MIPS/GAS: Correct `-O0' and `-O' option help, add `-O1' and `-O2'
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433         {
434           const Got_offset_list* got_offsets = p->second;
435           got_offsets->for_all_got_offsets(v);
436         }
437     }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_(),
482     output_views_(NULL)
483 {
484   this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header.  This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499   const unsigned int shnum = this->elf_file_.shnum();
500   this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers.  The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section.  Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512   const unsigned int shnum = this->shnum();
513   this->symtab_shndx_ = 0;
514   if (shnum > 0)
515     {
516       // Look through the sections in reverse order, since gas tends
517       // to put the symbol table at the end.
518       const unsigned char* p = pshdrs + shnum * This::shdr_size;
519       unsigned int i = shnum;
520       unsigned int xindex_shndx = 0;
521       unsigned int xindex_link = 0;
522       while (i > 0)
523         {
524           --i;
525           p -= This::shdr_size;
526           typename This::Shdr shdr(p);
527           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528             {
529               this->symtab_shndx_ = i;
530               if (xindex_shndx > 0 && xindex_link == i)
531                 {
532                   Xindex* xindex =
533                     new Xindex(this->elf_file_.large_shndx_offset());
534                   xindex->read_symtab_xindex<size, big_endian>(this,
535                                                                xindex_shndx,
536                                                                pshdrs);
537                   this->set_xindex(xindex);
538                 }
539               break;
540             }
541
542           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543           // one.  This will work if it follows the SHT_SYMTAB
544           // section.
545           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546             {
547               xindex_shndx = i;
548               xindex_link = this->adjust_shndx(shdr.get_sh_link());
549             }
550         }
551     }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561   gold_assert(this->symtab_shndx_ != -1U);
562   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564   return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573     const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576   return ((sh_type == elfcpp::SHT_PROGBITS
577            || sh_type == parameters->target().unwind_section_type())
578           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586     const unsigned char* pshdrs,
587     const char* name,
588     const char* names,
589     section_size_type names_size,
590     const unsigned char* hdr) const
591 {
592   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593   const unsigned int shnum = this->shnum();
594   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595   size_t sh_name = 0;
596
597   while (1)
598     {
599       if (hdr)
600         {
601           // We found HDR last time we were called, continue looking.
602           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603           sh_name = shdr.get_sh_name();
604         }
605       else
606         {
607           // Look for the next occurrence of NAME in NAMES.
608           // The fact that .shstrtab produced by current GNU tools is
609           // string merged means we shouldn't have both .not.foo and
610           // .foo in .shstrtab, and multiple .foo sections should all
611           // have the same sh_name.  However, this is not guaranteed
612           // by the ELF spec and not all ELF object file producers may
613           // be so clever.
614           size_t len = strlen(name) + 1;
615           const char *p = sh_name ? names + sh_name + len : names;
616           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617                                                    name, len));
618           if (p == NULL)
619             return NULL;
620           sh_name = p - names;
621           hdr = pshdrs;
622           if (sh_name == 0)
623             return hdr;
624         }
625
626       hdr += shdr_size;
627       while (hdr < hdr_end)
628         {
629           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630           if (shdr.get_sh_name() == sh_name)
631             return hdr;
632           hdr += shdr_size;
633         }
634       hdr = NULL;
635       if (sh_name == 0)
636         return hdr;
637     }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646     const unsigned char* pshdrs,
647     const char* names,
648     section_size_type names_size) const
649 {
650   const unsigned char* s = NULL;
651
652   while (1)
653     {
654       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655                                                      names, names_size, s);
656       if (s == NULL)
657         return false;
658
659       typename This::Shdr shdr(s);
660       if (this->check_eh_frame_flags(&shdr))
661         return true;
662     }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task.  This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673   if (*name++ != '_')
674     return false;
675
676 #ifdef ENABLE_THREADS
677   // Decompressing these sections now will help only if we're
678   // multithreaded.
679   if (parameters->options().threads())
680     {
681       // We will need .zdebug_str if this is not an incremental link
682       // (i.e., we are processing string merge sections) or if we need
683       // to build a gdb index.
684       if ((!parameters->incremental() || parameters->options().gdb_index())
685           && strcmp(name, "str") == 0)
686         return true;
687
688       // We will need these other sections when building a gdb index.
689       if (parameters->options().gdb_index()
690           && (strcmp(name, "info") == 0
691               || strcmp(name, "types") == 0
692               || strcmp(name, "pubnames") == 0
693               || strcmp(name, "pubtypes") == 0
694               || strcmp(name, "ranges") == 0
695               || strcmp(name, "abbrev") == 0))
696         return true;
697     }
698 #endif
699
700   // Even when single-threaded, we will need .zdebug_str if this is
701   // not an incremental link and we are building a gdb index.
702   // Otherwise, we would decompress the section twice: once for
703   // string merge processing, and once for building the gdb index.
704   if (!parameters->incremental()
705       && parameters->options().gdb_index()
706       && strcmp(name, "str") == 0)
707     return true;
708
709   return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718     const unsigned char* pshdrs,
719     unsigned int shnum,
720     const char* names,
721     section_size_type names_size,
722     Object* obj,
723     bool decompress_if_needed)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734         {
735           if (shdr.get_sh_name() >= names_size)
736             {
737               obj->error(_("bad section name offset for section %u: %lu"),
738                          i, static_cast<unsigned long>(shdr.get_sh_name()));
739               continue;
740             }
741
742           const char* name = names + shdr.get_sh_name();
743           bool is_compressed = ((shdr.get_sh_flags()
744                                  & elfcpp::SHF_COMPRESSED) != 0);
745           bool is_zcompressed = (!is_compressed
746                                  && is_compressed_debug_section(name));
747
748           if (is_zcompressed || is_compressed)
749             {
750               section_size_type len;
751               const unsigned char* contents =
752                   obj->section_contents(i, &len, false);
753               uint64_t uncompressed_size;
754               if (is_zcompressed)
755                 {
756                   // Skip over the ".zdebug" prefix.
757                   name += 7;
758                   uncompressed_size = get_uncompressed_size(contents, len);
759                 }
760               else
761                 {
762                   // Skip over the ".debug" prefix.
763                   name += 6;
764                   elfcpp::Chdr<size, big_endian> chdr(contents);
765                   uncompressed_size = chdr.get_ch_size();
766                 }
767               Compressed_section_info info;
768               info.size = convert_to_section_size_type(uncompressed_size);
769               info.flag = shdr.get_sh_flags();
770               info.contents = NULL;
771               if (uncompressed_size != -1ULL)
772                 {
773                   unsigned char* uncompressed_data = NULL;
774                   if (decompress_if_needed && need_decompressed_section(name))
775                     {
776                       uncompressed_data = new unsigned char[uncompressed_size];
777                       if (decompress_input_section(contents, len,
778                                                    uncompressed_data,
779                                                    uncompressed_size,
780                                                    size, big_endian,
781                                                    shdr.get_sh_flags()))
782                         info.contents = uncompressed_data;
783                       else
784                         delete[] uncompressed_data;
785                     }
786                   (*uncompressed_map)[i] = info;
787                 }
788             }
789         }
790     }
791   return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800     Read_symbols_data* sd)
801 {
802   const unsigned char* const pshdrs = sd->section_headers->data();
803   const unsigned char* namesu = sd->section_names->data();
804   const char* names = reinterpret_cast<const char*>(namesu);
805
806   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807     this->has_eh_frame_ = true;
808
809   Compressed_section_map* compressed_sections =
810     build_compressed_section_map<size, big_endian>(
811       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812   if (compressed_sections != NULL)
813     this->set_compressed_sections(compressed_sections);
814
815   return (this->has_eh_frame_
816           || (!parameters->options().relocatable()
817               && parameters->options().gdb_index()
818               && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819                   || memmem(names, sd->section_names_size,
820                             "debug_types", 12) != NULL)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829   this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file.  This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839   this->read_section_data(&this->elf_file_, sd);
840
841   const unsigned char* const pshdrs = sd->section_headers->data();
842
843   this->find_symtab(pshdrs);
844
845   bool need_local_symbols = this->do_find_special_sections(sd);
846
847   sd->symbols = NULL;
848   sd->symbols_size = 0;
849   sd->external_symbols_offset = 0;
850   sd->symbol_names = NULL;
851   sd->symbol_names_size = 0;
852
853   if (this->symtab_shndx_ == 0)
854     {
855       // No symbol table.  Weird but legal.
856       return;
857     }
858
859   // Get the symbol table section header.
860   typename This::Shdr symtabshdr(pshdrs
861                                  + this->symtab_shndx_ * This::shdr_size);
862   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864   // If this object has a .eh_frame section, or if building a .gdb_index
865   // section and there is debug info, we need all the symbols.
866   // Otherwise we only need the external symbols.  While it would be
867   // simpler to just always read all the symbols, I've seen object
868   // files with well over 2000 local symbols, which for a 64-bit
869   // object file format is over 5 pages that we don't need to read
870   // now.
871
872   const int sym_size = This::sym_size;
873   const unsigned int loccount = symtabshdr.get_sh_info();
874   this->local_symbol_count_ = loccount;
875   this->local_values_.resize(loccount);
876   section_offset_type locsize = loccount * sym_size;
877   off_t dataoff = symtabshdr.get_sh_offset();
878   section_size_type datasize =
879     convert_to_section_size_type(symtabshdr.get_sh_size());
880   off_t extoff = dataoff + locsize;
881   section_size_type extsize = datasize - locsize;
882
883   off_t readoff = need_local_symbols ? dataoff : extoff;
884   section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886   if (readsize == 0)
887     {
888       // No external symbols.  Also weird but also legal.
889       return;
890     }
891
892   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894   // Read the section header for the symbol names.
895   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896   if (strtab_shndx >= this->shnum())
897     {
898       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899       return;
900     }
901   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903     {
904       this->error(_("symbol table name section has wrong type: %u"),
905                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
906       return;
907     }
908
909   // Read the symbol names.
910   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911                                                strtabshdr.get_sh_size(),
912                                                false, true);
913
914   sd->symbols = fvsymtab;
915   sd->symbols_size = readsize;
916   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917   sd->symbol_names = fvstrtab;
918   sd->symbol_names_size =
919     convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM.  Set *VALUE to its value in
923 // the object file.  Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932                                                               Address* value,
933                                                               bool* is_ordinary)
934 {
935   section_size_type symbols_size;
936   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937                                                         &symbols_size,
938                                                         false);
939
940   const size_t count = symbols_size / This::sym_size;
941   gold_assert(sym < count);
942
943   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944   *value = elfsym.get_st_value();
945
946   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link.  LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header.  If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958     Symbol_table* symtab,
959     Layout* layout,
960     unsigned int index,
961     const char* name,
962     const unsigned char* shdrs,
963     const char* section_names,
964     section_size_type section_names_size,
965     std::vector<bool>* omit)
966 {
967   // Read the section contents.
968   typename This::Shdr shdr(shdrs + index * This::shdr_size);
969   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970                                              shdr.get_sh_size(), true, false);
971   const elfcpp::Elf_Word* pword =
972     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974   // The first word contains flags.  We only care about COMDAT section
975   // groups.  Other section groups are always included in the link
976   // just like ordinary sections.
977   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979   // Look up the group signature, which is the name of a symbol.  ELF
980   // uses a symbol name because some group signatures are long, and
981   // the name is generally already in the symbol table, so it makes
982   // sense to put the long string just once in .strtab rather than in
983   // both .strtab and .shstrtab.
984
985   // Get the appropriate symbol table header (this will normally be
986   // the single SHT_SYMTAB section, but in principle it need not be).
