_frame section, or if building a .gdb_index
867   // section and there is debug info, we need all the symbols.
868   // Otherwise we only need the external symbols.  While it would be
869   // simpler to just always read all the symbols, I've seen object
870   // files with well over 2000 local symbols, which for a 64-bit
871   // object file format is over 5 pages that we don't need to read
872   // now.
873
874   const int sym_size = This::sym_size;
875   const unsigned int loccount = symtabshdr.get_sh_info();
876   this->local_symbol_count_ = loccount;
877   this->local_values_.resize(loccount);
878   section_offset_type locsize = loccount * sym_size;
879   off_t dataoff = symtabshdr.get_sh_offset();
880   section_size_type datasize =
881     convert_to_section_size_type(symtabshdr.get_sh_size());
882   off_t extoff = dataoff + locsize;
883   section_size_type extsize = datasize - locsize;
884
885   off_t readoff = need_local_symbols ? dataoff : extoff;
886   section_size_type readsize = need_local_symbols ? datasize : extsize;
887
888   if (readsize == 0)
889     {
890       // No external symbols.  Also weird but also legal.
891       return;
892     }
893
894   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
895
896   // Read the section header for the symbol names.
897   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
898   if (strtab_shndx >= this->shnum())
899     {
900       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
901       return;
902     }
903   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
904   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
905     {
906       this->error(_("symbol table name section has wrong type: %u"),
907                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
908       return;
909     }
910
911   // Read the symbol names.
912   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
913                                                strtabshdr.get_sh_size(),
914                                                false, true);
915
916   sd->symbols = fvsymtab;
917   sd->symbols_size = readsize;
918   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
919   sd->symbol_names = fvstrtab;
920   sd->symbol_names_size =
921     convert_to_section_size_type(strtabshdr.get_sh_size());
922 }
923
924 // Return the section index of symbol SYM.  Set *VALUE to its value in
925 // the object file.  Set *IS_ORDINARY if this is an ordinary section
926 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
927 // Note that for a symbol which is not defined in this object file,
928 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
929 // the final value of the symbol in the link.
930
931 template<int size, bool big_endian>
932 unsigned int
933 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
934                                                               Address* value,
935                                                               bool* is_ordinary)
936 {
937   section_size_type symbols_size;
938   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
939                                                         &symbols_size,
940                                                         false);
941
942   const size_t count = symbols_size / This::sym_size;
943   gold_assert(sym < count);
944
945   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
946   *value = elfsym.get_st_value();
947
948   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
949 }
950
951 // Return whether to include a section group in the link.  LAYOUT is
952 // used to keep track of which section groups we have already seen.
953 // INDEX is the index of the section group and SHDR is the section
954 // header.  If we do not want to include this group, we set bits in
955 // OMIT for each section which should be discarded.
956
957 template<int size, bool big_endian>
958 bool
959 Sized_relobj_file<size, big_endian>::include_section_group(
960     Symbol_table* symtab,
961     Layout* layout,
962     unsigned int index,
963     const char* name,
964     const unsigned char* shdrs,
965     const char* section_names,
966     section_size_type section_names_size,
967     std::vector<bool>* omit)
968 {
969   // Read the section contents.
970   typename This::Shdr shdr(shdrs + index * This::shdr_size);
971   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
972                                              shdr.get_sh_size(), true, false);
973   const elfcpp::Elf_Word* pword =
974     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
975
976   // The first word contains flags.  We only care about COMDAT section
977   // groups.  Other section groups are always included in the link
978   // just like ordinary sections.
979   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
980
981   // Look up the group signature, which is the name of a symbol.  ELF
982   // uses a symbol name because some group signatures are long, and
983   // the name is generally already in the symbol table, so it makes
984   // sense to put the long string just once in .strtab rather than in
985   // both .strtab and .shstrtab.
986
987   // Get the appropriate symbol table header (this will normally be
988   // the single SHT_SYMTAB section, but in principle it need not be).
989   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
990   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
991
992   // Read the symbol table entry.
993   unsigned int symndx = shdr.get_sh_info();
994   if (symndx >= symshdr.get_sh_size() / This::sym_size)
995     {
996       this->error(_("section group %u info %u out of range"),
997                   index, symndx);
998       return false;
999     }
1000   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1001   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1002                                              false);
1003   elfcpp::Sym<size, big_endian> sym(psym);
1004
1005   // Read the symbol table names.
1006   section_size_type symnamelen;
1007   const unsigned char* psymnamesu;
1008   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1009                                       &symnamelen, true);
1010   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1011
1012   // Get the section group signature.
1013   if (sym.get_st_name() >= symnamelen)
1014     {
1015       this->error(_("symbol %u name offset %u out of range"),
1016                   symndx, sym.get_st_name());
1017       return false;
1018     }
1019
1020   std::string signature(psymnames + sym.get_st_name());
1021
1022   // It seems that some versions of gas will create a section group
1023   // associated with a section symbol, and then fail to give a name to
1024   // the section symbol.  In such a case, use the name of the section.
1025   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1026     {
1027       bool is_ordinary;
1028       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1029                                                       sym.get_st_shndx(),
1030                                                       &is_ordinary);
1031       if (!is_ordinary || sym_shndx >= this->shnum())
1032         {
1033           this->error(_("symbol %u invalid section index %u"),
1034                       symndx, sym_shndx);
1035           return false;
1036         }
1037       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1038       if (member_shdr.get_sh_name() < section_names_size)
1039         signature = section_names + member_shdr.get_sh_name();
1040     }
1041
1042   // Record this section group in the layout, and see whether we've already
1043   // seen one with the same signature.
1044   bool include_group;
1045   bool is_comdat;
1046   Kept_section* kept_section = NULL;
1047
1048   if ((flags & elfcpp::GRP_COMDAT) == 0)
1049     {
1050       include_group = true;
1051       is_comdat = false;
1052     }
1053   else
1054     {
1055       include_group = layout->find_or_add_kept_section(signature,
1056                                                        this, index, true,
1057                                                        true, &kept_section);
1058       is_comdat = true;
1059     }
1060
1061   if (is_comdat && include_group)
1062     {
1063       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1064       if (incremental_inputs != NULL)
1065         incremental_inputs->report_comdat_group(this, signature.c_str());
1066     }
1067
1068   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1069
1070   std::vector<unsigned int> shndxes;
1071   bool relocate_group = include_group && parameters->options().relocatable();
1072   if (relocate_group)
1073     shndxes.reserve(count - 1);
1074
1075   for (size_t i = 1; i < count; ++i)
1076     {
1077       elfcpp::Elf_Word shndx =
1078         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1079
1080       if (relocate_group)
1081         shndxes.push_back(shndx);
1082
1083       if (shndx >= this->shnum())
1084         {
1085           this->error(_("section %u in section group %u out of range"),
1086                       shndx, index);
1087           continue;
1088         }
1089
1090       // Check for an earlier section number, since we're going to get
1091       // it wrong--we may have already decided to include the section.
1092       if (shndx < index)
1093         this->error(_("invalid section group %u refers to earlier section %u"),
1094                     index, shndx);
1095
1096       // Get the name of the member section.
1097       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1098       if (member_shdr.get_sh_name() >= section_names_size)
1099         {
1100           // This is an error, but it will be diagnosed eventually
1101           // in do_layout, so we don't need to do anything here but
1102           // ignore it.
1103           continue;
1104         }
1105       std::string mname(section_names + member_shdr.get_sh_name());
1106
1107       if (include_group)
1108         {
1109           if (is_comdat)
1110             kept_section->add_comdat_section(mname, shndx,
1111                                              member_shdr.get_sh_size());
1112         }
1113       else
1114         {
1115           (*omit)[shndx] = true;
1116
1117           // Store a mapping from this section to the Kept_section
1118           // information for the group.  This mapping is used for
1119           // relocation processing and diagnostics.
1120           // If the kept section is a linkonce section, we don't
1121           // bother with it unless the comdat group contains just
1122           // a single section, making it easy to match up.
1123           if (is_comdat
1124               && (kept_section->is_comdat() || count == 2))
1125             this->set_kept_comdat_section(shndx, true, symndx,
1126                                           member_shdr.get_sh_size(),
1127                                           kept_section);
1128         }
1129     }
1130
1131   if (relocate_group)
1132     layout->layout_group(symtab, this, index, name, signature.c_str(),
1133                          shdr, flags, &shndxes);
1134
1135   return include_group;
1136 }
1137
1138 // Whether to include a linkonce section in the link.  NAME is the
1139 // name of the section and SHDR is the section header.
1140
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined.  The semantics are
1143 // that we only include one linkonce section with a given name.  The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature.  We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature.  We also use
1150 // the full name of the linkonce section as a normal section group
1151 // signature.
1152
1153 template<int size, bool big_endian>
1154 bool
1155 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156     Layout* layout,
1157     unsigned int index,
1158     const char* name,
1159     const elfcpp::Shdr<size, big_endian>& shdr)
1160 {
1161   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162   // In general the symbol name we want will be the string following
1163   // the last '.'.  However, we have to handle the case of
1164   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165   // some versions of gcc.  So we use a heuristic: if the name starts
1166   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1167   // we look for the last '.'.  We can't always simply skip
1168   // ".gnu.linkonce.X", because we have to deal with cases like
1169   // ".gnu.linkonce.d.rel.ro.local".
1170   const char* const linkonce_t = ".gnu.linkonce.t.";
1171   const char* symname;
1172   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173     symname = name + strlen(linkonce_t);
1174   else
1175     symname = strrchr(name, '.') + 1;
1176   std::string sig1(symname);
1177   std::string sig2(name);
1178   Kept_section* kept1;
1179   Kept_section* kept2;
1180   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181                                                    false, &kept1);
1182   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183                                                    true, &kept2);
1184
1185   if (!include2)
1186     {
1187       // We are not including this section because we already saw the
1188       // name of the section as a signature.  This normally implies
1189       // that the kept section is another linkonce section.  If it is
1190       // the same size, record it as the section which corresponds to
1191       // this one.
1192       if (kept2->object() != NULL && !kept2->is_comdat())
1193         this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1194     }
1195   else if (!include1)
1196     {
1197       // The section is being discarded on the basis of its symbol
1198       // name.  This means that the corresponding kept section was
1199       // part of a comdat group, and it will be difficult to identify
1200       // the specific section within that group that corresponds to
1201       // this linkonce section.  We'll handle the simple case where
1202       // the group has only one member section.  Otherwise, it's not
1203       // worth the effort.
1204       if (kept1->object() != NULL && kept1->is_comdat())
1205         this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1206     }
1207   else
1208     {
1209       kept1->set_linkonce_size(sh_size);
1210       kept2->set_linkonce_size(sh_size);
1211     }
1212
1213   return include1 && include2;
1214 }
1215
1216 // Layout an input section.
