Revert "packaging: Add gdb packages"
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433         {
434           const Got_offset_list* got_offsets = p->second;
435           got_offsets->for_all_got_offsets(v);
436         }
437     }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_(),
482     output_views_(NULL)
483 {
484   this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header.  This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499   const unsigned int shnum = this->elf_file_.shnum();
500   this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers.  The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section.  Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512   const unsigned int shnum = this->shnum();
513   this->symtab_shndx_ = 0;
514   if (shnum > 0)
515     {
516       // Look through the sections in reverse order, since gas tends
517       // to put the symbol table at the end.
518       const unsigned char* p = pshdrs + shnum * This::shdr_size;
519       unsigned int i = shnum;
520       unsigned int xindex_shndx = 0;
521       unsigned int xindex_link = 0;
522       while (i > 0)
523         {
524           --i;
525           p -= This::shdr_size;
526           typename This::Shdr shdr(p);
527           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528             {
529               this->symtab_shndx_ = i;
530               if (xindex_shndx > 0 && xindex_link == i)
531                 {
532                   Xindex* xindex =
533                     new Xindex(this->elf_file_.large_shndx_offset());
534                   xindex->read_symtab_xindex<size, big_endian>(this,
535                                                                xindex_shndx,
536                                                                pshdrs);
537                   this->set_xindex(xindex);
538                 }
539               break;
540             }
541
542           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543           // one.  This will work if it follows the SHT_SYMTAB
544           // section.
545           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546             {
547               xindex_shndx = i;
548               xindex_link = this->adjust_shndx(shdr.get_sh_link());
549             }
550         }
551     }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561   gold_assert(this->symtab_shndx_ != -1U);
562   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564   return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573     const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576   return ((sh_type == elfcpp::SHT_PROGBITS
577            || sh_type == parameters->target().unwind_section_type())
578           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586     const unsigned char* pshdrs,
587     const char* name,
588     const char* names,
589     section_size_type names_size,
590     const unsigned char* hdr) const
591 {
592   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593   const unsigned int shnum = this->shnum();
594   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595   size_t sh_name = 0;
596
597   while (1)
598     {
599       if (hdr)
600         {
601           // We found HDR last time we were called, continue looking.
602           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603           sh_name = shdr.get_sh_name();
604         }
605       else
606         {
607           // Look for the next occurrence of NAME in NAMES.
608           // The fact that .shstrtab produced by current GNU tools is
609           // string merged means we shouldn't have both .not.foo and
610           // .foo in .shstrtab, and multiple .foo sections should all
611           // have the same sh_name.  However, this is not guaranteed
612           // by the ELF spec and not all ELF object file producers may
613           // be so clever.
614           size_t len = strlen(name) + 1;
615           const char *p = sh_name ? names + sh_name + len : names;
616           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617                                                    name, len));
618           if (p == NULL)
619             return NULL;
620           sh_name = p - names;
621           hdr = pshdrs;
622           if (sh_name == 0)
623             return hdr;
624         }
625
626       hdr += shdr_size;
627       while (hdr < hdr_end)
628         {
629           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630           if (shdr.get_sh_name() == sh_name)
631             return hdr;
632           hdr += shdr_size;
633         }
634       hdr = NULL;
635       if (sh_name == 0)
636         return hdr;
637     }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646     const unsigned char* pshdrs,
647     const char* names,
648     section_size_type names_size) const
649 {
650   const unsigned char* s = NULL;
651
652   while (1)
653     {
654       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655                                                      names, names_size, s);
656       if (s == NULL)
657         return false;
658
659       typename This::Shdr shdr(s);
660       if (this->check_eh_frame_flags(&shdr))
661         return true;
662     }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task.  This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673   if (*name++ != '_')
674     return false;
675
676 #ifdef ENABLE_THREADS
677   // Decompressing these sections now will help only if we're
678   // multithreaded.
679   if (parameters->options().threads())
680     {
681       // We will need .zdebug_str if this is not an incremental link
682       // (i.e., we are processing string merge sections) or if we need
683       // to build a gdb index.
684       if ((!parameters->incremental() || parameters->options().gdb_index())
685           && strcmp(name, "str") == 0)
686         return true;
687
688       // We will need these other sections when building a gdb index.
689       if (parameters->options().gdb_index()
690           && (strcmp(name, "info") == 0
691               || strcmp(name, "types") == 0
692               || strcmp(name, "pubnames") == 0
693               || strcmp(name, "pubtypes") == 0
694               || strcmp(name, "ranges") == 0
695               || strcmp(name, "abbrev") == 0))
696         return true;
697     }
698 #endif
699
700   // Even when single-threaded, we will need .zdebug_str if this is
701   // not an incremental link and we are building a gdb index.
702   // Otherwise, we would decompress the section twice: once for
703   // string merge processing, and once for building the gdb index.
704   if (!parameters->incremental()
705       && parameters->options().gdb_index()
706       && strcmp(name, "str") == 0)
707     return true;
708
709   return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718     const unsigned char* pshdrs,
719     unsigned int shnum,
720     const char* names,
721     section_size_type names_size,
722     Object* obj,
723     bool decompress_if_needed)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734         {
735           if (shdr.get_sh_name() >= names_size)
736             {
737               obj->error(_("bad section name offset for section %u: %lu"),
738                          i, static_cast<unsigned long>(shdr.get_sh_name()));
739               continue;
740             }
741
742           const char* name = names + shdr.get_sh_name();
743           bool is_compressed = ((shdr.get_sh_flags()
744                                  & elfcpp::SHF_COMPRESSED) != 0);
745           bool is_zcompressed = (!is_compressed
746                                  && is_compressed_debug_section(name));
747
748           if (is_zcompressed || is_compressed)
749             {
750               section_size_type len;
751               const unsigned char* contents =
752                   obj->section_contents(i, &len, false);
753               uint64_t uncompressed_size;
754               Compressed_section_info info;
755               if (is_zcompressed)
756                 {
757                   // Skip over the ".zdebug" prefix.
758                   name += 7;
759                   uncompressed_size = get_uncompressed_size(contents, len);
760                   info.addralign = shdr.get_sh_addralign();
761                 }
762               else
763                 {
764                   // Skip over the ".debug" prefix.
765                   name += 6;
766                   elfcpp::Chdr<size, big_endian> chdr(contents);
767                   uncompressed_size = chdr.get_ch_size();
768                   info.addralign = chdr.get_ch_addralign();
769                 }
770               info.size = convert_to_section_size_type(uncompressed_size);
771               info.flag = shdr.get_sh_flags();
772               info.contents = NULL;
773               if (uncompressed_size != -1ULL)
774                 {
775                   unsigned char* uncompressed_data = NULL;
776                   if (decompress_if_needed && need_decompressed_section(name))
777                     {
778                       uncompressed_data = new unsigned char[uncompressed_size];
779                       if (decompress_input_section(contents, len,
780                                                    uncompressed_data,
781                                                    uncompressed_size,
782                                                    size, big_endian,
783                                                    shdr.get_sh_flags()))
784                         info.contents = uncompressed_data;
785                       else
786                         delete[] uncompressed_data;
787                     }
788                   (*uncompressed_map)[i] = info;
789                 }
790             }
791         }
792     }
793   return uncompressed_map;
794 }
795
796 // Stash away info for a number of special sections.
797 // Return true if any of the sections found require local symbols to be read.
798
799 template<int size, bool big_endian>
800 bool
801 Sized_relobj_file<size, big_endian>::do_find_special_sections(
802     Read_symbols_data* sd)
803 {
804   const unsigned char* const pshdrs = sd->section_headers->data();
805   const unsigned char* namesu = sd->section_names->data();
806   const char* names = reinterpret_cast<const char*>(namesu);
807
808   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
809     this->has_eh_frame_ = true;
810
811   Compressed_section_map* compressed_sections =
812     build_compressed_section_map<size, big_endian>(
813       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
814   if (compressed_sections != NULL)
815     this->set_compressed_sections(compressed_sections);
816
817   return (this->has_eh_frame_
818           || (!parameters->options().relocatable()
819               && parameters->options().gdb_index()
820               && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
821                   || memmem(names, sd->section_names_size,
822                             "debug_types", 12) != NULL)));
823 }
824
825 // Read the sections and symbols from an object file.
826
827 template<int size, bool big_endian>
828 void
829 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
830 {
831   this->base_read_symbols(sd);
832 }
833
834 // Read the sections and symbols from an object file.  This is common
835 // code for all target-specific overrides of do_read_symbols().
836
837 template<int size, bool big_endian>
838 void
839 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
840 {
841   this->read_section_data(&this->elf_file_, sd);
842
843   const unsigned char* const pshdrs = sd->section_headers->data();
844
845   this->find_symtab(pshdrs);
846
847   bool need_local_symbols = this->do_find_special_sections(sd);
848
849   sd->symbols = NULL;
850   sd->symbols_size = 0;
851   sd->external_symbols_offset = 0;
852   sd->symbol_names = NULL;
853   sd->symbol_names_size = 0;
854
855   if (this->symtab_shndx_ == 0)
856     {
857       // No symbol table.  Weird but legal.
858       return;
859     }
860
861   // Get the symbol table section header.
862   typename This::Shdr symtabshdr(pshdrs
863                                  + this->symtab_shndx_ * This::shdr_size);
864   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
865
866   // If this object has a .eh_frame section, or if building a .gdb_index
867   // section and there is debug info, we need all the symbols.
868   // Otherwise we only need the external symbols.  While it would be
869   // simpler to just always read all the symbols, I've seen object
870   // files with well over 2000 local symbols, which for a 64-bit
871   // object file format is over 5 pages that we don't need to read
872   // now.
873
874   const int sym_size = This::sym_size;
875   const unsigned int loccount = symtabshdr.get_sh_info();
876   this->local_symbol_count_ = loccount;
877   this->local_values_.resize(loccount);
878   section_offset_type locsize = loccount * sym_size;
879   off_t dataoff = symtabshdr.get_sh_offset();
880   section_size_type datasize =
881     convert_to_section_size_type(symtabshdr.get_sh_size());
882   off_t extoff = dataoff + locsize;
883   section_size_type extsize = datasize - locsize;
884
885   off_t readoff = need_local_symbols ? dataoff : extoff;
886   section_size_type readsize = need_local_symbols ? datasize : extsize;
887
888   if (readsize == 0)
889     {
890       // No external symbols.  Also weird but also legal.
891       return;
892     }
893
894   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
895
896   // Read the section header for the symbol names.
897   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
898   if (strtab_shndx >= this->shnum())
899     {
900       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
901       return;
902     }
903   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
904   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
905     {
906       this->error(_("symbol table name section has wrong type: %u"),
907                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
908       return;
909     }
910
911   // Read the symbol names.
912   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
913                                                strtabshdr.get_sh_size(),
914                                                false, true);
915
916   sd->symbols = fvsymtab;
917   sd->symbols_size = readsize;
918   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
919   sd->symbol_names = fvstrtab;
920   sd->symbol_names_size =
921     convert_to_section_size_type(strtabshdr.get_sh_size());
922 }
923
924 // Return the section index of symbol SYM.  Set *VALUE to its value in
925 // the object file.  Set *IS_ORDINARY if this is an ordinary section
926 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
927 // Note that for a symbol which is not defined in this object file,
928 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
929 // the final value of the symbol in the link.
930
931 template<int size, bool big_endian>
932 unsigned int
933 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
934                                                               Address* value,
935                                                               bool* is_ordinary)
936 {
937   section_size_type symbols_size;
938   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
939                                                         &symbols_size,
940                                                         false);
941
942   const size_t count = symbols_size / This::sym_size;
943   gold_assert(sym < count);
944
945   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
946   *value = elfsym.get_st_value();
947
948   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
949 }
950
951 // Return whether to include a section group in the link.  LAYOUT is
952 // used to keep track of which section groups we have already seen.
953 // INDEX is the index of the section group and SHDR is the section
954 // header.  If we do not want to include this group, we set bits in
955 // OMIT for each section which should be discarded.
956
957 template<int size, bool big_endian>
958 bool
959 Sized_relobj_file<size, big_endian>::include_section_group(
960     Symbol_table* symtab,
961     Layout* layout,
962     unsigned int index,
963     const char* name,
964     const unsigned char* shdrs,
965     const char* section_names,
966     section_size_type section_names_size,
967     std::vector<bool>* omit)
968 {
969   // Read the section contents.
