* powerpc.cc (Target_powerpc::symval_for_branch): Don't assert
[platform/upstream/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <cstdarg>
29 #include "demangle.h"
30 #include "libiberty.h"
31
32 #include "gc.h"
33 #include "target-select.h"
34 #include "dwarf_reader.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "symtab.h"
38 #include "cref.h"
39 #include "reloc.h"
40 #include "object.h"
41 #include "dynobj.h"
42 #include "plugin.h"
43 #include "compressed_output.h"
44 #include "incremental.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 // To copy the symbols data read from the file to a local data structure.
273 // This function is called from do_layout only while doing garbage
274 // collection.
275
276 void
277 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
278                           unsigned int section_header_size)
279 {
280   gc_sd->section_headers_data =
281          new unsigned char[(section_header_size)];
282   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
283          section_header_size);
284   gc_sd->section_names_data =
285          new unsigned char[sd->section_names_size];
286   memcpy(gc_sd->section_names_data, sd->section_names->data(),
287          sd->section_names_size);
288   gc_sd->section_names_size = sd->section_names_size;
289   if (sd->symbols != NULL)
290     {
291       gc_sd->symbols_data =
292              new unsigned char[sd->symbols_size];
293       memcpy(gc_sd->symbols_data, sd->symbols->data(),
294             sd->symbols_size);
295     }
296   else
297     {
298       gc_sd->symbols_data = NULL;
299     }
300   gc_sd->symbols_size = sd->symbols_size;
301   gc_sd->external_symbols_offset = sd->external_symbols_offset;
302   if (sd->symbol_names != NULL)
303     {
304       gc_sd->symbol_names_data =
305              new unsigned char[sd->symbol_names_size];
306       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
307             sd->symbol_names_size);
308     }
309   else
310     {
311       gc_sd->symbol_names_data = NULL;
312     }
313   gc_sd->symbol_names_size = sd->symbol_names_size;
314 }
315
316 // This function determines if a particular section name must be included
317 // in the link.  This is used during garbage collection to determine the
318 // roots of the worklist.
319
320 bool
321 Relobj::is_section_name_included(const char* name)
322 {
323   if (is_prefix_of(".ctors", name)
324       || is_prefix_of(".dtors", name)
325       || is_prefix_of(".note", name)
326       || is_prefix_of(".init", name)
327       || is_prefix_of(".fini", name)
328       || is_prefix_of(".gcc_except_table", name)
329       || is_prefix_of(".jcr", name)
330       || is_prefix_of(".preinit_array", name)
331       || (is_prefix_of(".text", name)
332           && strstr(name, "personality"))
333       || (is_prefix_of(".data", name)
334           && strstr(name, "personality"))
335       || (is_prefix_of(".sdata", name)
336           && strstr(name, "personality"))
337       || (is_prefix_of(".gnu.linkonce.d", name)
338           && strstr(name, "personality")))
339     {
340       return true;
341     }
342   return false;
343 }
344
345 // Finalize the incremental relocation information.  Allocates a block
346 // of relocation entries for each symbol, and sets the reloc_bases_
347 // array to point to the first entry in each block.  If CLEAR_COUNTS
348 // is TRUE, also clear the per-symbol relocation counters.
349
350 void
351 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
352 {
353   unsigned int nsyms = this->get_global_symbols()->size();
354   this->reloc_bases_ = new unsigned int[nsyms];
355
356   gold_assert(this->reloc_bases_ != NULL);
357   gold_assert(layout->incremental_inputs() != NULL);
358
359   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
360   for (unsigned int i = 0; i < nsyms; ++i)
361     {
362       this->reloc_bases_[i] = rindex;
363       rindex += this->reloc_counts_[i];
364       if (clear_counts)
365         this->reloc_counts_[i] = 0;
366     }
367   layout->incremental_inputs()->set_reloc_count(rindex);
368 }
369
370 // Class Sized_relobj.
371
372 // Iterate over local symbols, calling a visitor class V for each GOT offset
373 // associated with a local symbol.
374
375 template<int size, bool big_endian>
376 void
377 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
378     Got_offset_list::Visitor* v) const
379 {
380   unsigned int nsyms = this->local_symbol_count();
381   for (unsigned int i = 0; i < nsyms; i++)
382     {
383       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
384       if (p != this->local_got_offsets_.end())
385         {
386           const Got_offset_list* got_offsets = p->second;
387           got_offsets->for_all_got_offsets(v);
388         }
389     }
390 }
391
392 // Class Sized_relobj_file.
393
394 template<int size, bool big_endian>
395 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
396     const std::string& name,
397     Input_file* input_file,
398     off_t offset,
399     const elfcpp::Ehdr<size, big_endian>& ehdr)
400   : Sized_relobj<size, big_endian>(name, input_file, offset),
401     elf_file_(this, ehdr),
402     symtab_shndx_(-1U),
403     local_symbol_count_(0),
404     output_local_symbol_count_(0),
405     output_local_dynsym_count_(0),
406     symbols_(),
407     defined_count_(0),
408     local_symbol_offset_(0),
409     local_dynsym_offset_(0),
410     local_values_(),
411     local_plt_offsets_(),
412     kept_comdat_sections_(),
413     has_eh_frame_(false),
414     discarded_eh_frame_shndx_(-1U),
415     deferred_layout_(),
416     deferred_layout_relocs_(),
417     compressed_sections_()
418 {
419   this->e_type_ = ehdr.get_e_type();
420 }
421
422 template<int size, bool big_endian>
423 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
424 {
425 }
426
427 // Set up an object file based on the file header.  This sets up the
428 // section information.
429
430 template<int size, bool big_endian>
431 void
432 Sized_relobj_file<size, big_endian>::do_setup()
433 {
434   const unsigned int shnum = this->elf_file_.shnum();
435   this->set_shnum(shnum);
436 }
437
438 // Find the SHT_SYMTAB section, given the section headers.  The ELF
439 // standard says that maybe in the future there can be more than one
440 // SHT_SYMTAB section.  Until somebody figures out how that could
441 // work, we assume there is only one.
442
443 template<int size, bool big_endian>
444 void
445 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
446 {
447   const unsigned int shnum = this->shnum();
448   this->symtab_shndx_ = 0;
449   if (shnum > 0)
450     {
451       // Look through the sections in reverse order, since gas tends
452       // to put the symbol table at the end.
453       const unsigned char* p = pshdrs + shnum * This::shdr_size;
454       unsigned int i = shnum;
455       unsigned int xindex_shndx = 0;
456       unsigned int xindex_link = 0;
457       while (i > 0)
458         {
459           --i;
460           p -= This::shdr_size;
461           typename This::Shdr shdr(p);
462           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
463             {
464               this->symtab_shndx_ = i;
465               if (xindex_shndx > 0 && xindex_link == i)
466                 {
467                   Xindex* xindex =
468                     new Xindex(this->elf_file_.large_shndx_offset());
469                   xindex->read_symtab_xindex<size, big_endian>(this,
470                                                                xindex_shndx,
471                                                                pshdrs);
472                   this->set_xindex(xindex);
473                 }
474               break;
475             }
476
477           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
478           // one.  This will work if it follows the SHT_SYMTAB
479           // section.
480           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
481             {
482               xindex_shndx = i;
483               xindex_link = this->adjust_shndx(shdr.get_sh_link());
484             }
485         }
486     }
487 }
488
489 // Return the Xindex structure to use for object with lots of
490 // sections.
491
492 template<int size, bool big_endian>
493 Xindex*
494 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
495 {
496   gold_assert(this->symtab_shndx_ != -1U);
497   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
498   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
499   return xindex;
500 }
501
502 // Return whether SHDR has the right type and flags to be a GNU
503 // .eh_frame section.
504
505 template<int size, bool big_endian>
506 bool
507 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
508     const elfcpp::Shdr<size, big_endian>* shdr) const
509 {
510   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
511   return ((sh_type == elfcpp::SHT_PROGBITS
512            || sh_type == elfcpp::SHT_X86_64_UNWIND)
513           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
514 }
515
516 // Find the section header with the given name.
517
518 template<int size, bool big_endian>
519 const unsigned char*
520 Object::find_shdr(
521     const unsigned char* pshdrs,
522     const char* name,
523     const char* names,
524     section_size_type names_size,
525     const unsigned char* hdr) const
526 {
527   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
528   const unsigned int shnum = this->shnum();
529   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
530   size_t sh_name = 0;
531
532   while (1)
533     {
534       if (hdr)
535         {
536           // We found HDR last time we were called, continue looking.
537           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
538           sh_name = shdr.get_sh_name();
539         }
540       else
541         {
542           // Look for the next occurrence of NAME in NAMES.
543           // The fact that .shstrtab produced by current GNU tools is
544           // string merged means we shouldn't have both .not.foo and
545           // .foo in .shstrtab, and multiple .foo sections should all
546           // have the same sh_name.  However, this is not guaranteed
547           // by the ELF spec and not all ELF object file producers may
548           // be so clever.
549           size_t len = strlen(name) + 1;
550           const char *p = sh_name ? names + sh_name + len : names;
551           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
552                                                    name, len));
553           if (p == NULL)
554             return NULL;
555           sh_name = p - names;
556           hdr = pshdrs;
557           if (sh_name == 0)
558             return hdr;
559         }
560
561       hdr += shdr_size;
562       while (hdr < hdr_end)
563         {
564           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
565           if (shdr.get_sh_name() == sh_name)
566             return hdr;
567           hdr += shdr_size;
568         }
569       hdr = NULL;
570       if (sh_name == 0)
571         return hdr;
572     }
573 }
574
575 // Return whether there is a GNU .eh_frame section, given the section
576 // headers and the section names.
577
578 template<int size, bool big_endian>
579 bool
580 Sized_relobj_file<size, big_endian>::find_eh_frame(
581     const unsigned char* pshdrs,
582     const char* names,
583     section_size_type names_size) const
584 {
585   const unsigned char* s = NULL;
586
587   while (1)
588     {
589       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
590                                                      names, names_size, s);
591       if (s == NULL)
592         return false;
593
594       typename This::Shdr shdr(s);
595       if (this->check_eh_frame_flags(&shdr))
596         return true;
597     }
598 }
599
600 // Return TRUE if this is a section whose contents will be needed in the
601 // Add_symbols task.  This function is only called for sections that have
602 // already passed the test in is_compressed_debug_section(), so we know
603 // that the section name begins with ".zdebug".
604
605 static bool
606 need_decompressed_section(const char* name)
607 {
608   // Skip over the ".zdebug" and a quick check for the "_".
609   name += 7;
610   if (*name++ != '_')
611     return false;
612
613 #ifdef ENABLE_THREADS
614   // Decompressing these sections now will help only if we're
615   // multithreaded.
616   if (parameters->options().threads())
617     {
618       // We will need .zdebug_str if this is not an incremental link
619       // (i.e., we are processing string merge sections) or if we need
620       // to build a gdb index.
621       if ((!parameters->incremental() || parameters->options().gdb_index())
622           && strcmp(name, "str") == 0)
623         return true;
624
625       // We will need these other sections when building a gdb index.
626       if (parameters->options().gdb_index()
627           && (strcmp(name, "info") == 0
628               || strcmp(name, "types") == 0
629               || strcmp(name, "pubnames") == 0
630               || strcmp(name, "pubtypes") == 0
631               || strcmp(name, "ranges") == 0
632               || strcmp(name, "abbrev") == 0))
633         return true;
634     }
635 #endif
636
637   // Even when single-threaded, we will need .zdebug_str if this is
638   // not an incremental link and we are building a gdb index.
639   // Otherwise, we would decompress the section twice: once for
640   // string merge processing, and once for building the gdb index.
641   if (!parameters->incremental()
642       && parameters->options().gdb_index()
643       && strcmp(name, "str") == 0)
644     return true;
645
646   return false;
647 }
648
649 // Build a table for any compressed debug sections, mapping each section index
650 // to the uncompressed size and (if needed) the decompressed contents.