987   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990   // Read the symbol table entry.
991   unsigned int symndx = shdr.get_sh_info();
992   if (symndx >= symshdr.get_sh_size() / This::sym_size)
993     {
994       this->error(_("section group %u info %u out of range"),
995                   index, symndx);
996       return false;
997     }
998   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000                                              false);
1001   elfcpp::Sym<size, big_endian> sym(psym);
1002
1003   // Read the symbol table names.
1004   section_size_type symnamelen;
1005   const unsigned char* psymnamesu;
1006   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007                                       &symnamelen, true);
1008   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010   // Get the section group signature.
1011   if (sym.get_st_name() >= symnamelen)
1012     {
1013       this->error(_("symbol %u name offset %u out of range"),
1014                   symndx, sym.get_st_name());
1015       return false;
1016     }
1017
1018   std::string signature(psymnames + sym.get_st_name());
1019
1020   // It seems that some versions of gas will create a section group
1021   // associated with a section symbol, and then fail to give a name to
1022   // the section symbol.  In such a case, use the name of the section.
1023   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024     {
1025       bool is_ordinary;
1026       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027                                                       sym.get_st_shndx(),
1028                                                       &is_ordinary);
1029       if (!is_ordinary || sym_shndx >= this->shnum())
1030         {
1031           this->error(_("symbol %u invalid section index %u"),
1032                       symndx, sym_shndx);
1033           return false;
1034         }
1035       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036       if (member_shdr.get_sh_name() < section_names_size)
1037         signature = section_names + member_shdr.get_sh_name();
1038     }
1039
1040   // Record this section group in the layout, and see whether we've already
1041   // seen one with the same signature.
1042   bool include_group;
1043   bool is_comdat;
1044   Kept_section* kept_section = NULL;
1045
1046   if ((flags & elfcpp::GRP_COMDAT) == 0)
1047     {
1048       include_group = true;
1049       is_comdat = false;
1050     }
1051   else
1052     {
1053       include_group = layout->find_or_add_kept_section(signature,
1054                                                        this, index, true,
1055                                                        true, &kept_section);
1056       is_comdat = true;
1057     }
1058
1059   if (is_comdat && include_group)
1060     {
1061       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062       if (incremental_inputs != NULL)
1063         incremental_inputs->report_comdat_group(this, signature.c_str());
1064     }
1065
1066   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068   std::vector<unsigned int> shndxes;
1069   bool relocate_group = include_group && parameters->options().relocatable();
1070   if (relocate_group)
1071     shndxes.reserve(count - 1);
1072
1073   for (size_t i = 1; i < count; ++i)
1074     {
1075       elfcpp::Elf_Word shndx =
1076         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078       if (relocate_group)
1079         shndxes.push_back(shndx);
1080
1081       if (shndx >= this->shnum())
1082         {
1083           this->error(_("section %u in section group %u out of range"),
1084                       shndx, index);
1085           continue;
1086         }
1087
1088       // Check for an earlier section number, since we're going to get
1089       // it wrong--we may have already decided to include the section.
1090       if (shndx < index)
1091         this->error(_("invalid section group %u refers to earlier section %u"),
1092                     index, shndx);
1093
1094       // Get the name of the member section.
1095       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096       if (member_shdr.get_sh_name() >= section_names_size)
1097         {
1098           // This is an error, but it will be diagnosed eventually
1099           // in do_layout, so we don't need to do anything here but
1100           // ignore it.
1101           continue;
1102         }
1103       std::string mname(section_names + member_shdr.get_sh_name());
1104
1105       if (include_group)
1106         {
1107           if (is_comdat)
1108             kept_section->add_comdat_section(mname, shndx,
1109                                              member_shdr.get_sh_size());
1110         }
1111       else
1112         {
1113           (*omit)[shndx] = true;
1114
1115           // Store a mapping from this section to the Kept_section
1116           // information for the group.  This mapping is used for
1117           // relocation processing and diagnostics.
1118           // If the kept section is a linkonce section, we don't
1119           // bother with it unless the comdat group contains just
1120           // a single section, making it easy to match up.
1121           if (is_comdat
1122               && (kept_section->is_comdat() || count == 2))
1123             this->set_kept_comdat_section(shndx, true, symndx,
1124                                           member_shdr.get_sh_size(),
1125                                           kept_section);
1126         }
1127     }
1128
1129   if (relocate_group)
1130     layout->layout_group(symtab, this, index, name, signature.c_str(),
1131                          shdr, flags, &shndxes);
1132
1133   return include_group;
1134 }
1135
1136 // Whether to include a linkonce section in the link.  NAME is the
1137 // name of the section and SHDR is the section header.
1138
1139 // Linkonce sections are a GNU extension implemented in the original
1140 // GNU linker before section groups were defined.  The semantics are
1141 // that we only include one linkonce section with a given name.  The
1142 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1143 // where T is the type of section and SYMNAME is the name of a symbol.
1144 // In an attempt to make linkonce sections interact well with section
1145 // groups, we try to identify SYMNAME and use it like a section group
1146 // signature.  We want to block section groups with that signature,
1147 // but not other linkonce sections with that signature.  We also use
1148 // the full name of the linkonce section as a normal section group
1149 // signature.
1150
1151 template<int size, bool big_endian>
1152 bool
1153 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1154     Layout* layout,
1155     unsigned int index,
1156     const char* name,
1157     const elfcpp::Shdr<size, big_endian>& shdr)
1158 {
1159   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1160   // In general the symbol name we want will be the string following
1161   // the last '.'.  However, we have to handle the case of
1162   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1163   // some versions of gcc.  So we use a heuristic: if the name starts
1164   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1165   // we look for the last '.'.  We can't always simply skip
1166   // ".gnu.linkonce.X", because we have to deal with cases like
1167   // ".gnu.linkonce.d.rel.ro.local".
1168   const char* const linkonce_t = ".gnu.linkonce.t.";
1169   const char* symname;
1170   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1171     symname = name + strlen(linkonce_t);
1172   else
1173     symname = strrchr(name, '.') + 1;
1174   std::string sig1(symname);
1175   std::string sig2(name);
1176   Kept_section* kept1;
1177   Kept_section* kept2;
1178   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1179                                                    false, &kept1);
1180   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1181                                                    true, &kept2);
1182
1183   if (!include2)
1184     {
1185       // We are not including this section because we already saw the
1186       // name of the section as a signature.  This normally implies
1187       // that the kept section is another linkonce section.  If it is
1188       // the same size, record it as the section which corresponds to
1189       // this one.
1190       if (kept2->object() != NULL && !kept2->is_comdat())
1191         this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1192     }
1193   else if (!include1)
1194     {
1195       // The section is being discarded on the basis of its symbol
1196       // name.  This means that the corresponding kept section was
1197       // part of a comdat group, and it will be difficult to identify
1198       // the specific section within that group that corresponds to
1199       // this linkonce section.  We'll handle the simple case where
1200       // the group has only one member section.  Otherwise, it's not
1201       // worth the effort.
1202       if (kept1->object() != NULL && kept1->is_comdat())
1203         this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1204     }
1205   else
1206     {
1207       kept1->set_linkonce_size(sh_size);
1208       kept2->set_linkonce_size(sh_size);
1209     }
1210
1211   return include1 && include2;
1212 }
1213
1214 // Layout an input section.
1215
1216 template<int size, bool big_endian>
1217 inline void
1218 Sized_relobj_file<size, big_endian>::layout_section(
1219     Layout* layout,
1220     unsigned int shndx,
1221     const char* name,
1222     const typename This::Shdr& shdr,
1223     unsigned int sh_type,
1224     unsigned int reloc_shndx,
1225     unsigned int reloc_type)
1226 {
1227   off_t offset;
1228   Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1229                                       reloc_shndx, reloc_type, &offset);
1230
1231   this->output_sections()[shndx] = os;
1232   if (offset == -1)
1233     this->section_offsets()[shndx] = invalid_address;
1234   else
1235     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1236
1237   // If this section requires special handling, and if there are
1238   // relocs that apply to it, then we must do the special handling
1239   // before we apply the relocs.
1240   if (offset == -1 && reloc_shndx != 0)
1241     this->set_relocs_must_follow_section_writes();
1242 }
1243
1244 // Layout an input .eh_frame section.
1245
1246 template<int size, bool big_endian>
1247 void
1248 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1249     Layout* layout,
1250     const unsigned char* symbols_data,
1251     section_size_type symbols_size,
1252     const unsigned char* symbol_names_data,
1253     section_size_type symbol_names_size,
1254     unsigned int shndx,
1255     const typename This::Shdr& shdr,
1256     unsigned int reloc_shndx,
1257     unsigned int reloc_type)
1258 {
1259   gold_assert(this->has_eh_frame_);
1260
1261   off_t offset;
1262   Output_section* os = layout->layout_eh_frame(this,
1263                                                symbols_data,
1264                                                symbols_size,
1265                                                symbol_names_data,
1266                                                symbol_names_size,
1267                                                shndx,
1268                                                shdr,
1269                                                reloc_shndx,
1270                                                reloc_type,
1271                                                &offset);
1272   this->output_sections()[shndx] = os;
1273   if (os == NULL || offset == -1)
1274     this->section_offsets()[shndx] = invalid_address;
1275   else
1276     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1277
1278   // If this section requires special handling, and if there are
1279   // relocs that aply to it, then we must do the special handling
1280   // before we apply the relocs.
1281   if (os != NULL && offset == -1 && reloc_shndx != 0)
1282     this->set_relocs_must_follow_section_writes();
1283 }
1284
1285 // Lay out the input sections.  We walk through the sections and check
1286 // whether they should be included in the link.  If they should, we
1287 // pass them to the Layout object, which will return an output section
1288 // and an offset.
1289 // This function is called twice sometimes, two passes, when mapping
1290 // of input sections to output sections must be delayed.
1291 // This is true for the following :
1292 // * Garbage collection (--gc-sections): Some input sections will be
1293 // discarded and hence the assignment must wait until the second pass.
1294 // In the first pass,  it is for setting up some sections as roots to
1295 // a work-list for --gc-sections and to do comdat processing.
1296 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1297 // will be folded and hence the assignment must wait.
1298 // * Using plugins to map some sections to unique segments: Mapping
1299 // some sections to unique segments requires mapping them to unique
1300 // output sections too.  This can be done via plugins now and this
1301 // information is not available in the first pass.
1302
1303 template<int size, bool big_endian>
1304 void
1305 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1306                                                Layout* layout,
1307                                                Read_symbols_data* sd)
1308 {
1309   const unsigned int unwind_section_type =
1310       parameters->target().unwind_section_type();
1311   const unsigned int shnum = this->shnum();
1312
1313   /* Should this function be called twice?  */
1314   bool is_two_pass = (parameters->options().gc_sections()
1315                       || parameters->options().icf_enabled()
1316                       || layout->is_unique_segment_for_sections_specified());
1317
1318   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1319      a two-pass approach is not needed.  */
1320   bool is_pass_one = false;
1321   bool is_pass_two = false;
1322
1323   Symbols_data* gc_sd = NULL;
1324
1325   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1326      should happen.  In the first pass, the data in sd is saved to be used
1327      later in the second pass.  */
1328   if (is_two_pass)
1329     {
1330       gc_sd = this->get_symbols_data();
1331       if (gc_sd == NULL)
1332         {
1333           gold_assert(sd != NULL);
1334           is_pass_one = true;
1335         }
1336       else
1337         {
1338           if (parameters->options().gc_sections())
1339             gold_assert(symtab->gc()->is_worklist_ready());
1340           if (parameters->options().icf_enabled())
1341             gold_assert(symtab->icf()->is_icf_ready()); 
1342           is_pass_two = true;
1343         }
1344     }
1345     
1346   if (shnum == 0)
1347     return;
1348
1349   if (is_pass_one)
1350     {
1351       // During garbage collection save the symbols data to use it when
1352       // re-entering this function.
