4b69696b3fb9388462fafb88c3fb2652da0d51f0
[platform/upstream/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424   this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header.  This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439   const unsigned int shnum = this->elf_file_.shnum();
440   this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers.  The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section.  Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452   const unsigned int shnum = this->shnum();
453   this->symtab_shndx_ = 0;
454   if (shnum > 0)
455     {
456       // Look through the sections in reverse order, since gas tends
457       // to put the symbol table at the end.
458       const unsigned char* p = pshdrs + shnum * This::shdr_size;
459       unsigned int i = shnum;
460       unsigned int xindex_shndx = 0;
461       unsigned int xindex_link = 0;
462       while (i > 0)
463         {
464           --i;
465           p -= This::shdr_size;
466           typename This::Shdr shdr(p);
467           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468             {
469               this->symtab_shndx_ = i;
470               if (xindex_shndx > 0 && xindex_link == i)
471                 {
472                   Xindex* xindex =
473                     new Xindex(this->elf_file_.large_shndx_offset());
474                   xindex->read_symtab_xindex<size, big_endian>(this,
475                                                                xindex_shndx,
476                                                                pshdrs);
477                   this->set_xindex(xindex);
478                 }
479               break;
480             }
481
482           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483           // one.  This will work if it follows the SHT_SYMTAB
484           // section.
485           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486             {
487               xindex_shndx = i;
488               xindex_link = this->adjust_shndx(shdr.get_sh_link());
489             }
490         }
491     }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501   gold_assert(this->symtab_shndx_ != -1U);
502   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504   return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513     const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516   return ((sh_type == elfcpp::SHT_PROGBITS
517            || sh_type == elfcpp::SHT_X86_64_UNWIND)
518           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527     const unsigned char* pshdrs,
528     const char* names,
529     section_size_type names_size) const
530 {
531   const unsigned int shnum = this->shnum();
532   const unsigned char* p = pshdrs + This::shdr_size;
533   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534     {
535       typename This::Shdr shdr(p);
536       if (this->check_eh_frame_flags(&shdr))
537         {
538           if (shdr.get_sh_name() >= names_size)
539             {
540               this->error(_("bad section name offset for section %u: %lu"),
541                           i, static_cast<unsigned long>(shdr.get_sh_name()));
542               continue;
543             }
544
545           const char* name = names + shdr.get_sh_name();
546           if (strcmp(name, ".eh_frame") == 0)
547             return true;
548         }
549     }
550   return false;
551 }
552
553 // Build a table for any compressed debug sections, mapping each section index
554 // to the uncompressed size.
555
556 template<int size, bool big_endian>
557 Compressed_section_map*
558 build_compressed_section_map(
559     const unsigned char* pshdrs,
560     unsigned int shnum,
561     const char* names,
562     section_size_type names_size,
563     Sized_relobj_file<size, big_endian>* obj)
564 {
565   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
566   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
567   const unsigned char* p = pshdrs + shdr_size;
568   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
569     {
570       typename elfcpp::Shdr<size, big_endian> shdr(p);
571       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
572           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573         {
574           if (shdr.get_sh_name() >= names_size)
575             {
576               obj->error(_("bad section name offset for section %u: %lu"),
577                          i, static_cast<unsigned long>(shdr.get_sh_name()));
578               continue;
579             }
580
581           const char* name = names + shdr.get_sh_name();
582           if (is_compressed_debug_section(name))
583             {
584               section_size_type len;
585               const unsigned char* contents =
586                   obj->section_contents(i, &len, false);
587               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
588               if (uncompressed_size != -1ULL)
589                 (*uncompressed_sizes)[i] =
590                     convert_to_section_size_type(uncompressed_size);
591             }
592         }
593     }
594   return uncompressed_sizes;
595 }
596
597 // Read the sections and symbols from an object file.
598
599 template<int size, bool big_endian>
600 void
601 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
602 {
603   this->read_section_data(&this->elf_file_, sd);
604
605   const unsigned char* const pshdrs = sd->section_headers->data();
606
607   this->find_symtab(pshdrs);
608
609   const unsigned char* namesu = sd->section_names->data();
610   const char* names = reinterpret_cast<const char*>(namesu);
611   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
612     {
613       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
614         this->has_eh_frame_ = true;
615     }
616   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
617     this->compressed_sections_ =
618         build_compressed_section_map(pshdrs, this->shnum(), names,
619                                      sd->section_names_size, this);
620
621   sd->symbols = NULL;
622   sd->symbols_size = 0;
623   sd->external_symbols_offset = 0;
624   sd->symbol_names = NULL;
625   sd->symbol_names_size = 0;
626
627   if (this->symtab_shndx_ == 0)
628     {
629       // No symbol table.  Weird but legal.
630       return;
631     }
632
633   // Get the symbol table section header.
634   typename This::Shdr symtabshdr(pshdrs
635                                  + this->symtab_shndx_ * This::shdr_size);
636   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
637
638   // If this object has a .eh_frame section, we need all the symbols.
639   // Otherwise we only need the external symbols.  While it would be
640   // simpler to just always read all the symbols, I've seen object
641   // files with well over 2000 local symbols, which for a 64-bit
642   // object file format is over 5 pages that we don't need to read
643   // now.
644
645   const int sym_size = This::sym_size;
646   const unsigned int loccount = symtabshdr.get_sh_info();
647   this->local_symbol_count_ = loccount;
648   this->local_values_.resize(loccount);
649   section_offset_type locsize = loccount * sym_size;
650   off_t dataoff = symtabshdr.get_sh_offset();
651   section_size_type datasize =
652     convert_to_section_size_type(symtabshdr.get_sh_size());
653   off_t extoff = dataoff + locsize;
654   section_size_type extsize = datasize - locsize;
655
656   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
657   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
658
659   if (readsize == 0)
660     {
661       // No external symbols.  Also weird but also legal.
662       return;
663     }
664
665   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
666
667   // Read the section header for the symbol names.
668   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
669   if (strtab_shndx >= this->shnum())
670     {
671       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
672       return;
673     }
674   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
675   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
676     {
677       this->error(_("symbol table name section has wrong type: %u"),
678                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
679       return;
680     }
681
682   // Read the symbol names.
683   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
684                                                strtabshdr.get_sh_size(),
685                                                false, true);
686
687   sd->symbols = fvsymtab;
688   sd->symbols_size = readsize;
689   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
690   sd->symbol_names = fvstrtab;
691   sd->symbol_names_size =
692     convert_to_section_size_type(strtabshdr.get_sh_size());
693 }
694
695 // Return the section index of symbol SYM.  Set *VALUE to its value in
696 // the object file.  Set *IS_ORDINARY if this is an ordinary section
697 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
698 // Note that for a symbol which is not defined in this object file,
699 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
700 // the final value of the symbol in the link.
701
702 template<int size, bool big_endian>
703 unsigned int
704 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
705                                                               Address* value,
706                                                               bool* is_ordinary)
707 {
708   section_size_type symbols_size;
709   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
710                                                         &symbols_size,
711                                                         false);
712
713   const size_t count = symbols_size / This::sym_size;
714   gold_assert(sym < count);
715
716   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
717   *value = elfsym.get_st_value();
718
719   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
720 }
721
722 // Return whether to include a section group in the link.  LAYOUT is
723 // used to keep track of which section groups we have already seen.
724 // INDEX is the index of the section group and SHDR is the section
725 // header.  If we do not want to include this group, we set bits in
726 // OMIT for each section which should be discarded.
727
728 template<int size, bool big_endian>
729 bool
730 Sized_relobj_file<size, big_endian>::include_section_group(
731     Symbol_table* symtab,
732     Layout* layout,
733     unsigned int index,
734     const char* name,
735     const unsigned char* shdrs,
736     const char* section_names,
737     section_size_type section_names_size,
738     std::vector<bool>* omit)
739 {
740   // Read the section contents.
741   typename This::Shdr shdr(shdrs + index * This::shdr_size);
742   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
743                                              shdr.get_sh_size(), true, false);
744   const elfcpp::Elf_Word* pword =
745     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
746
747   // The first word contains flags.  We only care about COMDAT section
748   // groups.  Other section groups are always included in the link
749   // just like ordinary sections.
750   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
751
752   // Look up the group signature, which is the name of a symbol.  ELF
753   // uses a symbol name because some group signatures are long, and
754   // the name is generally already in the symbol table, so it makes
755   // sense to put the long string just once in .strtab rather than in
756   // both .strtab and .shstrtab.
757
758   // Get the appropriate symbol table header (this will normally be
759   // the single SHT_SYMTAB section, but in principle it need not be).
760   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
761   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
762
763   // Read the symbol table entry.
764   unsigned int symndx = shdr.get_sh_info();
765   if (symndx >= symshdr.get_sh_size() / This::sym_size)
766     {
767       this->error(_("section group %u info %u out of range"),
768                   index, symndx);
769       return false;
770     }
771   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
772   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
773                                              false);
774   elfcpp::Sym<size, big_endian> sym(psym);
775
776   // Read the symbol table names.
777   section_size_type symnamelen;
778   const unsigned char* psymnamesu;
779   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
780                                       &symnamelen, true);
781   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
782
783   // Get the section group signature.
784   if (sym.get_st_name() >= symnamelen)
785     {
786       this->error(_("symbol %u name offset %u out of range"),
787                   symndx, sym.get_st_name());
788       return false;
789     }
790
791   std::string signature(psymnames + sym.get_st_name());
792
793   // It seems that some versions of gas will create a section group
794   // associated with a section symbol, and then fail to give a name to
795   // the section symbol.  In such a case, use the name of the section.
796   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
797     {
798       bool is_ordinary;
799       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
800                                                       sym.get_st_shndx(),
801                                                       &is_ordinary);
802       if (!is_ordinary || sym_shndx >= this->shnum())
803         {
804           this->error(_("symbol %u invalid section index %u"),
805                       symndx, sym_shndx);
806           return false;
807         }
808       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
809       if (member_shdr.get_sh_name() < section_names_size)
810         signature = section_names + member_shdr.get_sh_name();
811     }
812
813   // Record this section group in the layout, and see whether we've already
814   // seen one with the same signature.