970   typename This::Shdr shdr(shdrs + index * This::shdr_size);
971   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
972                                              shdr.get_sh_size(), true, false);
973   const elfcpp::Elf_Word* pword =
974     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
975
976   // The first word contains flags.  We only care about COMDAT section
977   // groups.  Other section groups are always included in the link
978   // just like ordinary sections.
979   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
980
981   // Look up the group signature, which is the name of a symbol.  ELF
982   // uses a symbol name because some group signatures are long, and
983   // the name is generally already in the symbol table, so it makes
984   // sense to put the long string just once in .strtab rather than in
985   // both .strtab and .shstrtab.
986
987   // Get the appropriate symbol table header (this will normally be
988   // the single SHT_SYMTAB section, but in principle it need not be).
989   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
990   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
991
992   // Read the symbol table entry.
993   unsigned int symndx = shdr.get_sh_info();
994   if (symndx >= symshdr.get_sh_size() / This::sym_size)
995     {
996       this->error(_("section group %u info %u out of range"),
997                   index, symndx);
998       return false;
999     }
1000   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1001   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1002                                              false);
1003   elfcpp::Sym<size, big_endian> sym(psym);
1004
1005   // Read the symbol table names.
1006   section_size_type symnamelen;
1007   const unsigned char* psymnamesu;
1008   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1009                                       &symnamelen, true);
1010   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1011
1012   // Get the section group signature.
1013   if (sym.get_st_name() >= symnamelen)
1014     {
1015       this->error(_("symbol %u name offset %u out of range"),
1016                   symndx, sym.get_st_name());
1017       return false;
1018     }
1019
1020   std::string signature(psymnames + sym.get_st_name());
1021
1022   // It seems that some versions of gas will create a section group
1023   // associated with a section symbol, and then fail to give a name to
1024   // the section symbol.  In such a case, use the name of the section.
1025   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1026     {
1027       bool is_ordinary;
1028       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1029                                                       sym.get_st_shndx(),
1030                                                       &is_ordinary);
1031       if (!is_ordinary || sym_shndx >= this->shnum())
1032         {
1033           this->error(_("symbol %u invalid section index %u"),
1034                       symndx, sym_shndx);
1035           return false;
1036         }
1037       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1038       if (member_shdr.get_sh_name() < section_names_size)
1039         signature = section_names + member_shdr.get_sh_name();
1040     }
1041
1042   // Record this section group in the layout, and see whether we've already
1043   // seen one with the same signature.
1044   bool include_group;
1045   bool is_comdat;
1046   Kept_section* kept_section = NULL;
1047
1048   if ((flags & elfcpp::GRP_COMDAT) == 0)
1049     {
1050       include_group = true;
1051       is_comdat = false;
1052     }
1053   else
1054     {
1055       include_group = layout->find_or_add_kept_section(signature,
1056                                                        this, index, true,
1057                                                        true, &kept_section);
1058       is_comdat = true;
1059     }
1060
1061   if (is_comdat && include_group)
1062     {
1063       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1064       if (incremental_inputs != NULL)
1065         incremental_inputs->report_comdat_group(this, signature.c_str());
1066     }
1067
1068   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1069
1070   std::vector<unsigned int> shndxes;
1071   bool relocate_group = include_group && parameters->options().relocatable();
1072   if (relocate_group)
1073     shndxes.reserve(count - 1);
1074
1075   for (size_t i = 1; i < count; ++i)
1076     {
1077       elfcpp::Elf_Word shndx =
1078         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1079
1080       if (relocate_group)
1081         shndxes.push_back(shndx);
1082
1083       if (shndx >= this->shnum())
1084         {
1085           this->error(_("section %u in section group %u out of range"),
1086                       shndx, index);
1087           continue;
1088         }
1089
1090       // Check for an earlier section number, since we're going to get
1091       // it wrong--we may have already decided to include the section.
1092       if (shndx < index)
1093         this->error(_("invalid section group %u refers to earlier section %u"),
1094                     index, shndx);
1095
1096       // Get the name of the member section.
1097       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1098       if (member_shdr.get_sh_name() >= section_names_size)
1099         {
1100           // This is an error, but it will be diagnosed eventually
1101           // in do_layout, so we don't need to do anything here but
1102           // ignore it.
1103           continue;
1104         }
1105       std::string mname(section_names + member_shdr.get_sh_name());
1106
1107       if (include_group)
1108         {
1109           if (is_comdat)
1110             kept_section->add_comdat_section(mname, shndx,
1111                                              member_shdr.get_sh_size());
1112         }
1113       else
1114         {
1115           (*omit)[shndx] = true;
1116
1117           // Store a mapping from this section to the Kept_section
1118           // information for the group.  This mapping is used for
1119           // relocation processing and diagnostics.
1120           // If the kept section is a linkonce section, we don't
1121           // bother with it unless the comdat group contains just
1122           // a single section, making it easy to match up.
1123           if (is_comdat
1124               && (kept_section->is_comdat() || count == 2))
1125             this->set_kept_comdat_section(shndx, true, symndx,
1126                                           member_shdr.get_sh_size(),
1127                                           kept_section);
1128         }
1129     }
1130
1131   if (relocate_group)
1132     layout->layout_group(symtab, this, index, name, signature.c_str(),
1133                          shdr, flags, &shndxes);
1134
1135   return include_group;
1136 }
1137
1138 // Whether to include a linkonce section in the link.  NAME is the
1139 // name of the section and SHDR is the section header.
1140
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined.  The semantics are
1143 // that we only include one linkonce section with a given name.  The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature.  We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature.  We also use
1150 // the full name of the linkonce section as a normal section group
1151 // signature.
1152
1153 template<int size, bool big_endian>
1154 bool
1155 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156     Layout* layout,
1157     unsigned int index,
1158     const char* name,
1159     const elfcpp::Shdr<size, big_endian>& shdr)
1160 {
1161   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162   // In general the symbol name we want will be the string following
1163   // the last '.'.  However, we have to handle the case of
1164   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165   // some versions of gcc.  So we use a heuristic: if the name starts
1166   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1167   // we look for the last '.'.  We can't always simply skip
1168   // ".gnu.linkonce.X", because we have to deal with cases like
1169   // ".gnu.linkonce.d.rel.ro.local".
1170   const char* const linkonce_t = ".gnu.linkonce.t.";
1171   const char* symname;
1172   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173     symname = name + strlen(linkonce_t);
1174   else
1175     symname = strrchr(name, '.') + 1;
1176   std::string sig1(symname);
1177   std::string sig2(name);
1178   Kept_section* kept1;
1179   Kept_section* kept2;
1180   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181                                                    false, &kept1);
1182   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183                                                    true, &kept2);
1184
1185   if (!include2)
1186     {
1187       // We are not including this section because we already saw the
1188       // name of the section as a signature.  This normally implies
1189       // that the kept section is another linkonce section.  If it is
1190       // the same size, record it as the section which corresponds to
1191       // this one.
1192       if (kept2->object() != NULL && !kept2->is_comdat())
1193         this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1194     }
1195   else if (!include1)
1196     {
1197       // The section is being discarded on the basis of its symbol
1198       // name.  This means that the corresponding kept section was
1199       // part of a comdat group, and it will be difficult to identify
1200       // the specific section within that group that corresponds to
1201       // this linkonce section.  We'll handle the simple case where
1202       // the group has only one member section.  Otherwise, it's not
1203       // worth the effort.
1204       if (kept1->object() != NULL && kept1->is_comdat())
1205         this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1206     }
1207   else
1208     {
1209       kept1->set_linkonce_size(sh_size);
1210       kept2->set_linkonce_size(sh_size);
1211     }
1212
1213   return include1 && include2;
1214 }
1215
1216 // Layout an input section.
1217
1218 template<int size, bool big_endian>
1219 inline void
1220 Sized_relobj_file<size, big_endian>::layout_section(
1221     Layout* layout,
1222     unsigned int shndx,
1223     const char* name,
1224     const typename This::Shdr& shdr,
1225     unsigned int sh_type,
1226     unsigned int reloc_shndx,
1227     unsigned int reloc_type)
1228 {
1229   off_t offset;
1230   Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1231                                       reloc_shndx, reloc_type, &offset);
1232
1233   this->output_sections()[shndx] = os;
1234   if (offset == -1)
1235     this->section_offsets()[shndx] = invalid_address;
1236   else
1237     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1238
1239   // If this section requires special handling, and if there are
1240   // relocs that apply to it, then we must do the special handling
1241   // before we apply the relocs.
1242   if (offset == -1 && reloc_shndx != 0)
1243     this->set_relocs_must_follow_section_writes();
1244 }
1245
1246 // Layout an input .eh_frame section.
1247
1248 template<int size, bool big_endian>
1249 void
1250 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1251     Layout* layout,
1252     const unsigned char* symbols_data,
1253     section_size_type symbols_size,
1254     const unsigned char* symbol_names_data,
1255     section_size_type symbol_names_size,
1256     unsigned int shndx,
1257     const typename This::Shdr& shdr,
1258     unsigned int reloc_shndx,
1259     unsigned int reloc_type)
1260 {
1261   gold_assert(this->has_eh_frame_);
1262
1263   off_t offset;
1264   Output_section* os = layout->layout_eh_frame(this,
1265                                                symbols_data,
1266                                                symbols_size,
1267                                                symbol_names_data,
1268                                                symbol_names_size,
1269                                                shndx,
1270                                                shdr,
1271                                                reloc_shndx,
1272                                                reloc_type,
1273                                                &offset);
1274   this->output_sections()[shndx] = os;
1275   if (os == NULL || offset == -1)
1276     this->section_offsets()[shndx] = invalid_address;
1277   else
1278     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1279
1280   // If this section requires special handling, and if there are
1281   // relocs that aply to it, then we must do the special handling
1282   // before we apply the relocs.
1283   if (os != NULL && offset == -1 && reloc_shndx != 0)
1284     this->set_relocs_must_follow_section_writes();
1285 }
1286
1287 // Layout an input .note.gnu.property section.
1288
1289 // This note section has an *extremely* non-standard layout.
1290 // The gABI spec says that ELF-64 files should have 8-byte fields and
1291 // 8-byte alignment in the note section, but the Gnu tools generally
1292 // use 4-byte fields and 4-byte alignment (see the comment for
1293 // Layout::create_note).  This section uses 4-byte fields (i.e.,
1294 // namesz, descsz, and type are always 4 bytes), the name field is
1295 // padded to a multiple of 4 bytes, but the desc field is padded
1296 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1297 // The individual properties within the desc field always use
1298 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1299 // a multiple of 4 or 8 bytes, depending on the ELF class.
1300
1301 template<int size, bool big_endian>
1302 void
1303 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1304     Layout* layout,
1305     unsigned int shndx)
1306 {
1307   section_size_type contents_len;
1308   const unsigned char* pcontents = this->section_contents(shndx,
1309                                                           &contents_len,
1310                                                           false);
1311   const unsigned char* pcontents_end = pcontents + contents_len;
1312
1313   // Loop over all the notes in this section.
1314   while (pcontents < pcontents_end)
1315     {
1316       if (pcontents + 16 > pcontents_end)
1317         {
1318           gold_warning(_("%s: corrupt .note.gnu.property section "
1319                          "(note too short)"),
1320                        this->name().c_str());
1321           return;
1322         }
1323
1324       size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1325       size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1326       unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1327       const unsigned char* pname = pcontents + 12;
1328
1329       if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1330         {
1331           gold_warning(_("%s: corrupt .note.gnu.property section "
1332                          "(name is not 'GNU')"),
1333                        this->name().c_str());
1334           return;
1335         }
1336
1337       if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1338         {
1339           gold_warning(_("%s: unsupported note type %d "
1340                          "in .note.gnu.property section"),
1341                        this->name().c_str(), ntype);
1342           return;
1343         }
1344
1345       size_t aligned_namesz = align_address(namesz, 4);
1346       const unsigned char* pdesc = pname + aligned_namesz;
1347
1348       if (pdesc + descsz > pcontents + contents_len)
1349         {
1350           gold_warning(_("%s: corrupt .note.gnu.property section"),
1351                        this->name().c_str());
1352           return;
1353         }
1354
1355       const unsigned char* pprop = pdesc;
1356
1357       // Loop over the program properties in this note.