1353       gc_sd = new Symbols_data;
1354       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1355       this->set_symbols_data(gc_sd);
1356     }
1357
1358   const unsigned char* section_headers_data = NULL;
1359   section_size_type section_names_size;
1360   const unsigned char* symbols_data = NULL;
1361   section_size_type symbols_size;
1362   const unsigned char* symbol_names_data = NULL;
1363   section_size_type symbol_names_size;
1364
1365   if (is_two_pass)
1366     {
1367       section_headers_data = gc_sd->section_headers_data;
1368       section_names_size = gc_sd->section_names_size;
1369       symbols_data = gc_sd->symbols_data;
1370       symbols_size = gc_sd->symbols_size;
1371       symbol_names_data = gc_sd->symbol_names_data;
1372       symbol_names_size = gc_sd->symbol_names_size;
1373     }
1374   else
1375     {
1376       section_headers_data = sd->section_headers->data();
1377       section_names_size = sd->section_names_size;
1378       if (sd->symbols != NULL)
1379         symbols_data = sd->symbols->data();
1380       symbols_size = sd->symbols_size;
1381       if (sd->symbol_names != NULL)
1382         symbol_names_data = sd->symbol_names->data();
1383       symbol_names_size = sd->symbol_names_size;
1384     }
1385
1386   // Get the section headers.
1387   const unsigned char* shdrs = section_headers_data;
1388   const unsigned char* pshdrs;
1389
1390   // Get the section names.
1391   const unsigned char* pnamesu = (is_two_pass
1392                                   ? gc_sd->section_names_data
1393                                   : sd->section_names->data());
1394
1395   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1396
1397   // If any input files have been claimed by plugins, we need to defer
1398   // actual layout until the replacement files have arrived.
1399   const bool should_defer_layout =
1400       (parameters->options().has_plugins()
1401        && parameters->options().plugins()->should_defer_layout());
1402   unsigned int num_sections_to_defer = 0;
1403
1404   // For each section, record the index of the reloc section if any.
1405   // Use 0 to mean that there is no reloc section, -1U to mean that
1406   // there is more than one.
1407   std::vector<unsigned int> reloc_shndx(shnum, 0);
1408   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1409   // Skip the first, dummy, section.
1410   pshdrs = shdrs + This::shdr_size;
1411   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1412     {
1413       typename This::Shdr shdr(pshdrs);
1414
1415       // Count the number of sections whose layout will be deferred.
1416       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1417         ++num_sections_to_defer;
1418
1419       unsigned int sh_type = shdr.get_sh_type();
1420       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1421         {
1422           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1423           if (target_shndx == 0 || target_shndx >= shnum)
1424             {
1425               this->error(_("relocation section %u has bad info %u"),
1426                           i, target_shndx);
1427               continue;
1428             }
1429
1430           if (reloc_shndx[target_shndx] != 0)
1431             reloc_shndx[target_shndx] = -1U;
1432           else
1433             {
1434               reloc_shndx[target_shndx] = i;
1435               reloc_type[target_shndx] = sh_type;
1436             }
1437         }
1438     }
1439
1440   Output_sections& out_sections(this->output_sections());
1441   std::vector<Address>& out_section_offsets(this->section_offsets());
1442
1443   if (!is_pass_two)
1444     {
1445       out_sections.resize(shnum);
1446       out_section_offsets.resize(shnum);
1447     }
1448
1449   // If we are only linking for symbols, then there is nothing else to
1450   // do here.
1451   if (this->input_file()->just_symbols())
1452     {
1453       if (!is_pass_two)
1454         {
1455           delete sd->section_headers;
1456           sd->section_headers = NULL;
1457           delete sd->section_names;
1458           sd->section_names = NULL;
1459         }
1460       return;
1461     }
1462
1463   if (num_sections_to_defer > 0)
1464     {
1465       parameters->options().plugins()->add_deferred_layout_object(this);
1466       this->deferred_layout_.reserve(num_sections_to_defer);
1467       this->is_deferred_layout_ = true;
1468     }
1469
1470   // Whether we've seen a .note.GNU-stack section.
1471   bool seen_gnu_stack = false;
1472   // The flags of a .note.GNU-stack section.
1473   uint64_t gnu_stack_flags = 0;
1474
1475   // Keep track of which sections to omit.
1476   std::vector<bool> omit(shnum, false);
1477
1478   // Keep track of reloc sections when emitting relocations.
1479   const bool relocatable = parameters->options().relocatable();
1480   const bool emit_relocs = (relocatable
1481                             || parameters->options().emit_relocs());
1482   std::vector<unsigned int> reloc_sections;
1483
1484   // Keep track of .eh_frame sections.
1485   std::vector<unsigned int> eh_frame_sections;
1486
1487   // Keep track of .debug_info and .debug_types sections.
1488   std::vector<unsigned int> debug_info_sections;
1489   std::vector<unsigned int> debug_types_sections;
1490
1491   // Skip the first, dummy, section.
1492   pshdrs = shdrs + This::shdr_size;
1493   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1494     {
1495       typename This::Shdr shdr(pshdrs);
1496       const unsigned int sh_name = shdr.get_sh_name();
1497       unsigned int sh_type = shdr.get_sh_type();
1498
1499       if (sh_name >= section_names_size)
1500         {
1501           this->error(_("bad section name offset for section %u: %lu"),
1502                       i, static_cast<unsigned long>(sh_name));
1503           return;
1504         }
1505
1506       const char* name = pnames + sh_name;
1507
1508       if (!is_pass_two)
1509         {
1510           if (this->handle_gnu_warning_section(name, i, symtab))
1511             {
1512               if (!relocatable && !parameters->options().shared())
1513                 omit[i] = true;
1514             }
1515
1516           // The .note.GNU-stack section is special.  It gives the
1517           // protection flags that this object file requires for the stack
1518           // in memory.
1519           if (strcmp(name, ".note.GNU-stack") == 0)
1520             {
1521               seen_gnu_stack = true;
1522               gnu_stack_flags |= shdr.get_sh_flags();
1523               omit[i] = true;
1524             }
1525
1526           // The .note.GNU-split-stack section is also special.  It
1527           // indicates that the object was compiled with
1528           // -fsplit-stack.
1529           if (this->handle_split_stack_section(name))
1530             {
1531               if (!relocatable && !parameters->options().shared())
1532                 omit[i] = true;
1533             }
1534
1535           // Skip attributes section.
1536           if (parameters->target().is_attributes_section(name))
1537             {
1538               omit[i] = true;
1539             }
1540
1541           bool discard = omit[i];
1542           if (!discard)
1543             {
1544               if (sh_type == elfcpp::SHT_GROUP)
1545                 {
1546                   if (!this->include_section_group(symtab, layout, i, name,
1547                                                    shdrs, pnames,
1548                                                    section_names_size,
1549                                                    &omit))
1550                     discard = true;
1551                 }
1552               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1553                        && Layout::is_linkonce(name))
1554                 {
1555                   if (!this->include_linkonce_section(layout, i, name, shdr))
1556                     discard = true;
1557                 }
1558             }
1559
1560           // Add the section to the incremental inputs layout.
1561           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1562           if (incremental_inputs != NULL
1563               && !discard
1564               && can_incremental_update(sh_type))
1565             {
1566               off_t sh_size = shdr.get_sh_size();
1567               section_size_type uncompressed_size;
1568               if (this->section_is_compressed(i, &uncompressed_size))
1569                 sh_size = uncompressed_size;
1570               incremental_inputs->report_input_section(this, i, name, sh_size);
1571             }
1572
1573           if (discard)
1574             {
1575               // Do not include this section in the link.
1576               out_sections[i] = NULL;
1577               out_section_offsets[i] = invalid_address;
1578               continue;
1579             }
1580         }
1581
1582       if (is_pass_one && parameters->options().gc_sections())
1583         {
1584           if (this->is_section_name_included(name)
1585               || layout->keep_input_section (this, name)
1586               || sh_type == elfcpp::SHT_INIT_ARRAY
1587               || sh_type == elfcpp::SHT_FINI_ARRAY)
1588             {
1589               symtab->gc()->worklist().push_back(Section_id(this, i));
1590             }
1591           // If the section name XXX can be represented as a C identifier
1592           // it cannot be discarded if there are references to
1593           // __start_XXX and __stop_XXX symbols.  These need to be
1594           // specially handled.
1595           if (is_cident(name))
1596             {
1597               symtab->gc()->add_cident_section(name, Section_id(this, i));
1598             }
1599         }
1600
1601       // When doing a relocatable link we are going to copy input
1602       // reloc sections into the output.  We only want to copy the
1603       // ones associated with sections which are not being discarded.
1604       // However, we don't know that yet for all sections.  So save
1605       // reloc sections and process them later. Garbage collection is
1606       // not triggered when relocatable code is desired.
1607       if (emit_relocs
1608           && (sh_type == elfcpp::SHT_REL
1609               || sh_type == elfcpp::SHT_RELA))
1610         {
1611           reloc_sections.push_back(i);
1612           continue;
1613         }
1614
1615       if (relocatable && sh_type == elfcpp::SHT_GROUP)
1616         continue;
1617
1618       // The .eh_frame section is special.  It holds exception frame
1619       // information that we need to read in order to generate the
1620       // exception frame header.  We process these after all the other
1621       // sections so that the exception frame reader can reliably
1622       // determine which sections are being discarded, and discard the
1623       // corresponding information.
1624       if (this->check_eh_frame_flags(&shdr)
1625           && strcmp(name, ".eh_frame") == 0)
1626         {
1627           // If the target has a special unwind section type, let's
1628           // canonicalize it here.
1629           sh_type = unwind_section_type;
1630           if (!relocatable)
1631             {
1632               if (is_pass_one)
1633                 {
1634                   if (this->is_deferred_layout())
1635                     out_sections[i] = reinterpret_cast<Output_section*>(2);
1636                   else
1637                     out_sections[i] = reinterpret_cast<Output_section*>(1);
1638                   out_section_offsets[i] = invalid_address;
1639                 }
1640               else if (this->is_deferred_layout())
1641                 this->deferred_layout_.push_back(
1642                     Deferred_layout(i, name, sh_type, pshdrs,
1643                                     reloc_shndx[i], reloc_type[i]));
1644               else
1645                 eh_frame_sections.push_back(i);
1646               continue;
1647             }
1648         }
1649
1650       if (is_pass_two && parameters->options().gc_sections())
1651         {
1652           // This is executed during the second pass of garbage
1653           // collection. do_layout has been called before and some
1654           // sections have been already discarded. Simply ignore
1655           // such sections this time around.