815   bool include_group;
816   bool is_comdat;
817   Kept_section* kept_section = NULL;
818
819   if ((flags & elfcpp::GRP_COMDAT) == 0)
820     {
821       include_group = true;
822       is_comdat = false;
823     }
824   else
825     {
826       include_group = layout->find_or_add_kept_section(signature,
827                                                        this, index, true,
828                                                        true, &kept_section);
829       is_comdat = true;
830     }
831
832   if (is_comdat && include_group)
833     {
834       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
835       if (incremental_inputs != NULL)
836         incremental_inputs->report_comdat_group(this, signature.c_str());
837     }
838
839   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
840
841   std::vector<unsigned int> shndxes;
842   bool relocate_group = include_group && parameters->options().relocatable();
843   if (relocate_group)
844     shndxes.reserve(count - 1);
845
846   for (size_t i = 1; i < count; ++i)
847     {
848       elfcpp::Elf_Word shndx =
849         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
850
851       if (relocate_group)
852         shndxes.push_back(shndx);
853
854       if (shndx >= this->shnum())
855         {
856           this->error(_("section %u in section group %u out of range"),
857                       shndx, index);
858           continue;
859         }
860
861       // Check for an earlier section number, since we're going to get
862       // it wrong--we may have already decided to include the section.
863       if (shndx < index)
864         this->error(_("invalid section group %u refers to earlier section %u"),
865                     index, shndx);
866
867       // Get the name of the member section.
868       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
869       if (member_shdr.get_sh_name() >= section_names_size)
870         {
871           // This is an error, but it will be diagnosed eventually
872           // in do_layout, so we don't need to do anything here but
873           // ignore it.
874           continue;
875         }
876       std::string mname(section_names + member_shdr.get_sh_name());
877
878       if (include_group)
879         {
880           if (is_comdat)
881             kept_section->add_comdat_section(mname, shndx,
882                                              member_shdr.get_sh_size());
883         }
884       else
885         {
886           (*omit)[shndx] = true;
887
888           if (is_comdat)
889             {
890               Relobj* kept_object = kept_section->object();
891               if (kept_section->is_comdat())
892                 {
893                   // Find the corresponding kept section, and store
894                   // that info in the discarded section table.
895                   unsigned int kept_shndx;
896                   uint64_t kept_size;
897                   if (kept_section->find_comdat_section(mname, &kept_shndx,
898                                                         &kept_size))
899                     {
900                       // We don't keep a mapping for this section if
901                       // it has a different size.  The mapping is only
902                       // used for relocation processing, and we don't
903                       // want to treat the sections as similar if the
904                       // sizes are different.  Checking the section
905                       // size is the approach used by the GNU linker.
906                       if (kept_size == member_shdr.get_sh_size())
907                         this->set_kept_comdat_section(shndx, kept_object,
908                                                       kept_shndx);
909                     }
910                 }
911               else
912                 {
913                   // The existing section is a linkonce section.  Add
914                   // a mapping if there is exactly one section in the
915                   // group (which is true when COUNT == 2) and if it
916                   // is the same size.
917                   if (count == 2
918                       && (kept_section->linkonce_size()
919                           == member_shdr.get_sh_size()))
920                     this->set_kept_comdat_section(shndx, kept_object,
921                                                   kept_section->shndx());
922                 }
923             }
924         }
925     }
926
927   if (relocate_group)
928     layout->layout_group(symtab, this, index, name, signature.c_str(),
929                          shdr, flags, &shndxes);
930
931   return include_group;
932 }
933
934 // Whether to include a linkonce section in the link.  NAME is the
935 // name of the section and SHDR is the section header.
936
937 // Linkonce sections are a GNU extension implemented in the original
938 // GNU linker before section groups were defined.  The semantics are
939 // that we only include one linkonce section with a given name.  The
940 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
941 // where T is the type of section and SYMNAME is the name of a symbol.
942 // In an attempt to make linkonce sections interact well with section
943 // groups, we try to identify SYMNAME and use it like a section group
944 // signature.  We want to block section groups with that signature,
945 // but not other linkonce sections with that signature.  We also use
946 // the full name of the linkonce section as a normal section group
947 // signature.
948
949 template<int size, bool big_endian>
950 bool
951 Sized_relobj_file<size, big_endian>::include_linkonce_section(
952     Layout* layout,
953     unsigned int index,
954     const char* name,
955     const elfcpp::Shdr<size, big_endian>& shdr)
956 {
957   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
958   // In general the symbol name we want will be the string following
959   // the last '.'.  However, we have to handle the case of
960   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
961   // some versions of gcc.  So we use a heuristic: if the name starts
962   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
963   // we look for the last '.'.  We can't always simply skip
964   // ".gnu.linkonce.X", because we have to deal with cases like
965   // ".gnu.linkonce.d.rel.ro.local".
966   const char* const linkonce_t = ".gnu.linkonce.t.";
967   const char* symname;
968   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
969     symname = name + strlen(linkonce_t);
970   else
971     symname = strrchr(name, '.') + 1;
972   std::string sig1(symname);
973   std::string sig2(name);
974   Kept_section* kept1;
975   Kept_section* kept2;
976   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
977                                                    false, &kept1);
978   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
979                                                    true, &kept2);
980
981   if (!include2)
982     {
983       // We are not including this section because we already saw the
984       // name of the section as a signature.  This normally implies
985       // that the kept section is another linkonce section.  If it is
986       // the same size, record it as the section which corresponds to
987       // this one.
988       if (kept2->object() != NULL
989           && !kept2->is_comdat()
990           && kept2->linkonce_size() == sh_size)
991         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
992     }
993   else if (!include1)
994     {
995       // The section is being discarded on the basis of its symbol
996       // name.  This means that the corresponding kept section was
997       // part of a comdat group, and it will be difficult to identify
998       // the specific section within that group that corresponds to
999       // this linkonce section.  We'll handle the simple case where
1000       // the group has only one member section.  Otherwise, it's not
1001       // worth the effort.
1002       unsigned int kept_shndx;
1003       uint64_t kept_size;
1004       if (kept1->object() != NULL
1005           && kept1->is_comdat()
1006           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1007           && kept_size == sh_size)
1008         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1009     }
1010   else
1011     {
1012       kept1->set_linkonce_size(sh_size);
1013       kept2->set_linkonce_size(sh_size);
1014     }
1015
1016   return include1 && include2;
1017 }
1018
1019 // Layout an input section.
1020
1021 template<int size, bool big_endian>
1022 inline void
1023 Sized_relobj_file<size, big_endian>::layout_section(
1024     Layout* layout,
1025     unsigned int shndx,
1026     const char* name,
1027     const typename This::Shdr& shdr,
1028     unsigned int reloc_shndx,
1029     unsigned int reloc_type)
1030 {
1031   off_t offset;
1032   Output_section* os = layout->layout(this, shndx, name, shdr,
1033                                           reloc_shndx, reloc_type, &offset);
1034
1035   this->output_sections()[shndx] = os;
1036   if (offset == -1)
1037     this->section_offsets()[shndx] = invalid_address;
1038   else
1039     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1040
1041   // If this section requires special handling, and if there are
1042   // relocs that apply to it, then we must do the special handling
1043   // before we apply the relocs.
1044   if (offset == -1 && reloc_shndx != 0)
1045     this->set_relocs_must_follow_section_writes();
1046 }
1047
1048 // Layout an input .eh_frame section.
1049
1050 template<int size, bool big_endian>
1051 void
1052 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1053     Layout* layout,
1054     const unsigned char* symbols_data,
1055     section_size_type symbols_size,
1056     const unsigned char* symbol_names_data,
1057     section_size_type symbol_names_size,
1058     unsigned int shndx,
1059     const typename This::Shdr& shdr,
1060     unsigned int reloc_shndx,
1061     unsigned int reloc_type)
1062 {
1063   gold_assert(this->has_eh_frame_);
1064
1065   off_t offset;
1066   Output_section* os = layout->layout_eh_frame(this,
1067                                                symbols_data,
1068                                                symbols_size,
1069                                                symbol_names_data,
1070                                                symbol_names_size,
1071                                                shndx,
1072                                                shdr,
1073                                                reloc_shndx,
1074                                                reloc_type,
1075                                                &offset);
1076   this->output_sections()[shndx] = os;
1077   if (os == NULL || offset == -1)
1078     {
1079       // An object can contain at most one section holding exception
1080       // frame information.
1081       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1082       this->discarded_eh_frame_shndx_ = shndx;
1083       this->section_offsets()[shndx] = invalid_address;
1084     }
1085   else
1086     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1087
1088   // If this section requires special handling, and if there are
1089   // relocs that aply to it, then we must do the special handling
1090   // before we apply the relocs.
1091   if (os != NULL && offset == -1 && reloc_shndx != 0)
1092     this->set_relocs_must_follow_section_writes();
1093 }
1094
1095 // Lay out the input sections.  We walk through the sections and check
1096 // whether they should be included in the link.  If they should, we
1097 // pass them to the Layout object, which will return an output section
1098 // and an offset.  
1099 // During garbage collection (--gc-sections) and identical code folding 
1100 // (--icf), this function is called twice.  When it is called the first 
1101 // time, it is for setting up some sections as roots to a work-list for
1102 // --gc-sections and to do comdat processing.  Actual layout happens the 
1103 // second time around after all the relevant sections have been determined.  
1104 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1105 // set to true after the garbage collection worklist or identical code 
1106 // folding is processed and the relevant sections to be kept are 
1107 // determined.  Then, this function is called again to layout the sections.