1217
1218 template<int size, bool big_endian>
1219 inline void
1220 Sized_relobj_file<size, big_endian>::layout_section(
1221     Layout* layout,
1222     unsigned int shndx,
1223     const char* name,
1224     const typename This::Shdr& shdr,
1225     unsigned int sh_type,
1226     unsigned int reloc_shndx,
1227     unsigned int reloc_type)
1228 {
1229   off_t offset;
1230   Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1231                                       reloc_shndx, reloc_type, &offset);
1232
1233   this->output_sections()[shndx] = os;
1234   if (offset == -1)
1235     this->section_offsets()[shndx] = invalid_address;
1236   else
1237     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1238
1239   // If this section requires special handling, and if there are
1240   // relocs that apply to it, then we must do the special handling
1241   // before we apply the relocs.
1242   if (offset == -1 && reloc_shndx != 0)
1243     this->set_relocs_must_follow_section_writes();
1244 }
1245
1246 // Layout an input .eh_frame section.
1247
1248 template<int size, bool big_endian>
1249 void
1250 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1251     Layout* layout,
1252     const unsigned char* symbols_data,
1253     section_size_type symbols_size,
1254     const unsigned char* symbol_names_data,
1255     section_size_type symbol_names_size,
1256     unsigned int shndx,
1257     const typename This::Shdr& shdr,
1258     unsigned int reloc_shndx,
1259     unsigned int reloc_type)
1260 {
1261   gold_assert(this->has_eh_frame_);
1262
1263   off_t offset;
1264   Output_section* os = layout->layout_eh_frame(this,
1265                                                symbols_data,
1266                                                symbols_size,
1267                                                symbol_names_data,
1268                                                symbol_names_size,
1269                                                shndx,
1270                                                shdr,
1271                                                reloc_shndx,
1272                                                reloc_type,
1273                                                &offset);
1274   this->output_sections()[shndx] = os;
1275   if (os == NULL || offset == -1)
1276     this->section_offsets()[shndx] = invalid_address;
1277   else
1278     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1279
1280   // If this section requires special handling, and if there are
1281   // relocs that aply to it, then we must do the special handling
1282   // before we apply the relocs.
1283   if (os != NULL && offset == -1 && reloc_shndx != 0)
1284     this->set_relocs_must_follow_section_writes();
1285 }
1286
1287 // Layout an input .note.gnu.property section.
1288
1289 // This note section has an *extremely* non-standard layout.
1290 // The gABI spec says that ELF-64 files should have 8-byte fields and
1291 // 8-byte alignment in the note section, but the Gnu tools generally
1292 // use 4-byte fields and 4-byte alignment (see the comment for
1293 // Layout::create_note).  This section uses 4-byte fields (i.e.,
1294 // namesz, descsz, and type are always 4 bytes), the name field is
1295 // padded to a multiple of 4 bytes, but the desc field is padded
1296 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1297 // The individual properties within the desc field always use
1298 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1299 // a multiple of 4 or 8 bytes, depending on the ELF class.
1300
1301 template<int size, bool big_endian>
1302 void
1303 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1304     Layout* layout,
1305     unsigned int shndx)
1306 {
1307   section_size_type contents_len;
1308   const unsigned char* pcontents = this->section_contents(shndx,
1309                                                           &contents_len,
1310                                                           false);
1311   const unsigned char* pcontents_end = pcontents + contents_len;
1312
1313   // Loop over all the notes in this section.
1314   while (pcontents < pcontents_end)
1315     {
1316       if (pcontents + 16 > pcontents_end)
1317         {
1318           gold_warning(_("%s: corrupt .note.gnu.property section "
1319                          "(note too short)"),
1320                        this->name().c_str());
1321           return;
1322         }
1323
1324       size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1325       size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1326       unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1327       const unsigned char* pname = pcontents + 12;
1328
1329       if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1330         {
1331           gold_warning(_("%s: corrupt .note.gnu.property section "
1332                          "(name is not 'GNU')"),
1333                        this->name().c_str());
1334           return;
1335         }
1336
1337       if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1338         {
1339           gold_warning(_("%s: unsupported note type %d "
1340                          "in .note.gnu.property section"),
1341                        this->name().c_str(), ntype);
1342           return;
1343         }
1344
1345       size_t aligned_namesz = align_address(namesz, 4);
1346       const unsigned char* pdesc = pname + aligned_namesz;
1347
1348       if (pdesc + descsz > pcontents + contents_len)
1349         {
1350           gold_warning(_("%s: corrupt .note.gnu.property section"),
1351                        this->name().c_str());
1352           return;
1353         }
1354
1355       const unsigned char* pprop = pdesc;
1356
1357       // Loop over the program properties in this note.
1358       while (pprop < pdesc + descsz)
1359         {
1360           if (pprop + 8 > pdesc + descsz)
1361             {
1362               gold_warning(_("%s: corrupt .note.gnu.property section"),
1363                            this->name().c_str());
1364               return;
1365             }
1366           unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1367           size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1368           pprop += 8;
1369           if (pprop + pr_datasz > pdesc + descsz)
1370             {
1371               gold_warning(_("%s: corrupt .note.gnu.property section"),
1372                            this->name().c_str());
1373               return;
1374             }
1375           layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1376           pprop += align_address(pr_datasz, size / 8);
1377         }
1378
1379       pcontents = pdesc + align_address(descsz, size / 8);
1380     }
1381 }
1382
1383 // Lay out the input sections.  We walk through the sections and check
1384 // whether they should be included in the link.  If they should, we
1385 // pass them to the Layout object, which will return an output section
1386 // and an offset.
1387 // This function is called twice sometimes, two passes, when mapping
1388 // of input sections to output sections must be delayed.
1389 // This is true for the following :
1390 // * Garbage collection (--gc-sections): Some input sections will be
1391 // discarded and hence the assignment must wait until the second pass.
1392 // In the first pass,  it is for setting up some sections as roots to
1393 // a work-list for --gc-sections and to do comdat processing.
1394 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1395 // will be folded and hence the assignment must wait.
1396 // * Using plugins to map some sections to unique segments: Mapping
1397 // some sections to unique segments requires mapping them to unique
1398 // output sections too.  This can be done via plugins now and this
1399 // information is not available in the first pass.
1400
1401 template<int size, bool big_endian>
1402 void
1403 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1404                                                Layout* layout,
1405                                                Read_symbols_data* sd)
1406 {
1407   const unsigned int unwind_section_type =
1408       parameters->target().unwind_section_type();
1409   const unsigned int shnum = this->shnum();
1410
1411   /* Should this function be called twice?  */
1412   bool is_two_pass = (parameters->options().gc_sections()
1413                       || parameters->options().icf_enabled()
1414                       || layout->is_unique_segment_for_sections_specified());
1415
1416   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1417      a two-pass approach is not needed.  */
1418   bool is_pass_one = false;
1419   bool is_pass_two = false;
1420
1421   Symbols_data* gc_sd = NULL;
1422
1423   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1424      should happen.  In the first pass, the data in sd is saved to be used
1425      later in the second pass.  */
1426   if (is_two_pass)
1427     {
1428       gc_sd = this->get_symbols_data();
1429       if (gc_sd == NULL)
1430         {
1431           gold_assert(sd != NULL);
1432           is_pass_one = true;
1433         }
1434       else
1435         {
1436           if (parameters->options().gc_sections())
1437             gold_assert(symtab->gc()->is_worklist_ready());
1438           if (parameters->options().icf_enabled())
1439             gold_assert(symtab->icf()->is_icf_ready()); 
1440           is_pass_two = true;
1441         }
1442     }
1443     
1444   if (shnum == 0)
1445     return;
1446
1447   if (is_pass_one)
1448     {
1449       // During garbage collection save the symbols data to use it when
1450       // re-entering this function.
1451       gc_sd = new Symbols_data;
1452       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1453       this->set_symbols_data(gc_sd);
1454     }
1455
1456   const unsigned char* section_headers_data = NULL;
1457   section_size_type section_names_size;
1458   const unsigned char* symbols_data = NULL;
1459   section_size_type symbols_size;
1460   const unsigned char* symbol_names_data = NULL;
1461   section_size_type symbol_names_size;
1462
1463   if (is_two_pass)
1464     {
1465       section_headers_data = gc_sd->section_headers_data;
1466       section_names_size = gc_sd->section_names_size;
1467       symbols_data = gc_sd->symbols_data;
1468       symbols_size = gc_sd->symbols_size;
1469       symbol_names_data = gc_sd->symbol_names_data;
1470       symbol_names_size = gc_sd->symbol_names_size;
1471     }
1472   else
1473     {
1474       section_headers_data = sd->section_headers->data();
1475       section_names_size = sd->section_names_size;
1476       if (sd->symbols != NULL)
1477         symbols_data = sd->symbols->data();
1478       symbols_size = sd->symbols_size;
1479       if (sd->symbol_names != NULL)
1480         symbol_names_data = sd->symbol_names->data();
1481       symbol_names_size = sd->symbol_names_size;
1482     }
1483
1484   // Get the section headers.
1485   const unsigned char* shdrs = section_headers_data;
1486   const unsigned char* pshdrs;
1487
1488   // Get the section names.
1489   const unsigned char* pnamesu = (is_two_pass
1490                                   ? gc_sd->section_names_data
1491                                   : sd->section_names->data());
1492
1493   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1494
1495   // If any input files have been claimed by plugins, we need to defer
1496   // actual layout until the replacement files have arrived.
1497   const bool should_defer_layout =
1498       (parameters->options().has_plugins()
1499        && parameters->options().plugins()->should_defer_layout());
1500   unsigned int num_sections_to_defer = 0;
1501
1502   // For each section, record the index of the reloc section if any.
1503   // Use 0 to mean that there is no reloc section, -1U to mean that
1504   // there is more than one.
1505   std::vector<unsigned int> reloc_shndx(shnum, 0);
1506   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1507   // Skip the first, dummy, section.
1508   pshdrs = shdrs + This::shdr_size;
1509   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1510     {
1511       typename This::Shdr shdr(pshdrs);
1512
1513       // Count the number of sections whose layout will be deferred.
1514       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1515         ++num_sections_to_defer;
1516
1517       unsigned int sh_type = shdr.get_sh_type();
1518       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1519         {
1520           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1521           if (target_shndx == 0 || target_shndx >= shnum)
1522             {
1523               this->error(_("relocation section %u has bad info %u"),
1524                           i, target_shndx);
1525               continue;
1526             }
1527
1528           if (reloc_shndx[target_shndx] != 0)
1529             reloc_shndx[target_shndx] = -1U;
1530           else
1531             {
1532               reloc_shndx[target_shndx] = i;
1533               reloc_type[target_shndx] = sh_type;
1534             }
1535         }
1536     }
1537
1538   Output_sections& out_sections(this->output_sections());
1539   std::vector<Address>& out_section_offsets(this->section_offsets());
1540
1541   if (!is_pass_two)
1542     {
1543       out_sections.resize(shnum);
1544       out_section_offsets.resize(shnum);
1545     }
1546
1547   // If we are only linking for symbols, then there is nothing else to
1548   // do here.