1656           if (out_sections[i] == NULL)
1657             {
1658               gold_assert(out_section_offsets[i] == invalid_address);
1659               continue;
1660             }
1661           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1662               && symtab->gc()->is_section_garbage(this, i))
1663               {
1664                 if (parameters->options().print_gc_sections())
1665                   gold_info(_("%s: removing unused section from '%s'"
1666                               " in file '%s'"),
1667                             program_name, this->section_name(i).c_str(),
1668                             this->name().c_str());
1669                 out_sections[i] = NULL;
1670                 out_section_offsets[i] = invalid_address;
1671                 continue;
1672               }
1673         }
1674
1675       if (is_pass_two && parameters->options().icf_enabled())
1676         {
1677           if (out_sections[i] == NULL)
1678             {
1679               gold_assert(out_section_offsets[i] == invalid_address);
1680               continue;
1681             }
1682           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1683               && symtab->icf()->is_section_folded(this, i))
1684               {
1685                 if (parameters->options().print_icf_sections())
1686                   {
1687                     Section_id folded =
1688                                 symtab->icf()->get_folded_section(this, i);
1689                     Relobj* folded_obj =
1690                                 reinterpret_cast<Relobj*>(folded.first);
1691                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1692                                 "into '%s' in file '%s'"),
1693                               program_name, this->section_name(i).c_str(),
1694                               this->name().c_str(),
1695                               folded_obj->section_name(folded.second).c_str(),
1696                               folded_obj->name().c_str());
1697                   }
1698                 out_sections[i] = NULL;
1699                 out_section_offsets[i] = invalid_address;
1700                 continue;
1701               }
1702         }
1703
1704       // Defer layout here if input files are claimed by plugins.  When gc
1705       // is turned on this function is called twice; we only want to do this
1706       // on the first pass.
1707       if (!is_pass_two
1708           && this->is_deferred_layout()
1709           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1710         {
1711           this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1712                                                            pshdrs,
1713                                                            reloc_shndx[i],
1714                                                            reloc_type[i]));
1715           // Put dummy values here; real values will be supplied by
1716           // do_layout_deferred_sections.
1717           out_sections[i] = reinterpret_cast<Output_section*>(2);
1718           out_section_offsets[i] = invalid_address;
1719           continue;
1720         }
1721
1722       // During gc_pass_two if a section that was previously deferred is
1723       // found, do not layout the section as layout_deferred_sections will
1724       // do it later from gold.cc.
1725       if (is_pass_two
1726           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1727         continue;
1728
1729       if (is_pass_one)
1730         {
1731           // This is during garbage collection. The out_sections are
1732           // assigned in the second call to this function.
1733           out_sections[i] = reinterpret_cast<Output_section*>(1);
1734           out_section_offsets[i] = invalid_address;
1735         }
1736       else
1737         {
1738           // When garbage collection is switched on the actual layout
1739           // only happens in the second call.
1740           this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1741                                reloc_type[i]);
1742
1743           // When generating a .gdb_index section, we do additional
1744           // processing of .debug_info and .debug_types sections after all
1745           // the other sections for the same reason as above.
1746           if (!relocatable
1747               && parameters->options().gdb_index()
1748               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1749             {
1750               if (strcmp(name, ".debug_info") == 0
1751                   || strcmp(name, ".zdebug_info") == 0)
1752                 debug_info_sections.push_back(i);
1753               else if (strcmp(name, ".debug_types") == 0
1754                        || strcmp(name, ".zdebug_types") == 0)
1755                 debug_types_sections.push_back(i);
1756             }
1757         }
1758     }
1759
1760   if (!is_pass_two)
1761     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1762
1763   // Handle the .eh_frame sections after the other sections.
1764   gold_assert(!is_pass_one || eh_frame_sections.empty());
1765   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1766        p != eh_frame_sections.end();
1767        ++p)
1768     {
1769       unsigned int i = *p;
1770       const unsigned char* pshdr;
1771       pshdr = section_headers_data + i * This::shdr_size;
1772       typename This::Shdr shdr(pshdr);
1773
1774       this->layout_eh_frame_section(layout,
1775                                     symbols_data,
1776                                     symbols_size,
1777                                     symbol_names_data,
1778                                     symbol_names_size,
1779                                     i,
1780                                     shdr,
1781                                     reloc_shndx[i],
1782                                     reloc_type[i]);
1783     }
1784
1785   // When doing a relocatable link handle the reloc sections at the
1786   // end.  Garbage collection  and Identical Code Folding is not
1787   // turned on for relocatable code.
1788   if (emit_relocs)
1789     this->size_relocatable_relocs();
1790
1791   gold_assert(!is_two_pass || reloc_sections.empty());
1792
1793   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1794        p != reloc_sections.end();
1795        ++p)
1796     {
1797       unsigned int i = *p;
1798       const unsigned char* pshdr;
1799       pshdr = section_headers_data + i * This::shdr_size;
1800       typename This::Shdr shdr(pshdr);
1801
1802       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1803       if (data_shndx >= shnum)
1804         {
1805           // We already warned about this above.
1806           continue;
1807         }
1808
1809       Output_section* data_section = out_sections[data_shndx];
1810       if (data_section == reinterpret_cast<Output_section*>(2))
1811         {
1812           if (is_pass_two)
1813             continue;
1814           // The layout for the data section was deferred, so we need
1815           // to defer the relocation section, too.
1816           const char* name = pnames + shdr.get_sh_name();
1817           this->deferred_layout_relocs_.push_back(
1818               Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1819                               elfcpp::SHT_NULL));
1820           out_sections[i] = reinterpret_cast<Output_section*>(2);
1821           out_section_offsets[i] = invalid_address;
1822           continue;
1823         }
1824       if (data_section == NULL)
1825         {
1826           out_sections[i] = NULL;
1827           out_section_offsets[i] = invalid_address;
1828           continue;
1829         }
1830
1831       Relocatable_relocs* rr = new Relocatable_relocs();
1832       this->set_relocatable_relocs(i, rr);
1833
1834       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1835                                                 rr);
1836       out_sections[i] = os;
1837       out_section_offsets[i] = invalid_address;
1838     }
1839
1840   // When building a .gdb_index section, scan the .debug_info and
1841   // .debug_types sections.
1842   gold_assert(!is_pass_one
1843               || (debug_info_sections.empty() && debug_types_sections.empty()));
1844   for (std::vector<unsigned int>::const_iterator p
1845            = debug_info_sections.begin();
1846        p != debug_info_sections.end();
1847        ++p)
1848     {
1849       unsigned int i = *p;
1850       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1851                                i, reloc_shndx[i], reloc_type[i]);
1852     }
1853   for (std::vector<unsigned int>::const_iterator p
1854            = debug_types_sections.begin();
1855        p != debug_types_sections.end();
1856        ++p)
1857     {
1858       unsigned int i = *p;
1859       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1860                                i, reloc_shndx[i], reloc_type[i]);
1861     }
1862
1863   if (is_pass_two)
1864     {
1865       delete[] gc_sd->section_headers_data;
1866       delete[] gc_sd->section_names_data;
1867       delete[] gc_sd->symbols_data;
1868       delete[] gc_sd->symbol_names_data;
1869       this->set_symbols_data(NULL);
1870     }
1871   else
1872     {
1873       delete sd->section_headers;
1874       sd->section_headers = NULL;
1875       delete sd->section_names;
1876       sd->section_names = NULL;
1877     }
1878 }
1879
1880 // Layout sections whose layout was deferred while waiting for
1881 // input files from a plugin.
1882
1883 template<int size, bool big_endian>
1884 void
1885 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1886 {
1887   typename std::vector<Deferred_layout>::iterator deferred;
1888
1889   for (deferred = this->deferred_layout_.begin();
1890        deferred != this->deferred_layout_.end();
1891        ++deferred)
1892     {
1893       typename This::Shdr shdr(deferred->shdr_data_);
1894
1895       if (!parameters->options().relocatable()
1896           && deferred->name_ == ".eh_frame"
1897           && this->check_eh_frame_flags(&shdr))
1898         {
1899           // Checking is_section_included is not reliable for
1900           // .eh_frame sections, because they do not have an output
1901           // section.  This is not a problem normally because we call
1902           // layout_eh_frame_section unconditionally, but when
1903           // deferring sections that is not true.  We don't want to
1904           // keep all .eh_frame sections because that will cause us to
1905           // keep all sections that they refer to, which is the wrong
1906           // way around.  Instead, the eh_frame code will discard
1907           // .eh_frame sections that refer to discarded sections.
1908
1909           // Reading the symbols again here may be slow.
1910           Read_symbols_data sd;
1911           this->base_read_symbols(&sd);
1912           this->layout_eh_frame_section(layout,
1913                                         sd.symbols->data(),
1914                                         sd.symbols_size,
1915                                         sd.symbol_names->data(),
1916                                         sd.symbol_names_size,
1917                                         deferred->shndx_,
1918                                         shdr,
1919                                         deferred->reloc_shndx_,
1920                                         deferred->reloc_type_);
1921           continue;
1922         }
1923
1924       // If the section is not included, it is because the garbage collector
1925       // decided it is not needed.  Avoid reverting that decision.
1926       if (!this->is_section_included(deferred->shndx_))
1927         continue;
1928
1929       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1930                            shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
1931                            deferred->reloc_type_);
1932     }
1933
1934   this->deferred_layout_.clear();
1935
1936   // Now handle the deferred relocation sections.
1937
1938   Output_sections& out_sections(this->output_sections());
1939   std::vector<Address>& out_section_offsets(this->section_offsets());
1940
1941   for (deferred = this->deferred_layout_relocs_.begin();
1942        deferred != this->deferred_layout_relocs_.end();
1943        ++deferred)
1944     {
1945       unsigned int shndx = deferred->shndx_;
1946       typename This::Shdr shdr(deferred->shdr_data_);
1947       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1948
1949       Output_section* data_section = out_sections[data_shndx];
1950       if (data_section == NULL)
1951         {
1952           out_sections[shndx] = NULL;
1953           out_section_offsets[shndx] = invalid_address;
1954           continue;
1955         }
1956
1957       Relocatable_relocs* rr = new Relocatable_relocs();
1958       this->set_relocatable_relocs(shndx, rr);
1959
1960       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1961                                                 data_section, rr);
1962       out_sections[shndx] = os;
1963       out_section_offsets[shndx] = invalid_address;
1964     }
1965 }
1966
1967 // Add the symbols to the symbol table.
1968
1969 template<int size, bool big_endian>
1970 void
1971 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1972                                                     Read_symbols_data* sd,
1973                                                     Layout*)
1974 {
1975   if (sd->symbols == NULL)
1976     {
1977       gold_assert(sd->symbol_names == NULL);
1978       return;
1979     }
1980
1981   const int sym_size = This::sym_size;
1982   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1983                      / sym_size);
1984   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1985     {
1986       this->error(_("size of symbols is not multiple of symbol size"));
1987       return;
1988     }
1989
1990   this->symbols_.resize(symcount);
1991
1992   const char* sym_names =
1993     reinterpret_cast<const char*>(sd->symbol_names->data());
1994   symtab->add_from_relobj(this,
1995                           sd->symbols->data() + sd->external_symbols_offset,
1996                           symcount, this->local_symbol_count_,
1997                           sym_names, sd->symbol_names_size,
1998                           &this->symbols_,
1999                           &this->defined_count_);
2000
2001   delete sd->symbols;
2002   sd->symbols = NULL;
2003   delete sd->symbol_names;
2004   sd->symbol_names = NULL;
2005 }
2006
2007 // Find out if this object, that is a member of a lib group, should be included
2008 // in the link. We check every symbol defined by this object. If the symbol
2009 // table has a strong undefined reference to that symbol, we have to include
2010 // the object.