1108
1109 template<int size, bool big_endian>
1110 void
1111 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1112                                                Layout* layout,
1113                                                Read_symbols_data* sd)
1114 {
1115   const unsigned int shnum = this->shnum();
1116   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1117                           && !symtab->gc()->is_worklist_ready())
1118                          || (parameters->options().icf_enabled()
1119                              && !symtab->icf()->is_icf_ready()));
1120  
1121   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1122                           && symtab->gc()->is_worklist_ready())
1123                          || (parameters->options().icf_enabled()
1124                              && symtab->icf()->is_icf_ready()));
1125
1126   bool is_gc_or_icf = (parameters->options().gc_sections()
1127                        || parameters->options().icf_enabled()); 
1128
1129   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1130   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1131
1132   if (shnum == 0)
1133     return;
1134   Symbols_data* gc_sd = NULL;
1135   if (is_gc_pass_one)
1136     {
1137       // During garbage collection save the symbols data to use it when 
1138       // re-entering this function.   
1139       gc_sd = new Symbols_data;
1140       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1141       this->set_symbols_data(gc_sd);
1142     }
1143   else if (is_gc_pass_two)
1144     {
1145       gc_sd = this->get_symbols_data();
1146     }
1147
1148   const unsigned char* section_headers_data = NULL;
1149   section_size_type section_names_size;
1150   const unsigned char* symbols_data = NULL;
1151   section_size_type symbols_size;
1152   section_offset_type external_symbols_offset;
1153   const unsigned char* symbol_names_data = NULL;
1154   section_size_type symbol_names_size;
1155  
1156   if (is_gc_or_icf)
1157     {
1158       section_headers_data = gc_sd->section_headers_data;
1159       section_names_size = gc_sd->section_names_size;
1160       symbols_data = gc_sd->symbols_data;
1161       symbols_size = gc_sd->symbols_size;
1162       external_symbols_offset = gc_sd->external_symbols_offset;
1163       symbol_names_data = gc_sd->symbol_names_data;
1164       symbol_names_size = gc_sd->symbol_names_size;
1165     }
1166   else
1167     {
1168       section_headers_data = sd->section_headers->data();
1169       section_names_size = sd->section_names_size;
1170       if (sd->symbols != NULL)
1171         symbols_data = sd->symbols->data();
1172       symbols_size = sd->symbols_size;
1173       external_symbols_offset = sd->external_symbols_offset;
1174       if (sd->symbol_names != NULL)
1175         symbol_names_data = sd->symbol_names->data();
1176       symbol_names_size = sd->symbol_names_size;
1177     }
1178
1179   // Get the section headers.
1180   const unsigned char* shdrs = section_headers_data;
1181   const unsigned char* pshdrs;
1182
1183   // Get the section names.
1184   const unsigned char* pnamesu = (is_gc_or_icf) 
1185                                  ? gc_sd->section_names_data
1186                                  : sd->section_names->data();
1187
1188   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1189
1190   // If any input files have been claimed by plugins, we need to defer
1191   // actual layout until the replacement files have arrived.
1192   const bool should_defer_layout =
1193       (parameters->options().has_plugins()
1194        && parameters->options().plugins()->should_defer_layout());
1195   unsigned int num_sections_to_defer = 0;
1196
1197   // For each section, record the index of the reloc section if any.
1198   // Use 0 to mean that there is no reloc section, -1U to mean that
1199   // there is more than one.
1200   std::vector<unsigned int> reloc_shndx(shnum, 0);
1201   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1202   // Skip the first, dummy, section.
1203   pshdrs = shdrs + This::shdr_size;
1204   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1205     {
1206       typename This::Shdr shdr(pshdrs);
1207
1208       // Count the number of sections whose layout will be deferred.
1209       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1210         ++num_sections_to_defer;
1211
1212       unsigned int sh_type = shdr.get_sh_type();
1213       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1214         {
1215           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1216           if (target_shndx == 0 || target_shndx >= shnum)
1217             {
1218               this->error(_("relocation section %u has bad info %u"),
1219                           i, target_shndx);
1220               continue;
1221             }
1222
1223           if (reloc_shndx[target_shndx] != 0)
1224             reloc_shndx[target_shndx] = -1U;
1225           else
1226             {
1227               reloc_shndx[target_shndx] = i;
1228               reloc_type[target_shndx] = sh_type;
1229             }
1230         }
1231     }
1232
1233   Output_sections& out_sections(this->output_sections());
1234   std::vector<Address>& out_section_offsets(this->section_offsets());
1235
1236   if (!is_gc_pass_two)
1237     {
1238       out_sections.resize(shnum);
1239       out_section_offsets.resize(shnum);
1240     }
1241
1242   // If we are only linking for symbols, then there is nothing else to
1243   // do here.
1244   if (this->input_file()->just_symbols())
1245     {
1246       if (!is_gc_pass_two)
1247         {
1248           delete sd->section_headers;
1249           sd->section_headers = NULL;
1250           delete sd->section_names;
1251           sd->section_names = NULL;
1252         }
1253       return;
1254     }
1255
1256   if (num_sections_to_defer > 0)
1257     {
1258       parameters->options().plugins()->add_deferred_layout_object(this);
1259       this->deferred_layout_.reserve(num_sections_to_defer);
1260     }
1261
1262   // Whether we've seen a .note.GNU-stack section.
1263   bool seen_gnu_stack = false;
1264   // The flags of a .note.GNU-stack section.
1265   uint64_t gnu_stack_flags = 0;
1266
1267   // Keep track of which sections to omit.
1268   std::vector<bool> omit(shnum, false);
1269
1270   // Keep track of reloc sections when emitting relocations.
1271   const bool relocatable = parameters->options().relocatable();
1272   const bool emit_relocs = (relocatable
1273                             || parameters->options().emit_relocs());
1274   std::vector<unsigned int> reloc_sections;
1275
1276   // Keep track of .eh_frame sections.
1277   std::vector<unsigned int> eh_frame_sections;
1278
1279   // Skip the first, dummy, section.
1280   pshdrs = shdrs + This::shdr_size;
1281   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1282     {
1283       typename This::Shdr shdr(pshdrs);
1284
1285       if (shdr.get_sh_name() >= section_names_size)
1286         {
1287           this->error(_("bad section name offset for section %u: %lu"),
1288                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1289           return;
1290         }
1291
1292       const char* name = pnames + shdr.get_sh_name();
1293
1294       if (!is_gc_pass_two)
1295         { 
1296           if (this->handle_gnu_warning_section(name, i, symtab))
1297             { 
1298               if (!relocatable && !parameters->options().shared())
1299                 omit[i] = true;
1300             }
1301
1302           // The .note.GNU-stack section is special.  It gives the
1303           // protection flags that this object file requires for the stack
1304           // in memory.
1305           if (strcmp(name, ".note.GNU-stack") == 0)
1306             {
1307               seen_gnu_stack = true;
1308               gnu_stack_flags |= shdr.get_sh_flags();
1309               omit[i] = true;
1310             }
1311
1312           // The .note.GNU-split-stack section is also special.  It
1313           // indicates that the object was compiled with
1314           // -fsplit-stack.
1315           if (this->handle_split_stack_section(name))
1316             {
1317               if (!relocatable && !parameters->options().shared())
1318                 omit[i] = true;
1319             }
1320
1321           // Skip attributes section.
1322           if (parameters->target().is_attributes_section(name))
1323             {
1324               omit[i] = true;
1325             }
1326
1327           bool discard = omit[i];
1328           if (!discard)
1329             {
1330               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1331                 {
1332                   if (!this->include_section_group(symtab, layout, i, name, 
1333                                                    shdrs, pnames, 
1334                                                    section_names_size,
1335                                                    &omit))
1336                     discard = true;
1337                 }
1338               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1339                        && Layout::is_linkonce(name))
1340                 {
1341                   if (!this->include_linkonce_section(layout, i, name, shdr))
1342                     discard = true;
1343                 }
1344             }
1345
1346           // Add the section to the incremental inputs layout.
1347           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1348           if (incremental_inputs != NULL
1349               && !discard
1350               && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1351                   || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1352                   || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1353             {
1354               off_t sh_size = shdr.get_sh_size();
1355               section_size_type uncompressed_size;
1356               if (this->section_is_compressed(i, &uncompressed_size))
1357                 sh_size = uncompressed_size;
1358               incremental_inputs->report_input_section(this, i, name, sh_size);
1359             }
1360
1361           if (discard)
1362             {
1363               // Do not include this section in the link.
1364               out_sections[i] = NULL;
1365               out_section_offsets[i] = invalid_address;
1366               continue;
1367             }
1368         }
1369  
1370       if (is_gc_pass_one && parameters->options().gc_sections())
1371         {
1372           if (this->is_section_name_included(name)
1373               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1374               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1375             {
1376               symtab->gc()->worklist().push(Section_id(this, i)); 
1377             }
1378           // If the section name XXX can be represented as a C identifier
1379           // it cannot be discarded if there are references to
1380           // __start_XXX and __stop_XXX symbols.  These need to be
1381           // specially handled.
1382           if (is_cident(name))
1383             {
1384               symtab->gc()->add_cident_section(name, Section_id(this, i));
1385             }
1386         }
1387
1388       // When doing a relocatable link we are going to copy input
1389       // reloc sections into the output.  We only want to copy the
1390       // ones associated with sections which are not being discarded.
1391       // However, we don't know that yet for all sections.  So save
1392       // reloc sections and process them later. Garbage collection is
1393       // not triggered when relocatable code is desired.
1394       if (emit_relocs
1395           && (shdr.get_sh_type() == elfcpp::SHT_REL
1396               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1397         {
1398           reloc_sections.push_back(i);
1399           continue;
1400         }
1401
1402       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1403         continue;
1404
1405       // The .eh_frame section is special.  It holds exception frame
1406       // information that we need to read in order to generate the
1407       // exception frame header.  We process these after all the other
1408       // sections so that the exception frame reader can reliably
1409       // determine which sections are being discarded, and discard the
1410       // corresponding information.