1549   if (this->input_file()->just_symbols())
1550     {
1551       if (!is_pass_two)
1552         {
1553           delete sd->section_headers;
1554           sd->section_headers = NULL;
1555           delete sd->section_names;
1556           sd->section_names = NULL;
1557         }
1558       return;
1559     }
1560
1561   if (num_sections_to_defer > 0)
1562     {
1563       parameters->options().plugins()->add_deferred_layout_object(this);
1564       this->deferred_layout_.reserve(num_sections_to_defer);
1565       this->is_deferred_layout_ = true;
1566     }
1567
1568   // Whether we've seen a .note.GNU-stack section.
1569   bool seen_gnu_stack = false;
1570   // The flags of a .note.GNU-stack section.
1571   uint64_t gnu_stack_flags = 0;
1572
1573   // Keep track of which sections to omit.
1574   std::vector<bool> omit(shnum, false);
1575
1576   // Keep track of reloc sections when emitting relocations.
1577   const bool relocatable = parameters->options().relocatable();
1578   const bool emit_relocs = (relocatable
1579                             || parameters->options().emit_relocs());
1580   std::vector<unsigned int> reloc_sections;
1581
1582   // Keep track of .eh_frame sections.
1583   std::vector<unsigned int> eh_frame_sections;
1584
1585   // Keep track of .debug_info and .debug_types sections.
1586   std::vector<unsigned int> debug_info_sections;
1587   std::vector<unsigned int> debug_types_sections;
1588
1589   // Skip the first, dummy, section.
1590   pshdrs = shdrs + This::shdr_size;
1591   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1592     {
1593       typename This::Shdr shdr(pshdrs);
1594       const unsigned int sh_name = shdr.get_sh_name();
1595       unsigned int sh_type = shdr.get_sh_type();
1596
1597       if (sh_name >= section_names_size)
1598         {
1599           this->error(_("bad section name offset for section %u: %lu"),
1600                       i, static_cast<unsigned long>(sh_name));
1601           return;
1602         }
1603
1604       const char* name = pnames + sh_name;
1605
1606       if (!is_pass_two)
1607         {
1608           if (this->handle_gnu_warning_section(name, i, symtab))
1609             {
1610               if (!relocatable && !parameters->options().shared())
1611                 omit[i] = true;
1612             }
1613
1614           // The .note.GNU-stack section is special.  It gives the
1615           // protection flags that this object file requires for the stack
1616           // in memory.
1617           if (strcmp(name, ".note.GNU-stack") == 0)
1618             {
1619               seen_gnu_stack = true;
1620               gnu_stack_flags |= shdr.get_sh_flags();
1621               omit[i] = true;
1622             }
1623
1624           // The .note.GNU-split-stack section is also special.  It
1625           // indicates that the object was compiled with
1626           // -fsplit-stack.
1627           if (this->handle_split_stack_section(name))
1628             {
1629               if (!relocatable && !parameters->options().shared())
1630                 omit[i] = true;
1631             }
1632
1633           // Skip attributes section.
1634           if (parameters->target().is_attributes_section(name))
1635             {
1636               omit[i] = true;
1637             }
1638
1639           // Handle .note.gnu.property sections.
1640           if (sh_type == elfcpp::SHT_NOTE
1641               && strcmp(name, ".note.gnu.property") == 0)
1642             {
1643               this->layout_gnu_property_section(layout, i);
1644               omit[i] = true;
1645             }
1646
1647           bool discard = omit[i];
1648           if (!discard)
1649             {
1650               if (sh_type == elfcpp::SHT_GROUP)
1651                 {
1652                   if (!this->include_section_group(symtab, layout, i, name,
1653                                                    shdrs, pnames,
1654                                                    section_names_size,
1655                                                    &omit))
1656                     discard = true;
1657                 }
1658               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1659                        && Layout::is_linkonce(name))
1660                 {
1661                   if (!this->include_linkonce_section(layout, i, name, shdr))
1662                     discard = true;
1663                 }
1664             }
1665
1666           // Add the section to the incremental inputs layout.
1667           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1668           if (incremental_inputs != NULL
1669               && !discard
1670               && can_incremental_update(sh_type))
1671             {
1672               off_t sh_size = shdr.get_sh_size();
1673               section_size_type uncompressed_size;
1674               if (this->section_is_compressed(i, &uncompressed_size))
1675                 sh_size = uncompressed_size;
1676               incremental_inputs->report_input_section(this, i, name, sh_size);
1677             }
1678
1679           if (discard)
1680             {
1681               // Do not include this section in the link.
1682               out_sections[i] = NULL;
1683               out_section_offsets[i] = invalid_address;
1684               continue;
1685             }
1686         }
1687
1688       if (is_pass_one && parameters->options().gc_sections())
1689         {
1690           if (this->is_section_name_included(name)
1691               || layout->keep_input_section (this, name)
1692               || sh_type == elfcpp::SHT_INIT_ARRAY
1693               || sh_type == elfcpp::SHT_FINI_ARRAY)
1694             {
1695               symtab->gc()->worklist().push_back(Section_id(this, i));
1696             }
1697           // If the section name XXX can be represented as a C identifier
1698           // it cannot be discarded if there are references to
1699           // __start_XXX and __stop_XXX symbols.  These need to be
1700           // specially handled.
1701           if (is_cident(name))
1702             {
1703               symtab->gc()->add_cident_section(name, Section_id(this, i));
1704             }
1705         }
1706
1707       // When doing a relocatable link we are going to copy input
1708       // reloc sections into the output.  We only want to copy the
1709       // ones associated with sections which are not being discarded.
1710       // However, we don't know that yet for all sections.  So save
1711       // reloc sections and process them later. Garbage collection is
1712       // not triggered when relocatable code is desired.
1713       if (emit_relocs
1714           && (sh_type == elfcpp::SHT_REL
1715               || sh_type == elfcpp::SHT_RELA))
1716         {
1717           reloc_sections.push_back(i);
1718           continue;
1719         }
1720
1721       if (relocatable && sh_type == elfcpp::SHT_GROUP)
1722         continue;
1723
1724       // The .eh_frame section is special.  It holds exception frame
1725       // information that we need to read in order to generate the
1726       // exception frame header.  We process these after all the other
1727       // sections so that the exception frame reader can reliably
1728       // determine which sections are being discarded, and discard the
1729       // corresponding information.
1730       if (this->check_eh_frame_flags(&shdr)
1731           && strcmp(name, ".eh_frame") == 0)
1732         {
1733           // If the target has a special unwind section type, let's
1734           // canonicalize it here.
1735           sh_type = unwind_section_type;
1736           if (!relocatable)
1737             {
1738               if (is_pass_one)
1739                 {
1740                   if (this->is_deferred_layout())
1741                     out_sections[i] = reinterpret_cast<Output_section*>(2);
1742                   else
1743                     out_sections[i] = reinterpret_cast<Output_section*>(1);
1744                   out_section_offsets[i] = invalid_address;
1745                 }
1746               else if (this->is_deferred_layout())
1747                 {
1748                   out_sections[i] = reinterpret_cast<Output_section*>(2);
1749                   out_section_offsets[i] = invalid_address;
1750                   this->deferred_layout_.push_back(
1751                       Deferred_layout(i, name, sh_type, pshdrs,
1752                                       reloc_shndx[i], reloc_type[i]));
1753                 }
1754               else
1755                 eh_frame_sections.push_back(i);
1756               continue;
1757             }
1758         }
1759
1760       if (is_pass_two && parameters->options().gc_sections())
1761         {
1762           // This is executed during the second pass of garbage
1763           // collection. do_layout has been called before and some
1764           // sections have been already discarded. Simply ignore
1765           // such sections this time around.
1766           if (out_sections[i] == NULL)
1767             {
1768               gold_assert(out_section_offsets[i] == invalid_address);
1769               continue;
1770             }
1771           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1772               && symtab->gc()->is_section_garbage(this, i))
1773               {
1774                 if (parameters->options().print_gc_sections())
1775                   gold_info(_("%s: removing unused section from '%s'"
1776                               " in file '%s'"),
1777                             program_name, this->section_name(i).c_str(),
1778                             this->name().c_str());
1779                 out_sections[i] = NULL;
1780                 out_section_offsets[i] = invalid_address;
1781                 continue;
1782               }
1783         }
1784
1785       if (is_pass_two && parameters->options().icf_enabled())
1786         {
1787           if (out_sections[i] == NULL)
1788             {
1789               gold_assert(out_section_offsets[i] == invalid_address);
1790               continue;
1791             }
1792           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1793               && symtab->icf()->is_section_folded(this, i))
1794               {
1795                 if (parameters->options().print_icf_sections())
1796                   {
1797                     Section_id folded =
1798                                 symtab->icf()->get_folded_section(this, i);
1799                     Relobj* folded_obj =
1800                                 reinterpret_cast<Relobj*>(folded.first);
1801                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1802                                 "into '%s' in file '%s'"),
1803                               program_name, this->section_name(i).c_str(),
1804                               this->name().c_str(),
1805                               folded_obj->section_name(folded.second).c_str(),
1806                               folded_obj->name().c_str());
1807                   }
1808                 out_sections[i] = NULL;
1809                 out_section_offsets[i] = invalid_address;
1810                 continue;
1811               }
1812         }
1813
1814       // Defer layout here if input files are claimed by plugins.  When gc
1815       // is turned on this function is called twice; we only want to do this
1816       // on the first pass.
1817       if (!is_pass_two
1818           && this->is_deferred_layout()
1819           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1820         {
1821           this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1822                                                            pshdrs,
1823                                                            reloc_shndx[i],
1824                                                            reloc_type[i]));
1825           // Put dummy values here; real values will be supplied by
1826           // do_layout_deferred_sections.
1827           out_sections[i] = reinterpret_cast<Output_section*>(2);
1828           out_section_offsets[i] = invalid_address;
1829           continue;
1830         }
1831
1832       // During gc_pass_two if a section that was previously deferred is
1833       // found, do not layout the section as layout_deferred_sections will
1834       // do it later from gold.cc.
1835       if (is_pass_two
1836           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1837         continue;
1838
1839       if (is_pass_one)
1840         {
1841           // This is during garbage collection. The out_sections are
1842           // assigned in the second call to this function.
1843           out_sections[i] = reinterpret_cast<Output_section*>(1);
1844           out_section_offsets[i] = invalid_address;
1845         }
1846       else
1847         {
1848           // When garbage collection is switched on the actual layout
1849           // only happens in the second call.
1850           this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1851                                reloc_type[i]);
1852
1853           // When generating a .gdb_index section, we do additional
1854           // processing of .debug_info and .debug_types sections after all
1855           // the other sections for the same reason as above.
1856           if (!relocatable
1857               && parameters->options().gdb_index()
1858               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1859             {
1860               if (strcmp(name, ".debug_info") == 0
1861                   || strcmp(name, ".zdebug_info") == 0)
1862                 debug_info_sections.push_back(i);
1863               else if (strcmp(name, ".debug_types") == 0
1864                        || strcmp(name, ".zdebug_types") == 0)
1865                 debug_types_sections.push_back(i);
1866             }
1867         }
1868     }
1869
1870   if (!is_pass_two)
1871     {
1872       layout->merge_gnu_properties(this);
1873       layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1874     }
1875
1876   // Handle the .eh_frame sections after the other sections.
