* config.sub, config.guess: Import from upstream.
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52
53 Read_symbols_data::~Read_symbols_data()
54 {
55   if (this->section_headers != NULL)
56     delete this->section_headers;
57   if (this->section_names != NULL)
58     delete this->section_names;
59   if (this->symbols != NULL)
60     delete this->symbols;
61   if (this->symbol_names != NULL)
62     delete this->symbol_names;
63   if (this->versym != NULL)
64     delete this->versym;
65   if (this->verdef != NULL)
66     delete this->verdef;
67   if (this->verneed != NULL)
68     delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
74 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81   if (!this->symtab_xindex_.empty())
82     return;
83
84   gold_assert(symtab_shndx != 0);
85
86   // Look through the sections in reverse order, on the theory that it
87   // is more likely to be near the end than the beginning.
88   unsigned int i = object->shnum();
89   while (i > 0)
90     {
91       --i;
92       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94         {
95           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96           return;
97         }
98     }
99
100   object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110                            const unsigned char* pshdrs)
111 {
112   section_size_type bytecount;
113   const unsigned char* contents;
114   if (pshdrs == NULL)
115     contents = object->section_contents(xindex_shndx, &bytecount, false);
116   else
117     {
118       const unsigned char* p = (pshdrs
119                                 + (xindex_shndx
120                                    * elfcpp::Elf_sizes<size>::shdr_size));
121       typename elfcpp::Shdr<size, big_endian> shdr(p);
122       bytecount = convert_to_section_size_type(shdr.get_sh_size());
123       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124     }
125
126   gold_assert(this->symtab_xindex_.empty());
127   this->symtab_xindex_.reserve(bytecount / 4);
128   for (section_size_type i = 0; i < bytecount; i += 4)
129     {
130       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131       // We preadjust the section indexes we save.
132       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133     }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142   if (symndx >= this->symtab_xindex_.size())
143     {
144       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145                     symndx);
146       return elfcpp::SHN_UNDEF;
147     }
148   unsigned int shndx = this->symtab_xindex_[symndx];
149   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150     {
151       object->error(_("extended index for symbol %u out of range: %u"),
152                     symndx, shndx);
153       return elfcpp::SHN_UNDEF;
154     }
155   return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file.  This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
165 Object::error(const char* format, ...) const
166 {
167   va_list args;
168   va_start(args, format);
169   char* buf = NULL;
170   if (vasprintf(&buf, format, args) < 0)
171     gold_nomem();
172   va_end(args);
173   gold_error(_("%s: %s"), this->name().c_str(), buf);
174   free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181                          bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD.  This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190                           Read_symbols_data* sd)
191 {
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194   // Read the section headers.
195   const off_t shoff = elf_file->shoff();
196   const unsigned int shnum = this->shnum();
197   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198                                                true, true);
199
200   // Read the section names.
201   const unsigned char* pshdrs = sd->section_headers->data();
202   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206     this->error(_("section name section has wrong type: %u"),
207                 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209   sd->section_names_size =
210     convert_to_section_size_type(shdrnames.get_sh_size());
211   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212                                              sd->section_names_size, false,
213                                              false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued.  SHNDX is the section index.  Return
218 // whether it is a warning section.
219
220 bool
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222                                    Symbol_table* symtab)
223 {
224   const char warn_prefix[] = ".gnu.warning.";
225   const int warn_prefix_len = sizeof warn_prefix - 1;
226   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227     {
228       // Read the section contents to get the warning text.  It would
229       // be nicer if we only did this if we have to actually issue a
230       // warning.  Unfortunately, warnings are issued as we relocate
231       // sections.  That means that we can not lock the object then,
232       // as we might try to issue the same warning multiple times
233       // simultaneously.