1411       if (!relocatable
1412           && strcmp(name, ".eh_frame") == 0
1413           && this->check_eh_frame_flags(&shdr))
1414         {
1415           if (is_gc_pass_one)
1416             {
1417               out_sections[i] = reinterpret_cast<Output_section*>(1);
1418               out_section_offsets[i] = invalid_address;
1419             }
1420           else if (should_defer_layout)
1421             this->deferred_layout_.push_back(Deferred_layout(i, name,
1422                                                              pshdrs,
1423                                                              reloc_shndx[i],
1424                                                              reloc_type[i]));
1425           else
1426             eh_frame_sections.push_back(i);
1427           continue;
1428         }
1429
1430       if (is_gc_pass_two && parameters->options().gc_sections())
1431         {
1432           // This is executed during the second pass of garbage 
1433           // collection. do_layout has been called before and some 
1434           // sections have been already discarded. Simply ignore 
1435           // such sections this time around.
1436           if (out_sections[i] == NULL)
1437             {
1438               gold_assert(out_section_offsets[i] == invalid_address);
1439               continue; 
1440             }
1441           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1442               && symtab->gc()->is_section_garbage(this, i))
1443               {
1444                 if (parameters->options().print_gc_sections())
1445                   gold_info(_("%s: removing unused section from '%s'" 
1446                               " in file '%s'"),
1447                             program_name, this->section_name(i).c_str(), 
1448                             this->name().c_str());
1449                 out_sections[i] = NULL;
1450                 out_section_offsets[i] = invalid_address;
1451                 continue;
1452               }
1453         }
1454
1455       if (is_gc_pass_two && parameters->options().icf_enabled())
1456         {
1457           if (out_sections[i] == NULL)
1458             {
1459               gold_assert(out_section_offsets[i] == invalid_address);
1460               continue;
1461             }
1462           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1463               && symtab->icf()->is_section_folded(this, i))
1464               {
1465                 if (parameters->options().print_icf_sections())
1466                   {
1467                     Section_id folded =
1468                                 symtab->icf()->get_folded_section(this, i);
1469                     Relobj* folded_obj =
1470                                 reinterpret_cast<Relobj*>(folded.first);
1471                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1472                                 "into '%s' in file '%s'"),
1473                               program_name, this->section_name(i).c_str(),
1474                               this->name().c_str(),
1475                               folded_obj->section_name(folded.second).c_str(),
1476                               folded_obj->name().c_str());
1477                   }
1478                 out_sections[i] = NULL;
1479                 out_section_offsets[i] = invalid_address;
1480                 continue;
1481               }
1482         }
1483
1484       // Defer layout here if input files are claimed by plugins.  When gc
1485       // is turned on this function is called twice.  For the second call
1486       // should_defer_layout should be false.
1487       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1488         {
1489           gold_assert(!is_gc_pass_two);
1490           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1491                                                            pshdrs,
1492                                                            reloc_shndx[i],
1493                                                            reloc_type[i]));
1494           // Put dummy values here; real values will be supplied by
1495           // do_layout_deferred_sections.
1496           out_sections[i] = reinterpret_cast<Output_section*>(2);
1497           out_section_offsets[i] = invalid_address;
1498           continue;
1499         }
1500
1501       // During gc_pass_two if a section that was previously deferred is
1502       // found, do not layout the section as layout_deferred_sections will
1503       // do it later from gold.cc.
1504       if (is_gc_pass_two 
1505           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1506         continue;
1507
1508       if (is_gc_pass_one)
1509         {
1510           // This is during garbage collection. The out_sections are 
1511           // assigned in the second call to this function. 
1512           out_sections[i] = reinterpret_cast<Output_section*>(1);
1513           out_section_offsets[i] = invalid_address;
1514         }
1515       else
1516         {
1517           // When garbage collection is switched on the actual layout
1518           // only happens in the second call.
1519           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1520                                reloc_type[i]);
1521         }
1522     }
1523
1524   if (!is_gc_pass_two)
1525     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1526
1527   // When doing a relocatable link handle the reloc sections at the
1528   // end.  Garbage collection  and Identical Code Folding is not 
1529   // turned on for relocatable code. 
1530   if (emit_relocs)
1531     this->size_relocatable_relocs();
1532
1533   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1534
1535   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1536        p != reloc_sections.end();
1537        ++p)
1538     {
1539       unsigned int i = *p;
1540       const unsigned char* pshdr;
1541       pshdr = section_headers_data + i * This::shdr_size;
1542       typename This::Shdr shdr(pshdr);
1543
1544       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1545       if (data_shndx >= shnum)
1546         {
1547           // We already warned about this above.
1548           continue;
1549         }
1550
1551       Output_section* data_section = out_sections[data_shndx];
1552       if (data_section == reinterpret_cast<Output_section*>(2))
1553         {
1554           // The layout for the data section was deferred, so we need
1555           // to defer the relocation section, too.
1556           const char* name = pnames + shdr.get_sh_name();
1557           this->deferred_layout_relocs_.push_back(
1558               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1559           out_sections[i] = reinterpret_cast<Output_section*>(2);
1560           out_section_offsets[i] = invalid_address;
1561           continue;
1562         }
1563       if (data_section == NULL)
1564         {
1565           out_sections[i] = NULL;
1566           out_section_offsets[i] = invalid_address;
1567           continue;
1568         }
1569
1570       Relocatable_relocs* rr = new Relocatable_relocs();
1571       this->set_relocatable_relocs(i, rr);
1572
1573       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1574                                                 rr);
1575       out_sections[i] = os;
1576       out_section_offsets[i] = invalid_address;
1577     }
1578
1579   // Handle the .eh_frame sections at the end.
1580   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1581   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1582        p != eh_frame_sections.end();
1583        ++p)
1584     {
1585       gold_assert(external_symbols_offset != 0);
1586
1587       unsigned int i = *p;
1588       const unsigned char* pshdr;
1589       pshdr = section_headers_data + i * This::shdr_size;
1590       typename This::Shdr shdr(pshdr);
1591
1592       this->layout_eh_frame_section(layout,
1593                                     symbols_data,
1594                                     symbols_size,
1595                                     symbol_names_data,
1596                                     symbol_names_size,
1597                                     i,
1598                                     shdr,
1599                                     reloc_shndx[i],
1600                                     reloc_type[i]);
1601     }
1602
1603   if (is_gc_pass_two)
1604     {
1605       delete[] gc_sd->section_headers_data;
1606       delete[] gc_sd->section_names_data;
1607       delete[] gc_sd->symbols_data;
1608       delete[] gc_sd->symbol_names_data;
1609       this->set_symbols_data(NULL);
1610     }
1611   else
1612     {
1613       delete sd->section_headers;
1614       sd->section_headers = NULL;
1615       delete sd->section_names;
1616       sd->section_names = NULL;
1617     }
1618 }
1619
1620 // Layout sections whose layout was deferred while waiting for
1621 // input files from a plugin.
1622
1623 template<int size, bool big_endian>
1624 void
1625 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1626 {
1627   typename std::vector<Deferred_layout>::iterator deferred;
1628
1629   for (deferred = this->deferred_layout_.begin();
1630        deferred != this->deferred_layout_.end();
1631        ++deferred)
1632     {
1633       typename This::Shdr shdr(deferred->shdr_data_);
1634       // If the section is not included, it is because the garbage collector
1635       // decided it is not needed.  Avoid reverting that decision.
1636       if (!this->is_section_included(deferred->shndx_))
1637         continue;
1638
1639       if (parameters->options().relocatable()
1640           || deferred->name_ != ".eh_frame"
1641           || !this->check_eh_frame_flags(&shdr))
1642         this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1643                              shdr, deferred->reloc_shndx_,
1644                              deferred->reloc_type_);
1645       else
1646         {
1647           // Reading the symbols again here may be slow.
1648           Read_symbols_data sd;
1649           this->read_symbols(&sd);
1650           this->layout_eh_frame_section(layout,
1651                                         sd.symbols->data(),
1652                                         sd.symbols_size,
1653                                         sd.symbol_names->data(),
1654                                         sd.symbol_names_size,
1655                                         deferred->shndx_,
1656                                         shdr,
1657                                         deferred->reloc_shndx_,
1658                                         deferred->reloc_type_);
1659         }
1660     }
1661
1662   this->deferred_layout_.clear();
1663
1664   // Now handle the deferred relocation sections.
1665
1666   Output_sections& out_sections(this->output_sections());
1667   std::vector<Address>& out_section_offsets(this->section_offsets());
1668
1669   for (deferred = this->deferred_layout_relocs_.begin();
1670        deferred != this->deferred_layout_relocs_.end();
1671        ++deferred)
1672     {
1673       unsigned int shndx = deferred->shndx_;
1674       typename This::Shdr shdr(deferred->shdr_data_);
1675       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1676
1677       Output_section* data_section = out_sections[data_shndx];
1678       if (data_section == NULL)
1679         {
1680           out_sections[shndx] = NULL;
1681           out_section_offsets[shndx] = invalid_address;
1682           continue;
1683         }
1684
1685       Relocatable_relocs* rr = new Relocatable_relocs();
1686       this->set_relocatable_relocs(shndx, rr);
1687
1688       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1689                                                 data_section, rr);
1690       out_sections[shndx] = os;
1691       out_section_offsets[shndx] = invalid_address;
1692     }
1693 }
1694
1695 // Add the symbols to the symbol table.
1696
1697 template<int size, bool big_endian>
1698 void
1699 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1700                                                     Read_symbols_data* sd,
1701                                                     Layout*)
1702 {
1703   if (sd->symbols == NULL)
1704     {
1705       gold_assert(sd->symbol_names == NULL);
1706       return;
1707     }
1708
1709   const int sym_size = This::sym_size;
1710   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1711                      / sym_size);
1712   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1713     {
1714       this->error(_("size of symbols is not multiple of symbol size"));
1715       return;
1716     }
1717
1718   this->symbols_.resize(symcount);
1719
1720   const char* sym_names =
1721     reinterpret_cast<const char*>(sd->symbol_names->data());
1722   symtab->add_from_relobj(this,
1723                           sd->symbols->data() + sd->external_symbols_offset,
1724                           symcount, this->local_symbol_count_,
1725                           sym_names, sd->symbol_names_size,
1726                           &this->symbols_,
1727                           &this->defined_count_);
1728
1729   delete sd->symbols;
1730   sd->symbols = NULL;
1731   delete sd->symbol_names;
1732   sd->symbol_names = NULL;
1733 }
1734
1735 // Find out if this object, that is a member of a lib group, should be included
1736 // in the link. We check every symbol defined by this object. If the symbol
1737 // table has a strong undefined reference to that symbol, we have to include
1738 // the object.