1877   gold_assert(!is_pass_one || eh_frame_sections.empty());
1878   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1879        p != eh_frame_sections.end();
1880        ++p)
1881     {
1882       unsigned int i = *p;
1883       const unsigned char* pshdr;
1884       pshdr = section_headers_data + i * This::shdr_size;
1885       typename This::Shdr shdr(pshdr);
1886
1887       this->layout_eh_frame_section(layout,
1888                                     symbols_data,
1889                                     symbols_size,
1890                                     symbol_names_data,
1891                                     symbol_names_size,
1892                                     i,
1893                                     shdr,
1894                                     reloc_shndx[i],
1895                                     reloc_type[i]);
1896     }
1897
1898   // When doing a relocatable link handle the reloc sections at the
1899   // end.  Garbage collection  and Identical Code Folding is not
1900   // turned on for relocatable code.
1901   if (emit_relocs)
1902     this->size_relocatable_relocs();
1903
1904   gold_assert(!is_two_pass || reloc_sections.empty());
1905
1906   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1907        p != reloc_sections.end();
1908        ++p)
1909     {
1910       unsigned int i = *p;
1911       const unsigned char* pshdr;
1912       pshdr = section_headers_data + i * This::shdr_size;
1913       typename This::Shdr shdr(pshdr);
1914
1915       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1916       if (data_shndx >= shnum)
1917         {
1918           // We already warned about this above.
1919           continue;
1920         }
1921
1922       Output_section* data_section = out_sections[data_shndx];
1923       if (data_section == reinterpret_cast<Output_section*>(2))
1924         {
1925           if (is_pass_two)
1926             continue;
1927           // The layout for the data section was deferred, so we need
1928           // to defer the relocation section, too.
1929           const char* name = pnames + shdr.get_sh_name();
1930           this->deferred_layout_relocs_.push_back(
1931               Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1932                               elfcpp::SHT_NULL));
1933           out_sections[i] = reinterpret_cast<Output_section*>(2);
1934           out_section_offsets[i] = invalid_address;
1935           continue;
1936         }
1937       if (data_section == NULL)
1938         {
1939           out_sections[i] = NULL;
1940           out_section_offsets[i] = invalid_address;
1941           continue;
1942         }
1943
1944       Relocatable_relocs* rr = new Relocatable_relocs();
1945       this->set_relocatable_relocs(i, rr);
1946
1947       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1948                                                 rr);
1949       out_sections[i] = os;
1950       out_section_offsets[i] = invalid_address;
1951     }
1952
1953   // When building a .gdb_index section, scan the .debug_info and
1954   // .debug_types sections.
1955   gold_assert(!is_pass_one
1956               || (debug_info_sections.empty() && debug_types_sections.empty()));
1957   for (std::vector<unsigned int>::const_iterator p
1958            = debug_info_sections.begin();
1959        p != debug_info_sections.end();
1960        ++p)
1961     {
1962       unsigned int i = *p;
1963       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1964                                i, reloc_shndx[i], reloc_type[i]);
1965     }
1966   for (std::vector<unsigned int>::const_iterator p
1967            = debug_types_sections.begin();
1968        p != debug_types_sections.end();
1969        ++p)
1970     {
1971       unsigned int i = *p;
1972       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1973                                i, reloc_shndx[i], reloc_type[i]);
1974     }
1975
1976   if (is_pass_two)
1977     {
1978       delete[] gc_sd->section_headers_data;
1979       delete[] gc_sd->section_names_data;
1980       delete[] gc_sd->symbols_data;
1981       delete[] gc_sd->symbol_names_data;
1982       this->set_symbols_data(NULL);
1983     }
1984   else
1985     {
1986       delete sd->section_headers;
1987       sd->section_headers = NULL;
1988       delete sd->section_names;
1989       sd->section_names = NULL;
1990     }
1991 }
1992
1993 // Layout sections whose layout was deferred while waiting for
1994 // input files from a plugin.
1995
1996 template<int size, bool big_endian>
1997 void
1998 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1999 {
2000   typename std::vector<Deferred_layout>::iterator deferred;
2001
2002   for (deferred = this->deferred_layout_.begin();
2003        deferred != this->deferred_layout_.end();
2004        ++deferred)
2005     {
2006       typename This::Shdr shdr(deferred->shdr_data_);
2007
2008       if (!parameters->options().relocatable()
2009           && deferred->name_ == ".eh_frame"
2010           && this->check_eh_frame_flags(&shdr))
2011         {
2012           // Checking is_section_included is not reliable for
2013           // .eh_frame sections, because they do not have an output
2014           // section.  This is not a problem normally because we call
2015           // layout_eh_frame_section unconditionally, but when
2016           // deferring sections that is not true.  We don't want to
2017           // keep all .eh_frame sections because that will cause us to
2018           // keep all sections that they refer to, which is the wrong
2019           // way around.  Instead, the eh_frame code will discard
2020           // .eh_frame sections that refer to discarded sections.
2021
2022           // Reading the symbols again here may be slow.
2023           Read_symbols_data sd;
2024           this->base_read_symbols(&sd);
2025           this->layout_eh_frame_section(layout,
2026                                         sd.symbols->data(),
2027                                         sd.symbols_size,
2028                                         sd.symbol_names->data(),
2029                                         sd.symbol_names_size,
2030                                         deferred->shndx_,
2031                                         shdr,
2032                                         deferred->reloc_shndx_,
2033                                         deferred->reloc_type_);
2034           continue;
2035         }
2036
2037       // If the section is not included, it is because the garbage collector
2038       // decided it is not needed.  Avoid reverting that decision.
2039       if (!this->is_section_included(deferred->shndx_))
2040         continue;
2041
2042       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2043                            shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2044                            deferred->reloc_type_);
2045     }
2046
2047   this->deferred_layout_.clear();
2048
2049   // Now handle the deferred relocation sections.
2050
2051   Output_sections& out_sections(this->output_sections());
2052   std::vector<Address>& out_section_offsets(this->section_offsets());
2053
2054   for (deferred = this->deferred_layout_relocs_.begin();
2055        deferred != this->deferred_layout_relocs_.end();
2056        ++deferred)
2057     {
2058       unsigned int shndx = deferred->shndx_;
2059       typename This::Shdr shdr(deferred->shdr_data_);
2060       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2061
2062       Output_section* data_section = out_sections[data_shndx];
2063       if (data_section == NULL)
2064         {
2065           out_sections[shndx] = NULL;
2066           out_section_offsets[shndx] = invalid_address;
2067           continue;
2068         }
2069
2070       Relocatable_relocs* rr = new Relocatable_relocs();
2071       this->set_relocatable_relocs(shndx, rr);
2072
2073       Output_section* os = layout->layout_reloc(this, shndx, shdr,
2074                                                 data_section, rr);
2075       out_sections[shndx] = os;
2076       out_section_offsets[shndx] = invalid_address;
2077     }
2078 }
2079
2080 // Add the symbols to the symbol table.
2081
2082 template<int size, bool big_endian>
2083 void
2084 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2085                                                     Read_symbols_data* sd,
2086                                                     Layout*)
2087 {
2088   if (sd->symbols == NULL)
2089     {
2090       gold_assert(sd->symbol_names == NULL);
2091       return;
2092     }
2093
2094   const int sym_size = This::sym_size;
2095   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2096                      / sym_size);
2097   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2098     {
2099       this->error(_("size of symbols is not multiple of symbol size"));
2100       return;
2101     }
2102
2103   this->symbols_.resize(symcount);
2104
2105   const char* sym_names =
2106     reinterpret_cast<const char*>(sd->symbol_names->data());
2107   symtab->add_from_relobj(this,
2108                           sd->symbols->data() + sd->external_symbols_offset,
2109                           symcount, this->local_symbol_count_,
2110                           sym_names, sd->symbol_names_size,
2111                           &this->symbols_,
2112                           &this->defined_count_);
2113
2114   delete sd->symbols;
2115   sd->symbols = NULL;
2116   delete sd->symbol_names;
2117   sd->symbol_names = NULL;
2118 }
2119
2120 // Find out if this object, that is a member of a lib group, should be included
2121 // in the link. We check every symbol defined by this object. If the symbol
2122 // table has a strong undefined reference to that symbol, we have to include
2123 // the object.
2124
2125 template<int size, bool big_endian>
2126 Archive::Should_include
2127 Sized_relobj_file<size, big_endian>::do_should_include_member(
2128     Symbol_table* symtab,
2129     Layout* layout,
2130     Read_symbols_data* sd,
2131     std::string* why)
2132 {
2133   char* tmpbuf = NULL;
2134   size_t tmpbuflen = 0;
2135   const char* sym_names =
2136       reinterpret_cast<const char*>(sd->symbol_names->data());
2137   const unsigned char* syms =
2138       sd->symbols->data() + sd->external_symbols_offset;
2139   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2140   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2141                          / sym_size);
2142
2143   const unsigned char* p = syms;
2144
2145   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2146     {
2147       elfcpp::Sym<size, big_endian> sym(p);
2148       unsigned int st_shndx = sym.get_st_shndx();
2149       if (st_shndx == elfcpp::SHN_UNDEF)
2150         continue;
2151
2152       unsigned int st_name = sym.get_st_name();
2153       const char* name = sym_names + st_name;
2154       Symbol* symbol;
2155       Archive::Should_include t = Archive::should_include_member(symtab,
2156                                                                  layout,
2157                                                                  name,
2158                                                                  &symbol, why,
2159                                                                  &tmpbuf,
2160                                                                  &tmpbuflen);
2161       if (t == Archive::SHOULD_INCLUDE_YES)
2162         {
2163           if (tmpbuf != NULL)
2164             free(tmpbuf);
2165           return t;
2166         }
2167     }
2168   if (tmpbuf != NULL)
2169     free(tmpbuf);
2170   return Archive::SHOULD_INCLUDE_UNKNOWN;
2171 }
2172
2173 // Iterate over global defined symbols, calling a visitor class V for each.
2174
2175 template<int size, bool big_endian>
2176 void
2177 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2178     Read_symbols_data* sd,
2179     Library_base::Symbol_visitor_base* v)
2180 {
2181   const char* sym_names =
2182       reinterpret_cast<const char*>(sd->symbol_names->data());
2183   const unsigned char* syms =
2184       sd->symbols->data() + sd->external_symbols_offset;
2185   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2186   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2187                      / sym_size);
2188   const unsigned char* p = syms;
2189
2190   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2191     {
2192       elfcpp::Sym<size, big_endian> sym(p);
2193       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2194         v->visit(sym_names + sym.get_st_name());
2195     }
2196 }
2197
2198 // Return whether the local symbol SYMNDX has a PLT offset.
2199
2200 template<int size, bool big_endian>
2201 bool
2202 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2203     unsigned int symndx) const
2204 {
2205   typename Local_plt_offsets::const_iterator p =
2206     this->local_plt_offsets_.find(symndx);
2207   return p != this->local_plt_offsets_.end();
2208 }
2209
2210 // Get the PLT offset of a local symbol.