234       section_size_type len;
235       const unsigned char* contents = this->section_contents(shndx, &len,
236                                                              false);
237       if (len == 0)
238         {
239           const char* warning = name + warn_prefix_len;
240           contents = reinterpret_cast<const unsigned char*>(warning);
241           len = strlen(warning);
242         }
243       std::string warning(reinterpret_cast<const char*>(contents), len);
244       symtab->add_warning(name + warn_prefix_len, this, warning);
245       return true;
246     }
247   return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
254 Object::handle_split_stack_section(const char* name)
255 {
256   if (strcmp(name, ".note.GNU-split-stack") == 0)
257     {
258       this->uses_split_stack_ = true;
259       return true;
260     }
261   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262     {
263       this->has_no_split_stack_ = true;
264       return true;
265     }
266   return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277                           unsigned int section_header_size)
278 {
279   gc_sd->section_headers_data =
280          new unsigned char[(section_header_size)];
281   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282          section_header_size);
283   gc_sd->section_names_data =
284          new unsigned char[sd->section_names_size];
285   memcpy(gc_sd->section_names_data, sd->section_names->data(),
286          sd->section_names_size);
287   gc_sd->section_names_size = sd->section_names_size;
288   if (sd->symbols != NULL)
289     {
290       gc_sd->symbols_data =
291              new unsigned char[sd->symbols_size];
292       memcpy(gc_sd->symbols_data, sd->symbols->data(),
293             sd->symbols_size);
294     }
295   else
296     {
297       gc_sd->symbols_data = NULL;
298     }
299   gc_sd->symbols_size = sd->symbols_size;
300   gc_sd->external_symbols_offset = sd->external_symbols_offset;
301   if (sd->symbol_names != NULL)
302     {
303       gc_sd->symbol_names_data =
304              new unsigned char[sd->symbol_names_size];
305       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306             sd->symbol_names_size);
307     }
308   else
309     {
310       gc_sd->symbol_names_data = NULL;
311     }
312   gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link.  This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
320 Relobj::is_section_name_included(const char* name)
321 {
322   if (is_prefix_of(".ctors", name)
323       || is_prefix_of(".dtors", name)
324       || is_prefix_of(".note", name)
325       || is_prefix_of(".init", name)
326       || is_prefix_of(".fini", name)
327       || is_prefix_of(".gcc_except_table", name)
328       || is_prefix_of(".jcr", name)
329       || is_prefix_of(".preinit_array", name)
330       || (is_prefix_of(".text", name)
331           && strstr(name, "personality"))
332       || (is_prefix_of(".data", name)
333           && strstr(name, "personality"))
334       || (is_prefix_of(".sdata", name)
335           && strstr(name, "personality"))
336       || (is_prefix_of(".gnu.linkonce.d", name)
337           && strstr(name, "personality")))
338     {
339       return true;
340     }
341   return false;
342 }
343
344 // Finalize the incremental relocation information.  Allocates a block
345 // of relocation entries for each symbol, and sets the reloc_bases_
346 // array to point to the first entry in each block.  If CLEAR_COUNTS
347 // is TRUE, also clear the per-symbol relocation counters.
348
349 void
350 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
351 {
352   unsigned int nsyms = this->get_global_symbols()->size();
353   this->reloc_bases_ = new unsigned int[nsyms];
354
355   gold_assert(this->reloc_bases_ != NULL);
356   gold_assert(layout->incremental_inputs() != NULL);
357
358   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
359   for (unsigned int i = 0; i < nsyms; ++i)
360     {
361       this->reloc_bases_[i] = rindex;
362       rindex += this->reloc_counts_[i];
363       if (clear_counts)
364         this->reloc_counts_[i] = 0;
365     }
366   layout->incremental_inputs()->set_reloc_count(rindex);
367 }
368
369 // Class Sized_relobj.
370
371 // Iterate over local symbols, calling a visitor class V for each GOT offset
372 // associated with a local symbol.
373
374 template<int size, bool big_endian>
375 void
376 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
377     Got_offset_list::Visitor* v) const
378 {
379   unsigned int nsyms = this->local_symbol_count();
380   for (unsigned int i = 0; i < nsyms; i++)
381     {
382       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
383       if (p != this->local_got_offsets_.end())
384         {
385           const Got_offset_list* got_offsets = p->second;
386           got_offsets->for_all_got_offsets(v);
387         }
388     }
389 }
390
391 // Get the address of an output section.