1358       while (pprop < pdesc + descsz)
1359         {
1360           if (pprop + 8 > pdesc + descsz)
1361             {
1362               gold_warning(_("%s: corrupt .note.gnu.property section"),
1363                            this->name().c_str());
1364               return;
1365             }
1366           unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1367           size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1368           pprop += 8;
1369           if (pprop + pr_datasz > pdesc + descsz)
1370             {
1371               gold_warning(_("%s: corrupt .note.gnu.property section"),
1372                            this->name().c_str());
1373               return;
1374             }
1375           layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1376           pprop += align_address(pr_datasz, size / 8);
1377         }
1378
1379       pcontents = pdesc + align_address(descsz, size / 8);
1380     }
1381 }
1382
1383 // This a copy of lto_section defined in GCC (lto-streamer.h)
1384
1385 struct lto_section
1386 {
1387   int16_t major_version;
1388   int16_t minor_version;
1389   unsigned char slim_object;
1390
1391   /* Flags is a private field that is not defined publicly.  */
1392   uint16_t flags;
1393 };
1394
1395 // Lay out the input sections.  We walk through the sections and check
1396 // whether they should be included in the link.  If they should, we
1397 // pass them to the Layout object, which will return an output section
1398 // and an offset.
1399 // This function is called twice sometimes, two passes, when mapping
1400 // of input sections to output sections must be delayed.
1401 // This is true for the following :
1402 // * Garbage collection (--gc-sections): Some input sections will be
1403 // discarded and hence the assignment must wait until the second pass.
1404 // In the first pass,  it is for setting up some sections as roots to
1405 // a work-list for --gc-sections and to do comdat processing.
1406 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1407 // will be folded and hence the assignment must wait.
1408 // * Using plugins to map some sections to unique segments: Mapping
1409 // some sections to unique segments requires mapping them to unique
1410 // output sections too.  This can be done via plugins now and this
1411 // information is not available in the first pass.
1412
1413 template<int size, bool big_endian>
1414 void
1415 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1416                                                Layout* layout,
1417                                                Read_symbols_data* sd)
1418 {
1419   const unsigned int unwind_section_type =
1420       parameters->target().unwind_section_type();
1421   const unsigned int shnum = this->shnum();
1422
1423   /* Should this function be called twice?  */
1424   bool is_two_pass = (parameters->options().gc_sections()
1425                       || parameters->options().icf_enabled()
1426                       || layout->is_unique_segment_for_sections_specified());
1427
1428   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1429      a two-pass approach is not needed.  */
1430   bool is_pass_one = false;
1431   bool is_pass_two = false;
1432
1433   Symbols_data* gc_sd = NULL;
1434
1435   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1436      should happen.  In the first pass, the data in sd is saved to be used
1437      later in the second pass.  */
1438   if (is_two_pass)
1439     {
1440       gc_sd = this->get_symbols_data();
1441       if (gc_sd == NULL)
1442         {
1443           gold_assert(sd != NULL);
1444           is_pass_one = true;
1445         }
1446       else
1447         {
1448           if (parameters->options().gc_sections())
1449             gold_assert(symtab->gc()->is_worklist_ready());
1450           if (parameters->options().icf_enabled())
1451             gold_assert(symtab->icf()->is_icf_ready()); 
1452           is_pass_two = true;
1453         }
1454     }
1455     
1456   if (shnum == 0)
1457     return;
1458
1459   if (is_pass_one)
1460     {
1461       // During garbage collection save the symbols data to use it when
1462       // re-entering this function.
1463       gc_sd = new Symbols_data;
1464       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1465       this->set_symbols_data(gc_sd);
1466     }
1467
1468   const unsigned char* section_headers_data = NULL;
1469   section_size_type section_names_size;
1470   const unsigned char* symbols_data = NULL;
1471   section_size_type symbols_size;
1472   const unsigned char* symbol_names_data = NULL;
1473   section_size_type symbol_names_size;
1474
1475   if (is_two_pass)
1476     {
1477       section_headers_data = gc_sd->section_headers_data;
1478       section_names_size = gc_sd->section_names_size;
1479       symbols_data = gc_sd->symbols_data;
1480       symbols_size = gc_sd->symbols_size;
1481       symbol_names_data = gc_sd->symbol_names_data;
1482       symbol_names_size = gc_sd->symbol_names_size;
1483     }
1484   else
1485     {
1486       section_headers_data = sd->section_headers->data();
1487       section_names_size = sd->section_names_size;
1488       if (sd->symbols != NULL)
1489         symbols_data = sd->symbols->data();
1490       symbols_size = sd->symbols_size;
1491       if (sd->symbol_names != NULL)
1492         symbol_names_data = sd->symbol_names->data();
1493       symbol_names_size = sd->symbol_names_size;
1494     }
1495
1496   // Get the section headers.
1497   const unsigned char* shdrs = section_headers_data;
1498   const unsigned char* pshdrs;
1499
1500   // Get the section names.
1501   const unsigned char* pnamesu = (is_two_pass
1502                                   ? gc_sd->section_names_data
1503                                   : sd->section_names->data());
1504
1505   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1506
1507   // If any input files have been claimed by plugins, we need to defer
1508   // actual layout until the replacement files have arrived.
1509   const bool should_defer_layout =
1510       (parameters->options().has_plugins()
1511        && parameters->options().plugins()->should_defer_layout());
1512   unsigned int num_sections_to_defer = 0;
1513
1514   // For each section, record the index of the reloc section if any.
1515   // Use 0 to mean that there is no reloc section, -1U to mean that
1516   // there is more than one.
1517   std::vector<unsigned int> reloc_shndx(shnum, 0);
1518   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1519   // Skip the first, dummy, section.
1520   pshdrs = shdrs + This::shdr_size;
1521   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1522     {
1523       typename This::Shdr shdr(pshdrs);
1524
1525       // Count the number of sections whose layout will be deferred.
1526       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1527         ++num_sections_to_defer;
1528
1529       unsigned int sh_type = shdr.get_sh_type();
1530       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1531         {
1532           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1533           if (target_shndx == 0 || target_shndx >= shnum)
1534             {
1535               this->error(_("relocation section %u has bad info %u"),
1536                           i, target_shndx);
1537               continue;
1538             }
1539
1540           if (reloc_shndx[target_shndx] != 0)
1541             reloc_shndx[target_shndx] = -1U;
1542           else
1543             {
1544               reloc_shndx[target_shndx] = i;
1545               reloc_type[target_shndx] = sh_type;
1546             }
1547         }
1548     }
1549
1550   Output_sections& out_sections(this->output_sections());
1551   std::vector<Address>& out_section_offsets(this->section_offsets());
1552
1553   if (!is_pass_two)
1554     {
1555       out_sections.resize(shnum);
1556       out_section_offsets.resize(shnum);
1557     }
1558
1559   // If we are only linking for symbols, then there is nothing else to
1560   // do here.
1561   if (this->input_file()->just_symbols())
1562     {
1563       if (!is_pass_two)
1564         {
1565           delete sd->section_headers;
1566           sd->section_headers = NULL;
1567           delete sd->section_names;
1568           sd->section_names = NULL;
1569         }
1570       return;
1571     }
1572
1573   if (num_sections_to_defer > 0)
1574     {
1575       parameters->options().plugins()->add_deferred_layout_object(this);
1576       this->deferred_layout_.reserve(num_sections_to_defer);
1577       this->is_deferred_layout_ = true;
1578     }
1579
1580   // Whether we've seen a .note.GNU-stack section.
1581   bool seen_gnu_stack = false;
1582   // The flags of a .note.GNU-stack section.
1583   uint64_t gnu_stack_flags = 0;
1584
1585   // Keep track of which sections to omit.
1586   std::vector<bool> omit(shnum, false);
1587
1588   // Keep track of reloc sections when emitting relocations.
1589   const bool relocatable = parameters->options().relocatable();
1590   const bool emit_relocs = (relocatable
1591                             || parameters->options().emit_relocs());
1592   std::vector<unsigned int> reloc_sections;
1593
1594   // Keep track of .eh_frame sections.
1595   std::vector<unsigned int> eh_frame_sections;
1596
1597   // Keep track of .debug_info and .debug_types sections.
1598   std::vector<unsigned int> debug_info_sections;
1599   std::vector<unsigned int> debug_types_sections;
1600
1601   // Skip the first, dummy, section.
1602   pshdrs = shdrs + This::shdr_size;
1603   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1604     {
1605       typename This::Shdr shdr(pshdrs);
1606       const unsigned int sh_name = shdr.get_sh_name();
1607       unsigned int sh_type = shdr.get_sh_type();
1608
1609       if (sh_name >= section_names_size)
1610         {
1611           this->error(_("bad section name offset for section %u: %lu"),
1612                       i, static_cast<unsigned long>(sh_name));
1613           return;
1614         }
1615
1616       const char* name = pnames + sh_name;
1617
1618       if (!is_pass_two)
1619         {
1620           if (this->handle_gnu_warning_section(name, i, symtab))
1621             {
1622               if (!relocatable && !parameters->options().shared())
1623                 omit[i] = true;
1624             }
1625
1626           // The .note.GNU-stack section is special.  It gives the
1627           // protection flags that this object file requires for the stack
1628           // in memory.
1629           if (strcmp(name, ".note.GNU-stack") == 0)
1630             {
1631               seen_gnu_stack = true;
1632               gnu_stack_flags |= shdr.get_sh_flags();
1633               omit[i] = true;
1634             }
1635
1636           // The .note.GNU-split-stack section is also special.  It
1637           // indicates that the object was compiled with
1638           // -fsplit-stack.
1639           if (this->handle_split_stack_section(name))
1640             {
1641               if (!relocatable && !parameters->options().shared())
1642                 omit[i] = true;
1643             }
1644
1645           // Skip attributes section.
1646           if (parameters->target().is_attributes_section(name))
1647             {
1648               omit[i] = true;
1649             }
1650
1651           // Handle .note.gnu.property sections.
1652           if (sh_type == elfcpp::SHT_NOTE
1653               && strcmp(name, ".note.gnu.property") == 0)
1654             {
1655               this->layout_gnu_property_section(layout, i);
1656               omit[i] = true;
1657             }
1658
1659           bool discard = omit[i];
1660           if (!discard)
1661             {
1662               if (sh_type == elfcpp::SHT_GROUP)
1663                 {
1664                   if (!this->include_section_group(symtab, layout, i, name,
1665                                                    shdrs, pnames,
1666                                                    section_names_size,
1667                                                    &omit))
1668                     discard = true;
1669                 }
1670               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1671                        && Layout::is_linkonce(name))
1672                 {
1673                   if (!this->include_linkonce_section(layout, i, name, shdr))
1674                     discard = true;
1675                 }
1676             }
1677
1678           // Add the section to the incremental inputs layout.
1679           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1680           if (incremental_inputs != NULL
1681               && !discard
1682               && can_incremental_update(sh_type))
1683             {
1684               off_t sh_size = shdr.get_sh_size();
1685               section_size_type uncompressed_size;
1686               if (this->section_is_compressed(i, &uncompressed_size))
1687                 sh_size = uncompressed_size;
1688               incremental_inputs->report_input_section(this, i, name, sh_size);
1689             }
1690
1691           if (discard)
1692             {
1693               // Do not include this section in the link.
1694               out_sections[i] = NULL;
1695               out_section_offsets[i] = invalid_address;
1696               continue;
1697             }
1698         }
1699
1700       if (is_pass_one && parameters->options().gc_sections())
1701         {
1702           if (this->is_section_name_included(name)
1703               || layout->keep_input_section (this, name)
1704               || sh_type == elfcpp::SHT_INIT_ARRAY
1705               || sh_type == elfcpp::SHT_FINI_ARRAY)
1706             {
1707               symtab->gc()->worklist().push_back(Section_id(this, i));
1708             }
1709           // If the section name XXX can be represented as a C identifier
1710           // it cannot be discarded if there are references to
1711           // __start_XXX and __stop_XXX symbols.  These need to be
1712           // specially handled.
1713           if (is_cident(name))
1714             {
1715               symtab->gc()->add_cident_section(name, Section_id(this, i));
1716             }
1717         }
1718
1719       // When doing a relocatable link we are going to copy input
1720       // reloc sections into the output.  We only want to copy the
1721       // ones associated with sections which are not being discarded.
1722       // However, we don't know that yet for all sections.  So save
1723       // reloc sections and process them later. Garbage collection is
1724       // not triggered when relocatable code is desired.