651
652 template<int size, bool big_endian>
653 Compressed_section_map*
654 build_compressed_section_map(
655     const unsigned char* pshdrs,
656     unsigned int shnum,
657     const char* names,
658     section_size_type names_size,
659     Sized_relobj_file<size, big_endian>* obj)
660 {
661   Compressed_section_map* uncompressed_map = new Compressed_section_map();
662   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
663   const unsigned char* p = pshdrs + shdr_size;
664
665   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
666     {
667       typename elfcpp::Shdr<size, big_endian> shdr(p);
668       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
669           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
670         {
671           if (shdr.get_sh_name() >= names_size)
672             {
673               obj->error(_("bad section name offset for section %u: %lu"),
674                          i, static_cast<unsigned long>(shdr.get_sh_name()));
675               continue;
676             }
677
678           const char* name = names + shdr.get_sh_name();
679           if (is_compressed_debug_section(name))
680             {
681               section_size_type len;
682               const unsigned char* contents =
683                   obj->section_contents(i, &len, false);
684               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
685               Compressed_section_info info;
686               info.size = convert_to_section_size_type(uncompressed_size);
687               info.contents = NULL;
688               if (uncompressed_size != -1ULL)
689                 {
690                   unsigned char* uncompressed_data = NULL;
691                   if (need_decompressed_section(name))
692                     {
693                       uncompressed_data = new unsigned char[uncompressed_size];
694                       if (decompress_input_section(contents, len,
695                                                    uncompressed_data,
696                                                    uncompressed_size))
697                         info.contents = uncompressed_data;
698                       else
699                         delete[] uncompressed_data;
700                     }
701                   (*uncompressed_map)[i] = info;
702                 }
703             }
704         }
705     }
706   return uncompressed_map;
707 }
708
709 // Stash away info for a number of special sections.
710 // Return true if any of the sections found require local symbols to be read.
711
712 template<int size, bool big_endian>
713 bool
714 Sized_relobj_file<size, big_endian>::do_find_special_sections(
715     Read_symbols_data* sd)
716 {
717   const unsigned char* const pshdrs = sd->section_headers->data();
718   const unsigned char* namesu = sd->section_names->data();
719   const char* names = reinterpret_cast<const char*>(namesu);
720
721   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
722     this->has_eh_frame_ = true;
723
724   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
725     this->compressed_sections_
726       = build_compressed_section_map(pshdrs, this->shnum(), names,
727                                      sd->section_names_size, this);
728   return (this->has_eh_frame_
729           || (!parameters->options().relocatable()
730               && parameters->options().gdb_index()
731               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
732                   || memmem(names, sd->section_names_size, "debug_types",
733                             13) == 0)));
734 }
735
736 // Read the sections and symbols from an object file.
737
738 template<int size, bool big_endian>
739 void
740 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
741 {
742   this->read_section_data(&this->elf_file_, sd);
743
744   const unsigned char* const pshdrs = sd->section_headers->data();
745
746   this->find_symtab(pshdrs);
747
748   bool need_local_symbols = this->do_find_special_sections(sd);
749
750   sd->symbols = NULL;
751   sd->symbols_size = 0;
752   sd->external_symbols_offset = 0;
753   sd->symbol_names = NULL;
754   sd->symbol_names_size = 0;
755
756   if (this->symtab_shndx_ == 0)
757     {
758       // No symbol table.  Weird but legal.
759       return;
760     }
761
762   // Get the symbol table section header.
763   typename This::Shdr symtabshdr(pshdrs
764                                  + this->symtab_shndx_ * This::shdr_size);
765   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
766
767   // If this object has a .eh_frame section, or if building a .gdb_index
768   // section and there is debug info, we need all the symbols.
769   // Otherwise we only need the external symbols.  While it would be
770   // simpler to just always read all the symbols, I've seen object
771   // files with well over 2000 local symbols, which for a 64-bit
772   // object file format is over 5 pages that we don't need to read
773   // now.
774
775   const int sym_size = This::sym_size;
776   const unsigned int loccount = symtabshdr.get_sh_info();
777   this->local_symbol_count_ = loccount;
778   this->local_values_.resize(loccount);
779   section_offset_type locsize = loccount * sym_size;
780   off_t dataoff = symtabshdr.get_sh_offset();
781   section_size_type datasize =
782     convert_to_section_size_type(symtabshdr.get_sh_size());
783   off_t extoff = dataoff + locsize;
784   section_size_type extsize = datasize - locsize;
785
786   off_t readoff = need_local_symbols ? dataoff : extoff;
787   section_size_type readsize = need_local_symbols ? datasize : extsize;
788
789   if (readsize == 0)
790     {
791       // No external symbols.  Also weird but also legal.
792       return;
793     }
794
795   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
796
797   // Read the section header for the symbol names.
798   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
799   if (strtab_shndx >= this->shnum())
800     {
801       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
802       return;
803     }
804   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
805   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
806     {
807       this->error(_("symbol table name section has wrong type: %u"),
808                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
809       return;
810     }
811
812   // Read the symbol names.
813   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
814                                                strtabshdr.get_sh_size(),
815                                                false, true);
816
817   sd->symbols = fvsymtab;
818   sd->symbols_size = readsize;
819   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
820   sd->symbol_names = fvstrtab;
821   sd->symbol_names_size =
822     convert_to_section_size_type(strtabshdr.get_sh_size());
823 }
824
825 // Return the section index of symbol SYM.  Set *VALUE to its value in
826 // the object file.  Set *IS_ORDINARY if this is an ordinary section
827 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
828 // Note that for a symbol which is not defined in this object file,
829 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
830 // the final value of the symbol in the link.
831
832 template<int size, bool big_endian>
833 unsigned int
834 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
835                                                               Address* value,
836                                                               bool* is_ordinary)
837 {
838   section_size_type symbols_size;
839   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
840                                                         &symbols_size,
841                                                         false);
842
843   const size_t count = symbols_size / This::sym_size;
844   gold_assert(sym < count);
845
846   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
847   *value = elfsym.get_st_value();
848
849   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
850 }
851
852 // Return whether to include a section group in the link.  LAYOUT is
853 // used to keep track of which section groups we have already seen.
854 // INDEX is the index of the section group and SHDR is the section
855 // header.  If we do not want to include this group, we set bits in
856 // OMIT for each section which should be discarded.
857
858 template<int size, bool big_endian>
859 bool
860 Sized_relobj_file<size, big_endian>::include_section_group(
861     Symbol_table* symtab,
862     Layout* layout,
863     unsigned int index,
864     const char* name,
865     const unsigned char* shdrs,
866     const char* section_names,
867     section_size_type section_names_size,
868     std::vector<bool>* omit)
869 {
870   // Read the section contents.
871   typename This::Shdr shdr(shdrs + index * This::shdr_size);
872   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
873                                              shdr.get_sh_size(), true, false);
874   const elfcpp::Elf_Word* pword =
875     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
876
877   // The first word contains flags.  We only care about COMDAT section
878   // groups.  Other section groups are always included in the link
879   // just like ordinary sections.
880   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
881
882   // Look up the group signature, which is the name of a symbol.  ELF
883   // uses a symbol name because some group signatures are long, and
884   // the name is generally already in the symbol table, so it makes
885   // sense to put the long string just once in .strtab rather than in
886   // both .strtab and .shstrtab.
887
888   // Get the appropriate symbol table header (this will normally be
889   // the single SHT_SYMTAB section, but in principle it need not be).
890   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
891   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
892
893   // Read the symbol table entry.
894   unsigned int symndx = shdr.get_sh_info();
895   if (symndx >= symshdr.get_sh_size() / This::sym_size)
896     {
897       this->error(_("section group %u info %u out of range"),
898                   index, symndx);
899       return false;
900     }
901   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
902   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
903                                              false);
904   elfcpp::Sym<size, big_endian> sym(psym);
905
906   // Read the symbol table names.
907   section_size_type symnamelen;
908   const unsigned char* psymnamesu;
909   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
910                                       &symnamelen, true);
911   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
912
913   // Get the section group signature.
914   if (sym.get_st_name() >= symnamelen)
915     {
916       this->error(_("symbol %u name offset %u out of range"),
917                   symndx, sym.get_st_name());
918       return false;
919     }
920
921   std::string signature(psymnames + sym.get_st_name());
922
923   // It seems that some versions of gas will create a section group
924   // associated with a section symbol, and then fail to give a name to
925   // the section symbol.  In such a case, use the name of the section.
926   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
927     {
928       bool is_ordinary;
929       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
930                                                       sym.get_st_shndx(),
931                                                       &is_ordinary);
932       if (!is_ordinary || sym_shndx >= this->shnum())
933         {
934           this->error(_("symbol %u invalid section index %u"),
935                       symndx, sym_shndx);
936           return false;
937         }
938       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
939       if (member_shdr.get_sh_name() < section_names_size)
940         signature = section_names + member_shdr.get_sh_name();
941     }
942
943   // Record this section group in the layout, and see whether we've already
944   // seen one with the same signature.
945   bool include_group;
946   bool is_comdat;
947   Kept_section* kept_section = NULL;
948
949   if ((flags & elfcpp::GRP_COMDAT) == 0)
950     {
951       include_group = true;
952       is_comdat = false;
953     }
954   else
955     {
956       include_group = layout->find_or_add_kept_section(signature,
957                                                        this, index, true,
958                                                        true, &kept_section);
959       is_comdat = true;
960     }
961
962   if (is_comdat && include_group)
963     {
964       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
965       if (incremental_inputs != NULL)
966         incremental_inputs->report_comdat_group(this, signature.c_str());
967     }
968
969   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
970
971   std::vector<unsigned int> shndxes;
972   bool relocate_group = include_group && parameters->options().relocatable();
973   if (relocate_group)
974     shndxes.reserve(count - 1);
975
976   for (size_t i = 1; i < count; ++i)
977     {
978       elfcpp::Elf_Word shndx =
979         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
980
981       if (relocate_group)
982         shndxes.push_back(shndx);
983
984       if (shndx >= this->shnum())
985         {
986           this->error(_("section %u in section group %u out of range"),
987                       shndx, index);
988           continue;
989         }
990
991       // Check for an earlier section number, since we're going to get
992       // it wrong--we may have already decided to include the section.
993       if (shndx < index)
994         this->error(_("invalid section group %u refers to earlier section %u"),
995                     index, shndx);
996
997       // Get the name of the member section.
998       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
999       if (member_shdr.get_sh_name() >= section_names_size)
1000         {
1001           // This is an error, but it will be diagnosed eventually
1002           // in do_layout, so we don't need to do anything here but
1003           // ignore it.
1004           continue;
1005         }
1006       std::string mname(section_names + member_shdr.get_sh_name());
1007
1008       if (include_group)
1009         {
1010           if (is_comdat)
1011             kept_section->add_comdat_section(mname, shndx,
1012                                              member_shdr.get_sh_size());
1013         }
1014       else
1015         {
1016           (*omit)[shndx] = true;
1017
1018           if (is_comdat)
1019             {
1020               Relobj* kept_object = kept_section->object();
1021               if (kept_section->is_comdat())
1022                 {
1023                   // Find the corresponding kept section, and store
1024                   // that info in the discarded section table.
1025                   unsigned int kept_shndx;
1026                   uint64_t kept_size;
1027                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1028                                                         &kept_size))
1029                     {
1030                       // We don't keep a mapping for this section if
1031                       // it has a different size.  The mapping is only
1032                       // used for relocation processing, and we don't
1033                       // want to treat the sections as similar if the
1034                       // sizes are different.  Checking the section
1035                       // size is the approach used by the GNU linker.
1036                       if (kept_size == member_shdr.get_sh_size())
1037                         this->set_kept_comdat_section(shndx, kept_object,
1038                                                       kept_shndx);
1039                     }
1040                 }
1041               else
1042                 {
1043                   // The existing section is a linkonce section.  Add
1044                   // a mapping if there is exactly one section in the
1045                   // group (which is true when COUNT == 2) and if it
1046                   // is the same size.