392
393 template<int size, bool big_endian>
394 uint64_t
395 Sized_relobj<size, big_endian>::do_output_section_address(
396     unsigned int shndx)
397 {
398   // If the input file is linked as --just-symbols, the output
399   // section address is the input section address.
400   if (this->just_symbols())
401     return this->section_address(shndx);
402
403   const Output_section* os = this->do_output_section(shndx);
404   gold_assert(os != NULL);
405   return os->address();
406 }
407
408 // Class Sized_relobj_file.
409
410 template<int size, bool big_endian>
411 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
412     const std::string& name,
413     Input_file* input_file,
414     off_t offset,
415     const elfcpp::Ehdr<size, big_endian>& ehdr)
416   : Sized_relobj<size, big_endian>(name, input_file, offset),
417     elf_file_(this, ehdr),
418     symtab_shndx_(-1U),
419     local_symbol_count_(0),
420     output_local_symbol_count_(0),
421     output_local_dynsym_count_(0),
422     symbols_(),
423     defined_count_(0),
424     local_symbol_offset_(0),
425     local_dynsym_offset_(0),
426     local_values_(),
427     local_plt_offsets_(),
428     kept_comdat_sections_(),
429     has_eh_frame_(false),
430     discarded_eh_frame_shndx_(-1U),
431     deferred_layout_(),
432     deferred_layout_relocs_(),
433     compressed_sections_()
434 {
435   this->e_type_ = ehdr.get_e_type();
436 }
437
438 template<int size, bool big_endian>
439 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
440 {
441 }
442
443 // Set up an object file based on the file header.  This sets up the
444 // section information.
445
446 template<int size, bool big_endian>
447 void
448 Sized_relobj_file<size, big_endian>::do_setup()
449 {
450   const unsigned int shnum = this->elf_file_.shnum();
451   this->set_shnum(shnum);
452 }
453
454 // Find the SHT_SYMTAB section, given the section headers.  The ELF
455 // standard says that maybe in the future there can be more than one
456 // SHT_SYMTAB section.  Until somebody figures out how that could
457 // work, we assume there is only one.
458
459 template<int size, bool big_endian>
460 void
461 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
462 {
463   const unsigned int shnum = this->shnum();
464   this->symtab_shndx_ = 0;
465   if (shnum > 0)
466     {
467       // Look through the sections in reverse order, since gas tends
468       // to put the symbol table at the end.
469       const unsigned char* p = pshdrs + shnum * This::shdr_size;
470       unsigned int i = shnum;
471       unsigned int xindex_shndx = 0;
472       unsigned int xindex_link = 0;
473       while (i > 0)
474         {
475           --i;
476           p -= This::shdr_size;
477           typename This::Shdr shdr(p);
478           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
479             {
480               this->symtab_shndx_ = i;
481               if (xindex_shndx > 0 && xindex_link == i)
482                 {
483                   Xindex* xindex =
484                     new Xindex(this->elf_file_.large_shndx_offset());
485                   xindex->read_symtab_xindex<size, big_endian>(this,
486                                                                xindex_shndx,
487                                                                pshdrs);
488                   this->set_xindex(xindex);
489                 }
490               break;
491             }
492
493           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
494           // one.  This will work if it follows the SHT_SYMTAB
495           // section.
496           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
497             {
498               xindex_shndx = i;
499               xindex_link = this->adjust_shndx(shdr.get_sh_link());
500             }
501         }
502     }
503 }
504
505 // Return the Xindex structure to use for object with lots of
506 // sections.
507
508 template<int size, bool big_endian>
509 Xindex*
510 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
511 {
512   gold_assert(this->symtab_shndx_ != -1U);
513   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
514   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
515   return xindex;
516 }
517
518 // Return whether SHDR has the right type and flags to be a GNU
519 // .eh_frame section.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
524     const elfcpp::Shdr<size, big_endian>* shdr) const
525 {
526   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
527   return ((sh_type == elfcpp::SHT_PROGBITS
528            || sh_type == elfcpp::SHT_X86_64_UNWIND)
529           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
530 }
531
532 // Find the section header with the given name.