1725       if (emit_relocs
1726           && (sh_type == elfcpp::SHT_REL
1727               || sh_type == elfcpp::SHT_RELA))
1728         {
1729           reloc_sections.push_back(i);
1730           continue;
1731         }
1732
1733       if (relocatable && sh_type == elfcpp::SHT_GROUP)
1734         continue;
1735
1736       // The .eh_frame section is special.  It holds exception frame
1737       // information that we need to read in order to generate the
1738       // exception frame header.  We process these after all the other
1739       // sections so that the exception frame reader can reliably
1740       // determine which sections are being discarded, and discard the
1741       // corresponding information.
1742       if (this->check_eh_frame_flags(&shdr)
1743           && strcmp(name, ".eh_frame") == 0)
1744         {
1745           // If the target has a special unwind section type, let's
1746           // canonicalize it here.
1747           sh_type = unwind_section_type;
1748           if (!relocatable)
1749             {
1750               if (is_pass_one)
1751                 {
1752                   if (this->is_deferred_layout())
1753                     out_sections[i] = reinterpret_cast<Output_section*>(2);
1754                   else
1755                     out_sections[i] = reinterpret_cast<Output_section*>(1);
1756                   out_section_offsets[i] = invalid_address;
1757                 }
1758               else if (this->is_deferred_layout())
1759                 {
1760                   out_sections[i] = reinterpret_cast<Output_section*>(2);
1761                   out_section_offsets[i] = invalid_address;
1762                   this->deferred_layout_.push_back(
1763                       Deferred_layout(i, name, sh_type, pshdrs,
1764                                       reloc_shndx[i], reloc_type[i]));
1765                 }
1766               else
1767                 eh_frame_sections.push_back(i);
1768               continue;
1769             }
1770         }
1771
1772       if (is_pass_two && parameters->options().gc_sections())
1773         {
1774           // This is executed during the second pass of garbage
1775           // collection. do_layout has been called before and some
1776           // sections have been already discarded. Simply ignore
1777           // such sections this time around.
1778           if (out_sections[i] == NULL)
1779             {
1780               gold_assert(out_section_offsets[i] == invalid_address);
1781               continue;
1782             }
1783           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1784               && symtab->gc()->is_section_garbage(this, i))
1785               {
1786                 if (parameters->options().print_gc_sections())
1787                   gold_info(_("%s: removing unused section from '%s'"
1788                               " in file '%s'"),
1789                             program_name, this->section_name(i).c_str(),
1790                             this->name().c_str());
1791                 out_sections[i] = NULL;
1792                 out_section_offsets[i] = invalid_address;
1793                 continue;
1794               }
1795         }
1796
1797       if (is_pass_two && parameters->options().icf_enabled())
1798         {
1799           if (out_sections[i] == NULL)
1800             {
1801               gold_assert(out_section_offsets[i] == invalid_address);
1802               continue;
1803             }
1804           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1805               && symtab->icf()->is_section_folded(this, i))
1806               {
1807                 if (parameters->options().print_icf_sections())
1808                   {
1809                     Section_id folded =
1810                                 symtab->icf()->get_folded_section(this, i);
1811                     Relobj* folded_obj =
1812                                 reinterpret_cast<Relobj*>(folded.first);
1813                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1814                                 "into '%s' in file '%s'"),
1815                               program_name, this->section_name(i).c_str(),
1816                               this->name().c_str(),
1817                               folded_obj->section_name(folded.second).c_str(),
1818                               folded_obj->name().c_str());
1819                   }
1820                 out_sections[i] = NULL;
1821                 out_section_offsets[i] = invalid_address;
1822                 continue;
1823               }
1824         }
1825
1826       // Defer layout here if input files are claimed by plugins.  When gc
1827       // is turned on this function is called twice; we only want to do this
1828       // on the first pass.
1829       if (!is_pass_two
1830           && this->is_deferred_layout()
1831           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1832         {
1833           this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1834                                                            pshdrs,
1835                                                            reloc_shndx[i],
1836                                                            reloc_type[i]));
1837           // Put dummy values here; real values will be supplied by
1838           // do_layout_deferred_sections.
1839           out_sections[i] = reinterpret_cast<Output_section*>(2);
1840           out_section_offsets[i] = invalid_address;
1841           continue;
1842         }
1843
1844       // During gc_pass_two if a section that was previously deferred is
1845       // found, do not layout the section as layout_deferred_sections will
1846       // do it later from gold.cc.
1847       if (is_pass_two
1848           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1849         continue;
1850
1851       if (is_pass_one)
1852         {
1853           // This is during garbage collection. The out_sections are
1854           // assigned in the second call to this function.
1855           out_sections[i] = reinterpret_cast<Output_section*>(1);
1856           out_section_offsets[i] = invalid_address;
1857         }
1858       else
1859         {
1860           // When garbage collection is switched on the actual layout
1861           // only happens in the second call.
1862           this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1863                                reloc_type[i]);
1864
1865           // When generating a .gdb_index section, we do additional
1866           // processing of .debug_info and .debug_types sections after all
1867           // the other sections for the same reason as above.
1868           if (!relocatable
1869               && parameters->options().gdb_index()
1870               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1871             {
1872               if (strcmp(name, ".debug_info") == 0
1873                   || strcmp(name, ".zdebug_info") == 0)
1874                 debug_info_sections.push_back(i);
1875               else if (strcmp(name, ".debug_types") == 0
1876                        || strcmp(name, ".zdebug_types") == 0)
1877                 debug_types_sections.push_back(i);
1878             }
1879         }
1880
1881       /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1882          section.  */
1883       const char *lto_section_name = ".gnu.lto_.lto.";
1884       if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1885         {
1886           section_size_type contents_len;
1887           const unsigned char* pcontents
1888             = this->section_contents(i, &contents_len, false);
1889           if (contents_len >= sizeof(lto_section))
1890             {
1891               const lto_section* lsection
1892                 = reinterpret_cast<const lto_section*>(pcontents);
1893               if (lsection->slim_object)
1894                 layout->set_lto_slim_object();
1895             }
1896         }
1897     }
1898
1899   if (!is_pass_two)
1900     {
1901       layout->merge_gnu_properties(this);
1902       layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1903     }
1904
1905   // Handle the .eh_frame sections after the other sections.
1906   gold_assert(!is_pass_one || eh_frame_sections.empty());
1907   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1908        p != eh_frame_sections.end();
1909        ++p)
1910     {
1911       unsigned int i = *p;
1912       const unsigned char* pshdr;
1913       pshdr = section_headers_data + i * This::shdr_size;
1914       typename This::Shdr shdr(pshdr);
1915
1916       this->layout_eh_frame_section(layout,
1917                                     symbols_data,
1918                                     symbols_size,
1919                                     symbol_names_data,
1920                                     symbol_names_size,
1921                                     i,
1922                                     shdr,
1923                                     reloc_shndx[i],
1924                                     reloc_type[i]);
1925     }
1926
1927   // When doing a relocatable link handle the reloc sections at the
1928   // end.  Garbage collection  and Identical Code Folding is not
1929   // turned on for relocatable code.
1930   if (emit_relocs)
1931     this->size_relocatable_relocs();
1932
1933   gold_assert(!is_two_pass || reloc_sections.empty());
1934
1935   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1936        p != reloc_sections.end();
1937        ++p)
1938     {
1939       unsigned int i = *p;
1940       const unsigned char* pshdr;
1941       pshdr = section_headers_data + i * This::shdr_size;
1942       typename This::Shdr shdr(pshdr);
1943
1944       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1945       if (data_shndx >= shnum)
1946         {
1947           // We already warned about this above.
1948           continue;
1949         }
1950
1951       Output_section* data_section = out_sections[data_shndx];
1952       if (data_section == reinterpret_cast<Output_section*>(2))
1953         {
1954           if (is_pass_two)
1955             continue;
1956           // The layout for the data section was deferred, so we need
1957           // to defer the relocation section, too.
1958           const char* name = pnames + shdr.get_sh_name();
1959           this->deferred_layout_relocs_.push_back(
1960               Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1961                               elfcpp::SHT_NULL));
1962           out_sections[i] = reinterpret_cast<Output_section*>(2);
1963           out_section_offsets[i] = invalid_address;
1964           continue;
1965         }
1966       if (data_section == NULL)
1967         {
1968           out_sections[i] = NULL;
1969           out_section_offsets[i] = invalid_address;
1970           continue;
1971         }
1972
1973       Relocatable_relocs* rr = new Relocatable_relocs();
1974       this->set_relocatable_relocs(i, rr);
1975
1976       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1977                                                 rr);
1978       out_sections[i] = os;
1979       out_section_offsets[i] = invalid_address;
1980     }
1981
1982   // When building a .gdb_index section, scan the .debug_info and
1983   // .debug_types sections.
1984   gold_assert(!is_pass_one
1985               || (debug_info_sections.empty() && debug_types_sections.empty()));
1986   for (std::vector<unsigned int>::const_iterator p
1987            = debug_info_sections.begin();
1988        p != debug_info_sections.end();
1989        ++p)
1990     {
1991       unsigned int i = *p;
1992       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1993                                i, reloc_shndx[i], reloc_type[i]);
1994     }
1995   for (std::vector<unsigned int>::const_iterator p
1996            = debug_types_sections.begin();
1997        p != debug_types_sections.end();
1998        ++p)
1999     {
2000       unsigned int i = *p;
2001       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
2002                                i, reloc_shndx[i], reloc_type[i]);
2003     }
2004
2005   if (is_pass_two)
2006     {
2007       delete[] gc_sd->section_headers_data;
2008       delete[] gc_sd->section_names_data;
2009       delete[] gc_sd->symbols_data;
2010       delete[] gc_sd->symbol_names_data;
2011       this->set_symbols_data(NULL);
2012     }
2013   else
2014     {
2015       delete sd->section_headers;
2016       sd->section_headers = NULL;
2017       delete sd->section_names;
2018       sd->section_names = NULL;
2019     }
2020 }
2021
2022 // Layout sections whose layout was deferred while waiting for
2023 // input files from a plugin.
2024
2025 template<int size, bool big_endian>
2026 void
2027 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
2028 {
2029   typename std::vector<Deferred_layout>::iterator deferred;
2030
2031   for (deferred = this->deferred_layout_.begin();
2032        deferred != this->deferred_layout_.end();
2033        ++deferred)
2034     {
2035       typename This::Shdr shdr(deferred->shdr_data_);
2036
2037       if (!parameters->options().relocatable()
2038           && deferred->name_ == ".eh_frame"
2039           && this->check_eh_frame_flags(&shdr))
2040         {
2041           // Checking is_section_included is not reliable for
2042           // .eh_frame sections, because they do not have an output
2043           // section.  This is not a problem normally because we call
2044           // layout_eh_frame_section unconditionally, but when
2045           // deferring sections that is not true.  We don't want to
2046           // keep all .eh_frame sections because that will cause us to
2047           // keep all sections that they refer to, which is the wrong
2048           // way around.  Instead, the eh_frame code will discard
2049           // .eh_frame sections that refer to discarded sections.
2050
2051           // Reading the symbols again here may be slow.
2052           Read_symbols_data sd;
2053           this->base_read_symbols(&sd);
2054           this->layout_eh_frame_section(layout,
2055                                         sd.symbols->data(),
2056                                         sd.symbols_size,
2057                                         sd.symbol_names->data(),
2058                                         sd.symbol_names_size,
2059                                         deferred->shndx_,
2060                                         shdr,
2061                                         deferred->reloc_shndx_,
2062                                         deferred->reloc_type_);
2063           continue;
2064         }
2065
2066       // If the section is not included, it is because the garbage collector
2067       // decided it is not needed.  Avoid reverting that decision.
2068       if (!this->is_section_included(deferred->shndx_))
2069         continue;
2070
2071       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2072                            shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2073                            deferred->reloc_type_);
2074     }
2075
2076   this->deferred_layout_.clear();
2077
2078   // Now handle the deferred relocation sections.