1047                   if (count == 2
1048                       && (kept_section->linkonce_size()
1049                           == member_shdr.get_sh_size()))
1050                     this->set_kept_comdat_section(shndx, kept_object,
1051                                                   kept_section->shndx());
1052                 }
1053             }
1054         }
1055     }
1056
1057   if (relocate_group)
1058     layout->layout_group(symtab, this, index, name, signature.c_str(),
1059                          shdr, flags, &shndxes);
1060
1061   return include_group;
1062 }
1063
1064 // Whether to include a linkonce section in the link.  NAME is the
1065 // name of the section and SHDR is the section header.
1066
1067 // Linkonce sections are a GNU extension implemented in the original
1068 // GNU linker before section groups were defined.  The semantics are
1069 // that we only include one linkonce section with a given name.  The
1070 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1071 // where T is the type of section and SYMNAME is the name of a symbol.
1072 // In an attempt to make linkonce sections interact well with section
1073 // groups, we try to identify SYMNAME and use it like a section group
1074 // signature.  We want to block section groups with that signature,
1075 // but not other linkonce sections with that signature.  We also use
1076 // the full name of the linkonce section as a normal section group
1077 // signature.
1078
1079 template<int size, bool big_endian>
1080 bool
1081 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1082     Layout* layout,
1083     unsigned int index,
1084     const char* name,
1085     const elfcpp::Shdr<size, big_endian>& shdr)
1086 {
1087   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1088   // In general the symbol name we want will be the string following
1089   // the last '.'.  However, we have to handle the case of
1090   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1091   // some versions of gcc.  So we use a heuristic: if the name starts
1092   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1093   // we look for the last '.'.  We can't always simply skip
1094   // ".gnu.linkonce.X", because we have to deal with cases like
1095   // ".gnu.linkonce.d.rel.ro.local".
1096   const char* const linkonce_t = ".gnu.linkonce.t.";
1097   const char* symname;
1098   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1099     symname = name + strlen(linkonce_t);
1100   else
1101     symname = strrchr(name, '.') + 1;
1102   std::string sig1(symname);
1103   std::string sig2(name);
1104   Kept_section* kept1;
1105   Kept_section* kept2;
1106   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1107                                                    false, &kept1);
1108   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1109                                                    true, &kept2);
1110
1111   if (!include2)
1112     {
1113       // We are not including this section because we already saw the
1114       // name of the section as a signature.  This normally implies
1115       // that the kept section is another linkonce section.  If it is
1116       // the same size, record it as the section which corresponds to
1117       // this one.
1118       if (kept2->object() != NULL
1119           && !kept2->is_comdat()
1120           && kept2->linkonce_size() == sh_size)
1121         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1122     }
1123   else if (!include1)
1124     {
1125       // The section is being discarded on the basis of its symbol
1126       // name.  This means that the corresponding kept section was
1127       // part of a comdat group, and it will be difficult to identify
1128       // the specific section within that group that corresponds to
1129       // this linkonce section.  We'll handle the simple case where
1130       // the group has only one member section.  Otherwise, it's not
1131       // worth the effort.
1132       unsigned int kept_shndx;
1133       uint64_t kept_size;
1134       if (kept1->object() != NULL
1135           && kept1->is_comdat()
1136           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1137           && kept_size == sh_size)
1138         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1139     }
1140   else
1141     {
1142       kept1->set_linkonce_size(sh_size);
1143       kept2->set_linkonce_size(sh_size);
1144     }
1145
1146   return include1 && include2;
1147 }
1148
1149 // Layout an input section.
1150
1151 template<int size, bool big_endian>
1152 inline void
1153 Sized_relobj_file<size, big_endian>::layout_section(
1154     Layout* layout,
1155     unsigned int shndx,
1156     const char* name,
1157     const typename This::Shdr& shdr,
1158     unsigned int reloc_shndx,
1159     unsigned int reloc_type)
1160 {
1161   off_t offset;
1162   Output_section* os = layout->layout(this, shndx, name, shdr,
1163                                           reloc_shndx, reloc_type, &offset);
1164
1165   this->output_sections()[shndx] = os;
1166   if (offset == -1)
1167     this->section_offsets()[shndx] = invalid_address;
1168   else
1169     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1170
1171   // If this section requires special handling, and if there are
1172   // relocs that apply to it, then we must do the special handling
1173   // before we apply the relocs.
1174   if (offset == -1 && reloc_shndx != 0)
1175     this->set_relocs_must_follow_section_writes();
1176 }
1177
1178 // Layout an input .eh_frame section.
1179
1180 template<int size, bool big_endian>
1181 void
1182 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1183     Layout* layout,
1184     const unsigned char* symbols_data,
1185     section_size_type symbols_size,
1186     const unsigned char* symbol_names_data,
1187     section_size_type symbol_names_size,
1188     unsigned int shndx,
1189     const typename This::Shdr& shdr,
1190     unsigned int reloc_shndx,
1191     unsigned int reloc_type)
1192 {
1193   gold_assert(this->has_eh_frame_);
1194
1195   off_t offset;
1196   Output_section* os = layout->layout_eh_frame(this,
1197                                                symbols_data,
1198                                                symbols_size,
1199                                                symbol_names_data,
1200                                                symbol_names_size,
1201                                                shndx,
1202                                                shdr,
1203                                                reloc_shndx,
1204                                                reloc_type,
1205                                                &offset);
1206   this->output_sections()[shndx] = os;
1207   if (os == NULL || offset == -1)
1208     {
1209       // An object can contain at most one section holding exception
1210       // frame information.
1211       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1212       this->discarded_eh_frame_shndx_ = shndx;
1213       this->section_offsets()[shndx] = invalid_address;
1214     }
1215   else
1216     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1217
1218   // If this section requires special handling, and if there are
1219   // relocs that aply to it, then we must do the special handling
1220   // before we apply the relocs.
1221   if (os != NULL && offset == -1 && reloc_shndx != 0)
1222     this->set_relocs_must_follow_section_writes();
1223 }
1224
1225 // Lay out the input sections.  We walk through the sections and check
1226 // whether they should be included in the link.  If they should, we
1227 // pass them to the Layout object, which will return an output section
1228 // and an offset.
1229 // This function is called twice sometimes, two passes, when mapping
1230 // of input sections to output sections must be delayed.
1231 // This is true for the following :
1232 // * Garbage collection (--gc-sections): Some input sections will be
1233 // discarded and hence the assignment must wait until the second pass.
1234 // In the first pass,  it is for setting up some sections as roots to
1235 // a work-list for --gc-sections and to do comdat processing.
1236 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1237 // will be folded and hence the assignment must wait.
1238 // * Using plugins to map some sections to unique segments: Mapping
1239 // some sections to unique segments requires mapping them to unique
1240 // output sections too.  This can be done via plugins now and this
1241 // information is not available in the first pass.
1242
1243 template<int size, bool big_endian>
1244 void
1245 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1246                                                Layout* layout,
1247                                                Read_symbols_data* sd)
1248 {
1249   const unsigned int shnum = this->shnum();
1250
1251   /* Should this function be called twice?  */
1252   bool is_two_pass = (parameters->options().gc_sections()
1253                       || parameters->options().icf_enabled()
1254                       || layout->is_unique_segment_for_sections_specified());
1255
1256   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1257      a two-pass approach is not needed.  */
1258   bool is_pass_one = false;
1259   bool is_pass_two = false;
1260
1261   Symbols_data* gc_sd = NULL;
1262
1263   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1264      should happen.  In the first pass, the data in sd is saved to be used
1265      later in the second pass.  */
1266   if (is_two_pass)
1267     {
1268       gc_sd = this->get_symbols_data();
1269       if (gc_sd == NULL)
1270         {
1271           gold_assert(sd != NULL);
1272           is_pass_one = true;
1273         }
1274       else
1275         {
1276           if (parameters->options().gc_sections())
1277             gold_assert(symtab->gc()->is_worklist_ready());
1278           if (parameters->options().icf_enabled())
1279             gold_assert(symtab->icf()->is_icf_ready()); 
1280           is_pass_two = true;
1281         }
1282     }
1283     
1284   if (shnum == 0)
1285     return;
1286
1287   if (is_pass_one)
1288     {
1289       // During garbage collection save the symbols data to use it when
1290       // re-entering this function.
1291       gc_sd = new Symbols_data;
1292       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1293       this->set_symbols_data(gc_sd);
1294     }
1295
1296   const unsigned char* section_headers_data = NULL;
1297   section_size_type section_names_size;
1298   const unsigned char* symbols_data = NULL;
1299   section_size_type symbols_size;
1300   const unsigned char* symbol_names_data = NULL;
1301   section_size_type symbol_names_size;
1302
1303   if (is_two_pass)
1304     {
1305       section_headers_data = gc_sd->section_headers_data;
1306       section_names_size = gc_sd->section_names_size;
1307       symbols_data = gc_sd->symbols_data;
1308       symbols_size = gc_sd->symbols_size;
1309       symbol_names_data = gc_sd->symbol_names_data;
1310       symbol_names_size = gc_sd->symbol_names_size;
1311     }
1312   else
1313     {
1314       section_headers_data = sd->section_headers->data();
1315       section_names_size = sd->section_names_size;
1316       if (sd->symbols != NULL)
1317         symbols_data = sd->symbols->data();
1318       symbols_size = sd->symbols_size;
1319       if (sd->symbol_names != NULL)
1320         symbol_names_data = sd->symbol_names->data();
1321       symbol_names_size = sd->symbol_names_size;
1322     }
1323
1324   // Get the section headers.
1325   const unsigned char* shdrs = section_headers_data;
1326   const unsigned char* pshdrs;
1327
1328   // Get the section names.
1329   const unsigned char* pnamesu = (is_two_pass
1330                                   ? gc_sd->section_names_data
1331                                   : sd->section_names->data());
1332
1333   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1334
1335   // If any input files have been claimed by plugins, we need to defer
1336   // actual layout until the replacement files have arrived.
1337   const bool should_defer_layout =
1338       (parameters->options().has_plugins()
1339        && parameters->options().plugins()->should_defer_layout());
1340   unsigned int num_sections_to_defer = 0;
1341
1342   // For each section, record the index of the reloc section if any.
1343   // Use 0 to mean that there is no reloc section, -1U to mean that
1344   // there is more than one.
1345   std::vector<unsigned int> reloc_shndx(shnum, 0);
1346   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1347   // Skip the first, dummy, section.
1348   pshdrs = shdrs + This::shdr_size;
1349   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1350     {
1351       typename This::Shdr shdr(pshdrs);
1352
1353       // Count the number of sections whose layout will be deferred.
1354       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1355         ++num_sections_to_defer;
1356
1357       unsigned int sh_type = shdr.get_sh_type();
1358       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1359         {
1360           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1361           if (target_shndx == 0 || target_shndx >= shnum)
1362             {
1363               this->error(_("relocation section %u has bad info %u"),
1364                           i, target_shndx);
1365               continue;
1366             }
1367
1368           if (reloc_shndx[target_shndx] != 0)
1369             reloc_shndx[target_shndx] = -1U;
1370           else
1371             {
1372               reloc_shndx[target_shndx] = i;
1373               reloc_type[target_shndx] = sh_type;
1374             }
1375         }
1376     }
1377
1378   Output_sections& out_sections(this->output_sections());
1379   std::vector<Address>& out_section_offsets(this->section_offsets());
1380
1381   if (!is_pass_two)
1382     {
1383       out_sections.resize(shnum);
1384       out_section_offsets.resize(shnum);
1385     }
1386
1387   // If we are only linking for symbols, then there is nothing else to
1388   // do here.