2011
2012 template<int size, bool big_endian>
2013 Archive::Should_include
2014 Sized_relobj_file<size, big_endian>::do_should_include_member(
2015     Symbol_table* symtab,
2016     Layout* layout,
2017     Read_symbols_data* sd,
2018     std::string* why)
2019 {
2020   char* tmpbuf = NULL;
2021   size_t tmpbuflen = 0;
2022   const char* sym_names =
2023       reinterpret_cast<const char*>(sd->symbol_names->data());
2024   const unsigned char* syms =
2025       sd->symbols->data() + sd->external_symbols_offset;
2026   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2027   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2028                          / sym_size);
2029
2030   const unsigned char* p = syms;
2031
2032   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2033     {
2034       elfcpp::Sym<size, big_endian> sym(p);
2035       unsigned int st_shndx = sym.get_st_shndx();
2036       if (st_shndx == elfcpp::SHN_UNDEF)
2037         continue;
2038
2039       unsigned int st_name = sym.get_st_name();
2040       const char* name = sym_names + st_name;
2041       Symbol* symbol;
2042       Archive::Should_include t = Archive::should_include_member(symtab,
2043                                                                  layout,
2044                                                                  name,
2045                                                                  &symbol, why,
2046                                                                  &tmpbuf,
2047                                                                  &tmpbuflen);
2048       if (t == Archive::SHOULD_INCLUDE_YES)
2049         {
2050           if (tmpbuf != NULL)
2051             free(tmpbuf);
2052           return t;
2053         }
2054     }
2055   if (tmpbuf != NULL)
2056     free(tmpbuf);
2057   return Archive::SHOULD_INCLUDE_UNKNOWN;
2058 }
2059
2060 // Iterate over global defined symbols, calling a visitor class V for each.
2061
2062 template<int size, bool big_endian>
2063 void
2064 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2065     Read_symbols_data* sd,
2066     Library_base::Symbol_visitor_base* v)
2067 {
2068   const char* sym_names =
2069       reinterpret_cast<const char*>(sd->symbol_names->data());
2070   const unsigned char* syms =
2071       sd->symbols->data() + sd->external_symbols_offset;
2072   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2073   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2074                      / sym_size);
2075   const unsigned char* p = syms;
2076
2077   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2078     {
2079       elfcpp::Sym<size, big_endian> sym(p);
2080       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2081         v->visit(sym_names + sym.get_st_name());
2082     }
2083 }
2084
2085 // Return whether the local symbol SYMNDX has a PLT offset.
2086
2087 template<int size, bool big_endian>
2088 bool
2089 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2090     unsigned int symndx) const
2091 {
2092   typename Local_plt_offsets::const_iterator p =
2093     this->local_plt_offsets_.find(symndx);
2094   return p != this->local_plt_offsets_.end();
2095 }
2096
2097 // Get the PLT offset of a local symbol.
2098
2099 template<int size, bool big_endian>
2100 unsigned int
2101 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2102     unsigned int symndx) const
2103 {
2104   typename Local_plt_offsets::const_iterator p =
2105     this->local_plt_offsets_.find(symndx);
2106   gold_assert(p != this->local_plt_offsets_.end());
2107   return p->second;
2108 }
2109
2110 // Set the PLT offset of a local symbol.
2111
2112 template<int size, bool big_endian>
2113 void
2114 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2115     unsigned int symndx, unsigned int plt_offset)
2116 {
2117   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2118     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2119   gold_assert(ins.second);
2120 }
2121
2122 // First pass over the local symbols.  Here we add their names to
2123 // *POOL and *DYNPOOL, and we store the symbol value in
2124 // THIS->LOCAL_VALUES_.  This function is always called from a
2125 // singleton thread.  This is followed by a call to
2126 // finalize_local_symbols.
2127
2128 template<int size, bool big_endian>
2129 void
2130 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2131                                                             Stringpool* dynpool)
2132 {
2133   gold_assert(this->symtab_shndx_ != -1U);
2134   if (this->symtab_shndx_ == 0)
2135     {
2136       // This object has no symbols.  Weird but legal.
2137       return;
2138     }
2139
2140   // Read the symbol table section header.
2141   const unsigned int symtab_shndx = this->symtab_shndx_;
2142   typename This::Shdr symtabshdr(this,
2143                                  this->elf_file_.section_header(symtab_shndx));
2144   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2145
2146   // Read the local symbols.
2147   const int sym_size = This::sym_size;
2148   const unsigned int loccount = this->local_symbol_count_;
2149   gold_assert(loccount == symtabshdr.get_sh_info());
2150   off_t locsize = loccount * sym_size;
2151   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2152                                               locsize, true, true);
2153
2154   // Read the symbol names.
2155   const unsigned int strtab_shndx =
2156     this->adjust_shndx(symtabshdr.get_sh_link());
2157   section_size_type strtab_size;
2158   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2159                                                         &strtab_size,
2160                                                         true);
2161   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2162
2163   // Loop over the local symbols.
2164
2165   const Output_sections& out_sections(this->output_sections());
2166   std::vector<Address>& out_section_offsets(this->section_offsets());
2167   unsigned int shnum = this->shnum();
2168   unsigned int count = 0;
2169   unsigned int dyncount = 0;
2170   // Skip the first, dummy, symbol.
2171   psyms += sym_size;
2172   bool strip_all = parameters->options().strip_all();
2173   bool discard_all = parameters->options().discard_all();
2174   bool discard_locals = parameters->options().discard_locals();
2175   bool discard_sec_merge = parameters->options().discard_sec_merge();
2176   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2177     {
2178       elfcpp::Sym<size, big_endian> sym(psyms);
2179
2180       Symbol_value<size>& lv(this->local_values_[i]);
2181
2182       bool is_ordinary;
2183       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2184                                                   &is_ordinary);
2185       lv.set_input_shndx(shndx, is_ordinary);
2186
2187       if (sym.get_st_type() == elfcpp::STT_SECTION)
2188         lv.set_is_section_symbol();
2189       else if (sym.get_st_type() == elfcpp::STT_TLS)
2190         lv.set_is_tls_symbol();
2191       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2192         lv.set_is_ifunc_symbol();
2193
2194       // Save the input symbol value for use in do_finalize_local_symbols().
2195       lv.set_input_value(sym.get_st_value());
2196
2197       // Decide whether this symbol should go into the output file.
2198
2199       if (is_ordinary
2200           && shndx < shnum
2201           && (out_sections[shndx] == NULL
2202               || (out_sections[shndx]->order() == ORDER_EHFRAME
2203                   && out_section_offsets[shndx] == invalid_address)))
2204         {
2205           // This is either a discarded section or an optimized .eh_frame
2206           // section.
2207           lv.set_no_output_symtab_entry();
2208           gold_assert(!lv.needs_output_dynsym_entry());
2209           continue;
2210         }
2211
2212       if (sym.get_st_type() == elfcpp::STT_SECTION
2213           || !this->adjust_local_symbol(&lv))
2214         {
2215           lv.set_no_output_symtab_entry();
2216           gold_assert(!lv.needs_output_dynsym_entry());
2217           continue;
2218         }
2219
2220       if (sym.get_st_name() >= strtab_size)
2221         {
2222           this->error(_("local symbol %u section name out of range: %u >= %u"),
2223                       i, sym.get_st_name(),
2224                       static_cast<unsigned int>(strtab_size));
2225           lv.set_no_output_symtab_entry();
2226           continue;
2227         }
2228
2229       const char* name = pnames + sym.get_st_name();
2230
2231       // If needed, add the symbol to the dynamic symbol table string pool.
2232       if (lv.needs_output_dynsym_entry())
2233         {
2234           dynpool->add(name, true, NULL);
2235           ++dyncount;
2236         }
2237
2238       if (strip_all
2239           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2240         {
2241           lv.set_no_output_symtab_entry();
2242           continue;
2243         }
2244
2245       // By default, discard temporary local symbols in merge sections.
2246       // If --discard-locals option is used, discard all temporary local
2247       // symbols.  These symbols start with system-specific local label
2248       // prefixes, typically .L for ELF system.  We want to be compatible
2249       // with GNU ld so here we essentially use the same check in
2250       // bfd_is_local_label().  The code is different because we already
2251       // know that:
2252       //
2253       //   - the symbol is local and thus cannot have global or weak binding.
2254       //   - the symbol is not a section symbol.
2255       //   - the symbol has a name.
2256       //
2257       // We do not discard a symbol if it needs a dynamic symbol entry.
2258       if ((discard_locals
2259            || (discard_sec_merge
2260                && is_ordinary
2261                && out_section_offsets[shndx] == invalid_address))
2262           && sym.get_st_type() != elfcpp::STT_FILE
2263           && !lv.needs_output_dynsym_entry()
2264           && lv.may_be_discarded_from_output_symtab()
2265           && parameters->target().is_local_label_name(name))
2266         {
2267           lv.set_no_output_symtab_entry();
2268           continue;
2269         }
2270
2271       // Discard the local symbol if -retain_symbols_file is specified
2272       // and the local symbol is not in that file.
2273       if (!parameters->options().should_retain_symbol(name))
2274         {
2275           lv.set_no_output_symtab_entry();
2276           continue;
2277         }
2278
2279       // Add the symbol to the symbol table string pool.
2280       pool->add(name, true, NULL);
2281       ++count;
2282     }
2283
2284   this->output_local_symbol_count_ = count;
2285   this->output_local_dynsym_count_ = dyncount;
2286 }
2287
2288 // Compute the final value of a local symbol.
2289
2290 template<int size, bool big_endian>
2291 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2292 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2293     unsigned int r_sym,
2294     const Symbol_value<size>* lv_in,
2295     Symbol_value<size>* lv_out,
2296     bool relocatable,
2297     const Output_sections& out_sections,
2298     const std::vector<Address>& out_offsets,
2299     const Symbol_table* symtab)
2300 {
2301   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2302   // we may have a memory leak.
2303   gold_assert(lv_out->has_output_value());
2304
2305   bool is_ordinary;
2306   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2307
2308   // Set the output symbol value.
2309
2310   if (!is_ordinary)
2311     {
2312       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2313         lv_out->set_output_value(lv_in->input_value());
2314       else
2315         {
2316           this->error(_("unknown section index %u for local symbol %u"),
2317                       shndx, r_sym);
2318           lv_out->set_output_value(0);
2319           return This::CFLV_ERROR;
2320         }
2321     }
2322   else
2323     {
2324       if (shndx >= this->shnum())
2325         {
2326           this->error(_("local symbol %u section index %u out of range"),
2327                       r_sym, shndx);
2328           lv_out->set_output_value(0);
2329           return This::CFLV_ERROR;
2330         }
2331
2332       Output_section* os = out_sections[shndx];
2333       Address secoffset = out_offsets[shndx];
2334       if (symtab->is_section_folded(this, shndx))
2335         {
2336           gold_assert(os == NULL && secoffset == invalid_address);
2337           // Get the os of the section it is folded onto.
2338           Section_id folded = symtab->icf()->get_folded_section(this,
2339                                                                 shndx);
2340           gold_assert(folded.first != NULL);
2341           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2342             <Sized_relobj_file<size, big_endian>*>(folded.first);
2343           os = folded_obj->output_section(folded.second);
2344           gold_assert(os != NULL);
2345           secoffset = folded_obj->get_output_section_offset(folded.second);
2346
2347           // This could be a relaxed input section.
2348           if (secoffset == invalid_address)
2349             {
2350               const Output_relaxed_input_section* relaxed_section =
2351                 os->find_relaxed_input_section(folded_obj, folded.second);
2352               gold_assert(relaxed_section != NULL);
2353               secoffset = relaxed_section->address() - os->address();
2354             }
2355         }
2356
2357       if (os == NULL)
2358         {
2359           // This local symbol belongs to a section we are discarding.
2360           // In some cases when applying relocations later, we will
2361           // attempt to match it to the corresponding kept section,
2362           // so we leave the input value unchanged here.
2363           return This::CFLV_DISCARDED;
2364         }
2365       else if (secoffset == invalid_address)
2366         {
2367           uint64_t start;
2368
2369           // This is a SHF_MERGE section or one which otherwise
2370           // requires special handling.