2211
2212 template<int size, bool big_endian>
2213 unsigned int
2214 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2215     unsigned int symndx) const
2216 {
2217   typename Local_plt_offsets::const_iterator p =
2218     this->local_plt_offsets_.find(symndx);
2219   gold_assert(p != this->local_plt_offsets_.end());
2220   return p->second;
2221 }
2222
2223 // Set the PLT offset of a local symbol.
2224
2225 template<int size, bool big_endian>
2226 void
2227 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2228     unsigned int symndx, unsigned int plt_offset)
2229 {
2230   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2231     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2232   gold_assert(ins.second);
2233 }
2234
2235 // First pass over the local symbols.  Here we add their names to
2236 // *POOL and *DYNPOOL, and we store the symbol value in
2237 // THIS->LOCAL_VALUES_.  This function is always called from a
2238 // singleton thread.  This is followed by a call to
2239 // finalize_local_symbols.
2240
2241 template<int size, bool big_endian>
2242 void
2243 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2244                                                             Stringpool* dynpool)
2245 {
2246   gold_assert(this->symtab_shndx_ != -1U);
2247   if (this->symtab_shndx_ == 0)
2248     {
2249       // This object has no symbols.  Weird but legal.
2250       return;
2251     }
2252
2253   // Read the symbol table section header.
2254   const unsigned int symtab_shndx = this->symtab_shndx_;
2255   typename This::Shdr symtabshdr(this,
2256                                  this->elf_file_.section_header(symtab_shndx));
2257   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2258
2259   // Read the local symbols.
2260   const int sym_size = This::sym_size;
2261   const unsigned int loccount = this->local_symbol_count_;
2262   gold_assert(loccount == symtabshdr.get_sh_info());
2263   off_t locsize = loccount * sym_size;
2264   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2265                                               locsize, true, true);
2266
2267   // Read the symbol names.
2268   const unsigned int strtab_shndx =
2269     this->adjust_shndx(symtabshdr.get_sh_link());
2270   section_size_type strtab_size;
2271   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2272                                                         &strtab_size,
2273                                                         true);
2274   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2275
2276   // Loop over the local symbols.
2277
2278   const Output_sections& out_sections(this->output_sections());
2279   std::vector<Address>& out_section_offsets(this->section_offsets());
2280   unsigned int shnum = this->shnum();
2281   unsigned int count = 0;
2282   unsigned int dyncount = 0;
2283   // Skip the first, dummy, symbol.
2284   psyms += sym_size;
2285   bool strip_all = parameters->options().strip_all();
2286   bool discard_all = parameters->options().discard_all();
2287   bool discard_locals = parameters->options().discard_locals();
2288   bool discard_sec_merge = parameters->options().discard_sec_merge();
2289   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2290     {
2291       elfcpp::Sym<size, big_endian> sym(psyms);
2292
2293       Symbol_value<size>& lv(this->local_values_[i]);
2294
2295       bool is_ordinary;
2296       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2297                                                   &is_ordinary);
2298       lv.set_input_shndx(shndx, is_ordinary);
2299
2300       if (sym.get_st_type() == elfcpp::STT_SECTION)
2301         lv.set_is_section_symbol();
2302       else if (sym.get_st_type() == elfcpp::STT_TLS)
2303         lv.set_is_tls_symbol();
2304       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2305         lv.set_is_ifunc_symbol();
2306
2307       // Save the input symbol value for use in do_finalize_local_symbols().
2308       lv.set_input_value(sym.get_st_value());
2309
2310       // Decide whether this symbol should go into the output file.
2311
2312       if (is_ordinary
2313           && shndx < shnum
2314           && (out_sections[shndx] == NULL
2315               || (out_sections[shndx]->order() == ORDER_EHFRAME
2316                   && out_section_offsets[shndx] == invalid_address)))
2317         {
2318           // This is either a discarded section or an optimized .eh_frame
2319           // section.
2320           lv.set_no_output_symtab_entry();
2321           gold_assert(!lv.needs_output_dynsym_entry());
2322           continue;
2323         }
2324
2325       if (sym.get_st_type() == elfcpp::STT_SECTION
2326           || !this->adjust_local_symbol(&lv))
2327         {
2328           lv.set_no_output_symtab_entry();
2329           gold_assert(!lv.needs_output_dynsym_entry());
2330           continue;
2331         }
2332
2333       if (sym.get_st_name() >= strtab_size)
2334         {
2335           this->error(_("local symbol %u section name out of range: %u >= %u"),
2336                       i, sym.get_st_name(),
2337                       static_cast<unsigned int>(strtab_size));
2338           lv.set_no_output_symtab_entry();
2339           continue;
2340         }
2341
2342       const char* name = pnames + sym.get_st_name();
2343
2344       // If needed, add the symbol to the dynamic symbol table string pool.
2345       if (lv.needs_output_dynsym_entry())
2346         {
2347           dynpool->add(name, true, NULL);
2348           ++dyncount;
2349         }
2350
2351       if (strip_all
2352           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2353         {
2354           lv.set_no_output_symtab_entry();
2355           continue;
2356         }
2357
2358       // By default, discard temporary local symbols in merge sections.
2359       // If --discard-locals option is used, discard all temporary local
2360       // symbols.  These symbols start with system-specific local label
2361       // prefixes, typically .L for ELF system.  We want to be compatible
2362       // with GNU ld so here we essentially use the same check in
2363       // bfd_is_local_label().  The code is different because we already
2364       // know that:
2365       //
2366       //   - the symbol is local and thus cannot have global or weak binding.
2367       //   - the symbol is not a section symbol.
2368       //   - the symbol has a name.
2369       //
2370       // We do not discard a symbol if it needs a dynamic symbol entry.
2371       if ((discard_locals
2372            || (discard_sec_merge
2373                && is_ordinary
2374                && out_section_offsets[shndx] == invalid_address))
2375           && sym.get_st_type() != elfcpp::STT_FILE
2376           && !lv.needs_output_dynsym_entry()
2377           && lv.may_be_discarded_from_output_symtab()
2378           && parameters->target().is_local_label_name(name))
2379         {
2380           lv.set_no_output_symtab_entry();
2381           continue;
2382         }
2383
2384       // Discard the local symbol if -retain_symbols_file is specified
2385       // and the local symbol is not in that file.
2386       if (!parameters->options().should_retain_symbol(name))
2387         {
2388           lv.set_no_output_symtab_entry();
2389           continue;
2390         }
2391
2392       // Add the symbol to the symbol table string pool.
2393       pool->add(name, true, NULL);
2394       ++count;
2395     }
2396
2397   this->output_local_symbol_count_ = count;
2398   this->output_local_dynsym_count_ = dyncount;
2399 }
2400
2401 // Compute the final value of a local symbol.
2402
2403 template<int size, bool big_endian>
2404 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2405 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2406     unsigned int r_sym,
2407     const Symbol_value<size>* lv_in,
2408     Symbol_value<size>* lv_out,
2409     bool relocatable,
2410     const Output_sections& out_sections,
2411     const std::vector<Address>& out_offsets,
2412     const Symbol_table* symtab)
2413 {
2414   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2415   // we may have a memory leak.
2416   gold_assert(lv_out->has_output_value());
2417
2418   bool is_ordinary;
2419   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2420
2421   // Set the output symbol value.
2422
2423   if (!is_ordinary)
2424     {
2425       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2426         lv_out->set_output_value(lv_in->input_value());
2427       else
2428         {
2429           this->error(_("unknown section index %u for local symbol %u"),
2430                       shndx, r_sym);
2431           lv_out->set_output_value(0);
2432           return This::CFLV_ERROR;
2433         }
2434     }
2435   else
2436     {
2437       if (shndx >= this->shnum())
2438         {
2439           this->error(_("local symbol %u section index %u out of range"),
2440                       r_sym, shndx);
2441           lv_out->set_output_value(0);
2442           return This::CFLV_ERROR;
2443         }
2444
2445       Output_section* os = out_sections[shndx];
2446       Address secoffset = out_offsets[shndx];
2447       if (symtab->is_section_folded(this, shndx))
2448         {
2449           gold_assert(os == NULL && secoffset == invalid_address);
2450           // Get the os of the section it is folded onto.
2451           Section_id folded = symtab->icf()->get_folded_section(this,
2452                                                                 shndx);
2453           gold_assert(folded.first != NULL);
2454           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2455             <Sized_relobj_file<size, big_endian>*>(folded.first);
2456           os = folded_obj->output_section(folded.second);
2457           gold_assert(os != NULL);
2458           secoffset = folded_obj->get_output_section_offset(folded.second);
2459
2460           // This could be a relaxed input section.
2461           if (secoffset == invalid_address)
2462             {
2463               const Output_relaxed_input_section* relaxed_section =
2464                 os->find_relaxed_input_section(folded_obj, folded.second);
2465               gold_assert(relaxed_section != NULL);
2466               secoffset = relaxed_section->address() - os->address();
2467             }
2468         }
2469
2470       if (os == NULL)
2471         {
2472           // This local symbol belongs to a section we are discarding.
2473           // In some cases when applying relocations later, we will
2474           // attempt to match it to the corresponding kept section,
2475           // so we leave the input value unchanged here.
2476           return This::CFLV_DISCARDED;
2477         }
2478       else if (secoffset == invalid_address)
2479         {
2480           uint64_t start;
2481
2482           // This is a SHF_MERGE section or one which otherwise
2483           // requires special handling.
2484           if (os->order() == ORDER_EHFRAME)
2485             {
2486               // This local symbol belongs to a discarded or optimized
2487               // .eh_frame section.  Just treat it like the case in which
2488               // os == NULL above.
2489               gold_assert(this->has_eh_frame_);
2490               return This::CFLV_DISCARDED;
2491             }
2492           else if (!lv_in->is_section_symbol())
2493             {
2494               // This is not a section symbol.  We can determine
2495               // the final value now.
2496               uint64_t value =
2497                 os->output_address(this, shndx, lv_in->input_value());
2498               if (relocatable)
2499                 value -= os->address();
2500               lv_out->set_output_value(value);
2501             }
2502           else if (!os->find_starting_output_address(this, shndx, &start))
2503             {
2504               // This is a section symbol, but apparently not one in a
2505               // merged section.  First check to see if this is a relaxed
2506               // input section.  If so, use its address.  Otherwise just
2507               // use the start of the output section.  This happens with
2508               // relocatable links when the input object has section
2509               // symbols for arbitrary non-merge sections.
2510               const Output_section_data* posd =
2511                 os->find_relaxed_input_section(this, shndx);
2512               if (posd != NULL)
2513                 {
2514                   uint64_t value = posd->address();
2515                   if (relocatable)
2516                     value -= os->address();
2517                   lv_out->set_output_value(value);
2518                 }
2519               else
2520                 lv_out->set_output_value(os->address());
2521             }
2522           else
2523             {
2524               // We have to consider the addend to determine the
2525               // value to use in a relocation.  START is the start
2526               // of this input section.  If we are doing a relocatable
2527               // link, use offset from start output section instead of
2528               // address.