533
534 template<int size, bool big_endian>
535 const unsigned char*
536 Object::find_shdr(
537     const unsigned char* pshdrs,
538     const char* name,
539     const char* names,
540     section_size_type names_size,
541     const unsigned char* hdr) const
542 {
543   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
544   const unsigned int shnum = this->shnum();
545   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
546   size_t sh_name = 0;
547
548   while (1)
549     {
550       if (hdr)
551         {
552           // We found HDR last time we were called, continue looking.
553           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
554           sh_name = shdr.get_sh_name();
555         }
556       else
557         {
558           // Look for the next occurrence of NAME in NAMES.
559           // The fact that .shstrtab produced by current GNU tools is
560           // string merged means we shouldn't have both .not.foo and
561           // .foo in .shstrtab, and multiple .foo sections should all
562           // have the same sh_name.  However, this is not guaranteed
563           // by the ELF spec and not all ELF object file producers may
564           // be so clever.
565           size_t len = strlen(name) + 1;
566           const char *p = sh_name ? names + sh_name + len : names;
567           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
568                                                    name, len));
569           if (p == NULL)
570             return NULL;
571           sh_name = p - names;
572           hdr = pshdrs;
573           if (sh_name == 0)
574             return hdr;
575         }
576
577       hdr += shdr_size;
578       while (hdr < hdr_end)
579         {
580           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
581           if (shdr.get_sh_name() == sh_name)
582             return hdr;
583           hdr += shdr_size;
584         }
585       hdr = NULL;
586       if (sh_name == 0)
587         return hdr;
588     }
589 }
590
591 // Return whether there is a GNU .eh_frame section, given the section
592 // headers and the section names.
593
594 template<int size, bool big_endian>
595 bool
596 Sized_relobj_file<size, big_endian>::find_eh_frame(
597     const unsigned char* pshdrs,
598     const char* names,
599     section_size_type names_size) const
600 {
601   const unsigned char* s = NULL;
602
603   while (1)
604     {
605       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
606                                                      names, names_size, s);
607       if (s == NULL)
608         return false;
609
610       typename This::Shdr shdr(s);
611       if (this->check_eh_frame_flags(&shdr))
612         return true;
613     }
614 }
615
616 // Return TRUE if this is a section whose contents will be needed in the
617 // Add_symbols task.  This function is only called for sections that have
618 // already passed the test in is_compressed_debug_section(), so we know
619 // that the section name begins with ".zdebug".
620
621 static bool
622 need_decompressed_section(const char* name)
623 {
624   // Skip over the ".zdebug" and a quick check for the "_".
625   name += 7;
626   if (*name++ != '_')
627     return false;
628
629 #ifdef ENABLE_THREADS
630   // Decompressing these sections now will help only if we're
631   // multithreaded.
632   if (parameters->options().threads())
633     {
634       // We will need .zdebug_str if this is not an incremental link
635       // (i.e., we are processing string merge sections) or if we need
636       // to build a gdb index.
637       if ((!parameters->incremental() || parameters->options().gdb_index())
638           && strcmp(name, "str") == 0)
639         return true;
640
641       // We will need these other sections when building a gdb index.
642       if (parameters->options().gdb_index()
643           && (strcmp(name, "info") == 0
644               || strcmp(name, "types") == 0
645               || strcmp(name, "pubnames") == 0
646               || strcmp(name, "pubtypes") == 0
647               || strcmp(name, "ranges") == 0
648               || strcmp(name, "abbrev") == 0))
649         return true;
650     }
651 #endif
652
653   // Even when single-threaded, we will need .zdebug_str if this is
654   // not an incremental link and we are building a gdb index.
655   // Otherwise, we would decompress the section twice: once for
656   // string merge processing, and once for building the gdb index.
657   if (!parameters->incremental()
658       && parameters->options().gdb_index()
659       && strcmp(name, "str") == 0)
660     return true;
661
662   return false;
663 }
664
665 // Build a table for any compressed debug sections, mapping each section index
666 // to the uncompressed size and (if needed) the decompressed contents.