2371           if (os->order() == ORDER_EHFRAME)
2372             {
2373               // This local symbol belongs to a discarded or optimized
2374               // .eh_frame section.  Just treat it like the case in which
2375               // os == NULL above.
2376               gold_assert(this->has_eh_frame_);
2377               return This::CFLV_DISCARDED;
2378             }
2379           else if (!lv_in->is_section_symbol())
2380             {
2381               // This is not a section symbol.  We can determine
2382               // the final value now.
2383               uint64_t value =
2384                 os->output_address(this, shndx, lv_in->input_value());
2385               if (relocatable)
2386                 value -= os->address();
2387               lv_out->set_output_value(value);
2388             }
2389           else if (!os->find_starting_output_address(this, shndx, &start))
2390             {
2391               // This is a section symbol, but apparently not one in a
2392               // merged section.  First check to see if this is a relaxed
2393               // input section.  If so, use its address.  Otherwise just
2394               // use the start of the output section.  This happens with
2395               // relocatable links when the input object has section
2396               // symbols for arbitrary non-merge sections.
2397               const Output_section_data* posd =
2398                 os->find_relaxed_input_section(this, shndx);
2399               if (posd != NULL)
2400                 {
2401                   uint64_t value = posd->address();
2402                   if (relocatable)
2403                     value -= os->address();
2404                   lv_out->set_output_value(value);
2405                 }
2406               else
2407                 lv_out->set_output_value(os->address());
2408             }
2409           else
2410             {
2411               // We have to consider the addend to determine the
2412               // value to use in a relocation.  START is the start
2413               // of this input section.  If we are doing a relocatable
2414               // link, use offset from start output section instead of
2415               // address.
2416               Address adjusted_start =
2417                 relocatable ? start - os->address() : start;
2418               Merged_symbol_value<size>* msv =
2419                 new Merged_symbol_value<size>(lv_in->input_value(),
2420                                               adjusted_start);
2421               lv_out->set_merged_symbol_value(msv);
2422             }
2423         }
2424       else if (lv_in->is_tls_symbol()
2425                || (lv_in->is_section_symbol()
2426                    && (os->flags() & elfcpp::SHF_TLS)))
2427         lv_out->set_output_value(os->tls_offset()
2428                                  + secoffset
2429                                  + lv_in->input_value());
2430       else
2431         lv_out->set_output_value((relocatable ? 0 : os->address())
2432                                  + secoffset
2433                                  + lv_in->input_value());
2434     }
2435   return This::CFLV_OK;
2436 }
2437
2438 // Compute final local symbol value.  R_SYM is the index of a local
2439 // symbol in symbol table.  LV points to a symbol value, which is
2440 // expected to hold the input value and to be over-written by the
2441 // final value.  SYMTAB points to a symbol table.  Some targets may want
2442 // to know would-be-finalized local symbol values in relaxation.
2443 // Hence we provide this method.  Since this method updates *LV, a
2444 // callee should make a copy of the original local symbol value and
2445 // use the copy instead of modifying an object's local symbols before
2446 // everything is finalized.  The caller should also free up any allocated
2447 // memory in the return value in *LV.
2448 template<int size, bool big_endian>
2449 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2450 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2451     unsigned int r_sym,
2452     const Symbol_value<size>* lv_in,
2453     Symbol_value<size>* lv_out,
2454     const Symbol_table* symtab)
2455 {
2456   // This is just a wrapper of compute_final_local_value_internal.
2457   const bool relocatable = parameters->options().relocatable();
2458   const Output_sections& out_sections(this->output_sections());
2459   const std::vector<Address>& out_offsets(this->section_offsets());
2460   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2461                                                   relocatable, out_sections,
2462                                                   out_offsets, symtab);
2463 }
2464
2465 // Finalize the local symbols.  Here we set the final value in
2466 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2467 // This function is always called from a singleton thread.  The actual
2468 // output of the local symbols will occur in a separate task.
2469
2470 template<int size, bool big_endian>
2471 unsigned int
2472 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2473     unsigned int index,
2474     off_t off,
2475     Symbol_table* symtab)
2476 {
2477   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2478
2479   const unsigned int loccount = this->local_symbol_count_;
2480   this->local_symbol_offset_ = off;
2481
2482   const bool relocatable = parameters->options().relocatable();
2483   const Output_sections& out_sections(this->output_sections());
2484   const std::vector<Address>& out_offsets(this->section_offsets());
2485
2486   for (unsigned int i = 1; i < loccount; ++i)
2487     {
2488       Symbol_value<size>* lv = &this->local_values_[i];
2489
2490       Compute_final_local_value_status cflv_status =
2491         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2492                                                  out_sections, out_offsets,
2493                                                  symtab);
2494       switch (cflv_status)
2495         {
2496         case CFLV_OK:
2497           if (!lv->is_output_symtab_index_set())
2498             {
2499               lv->set_output_symtab_index(index);
2500               ++index;
2501             }
2502           break;
2503         case CFLV_DISCARDED:
2504         case CFLV_ERROR:
2505           // Do nothing.
2506           break;
2507         default:
2508           gold_unreachable();
2509         }
2510     }
2511   return index;
2512 }
2513
2514 // Set the output dynamic symbol table indexes for the local variables.
2515
2516 template<int size, bool big_endian>
2517 unsigned int
2518 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2519     unsigned int index)
2520 {
2521   const unsigned int loccount = this->local_symbol_count_;
2522   for (unsigned int i = 1; i < loccount; ++i)
2523     {
2524       Symbol_value<size>& lv(this->local_values_[i]);
2525       if (lv.needs_output_dynsym_entry())
2526         {
2527           lv.set_output_dynsym_index(index);
2528           ++index;
2529         }
2530     }
2531   return index;
2532 }
2533
2534 // Set the offset where local dynamic symbol information will be stored.
2535 // Returns the count of local symbols contributed to the symbol table by
2536 // this object.
2537
2538 template<int size, bool big_endian>
2539 unsigned int
2540 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2541 {
2542   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2543   this->local_dynsym_offset_ = off;
2544   return this->output_local_dynsym_count_;
2545 }
2546
2547 // If Symbols_data is not NULL get the section flags from here otherwise
2548 // get it from the file.
2549
2550 template<int size, bool big_endian>
2551 uint64_t
2552 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2553 {
2554   Symbols_data* sd = this->get_symbols_data();
2555   if (sd != NULL)
2556     {
2557       const unsigned char* pshdrs = sd->section_headers_data
2558                                     + This::shdr_size * shndx;
2559       typename This::Shdr shdr(pshdrs);
2560       return shdr.get_sh_flags();
2561     }
2562   // If sd is NULL, read the section header from the file.
2563   return this->elf_file_.section_flags(shndx);
2564 }
2565
2566 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2567 // in icf.cc
2568
2569 template<int size, bool big_endian>
2570 uint64_t
2571 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2572 {
2573   Symbols_data* sd = this->get_symbols_data();
2574   gold_assert(sd != NULL);
2575
2576   const unsigned char* pshdrs = sd->section_headers_data
2577                                 + This::shdr_size * shndx;
2578   typename This::Shdr shdr(pshdrs);
2579   return shdr.get_sh_entsize();
2580 }
2581
2582 // Write out the local symbols.
2583
2584 template<int size, bool big_endian>
2585 void
2586 Sized_relobj_file<size, big_endian>::write_local_symbols(
2587     Output_file* of,
2588     const Stringpool* sympool,
2589     const Stringpool* dynpool,
2590     Output_symtab_xindex* symtab_xindex,
2591     Output_symtab_xindex* dynsym_xindex,
2592     off_t symtab_off)
2593 {
2594   const bool strip_all = parameters->options().strip_all();
2595   if (strip_all)
2596     {
2597       if (this->output_local_dynsym_count_ == 0)
2598         return;
2599       this->output_local_symbol_count_ = 0;
2600     }
2601
2602   gold_assert(this->symtab_shndx_ != -1U);
2603   if (this->symtab_shndx_ == 0)
2604     {
2605       // This object has no symbols.  Weird but legal.
2606       return;
2607     }
2608
2609   // Read the symbol table section header.
2610   const unsigned int symtab_shndx = this->symtab_shndx_;
2611   typename This::Shdr symtabshdr(this,
2612                                  this->elf_file_.section_header(symtab_shndx));
2613   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2614   const unsigned int loccount = this->local_symbol_count_;
2615   gold_assert(loccount == symtabshdr.get_sh_info());
2616
2617   // Read the local symbols.
2618   const int sym_size = This::sym_size;
2619   off_t locsize = loccount * sym_size;
2620   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2621                                               locsize, true, false);
2622
2623   // Read the symbol names.
2624   const unsigned int strtab_shndx =
2625     this->adjust_shndx(symtabshdr.get_sh_link());
2626   section_size_type strtab_size;
2627   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2628                                                         &strtab_size,
2629                                                         false);
2630   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2631
2632   // Get views into the output file for the portions of the symbol table
2633   // and the dynamic symbol table that we will be writing.
2634   off_t output_size = this->output_local_symbol_count_ * sym_size;
2635   unsigned char* oview = NULL;
2636   if (output_size > 0)
2637     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2638                                 output_size);
2639
2640   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2641   unsigned char* dyn_oview = NULL;
2642   if (dyn_output_size > 0)
2643     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2644                                     dyn_output_size);
2645
2646   const Output_sections& out_sections(this->output_sections());
2647
2648   gold_assert(this->local_values_.size() == loccount);
2649
2650   unsigned char* ov = oview;
2651   unsigned char* dyn_ov = dyn_oview;
2652   psyms += sym_size;
2653   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2654     {
2655       elfcpp::Sym<size, big_endian> isym(psyms);
2656
2657       Symbol_value<size>& lv(this->local_values_[i]);
2658
2659       bool is_ordinary;
2660       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2661                                                      &is_ordinary);
2662       if (is_ordinary)
2663         {
2664           gold_assert(st_shndx < out_sections.size());
2665           if (out_sections[st_shndx] == NULL)
2666             continue;
2667           st_shndx = out_sections[st_shndx]->out_shndx();
2668           if (st_shndx >= elfcpp::SHN_LORESERVE)
2669             {
2670               if (lv.has_output_symtab_entry())
2671                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2672               if (lv.has_output_dynsym_entry())
2673                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2674               st_shndx = elfcpp::SHN_XINDEX;
2675             }
2676         }
2677
2678       // Write the symbol to the output symbol table.
2679       if (lv.has_output_symtab_entry())
2680         {
2681           elfcpp::Sym_write<size, big_endian> osym(ov);
2682
2683           gold_assert(isym.get_st_name() < strtab_size);
2684           const char* name = pnames + isym.get_st_name();
2685           osym.put_st_name(sympool->get_offset(name));
2686           osym.put_st_value(lv.value(this, 0));
2687           osym.put_st_size(isym.get_st_size());
2688           osym.put_st_info(isym.get_st_info());
2689           osym.put_st_other(isym.get_st_other());
2690           osym.put_st_shndx(st_shndx);
2691
2692           ov += sym_size;
2693         }
2694
2695       // Write the symbol to the output dynamic symbol table.