2529               Address adjusted_start =
2530                 relocatable ? start - os->address() : start;
2531               Merged_symbol_value<size>* msv =
2532                 new Merged_symbol_value<size>(lv_in->input_value(),
2533                                               adjusted_start);
2534               lv_out->set_merged_symbol_value(msv);
2535             }
2536         }
2537       else if (lv_in->is_tls_symbol()
2538                || (lv_in->is_section_symbol()
2539                    && (os->flags() & elfcpp::SHF_TLS)))
2540         lv_out->set_output_value(os->tls_offset()
2541                                  + secoffset
2542                                  + lv_in->input_value());
2543       else
2544         lv_out->set_output_value((relocatable ? 0 : os->address())
2545                                  + secoffset
2546                                  + lv_in->input_value());
2547     }
2548   return This::CFLV_OK;
2549 }
2550
2551 // Compute final local symbol value.  R_SYM is the index of a local
2552 // symbol in symbol table.  LV points to a symbol value, which is
2553 // expected to hold the input value and to be over-written by the
2554 // final value.  SYMTAB points to a symbol table.  Some targets may want
2555 // to know would-be-finalized local symbol values in relaxation.
2556 // Hence we provide this method.  Since this method updates *LV, a
2557 // callee should make a copy of the original local symbol value and
2558 // use the copy instead of modifying an object's local symbols before
2559 // everything is finalized.  The caller should also free up any allocated
2560 // memory in the return value in *LV.
2561 template<int size, bool big_endian>
2562 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2563 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2564     unsigned int r_sym,
2565     const Symbol_value<size>* lv_in,
2566     Symbol_value<size>* lv_out,
2567     const Symbol_table* symtab)
2568 {
2569   // This is just a wrapper of compute_final_local_value_internal.
2570   const bool relocatable = parameters->options().relocatable();
2571   const Output_sections& out_sections(this->output_sections());
2572   const std::vector<Address>& out_offsets(this->section_offsets());
2573   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2574                                                   relocatable, out_sections,
2575                                                   out_offsets, symtab);
2576 }
2577
2578 // Finalize the local symbols.  Here we set the final value in
2579 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2580 // This function is always called from a singleton thread.  The actual
2581 // output of the local symbols will occur in a separate task.
2582
2583 template<int size, bool big_endian>
2584 unsigned int
2585 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2586     unsigned int index,
2587     off_t off,
2588     Symbol_table* symtab)
2589 {
2590   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2591
2592   const unsigned int loccount = this->local_symbol_count_;
2593   this->local_symbol_offset_ = off;
2594
2595   const bool relocatable = parameters->options().relocatable();
2596   const Output_sections& out_sections(this->output_sections());
2597   const std::vector<Address>& out_offsets(this->section_offsets());
2598
2599   for (unsigned int i = 1; i < loccount; ++i)
2600     {
2601       Symbol_value<size>* lv = &this->local_values_[i];
2602
2603       Compute_final_local_value_status cflv_status =
2604         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2605                                                  out_sections, out_offsets,
2606                                                  symtab);
2607       switch (cflv_status)
2608         {
2609         case CFLV_OK:
2610           if (!lv->is_output_symtab_index_set())
2611             {
2612               lv->set_output_symtab_index(index);
2613               ++index;
2614             }
2615           break;
2616         case CFLV_DISCARDED:
2617         case CFLV_ERROR:
2618           // Do nothing.
2619           break;
2620         default:
2621           gold_unreachable();
2622         }
2623     }
2624   return index;
2625 }
2626
2627 // Set the output dynamic symbol table indexes for the local variables.
2628
2629 template<int size, bool big_endian>
2630 unsigned int
2631 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2632     unsigned int index)
2633 {
2634   const unsigned int loccount = this->local_symbol_count_;
2635   for (unsigned int i = 1; i < loccount; ++i)
2636     {
2637       Symbol_value<size>& lv(this->local_values_[i]);
2638       if (lv.needs_output_dynsym_entry())
2639         {
2640           lv.set_output_dynsym_index(index);
2641           ++index;
2642         }
2643     }
2644   return index;
2645 }
2646
2647 // Set the offset where local dynamic symbol information will be stored.
2648 // Returns the count of local symbols contributed to the symbol table by
2649 // this object.
2650
2651 template<int size, bool big_endian>
2652 unsigned int
2653 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2654 {
2655   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2656   this->local_dynsym_offset_ = off;
2657   return this->output_local_dynsym_count_;
2658 }
2659
2660 // If Symbols_data is not NULL get the section flags from here otherwise
2661 // get it from the file.
2662
2663 template<int size, bool big_endian>
2664 uint64_t
2665 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2666 {
2667   Symbols_data* sd = this->get_symbols_data();
2668   if (sd != NULL)
2669     {
2670       const unsigned char* pshdrs = sd->section_headers_data
2671                                     + This::shdr_size * shndx;
2672       typename This::Shdr shdr(pshdrs);
2673       return shdr.get_sh_flags();
2674     }
2675   // If sd is NULL, read the section header from the file.
2676   return this->elf_file_.section_flags(shndx);
2677 }
2678
2679 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2680 // in icf.cc
2681
2682 template<int size, bool big_endian>
2683 uint64_t
2684 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2685 {
2686   Symbols_data* sd = this->get_symbols_data();
2687   gold_assert(sd != NULL);
2688
2689   const unsigned char* pshdrs = sd->section_headers_data
2690                                 + This::shdr_size * shndx;
2691   typename This::Shdr shdr(pshdrs);
2692   return shdr.get_sh_entsize();
2693 }
2694
2695 // Write out the local symbols.
2696
2697 template<int size, bool big_endian>
2698 void
2699 Sized_relobj_file<size, big_endian>::write_local_symbols(
2700     Output_file* of,
2701     const Stringpool* sympool,
2702     const Stringpool* dynpool,
2703     Output_symtab_xindex* symtab_xindex,
2704     Output_symtab_xindex* dynsym_xindex,
2705     off_t symtab_off)
2706 {
2707   const bool strip_all = parameters->options().strip_all();
2708   if (strip_all)
2709     {
2710       if (this->output_local_dynsym_count_ == 0)
2711         return;
2712       this->output_local_symbol_count_ = 0;
2713     }
2714
2715   gold_assert(this->symtab_shndx_ != -1U);
2716   if (this->symtab_shndx_ == 0)
2717     {
2718       // This object has no symbols.  Weird but legal.
2719       return;
2720     }
2721
2722   // Read the symbol table section header.
2723   const unsigned int symtab_shndx = this->symtab_shndx_;
2724   typename This::Shdr symtabshdr(this,
2725                                  this->elf_file_.section_header(symtab_shndx));
2726   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2727   const unsigned int loccount = this->local_symbol_count_;
2728   gold_assert(loccount == symtabshdr.get_sh_info());
2729
2730   // Read the local symbols.
2731   const int sym_size = This::sym_size;
2732   off_t locsize = loccount * sym_size;
2733   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2734                                               locsize, true, false);
2735
2736   // Read the symbol names.
2737   const unsigned int strtab_shndx =
2738     this->adjust_shndx(symtabshdr.get_sh_link());
2739   section_size_type strtab_size;
2740   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2741                                                         &strtab_size,
2742                                                         false);
2743   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2744
2745   // Get views into the output file for the portions of the symbol table
2746   // and the dynamic symbol table that we will be writing.
2747   off_t output_size = this->output_local_symbol_count_ * sym_size;
2748   unsigned char* oview = NULL;
2749   if (output_size > 0)
2750     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2751                                 output_size);
2752
2753   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2754   unsigned char* dyn_oview = NULL;
2755   if (dyn_output_size > 0)
2756     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2757                                     dyn_output_size);
2758
2759   const Output_sections& out_sections(this->output_sections());
2760
2761   gold_assert(this->local_values_.size() == loccount);
2762
2763   unsigned char* ov = oview;
2764   unsigned char* dyn_ov = dyn_oview;
2765   psyms += sym_size;
2766   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2767     {
2768       elfcpp::Sym<size, big_endian> isym(psyms);
2769
2770       Symbol_value<size>& lv(this->local_values_[i]);
2771
2772       bool is_ordinary;
2773       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2774                                                      &is_ordinary);
2775       if (is_ordinary)
2776         {
2777           gold_assert(st_shndx < out_sections.size());
2778           if (out_sections[st_shndx] == NULL)
2779             continue;
2780           st_shndx = out_sections[st_shndx]->out_shndx();
2781           if (st_shndx >= elfcpp::SHN_LORESERVE)
2782             {
2783               if (lv.has_output_symtab_entry())
2784                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2785               if (lv.has_output_dynsym_entry())
2786                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2787               st_shndx = elfcpp::SHN_XINDEX;
2788             }
2789         }
2790
2791       // Write the symbol to the output symbol table.
2792       if (lv.has_output_symtab_entry())
2793         {
2794           elfcpp::Sym_write<size, big_endian> osym(ov);
2795
2796           gold_assert(isym.get_st_name() < strtab_size);
2797           const char* name = pnames + isym.get_st_name();
2798           osym.put_st_name(sympool->get_offset(name));
2799           osym.put_st_value(lv.value(this, 0));
2800           osym.put_st_size(isym.get_st_size());
2801           osym.put_st_info(isym.get_st_info());
2802           osym.put_st_other(isym.get_st_other());
2803           osym.put_st_shndx(st_shndx);
2804
2805           ov += sym_size;
2806         }
2807
2808       // Write the symbol to the output dynamic symbol table.
2809       if (lv.has_output_dynsym_entry())
2810         {
2811           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2812           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2813
2814           gold_assert(isym.get_st_name() < strtab_size);
2815           const char* name = pnames + isym.get_st_name();
2816           osym.put_st_name(dynpool->get_offset(name));
2817           osym.put_st_value(lv.value(this, 0));
2818           osym.put_st_size(isym.get_st_size());
2819           osym.put_st_info(isym.get_st_info());
2820           osym.put_st_other(isym.get_st_other());
2821           osym.put_st_shndx(st_shndx);
2822
2823           dyn_ov += sym_size;
2824         }
2825     }
2826
2827
2828   if (output_size > 0)
2829     {
2830       gold_assert(ov - oview == output_size);
2831       of->write_output_view(symtab_off + this->local_symbol_offset_,
2832                             output_size, oview);
2833     }
2834
2835   if (dyn_output_size > 0)
2836     {
2837       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2838       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2839                             dyn_oview);
2840     }
2841 }
2842
2843 // Set *INFO to symbolic information about the offset OFFSET in the
2844 // section SHNDX.  Return true if we found something, false if we
2845 // found nothing.