667
668 template<int size, bool big_endian>
669 Compressed_section_map*
670 build_compressed_section_map(
671     const unsigned char* pshdrs,
672     unsigned int shnum,
673     const char* names,
674     section_size_type names_size,
675     Sized_relobj_file<size, big_endian>* obj)
676 {
677   Compressed_section_map* uncompressed_map = new Compressed_section_map();
678   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
679   const unsigned char* p = pshdrs + shdr_size;
680
681   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
682     {
683       typename elfcpp::Shdr<size, big_endian> shdr(p);
684       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
685           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
686         {
687           if (shdr.get_sh_name() >= names_size)
688             {
689               obj->error(_("bad section name offset for section %u: %lu"),
690                          i, static_cast<unsigned long>(shdr.get_sh_name()));
691               continue;
692             }
693
694           const char* name = names + shdr.get_sh_name();
695           if (is_compressed_debug_section(name))
696             {
697               section_size_type len;
698               const unsigned char* contents =
699                   obj->section_contents(i, &len, false);
700               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
701               Compressed_section_info info;
702               info.size = convert_to_section_size_type(uncompressed_size);
703               info.contents = NULL;
704               if (uncompressed_size != -1ULL)
705                 {
706                   unsigned char* uncompressed_data = NULL;
707                   if (need_decompressed_section(name))
708                     {
709                       uncompressed_data = new unsigned char[uncompressed_size];
710                       if (decompress_input_section(contents, len,
711                                                    uncompressed_data,
712                                                    uncompressed_size))
713                         info.contents = uncompressed_data;
714                       else
715                         delete[] uncompressed_data;
716                     }
717                   (*uncompressed_map)[i] = info;
718                 }
719             }
720         }
721     }
722   return uncompressed_map;
723 }
724
725 // Stash away info for a number of special sections.
726 // Return true if any of the sections found require local symbols to be read.
727
728 template<int size, bool big_endian>
729 bool
730 Sized_relobj_file<size, big_endian>::do_find_special_sections(
731     Read_symbols_data* sd)
732 {
733   const unsigned char* const pshdrs = sd->section_headers->data();
734   const unsigned char* namesu = sd->section_names->data();
735   const char* names = reinterpret_cast<const char*>(namesu);
736
737   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
738     this->has_eh_frame_ = true;
739
740   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
741     this->compressed_sections_
742       = build_compressed_section_map(pshdrs, this->shnum(), names,
743                                      sd->section_names_size, this);
744   return (this->has_eh_frame_
745           || (!parameters->options().relocatable()
746               && parameters->options().gdb_index()
747               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
748                   || memmem(names, sd->section_names_size, "debug_types",
749                             13) == 0)));
750 }
751
752 // Read the sections and symbols from an object file.
753
754 template<int size, bool big_endian>
755 void
756 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
757 {
758   this->read_section_data(&this->elf_file_, sd);
759
760   const unsigned char* const pshdrs = sd->section_headers->data();
761
762   this->find_symtab(pshdrs);
763
764   bool need_local_symbols = this->do_find_special_sections(sd);
765
766   sd->symbols = NULL;
767   sd->symbols_size = 0;
768   sd->external_symbols_offset = 0;
769   sd->symbol_names = NULL;
770   sd->symbol_names_size = 0;
771
772   if (this->symtab_shndx_ == 0)
773     {
774       // No symbol table.  Weird but legal.
775       return;
776     }
777
778   // Get the symbol table section header.
779   typename This::Shdr symtabshdr(pshdrs
780                                  + this->symtab_shndx_ * This::shdr_size);
781   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
782
783   // If this object has a .eh_frame section, or if building a .gdb_index
784   // section and there is debug info, we need all the symbols.
785   // Otherwise we only need the external symbols.  While it would be
786   // simpler to just always read all the symbols, I've seen object
787   // files with well over 2000 local symbols, which for a 64-bit
788   // object file format is over 5 pages that we don't need to read
789   // now.