2079
2080   Output_sections& out_sections(this->output_sections());
2081   std::vector<Address>& out_section_offsets(this->section_offsets());
2082
2083   for (deferred = this->deferred_layout_relocs_.begin();
2084        deferred != this->deferred_layout_relocs_.end();
2085        ++deferred)
2086     {
2087       unsigned int shndx = deferred->shndx_;
2088       typename This::Shdr shdr(deferred->shdr_data_);
2089       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2090
2091       Output_section* data_section = out_sections[data_shndx];
2092       if (data_section == NULL)
2093         {
2094           out_sections[shndx] = NULL;
2095           out_section_offsets[shndx] = invalid_address;
2096           continue;
2097         }
2098
2099       Relocatable_relocs* rr = new Relocatable_relocs();
2100       this->set_relocatable_relocs(shndx, rr);
2101
2102       Output_section* os = layout->layout_reloc(this, shndx, shdr,
2103                                                 data_section, rr);
2104       out_sections[shndx] = os;
2105       out_section_offsets[shndx] = invalid_address;
2106     }
2107 }
2108
2109 // Add the symbols to the symbol table.
2110
2111 template<int size, bool big_endian>
2112 void
2113 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2114                                                     Read_symbols_data* sd,
2115                                                     Layout* layout)
2116 {
2117   if (sd->symbols == NULL)
2118     {
2119       gold_assert(sd->symbol_names == NULL);
2120       return;
2121     }
2122
2123   const int sym_size = This::sym_size;
2124   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2125                      / sym_size);
2126   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2127     {
2128       this->error(_("size of symbols is not multiple of symbol size"));
2129       return;
2130     }
2131
2132   this->symbols_.resize(symcount);
2133
2134   if (!parameters->options().relocatable()
2135       && layout->is_lto_slim_object ())
2136     gold_info(_("%s: plugin needed to handle lto object"),
2137               this->name().c_str());
2138
2139   const char* sym_names =
2140     reinterpret_cast<const char*>(sd->symbol_names->data());
2141   symtab->add_from_relobj(this,
2142                           sd->symbols->data() + sd->external_symbols_offset,
2143                           symcount, this->local_symbol_count_,
2144                           sym_names, sd->symbol_names_size,
2145                           &this->symbols_,
2146                           &this->defined_count_);
2147
2148   delete sd->symbols;
2149   sd->symbols = NULL;
2150   delete sd->symbol_names;
2151   sd->symbol_names = NULL;
2152 }
2153
2154 // Find out if this object, that is a member of a lib group, should be included
2155 // in the link. We check every symbol defined by this object. If the symbol
2156 // table has a strong undefined reference to that symbol, we have to include
2157 // the object.
2158
2159 template<int size, bool big_endian>
2160 Archive::Should_include
2161 Sized_relobj_file<size, big_endian>::do_should_include_member(
2162     Symbol_table* symtab,
2163     Layout* layout,
2164     Read_symbols_data* sd,
2165     std::string* why)
2166 {
2167   char* tmpbuf = NULL;
2168   size_t tmpbuflen = 0;
2169   const char* sym_names =
2170       reinterpret_cast<const char*>(sd->symbol_names->data());
2171   const unsigned char* syms =
2172       sd->symbols->data() + sd->external_symbols_offset;
2173   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2174   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2175                          / sym_size);
2176
2177   const unsigned char* p = syms;
2178
2179   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2180     {
2181       elfcpp::Sym<size, big_endian> sym(p);
2182       unsigned int st_shndx = sym.get_st_shndx();
2183       if (st_shndx == elfcpp::SHN_UNDEF)
2184         continue;
2185
2186       unsigned int st_name = sym.get_st_name();
2187       const char* name = sym_names + st_name;
2188       Symbol* symbol;
2189       Archive::Should_include t = Archive::should_include_member(symtab,
2190                                                                  layout,
2191                                                                  name,
2192                                                                  &symbol, why,
2193                                                                  &tmpbuf,
2194                                                                  &tmpbuflen);
2195       if (t == Archive::SHOULD_INCLUDE_YES)
2196         {
2197           if (tmpbuf != NULL)
2198             free(tmpbuf);
2199           return t;
2200         }
2201     }
2202   if (tmpbuf != NULL)
2203     free(tmpbuf);
2204   return Archive::SHOULD_INCLUDE_UNKNOWN;
2205 }
2206
2207 // Iterate over global defined symbols, calling a visitor class V for each.
2208
2209 template<int size, bool big_endian>
2210 void
2211 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2212     Read_symbols_data* sd,
2213     Library_base::Symbol_visitor_base* v)
2214 {
2215   const char* sym_names =
2216       reinterpret_cast<const char*>(sd->symbol_names->data());
2217   const unsigned char* syms =
2218       sd->symbols->data() + sd->external_symbols_offset;
2219   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2220   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2221                      / sym_size);
2222   const unsigned char* p = syms;
2223
2224   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2225     {
2226       elfcpp::Sym<size, big_endian> sym(p);
2227       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2228         v->visit(sym_names + sym.get_st_name());
2229     }
2230 }
2231
2232 // Return whether the local symbol SYMNDX has a PLT offset.
2233
2234 template<int size, bool big_endian>
2235 bool
2236 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2237     unsigned int symndx) const
2238 {
2239   typename Local_plt_offsets::const_iterator p =
2240     this->local_plt_offsets_.find(symndx);
2241   return p != this->local_plt_offsets_.end();
2242 }
2243
2244 // Get the PLT offset of a local symbol.
2245
2246 template<int size, bool big_endian>
2247 unsigned int
2248 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2249     unsigned int symndx) const
2250 {
2251   typename Local_plt_offsets::const_iterator p =
2252     this->local_plt_offsets_.find(symndx);
2253   gold_assert(p != this->local_plt_offsets_.end());
2254   return p->second;
2255 }
2256
2257 // Set the PLT offset of a local symbol.
2258
2259 template<int size, bool big_endian>
2260 void
2261 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2262     unsigned int symndx, unsigned int plt_offset)
2263 {
2264   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2265     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2266   gold_assert(ins.second);
2267 }
2268
2269 // First pass over the local symbols.  Here we add their names to
2270 // *POOL and *DYNPOOL, and we store the symbol value in
2271 // THIS->LOCAL_VALUES_.  This function is always called from a
2272 // singleton thread.  This is followed by a call to
2273 // finalize_local_symbols.
2274
2275 template<int size, bool big_endian>
2276 void
2277 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2278                                                             Stringpool* dynpool)
2279 {
2280   gold_assert(this->symtab_shndx_ != -1U);
2281   if (this->symtab_shndx_ == 0)
2282     {
2283       // This object has no symbols.  Weird but legal.
2284       return;
2285     }
2286
2287   // Read the symbol table section header.
2288   const unsigned int symtab_shndx = this->symtab_shndx_;
2289   typename This::Shdr symtabshdr(this,
2290                                  this->elf_file_.section_header(symtab_shndx));
2291   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2292
2293   // Read the local symbols.
2294   const int sym_size = This::sym_size;
2295   const unsigned int loccount = this->local_symbol_count_;
2296   gold_assert(loccount == symtabshdr.get_sh_info());
2297   off_t locsize = loccount * sym_size;
2298   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2299                                               locsize, true, true);
2300
2301   // Read the symbol names.
2302   const unsigned int strtab_shndx =
2303     this->adjust_shndx(symtabshdr.get_sh_link());
2304   section_size_type strtab_size;
2305   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2306                                                         &strtab_size,
2307                                                         true);
2308   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2309
2310   // Loop over the local symbols.
2311
2312   const Output_sections& out_sections(this->output_sections());
2313   std::vector<Address>& out_section_offsets(this->section_offsets());
2314   unsigned int shnum = this->shnum();
2315   unsigned int count = 0;
2316   unsigned int dyncount = 0;
2317   // Skip the first, dummy, symbol.
2318   psyms += sym_size;
2319   bool strip_all = parameters->options().strip_all();
2320   bool discard_all = parameters->options().discard_all();
2321   bool discard_locals = parameters->options().discard_locals();
2322   bool discard_sec_merge = parameters->options().discard_sec_merge();
2323   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2324     {
2325       elfcpp::Sym<size, big_endian> sym(psyms);
2326
2327       Symbol_value<size>& lv(this->local_values_[i]);
2328
2329       bool is_ordinary;
2330       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2331                                                   &is_ordinary);
2332       lv.set_input_shndx(shndx, is_ordinary);
2333
2334       if (sym.get_st_type() == elfcpp::STT_SECTION)
2335         lv.set_is_section_symbol();
2336       else if (sym.get_st_type() == elfcpp::STT_TLS)
2337         lv.set_is_tls_symbol();
2338       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2339         lv.set_is_ifunc_symbol();
2340
2341       // Save the input symbol value for use in do_finalize_local_symbols().
2342       lv.set_input_value(sym.get_st_value());
2343
2344       // Decide whether this symbol should go into the output file.
2345
2346       if (is_ordinary
2347           && shndx < shnum
2348           && (out_sections[shndx] == NULL
2349               || (out_sections[shndx]->order() == ORDER_EHFRAME
2350                   && out_section_offsets[shndx] == invalid_address)))
2351         {
2352           // This is either a discarded section or an optimized .eh_frame
2353           // section.
2354           lv.set_no_output_symtab_entry();
2355           gold_assert(!lv.needs_output_dynsym_entry());
2356           continue;
2357         }
2358
2359       if (sym.get_st_type() == elfcpp::STT_SECTION
2360           || !this->adjust_local_symbol(&lv))
2361         {
2362           lv.set_no_output_symtab_entry();
2363           gold_assert(!lv.needs_output_dynsym_entry());
2364           continue;
2365         }
2366
2367       if (sym.get_st_name() >= strtab_size)
2368         {
2369           this->error(_("local symbol %u section name out of range: %u >= %u"),
2370                       i, sym.get_st_name(),
2371                       static_cast<unsigned int>(strtab_size));
2372           lv.set_no_output_symtab_entry();
2373           continue;
2374         }
2375
2376       const char* name = pnames + sym.get_st_name();
2377
2378       // If needed, add the symbol to the dynamic symbol table string pool.
2379       if (lv.needs_output_dynsym_entry())
2380         {
2381           dynpool->add(name, true, NULL);
2382           ++dyncount;
2383         }
2384
2385       if (strip_all
2386           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2387         {
2388           lv.set_no_output_symtab_entry();
2389           continue;
2390         }
2391
2392       // By default, discard temporary local symbols in merge sections.
2393       // If --discard-locals option is used, discard all temporary local
2394       // symbols.  These symbols start with system-specific local label
2395       // prefixes, typically .L for ELF system.  We want to be compatible
2396       // with GNU ld so here we essentially use the same check in
2397       // bfd_is_local_label().  The code is different because we already
2398       // know that:
2399       //
2400       //   - the symbol is local and thus cannot have global or weak binding.
2401       //   - the symbol is not a section symbol.
2402       //   - the symbol has a name.
2403       //
2404       // We do not discard a symbol if it needs a dynamic symbol entry.
2405       if ((discard_locals
2406            || (discard_sec_merge
2407                && is_ordinary
2408                && out_section_offsets[shndx] == invalid_address))
2409           && sym.get_st_type() != elfcpp::STT_FILE
2410           && !lv.needs_output_dynsym_entry()
2411           && lv.may_be_discarded_from_output_symtab()
2412           && parameters->target().is_local_label_name(name))
2413         {
2414           lv.set_no_output_symtab_entry();
2415           continue;
2416         }
2417
2418       // Discard the local symbol if -retain_symbols_file is specified
2419       // and the local symbol is not in that file.
2420       if (!parameters->options().should_retain_symbol(name))
2421         {
2422           lv.set_no_output_symtab_entry();
2423           continue;
2424         }
2425
2426       // Add the symbol to the symbol table string pool.
2427       pool->add(name, true, NULL);
2428       ++count;
2429     }
2430
2431   this->output_local_symbol_count_ = count;
2432   this->output_local_dynsym_count_ = dyncount;
2433 }
2434
2435 // Compute the final value of a local symbol.
2436
2437 template<int size, bool big_endian>
2438 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2439 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2440     unsigned int r_sym,
2441     const Symbol_value<size>* lv_in,
2442     Symbol_value<size>* lv_out,
2443     bool relocatable,
2444     const Output_sections& out_sections,
2445     const std::vector<Address>& out_offsets,
2446     const Symbol_table* symtab)
2447 {
2448   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2449   // we may have a memory leak.
2450   gold_assert(lv_out->has_output_value());
2451
2452   bool is_ordinary;
2453   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2454
2455   // Set the output symbol value.