1389   if (this->input_file()->just_symbols())
1390     {
1391       if (!is_pass_two)
1392         {
1393           delete sd->section_headers;
1394           sd->section_headers = NULL;
1395           delete sd->section_names;
1396           sd->section_names = NULL;
1397         }
1398       return;
1399     }
1400
1401   if (num_sections_to_defer > 0)
1402     {
1403       parameters->options().plugins()->add_deferred_layout_object(this);
1404       this->deferred_layout_.reserve(num_sections_to_defer);
1405     }
1406
1407   // Whether we've seen a .note.GNU-stack section.
1408   bool seen_gnu_stack = false;
1409   // The flags of a .note.GNU-stack section.
1410   uint64_t gnu_stack_flags = 0;
1411
1412   // Keep track of which sections to omit.
1413   std::vector<bool> omit(shnum, false);
1414
1415   // Keep track of reloc sections when emitting relocations.
1416   const bool relocatable = parameters->options().relocatable();
1417   const bool emit_relocs = (relocatable
1418                             || parameters->options().emit_relocs());
1419   std::vector<unsigned int> reloc_sections;
1420
1421   // Keep track of .eh_frame sections.
1422   std::vector<unsigned int> eh_frame_sections;
1423
1424   // Keep track of .debug_info and .debug_types sections.
1425   std::vector<unsigned int> debug_info_sections;
1426   std::vector<unsigned int> debug_types_sections;
1427
1428   // Skip the first, dummy, section.
1429   pshdrs = shdrs + This::shdr_size;
1430   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1431     {
1432       typename This::Shdr shdr(pshdrs);
1433
1434       if (shdr.get_sh_name() >= section_names_size)
1435         {
1436           this->error(_("bad section name offset for section %u: %lu"),
1437                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1438           return;
1439         }
1440
1441       const char* name = pnames + shdr.get_sh_name();
1442
1443       if (!is_pass_two)
1444         {
1445           if (this->handle_gnu_warning_section(name, i, symtab))
1446             {
1447               if (!relocatable && !parameters->options().shared())
1448                 omit[i] = true;
1449             }
1450
1451           // The .note.GNU-stack section is special.  It gives the
1452           // protection flags that this object file requires for the stack
1453           // in memory.
1454           if (strcmp(name, ".note.GNU-stack") == 0)
1455             {
1456               seen_gnu_stack = true;
1457               gnu_stack_flags |= shdr.get_sh_flags();
1458               omit[i] = true;
1459             }
1460
1461           // The .note.GNU-split-stack section is also special.  It
1462           // indicates that the object was compiled with
1463           // -fsplit-stack.
1464           if (this->handle_split_stack_section(name))
1465             {
1466               if (!relocatable && !parameters->options().shared())
1467                 omit[i] = true;
1468             }
1469
1470           // Skip attributes section.
1471           if (parameters->target().is_attributes_section(name))
1472             {
1473               omit[i] = true;
1474             }
1475
1476           bool discard = omit[i];
1477           if (!discard)
1478             {
1479               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1480                 {
1481                   if (!this->include_section_group(symtab, layout, i, name,
1482                                                    shdrs, pnames,
1483                                                    section_names_size,
1484                                                    &omit))
1485                     discard = true;
1486                 }
1487               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1488                        && Layout::is_linkonce(name))
1489                 {
1490                   if (!this->include_linkonce_section(layout, i, name, shdr))
1491                     discard = true;
1492                 }
1493             }
1494
1495           // Add the section to the incremental inputs layout.
1496           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1497           if (incremental_inputs != NULL
1498               && !discard
1499               && can_incremental_update(shdr.get_sh_type()))
1500             {
1501               off_t sh_size = shdr.get_sh_size();
1502               section_size_type uncompressed_size;
1503               if (this->section_is_compressed(i, &uncompressed_size))
1504                 sh_size = uncompressed_size;
1505               incremental_inputs->report_input_section(this, i, name, sh_size);
1506             }
1507
1508           if (discard)
1509             {
1510               // Do not include this section in the link.
1511               out_sections[i] = NULL;
1512               out_section_offsets[i] = invalid_address;
1513               continue;
1514             }
1515         }
1516
1517       if (is_pass_one && parameters->options().gc_sections())
1518         {
1519           if (this->is_section_name_included(name)
1520               || layout->keep_input_section (this, name)
1521               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1522               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1523             {
1524               symtab->gc()->worklist().push(Section_id(this, i));
1525             }
1526           // If the section name XXX can be represented as a C identifier
1527           // it cannot be discarded if there are references to
1528           // __start_XXX and __stop_XXX symbols.  These need to be
1529           // specially handled.
1530           if (is_cident(name))
1531             {
1532               symtab->gc()->add_cident_section(name, Section_id(this, i));
1533             }
1534         }
1535
1536       // When doing a relocatable link we are going to copy input
1537       // reloc sections into the output.  We only want to copy the
1538       // ones associated with sections which are not being discarded.
1539       // However, we don't know that yet for all sections.  So save
1540       // reloc sections and process them later. Garbage collection is
1541       // not triggered when relocatable code is desired.
1542       if (emit_relocs
1543           && (shdr.get_sh_type() == elfcpp::SHT_REL
1544               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1545         {
1546           reloc_sections.push_back(i);
1547           continue;
1548         }
1549
1550       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1551         continue;
1552
1553       // The .eh_frame section is special.  It holds exception frame
1554       // information that we need to read in order to generate the
1555       // exception frame header.  We process these after all the other
1556       // sections so that the exception frame reader can reliably
1557       // determine which sections are being discarded, and discard the
1558       // corresponding information.
1559       if (!relocatable
1560           && strcmp(name, ".eh_frame") == 0
1561           && this->check_eh_frame_flags(&shdr))
1562         {
1563           if (is_pass_one)
1564             {
1565               out_sections[i] = reinterpret_cast<Output_section*>(1);
1566               out_section_offsets[i] = invalid_address;
1567             }
1568           else if (should_defer_layout)
1569             this->deferred_layout_.push_back(Deferred_layout(i, name,
1570                                                              pshdrs,
1571                                                              reloc_shndx[i],
1572                                                              reloc_type[i]));
1573           else
1574             eh_frame_sections.push_back(i);
1575           continue;
1576         }
1577
1578       if (is_pass_two && parameters->options().gc_sections())
1579         {
1580           // This is executed during the second pass of garbage
1581           // collection. do_layout has been called before and some
1582           // sections have been already discarded. Simply ignore
1583           // such sections this time around.
1584           if (out_sections[i] == NULL)
1585             {
1586               gold_assert(out_section_offsets[i] == invalid_address);
1587               continue;
1588             }
1589           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1590               && symtab->gc()->is_section_garbage(this, i))
1591               {
1592                 if (parameters->options().print_gc_sections())
1593                   gold_info(_("%s: removing unused section from '%s'"
1594                               " in file '%s'"),
1595                             program_name, this->section_name(i).c_str(),
1596                             this->name().c_str());
1597                 out_sections[i] = NULL;
1598                 out_section_offsets[i] = invalid_address;
1599                 continue;
1600               }
1601         }
1602
1603       if (is_pass_two && parameters->options().icf_enabled())
1604         {
1605           if (out_sections[i] == NULL)
1606             {
1607               gold_assert(out_section_offsets[i] == invalid_address);
1608               continue;
1609             }
1610           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1611               && symtab->icf()->is_section_folded(this, i))
1612               {
1613                 if (parameters->options().print_icf_sections())
1614                   {
1615                     Section_id folded =
1616                                 symtab->icf()->get_folded_section(this, i);
1617                     Relobj* folded_obj =
1618                                 reinterpret_cast<Relobj*>(folded.first);
1619                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1620                                 "into '%s' in file '%s'"),
1621                               program_name, this->section_name(i).c_str(),
1622                               this->name().c_str(),
1623                               folded_obj->section_name(folded.second).c_str(),
1624                               folded_obj->name().c_str());
1625                   }
1626                 out_sections[i] = NULL;
1627                 out_section_offsets[i] = invalid_address;
1628                 continue;
1629               }
1630         }
1631
1632       // Defer layout here if input files are claimed by plugins.  When gc
1633       // is turned on this function is called twice.  For the second call
1634       // should_defer_layout should be false.
1635       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1636         {
1637           gold_assert(!is_pass_two);
1638           this->deferred_layout_.push_back(Deferred_layout(i, name,
1639                                                            pshdrs,
1640                                                            reloc_shndx[i],
1641                                                            reloc_type[i]));
1642           // Put dummy values here; real values will be supplied by
1643           // do_layout_deferred_sections.
1644           out_sections[i] = reinterpret_cast<Output_section*>(2);
1645           out_section_offsets[i] = invalid_address;
1646           continue;
1647         }
1648
1649       // During gc_pass_two if a section that was previously deferred is
1650       // found, do not layout the section as layout_deferred_sections will
1651       // do it later from gold.cc.
1652       if (is_pass_two
1653           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1654         continue;
1655
1656       if (is_pass_one)
1657         {
1658           // This is during garbage collection. The out_sections are
1659           // assigned in the second call to this function.
1660           out_sections[i] = reinterpret_cast<Output_section*>(1);
1661           out_section_offsets[i] = invalid_address;
1662         }
1663       else
1664         {
1665           // When garbage collection is switched on the actual layout
1666           // only happens in the second call.
1667           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1668                                reloc_type[i]);
1669
1670           // When generating a .gdb_index section, we do additional
1671           // processing of .debug_info and .debug_types sections after all
1672           // the other sections for the same reason as above.
1673           if (!relocatable
1674               && parameters->options().gdb_index()
1675               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1676             {
1677               if (strcmp(name, ".debug_info") == 0
1678                   || strcmp(name, ".zdebug_info") == 0)
1679                 debug_info_sections.push_back(i);
1680               else if (strcmp(name, ".debug_types") == 0
1681                        || strcmp(name, ".zdebug_types") == 0)
1682                 debug_types_sections.push_back(i);
1683             }
1684         }
1685     }
1686
1687   if (!is_pass_two)
1688     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1689
1690   // When doing a relocatable link handle the reloc sections at the
1691   // end.  Garbage collection  and Identical Code Folding is not
1692   // turned on for relocatable code.
1693   if (emit_relocs)
1694     this->size_relocatable_relocs();
1695
1696   gold_assert(!is_two_pass || reloc_sections.empty());
1697
1698   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1699        p != reloc_sections.end();
1700        ++p)
1701     {
1702       unsigned int i = *p;
1703       const unsigned char* pshdr;
1704       pshdr = section_headers_data + i * This::shdr_size;
1705       typename This::Shdr shdr(pshdr);
1706
1707       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1708       if (data_shndx >= shnum)
1709         {
1710           // We already warned about this above.
1711           continue;
1712         }
1713
1714       Output_section* data_section = out_sections[data_shndx];
1715       if (data_section == reinterpret_cast<Output_section*>(2))
1716         {
1717           // The layout for the data section was deferred, so we need
1718           // to defer the relocation section, too.
1719           const char* name = pnames + shdr.get_sh_name();
1720           this->deferred_layout_relocs_.push_back(
1721               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1722           out_sections[i] = reinterpret_cast<Output_section*>(2);
1723           out_section_offsets[i] = invalid_address;
1724           continue;
1725         }
1726       if (data_section == NULL)
1727         {
1728           out_sections[i] = NULL;
1729           out_section_offsets[i] = invalid_address;
1730           continue;
1731         }
1732
1733       Relocatable_relocs* rr = new Relocatable_relocs();
1734       this->set_relocatable_relocs(i, rr);
1735
1736       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1737                                                 rr);
1738       out_sections[i] = os;
1739       out_section_offsets[i] = invalid_address;
1740     }
1741
1742   // Handle the .eh_frame sections at the end.
1743   gold_assert(!is_pass_one || eh_frame_sections.empty());
1744   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1745        p != eh_frame_sections.end();
1746        ++p)
1747     {
1748       unsigned int i = *p;
1749       const unsigned char* pshdr;
1750       pshdr = section_headers_data + i * This::shdr_size;
1751       typename This::Shdr shdr(pshdr);
1752
1753       this->layout_eh_frame_section(layout,
1754                                     symbols_data,
1755                                     symbols_size,
1756                                     symbol_names_data,
1757                                     symbol_names_size,
1758                                     i,
1759                                     shdr,
1760                                     reloc_shndx[i],
1761                                     reloc_type[i]);
1762     }
1763
1764   // When building a .gdb_index section, scan the .debug_info and
1765   // .debug_types sections.