790
791   const int sym_size = This::sym_size;
792   const unsigned int loccount = symtabshdr.get_sh_info();
793   this->local_symbol_count_ = loccount;
794   this->local_values_.resize(loccount);
795   section_offset_type locsize = loccount * sym_size;
796   off_t dataoff = symtabshdr.get_sh_offset();
797   section_size_type datasize =
798     convert_to_section_size_type(symtabshdr.get_sh_size());
799   off_t extoff = dataoff + locsize;
800   section_size_type extsize = datasize - locsize;
801
802   off_t readoff = need_local_symbols ? dataoff : extoff;
803   section_size_type readsize = need_local_symbols ? datasize : extsize;
804
805   if (readsize == 0)
806     {
807       // No external symbols.  Also weird but also legal.
808       return;
809     }
810
811   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
812
813   // Read the section header for the symbol names.
814   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
815   if (strtab_shndx >= this->shnum())
816     {
817       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
818       return;
819     }
820   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
821   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
822     {
823       this->error(_("symbol table name section has wrong type: %u"),
824                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
825       return;
826     }
827
828   // Read the symbol names.
829   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
830                                                strtabshdr.get_sh_size(),
831                                                false, true);
832
833   sd->symbols = fvsymtab;
834   sd->symbols_size = readsize;
835   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
836   sd->symbol_names = fvstrtab;
837   sd->symbol_names_size =
838     convert_to_section_size_type(strtabshdr.get_sh_size());
839 }
840
841 // Return the section index of symbol SYM.  Set *VALUE to its value in
842 // the object file.  Set *IS_ORDINARY if this is an ordinary section
843 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
844 // Note that for a symbol which is not defined in this object file,
845 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
846 // the final value of the symbol in the link.
847
848 template<int size, bool big_endian>
849 unsigned int
850 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
851                                                               Address* value,
852                                                               bool* is_ordinary)
853 {
854   section_size_type symbols_size;
855   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
856                                                         &symbols_size,
857                                                         false);
858
859   const size_t count = symbols_size / This::sym_size;
860   gold_assert(sym < count);
861
862   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
863   *value = elfsym.get_st_value();
864
865   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
866 }
867
868 // Return whether to include a section group in the link.  LAYOUT is
869 // used to keep track of which section groups we have already seen.
870 // INDEX is the index of the section group and SHDR is the section
871 // header.  If we do not want to include this group, we set bits in
872 // OMIT for each section which should be discarded.
873
874 template<int size, bool big_endian>
875 bool
876 Sized_relobj_file<size, big_endian>::include_section_group(
877     Symbol_table* symtab,
878     Layout* layout,
879     unsigned int index,
880     const char* name,
881     const unsigned char* shdrs,
882     const char* section_names,
883     section_size_type section_names_size,
884     std::vector<bool>* omit)
885 {
886   // Read the section contents.
887   typename This::Shdr shdr(shdrs + index * This::shdr_size);
888   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
889                                              shdr.get_sh_size(), true, false);
890   const elfcpp::Elf_Word* pword =
891     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
892
893   // The first word contains flags.  We only care about COMDAT section
894   // groups.  Other section groups are always included in the link
895   // just like ordinary sections.
896   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
897
898   // Look up the group signature, which is the name of a symbol.  ELF
899   // uses a symbol name because some group signatures are long, and
900   // the name is generally already in the symbol table, so it makes
901   // sense to put the long string just once in .strtab rather than in
902   // both .strtab and .shstrtab.
903
904   // Get the appropriate symbol table header (this will normally be
905   // the single SHT_SYMTAB section, but in principle it need not be).
906   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
907   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
908
909   // Read the symbol table entry.
910   unsigned int symndx = shdr.get_sh_info();
911   if (symndx >= symshdr.get_sh_size() / This::sym_size)
912     {
913       this->error(_("section group %u info %u out of range"),
914                   index, symndx);
915       return false;
916     }
917   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
918   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
919                                              false);
920   elfcpp::Sym<size, big_endian> sym(psym);
921
922   // Read the symbol table names.
923   section_size_type symnamelen;
924   const unsigned char* psymnamesu;
925   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
926                                       &symnamelen, true);
927   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
928
929   // Get the section group signature.