2456
2457   if (!is_ordinary)
2458     {
2459       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2460         lv_out->set_output_value(lv_in->input_value());
2461       else
2462         {
2463           this->error(_("unknown section index %u for local symbol %u"),
2464                       shndx, r_sym);
2465           lv_out->set_output_value(0);
2466           return This::CFLV_ERROR;
2467         }
2468     }
2469   else
2470     {
2471       if (shndx >= this->shnum())
2472         {
2473           this->error(_("local symbol %u section index %u out of range"),
2474                       r_sym, shndx);
2475           lv_out->set_output_value(0);
2476           return This::CFLV_ERROR;
2477         }
2478
2479       Output_section* os = out_sections[shndx];
2480       Address secoffset = out_offsets[shndx];
2481       if (symtab->is_section_folded(this, shndx))
2482         {
2483           gold_assert(os == NULL && secoffset == invalid_address);
2484           // Get the os of the section it is folded onto.
2485           Section_id folded = symtab->icf()->get_folded_section(this,
2486                                                                 shndx);
2487           gold_assert(folded.first != NULL);
2488           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2489             <Sized_relobj_file<size, big_endian>*>(folded.first);
2490           os = folded_obj->output_section(folded.second);
2491           gold_assert(os != NULL);
2492           secoffset = folded_obj->get_output_section_offset(folded.second);
2493
2494           // This could be a relaxed input section.
2495           if (secoffset == invalid_address)
2496             {
2497               const Output_relaxed_input_section* relaxed_section =
2498                 os->find_relaxed_input_section(folded_obj, folded.second);
2499               gold_assert(relaxed_section != NULL);
2500               secoffset = relaxed_section->address() - os->address();
2501             }
2502         }
2503
2504       if (os == NULL)
2505         {
2506           // This local symbol belongs to a section we are discarding.
2507           // In some cases when applying relocations later, we will
2508           // attempt to match it to the corresponding kept section,
2509           // so we leave the input value unchanged here.
2510           return This::CFLV_DISCARDED;
2511         }
2512       else if (secoffset == invalid_address)
2513         {
2514           uint64_t start;
2515
2516           // This is a SHF_MERGE section or one which otherwise
2517           // requires special handling.
2518           if (os->order() == ORDER_EHFRAME)
2519             {
2520               // This local symbol belongs to a discarded or optimized
2521               // .eh_frame section.  Just treat it like the case in which
2522               // os == NULL above.
2523               gold_assert(this->has_eh_frame_);
2524               return This::CFLV_DISCARDED;
2525             }
2526           else if (!lv_in->is_section_symbol())
2527             {
2528               // This is not a section symbol.  We can determine
2529               // the final value now.
2530               uint64_t value =
2531                 os->output_address(this, shndx, lv_in->input_value());
2532               if (relocatable)
2533                 value -= os->address();
2534               lv_out->set_output_value(value);
2535             }
2536           else if (!os->find_starting_output_address(this, shndx, &start))
2537             {
2538               // This is a section symbol, but apparently not one in a
2539               // merged section.  First check to see if this is a relaxed
2540               // input section.  If so, use its address.  Otherwise just
2541               // use the start of the output section.  This happens with
2542               // relocatable links when the input object has section
2543               // symbols for arbitrary non-merge sections.
2544               const Output_section_data* posd =
2545                 os->find_relaxed_input_section(this, shndx);
2546               if (posd != NULL)
2547                 {
2548                   uint64_t value = posd->address();
2549                   if (relocatable)
2550                     value -= os->address();
2551                   lv_out->set_output_value(value);
2552                 }
2553               else
2554                 lv_out->set_output_value(os->address());
2555             }
2556           else
2557             {
2558               // We have to consider the addend to determine the
2559               // value to use in a relocation.  START is the start
2560               // of this input section.  If we are doing a relocatable
2561               // link, use offset from start output section instead of
2562               // address.
2563               Address adjusted_start =
2564                 relocatable ? start - os->address() : start;
2565               Merged_symbol_value<size>* msv =
2566                 new Merged_symbol_value<size>(lv_in->input_value(),
2567                                               adjusted_start);
2568               lv_out->set_merged_symbol_value(msv);
2569             }
2570         }
2571       else if (lv_in->is_tls_symbol()
2572                || (lv_in->is_section_symbol()
2573                    && (os->flags() & elfcpp::SHF_TLS)))
2574         lv_out->set_output_value(os->tls_offset()
2575                                  + secoffset
2576                                  + lv_in->input_value());
2577       else
2578         lv_out->set_output_value((relocatable ? 0 : os->address())
2579                                  + secoffset
2580                                  + lv_in->input_value());
2581     }
2582   return This::CFLV_OK;
2583 }
2584
2585 // Compute final local symbol value.  R_SYM is the index of a local
2586 // symbol in symbol table.  LV points to a symbol value, which is
2587 // expected to hold the input value and to be over-written by the
2588 // final value.  SYMTAB points to a symbol table.  Some targets may want
2589 // to know would-be-finalized local symbol values in relaxation.
2590 // Hence we provide this method.  Since this method updates *LV, a
2591 // callee should make a copy of the original local symbol value and
2592 // use the copy instead of modifying an object's local symbols before
2593 // everything is finalized.  The caller should also free up any allocated
2594 // memory in the return value in *LV.
2595 template<int size, bool big_endian>
2596 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2597 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2598     unsigned int r_sym,
2599     const Symbol_value<size>* lv_in,
2600     Symbol_value<size>* lv_out,
2601     const Symbol_table* symtab)
2602 {
2603   // This is just a wrapper of compute_final_local_value_internal.
2604   const bool relocatable = parameters->options().relocatable();
2605   const Output_sections& out_sections(this->output_sections());
2606   const std::vector<Address>& out_offsets(this->section_offsets());
2607   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2608                                                   relocatable, out_sections,
2609                                                   out_offsets, symtab);
2610 }
2611
2612 // Finalize the local symbols.  Here we set the final value in
2613 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2614 // This function is always called from a singleton thread.  The actual
2615 // output of the local symbols will occur in a separate task.
2616
2617 template<int size, bool big_endian>
2618 unsigned int
2619 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2620     unsigned int index,
2621     off_t off,
2622     Symbol_table* symtab)
2623 {
2624   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2625
2626   const unsigned int loccount = this->local_symbol_count_;
2627   this->local_symbol_offset_ = off;
2628
2629   const bool relocatable = parameters->options().relocatable();
2630   const Output_sections& out_sections(this->output_sections());
2631   const std::vector<Address>& out_offsets(this->section_offsets());
2632
2633   for (unsigned int i = 1; i < loccount; ++i)
2634     {
2635       Symbol_value<size>* lv = &this->local_values_[i];
2636
2637       Compute_final_local_value_status cflv_status =
2638         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2639                                                  out_sections, out_offsets,
2640                                                  symtab);
2641       switch (cflv_status)
2642         {
2643         case CFLV_OK:
2644           if (!lv->is_output_symtab_index_set())
2645             {
2646               lv->set_output_symtab_index(index);
2647               ++index;
2648             }
2649           break;
2650         case CFLV_DISCARDED:
2651         case CFLV_ERROR:
2652           // Do nothing.
2653           break;
2654         default:
2655           gold_unreachable();
2656         }
2657     }
2658   return index;
2659 }
2660
2661 // Set the output dynamic symbol table indexes for the local variables.
2662
2663 template<int size, bool big_endian>
2664 unsigned int
2665 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2666     unsigned int index)
2667 {
2668   const unsigned int loccount = this->local_symbol_count_;
2669   for (unsigned int i = 1; i < loccount; ++i)
2670     {
2671       Symbol_value<size>& lv(this->local_values_[i]);
2672       if (lv.needs_output_dynsym_entry())
2673         {
2674           lv.set_output_dynsym_index(index);
2675           ++index;
2676         }
2677     }
2678   return index;
2679 }
2680
2681 // Set the offset where local dynamic symbol information will be stored.
2682 // Returns the count of local symbols contributed to the symbol table by
2683 // this object.
2684
2685 template<int size, bool big_endian>
2686 unsigned int
2687 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2688 {
2689   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2690   this->local_dynsym_offset_ = off;
2691   return this->output_local_dynsym_count_;
2692 }
2693
2694 // If Symbols_data is not NULL get the section flags from here otherwise
2695 // get it from the file.
2696
2697 template<int size, bool big_endian>
2698 uint64_t
2699 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2700 {
2701   Symbols_data* sd = this->get_symbols_data();
2702   if (sd != NULL)
2703     {
2704       const unsigned char* pshdrs = sd->section_headers_data
2705                                     + This::shdr_size * shndx;
2706       typename This::Shdr shdr(pshdrs);
2707       return shdr.get_sh_flags();
2708     }
2709   // If sd is NULL, read the section header from the file.
2710   return this->elf_file_.section_flags(shndx);
2711 }
2712
2713 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2714 // in icf.cc
2715
2716 template<int size, bool big_endian>
2717 uint64_t
2718 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2719 {
2720   Symbols_data* sd = this->get_symbols_data();
2721   gold_assert(sd != NULL);
2722
2723   const unsigned char* pshdrs = sd->section_headers_data
2724                                 + This::shdr_size * shndx;
2725   typename This::Shdr shdr(pshdrs);
2726   return shdr.get_sh_entsize();
2727 }
2728
2729 // Write out the local symbols.
2730
2731 template<int size, bool big_endian>
2732 void
2733 Sized_relobj_file<size, big_endian>::write_local_symbols(
2734     Output_file* of,
2735     const Stringpool* sympool,
2736     const Stringpool* dynpool,
2737     Output_symtab_xindex* symtab_xindex,
2738     Output_symtab_xindex* dynsym_xindex,
2739     off_t symtab_off)
2740 {
2741   const bool strip_all = parameters->options().strip_all();
2742   if (strip_all)
2743     {
2744       if (this->output_local_dynsym_count_ == 0)
2745         return;
2746       this->output_local_symbol_count_ = 0;
2747     }
2748
2749   gold_assert(this->symtab_shndx_ != -1U);
2750   if (this->symtab_shndx_ == 0)
2751     {
2752       // This object has no symbols.  Weird but legal.
2753       return;
2754     }
2755
2756   // Read the symbol table section header.
2757   const unsigned int symtab_shndx = this->symtab_shndx_;
2758   typename This::Shdr symtabshdr(this,
2759                                  this->elf_file_.section_header(symtab_shndx));
2760   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2761   const unsigned int loccount = this->local_symbol_count_;
2762   gold_assert(loccount == symtabshdr.get_sh_info());
2763
2764   // Read the local symbols.
2765   const int sym_size = This::sym_size;
2766   off_t locsize = loccount * sym_size;
2767   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2768                                               locsize, true, false);
2769
2770   // Read the symbol names.
2771   const unsigned int strtab_shndx =
2772     this->adjust_shndx(symtabshdr.get_sh_link());
2773   section_size_type strtab_size;
2774   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2775                                                         &strtab_size,
2776                                                         false);
2777   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2778
2779   // Get views into the output file for the portions of the symbol table
2780   // and the dynamic symbol table that we will be writing.
2781   off_t output_size = this->output_local_symbol_count_ * sym_size;
2782   unsigned char* oview = NULL;
2783   if (output_size > 0)
2784     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2785                                 output_size);
2786
2787   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2788   unsigned char* dyn_oview = NULL;
2789   if (dyn_output_size > 0)
2790     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2791                                     dyn_output_size);
2792
2793   const Output_sections& out_sections(this->output_sections());
2794
2795   gold_assert(this->local_values_.size() == loccount);
2796
2797   unsigned char* ov = oview;
2798   unsigned char* dyn_ov = dyn_oview;
2799   psyms += sym_size;
2800   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2801     {
2802       elfcpp::Sym<size, big_endian> isym(psyms);
2803
2804       Symbol_value<size>& lv(this->local_values_[i]);
2805
2806       bool is_ordinary;
2807       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2808                                                      &is_ordinary);
2809       if (is_ordinary)
2810         {
2811           gold_assert(st_shndx < out_sections.size());
2812           if (out_sections[st_shndx] == NULL)
2813             continue;
2814           st_shndx = out_sections[st_shndx]->out_shndx();
2815           if (st_shndx >= elfcpp::SHN_LORESERVE)
2816             {
2817               if (lv.has_output_symtab_entry())
2818                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2819               if (lv.has_output_dynsym_entry())
2820                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2821               st_shndx = elfcpp::SHN_XINDEX;
2822             }
2823         }
2824
2825       // Write the symbol to the output symbol table.