1739
1740 template<int size, bool big_endian>
1741 Archive::Should_include
1742 Sized_relobj_file<size, big_endian>::do_should_include_member(
1743     Symbol_table* symtab,
1744     Layout* layout,
1745     Read_symbols_data* sd,
1746     std::string* why)
1747 {
1748   char* tmpbuf = NULL;
1749   size_t tmpbuflen = 0;
1750   const char* sym_names =
1751       reinterpret_cast<const char*>(sd->symbol_names->data());
1752   const unsigned char* syms =
1753       sd->symbols->data() + sd->external_symbols_offset;
1754   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1755   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1756                          / sym_size);
1757
1758   const unsigned char* p = syms;
1759
1760   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1761     {
1762       elfcpp::Sym<size, big_endian> sym(p);
1763       unsigned int st_shndx = sym.get_st_shndx();
1764       if (st_shndx == elfcpp::SHN_UNDEF)
1765         continue;
1766
1767       unsigned int st_name = sym.get_st_name();
1768       const char* name = sym_names + st_name;
1769       Symbol* symbol;
1770       Archive::Should_include t = Archive::should_include_member(symtab,
1771                                                                  layout,
1772                                                                  name,
1773                                                                  &symbol, why,
1774                                                                  &tmpbuf,
1775                                                                  &tmpbuflen);
1776       if (t == Archive::SHOULD_INCLUDE_YES)
1777         {
1778           if (tmpbuf != NULL)
1779             free(tmpbuf);
1780           return t;
1781         }
1782     }
1783   if (tmpbuf != NULL)
1784     free(tmpbuf);
1785   return Archive::SHOULD_INCLUDE_UNKNOWN;
1786 }
1787
1788 // Iterate over global defined symbols, calling a visitor class V for each.
1789
1790 template<int size, bool big_endian>
1791 void
1792 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1793     Read_symbols_data* sd,
1794     Library_base::Symbol_visitor_base* v)
1795 {
1796   const char* sym_names =
1797       reinterpret_cast<const char*>(sd->symbol_names->data());
1798   const unsigned char* syms =
1799       sd->symbols->data() + sd->external_symbols_offset;
1800   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1801   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1802                      / sym_size);
1803   const unsigned char* p = syms;
1804
1805   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1806     {
1807       elfcpp::Sym<size, big_endian> sym(p);
1808       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1809         v->visit(sym_names + sym.get_st_name());
1810     }
1811 }
1812
1813 // Return whether the local symbol SYMNDX has a PLT offset.
1814
1815 template<int size, bool big_endian>
1816 bool
1817 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1818     unsigned int symndx) const
1819 {
1820   typename Local_plt_offsets::const_iterator p =
1821     this->local_plt_offsets_.find(symndx);
1822   return p != this->local_plt_offsets_.end();
1823 }
1824
1825 // Get the PLT offset of a local symbol.
1826
1827 template<int size, bool big_endian>
1828 unsigned int
1829 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1830 {
1831   typename Local_plt_offsets::const_iterator p =
1832     this->local_plt_offsets_.find(symndx);
1833   gold_assert(p != this->local_plt_offsets_.end());
1834   return p->second;
1835 }
1836
1837 // Set the PLT offset of a local symbol.
1838
1839 template<int size, bool big_endian>
1840 void
1841 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1842     unsigned int symndx, unsigned int plt_offset)
1843 {
1844   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1845     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1846   gold_assert(ins.second);
1847 }
1848
1849 // First pass over the local symbols.  Here we add their names to
1850 // *POOL and *DYNPOOL, and we store the symbol value in
1851 // THIS->LOCAL_VALUES_.  This function is always called from a
1852 // singleton thread.  This is followed by a call to
1853 // finalize_local_symbols.
1854
1855 template<int size, bool big_endian>
1856 void
1857 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1858                                                             Stringpool* dynpool)
1859 {
1860   gold_assert(this->symtab_shndx_ != -1U);
1861   if (this->symtab_shndx_ == 0)
1862     {
1863       // This object has no symbols.  Weird but legal.
1864       return;
1865     }
1866
1867   // Read the symbol table section header.
1868   const unsigned int symtab_shndx = this->symtab_shndx_;
1869   typename This::Shdr symtabshdr(this,
1870                                  this->elf_file_.section_header(symtab_shndx));
1871   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1872
1873   // Read the local symbols.
1874   const int sym_size = This::sym_size;
1875   const unsigned int loccount = this->local_symbol_count_;
1876   gold_assert(loccount == symtabshdr.get_sh_info());
1877   off_t locsize = loccount * sym_size;
1878   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1879                                               locsize, true, true);
1880
1881   // Read the symbol names.
1882   const unsigned int strtab_shndx =
1883     this->adjust_shndx(symtabshdr.get_sh_link());
1884   section_size_type strtab_size;
1885   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1886                                                         &strtab_size,
1887                                                         true);
1888   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1889
1890   // Loop over the local symbols.
1891
1892   const Output_sections& out_sections(this->output_sections());
1893   unsigned int shnum = this->shnum();
1894   unsigned int count = 0;
1895   unsigned int dyncount = 0;
1896   // Skip the first, dummy, symbol.
1897   psyms += sym_size;
1898   bool strip_all = parameters->options().strip_all();
1899   bool discard_all = parameters->options().discard_all();
1900   bool discard_locals = parameters->options().discard_locals();
1901   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1902     {
1903       elfcpp::Sym<size, big_endian> sym(psyms);
1904
1905       Symbol_value<size>& lv(this->local_values_[i]);
1906
1907       bool is_ordinary;
1908       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1909                                                   &is_ordinary);
1910       lv.set_input_shndx(shndx, is_ordinary);
1911
1912       if (sym.get_st_type() == elfcpp::STT_SECTION)
1913         lv.set_is_section_symbol();
1914       else if (sym.get_st_type() == elfcpp::STT_TLS)
1915         lv.set_is_tls_symbol();
1916       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1917         lv.set_is_ifunc_symbol();
1918
1919       // Save the input symbol value for use in do_finalize_local_symbols().
1920       lv.set_input_value(sym.get_st_value());
1921
1922       // Decide whether this symbol should go into the output file.
1923
1924       if ((shndx < shnum && out_sections[shndx] == NULL)
1925           || shndx == this->discarded_eh_frame_shndx_)
1926         {
1927           lv.set_no_output_symtab_entry();
1928           gold_assert(!lv.needs_output_dynsym_entry());
1929           continue;
1930         }
1931
1932       if (sym.get_st_type() == elfcpp::STT_SECTION)
1933         {
1934           lv.set_no_output_symtab_entry();
1935           gold_assert(!lv.needs_output_dynsym_entry());
1936           continue;
1937         }
1938
1939       if (sym.get_st_name() >= strtab_size)
1940         {
1941           this->error(_("local symbol %u section name out of range: %u >= %u"),
1942                       i, sym.get_st_name(),
1943                       static_cast<unsigned int>(strtab_size));
1944           lv.set_no_output_symtab_entry();
1945           continue;
1946         }
1947
1948       const char* name = pnames + sym.get_st_name();
1949
1950       // If needed, add the symbol to the dynamic symbol table string pool.
1951       if (lv.needs_output_dynsym_entry())
1952         {
1953           dynpool->add(name, true, NULL);
1954           ++dyncount;
1955         }
1956
1957       if (strip_all
1958           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1959         {
1960           lv.set_no_output_symtab_entry();
1961           continue;
1962         }
1963
1964       // If --discard-locals option is used, discard all temporary local
1965       // symbols.  These symbols start with system-specific local label
1966       // prefixes, typically .L for ELF system.  We want to be compatible
1967       // with GNU ld so here we essentially use the same check in
1968       // bfd_is_local_label().  The code is different because we already
1969       // know that:
1970       //
1971       //   - the symbol is local and thus cannot have global or weak binding.
1972       //   - the symbol is not a section symbol.
1973       //   - the symbol has a name.
1974       //
1975       // We do not discard a symbol if it needs a dynamic symbol entry.
1976       if (discard_locals
1977           && sym.get_st_type() != elfcpp::STT_FILE
1978           && !lv.needs_output_dynsym_entry()
1979           && lv.may_be_discarded_from_output_symtab()
1980           && parameters->target().is_local_label_name(name))
1981         {
1982           lv.set_no_output_symtab_entry();
1983           continue;
1984         }
1985
1986       // Discard the local symbol if -retain_symbols_file is specified
1987       // and the local symbol is not in that file.
1988       if (!parameters->options().should_retain_symbol(name))
1989         {
1990           lv.set_no_output_symtab_entry();
1991           continue;
1992         }
1993
1994       // Add the symbol to the symbol table string pool.
1995       pool->add(name, true, NULL);
1996       ++count;
1997     }
1998
1999   this->output_local_symbol_count_ = count;
2000   this->output_local_dynsym_count_ = dyncount;
2001 }
2002
2003 // Compute the final value of a local symbol.
2004
2005 template<int size, bool big_endian>
2006 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2007 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2008     unsigned int r_sym,
2009     const Symbol_value<size>* lv_in,
2010     Symbol_value<size>* lv_out,
2011     bool relocatable,
2012     const Output_sections& out_sections,
2013     const std::vector<Address>& out_offsets,
2014     const Symbol_table* symtab)
2015 {
2016   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2017   // we may have a memory leak.