930   if (sym.get_st_name() >= symnamelen)
931     {
932       this->error(_("symbol %u name offset %u out of range"),
933                   symndx, sym.get_st_name());
934       return false;
935     }
936
937   std::string signature(psymnames + sym.get_st_name());
938
939   // It seems that some versions of gas will create a section group
940   // associated with a section symbol, and then fail to give a name to
941   // the section symbol.  In such a case, use the name of the section.
942   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
943     {
944       bool is_ordinary;
945       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
946                                                       sym.get_st_shndx(),
947                                                       &is_ordinary);
948       if (!is_ordinary || sym_shndx >= this->shnum())
949         {
950           this->error(_("symbol %u invalid section index %u"),
951                       symndx, sym_shndx);
952           return false;
953         }
954       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
955       if (member_shdr.get_sh_name() < section_names_size)
956         signature = section_names + member_shdr.get_sh_name();
957     }
958
959   // Record this section group in the layout, and see whether we've already
960   // seen one with the same signature.
961   bool include_group;
962   bool is_comdat;
963   Kept_section* kept_section = NULL;
964
965   if ((flags & elfcpp::GRP_COMDAT) == 0)
966     {
967       include_group = true;
968       is_comdat = false;
969     }
970   else
971     {
972       include_group = layout->find_or_add_kept_section(signature,
973                                                        this, index, true,
974                                                        true, &kept_section);
975       is_comdat = true;
976     }
977
978   if (is_comdat && include_group)
979     {
980       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
981       if (incremental_inputs != NULL)
982         incremental_inputs->report_comdat_group(this, signature.c_str());
983     }
984
985   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
986
987   std::vector<unsigned int> shndxes;
988   bool relocate_group = include_group && parameters->options().relocatable();
989   if (relocate_group)
990     shndxes.reserve(count - 1);
991
992   for (size_t i = 1; i < count; ++i)
993     {
994       elfcpp::Elf_Word shndx =
995         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
996
997       if (relocate_group)
998         shndxes.push_back(shndx);
999
1000       if (shndx >= this->shnum())
1001         {
1002           this->error(_("section %u in section group %u out of range"),
1003                       shndx, index);
1004           continue;
1005         }
1006
1007       // Check for an earlier section number, since we're going to get
1008       // it wrong--we may have already decided to include the section.
1009       if (shndx < index)
1010         this->error(_("invalid section group %u refers to earlier section %u"),
1011                     index, shndx);
1012
1013       // Get the name of the member section.
1014       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1015       if (member_shdr.get_sh_name() >= section_names_size)
1016         {
1017           // This is an error, but it will be diagnosed eventually
1018           // in do_layout, so we don't need to do anything here but
1019           // ignore it.
1020           continue;
1021         }
1022       std::string mname(section_names + member_shdr.get_sh_name());
1023
1024       if (include_group)
1025         {
1026           if (is_comdat)
1027             kept_section->add_comdat_section(mname, shndx,
1028                                              member_shdr.get_sh_size());
1029         }
1030       else
1031         {
1032           (*omit)[shndx] = true;
1033
1034           if (is_comdat)
1035             {
1036               Relobj* kept_object = kept_section->object();
1037               if (kept_section->is_comdat())
1038                 {
1039                   // Find the corresponding kept section, and store
1040                   // that info in the discarded section table.
1041                   unsigned int kept_shndx;
1042                   uint64_t kept_size;
1043                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1044                                                         &kept_size))
1045                     {
1046                       // We don't keep a mapping for this section if
1047                       // it has a different size.  The mapping is only
1048                       // used for relocation processing, and we don't
1049                       // want to treat the sections as similar if the
1050                       // sizes are different.  Checking the section
1051                       // size is the approach used by the GNU linker.
1052                       if (kept_size == member_shdr.get_sh_size())
1053                         this->set_kept_comdat_section(shndx, kept_object,
1054                                                       kept_shndx);
1055                     }
1056                 }
1057               else
1058                 {
1059                   // The existing section is a linkonce section.  Add
1060                   // a mapping if there is exactly one section in the
1061                   // group (which is true when COUNT == 2) and if it
1062                   // is the same size.