1766   gold_assert(!is_pass_one
1767               || (debug_info_sections.empty() && debug_types_sections.empty()));
1768   for (std::vector<unsigned int>::const_iterator p
1769            = debug_info_sections.begin();
1770        p != debug_info_sections.end();
1771        ++p)
1772     {
1773       unsigned int i = *p;
1774       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1775                                i, reloc_shndx[i], reloc_type[i]);
1776     }
1777   for (std::vector<unsigned int>::const_iterator p
1778            = debug_types_sections.begin();
1779        p != debug_types_sections.end();
1780        ++p)
1781     {
1782       unsigned int i = *p;
1783       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1784                                i, reloc_shndx[i], reloc_type[i]);
1785     }
1786
1787   if (is_pass_two)
1788     {
1789       delete[] gc_sd->section_headers_data;
1790       delete[] gc_sd->section_names_data;
1791       delete[] gc_sd->symbols_data;
1792       delete[] gc_sd->symbol_names_data;
1793       this->set_symbols_data(NULL);
1794     }
1795   else
1796     {
1797       delete sd->section_headers;
1798       sd->section_headers = NULL;
1799       delete sd->section_names;
1800       sd->section_names = NULL;
1801     }
1802 }
1803
1804 // Layout sections whose layout was deferred while waiting for
1805 // input files from a plugin.
1806
1807 template<int size, bool big_endian>
1808 void
1809 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1810 {
1811   typename std::vector<Deferred_layout>::iterator deferred;
1812
1813   for (deferred = this->deferred_layout_.begin();
1814        deferred != this->deferred_layout_.end();
1815        ++deferred)
1816     {
1817       typename This::Shdr shdr(deferred->shdr_data_);
1818
1819       if (!parameters->options().relocatable()
1820           && deferred->name_ == ".eh_frame"
1821           && this->check_eh_frame_flags(&shdr))
1822         {
1823           // Checking is_section_included is not reliable for
1824           // .eh_frame sections, because they do not have an output
1825           // section.  This is not a problem normally because we call
1826           // layout_eh_frame_section unconditionally, but when
1827           // deferring sections that is not true.  We don't want to
1828           // keep all .eh_frame sections because that will cause us to
1829           // keep all sections that they refer to, which is the wrong
1830           // way around.  Instead, the eh_frame code will discard
1831           // .eh_frame sections that refer to discarded sections.
1832
1833           // Reading the symbols again here may be slow.
1834           Read_symbols_data sd;
1835           this->read_symbols(&sd);
1836           this->layout_eh_frame_section(layout,
1837                                         sd.symbols->data(),
1838                                         sd.symbols_size,
1839                                         sd.symbol_names->data(),
1840                                         sd.symbol_names_size,
1841                                         deferred->shndx_,
1842                                         shdr,
1843                                         deferred->reloc_shndx_,
1844                                         deferred->reloc_type_);
1845           continue;
1846         }
1847
1848       // If the section is not included, it is because the garbage collector
1849       // decided it is not needed.  Avoid reverting that decision.
1850       if (!this->is_section_included(deferred->shndx_))
1851         continue;
1852
1853       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1854                            shdr, deferred->reloc_shndx_,
1855                            deferred->reloc_type_);
1856     }
1857
1858   this->deferred_layout_.clear();
1859
1860   // Now handle the deferred relocation sections.
1861
1862   Output_sections& out_sections(this->output_sections());
1863   std::vector<Address>& out_section_offsets(this->section_offsets());
1864
1865   for (deferred = this->deferred_layout_relocs_.begin();
1866        deferred != this->deferred_layout_relocs_.end();
1867        ++deferred)
1868     {
1869       unsigned int shndx = deferred->shndx_;
1870       typename This::Shdr shdr(deferred->shdr_data_);
1871       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1872
1873       Output_section* data_section = out_sections[data_shndx];
1874       if (data_section == NULL)
1875         {
1876           out_sections[shndx] = NULL;
1877           out_section_offsets[shndx] = invalid_address;
1878           continue;
1879         }
1880
1881       Relocatable_relocs* rr = new Relocatable_relocs();
1882       this->set_relocatable_relocs(shndx, rr);
1883
1884       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1885                                                 data_section, rr);
1886       out_sections[shndx] = os;
1887       out_section_offsets[shndx] = invalid_address;
1888     }
1889 }
1890
1891 // Add the symbols to the symbol table.
1892
1893 template<int size, bool big_endian>
1894 void
1895 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1896                                                     Read_symbols_data* sd,
1897                                                     Layout*)
1898 {
1899   if (sd->symbols == NULL)
1900     {
1901       gold_assert(sd->symbol_names == NULL);
1902       return;
1903     }
1904
1905   const int sym_size = This::sym_size;
1906   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1907                      / sym_size);
1908   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1909     {
1910       this->error(_("size of symbols is not multiple of symbol size"));
1911       return;
1912     }
1913
1914   this->symbols_.resize(symcount);
1915
1916   const char* sym_names =
1917     reinterpret_cast<const char*>(sd->symbol_names->data());
1918   symtab->add_from_relobj(this,
1919                           sd->symbols->data() + sd->external_symbols_offset,
1920                           symcount, this->local_symbol_count_,
1921                           sym_names, sd->symbol_names_size,
1922                           &this->symbols_,
1923                           &this->defined_count_);
1924
1925   delete sd->symbols;
1926   sd->symbols = NULL;
1927   delete sd->symbol_names;
1928   sd->symbol_names = NULL;
1929 }
1930
1931 // Find out if this object, that is a member of a lib group, should be included
1932 // in the link. We check every symbol defined by this object. If the symbol
1933 // table has a strong undefined reference to that symbol, we have to include
1934 // the object.
1935
1936 template<int size, bool big_endian>
1937 Archive::Should_include
1938 Sized_relobj_file<size, big_endian>::do_should_include_member(
1939     Symbol_table* symtab,
1940     Layout* layout,
1941     Read_symbols_data* sd,
1942     std::string* why)
1943 {
1944   char* tmpbuf = NULL;
1945   size_t tmpbuflen = 0;
1946   const char* sym_names =
1947       reinterpret_cast<const char*>(sd->symbol_names->data());
1948   const unsigned char* syms =
1949       sd->symbols->data() + sd->external_symbols_offset;
1950   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1951   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1952                          / sym_size);
1953
1954   const unsigned char* p = syms;
1955
1956   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1957     {
1958       elfcpp::Sym<size, big_endian> sym(p);
1959       unsigned int st_shndx = sym.get_st_shndx();
1960       if (st_shndx == elfcpp::SHN_UNDEF)
1961         continue;
1962
1963       unsigned int st_name = sym.get_st_name();
1964       const char* name = sym_names + st_name;
1965       Symbol* symbol;
1966       Archive::Should_include t = Archive::should_include_member(symtab,
1967                                                                  layout,
1968                                                                  name,
1969                                                                  &symbol, why,
1970                                                                  &tmpbuf,
1971                                                                  &tmpbuflen);
1972       if (t == Archive::SHOULD_INCLUDE_YES)
1973         {
1974           if (tmpbuf != NULL)
1975             free(tmpbuf);
1976           return t;
1977         }
1978     }
1979   if (tmpbuf != NULL)
1980     free(tmpbuf);
1981   return Archive::SHOULD_INCLUDE_UNKNOWN;
1982 }
1983
1984 // Iterate over global defined symbols, calling a visitor class V for each.
1985
1986 template<int size, bool big_endian>
1987 void
1988 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1989     Read_symbols_data* sd,
1990     Library_base::Symbol_visitor_base* v)
1991 {
1992   const char* sym_names =
1993       reinterpret_cast<const char*>(sd->symbol_names->data());
1994   const unsigned char* syms =
1995       sd->symbols->data() + sd->external_symbols_offset;
1996   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1997   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1998                      / sym_size);
1999   const unsigned char* p = syms;
2000
2001   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2002     {
2003       elfcpp::Sym<size, big_endian> sym(p);
2004       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2005         v->visit(sym_names + sym.get_st_name());
2006     }
2007 }
2008
2009 // Return whether the local symbol SYMNDX has a PLT offset.
2010
2011 template<int size, bool big_endian>
2012 bool
2013 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2014     unsigned int symndx) const
2015 {
2016   typename Local_plt_offsets::const_iterator p =
2017     this->local_plt_offsets_.find(symndx);
2018   return p != this->local_plt_offsets_.end();
2019 }
2020
2021 // Get the PLT offset of a local symbol.
2022
2023 template<int size, bool big_endian>
2024 unsigned int
2025 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2026     unsigned int symndx) const
2027 {
2028   typename Local_plt_offsets::const_iterator p =
2029     this->local_plt_offsets_.find(symndx);
2030   gold_assert(p != this->local_plt_offsets_.end());
2031   return p->second;
2032 }
2033
2034 // Set the PLT offset of a local symbol.
2035
2036 template<int size, bool big_endian>
2037 void
2038 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2039     unsigned int symndx, unsigned int plt_offset)
2040 {
2041   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2042     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2043   gold_assert(ins.second);
2044 }
2045
2046 // First pass over the local symbols.  Here we add their names to
2047 // *POOL and *DYNPOOL, and we store the symbol value in
2048 // THIS->LOCAL_VALUES_.  This function is always called from a
2049 // singleton thread.  This is followed by a call to
2050 // finalize_local_symbols.
2051
2052 template<int size, bool big_endian>
2053 void
2054 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2055                                                             Stringpool* dynpool)
2056 {
2057   gold_assert(this->symtab_shndx_ != -1U);
2058   if (this->symtab_shndx_ == 0)
2059     {
2060       // This object has no symbols.  Weird but legal.
2061       return;
2062     }
2063
2064   // Read the symbol table section header.
2065   const unsigned int symtab_shndx = this->symtab_shndx_;
2066   typename This::Shdr symtabshdr(this,
2067                                  this->elf_file_.section_header(symtab_shndx));
2068   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2069
2070   // Read the local symbols.
2071   const int sym_size = This::sym_size;
2072   const unsigned int loccount = this->local_symbol_count_;
2073   gold_assert(loccount == symtabshdr.get_sh_info());
2074   off_t locsize = loccount * sym_size;
2075   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2076                                               locsize, true, true);
2077
2078   // Read the symbol names.
2079   const unsigned int strtab_shndx =
2080     this->adjust_shndx(symtabshdr.get_sh_link());
2081   section_size_type strtab_size;
2082   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2083                                                         &strtab_size,
2084                                                         true);
2085   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2086
2087   // Loop over the local symbols.
2088
2089   const Output_sections& out_sections(this->output_sections());
2090   unsigned int shnum = this->shnum();
2091   unsigned int count = 0;
2092   unsigned int dyncount = 0;
2093   // Skip the first, dummy, symbol.
2094   psyms += sym_size;
2095   bool strip_all = parameters->options().strip_all();
2096   bool discard_all = parameters->options().discard_all();
2097   bool discard_locals = parameters->options().discard_locals();
2098   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2099     {
2100       elfcpp::Sym<size, big_endian> sym(psyms);
2101
2102       Symbol_value<size>& lv(this->local_values_[i]);
2103
2104       bool is_ordinary;
2105       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2106                                                   &is_ordinary);
2107       lv.set_input_shndx(shndx, is_ordinary);
2108
2109       if (sym.get_st_type() == elfcpp::STT_SECTION)
2110         lv.set_is_section_symbol();
2111       else if (sym.get_st_type() == elfcpp::STT_TLS)
2112         lv.set_is_tls_symbol();
2113       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2114         lv.set_is_ifunc_symbol();
2115
2116       // Save the input symbol value for use in do_finalize_local_symbols().