2846
2847 template<int size, bool big_endian>
2848 bool
2849 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2850     unsigned int shndx,
2851     off_t offset,
2852     Symbol_location_info* info)
2853 {
2854   if (this->symtab_shndx_ == 0)
2855     return false;
2856
2857   section_size_type symbols_size;
2858   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2859                                                         &symbols_size,
2860                                                         false);
2861
2862   unsigned int symbol_names_shndx =
2863     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2864   section_size_type names_size;
2865   const unsigned char* symbol_names_u =
2866     this->section_contents(symbol_names_shndx, &names_size, false);
2867   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2868
2869   const int sym_size = This::sym_size;
2870   const size_t count = symbols_size / sym_size;
2871
2872   const unsigned char* p = symbols;
2873   for (size_t i = 0; i < count; ++i, p += sym_size)
2874     {
2875       elfcpp::Sym<size, big_endian> sym(p);
2876
2877       if (sym.get_st_type() == elfcpp::STT_FILE)
2878         {
2879           if (sym.get_st_name() >= names_size)
2880             info->source_file = "(invalid)";
2881           else
2882             info->source_file = symbol_names + sym.get_st_name();
2883           continue;
2884         }
2885
2886       bool is_ordinary;
2887       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2888                                                      &is_ordinary);
2889       if (is_ordinary
2890           && st_shndx == shndx
2891           && static_cast<off_t>(sym.get_st_value()) <= offset
2892           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2893               > offset))
2894         {
2895           info->enclosing_symbol_type = sym.get_st_type();
2896           if (sym.get_st_name() > names_size)
2897             info->enclosing_symbol_name = "(invalid)";
2898           else
2899             {
2900               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2901               if (parameters->options().do_demangle())
2902                 {
2903                   char* demangled_name = cplus_demangle(
2904                       info->enclosing_symbol_name.c_str(),
2905                       DMGL_ANSI | DMGL_PARAMS);
2906                   if (demangled_name != NULL)
2907                     {
2908                       info->enclosing_symbol_name.assign(demangled_name);
2909                       free(demangled_name);
2910                     }
2911                 }
2912             }
2913           return true;
2914         }
2915     }
2916
2917   return false;
2918 }
2919
2920 // Look for a kept section corresponding to the given discarded section,
2921 // and return its output address.  This is used only for relocations in
2922 // debugging sections.  If we can't find the kept section, return 0.
2923
2924 template<int size, bool big_endian>
2925 typename Sized_relobj_file<size, big_endian>::Address
2926 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2927     unsigned int shndx,
2928     std::string& section_name,
2929     bool* pfound) const
2930 {
2931   Kept_section* kept_section;
2932   bool is_comdat;
2933   uint64_t sh_size;
2934   unsigned int symndx;
2935   bool found = false;
2936
2937   if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2938                                     &kept_section))
2939     {
2940       Relobj* kept_object = kept_section->object();
2941       unsigned int kept_shndx = 0;
2942       if (!kept_section->is_comdat())
2943         {
2944           // The kept section is a linkonce section.
2945           if (sh_size == kept_section->linkonce_size())
2946             found = true;
2947         }
2948       else
2949         {
2950           if (is_comdat)
2951             {
2952               // Find the corresponding kept section.
2953               // Since we're using this mapping for relocation processing,
2954               // we don't want to match sections unless they have the same
2955               // size.
2956               uint64_t kept_size = 0;
2957               if (kept_section->find_comdat_section(section_name, &kept_shndx,
2958                                                     &kept_size))
2959                 {
2960                   if (sh_size == kept_size)
2961                     found = true;
2962                 }
2963             }
2964           else
2965             {
2966               uint64_t kept_size = 0;
2967               if (kept_section->find_single_comdat_section(&kept_shndx,
2968                                                            &kept_size)
2969                   && sh_size == kept_size)
2970                 found = true;
2971             }
2972         }
2973
2974       if (found)
2975         {
2976           Sized_relobj_file<size, big_endian>* kept_relobj =
2977             static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2978           Output_section* os = kept_relobj->output_section(kept_shndx);
2979           Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2980           if (os != NULL && offset != invalid_address)
2981             {
2982               *pfound = true;
2983               return os->address() + offset;
2984             }
2985         }
2986     }
2987   *pfound = false;
2988   return 0;
2989 }
2990
2991 // Look for a kept section corresponding to the given discarded section,
2992 // and return its object file.
2993
2994 template<int size, bool big_endian>
2995 Relobj*
2996 Sized_relobj_file<size, big_endian>::find_kept_section_object(
2997     unsigned int shndx, unsigned int *symndx_p) const
2998 {
2999   Kept_section* kept_section;
3000   bool is_comdat;
3001   uint64_t sh_size;
3002   if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3003                                     &kept_section))
3004     return kept_section->object();
3005   return NULL;
3006 }
3007
3008 // Return the name of symbol SYMNDX.
3009
3010 template<int size, bool big_endian>
3011 const char*
3012 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3013 {
3014   if (this->symtab_shndx_ == 0)
3015     return NULL;
3016
3017   section_size_type symbols_size;
3018   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3019                                                         &symbols_size,
3020                                                         false);
3021
3022   unsigned int symbol_names_shndx =
3023     this->adjust_shndx(this->section_link(this->symtab_shndx_));
3024   section_size_type names_size;
3025   const unsigned char* symbol_names_u =
3026     this->section_contents(symbol_names_shndx, &names_size, false);
3027   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3028
3029   const unsigned char* p = symbols + symndx * This::sym_size;
3030
3031   if (p >= symbols + symbols_size)
3032     return NULL;
3033
3034   elfcpp::Sym<size, big_endian> sym(p);
3035
3036   return symbol_names + sym.get_st_name();
3037 }
3038
3039 // Get symbol counts.
3040
3041 template<int size, bool big_endian>
3042 void
3043 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3044     const Symbol_table*,
3045     size_t* defined,
3046     size_t* used) const
3047 {
3048   *defined = this->defined_count_;
3049   size_t count = 0;
3050   for (typename Symbols::const_iterator p = this->symbols_.begin();
3051        p != this->symbols_.end();
3052        ++p)
3053     if (*p != NULL
3054         && (*p)->source() == Symbol::FROM_OBJECT
3055         && (*p)->object() == this
3056         && (*p)->is_defined())
3057       ++count;
3058   *used = count;
3059 }
3060
3061 // Return a view of the decompressed contents of a section.  Set *PLEN
3062 // to the size.  Set *IS_NEW to true if the contents need to be freed
3063 // by the caller.
3064
3065 const unsigned char*
3066 Object::decompressed_section_contents(
3067     unsigned int shndx,
3068     section_size_type* plen,
3069     bool* is_new,
3070     uint64_t* palign)
3071 {
3072   section_size_type buffer_size;
3073   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3074                                                           false);
3075
3076   if (this->compressed_sections_ == NULL)
3077     {
3078       *plen = buffer_size;
3079       *is_new = false;
3080       return buffer;
3081     }
3082
3083   Compressed_section_map::const_iterator p =
3084       this->compressed_sections_->find(shndx);
3085   if (p == this->compressed_sections_->end())
3086     {
3087       *plen = buffer_size;
3088       *is_new = false;
3089       return buffer;
3090     }
3091
3092   section_size_type uncompressed_size = p->second.size;
3093   if (p->second.contents != NULL)
3094     {
3095       *plen = uncompressed_size;
3096       *is_new = false;
3097       if (palign != NULL)
3098         *palign = p->second.addralign;
3099       return p->second.contents;
3100     }
3101
3102   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3103   if (!decompress_input_section(buffer,
3104                                 buffer_size,
3105                                 uncompressed_data,
3106                                 uncompressed_size,
3107                                 elfsize(),
3108                                 is_big_endian(),
3109                                 p->second.flag))
3110     this->error(_("could not decompress section %s"),
3111                 this->do_section_name(shndx).c_str());
3112
3113   // We could cache the results in p->second.contents and store
3114   // false in *IS_NEW, but build_compressed_section_map() would
3115   // have done so if it had expected it to be profitable.  If
3116   // we reach this point, we expect to need the contents only
3117   // once in this pass.
3118   *plen = uncompressed_size;
3119   *is_new = true;
3120   if (palign != NULL)
3121     *palign = p->second.addralign;
3122   return uncompressed_data;
3123 }
3124
3125 // Discard any buffers of uncompressed sections.  This is done
3126 // at the end of the Add_symbols task.
3127
3128 void
3129 Object::discard_decompressed_sections()
3130 {
3131   if (this->compressed_sections_ == NULL)
3132     return;
3133
3134   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3135        p != this->compressed_sections_->end();
3136        ++p)
3137     {
3138       if (p->second.contents != NULL)
3139         {
3140           delete[] p->second.contents;
3141           p->second.contents = NULL;
3142         }
3143     }
3144 }
3145
3146 // Input_objects methods.
3147
3148 // Add a regular relocatable object to the list.  Return false if this
3149 // object should be ignored.
3150
3151 bool
3152 Input_objects::add_object(Object* obj)
3153 {
3154   // Print the filename if the -t/--trace option is selected.
3155   if (parameters->options().trace())
3156     gold_info("%s", obj->name().c_str());
3157
3158   if (!obj->is_dynamic())
3159     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3160   else
3161     {
3162       // See if this is a duplicate SONAME.
3163       Dynobj* dynobj = static_cast<Dynobj*>(obj);
3164       const char* soname = dynobj->soname();
3165
3166       Unordered_map<std::string, Object*>::value_type val(soname, obj);
3167       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3168         this->sonames_.insert(val);
3169       if (!ins.second)
3170         {
3171           // We have already seen a dynamic object with this soname.
3172           // If any instances of this object on the command line have
3173           // the --no-as-needed flag, make sure the one we keep is
3174           // marked so.
3175           if (!obj->as_needed())
3176             {
3177               gold_assert(ins.first->second != NULL);
3178               ins.first->second->clear_as_needed();
3179             }
3180           return false;
3181         }
3182
3183       this->dynobj_list_.push_back(dynobj);
3184     }
3185
3186   // Add this object to the cross-referencer if requested.
3187   if (parameters->options().user_set_print_symbol_counts()
3188       || parameters->options().cref())
3189     {
3190       if (this->cref_ == NULL)
3191         this->cref_ = new Cref();
3192       this->cref_->add_object(obj);
3193     }
3194
3195   return true;
3196 }
3197
3198 // For each dynamic object, record whether we've seen all of its
3199 // explicit dependencies.
3200
3201 void
3202 Input_objects::check_dynamic_dependencies() const
3203 {
3204   bool issued_copy_dt_needed_error = false;
3205   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3206        p != this->dynobj_list_.end();
3207        ++p)
3208     {
3209       const Dynobj::Needed& needed((*p)->needed());
3210       bool found_all = true;
3211       Dynobj::Needed::const_iterator pneeded;
3212       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3213         {
3214           if (this->sonames_.find(*pneeded) == this->sonames_.end())
3215             {
3216               found_all = false;
3217               break;
3218             }
3219         }
3220       (*p)->set_has_unknown_needed_entries(!found_all);
3221
3222       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3223       // that gold does not support.  However, they cause no trouble
3224       // unless there is a DT_NEEDED entry that we don't know about;
3225       // warn only in that case.
3226       if (!found_all
3227           && !issued_copy_dt_needed_error
3228           && (parameters->options().copy_dt_needed_entries()
3229               || parameters->options().add_needed()))
3230         {
3231           const char* optname;
3232           if (parameters->options().copy_dt_needed_entries())
3233             optname = "--copy-dt-needed-entries";
3234           else
3235             optname = "--add-needed";
3236           gold_error(_("%s is not supported but is required for %s in %s"),
3237                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3238           issued_copy_dt_needed_error = true;
3239         }
3240     }
3241 }
3242
3243 // Start processing an archive.