2018   gold_assert(lv_out->has_output_value());
2019
2020   bool is_ordinary;
2021   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2022   
2023   // Set the output symbol value.
2024   
2025   if (!is_ordinary)
2026     {
2027       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2028         lv_out->set_output_value(lv_in->input_value());
2029       else
2030         {
2031           this->error(_("unknown section index %u for local symbol %u"),
2032                       shndx, r_sym);
2033           lv_out->set_output_value(0);
2034           return This::CFLV_ERROR;
2035         }
2036     }
2037   else
2038     {
2039       if (shndx >= this->shnum())
2040         {
2041           this->error(_("local symbol %u section index %u out of range"),
2042                       r_sym, shndx);
2043           lv_out->set_output_value(0);
2044           return This::CFLV_ERROR;
2045         }
2046       
2047       Output_section* os = out_sections[shndx];
2048       Address secoffset = out_offsets[shndx];
2049       if (symtab->is_section_folded(this, shndx))
2050         {
2051           gold_assert(os == NULL && secoffset == invalid_address);
2052           // Get the os of the section it is folded onto.
2053           Section_id folded = symtab->icf()->get_folded_section(this,
2054                                                                 shndx);
2055           gold_assert(folded.first != NULL);
2056           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2057             <Sized_relobj_file<size, big_endian>*>(folded.first);
2058           os = folded_obj->output_section(folded.second);
2059           gold_assert(os != NULL);
2060           secoffset = folded_obj->get_output_section_offset(folded.second);
2061           
2062           // This could be a relaxed input section.
2063           if (secoffset == invalid_address)
2064             {
2065               const Output_relaxed_input_section* relaxed_section =
2066                 os->find_relaxed_input_section(folded_obj, folded.second);
2067               gold_assert(relaxed_section != NULL);
2068               secoffset = relaxed_section->address() - os->address();
2069             }
2070         }
2071       
2072       if (os == NULL)
2073         {
2074           // This local symbol belongs to a section we are discarding.
2075           // In some cases when applying relocations later, we will
2076           // attempt to match it to the corresponding kept section,
2077           // so we leave the input value unchanged here.
2078           return This::CFLV_DISCARDED;
2079         }
2080       else if (secoffset == invalid_address)
2081         {
2082           uint64_t start;
2083           
2084           // This is a SHF_MERGE section or one which otherwise
2085           // requires special handling.
2086           if (shndx == this->discarded_eh_frame_shndx_)
2087             {
2088               // This local symbol belongs to a discarded .eh_frame
2089               // section.  Just treat it like the case in which
2090               // os == NULL above.
2091               gold_assert(this->has_eh_frame_);
2092               return This::CFLV_DISCARDED;
2093             }
2094           else if (!lv_in->is_section_symbol())
2095             {
2096               // This is not a section symbol.  We can determine
2097               // the final value now.
2098               lv_out->set_output_value(
2099                   os->output_address(this, shndx, lv_in->input_value()));
2100             }
2101           else if (!os->find_starting_output_address(this, shndx, &start))
2102             {
2103               // This is a section symbol, but apparently not one in a
2104               // merged section.  First check to see if this is a relaxed
2105               // input section.  If so, use its address.  Otherwise just
2106               // use the start of the output section.  This happens with
2107               // relocatable links when the input object has section
2108               // symbols for arbitrary non-merge sections.
2109               const Output_section_data* posd =
2110                 os->find_relaxed_input_section(this, shndx);
2111               if (posd != NULL)
2112                 {
2113                   Address relocatable_link_adjustment =
2114                     relocatable ? os->address() : 0;
2115                   lv_out->set_output_value(posd->address()
2116                                            - relocatable_link_adjustment);
2117                 }
2118               else
2119                 lv_out->set_output_value(os->address());
2120             }
2121           else
2122             {
2123               // We have to consider the addend to determine the
2124               // value to use in a relocation.  START is the start
2125               // of this input section.  If we are doing a relocatable
2126               // link, use offset from start output section instead of
2127               // address.
2128               Address adjusted_start =
2129                 relocatable ? start - os->address() : start;
2130               Merged_symbol_value<size>* msv =
2131                 new Merged_symbol_value<size>(lv_in->input_value(),
2132                                               adjusted_start);
2133               lv_out->set_merged_symbol_value(msv);
2134             }
2135         }
2136       else if (lv_in->is_tls_symbol())
2137         lv_out->set_output_value(os->tls_offset()
2138                                  + secoffset
2139                                  + lv_in->input_value());
2140       else
2141         lv_out->set_output_value((relocatable ? 0 : os->address())
2142                                  + secoffset
2143                                  + lv_in->input_value());
2144     }
2145   return This::CFLV_OK;
2146 }
2147
2148 // Compute final local symbol value.  R_SYM is the index of a local
2149 // symbol in symbol table.  LV points to a symbol value, which is
2150 // expected to hold the input value and to be over-written by the
2151 // final value.  SYMTAB points to a symbol table.  Some targets may want
2152 // to know would-be-finalized local symbol values in relaxation.
2153 // Hence we provide this method.  Since this method updates *LV, a
2154 // callee should make a copy of the original local symbol value and
2155 // use the copy instead of modifying an object's local symbols before
2156 // everything is finalized.  The caller should also free up any allocated
2157 // memory in the return value in *LV.
2158 template<int size, bool big_endian>
2159 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2160 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2161     unsigned int r_sym,
2162     const Symbol_value<size>* lv_in,
2163     Symbol_value<size>* lv_out,
2164     const Symbol_table* symtab)
2165 {
2166   // This is just a wrapper of compute_final_local_value_internal.
2167   const bool relocatable = parameters->options().relocatable();
2168   const Output_sections& out_sections(this->output_sections());
2169   const std::vector<Address>& out_offsets(this->section_offsets());
2170   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2171                                                   relocatable, out_sections,
2172                                                   out_offsets, symtab);
2173 }
2174
2175 // Finalize the local symbols.  Here we set the final value in
2176 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2177 // This function is always called from a singleton thread.  The actual
2178 // output of the local symbols will occur in a separate task.
2179
2180 template<int size, bool big_endian>
2181 unsigned int
2182 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2183     unsigned int index,
2184     off_t off,
2185     Symbol_table* symtab)
2186 {
2187   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2188
2189   const unsigned int loccount = this->local_symbol_count_;
2190   this->local_symbol_offset_ = off;
2191
2192   const bool relocatable = parameters->options().relocatable();
2193   const Output_sections& out_sections(this->output_sections());
2194   const std::vector<Address>& out_offsets(this->section_offsets());
2195
2196   for (unsigned int i = 1; i < loccount; ++i)
2197     {
2198       Symbol_value<size>* lv = &this->local_values_[i];
2199
2200       Compute_final_local_value_status cflv_status =
2201         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2202                                                  out_sections, out_offsets,
2203                                                  symtab);
2204       switch (cflv_status)
2205         {
2206         case CFLV_OK:
2207           if (!lv->is_output_symtab_index_set())
2208             {
2209               lv->set_output_symtab_index(index);
2210               ++index;
2211             }
2212           break;
2213         case CFLV_DISCARDED:
2214         case CFLV_ERROR:
2215           // Do nothing.
2216           break;
2217         default:
2218           gold_unreachable();
2219         }
2220     }
2221   return index;
2222 }
2223
2224 // Set the output dynamic symbol table indexes for the local variables.
2225
2226 template<int size, bool big_endian>
2227 unsigned int
2228 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2229     unsigned int index)
2230 {
2231   const unsigned int loccount = this->local_symbol_count_;
2232   for (unsigned int i = 1; i < loccount; ++i)
2233     {
2234       Symbol_value<size>& lv(this->local_values_[i]);
2235       if (lv.needs_output_dynsym_entry())
2236         {
2237           lv.set_output_dynsym_index(index);
2238           ++index;
2239         }
2240     }
2241   return index;
2242 }
2243
2244 // Set the offset where local dynamic symbol information will be stored.
2245 // Returns the count of local symbols contributed to the symbol table by
2246 // this object.
2247
2248 template<int size, bool big_endian>
2249 unsigned int
2250 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2251 {
2252   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2253   this->local_dynsym_offset_ = off;
2254   return this->output_local_dynsym_count_;
2255 }
2256
2257 // If Symbols_data is not NULL get the section flags from here otherwise
2258 // get it from the file.
2259
2260 template<int size, bool big_endian>
2261 uint64_t
2262 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2263 {
2264   Symbols_data* sd = this->get_symbols_data();
2265   if (sd != NULL)
2266     {
2267       const unsigned char* pshdrs = sd->section_headers_data
2268                                     + This::shdr_size * shndx;
2269       typename This::Shdr shdr(pshdrs);
2270       return shdr.get_sh_flags(); 
2271     }
2272   // If sd is NULL, read the section header from the file.
2273   return this->elf_file_.section_flags(shndx); 
2274 }
2275
2276 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2277 // in icf.cc
2278
2279 template<int size, bool big_endian>
2280 uint64_t
2281 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2282 {
2283   Symbols_data* sd = this->get_symbols_data();
2284   gold_assert(sd != NULL);
2285
2286   const unsigned char* pshdrs = sd->section_headers_data
2287                                 + This::shdr_size * shndx;
2288   typename This::Shdr shdr(pshdrs);
2289   return shdr.get_sh_entsize(); 
2290 }
2291
2292 // Write out the local symbols.
2293
2294 template<int size, bool big_endian>
2295 void
2296 Sized_relobj_file<size, big_endian>::write_local_symbols(
2297     Output_file* of,
2298     const Stringpool* sympool,
2299     const Stringpool* dynpool,
2300     Output_symtab_xindex* symtab_xindex,
2301     Output_symtab_xindex* dynsym_xindex,
2302     off_t symtab_off)
2303 {
2304   const bool strip_all = parameters->options().strip_all();
2305   if (strip_all)
2306     {
2307       if (this->output_local_dynsym_count_ == 0)
2308         return;
2309       this->output_local_symbol_count_ = 0;
2310     }
2311
2312   gold_assert(this->symtab_shndx_ != -1U);
2313   if (this->symtab_shndx_ == 0)
2314     {
2315       // This object has no symbols.  Weird but legal.