2117       lv.set_input_value(sym.get_st_value());
2118
2119       // Decide whether this symbol should go into the output file.
2120
2121       if ((shndx < shnum && out_sections[shndx] == NULL)
2122           || shndx == this->discarded_eh_frame_shndx_)
2123         {
2124           lv.set_no_output_symtab_entry();
2125           gold_assert(!lv.needs_output_dynsym_entry());
2126           continue;
2127         }
2128
2129       if (sym.get_st_type() == elfcpp::STT_SECTION
2130           || !this->adjust_local_symbol(&lv))
2131         {
2132           lv.set_no_output_symtab_entry();
2133           gold_assert(!lv.needs_output_dynsym_entry());
2134           continue;
2135         }
2136
2137       if (sym.get_st_name() >= strtab_size)
2138         {
2139           this->error(_("local symbol %u section name out of range: %u >= %u"),
2140                       i, sym.get_st_name(),
2141                       static_cast<unsigned int>(strtab_size));
2142           lv.set_no_output_symtab_entry();
2143           continue;
2144         }
2145
2146       const char* name = pnames + sym.get_st_name();
2147
2148       // If needed, add the symbol to the dynamic symbol table string pool.
2149       if (lv.needs_output_dynsym_entry())
2150         {
2151           dynpool->add(name, true, NULL);
2152           ++dyncount;
2153         }
2154
2155       if (strip_all
2156           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2157         {
2158           lv.set_no_output_symtab_entry();
2159           continue;
2160         }
2161
2162       // If --discard-locals option is used, discard all temporary local
2163       // symbols.  These symbols start with system-specific local label
2164       // prefixes, typically .L for ELF system.  We want to be compatible
2165       // with GNU ld so here we essentially use the same check in
2166       // bfd_is_local_label().  The code is different because we already
2167       // know that:
2168       //
2169       //   - the symbol is local and thus cannot have global or weak binding.
2170       //   - the symbol is not a section symbol.
2171       //   - the symbol has a name.
2172       //
2173       // We do not discard a symbol if it needs a dynamic symbol entry.
2174       if (discard_locals
2175           && sym.get_st_type() != elfcpp::STT_FILE
2176           && !lv.needs_output_dynsym_entry()
2177           && lv.may_be_discarded_from_output_symtab()
2178           && parameters->target().is_local_label_name(name))
2179         {
2180           lv.set_no_output_symtab_entry();
2181           continue;
2182         }
2183
2184       // Discard the local symbol if -retain_symbols_file is specified
2185       // and the local symbol is not in that file.
2186       if (!parameters->options().should_retain_symbol(name))
2187         {
2188           lv.set_no_output_symtab_entry();
2189           continue;
2190         }
2191
2192       // Add the symbol to the symbol table string pool.
2193       pool->add(name, true, NULL);
2194       ++count;
2195     }
2196
2197   this->output_local_symbol_count_ = count;
2198   this->output_local_dynsym_count_ = dyncount;
2199 }
2200
2201 // Compute the final value of a local symbol.
2202
2203 template<int size, bool big_endian>
2204 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2205 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2206     unsigned int r_sym,
2207     const Symbol_value<size>* lv_in,
2208     Symbol_value<size>* lv_out,
2209     bool relocatable,
2210     const Output_sections& out_sections,
2211     const std::vector<Address>& out_offsets,
2212     const Symbol_table* symtab)
2213 {
2214   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2215   // we may have a memory leak.
2216   gold_assert(lv_out->has_output_value());
2217
2218   bool is_ordinary;
2219   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2220
2221   // Set the output symbol value.
2222
2223   if (!is_ordinary)
2224     {
2225       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2226         lv_out->set_output_value(lv_in->input_value());
2227       else
2228         {
2229           this->error(_("unknown section index %u for local symbol %u"),
2230                       shndx, r_sym);
2231           lv_out->set_output_value(0);
2232           return This::CFLV_ERROR;
2233         }
2234     }
2235   else
2236     {
2237       if (shndx >= this->shnum())
2238         {
2239           this->error(_("local symbol %u section index %u out of range"),
2240                       r_sym, shndx);
2241           lv_out->set_output_value(0);
2242           return This::CFLV_ERROR;
2243         }
2244
2245       Output_section* os = out_sections[shndx];
2246       Address secoffset = out_offsets[shndx];
2247       if (symtab->is_section_folded(this, shndx))
2248         {
2249           gold_assert(os == NULL && secoffset == invalid_address);
2250           // Get the os of the section it is folded onto.
2251           Section_id folded = symtab->icf()->get_folded_section(this,
2252                                                                 shndx);
2253           gold_assert(folded.first != NULL);
2254           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2255             <Sized_relobj_file<size, big_endian>*>(folded.first);
2256           os = folded_obj->output_section(folded.second);
2257           gold_assert(os != NULL);
2258           secoffset = folded_obj->get_output_section_offset(folded.second);
2259
2260           // This could be a relaxed input section.
2261           if (secoffset == invalid_address)
2262             {
2263               const Output_relaxed_input_section* relaxed_section =
2264                 os->find_relaxed_input_section(folded_obj, folded.second);
2265               gold_assert(relaxed_section != NULL);
2266               secoffset = relaxed_section->address() - os->address();
2267             }
2268         }
2269
2270       if (os == NULL)
2271         {
2272           // This local symbol belongs to a section we are discarding.
2273           // In some cases when applying relocations later, we will
2274           // attempt to match it to the corresponding kept section,
2275           // so we leave the input value unchanged here.
2276           return This::CFLV_DISCARDED;
2277         }
2278       else if (secoffset == invalid_address)
2279         {
2280           uint64_t start;
2281
2282           // This is a SHF_MERGE section or one which otherwise
2283           // requires special handling.
2284           if (shndx == this->discarded_eh_frame_shndx_)
2285             {
2286               // This local symbol belongs to a discarded .eh_frame
2287               // section.  Just treat it like the case in which
2288               // os == NULL above.
2289               gold_assert(this->has_eh_frame_);
2290               return This::CFLV_DISCARDED;
2291             }
2292           else if (!lv_in->is_section_symbol())
2293             {
2294               // This is not a section symbol.  We can determine
2295               // the final value now.
2296               lv_out->set_output_value(
2297                   os->output_address(this, shndx, lv_in->input_value()));
2298             }
2299           else if (!os->find_starting_output_address(this, shndx, &start))
2300             {
2301               // This is a section symbol, but apparently not one in a
2302               // merged section.  First check to see if this is a relaxed
2303               // input section.  If so, use its address.  Otherwise just
2304               // use the start of the output section.  This happens with
2305               // relocatable links when the input object has section
2306               // symbols for arbitrary non-merge sections.
2307               const Output_section_data* posd =
2308                 os->find_relaxed_input_section(this, shndx);
2309               if (posd != NULL)
2310                 {
2311                   Address relocatable_link_adjustment =
2312                     relocatable ? os->address() : 0;
2313                   lv_out->set_output_value(posd->address()
2314                                            - relocatable_link_adjustment);
2315                 }
2316               else
2317                 lv_out->set_output_value(os->address());
2318             }
2319           else
2320             {
2321               // We have to consider the addend to determine the
2322               // value to use in a relocation.  START is the start
2323               // of this input section.  If we are doing a relocatable
2324               // link, use offset from start output section instead of
2325               // address.
2326               Address adjusted_start =
2327                 relocatable ? start - os->address() : start;
2328               Merged_symbol_value<size>* msv =
2329                 new Merged_symbol_value<size>(lv_in->input_value(),
2330                                               adjusted_start);
2331               lv_out->set_merged_symbol_value(msv);
2332             }
2333         }
2334       else if (lv_in->is_tls_symbol())
2335         lv_out->set_output_value(os->tls_offset()
2336                                  + secoffset
2337                                  + lv_in->input_value());
2338       else
2339         lv_out->set_output_value((relocatable ? 0 : os->address())
2340                                  + secoffset
2341                                  + lv_in->input_value());
2342     }
2343   return This::CFLV_OK;
2344 }
2345
2346 // Compute final local symbol value.  R_SYM is the index of a local
2347 // symbol in symbol table.  LV points to a symbol value, which is
2348 // expected to hold the input value and to be over-written by the
2349 // final value.  SYMTAB points to a symbol table.  Some targets may want
2350 // to know would-be-finalized local symbol values in relaxation.
2351 // Hence we provide this method.  Since this method updates *LV, a
2352 // callee should make a copy of the original local symbol value and
2353 // use the copy instead of modifying an object's local symbols before
2354 // everything is finalized.  The caller should also free up any allocated
2355 // memory in the return value in *LV.
2356 template<int size, bool big_endian>
2357 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2358 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2359     unsigned int r_sym,
2360     const Symbol_value<size>* lv_in,
2361     Symbol_value<size>* lv_out,
2362     const Symbol_table* symtab)
2363 {
2364   // This is just a wrapper of compute_final_local_value_internal.
2365   const bool relocatable = parameters->options().relocatable();
2366   const Output_sections& out_sections(this->output_sections());
2367   const std::vector<Address>& out_offsets(this->section_offsets());
2368   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2369                                                   relocatable, out_sections,
2370                                                   out_offsets, symtab);
2371 }
2372
2373 // Finalize the local symbols.  Here we set the final value in
2374 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2375 // This function is always called from a singleton thread.  The actual
2376 // output of the local symbols will occur in a separate task.
2377
2378 template<int size, bool big_endian>
2379 unsigned int
2380 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2381     unsigned int index,
2382     off_t off,
2383     Symbol_table* symtab)
2384 {
2385   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2386
2387   const unsigned int loccount = this->local_symbol_count_;
2388   this->local_symbol_offset_ = off;
2389
2390   const bool relocatable = parameters->options().relocatable();
2391   const Output_sections& out_sections(this->output_sections());
2392   const std::vector<Address>& out_offsets(this->section_offsets());
2393
2394   for (unsigned int i = 1; i < loccount; ++i)
2395     {
2396       Symbol_value<size>* lv = &this->local_values_[i];
2397
2398       Compute_final_local_value_status cflv_status =
2399         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2400                                                  out_sections, out_offsets,
2401                                                  symtab);
2402       switch (cflv_status)
2403         {
2404         case CFLV_OK:
2405           if (!lv->is_output_symtab_index_set())
2406             {
2407               lv->set_output_symtab_index(index);
2408               ++index;
2409             }
2410           break;
2411         case CFLV_DISCARDED:
2412         case CFLV_ERROR:
2413           // Do nothing.
2414           break;
2415         default:
2416           gold_unreachable();
2417         }
2418     }
2419   return index;
2420 }
2421
2422 // Set the output dynamic symbol table indexes for the local variables.
2423
2424 template<int size, bool big_endian>
2425 unsigned int
2426 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2427     unsigned int index)
2428 {
2429   const unsigned int loccount = this->local_symbol_count_;
2430   for (unsigned int i = 1; i < loccount; ++i)
2431     {
2432       Symbol_value<size>& lv(this->local_values_[i]);
2433       if (lv.needs_output_dynsym_entry())
2434         {
2435           lv.set_output_dynsym_index(index);
2436           ++index;
2437         }
2438     }
2439   return index;
2440 }
2441
2442 // Set the offset where local dynamic symbol information will be stored.
2443 // Returns the count of local symbols contributed to the symbol table by
2444 // this object.
2445
2446 template<int size, bool big_endian>
2447 unsigned int
2448 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2449 {
2450   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2451   this->local_dynsym_offset_ = off;
2452   return this->output_local_dynsym_count_;
2453 }
2454
2455 // If Symbols_data is not NULL get the section flags from here otherwise
2456 // get it from the file.