2696       if (lv.has_output_dynsym_entry())
2697         {
2698           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2699           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2700
2701           gold_assert(isym.get_st_name() < strtab_size);
2702           const char* name = pnames + isym.get_st_name();
2703           osym.put_st_name(dynpool->get_offset(name));
2704           osym.put_st_value(lv.value(this, 0));
2705           osym.put_st_size(isym.get_st_size());
2706           osym.put_st_info(isym.get_st_info());
2707           osym.put_st_other(isym.get_st_other());
2708           osym.put_st_shndx(st_shndx);
2709
2710           dyn_ov += sym_size;
2711         }
2712     }
2713
2714
2715   if (output_size > 0)
2716     {
2717       gold_assert(ov - oview == output_size);
2718       of->write_output_view(symtab_off + this->local_symbol_offset_,
2719                             output_size, oview);
2720     }
2721
2722   if (dyn_output_size > 0)
2723     {
2724       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2725       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2726                             dyn_oview);
2727     }
2728 }
2729
2730 // Set *INFO to symbolic information about the offset OFFSET in the
2731 // section SHNDX.  Return true if we found something, false if we
2732 // found nothing.
2733
2734 template<int size, bool big_endian>
2735 bool
2736 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2737     unsigned int shndx,
2738     off_t offset,
2739     Symbol_location_info* info)
2740 {
2741   if (this->symtab_shndx_ == 0)
2742     return false;
2743
2744   section_size_type symbols_size;
2745   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2746                                                         &symbols_size,
2747                                                         false);
2748
2749   unsigned int symbol_names_shndx =
2750     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2751   section_size_type names_size;
2752   const unsigned char* symbol_names_u =
2753     this->section_contents(symbol_names_shndx, &names_size, false);
2754   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2755
2756   const int sym_size = This::sym_size;
2757   const size_t count = symbols_size / sym_size;
2758
2759   const unsigned char* p = symbols;
2760   for (size_t i = 0; i < count; ++i, p += sym_size)
2761     {
2762       elfcpp::Sym<size, big_endian> sym(p);
2763
2764       if (sym.get_st_type() == elfcpp::STT_FILE)
2765         {
2766           if (sym.get_st_name() >= names_size)
2767             info->source_file = "(invalid)";
2768           else
2769             info->source_file = symbol_names + sym.get_st_name();
2770           continue;
2771         }
2772
2773       bool is_ordinary;
2774       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2775                                                      &is_ordinary);
2776       if (is_ordinary
2777           && st_shndx == shndx
2778           && static_cast<off_t>(sym.get_st_value()) <= offset
2779           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2780               > offset))
2781         {
2782           info->enclosing_symbol_type = sym.get_st_type();
2783           if (sym.get_st_name() > names_size)
2784             info->enclosing_symbol_name = "(invalid)";
2785           else
2786             {
2787               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2788               if (parameters->options().do_demangle())
2789                 {
2790                   char* demangled_name = cplus_demangle(
2791                       info->enclosing_symbol_name.c_str(),
2792                       DMGL_ANSI | DMGL_PARAMS);
2793                   if (demangled_name != NULL)
2794                     {
2795                       info->enclosing_symbol_name.assign(demangled_name);
2796                       free(demangled_name);
2797                     }
2798                 }
2799             }
2800           return true;
2801         }
2802     }
2803
2804   return false;
2805 }
2806
2807 // Look for a kept section corresponding to the given discarded section,
2808 // and return its output address.  This is used only for relocations in
2809 // debugging sections.  If we can't find the kept section, return 0.
2810
2811 template<int size, bool big_endian>
2812 typename Sized_relobj_file<size, big_endian>::Address
2813 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2814     unsigned int shndx,
2815     std::string& section_name,
2816     bool* pfound) const
2817 {
2818   Kept_section* kept_section;
2819   bool is_comdat;
2820   uint64_t sh_size;
2821   unsigned int symndx;
2822   bool found = false;
2823
2824   if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2825                                     &kept_section))
2826     {
2827       Relobj* kept_object = kept_section->object();
2828       unsigned int kept_shndx = 0;
2829       if (!kept_section->is_comdat())
2830         {
2831           // The kept section is a linkonce section.
2832           if (sh_size == kept_section->linkonce_size())
2833             found = true;
2834         }
2835       else
2836         {
2837           if (is_comdat)
2838             {
2839               // Find the corresponding kept section.
2840               // Since we're using this mapping for relocation processing,
2841               // we don't want to match sections unless they have the same
2842               // size.
2843               uint64_t kept_size;
2844               if (kept_section->find_comdat_section(section_name, &kept_shndx,
2845                                                     &kept_size))
2846                 {
2847                   if (sh_size == kept_size)
2848                     found = true;
2849                 }
2850             }
2851           else
2852             {
2853               uint64_t kept_size;
2854               if (kept_section->find_single_comdat_section(&kept_shndx,
2855                                                            &kept_size)
2856                   && sh_size == kept_size)
2857                 found = true;
2858             }
2859         }
2860
2861       if (found)
2862         {
2863           Sized_relobj_file<size, big_endian>* kept_relobj =
2864             static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2865           Output_section* os = kept_relobj->output_section(kept_shndx);
2866           Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2867           if (os != NULL && offset != invalid_address)
2868             {
2869               *pfound = true;
2870               return os->address() + offset;
2871             }
2872         }
2873     }
2874   *pfound = false;
2875   return 0;
2876 }
2877
2878 // Look for a kept section corresponding to the given discarded section,
2879 // and return its object file.
2880
2881 template<int size, bool big_endian>
2882 Relobj*
2883 Sized_relobj_file<size, big_endian>::find_kept_section_object(
2884     unsigned int shndx, unsigned int *symndx_p) const
2885 {
2886   Kept_section* kept_section;
2887   bool is_comdat;
2888   uint64_t sh_size;
2889   if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
2890                                     &kept_section))
2891     return kept_section->object();
2892   return NULL;
2893 }
2894
2895 // Return the name of symbol SYMNDX.
2896
2897 template<int size, bool big_endian>
2898 const char*
2899 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
2900 {
2901   if (this->symtab_shndx_ == 0)
2902     return NULL;
2903
2904   section_size_type symbols_size;
2905   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2906                                                         &symbols_size,
2907                                                         false);
2908
2909   unsigned int symbol_names_shndx =
2910     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2911   section_size_type names_size;
2912   const unsigned char* symbol_names_u =
2913     this->section_contents(symbol_names_shndx, &names_size, false);
2914   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2915
2916   const unsigned char* p = symbols + symndx * This::sym_size;
2917
2918   if (p >= symbols + symbols_size)
2919     return NULL;
2920
2921   elfcpp::Sym<size, big_endian> sym(p);
2922
2923   return symbol_names + sym.get_st_name();
2924 }
2925
2926 // Get symbol counts.
2927
2928 template<int size, bool big_endian>
2929 void
2930 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2931     const Symbol_table*,
2932     size_t* defined,
2933     size_t* used) const
2934 {
2935   *defined = this->defined_count_;
2936   size_t count = 0;
2937   for (typename Symbols::const_iterator p = this->symbols_.begin();
2938        p != this->symbols_.end();
2939        ++p)
2940     if (*p != NULL
2941         && (*p)->source() == Symbol::FROM_OBJECT
2942         && (*p)->object() == this
2943         && (*p)->is_defined())
2944       ++count;
2945   *used = count;
2946 }
2947
2948 // Return a view of the decompressed contents of a section.  Set *PLEN
2949 // to the size.  Set *IS_NEW to true if the contents need to be freed
2950 // by the caller.
2951
2952 const unsigned char*
2953 Object::decompressed_section_contents(
2954     unsigned int shndx,
2955     section_size_type* plen,
2956     bool* is_new)
2957 {
2958   section_size_type buffer_size;
2959   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2960                                                           false);
2961
2962   if (this->compressed_sections_ == NULL)
2963     {
2964       *plen = buffer_size;
2965       *is_new = false;
2966       return buffer;
2967     }
2968
2969   Compressed_section_map::const_iterator p =
2970       this->compressed_sections_->find(shndx);
2971   if (p == this->compressed_sections_->end())
2972     {
2973       *plen = buffer_size;
2974       *is_new = false;
2975       return buffer;
2976     }
2977
2978   section_size_type uncompressed_size = p->second.size;
2979   if (p->second.contents != NULL)
2980     {
2981       *plen = uncompressed_size;
2982       *is_new = false;
2983       return p->second.contents;
2984     }
2985
2986   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2987   if (!decompress_input_section(buffer,
2988                                 buffer_size,
2989                                 uncompressed_data,
2990                                 uncompressed_size,
2991                                 elfsize(),
2992                                 is_big_endian(),
2993                                 p->second.flag))
2994     this->error(_("could not decompress section %s"),
2995                 this->do_section_name(shndx).c_str());
2996
2997   // We could cache the results in p->second.contents and store
2998   // false in *IS_NEW, but build_compressed_section_map() would
2999   // have done so if it had expected it to be profitable.  If
3000   // we reach this point, we expect to need the contents only
3001   // once in this pass.
3002   *plen = uncompressed_size;
3003   *is_new = true;
3004   return uncompressed_data;
3005 }
3006
3007 // Discard any buffers of uncompressed sections.  This is done
3008 // at the end of the Add_symbols task.
3009
3010 void
3011 Object::discard_decompressed_sections()
3012 {
3013   if (this->compressed_sections_ == NULL)
3014     return;
3015
3016   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3017        p != this->compressed_sections_->end();
3018        ++p)
3019     {
3020       if (p->second.contents != NULL)
3021         {
3022           delete[] p->second.contents;
3023           p->second.contents = NULL;
3024         }
3025     }
3026 }
3027
3028 // Input_objects methods.
3029
3030 // Add a regular relocatable object to the list.  Return false if this
3031 // object should be ignored.
3032
3033 bool
3034 Input_objects::add_object(Object* obj)
3035 {
3036   // Print the filename if the -t/--trace option is selected.
3037   if (parameters->options().trace())
3038     gold_info("%s", obj->name().c_str());
3039
3040   if (!obj->is_dynamic())
3041     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3042   else
3043     {
3044       // See if this is a duplicate SONAME.
3045       Dynobj* dynobj = static_cast<Dynobj*>(obj);
3046       const char* soname = dynobj->soname();
3047
3048       Unordered_map<std::string, Object*>::value_type val(soname, obj);
3049       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3050         this->sonames_.insert(val);
3051       if (!ins.second)
3052         {
3053           // We have already seen a dynamic object with this soname.
3054           // If any instances of this object on the command line have
3055           // the --no-as-needed flag, make sure the one we keep is
3056           // marked so.
3057           if (!obj->as_needed())
3058             {
3059               gold_assert(ins.first->second != NULL);
3060               ins.first->second->clear_as_needed();
3061             }
3062           return false;
3063         }
3064
3065       this->dynobj_list_.push_back(dynobj);
3066     }
3067
3068   // Add this object to the cross-referencer if requested.
3069   if (parameters->options().user_set_print_symbol_counts()
3070       || parameters->options().cref())
3071     {
3072       if (this->cref_ == NULL)
3073         this->cref_ = new Cref();
3074       this->cref_->add_object(obj);
3075     }
3076
3077   return true;
3078 }
3079
3080 // For each dynamic object, record whether we've seen all of its
3081 // explicit dependencies.
3082
3083 void
3084 Input_objects::check_dynamic_dependencies() const
3085 {
3086   bool issued_copy_dt_needed_error = false;
3087   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3088        p != this->dynobj_list_.end();
3089        ++p)
3090     {
3091       const Dynobj::Needed& needed((*p)->needed());
3092       bool found_all = true;
3093       Dynobj::Needed::const_iterator pneeded;
3094       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3095         {
3096           if (this->sonames_.find(*pneeded) == this->sonames_.end())
3097             {
3098               found_all = false;
3099               break;
3100             }
3101         }
3102       (*p)->set_has_unknown_needed_entries(!found_all);
3103
3104       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3105       // that gold does not support.  However, they cause no trouble
3106       // unless there is a DT_NEEDED entry that we don't know about;
3107       // warn only in that case.