2316       return;
2317     }
2318
2319   // Read the symbol table section header.
2320   const unsigned int symtab_shndx = this->symtab_shndx_;
2321   typename This::Shdr symtabshdr(this,
2322                                  this->elf_file_.section_header(symtab_shndx));
2323   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2324   const unsigned int loccount = this->local_symbol_count_;
2325   gold_assert(loccount == symtabshdr.get_sh_info());
2326
2327   // Read the local symbols.
2328   const int sym_size = This::sym_size;
2329   off_t locsize = loccount * sym_size;
2330   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2331                                               locsize, true, false);
2332
2333   // Read the symbol names.
2334   const unsigned int strtab_shndx =
2335     this->adjust_shndx(symtabshdr.get_sh_link());
2336   section_size_type strtab_size;
2337   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2338                                                         &strtab_size,
2339                                                         false);
2340   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2341
2342   // Get views into the output file for the portions of the symbol table
2343   // and the dynamic symbol table that we will be writing.
2344   off_t output_size = this->output_local_symbol_count_ * sym_size;
2345   unsigned char* oview = NULL;
2346   if (output_size > 0)
2347     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2348                                 output_size);
2349
2350   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2351   unsigned char* dyn_oview = NULL;
2352   if (dyn_output_size > 0)
2353     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2354                                     dyn_output_size);
2355
2356   const Output_sections out_sections(this->output_sections());
2357
2358   gold_assert(this->local_values_.size() == loccount);
2359
2360   unsigned char* ov = oview;
2361   unsigned char* dyn_ov = dyn_oview;
2362   psyms += sym_size;
2363   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2364     {
2365       elfcpp::Sym<size, big_endian> isym(psyms);
2366
2367       Symbol_value<size>& lv(this->local_values_[i]);
2368
2369       bool is_ordinary;
2370       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2371                                                      &is_ordinary);
2372       if (is_ordinary)
2373         {
2374           gold_assert(st_shndx < out_sections.size());
2375           if (out_sections[st_shndx] == NULL)
2376             continue;
2377           st_shndx = out_sections[st_shndx]->out_shndx();
2378           if (st_shndx >= elfcpp::SHN_LORESERVE)
2379             {
2380               if (lv.has_output_symtab_entry())
2381                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2382               if (lv.has_output_dynsym_entry())
2383                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2384               st_shndx = elfcpp::SHN_XINDEX;
2385             }
2386         }
2387
2388       // Write the symbol to the output symbol table.
2389       if (lv.has_output_symtab_entry())
2390         {
2391           elfcpp::Sym_write<size, big_endian> osym(ov);
2392
2393           gold_assert(isym.get_st_name() < strtab_size);
2394           const char* name = pnames + isym.get_st_name();
2395           osym.put_st_name(sympool->get_offset(name));
2396           osym.put_st_value(this->local_values_[i].value(this, 0));
2397           osym.put_st_size(isym.get_st_size());
2398           osym.put_st_info(isym.get_st_info());
2399           osym.put_st_other(isym.get_st_other());
2400           osym.put_st_shndx(st_shndx);
2401
2402           ov += sym_size;
2403         }
2404
2405       // Write the symbol to the output dynamic symbol table.
2406       if (lv.has_output_dynsym_entry())
2407         {
2408           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2409           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2410
2411           gold_assert(isym.get_st_name() < strtab_size);
2412           const char* name = pnames + isym.get_st_name();
2413           osym.put_st_name(dynpool->get_offset(name));
2414           osym.put_st_value(this->local_values_[i].value(this, 0));
2415           osym.put_st_size(isym.get_st_size());
2416           osym.put_st_info(isym.get_st_info());
2417           osym.put_st_other(isym.get_st_other());
2418           osym.put_st_shndx(st_shndx);
2419
2420           dyn_ov += sym_size;
2421         }
2422     }
2423
2424
2425   if (output_size > 0)
2426     {
2427       gold_assert(ov - oview == output_size);
2428       of->write_output_view(symtab_off + this->local_symbol_offset_,
2429                             output_size, oview);
2430     }
2431
2432   if (dyn_output_size > 0)
2433     {
2434       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2435       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2436                             dyn_oview);
2437     }
2438 }
2439
2440 // Set *INFO to symbolic information about the offset OFFSET in the
2441 // section SHNDX.  Return true if we found something, false if we
2442 // found nothing.
2443
2444 template<int size, bool big_endian>
2445 bool
2446 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2447     unsigned int shndx,
2448     off_t offset,
2449     Symbol_location_info* info)
2450 {
2451   if (this->symtab_shndx_ == 0)
2452     return false;
2453
2454   section_size_type symbols_size;
2455   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2456                                                         &symbols_size,
2457                                                         false);
2458
2459   unsigned int symbol_names_shndx =
2460     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2461   section_size_type names_size;
2462   const unsigned char* symbol_names_u =
2463     this->section_contents(symbol_names_shndx, &names_size, false);
2464   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2465
2466   const int sym_size = This::sym_size;
2467   const size_t count = symbols_size / sym_size;
2468
2469   const unsigned char* p = symbols;
2470   for (size_t i = 0; i < count; ++i, p += sym_size)
2471     {
2472       elfcpp::Sym<size, big_endian> sym(p);
2473
2474       if (sym.get_st_type() == elfcpp::STT_FILE)
2475         {
2476           if (sym.get_st_name() >= names_size)
2477             info->source_file = "(invalid)";
2478           else
2479             info->source_file = symbol_names + sym.get_st_name();
2480           continue;
2481         }
2482
2483       bool is_ordinary;
2484       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2485                                                      &is_ordinary);
2486       if (is_ordinary
2487           && st_shndx == shndx
2488           && static_cast<off_t>(sym.get_st_value()) <= offset
2489           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2490               > offset))
2491         {
2492           if (sym.get_st_name() > names_size)
2493             info->enclosing_symbol_name = "(invalid)";
2494           else
2495             {
2496               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2497               if (parameters->options().do_demangle())
2498                 {
2499                   char* demangled_name = cplus_demangle(
2500                       info->enclosing_symbol_name.c_str(),
2501                       DMGL_ANSI | DMGL_PARAMS);
2502                   if (demangled_name != NULL)
2503                     {
2504                       info->enclosing_symbol_name.assign(demangled_name);
2505                       free(demangled_name);
2506                     }
2507                 }
2508             }
2509           return true;
2510         }
2511     }
2512
2513   return false;
2514 }
2515
2516 // Look for a kept section corresponding to the given discarded section,
2517 // and return its output address.  This is used only for relocations in
2518 // debugging sections.  If we can't find the kept section, return 0.
2519
2520 template<int size, bool big_endian>
2521 typename Sized_relobj_file<size, big_endian>::Address
2522 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2523     unsigned int shndx,
2524     bool* found) const
2525 {
2526   Relobj* kept_object;
2527   unsigned int kept_shndx;
2528   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2529     {
2530       Sized_relobj_file<size, big_endian>* kept_relobj =
2531         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2532       Output_section* os = kept_relobj->output_section(kept_shndx);
2533       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2534       if (os != NULL && offset != invalid_address)
2535         {
2536           *found = true;
2537           return os->address() + offset;
2538         }
2539     }
2540   *found = false;
2541   return 0;
2542 }
2543
2544 // Get symbol counts.
2545
2546 template<int size, bool big_endian>
2547 void
2548 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2549     const Symbol_table*,
2550     size_t* defined,
2551     size_t* used) const
2552 {
2553   *defined = this->defined_count_;
2554   size_t count = 0;
2555   for (typename Symbols::const_iterator p = this->symbols_.begin();
2556        p != this->symbols_.end();
2557        ++p)
2558     if (*p != NULL
2559         && (*p)->source() == Symbol::FROM_OBJECT
2560         && (*p)->object() == this
2561         && (*p)->is_defined())
2562       ++count;
2563   *used = count;
2564 }
2565
2566 // Input_objects methods.
2567
2568 // Add a regular relocatable object to the list.  Return false if this
2569 // object should be ignored.
2570
2571 bool
2572 Input_objects::add_object(Object* obj)
2573 {
2574   // Print the filename if the -t/--trace option is selected.
2575   if (parameters->options().trace())
2576     gold_info("%s", obj->name().c_str());
2577
2578   if (!obj->is_dynamic())
2579     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2580   else
2581     {
2582       // See if this is a duplicate SONAME.
2583       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2584       const char* soname = dynobj->soname();
2585
2586       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2587         this->sonames_.insert(soname);
2588       if (!ins.second)
2589         {
2590           // We have already seen a dynamic object with this soname.
2591           return false;
2592         }
2593
2594       this->dynobj_list_.push_back(dynobj);
2595     }
2596
2597   // Add this object to the cross-referencer if requested.
2598   if (parameters->options().user_set_print_symbol_counts()
2599       || parameters->options().cref())
2600     {
2601       if (this->cref_ == NULL)
2602         this->cref_ = new Cref();
2603       this->cref_->add_object(obj);
2604     }
2605
2606   return true;
2607 }
2608
2609 // For each dynamic object, record whether we've seen all of its
2610 // explicit dependencies.
2611
2612 void
2613 Input_objects::check_dynamic_dependencies() const
2614 {
2615   bool issued_copy_dt_needed_error = false;
2616   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2617        p != this->dynobj_list_.end();
2618        ++p)
2619     {
2620       const Dynobj::Needed& needed((*p)->needed());
2621       bool found_all = true;
2622       Dynobj::Needed::const_iterator pneeded;
2623       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2624         {
2625           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2626             {
2627               found_all = false;
2628               break;
2629             }
2630         }
2631       (*p)->set_has_unknown_needed_entries(!found_all);
2632
2633       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2634       // that gold does not support.  However, they cause no trouble
2635       // unless there is a DT_NEEDED entry that we don't know about;
2636       // warn only in that case.