2457
2458 template<int size, bool big_endian>
2459 uint64_t
2460 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2461 {
2462   Symbols_data* sd = this->get_symbols_data();
2463   if (sd != NULL)
2464     {
2465       const unsigned char* pshdrs = sd->section_headers_data
2466                                     + This::shdr_size * shndx;
2467       typename This::Shdr shdr(pshdrs);
2468       return shdr.get_sh_flags();
2469     }
2470   // If sd is NULL, read the section header from the file.
2471   return this->elf_file_.section_flags(shndx);
2472 }
2473
2474 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2475 // in icf.cc
2476
2477 template<int size, bool big_endian>
2478 uint64_t
2479 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2480 {
2481   Symbols_data* sd = this->get_symbols_data();
2482   gold_assert(sd != NULL);
2483
2484   const unsigned char* pshdrs = sd->section_headers_data
2485                                 + This::shdr_size * shndx;
2486   typename This::Shdr shdr(pshdrs);
2487   return shdr.get_sh_entsize();
2488 }
2489
2490 // Write out the local symbols.
2491
2492 template<int size, bool big_endian>
2493 void
2494 Sized_relobj_file<size, big_endian>::write_local_symbols(
2495     Output_file* of,
2496     const Stringpool* sympool,
2497     const Stringpool* dynpool,
2498     Output_symtab_xindex* symtab_xindex,
2499     Output_symtab_xindex* dynsym_xindex,
2500     off_t symtab_off)
2501 {
2502   const bool strip_all = parameters->options().strip_all();
2503   if (strip_all)
2504     {
2505       if (this->output_local_dynsym_count_ == 0)
2506         return;
2507       this->output_local_symbol_count_ = 0;
2508     }
2509
2510   gold_assert(this->symtab_shndx_ != -1U);
2511   if (this->symtab_shndx_ == 0)
2512     {
2513       // This object has no symbols.  Weird but legal.
2514       return;
2515     }
2516
2517   // Read the symbol table section header.
2518   const unsigned int symtab_shndx = this->symtab_shndx_;
2519   typename This::Shdr symtabshdr(this,
2520                                  this->elf_file_.section_header(symtab_shndx));
2521   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2522   const unsigned int loccount = this->local_symbol_count_;
2523   gold_assert(loccount == symtabshdr.get_sh_info());
2524
2525   // Read the local symbols.
2526   const int sym_size = This::sym_size;
2527   off_t locsize = loccount * sym_size;
2528   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2529                                               locsize, true, false);
2530
2531   // Read the symbol names.
2532   const unsigned int strtab_shndx =
2533     this->adjust_shndx(symtabshdr.get_sh_link());
2534   section_size_type strtab_size;
2535   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2536                                                         &strtab_size,
2537                                                         false);
2538   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2539
2540   // Get views into the output file for the portions of the symbol table
2541   // and the dynamic symbol table that we will be writing.
2542   off_t output_size = this->output_local_symbol_count_ * sym_size;
2543   unsigned char* oview = NULL;
2544   if (output_size > 0)
2545     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2546                                 output_size);
2547
2548   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2549   unsigned char* dyn_oview = NULL;
2550   if (dyn_output_size > 0)
2551     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2552                                     dyn_output_size);
2553
2554   const Output_sections out_sections(this->output_sections());
2555
2556   gold_assert(this->local_values_.size() == loccount);
2557
2558   unsigned char* ov = oview;
2559   unsigned char* dyn_ov = dyn_oview;
2560   psyms += sym_size;
2561   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2562     {
2563       elfcpp::Sym<size, big_endian> isym(psyms);
2564
2565       Symbol_value<size>& lv(this->local_values_[i]);
2566
2567       bool is_ordinary;
2568       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2569                                                      &is_ordinary);
2570       if (is_ordinary)
2571         {
2572           gold_assert(st_shndx < out_sections.size());
2573           if (out_sections[st_shndx] == NULL)
2574             continue;
2575           st_shndx = out_sections[st_shndx]->out_shndx();
2576           if (st_shndx >= elfcpp::SHN_LORESERVE)
2577             {
2578               if (lv.has_output_symtab_entry())
2579                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2580               if (lv.has_output_dynsym_entry())
2581                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2582               st_shndx = elfcpp::SHN_XINDEX;
2583             }
2584         }
2585
2586       // Write the symbol to the output symbol table.
2587       if (lv.has_output_symtab_entry())
2588         {
2589           elfcpp::Sym_write<size, big_endian> osym(ov);
2590
2591           gold_assert(isym.get_st_name() < strtab_size);
2592           const char* name = pnames + isym.get_st_name();
2593           osym.put_st_name(sympool->get_offset(name));
2594           osym.put_st_value(this->local_values_[i].value(this, 0));
2595           osym.put_st_size(isym.get_st_size());
2596           osym.put_st_info(isym.get_st_info());
2597           osym.put_st_other(isym.get_st_other());
2598           osym.put_st_shndx(st_shndx);
2599
2600           ov += sym_size;
2601         }
2602
2603       // Write the symbol to the output dynamic symbol table.
2604       if (lv.has_output_dynsym_entry())
2605         {
2606           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2607           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2608
2609           gold_assert(isym.get_st_name() < strtab_size);
2610           const char* name = pnames + isym.get_st_name();
2611           osym.put_st_name(dynpool->get_offset(name));
2612           osym.put_st_value(this->local_values_[i].value(this, 0));
2613           osym.put_st_size(isym.get_st_size());
2614           osym.put_st_info(isym.get_st_info());
2615           osym.put_st_other(isym.get_st_other());
2616           osym.put_st_shndx(st_shndx);
2617
2618           dyn_ov += sym_size;
2619         }
2620     }
2621
2622
2623   if (output_size > 0)
2624     {
2625       gold_assert(ov - oview == output_size);
2626       of->write_output_view(symtab_off + this->local_symbol_offset_,
2627                             output_size, oview);
2628     }
2629
2630   if (dyn_output_size > 0)
2631     {
2632       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2633       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2634                             dyn_oview);
2635     }
2636 }
2637
2638 // Set *INFO to symbolic information about the offset OFFSET in the
2639 // section SHNDX.  Return true if we found something, false if we
2640 // found nothing.
2641
2642 template<int size, bool big_endian>
2643 bool
2644 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2645     unsigned int shndx,
2646     off_t offset,
2647     Symbol_location_info* info)
2648 {
2649   if (this->symtab_shndx_ == 0)
2650     return false;
2651
2652   section_size_type symbols_size;
2653   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2654                                                         &symbols_size,
2655                                                         false);
2656
2657   unsigned int symbol_names_shndx =
2658     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2659   section_size_type names_size;
2660   const unsigned char* symbol_names_u =
2661     this->section_contents(symbol_names_shndx, &names_size, false);
2662   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2663
2664   const int sym_size = This::sym_size;
2665   const size_t count = symbols_size / sym_size;
2666
2667   const unsigned char* p = symbols;
2668   for (size_t i = 0; i < count; ++i, p += sym_size)
2669     {
2670       elfcpp::Sym<size, big_endian> sym(p);
2671
2672       if (sym.get_st_type() == elfcpp::STT_FILE)
2673         {
2674           if (sym.get_st_name() >= names_size)
2675             info->source_file = "(invalid)";
2676           else
2677             info->source_file = symbol_names + sym.get_st_name();
2678           continue;
2679         }
2680
2681       bool is_ordinary;
2682       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2683                                                      &is_ordinary);
2684       if (is_ordinary
2685           && st_shndx == shndx
2686           && static_cast<off_t>(sym.get_st_value()) <= offset
2687           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2688               > offset))
2689         {
2690           info->enclosing_symbol_type = sym.get_st_type();
2691           if (sym.get_st_name() > names_size)
2692             info->enclosing_symbol_name = "(invalid)";
2693           else
2694             {
2695               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2696               if (parameters->options().do_demangle())
2697                 {
2698                   char* demangled_name = cplus_demangle(
2699                       info->enclosing_symbol_name.c_str(),
2700                       DMGL_ANSI | DMGL_PARAMS);
2701                   if (demangled_name != NULL)
2702                     {
2703                       info->enclosing_symbol_name.assign(demangled_name);
2704                       free(demangled_name);
2705                     }
2706                 }
2707             }
2708           return true;
2709         }
2710     }
2711
2712   return false;
2713 }
2714
2715 // Look for a kept section corresponding to the given discarded section,
2716 // and return its output address.  This is used only for relocations in
2717 // debugging sections.  If we can't find the kept section, return 0.
2718
2719 template<int size, bool big_endian>
2720 typename Sized_relobj_file<size, big_endian>::Address
2721 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2722     unsigned int shndx,
2723     bool* found) const
2724 {
2725   Relobj* kept_object;
2726   unsigned int kept_shndx;
2727   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2728     {
2729       Sized_relobj_file<size, big_endian>* kept_relobj =
2730         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2731       Output_section* os = kept_relobj->output_section(kept_shndx);
2732       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2733       if (os != NULL && offset != invalid_address)
2734         {
2735           *found = true;
2736           return os->address() + offset;
2737         }
2738     }
2739   *found = false;
2740   return 0;
2741 }
2742
2743 // Get symbol counts.
2744
2745 template<int size, bool big_endian>
2746 void
2747 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2748     const Symbol_table*,
2749     size_t* defined,
2750     size_t* used) const
2751 {
2752   *defined = this->defined_count_;
2753   size_t count = 0;
2754   for (typename Symbols::const_iterator p = this->symbols_.begin();
2755        p != this->symbols_.end();
2756        ++p)
2757     if (*p != NULL
2758         && (*p)->source() == Symbol::FROM_OBJECT
2759         && (*p)->object() == this
2760         && (*p)->is_defined())
2761       ++count;
2762   *used = count;
2763 }
2764
2765 // Return a view of the decompressed contents of a section.  Set *PLEN
2766 // to the size.  Set *IS_NEW to true if the contents need to be freed
2767 // by the caller.
2768
2769 template<int size, bool big_endian>
2770 const unsigned char*
2771 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2772     unsigned int shndx,
2773     section_size_type* plen,
2774     bool* is_new)
2775 {
2776   section_size_type buffer_size;
2777   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2778                                                           false);
2779
2780   if (this->compressed_sections_ == NULL)
2781     {
2782       *plen = buffer_size;
2783       *is_new = false;
2784       return buffer;
2785     }
2786
2787   Compressed_section_map::const_iterator p =
2788       this->compressed_sections_->find(shndx);
2789   if (p == this->compressed_sections_->end())
2790     {
2791       *plen = buffer_size;
2792       *is_new = false;
2793       return buffer;
2794     }
2795
2796   section_size_type uncompressed_size = p->second.size;
2797   if (p->second.contents != NULL)
2798     {
2799       *plen = uncompressed_size;
2800       *is_new = false;
2801       return p->second.contents;
2802     }
2803
2804   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2805   if (!decompress_input_section(buffer,
2806                                 buffer_size,
2807                                 uncompressed_data,
2808                                 uncompressed_size))
2809     this->error(_("could not decompress section %s"),
2810                 this->do_section_name(shndx).c_str());
2811
2812   // We could cache the results in p->second.contents and store
2813   // false in *IS_NEW, but build_compressed_section_map() would
2814   // have done so if it had expected it to be profitable.  If
2815   // we reach this point, we expect to need the contents only
2816   // once in this pass.
2817   *plen = uncompressed_size;
2818   *is_new = true;
2819   return uncompressed_data;
2820 }
2821
2822 // Discard any buffers of uncompressed sections.  This is done
2823 // at the end of the Add_symbols task.
2824
2825 template<int size, bool big_endian>
2826 void
2827 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2828 {
2829   if (this->compressed_sections_ == NULL)
2830     return;
2831
2832   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2833        p != this->compressed_sections_->end();
2834        ++p)
2835     {
2836       if (p->second.contents != NULL)
2837         {
2838           delete[] p->second.contents;
2839           p->second.contents = NULL;
2840         }
2841     }
2842 }
2843
2844 // Input_objects methods.
2845
2846 // Add a regular relocatable object to the list.  Return false if this
2847 // object should be ignored.