2826       if (lv.has_output_symtab_entry())
2827         {
2828           elfcpp::Sym_write<size, big_endian> osym(ov);
2829
2830           gold_assert(isym.get_st_name() < strtab_size);
2831           const char* name = pnames + isym.get_st_name();
2832           osym.put_st_name(sympool->get_offset(name));
2833           osym.put_st_value(lv.value(this, 0));
2834           osym.put_st_size(isym.get_st_size());
2835           osym.put_st_info(isym.get_st_info());
2836           osym.put_st_other(isym.get_st_other());
2837           osym.put_st_shndx(st_shndx);
2838
2839           ov += sym_size;
2840         }
2841
2842       // Write the symbol to the output dynamic symbol table.
2843       if (lv.has_output_dynsym_entry())
2844         {
2845           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2846           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2847
2848           gold_assert(isym.get_st_name() < strtab_size);
2849           const char* name = pnames + isym.get_st_name();
2850           osym.put_st_name(dynpool->get_offset(name));
2851           osym.put_st_value(lv.value(this, 0));
2852           osym.put_st_size(isym.get_st_size());
2853           osym.put_st_info(isym.get_st_info());
2854           osym.put_st_other(isym.get_st_other());
2855           osym.put_st_shndx(st_shndx);
2856
2857           dyn_ov += sym_size;
2858         }
2859     }
2860
2861
2862   if (output_size > 0)
2863     {
2864       gold_assert(ov - oview == output_size);
2865       of->write_output_view(symtab_off + this->local_symbol_offset_,
2866                             output_size, oview);
2867     }
2868
2869   if (dyn_output_size > 0)
2870     {
2871       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2872       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2873                             dyn_oview);
2874     }
2875 }
2876
2877 // Set *INFO to symbolic information about the offset OFFSET in the
2878 // section SHNDX.  Return true if we found something, false if we
2879 // found nothing.
2880
2881 template<int size, bool big_endian>
2882 bool
2883 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2884     unsigned int shndx,
2885     off_t offset,
2886     Symbol_location_info* info)
2887 {
2888   if (this->symtab_shndx_ == 0)
2889     return false;
2890
2891   section_size_type symbols_size;
2892   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2893                                                         &symbols_size,
2894                                                         false);
2895
2896   unsigned int symbol_names_shndx =
2897     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2898   section_size_type names_size;
2899   const unsigned char* symbol_names_u =
2900     this->section_contents(symbol_names_shndx, &names_size, false);
2901   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2902
2903   const int sym_size = This::sym_size;
2904   const size_t count = symbols_size / sym_size;
2905
2906   const unsigned char* p = symbols;
2907   for (size_t i = 0; i < count; ++i, p += sym_size)
2908     {
2909       elfcpp::Sym<size, big_endian> sym(p);
2910
2911       if (sym.get_st_type() == elfcpp::STT_FILE)
2912         {
2913           if (sym.get_st_name() >= names_size)
2914             info->source_file = "(invalid)";
2915           else
2916             info->source_file = symbol_names + sym.get_st_name();
2917           continue;
2918         }
2919
2920       bool is_ordinary;
2921       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2922                                                      &is_ordinary);
2923       if (is_ordinary
2924           && st_shndx == shndx
2925           && static_cast<off_t>(sym.get_st_value()) <= offset
2926           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2927               > offset))
2928         {
2929           info->enclosing_symbol_type = sym.get_st_type();
2930           if (sym.get_st_name() > names_size)
2931             info->enclosing_symbol_name = "(invalid)";
2932           else
2933             {
2934               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2935               if (parameters->options().do_demangle())
2936                 {
2937                   char* demangled_name = cplus_demangle(
2938                       info->enclosing_symbol_name.c_str(),
2939                       DMGL_ANSI | DMGL_PARAMS);
2940                   if (demangled_name != NULL)
2941                     {
2942                       info->enclosing_symbol_name.assign(demangled_name);
2943                       free(demangled_name);
2944                     }
2945                 }
2946             }
2947           return true;
2948         }
2949     }
2950
2951   return false;
2952 }
2953
2954 // Look for a kept section corresponding to the given discarded section,
2955 // and return its output address.  This is used only for relocations in
2956 // debugging sections.  If we can't find the kept section, return 0.
2957
2958 template<int size, bool big_endian>
2959 typename Sized_relobj_file<size, big_endian>::Address
2960 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2961     unsigned int shndx,
2962     std::string& section_name,
2963     bool* pfound) const
2964 {
2965   Kept_section* kept_section;
2966   bool is_comdat;
2967   uint64_t sh_size;
2968   unsigned int symndx;
2969   bool found = false;
2970
2971   if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2972                                     &kept_section))
2973     {
2974       Relobj* kept_object = kept_section->object();
2975       unsigned int kept_shndx = 0;
2976       if (!kept_section->is_comdat())
2977         {
2978           // The kept section is a linkonce section.
2979           if (sh_size == kept_section->linkonce_size())
2980             found = true;
2981         }
2982       else
2983         {
2984           if (is_comdat)
2985             {
2986               // Find the corresponding kept section.
2987               // Since we're using this mapping for relocation processing,
2988               // we don't want to match sections unless they have the same
2989               // size.
2990               uint64_t kept_size = 0;
2991               if (kept_section->find_comdat_section(section_name, &kept_shndx,
2992                                                     &kept_size))
2993                 {
2994                   if (sh_size == kept_size)
2995                     found = true;
2996                 }
2997             }
2998           else
2999             {
3000               uint64_t kept_size = 0;
3001               if (kept_section->find_single_comdat_section(&kept_shndx,
3002                                                            &kept_size)
3003                   && sh_size == kept_size)
3004                 found = true;
3005             }
3006         }
3007
3008       if (found)
3009         {
3010           Sized_relobj_file<size, big_endian>* kept_relobj =
3011             static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
3012           Output_section* os = kept_relobj->output_section(kept_shndx);
3013           Address offset = kept_relobj->get_output_section_offset(kept_shndx);
3014           if (os != NULL && offset != invalid_address)
3015             {
3016               *pfound = true;
3017               return os->address() + offset;
3018             }
3019         }
3020     }
3021   *pfound = false;
3022   return 0;
3023 }
3024
3025 // Look for a kept section corresponding to the given discarded section,
3026 // and return its object file.
3027
3028 template<int size, bool big_endian>
3029 Relobj*
3030 Sized_relobj_file<size, big_endian>::find_kept_section_object(
3031     unsigned int shndx, unsigned int *symndx_p) const
3032 {
3033   Kept_section* kept_section;
3034   bool is_comdat;
3035   uint64_t sh_size;
3036   if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3037                                     &kept_section))
3038     return kept_section->object();
3039   return NULL;
3040 }
3041
3042 // Return the name of symbol SYMNDX.
3043
3044 template<int size, bool big_endian>
3045 const char*
3046 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3047 {
3048   if (this->symtab_shndx_ == 0)
3049     return NULL;
3050
3051   section_size_type symbols_size;
3052   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3053                                                         &symbols_size,
3054                                                         false);
3055
3056   unsigned int symbol_names_shndx =
3057     this->adjust_shndx(this->section_link(this->symtab_shndx_));
3058   section_size_type names_size;
3059   const unsigned char* symbol_names_u =
3060     this->section_contents(symbol_names_shndx, &names_size, false);
3061   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3062
3063   const unsigned char* p = symbols + symndx * This::sym_size;
3064
3065   if (p >= symbols + symbols_size)
3066     return NULL;
3067
3068   elfcpp::Sym<size, big_endian> sym(p);
3069
3070   return symbol_names + sym.get_st_name();
3071 }
3072
3073 // Get symbol counts.
3074
3075 template<int size, bool big_endian>
3076 void
3077 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3078     const Symbol_table*,
3079     size_t* defined,
3080     size_t* used) const
3081 {
3082   *defined = this->defined_count_;
3083   size_t count = 0;
3084   for (typename Symbols::const_iterator p = this->symbols_.begin();
3085        p != this->symbols_.end();
3086        ++p)
3087     if (*p != NULL
3088         && (*p)->source() == Symbol::FROM_OBJECT
3089         && (*p)->object() == this
3090         && (*p)->is_defined())
3091       ++count;
3092   *used = count;
3093 }
3094
3095 // Return a view of the decompressed contents of a section.  Set *PLEN
3096 // to the size.  Set *IS_NEW to true if the contents need to be freed
3097 // by the caller.
3098
3099 const unsigned char*
3100 Object::decompressed_section_contents(
3101     unsigned int shndx,
3102     section_size_type* plen,
3103     bool* is_new,
3104     uint64_t* palign)
3105 {
3106   section_size_type buffer_size;
3107   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3108                                                           false);
3109
3110   if (this->compressed_sections_ == NULL)
3111     {
3112       *plen = buffer_size;
3113       *is_new = false;
3114       return buffer;
3115     }
3116
3117   Compressed_section_map::const_iterator p =
3118       this->compressed_sections_->find(shndx);
3119   if (p == this->compressed_sections_->end())
3120     {
3121       *plen = buffer_size;
3122       *is_new = false;
3123       return buffer;
3124     }
3125
3126   section_size_type uncompressed_size = p->second.size;
3127   if (p->second.contents != NULL)
3128     {
3129       *plen = uncompressed_size;
3130       *is_new = false;
3131       if (palign != NULL)
3132         *palign = p->second.addralign;
3133       return p->second.contents;
3134     }
3135
3136   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3137   if (!decompress_input_section(buffer,
3138                                 buffer_size,
3139                                 uncompressed_data,
3140                                 uncompressed_size,
3141                                 elfsize(),
3142                                 is_big_endian(),
3143                                 p->second.flag))
3144     this->error(_("could not decompress section %s"),
3145                 this->do_section_name(shndx).c_str());
3146
3147   // We could cache the results in p->second.contents and store
3148   // false in *IS_NEW, but build_compressed_section_map() would
3149   // have done so if it had expected it to be profitable.  If
3150   // we reach this point, we expect to need the contents only
3151   // once in this pass.
3152   *plen = uncompressed_size;
3153   *is_new = true;
3154   if (palign != NULL)
3155     *palign = p->second.addralign;
3156   return uncompressed_data;
3157 }
3158
3159 // Discard any buffers of uncompressed sections.  This is done
3160 // at the end of the Add_symbols task.
3161
3162 void
3163 Object::discard_decompressed_sections()
3164 {
3165   if (this->compressed_sections_ == NULL)
3166     return;
3167
3168   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3169        p != this->compressed_sections_->end();
3170        ++p)
3171     {
3172       if (p->second.contents != NULL)
3173         {
3174           delete[] p->second.contents;
3175           p->second.contents = NULL;
3176         }
3177     }
3178 }
3179
3180 // Input_objects methods.
3181
3182 // Add a regular relocatable object to the list.  Return false if this
3183 // object should be ignored.
3184
3185 bool
3186 Input_objects::add_object(Object* obj)
3187 {
3188   // Print the filename if the -t/--trace option is selected.
3189   if (parameters->options().trace())
3190     gold_info("%s", obj->name().c_str());
3191
3192   if (!obj->is_dynamic())
3193     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3194   else
3195     {
3196       // See if this is a duplicate SONAME.
3197       Dynobj* dynobj = static_cast<Dynobj*>(obj);
3198       const char* soname = dynobj->soname();
3199
3200       Unordered_map<std::string, Object*>::value_type val(soname, obj);
3201       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3202         this->sonames_.insert(val);
3203       if (!ins.second)
3204         {
3205           // We have already seen a dynamic object with this soname.
3206           // If any instances of this object on the command line have
3207           // the --no-as-needed flag, make sure the one we keep is
3208           // marked so.
3209           if (!obj->as_needed())
3210             {
3211               gold_assert(ins.first->second != NULL);
3212               ins.first->second->clear_as_needed();
3213             }
3214           return false;
3215         }
3216
3217       this->dynobj_list_.push_back(dynobj);
3218     }
3219
3220   // Add this object to the cross-referencer if requested.
3221   if (parameters->options().user_set_print_symbol_counts()
3222       || parameters->options().cref())
3223     {
3224       if (this->cref_ == NULL)
3225         this->cref_ = new Cref();
3226       this->cref_->add_object(obj);
3227     }
3228
3229   return true;
3230 }
3231
3232 // For each dynamic object, record whether we've seen all of its
3233 // explicit dependencies.