3244
3245 void
3246 Input_objects::archive_start(Archive* archive)
3247 {
3248   if (parameters->options().user_set_print_symbol_counts()
3249       || parameters->options().cref())
3250     {
3251       if (this->cref_ == NULL)
3252         this->cref_ = new Cref();
3253       this->cref_->add_archive_start(archive);
3254     }
3255 }
3256
3257 // Stop processing an archive.
3258
3259 void
3260 Input_objects::archive_stop(Archive* archive)
3261 {
3262   if (parameters->options().user_set_print_symbol_counts()
3263       || parameters->options().cref())
3264     this->cref_->add_archive_stop(archive);
3265 }
3266
3267 // Print symbol counts
3268
3269 void
3270 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3271 {
3272   if (parameters->options().user_set_print_symbol_counts()
3273       && this->cref_ != NULL)
3274     this->cref_->print_symbol_counts(symtab);
3275 }
3276
3277 // Print a cross reference table.
3278
3279 void
3280 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3281 {
3282   if (parameters->options().cref() && this->cref_ != NULL)
3283     this->cref_->print_cref(symtab, f);
3284 }
3285
3286 // Relocate_info methods.
3287
3288 // Return a string describing the location of a relocation when file
3289 // and lineno information is not available.  This is only used in
3290 // error messages.
3291
3292 template<int size, bool big_endian>
3293 std::string
3294 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3295 {
3296   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3297   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3298   if (!ret.empty())
3299     return ret;
3300
3301   ret = this->object->name();
3302
3303   Symbol_location_info info;
3304   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3305     {
3306       if (!info.source_file.empty())
3307         {
3308           ret += ":";
3309           ret += info.source_file;
3310         }
3311       ret += ":";
3312       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3313         ret += _("function ");
3314       ret += info.enclosing_symbol_name;
3315       return ret;
3316     }
3317
3318   ret += "(";
3319   ret += this->object->section_name(this->data_shndx);
3320   char buf[100];
3321   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3322   ret += buf;
3323   return ret;
3324 }
3325
3326 } // End namespace gold.
3327
3328 namespace
3329 {
3330
3331 using namespace gold;
3332
3333 // Read an ELF file with the header and return the appropriate
3334 // instance of Object.
3335
3336 template<int size, bool big_endian>
3337 Object*
3338 make_elf_sized_object(const std::string& name, Input_file* input_file,
3339                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3340                       bool* punconfigured)
3341 {
3342   Target* target = select_target(input_file, offset,
3343                                  ehdr.get_e_machine(), size, big_endian,
3344                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3345                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3346   if (target == NULL)
3347     gold_fatal(_("%s: unsupported ELF machine number %d"),
3348                name.c_str(), ehdr.get_e_machine());
3349
3350   if (!parameters->target_valid())
3351     set_parameters_target(target);
3352   else if (target != &parameters->target())
3353     {
3354       if (punconfigured != NULL)
3355         *punconfigured = true;
3356       else
3357         gold_error(_("%s: incompatible target"), name.c_str());
3358       return NULL;
3359     }
3360
3361   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3362                                                    ehdr);
3363 }
3364
3365 } // End anonymous namespace.
3366
3367 namespace gold
3368 {
3369
3370 // Return whether INPUT_FILE is an ELF object.
3371
3372 bool
3373 is_elf_object(Input_file* input_file, off_t offset,
3374               const unsigned char** start, int* read_size)
3375 {
3376   off_t filesize = input_file->file().filesize();
3377   int want = elfcpp::Elf_recognizer::max_header_size;
3378   if (filesize - offset < want)
3379     want = filesize - offset;
3380
3381   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3382                                                        true, false);
3383   *start = p;
3384   *read_size = want;
3385
3386   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3387 }
3388
3389 // Read an ELF file and return the appropriate instance of Object.
3390
3391 Object*
3392 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3393                 const unsigned char* p, section_offset_type bytes,
3394                 bool* punconfigured)
3395 {
3396   if (punconfigured != NULL)
3397     *punconfigured = false;
3398
3399   std::string error;
3400   bool big_endian = false;
3401   int size = 0;
3402   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3403                                                &big_endian, &error))
3404     {
3405       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3406       return NULL;
3407     }
3408
3409   if (size == 32)
3410     {
3411       if (big_endian)
3412         {
3413 #ifdef HAVE_TARGET_32_BIG
3414           elfcpp::Ehdr<32, true> ehdr(p);
3415           return make_elf_sized_object<32, true>(name, input_file,
3416                                                  offset, ehdr, punconfigured);
3417 #else
3418           if (punconfigured != NULL)
3419             *punconfigured = true;
3420           else
3421             gold_error(_("%s: not configured to support "
3422                          "32-bit big-endian object"),
3423                        name.c_str());
3424           return NULL;
3425 #endif
3426         }
3427       else
3428         {
3429 #ifdef HAVE_TARGET_32_LITTLE
3430           elfcpp::Ehdr<32, false> ehdr(p);
3431           return make_elf_sized_object<32, false>(name, input_file,
3432                                                   offset, ehdr, punconfigured);
3433 #else
3434           if (punconfigured != NULL)
3435             *punconfigured = true;
3436           else
3437             gold_error(_("%s: not configured to support "
3438                          "32-bit little-endian object"),
3439                        name.c_str());
3440           return NULL;
3441 #endif
3442         }
3443     }
3444   else if (size == 64)
3445     {
3446       if (big_endian)
3447         {
3448 #ifdef HAVE_TARGET_64_BIG
3449           elfcpp::Ehdr<64, true> ehdr(p);
3450           return make_elf_sized_object<64, true>(name, input_file,
3451                                                  offset, ehdr, punconfigured);
3452 #else
3453           if (punconfigured != NULL)
3454             *punconfigured = true;
3455           else
3456             gold_error(_("%s: not configured to support "
3457                          "64-bit big-endian object"),
3458                        name.c_str());
3459           return NULL;
3460 #endif
3461         }
3462       else
3463         {
3464 #ifdef HAVE_TARGET_64_LITTLE
3465           elfcpp::Ehdr<64, false> ehdr(p);
3466           return make_elf_sized_object<64, false>(name, input_file,
3467                                                   offset, ehdr, punconfigured);
3468 #else
3469           if (punconfigured != NULL)
3470             *punconfigured = true;
3471           else
3472             gold_error(_("%s: not configured to support "
3473                          "64-bit little-endian object"),
3474                        name.c_str());
3475           return NULL;
3476 #endif
3477         }
3478     }
3479   else
3480     gold_unreachable();
3481 }
3482
3483 // Instantiate the templates we need.
3484
3485 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3486 template
3487 void
3488 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3489       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3490       Unordered_map<section_offset_type,
3491       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3492 #endif
3493
3494 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3495 template
3496 void
3497 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3498       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3499       Unordered_map<section_offset_type,
3500       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3501 #endif
3502
3503 #ifdef HAVE_TARGET_32_LITTLE
3504 template
3505 void
3506 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3507                                      Read_symbols_data*);
3508 template
3509 const unsigned char*
3510 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3511                             section_size_type, const unsigned char*) const;
3512 #endif
3513
3514 #ifdef HAVE_TARGET_32_BIG
3515 template
3516 void
3517 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3518                                     Read_symbols_data*);
3519 template
3520 const unsigned char*
3521 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3522                            section_size_type, const unsigned char*) const;
3523 #endif
3524
3525 #ifdef HAVE_TARGET_64_LITTLE
3526 template
3527 void
3528 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3529                                      Read_symbols_data*);
3530 template
3531 const unsigned char*
3532 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3533                             section_size_type, const unsigned char*) const;
3534 #endif
3535
3536 #ifdef HAVE_TARGET_64_BIG
3537 template
3538 void
3539 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3540                                     Read_symbols_data*);
3541 template
3542 const unsigned char*
3543 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3544                            section_size_type, const unsigned char*) const;
3545 #endif
3546
3547 #ifdef HAVE_TARGET_32_LITTLE
3548 template
3549 class Sized_relobj<32, false>;
3550
3551 template
3552 class Sized_relobj_file<32, false>;
3553 #endif
3554
3555 #ifdef HAVE_TARGET_32_BIG
3556 template
3557 class Sized_relobj<32, true>;
3558
3559 template
3560 class Sized_relobj_file<32, true>;
3561 #endif
3562
3563 #ifdef HAVE_TARGET_64_LITTLE
3564 template
3565 class Sized_relobj<64, false>;
3566
3567 template
3568 class Sized_relobj_file<64, false>;
3569 #endif
3570
3571 #ifdef HAVE_TARGET_64_BIG
3572 template
3573 class Sized_relobj<64, true>;
3574
3575 template
3576 class Sized_relobj_file<64, true>;
3577 #endif
3578
3579 #ifdef HAVE_TARGET_32_LITTLE
3580 template
3581 struct Relocate_info<32, false>;
3582 #endif
3583
3584 #ifdef HAVE_TARGET_32_BIG
3585 template
3586 struct Relocate_info<32, true>;
3587 #endif
3588
3589 #ifdef HAVE_TARGET_64_LITTLE
3590 template
3591 struct Relocate_info<64, false>;
3592 #endif
3593
3594 #ifdef HAVE_TARGET_64_BIG
3595 template
3596 struct Relocate_info<64, true>;
3597 #endif
3598
3599 #ifdef HAVE_TARGET_32_LITTLE
3600 template
3601 void
3602 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3603
3604 template
3605 void
3606 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3607                                       const unsigned char*);
3608 #endif
3609
3610 #ifdef HAVE_TARGET_32_BIG
3611 template
3612 void
3613 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3614
3615 template
3616 void
3617 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3618                                      const unsigned char*);
3619 #endif
3620
3621 #ifdef HAVE_TARGET_64_LITTLE
3622 template
3623 void
3624 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3625
3626 template
3627 void
3628 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3629                                       const unsigned char*);
3630 #endif
3631
3632 #ifdef HAVE_TARGET_64_BIG
3633 template
3634 void
3635 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3636
3637 template
3638 void
3639 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3640                                      const unsigned char*);
3641 #endif
3642
3643 #ifdef HAVE_TARGET_32_LITTLE
3644 template
3645 Compressed_section_map*
3646 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3647                                         const char*, section_size_type, 
3648                                         Object*, bool);
3649 #endif
3650
3651 #ifdef HAVE_TARGET_32_BIG
3652 template
3653 Compressed_section_map*
3654 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3655                                         const char*, section_size_type, 
3656                                         Object*, bool);
3657 #endif
3658
3659 #ifdef HAVE_TARGET_64_LITTLE
3660 template
3661 Compressed_section_map*
3662 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3663                                         const char*, section_size_type, 
3664                                         Object*, bool);
3665 #endif
3666
3667 #ifdef HAVE_TARGET_64_BIG
3668 template
3669 Compressed_section_map*
3670 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3671                                         const char*, section_size_type, 
3672                                         Object*, bool);
3673 #endif
3674
3675 } // End namespace gold.