2848
2849 bool
2850 Input_objects::add_object(Object* obj)
2851 {
2852   // Print the filename if the -t/--trace option is selected.
2853   if (parameters->options().trace())
2854     gold_info("%s", obj->name().c_str());
2855
2856   if (!obj->is_dynamic())
2857     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2858   else
2859     {
2860       // See if this is a duplicate SONAME.
2861       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2862       const char* soname = dynobj->soname();
2863
2864       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2865         this->sonames_.insert(soname);
2866       if (!ins.second)
2867         {
2868           // We have already seen a dynamic object with this soname.
2869           return false;
2870         }
2871
2872       this->dynobj_list_.push_back(dynobj);
2873     }
2874
2875   // Add this object to the cross-referencer if requested.
2876   if (parameters->options().user_set_print_symbol_counts()
2877       || parameters->options().cref())
2878     {
2879       if (this->cref_ == NULL)
2880         this->cref_ = new Cref();
2881       this->cref_->add_object(obj);
2882     }
2883
2884   return true;
2885 }
2886
2887 // For each dynamic object, record whether we've seen all of its
2888 // explicit dependencies.
2889
2890 void
2891 Input_objects::check_dynamic_dependencies() const
2892 {
2893   bool issued_copy_dt_needed_error = false;
2894   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2895        p != this->dynobj_list_.end();
2896        ++p)
2897     {
2898       const Dynobj::Needed& needed((*p)->needed());
2899       bool found_all = true;
2900       Dynobj::Needed::const_iterator pneeded;
2901       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2902         {
2903           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2904             {
2905               found_all = false;
2906               break;
2907             }
2908         }
2909       (*p)->set_has_unknown_needed_entries(!found_all);
2910
2911       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2912       // that gold does not support.  However, they cause no trouble
2913       // unless there is a DT_NEEDED entry that we don't know about;
2914       // warn only in that case.
2915       if (!found_all
2916           && !issued_copy_dt_needed_error
2917           && (parameters->options().copy_dt_needed_entries()
2918               || parameters->options().add_needed()))
2919         {
2920           const char* optname;
2921           if (parameters->options().copy_dt_needed_entries())
2922             optname = "--copy-dt-needed-entries";
2923           else
2924             optname = "--add-needed";
2925           gold_error(_("%s is not supported but is required for %s in %s"),
2926                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2927           issued_copy_dt_needed_error = true;
2928         }
2929     }
2930 }
2931
2932 // Start processing an archive.
2933
2934 void
2935 Input_objects::archive_start(Archive* archive)
2936 {
2937   if (parameters->options().user_set_print_symbol_counts()
2938       || parameters->options().cref())
2939     {
2940       if (this->cref_ == NULL)
2941         this->cref_ = new Cref();
2942       this->cref_->add_archive_start(archive);
2943     }
2944 }
2945
2946 // Stop processing an archive.
2947
2948 void
2949 Input_objects::archive_stop(Archive* archive)
2950 {
2951   if (parameters->options().user_set_print_symbol_counts()
2952       || parameters->options().cref())
2953     this->cref_->add_archive_stop(archive);
2954 }
2955
2956 // Print symbol counts
2957
2958 void
2959 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2960 {
2961   if (parameters->options().user_set_print_symbol_counts()
2962       && this->cref_ != NULL)
2963     this->cref_->print_symbol_counts(symtab);
2964 }
2965
2966 // Print a cross reference table.
2967
2968 void
2969 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2970 {
2971   if (parameters->options().cref() && this->cref_ != NULL)
2972     this->cref_->print_cref(symtab, f);
2973 }
2974
2975 // Relocate_info methods.
2976
2977 // Return a string describing the location of a relocation when file
2978 // and lineno information is not available.  This is only used in
2979 // error messages.
2980
2981 template<int size, bool big_endian>
2982 std::string
2983 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2984 {
2985   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2986   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2987   if (!ret.empty())
2988     return ret;
2989
2990   ret = this->object->name();
2991
2992   Symbol_location_info info;
2993   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2994     {
2995       if (!info.source_file.empty())
2996         {
2997           ret += ":";
2998           ret += info.source_file;
2999         }
3000       ret += ":";
3001       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3002         ret += _("function ");
3003       ret += info.enclosing_symbol_name;
3004       return ret;
3005     }
3006
3007   ret += "(";
3008   ret += this->object->section_name(this->data_shndx);
3009   char buf[100];
3010   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3011   ret += buf;
3012   return ret;
3013 }
3014
3015 } // End namespace gold.
3016
3017 namespace
3018 {
3019
3020 using namespace gold;
3021
3022 // Read an ELF file with the header and return the appropriate
3023 // instance of Object.
3024
3025 template<int size, bool big_endian>
3026 Object*
3027 make_elf_sized_object(const std::string& name, Input_file* input_file,
3028                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3029                       bool* punconfigured)
3030 {
3031   Target* target = select_target(input_file, offset,
3032                                  ehdr.get_e_machine(), size, big_endian,
3033                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3034                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3035   if (target == NULL)
3036     gold_fatal(_("%s: unsupported ELF machine number %d"),
3037                name.c_str(), ehdr.get_e_machine());
3038
3039   if (!parameters->target_valid())
3040     set_parameters_target(target);
3041   else if (target != &parameters->target())
3042     {
3043       if (punconfigured != NULL)
3044         *punconfigured = true;
3045       else
3046         gold_error(_("%s: incompatible target"), name.c_str());
3047       return NULL;
3048     }
3049
3050   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3051                                                    ehdr);
3052 }
3053
3054 } // End anonymous namespace.
3055
3056 namespace gold
3057 {
3058
3059 // Return whether INPUT_FILE is an ELF object.
3060
3061 bool
3062 is_elf_object(Input_file* input_file, off_t offset,
3063               const unsigned char** start, int* read_size)
3064 {
3065   off_t filesize = input_file->file().filesize();
3066   int want = elfcpp::Elf_recognizer::max_header_size;
3067   if (filesize - offset < want)
3068     want = filesize - offset;
3069
3070   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3071                                                        true, false);
3072   *start = p;
3073   *read_size = want;
3074
3075   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3076 }
3077
3078 // Read an ELF file and return the appropriate instance of Object.
3079
3080 Object*
3081 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3082                 const unsigned char* p, section_offset_type bytes,
3083                 bool* punconfigured)
3084 {
3085   if (punconfigured != NULL)
3086     *punconfigured = false;
3087
3088   std::string error;
3089   bool big_endian = false;
3090   int size = 0;
3091   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3092                                                &big_endian, &error))
3093     {
3094       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3095       return NULL;
3096     }
3097
3098   if (size == 32)
3099     {
3100       if (big_endian)
3101         {
3102 #ifdef HAVE_TARGET_32_BIG
3103           elfcpp::Ehdr<32, true> ehdr(p);
3104           return make_elf_sized_object<32, true>(name, input_file,
3105                                                  offset, ehdr, punconfigured);
3106 #else
3107           if (punconfigured != NULL)
3108             *punconfigured = true;
3109           else
3110             gold_error(_("%s: not configured to support "
3111                          "32-bit big-endian object"),
3112                        name.c_str());
3113           return NULL;
3114 #endif
3115         }
3116       else
3117         {
3118 #ifdef HAVE_TARGET_32_LITTLE
3119           elfcpp::Ehdr<32, false> ehdr(p);
3120           return make_elf_sized_object<32, false>(name, input_file,
3121                                                   offset, ehdr, punconfigured);
3122 #else
3123           if (punconfigured != NULL)
3124             *punconfigured = true;
3125           else
3126             gold_error(_("%s: not configured to support "
3127                          "32-bit little-endian object"),
3128                        name.c_str());
3129           return NULL;
3130 #endif
3131         }
3132     }
3133   else if (size == 64)
3134     {
3135       if (big_endian)
3136         {
3137 #ifdef HAVE_TARGET_64_BIG
3138           elfcpp::Ehdr<64, true> ehdr(p);
3139           return make_elf_sized_object<64, true>(name, input_file,
3140                                                  offset, ehdr, punconfigured);
3141 #else
3142           if (punconfigured != NULL)
3143             *punconfigured = true;
3144           else
3145             gold_error(_("%s: not configured to support "
3146                          "64-bit big-endian object"),
3147                        name.c_str());
3148           return NULL;
3149 #endif
3150         }
3151       else
3152         {
3153 #ifdef HAVE_TARGET_64_LITTLE
3154           elfcpp::Ehdr<64, false> ehdr(p);
3155           return make_elf_sized_object<64, false>(name, input_file,
3156                                                   offset, ehdr, punconfigured);
3157 #else
3158           if (punconfigured != NULL)
3159             *punconfigured = true;
3160           else
3161             gold_error(_("%s: not configured to support "
3162                          "64-bit little-endian object"),
3163                        name.c_str());
3164           return NULL;
3165 #endif
3166         }
3167     }
3168   else
3169     gold_unreachable();
3170 }
3171
3172 // Instantiate the templates we need.
3173
3174 #ifdef HAVE_TARGET_32_LITTLE
3175 template
3176 void
3177 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3178                                      Read_symbols_data*);
3179 template
3180 const unsigned char*
3181 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3182                             section_size_type, const unsigned char*) const;
3183 #endif
3184
3185 #ifdef HAVE_TARGET_32_BIG
3186 template
3187 void
3188 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3189                                     Read_symbols_data*);
3190 template
3191 const unsigned char*
3192 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3193                            section_size_type, const unsigned char*) const;
3194 #endif
3195
3196 #ifdef HAVE_TARGET_64_LITTLE
3197 template
3198 void
3199 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3200                                      Read_symbols_data*);
3201 template
3202 const unsigned char*
3203 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3204                             section_size_type, const unsigned char*) const;
3205 #endif
3206
3207 #ifdef HAVE_TARGET_64_BIG
3208 template
3209 void
3210 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3211                                     Read_symbols_data*);
3212 template
3213 const unsigned char*
3214 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3215                            section_size_type, const unsigned char*) const;
3216 #endif
3217
3218 #ifdef HAVE_TARGET_32_LITTLE
3219 template
3220 class Sized_relobj_file<32, false>;
3221 #endif
3222
3223 #ifdef HAVE_TARGET_32_BIG
3224 template
3225 class Sized_relobj_file<32, true>;
3226 #endif
3227
3228 #ifdef HAVE_TARGET_64_LITTLE
3229 template
3230 class Sized_relobj_file<64, false>;
3231 #endif
3232
3233 #ifdef HAVE_TARGET_64_BIG
3234 template
3235 class Sized_relobj_file<64, true>;
3236 #endif
3237
3238 #ifdef HAVE_TARGET_32_LITTLE
3239 template
3240 struct Relocate_info<32, false>;
3241 #endif
3242
3243 #ifdef HAVE_TARGET_32_BIG
3244 template
3245 struct Relocate_info<32, true>;
3246 #endif
3247
3248 #ifdef HAVE_TARGET_64_LITTLE
3249 template
3250 struct Relocate_info<64, false>;
3251 #endif
3252
3253 #ifdef HAVE_TARGET_64_BIG
3254 template
3255 struct Relocate_info<64, true>;
3256 #endif
3257
3258 #ifdef HAVE_TARGET_32_LITTLE
3259 template
3260 void
3261 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3262
3263 template
3264 void
3265 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3266                                       const unsigned char*);
3267 #endif
3268
3269 #ifdef HAVE_TARGET_32_BIG
3270 template
3271 void
3272 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3273
3274 template
3275 void
3276 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3277                                      const unsigned char*);
3278 #endif
3279
3280 #ifdef HAVE_TARGET_64_LITTLE
3281 template
3282 void
3283 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3284
3285 template
3286 void
3287 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3288                                       const unsigned char*);
3289 #endif
3290
3291 #ifdef HAVE_TARGET_64_BIG
3292 template
3293 void
3294 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3295
3296 template
3297 void
3298 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3299                                      const unsigned char*);
3300 #endif
3301
3302 } // End namespace gold.