3108       if (!found_all
3109           && !issued_copy_dt_needed_error
3110           && (parameters->options().copy_dt_needed_entries()
3111               || parameters->options().add_needed()))
3112         {
3113           const char* optname;
3114           if (parameters->options().copy_dt_needed_entries())
3115             optname = "--copy-dt-needed-entries";
3116           else
3117             optname = "--add-needed";
3118           gold_error(_("%s is not supported but is required for %s in %s"),
3119                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3120           issued_copy_dt_needed_error = true;
3121         }
3122     }
3123 }
3124
3125 // Start processing an archive.
3126
3127 void
3128 Input_objects::archive_start(Archive* archive)
3129 {
3130   if (parameters->options().user_set_print_symbol_counts()
3131       || parameters->options().cref())
3132     {
3133       if (this->cref_ == NULL)
3134         this->cref_ = new Cref();
3135       this->cref_->add_archive_start(archive);
3136     }
3137 }
3138
3139 // Stop processing an archive.
3140
3141 void
3142 Input_objects::archive_stop(Archive* archive)
3143 {
3144   if (parameters->options().user_set_print_symbol_counts()
3145       || parameters->options().cref())
3146     this->cref_->add_archive_stop(archive);
3147 }
3148
3149 // Print symbol counts
3150
3151 void
3152 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3153 {
3154   if (parameters->options().user_set_print_symbol_counts()
3155       && this->cref_ != NULL)
3156     this->cref_->print_symbol_counts(symtab);
3157 }
3158
3159 // Print a cross reference table.
3160
3161 void
3162 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3163 {
3164   if (parameters->options().cref() && this->cref_ != NULL)
3165     this->cref_->print_cref(symtab, f);
3166 }
3167
3168 // Relocate_info methods.
3169
3170 // Return a string describing the location of a relocation when file
3171 // and lineno information is not available.  This is only used in
3172 // error messages.
3173
3174 template<int size, bool big_endian>
3175 std::string
3176 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3177 {
3178   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3179   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3180   if (!ret.empty())
3181     return ret;
3182
3183   ret = this->object->name();
3184
3185   Symbol_location_info info;
3186   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3187     {
3188       if (!info.source_file.empty())
3189         {
3190           ret += ":";
3191           ret += info.source_file;
3192         }
3193       ret += ":";
3194       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3195         ret += _("function ");
3196       ret += info.enclosing_symbol_name;
3197       return ret;
3198     }
3199
3200   ret += "(";
3201   ret += this->object->section_name(this->data_shndx);
3202   char buf[100];
3203   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3204   ret += buf;
3205   return ret;
3206 }
3207
3208 } // End namespace gold.
3209
3210 namespace
3211 {
3212
3213 using namespace gold;
3214
3215 // Read an ELF file with the header and return the appropriate
3216 // instance of Object.
3217
3218 template<int size, bool big_endian>
3219 Object*
3220 make_elf_sized_object(const std::string& name, Input_file* input_file,
3221                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3222                       bool* punconfigured)
3223 {
3224   Target* target = select_target(input_file, offset,
3225                                  ehdr.get_e_machine(), size, big_endian,
3226                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3227                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3228   if (target == NULL)
3229     gold_fatal(_("%s: unsupported ELF machine number %d"),
3230                name.c_str(), ehdr.get_e_machine());
3231
3232   if (!parameters->target_valid())
3233     set_parameters_target(target);
3234   else if (target != &parameters->target())
3235     {
3236       if (punconfigured != NULL)
3237         *punconfigured = true;
3238       else
3239         gold_error(_("%s: incompatible target"), name.c_str());
3240       return NULL;
3241     }
3242
3243   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3244                                                    ehdr);
3245 }
3246
3247 } // End anonymous namespace.
3248
3249 namespace gold
3250 {
3251
3252 // Return whether INPUT_FILE is an ELF object.
3253
3254 bool
3255 is_elf_object(Input_file* input_file, off_t offset,
3256               const unsigned char** start, int* read_size)
3257 {
3258   off_t filesize = input_file->file().filesize();
3259   int want = elfcpp::Elf_recognizer::max_header_size;
3260   if (filesize - offset < want)
3261     want = filesize - offset;
3262
3263   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3264                                                        true, false);
3265   *start = p;
3266   *read_size = want;
3267
3268   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3269 }
3270
3271 // Read an ELF file and return the appropriate instance of Object.
3272
3273 Object*
3274 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3275                 const unsigned char* p, section_offset_type bytes,
3276                 bool* punconfigured)
3277 {
3278   if (punconfigured != NULL)
3279     *punconfigured = false;
3280
3281   std::string error;
3282   bool big_endian = false;
3283   int size = 0;
3284   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3285                                                &big_endian, &error))
3286     {
3287       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3288       return NULL;
3289     }
3290
3291   if (size == 32)
3292     {
3293       if (big_endian)
3294         {
3295 #ifdef HAVE_TARGET_32_BIG
3296           elfcpp::Ehdr<32, true> ehdr(p);
3297           return make_elf_sized_object<32, true>(name, input_file,
3298                                                  offset, ehdr, punconfigured);
3299 #else
3300           if (punconfigured != NULL)
3301             *punconfigured = true;
3302           else
3303             gold_error(_("%s: not configured to support "
3304                          "32-bit big-endian object"),
3305                        name.c_str());
3306           return NULL;
3307 #endif
3308         }
3309       else
3310         {
3311 #ifdef HAVE_TARGET_32_LITTLE
3312           elfcpp::Ehdr<32, false> ehdr(p);
3313           return make_elf_sized_object<32, false>(name, input_file,
3314                                                   offset, ehdr, punconfigured);
3315 #else
3316           if (punconfigured != NULL)
3317             *punconfigured = true;
3318           else
3319             gold_error(_("%s: not configured to support "
3320                          "32-bit little-endian object"),
3321                        name.c_str());
3322           return NULL;
3323 #endif
3324         }
3325     }
3326   else if (size == 64)
3327     {
3328       if (big_endian)
3329         {
3330 #ifdef HAVE_TARGET_64_BIG
3331           elfcpp::Ehdr<64, true> ehdr(p);
3332           return make_elf_sized_object<64, true>(name, input_file,
3333                                                  offset, ehdr, punconfigured);
3334 #else
3335           if (punconfigured != NULL)
3336             *punconfigured = true;
3337           else
3338             gold_error(_("%s: not configured to support "
3339                          "64-bit big-endian object"),
3340                        name.c_str());
3341           return NULL;
3342 #endif
3343         }
3344       else
3345         {
3346 #ifdef HAVE_TARGET_64_LITTLE
3347           elfcpp::Ehdr<64, false> ehdr(p);
3348           return make_elf_sized_object<64, false>(name, input_file,
3349                                                   offset, ehdr, punconfigured);
3350 #else
3351           if (punconfigured != NULL)
3352             *punconfigured = true;
3353           else
3354             gold_error(_("%s: not configured to support "
3355                          "64-bit little-endian object"),
3356                        name.c_str());
3357           return NULL;
3358 #endif
3359         }
3360     }
3361   else
3362     gold_unreachable();
3363 }
3364
3365 // Instantiate the templates we need.
3366
3367 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3368 template
3369 void
3370 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3371       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3372       Unordered_map<section_offset_type,
3373       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3374 #endif
3375
3376 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3377 template
3378 void
3379 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3380       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3381       Unordered_map<section_offset_type,
3382       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3383 #endif
3384
3385 #ifdef HAVE_TARGET_32_LITTLE
3386 template
3387 void
3388 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3389                                      Read_symbols_data*);
3390 template
3391 const unsigned char*
3392 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3393                             section_size_type, const unsigned char*) const;
3394 #endif
3395
3396 #ifdef HAVE_TARGET_32_BIG
3397 template
3398 void
3399 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3400                                     Read_symbols_data*);
3401 template
3402 const unsigned char*
3403 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3404                            section_size_type, const unsigned char*) const;
3405 #endif
3406
3407 #ifdef HAVE_TARGET_64_LITTLE
3408 template
3409 void
3410 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3411                                      Read_symbols_data*);
3412 template
3413 const unsigned char*
3414 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3415                             section_size_type, const unsigned char*) const;
3416 #endif
3417
3418 #ifdef HAVE_TARGET_64_BIG
3419 template
3420 void
3421 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3422                                     Read_symbols_data*);
3423 template
3424 const unsigned char*
3425 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3426                            section_size_type, const unsigned char*) const;
3427 #endif
3428
3429 #ifdef HAVE_TARGET_32_LITTLE
3430 template
3431 class Sized_relobj<32, false>;
3432
3433 template
3434 class Sized_relobj_file<32, false>;
3435 #endif
3436
3437 #ifdef HAVE_TARGET_32_BIG
3438 template
3439 class Sized_relobj<32, true>;
3440
3441 template
3442 class Sized_relobj_file<32, true>;
3443 #endif
3444
3445 #ifdef HAVE_TARGET_64_LITTLE
3446 template
3447 class Sized_relobj<64, false>;
3448
3449 template
3450 class Sized_relobj_file<64, false>;
3451 #endif
3452
3453 #ifdef HAVE_TARGET_64_BIG
3454 template
3455 class Sized_relobj<64, true>;
3456
3457 template
3458 class Sized_relobj_file<64, true>;
3459 #endif
3460
3461 #ifdef HAVE_TARGET_32_LITTLE
3462 template
3463 struct Relocate_info<32, false>;
3464 #endif
3465
3466 #ifdef HAVE_TARGET_32_BIG
3467 template
3468 struct Relocate_info<32, true>;
3469 #endif
3470
3471 #ifdef HAVE_TARGET_64_LITTLE
3472 template
3473 struct Relocate_info<64, false>;
3474 #endif
3475
3476 #ifdef HAVE_TARGET_64_BIG
3477 template
3478 struct Relocate_info<64, true>;
3479 #endif
3480
3481 #ifdef HAVE_TARGET_32_LITTLE
3482 template
3483 void
3484 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3485
3486 template
3487 void
3488 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3489                                       const unsigned char*);
3490 #endif
3491
3492 #ifdef HAVE_TARGET_32_BIG
3493 template
3494 void
3495 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3496
3497 template
3498 void
3499 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3500                                      const unsigned char*);
3501 #endif
3502
3503 #ifdef HAVE_TARGET_64_LITTLE
3504 template
3505 void
3506 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3507
3508 template
3509 void
3510 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3511                                       const unsigned char*);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_64_BIG
3515 template
3516 void
3517 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3518
3519 template
3520 void
3521 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3522                                      const unsigned char*);
3523 #endif
3524
3525 #ifdef HAVE_TARGET_32_LITTLE
3526 template
3527 Compressed_section_map*
3528 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3529                                         const char*, section_size_type, 
3530                                         Object*, bool);
3531 #endif
3532
3533 #ifdef HAVE_TARGET_32_BIG
3534 template
3535 Compressed_section_map*
3536 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3537                                         const char*, section_size_type, 
3538                                         Object*, bool);
3539 #endif
3540
3541 #ifdef HAVE_TARGET_64_LITTLE
3542 template
3543 Compressed_section_map*
3544 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3545                                         const char*, section_size_type, 
3546                                         Object*, bool);
3547 #endif
3548
3549 #ifdef HAVE_TARGET_64_BIG
3550 template
3551 Compressed_section_map*
3552 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3553                                         const char*, section_size_type, 
3554                                         Object*, bool);
3555 #endif
3556
3557 } // End namespace gold.