3234
3235 void
3236 Input_objects::check_dynamic_dependencies() const
3237 {
3238   bool issued_copy_dt_needed_error = false;
3239   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3240        p != this->dynobj_list_.end();
3241        ++p)
3242     {
3243       const Dynobj::Needed& needed((*p)->needed());
3244       bool found_all = true;
3245       Dynobj::Needed::const_iterator pneeded;
3246       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3247         {
3248           if (this->sonames_.find(*pneeded) == this->sonames_.end())
3249             {
3250               found_all = false;
3251               break;
3252             }
3253         }
3254       (*p)->set_has_unknown_needed_entries(!found_all);
3255
3256       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3257       // that gold does not support.  However, they cause no trouble
3258       // unless there is a DT_NEEDED entry that we don't know about;
3259       // warn only in that case.
3260       if (!found_all
3261           && !issued_copy_dt_needed_error
3262           && (parameters->options().copy_dt_needed_entries()
3263               || parameters->options().add_needed()))
3264         {
3265           const char* optname;
3266           if (parameters->options().copy_dt_needed_entries())
3267             optname = "--copy-dt-needed-entries";
3268           else
3269             optname = "--add-needed";
3270           gold_error(_("%s is not supported but is required for %s in %s"),
3271                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3272           issued_copy_dt_needed_error = true;
3273         }
3274     }
3275 }
3276
3277 // Start processing an archive.
3278
3279 void
3280 Input_objects::archive_start(Archive* archive)
3281 {
3282   if (parameters->options().user_set_print_symbol_counts()
3283       || parameters->options().cref())
3284     {
3285       if (this->cref_ == NULL)
3286         this->cref_ = new Cref();
3287       this->cref_->add_archive_start(archive);
3288     }
3289 }
3290
3291 // Stop processing an archive.
3292
3293 void
3294 Input_objects::archive_stop(Archive* archive)
3295 {
3296   if (parameters->options().user_set_print_symbol_counts()
3297       || parameters->options().cref())
3298     this->cref_->add_archive_stop(archive);
3299 }
3300
3301 // Print symbol counts
3302
3303 void
3304 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3305 {
3306   if (parameters->options().user_set_print_symbol_counts()
3307       && this->cref_ != NULL)
3308     this->cref_->print_symbol_counts(symtab);
3309 }
3310
3311 // Print a cross reference table.
3312
3313 void
3314 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3315 {
3316   if (parameters->options().cref() && this->cref_ != NULL)
3317     this->cref_->print_cref(symtab, f);
3318 }
3319
3320 // Relocate_info methods.
3321
3322 // Return a string describing the location of a relocation when file
3323 // and lineno information is not available.  This is only used in
3324 // error messages.
3325
3326 template<int size, bool big_endian>
3327 std::string
3328 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3329 {
3330   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3331   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3332   if (!ret.empty())
3333     return ret;
3334
3335   ret = this->object->name();
3336
3337   Symbol_location_info info;
3338   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3339     {
3340       if (!info.source_file.empty())
3341         {
3342           ret += ":";
3343           ret += info.source_file;
3344         }
3345       ret += ":";
3346       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3347         ret += _("function ");
3348       ret += info.enclosing_symbol_name;
3349       return ret;
3350     }
3351
3352   ret += "(";
3353   ret += this->object->section_name(this->data_shndx);
3354   char buf[100];
3355   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3356   ret += buf;
3357   return ret;
3358 }
3359
3360 } // End namespace gold.
3361
3362 namespace
3363 {
3364
3365 using namespace gold;
3366
3367 // Read an ELF file with the header and return the appropriate
3368 // instance of Object.
3369
3370 template<int size, bool big_endian>
3371 Object*
3372 make_elf_sized_object(const std::string& name, Input_file* input_file,
3373                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3374                       bool* punconfigured)
3375 {
3376   Target* target = select_target(input_file, offset,
3377                                  ehdr.get_e_machine(), size, big_endian,
3378                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3379                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3380   if (target == NULL)
3381     gold_fatal(_("%s: unsupported ELF machine number %d"),
3382                name.c_str(), ehdr.get_e_machine());
3383
3384   if (!parameters->target_valid())
3385     set_parameters_target(target);
3386   else if (target != &parameters->target())
3387     {
3388       if (punconfigured != NULL)
3389         *punconfigured = true;
3390       else
3391         gold_error(_("%s: incompatible target"), name.c_str());
3392       return NULL;
3393     }
3394
3395   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3396                                                    ehdr);
3397 }
3398
3399 } // End anonymous namespace.
3400
3401 namespace gold
3402 {
3403
3404 // Return whether INPUT_FILE is an ELF object.
3405
3406 bool
3407 is_elf_object(Input_file* input_file, off_t offset,
3408               const unsigned char** start, int* read_size)
3409 {
3410   off_t filesize = input_file->file().filesize();
3411   int want = elfcpp::Elf_recognizer::max_header_size;
3412   if (filesize - offset < want)
3413     want = filesize - offset;
3414
3415   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3416                                                        true, false);
3417   *start = p;
3418   *read_size = want;
3419
3420   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3421 }
3422
3423 // Read an ELF file and return the appropriate instance of Object.
3424
3425 Object*
3426 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3427                 const unsigned char* p, section_offset_type bytes,
3428                 bool* punconfigured)
3429 {
3430   if (punconfigured != NULL)
3431     *punconfigured = false;
3432
3433   std::string error;
3434   bool big_endian = false;
3435   int size = 0;
3436   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3437                                                &big_endian, &error))
3438     {
3439       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3440       return NULL;
3441     }
3442
3443   if (size == 32)
3444     {
3445       if (big_endian)
3446         {
3447 #ifdef HAVE_TARGET_32_BIG
3448           elfcpp::Ehdr<32, true> ehdr(p);
3449           return make_elf_sized_object<32, true>(name, input_file,
3450                                                  offset, ehdr, punconfigured);
3451 #else
3452           if (punconfigured != NULL)
3453             *punconfigured = true;
3454           else
3455             gold_error(_("%s: not configured to support "
3456                          "32-bit big-endian object"),
3457                        name.c_str());
3458           return NULL;
3459 #endif
3460         }
3461       else
3462         {
3463 #ifdef HAVE_TARGET_32_LITTLE
3464           elfcpp::Ehdr<32, false> ehdr(p);
3465           return make_elf_sized_object<32, false>(name, input_file,
3466                                                   offset, ehdr, punconfigured);
3467 #else
3468           if (punconfigured != NULL)
3469             *punconfigured = true;
3470           else
3471             gold_error(_("%s: not configured to support "
3472                          "32-bit little-endian object"),
3473                        name.c_str());
3474           return NULL;
3475 #endif
3476         }
3477     }
3478   else if (size == 64)
3479     {
3480       if (big_endian)
3481         {
3482 #ifdef HAVE_TARGET_64_BIG
3483           elfcpp::Ehdr<64, true> ehdr(p);
3484           return make_elf_sized_object<64, true>(name, input_file,
3485                                                  offset, ehdr, punconfigured);
3486 #else
3487           if (punconfigured != NULL)
3488             *punconfigured = true;
3489           else
3490             gold_error(_("%s: not configured to support "
3491                          "64-bit big-endian object"),
3492                        name.c_str());
3493           return NULL;
3494 #endif
3495         }
3496       else
3497         {
3498 #ifdef HAVE_TARGET_64_LITTLE
3499           elfcpp::Ehdr<64, false> ehdr(p);
3500           return make_elf_sized_object<64, false>(name, input_file,
3501                                                   offset, ehdr, punconfigured);
3502 #else
3503           if (punconfigured != NULL)
3504             *punconfigured = true;
3505           else
3506             gold_error(_("%s: not configured to support "
3507                          "64-bit little-endian object"),
3508                        name.c_str());
3509           return NULL;
3510 #endif
3511         }
3512     }
3513   else
3514     gold_unreachable();
3515 }
3516
3517 // Instantiate the templates we need.
3518
3519 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3520 template
3521 void
3522 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3523       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3524       Unordered_map<section_offset_type,
3525       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3526 #endif
3527
3528 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3529 template
3530 void
3531 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3532       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3533       Unordered_map<section_offset_type,
3534       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3535 #endif
3536
3537 #ifdef HAVE_TARGET_32_LITTLE
3538 template
3539 void
3540 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3541                                      Read_symbols_data*);
3542 template
3543 const unsigned char*
3544 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3545                             section_size_type, const unsigned char*) const;
3546 #endif
3547
3548 #ifdef HAVE_TARGET_32_BIG
3549 template
3550 void
3551 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3552                                     Read_symbols_data*);
3553 template
3554 const unsigned char*
3555 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3556                            section_size_type, const unsigned char*) const;
3557 #endif
3558
3559 #ifdef HAVE_TARGET_64_LITTLE
3560 template
3561 void
3562 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3563                                      Read_symbols_data*);
3564 template
3565 const unsigned char*
3566 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3567                             section_size_type, const unsigned char*) const;
3568 #endif
3569
3570 #ifdef HAVE_TARGET_64_BIG
3571 template
3572 void
3573 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3574                                     Read_symbols_data*);
3575 template
3576 const unsigned char*
3577 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3578                            section_size_type, const unsigned char*) const;
3579 #endif
3580
3581 #ifdef HAVE_TARGET_32_LITTLE
3582 template
3583 class Sized_relobj<32, false>;
3584
3585 template
3586 class Sized_relobj_file<32, false>;
3587 #endif
3588
3589 #ifdef HAVE_TARGET_32_BIG
3590 template
3591 class Sized_relobj<32, true>;
3592
3593 template
3594 class Sized_relobj_file<32, true>;
3595 #endif
3596
3597 #ifdef HAVE_TARGET_64_LITTLE
3598 template
3599 class Sized_relobj<64, false>;
3600
3601 template
3602 class Sized_relobj_file<64, false>;
3603 #endif
3604
3605 #ifdef HAVE_TARGET_64_BIG
3606 template
3607 class Sized_relobj<64, true>;
3608
3609 template
3610 class Sized_relobj_file<64, true>;
3611 #endif
3612
3613 #ifdef HAVE_TARGET_32_LITTLE
3614 template
3615 struct Relocate_info<32, false>;
3616 #endif
3617
3618 #ifdef HAVE_TARGET_32_BIG
3619 template
3620 struct Relocate_info<32, true>;
3621 #endif
3622
3623 #ifdef HAVE_TARGET_64_LITTLE
3624 template
3625 struct Relocate_info<64, false>;
3626 #endif
3627
3628 #ifdef HAVE_TARGET_64_BIG
3629 template
3630 struct Relocate_info<64, true>;
3631 #endif
3632
3633 #ifdef HAVE_TARGET_32_LITTLE
3634 template
3635 void
3636 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3637
3638 template
3639 void
3640 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3641                                       const unsigned char*);
3642 #endif
3643
3644 #ifdef HAVE_TARGET_32_BIG
3645 template
3646 void
3647 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3648
3649 template
3650 void
3651 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3652                                      const unsigned char*);
3653 #endif
3654
3655 #ifdef HAVE_TARGET_64_LITTLE
3656 template
3657 void
3658 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3659
3660 template
3661 void
3662 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3663                                       const unsigned char*);
3664 #endif
3665
3666 #ifdef HAVE_TARGET_64_BIG
3667 template
3668 void
3669 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3670
3671 template
3672 void
3673 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3674                                      const unsigned char*);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_32_LITTLE
3678 template
3679 Compressed_section_map*
3680 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3681                                         const char*, section_size_type, 
3682                                         Object*, bool);
3683 #endif
3684
3685 #ifdef HAVE_TARGET_32_BIG
3686 template
3687 Compressed_section_map*
3688 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3689                                         const char*, section_size_type, 
3690                                         Object*, bool);
3691 #endif
3692
3693 #ifdef HAVE_TARGET_64_LITTLE
3694 template
3695 Compressed_section_map*
3696 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3697                                         const char*, section_size_type, 
3698                                         Object*, bool);
3699 #endif
3700
3701 #ifdef HAVE_TARGET_64_BIG
3702 template
3703 Compressed_section_map*
3704 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3705                                         const char*, section_size_type, 
3706                                         Object*, bool);
3707 #endif
3708
3709 } // End namespace gold.