2637       if (!found_all
2638           && !issued_copy_dt_needed_error
2639           && (parameters->options().copy_dt_needed_entries()
2640               || parameters->options().add_needed()))
2641         {
2642           const char* optname;
2643           if (parameters->options().copy_dt_needed_entries())
2644             optname = "--copy-dt-needed-entries";
2645           else
2646             optname = "--add-needed";
2647           gold_error(_("%s is not supported but is required for %s in %s"),
2648                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2649           issued_copy_dt_needed_error = true;
2650         }
2651     }
2652 }
2653
2654 // Start processing an archive.
2655
2656 void
2657 Input_objects::archive_start(Archive* archive)
2658 {
2659   if (parameters->options().user_set_print_symbol_counts()
2660       || parameters->options().cref())
2661     {
2662       if (this->cref_ == NULL)
2663         this->cref_ = new Cref();
2664       this->cref_->add_archive_start(archive);
2665     }
2666 }
2667
2668 // Stop processing an archive.
2669
2670 void
2671 Input_objects::archive_stop(Archive* archive)
2672 {
2673   if (parameters->options().user_set_print_symbol_counts()
2674       || parameters->options().cref())
2675     this->cref_->add_archive_stop(archive);
2676 }
2677
2678 // Print symbol counts
2679
2680 void
2681 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2682 {
2683   if (parameters->options().user_set_print_symbol_counts()
2684       && this->cref_ != NULL)
2685     this->cref_->print_symbol_counts(symtab);
2686 }
2687
2688 // Print a cross reference table.
2689
2690 void
2691 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2692 {
2693   if (parameters->options().cref() && this->cref_ != NULL)
2694     this->cref_->print_cref(symtab, f);
2695 }
2696
2697 // Relocate_info methods.
2698
2699 // Return a string describing the location of a relocation when file
2700 // and lineno information is not available.  This is only used in
2701 // error messages.
2702
2703 template<int size, bool big_endian>
2704 std::string
2705 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2706 {
2707   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2708   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2709   if (!ret.empty())
2710     return ret;
2711
2712   ret = this->object->name();
2713
2714   Symbol_location_info info;
2715   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2716     {
2717       if (!info.source_file.empty())
2718         {
2719           ret += ":";
2720           ret += info.source_file;
2721         }
2722       size_t len = info.enclosing_symbol_name.length() + 100;
2723       char* buf = new char[len];
2724       snprintf(buf, len, _(":function %s"),
2725                info.enclosing_symbol_name.c_str());
2726       ret += buf;
2727       delete[] buf;
2728       return ret;
2729     }
2730
2731   ret += "(";
2732   ret += this->object->section_name(this->data_shndx);
2733   char buf[100];
2734   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2735   ret += buf;
2736   return ret;
2737 }
2738
2739 } // End namespace gold.
2740
2741 namespace
2742 {
2743
2744 using namespace gold;
2745
2746 // Read an ELF file with the header and return the appropriate
2747 // instance of Object.
2748
2749 template<int size, bool big_endian>
2750 Object*
2751 make_elf_sized_object(const std::string& name, Input_file* input_file,
2752                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2753                       bool* punconfigured)
2754 {
2755   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2756                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2757                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2758   if (target == NULL)
2759     gold_fatal(_("%s: unsupported ELF machine number %d"),
2760                name.c_str(), ehdr.get_e_machine());
2761
2762   if (!parameters->target_valid())
2763     set_parameters_target(target);
2764   else if (target != &parameters->target())
2765     {
2766       if (punconfigured != NULL)
2767         *punconfigured = true;
2768       else
2769         gold_error(_("%s: incompatible target"), name.c_str());
2770       return NULL;
2771     }
2772
2773   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2774                                                    ehdr);
2775 }
2776
2777 } // End anonymous namespace.
2778
2779 namespace gold
2780 {
2781
2782 // Return whether INPUT_FILE is an ELF object.
2783
2784 bool
2785 is_elf_object(Input_file* input_file, off_t offset,
2786               const unsigned char** start, int* read_size)
2787 {
2788   off_t filesize = input_file->file().filesize();
2789   int want = elfcpp::Elf_recognizer::max_header_size;
2790   if (filesize - offset < want)
2791     want = filesize - offset;
2792
2793   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2794                                                        true, false);
2795   *start = p;
2796   *read_size = want;
2797
2798   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2799 }
2800
2801 // Read an ELF file and return the appropriate instance of Object.
2802
2803 Object*
2804 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2805                 const unsigned char* p, section_offset_type bytes,
2806                 bool* punconfigured)
2807 {
2808   if (punconfigured != NULL)
2809     *punconfigured = false;
2810
2811   std::string error;
2812   bool big_endian = false;
2813   int size = 0;
2814   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2815                                                &big_endian, &error))
2816     {
2817       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2818       return NULL;
2819     }
2820
2821   if (size == 32)
2822     {
2823       if (big_endian)
2824         {
2825 #ifdef HAVE_TARGET_32_BIG
2826           elfcpp::Ehdr<32, true> ehdr(p);
2827           return make_elf_sized_object<32, true>(name, input_file,
2828                                                  offset, ehdr, punconfigured);
2829 #else
2830           if (punconfigured != NULL)
2831             *punconfigured = true;
2832           else
2833             gold_error(_("%s: not configured to support "
2834                          "32-bit big-endian object"),
2835                        name.c_str());
2836           return NULL;
2837 #endif
2838         }
2839       else
2840         {
2841 #ifdef HAVE_TARGET_32_LITTLE
2842           elfcpp::Ehdr<32, false> ehdr(p);
2843           return make_elf_sized_object<32, false>(name, input_file,
2844                                                   offset, ehdr, punconfigured);
2845 #else
2846           if (punconfigured != NULL)
2847             *punconfigured = true;
2848           else
2849             gold_error(_("%s: not configured to support "
2850                          "32-bit little-endian object"),
2851                        name.c_str());
2852           return NULL;
2853 #endif
2854         }
2855     }
2856   else if (size == 64)
2857     {
2858       if (big_endian)
2859         {
2860 #ifdef HAVE_TARGET_64_BIG
2861           elfcpp::Ehdr<64, true> ehdr(p);
2862           return make_elf_sized_object<64, true>(name, input_file,
2863                                                  offset, ehdr, punconfigured);
2864 #else
2865           if (punconfigured != NULL)
2866             *punconfigured = true;
2867           else
2868             gold_error(_("%s: not configured to support "
2869                          "64-bit big-endian object"),
2870                        name.c_str());
2871           return NULL;
2872 #endif
2873         }
2874       else
2875         {
2876 #ifdef HAVE_TARGET_64_LITTLE
2877           elfcpp::Ehdr<64, false> ehdr(p);
2878           return make_elf_sized_object<64, false>(name, input_file,
2879                                                   offset, ehdr, punconfigured);
2880 #else
2881           if (punconfigured != NULL)
2882             *punconfigured = true;
2883           else
2884             gold_error(_("%s: not configured to support "
2885                          "64-bit little-endian object"),
2886                        name.c_str());
2887           return NULL;
2888 #endif
2889         }
2890     }
2891   else
2892     gold_unreachable();
2893 }
2894
2895 // Instantiate the templates we need.
2896
2897 #ifdef HAVE_TARGET_32_LITTLE
2898 template
2899 void
2900 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2901                                      Read_symbols_data*);
2902 #endif
2903
2904 #ifdef HAVE_TARGET_32_BIG
2905 template
2906 void
2907 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2908                                     Read_symbols_data*);
2909 #endif
2910
2911 #ifdef HAVE_TARGET_64_LITTLE
2912 template
2913 void
2914 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2915                                      Read_symbols_data*);
2916 #endif
2917
2918 #ifdef HAVE_TARGET_64_BIG
2919 template
2920 void
2921 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2922                                     Read_symbols_data*);
2923 #endif
2924
2925 #ifdef HAVE_TARGET_32_LITTLE
2926 template
2927 class Sized_relobj_file<32, false>;
2928 #endif
2929
2930 #ifdef HAVE_TARGET_32_BIG
2931 template
2932 class Sized_relobj_file<32, true>;
2933 #endif
2934
2935 #ifdef HAVE_TARGET_64_LITTLE
2936 template
2937 class Sized_relobj_file<64, false>;
2938 #endif
2939
2940 #ifdef HAVE_TARGET_64_BIG
2941 template
2942 class Sized_relobj_file<64, true>;
2943 #endif
2944
2945 #ifdef HAVE_TARGET_32_LITTLE
2946 template
2947 struct Relocate_info<32, false>;
2948 #endif
2949
2950 #ifdef HAVE_TARGET_32_BIG
2951 template
2952 struct Relocate_info<32, true>;
2953 #endif
2954
2955 #ifdef HAVE_TARGET_64_LITTLE
2956 template
2957 struct Relocate_info<64, false>;
2958 #endif
2959
2960 #ifdef HAVE_TARGET_64_BIG
2961 template
2962 struct Relocate_info<64, true>;
2963 #endif
2964
2965 #ifdef HAVE_TARGET_32_LITTLE
2966 template
2967 void
2968 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2969
2970 template
2971 void
2972 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2973                                       const unsigned char*);
2974 #endif
2975
2976 #ifdef HAVE_TARGET_32_BIG
2977 template
2978 void
2979 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2980
2981 template
2982 void
2983 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2984                                      const unsigned char*);
2985 #endif
2986
2987 #ifdef HAVE_TARGET_64_LITTLE
2988 template
2989 void
2990 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2991
2992 template
2993 void
2994 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2995                                       const unsigned char*);
2996 #endif
2997
2998 #ifdef HAVE_TARGET_64_BIG
2999 template
3000 void
3001 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3002
3003 template
3004 void
3005 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3006                                      const unsigned char*);
3007 #endif
3008
3009 } // End namespace gold.