1063                   if (count == 2
1064                       && (kept_section->linkonce_size()
1065                           == member_shdr.get_sh_size()))
1066                     this->set_kept_comdat_section(shndx, kept_object,
1067                                                   kept_section->shndx());
1068                 }
1069             }
1070         }
1071     }
1072
1073   if (relocate_group)
1074     layout->layout_group(symtab, this, index, name, signature.c_str(),
1075                          shdr, flags, &shndxes);
1076
1077   return include_group;
1078 }
1079
1080 // Whether to include a linkonce section in the link.  NAME is the
1081 // name of the section and SHDR is the section header.
1082
1083 // Linkonce sections are a GNU extension implemented in the original
1084 // GNU linker before section groups were defined.  The semantics are
1085 // that we only include one linkonce section with a given name.  The
1086 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1087 // where T is the type of section and SYMNAME is the name of a symbol.
1088 // In an attempt to make linkonce sections interact well with section
1089 // groups, we try to identify SYMNAME and use it like a section group
1090 // signature.  We want to block section groups with that signature,
1091 // but not other linkonce sections with that signature.  We also use
1092 // the full name of the linkonce section as a normal section group
1093 // signature.
1094
1095 template<int size, bool big_endian>
1096 bool
1097 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1098     Layout* layout,
1099     unsigned int index,
1100     const char* name,
1101     const elfcpp::Shdr<size, big_endian>& shdr)
1102 {
1103   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1104   // In general the symbol name we want will be the string following
1105   // the last '.'.  However, we have to handle the case of
1106   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1107   // some versions of gcc.  So we use a heuristic: if the name starts
1108   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1109   // we look for the last '.'.  We can't always simply skip
1110   // ".gnu.linkonce.X", because we have to deal with cases like
1111   // ".gnu.linkonce.d.rel.ro.local".
1112   const char* const linkonce_t = ".gnu.linkonce.t.";
1113   const char* symname;
1114   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1115     symname = name + strlen(linkonce_t);
1116   else
1117     symname = strrchr(name, '.') + 1;
1118   std::string sig1(symname);
1119   std::string sig2(name);
1120   Kept_section* kept1;
1121   Kept_section* kept2;
1122   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1123                                                    false, &kept1);
1124   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1125                                                    true, &kept2);
1126
1127   if (!include2)
1128     {
1129       // We are not including this section because we already saw the
1130       // name of the section as a signature.  This normally implies
1131       // that the kept section is another linkonce section.  If it is
1132       // the same size, record it as the section which corresponds to
1133       // this one.
1134       if (kept2->object() != NULL
1135           && !kept2->is_comdat()
1136           && kept2->linkonce_size() == sh_size)
1137         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1138     }
1139   else if (!include1)
1140     {
1141       // The section is being discarded on the basis of its symbol
1142       // name.  This means that the corresponding kept section was
1143       // part of a comdat group, and it will be difficult to identify
1144       // the specific section within that group that corresponds to
1145       // this linkonce section.  We'll handle the simple case where
1146       // the group has only one member section.  Otherwise, it's not
1147       // worth the effort.
1148       unsigned int kept_shndx;
1149       uint64_t kept_size;
1150       if (kept1->object() != NULL
1151           && kept1->is_comdat()
1152           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1153           && kept_size == sh_size)
1154         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1155     }
1156   else
1157     {
1158       kept1->set_linkonce_size(sh_size);
1159       kept2->set_linkonce_size(sh_size);
1160     }
1161
1162   return include1 && include2;
1163 }
1164
1165 // Layout an input section.
1166
1167 template<int size, bool big_endian>
1168 inline void
1169 Sized_relobj_file<size, big_endian>::layout_section(
1170     Layout* layout,
1171     unsigned int shndx,
1172     const char* name,
1173     const typename This::Shdr& shdr,
1174     unsigned int reloc_shndx,
1175     unsigned int reloc_type)
1176 {
1177   off_t offset;
1178   Output_section* os = layout->layout(this, shndx, name, shdr,
1179                                           reloc_shndx, reloc_type, &offset);
1180
1181   this->output_sections()[shndx] = os;
1182   if (offset == -1)
1183     this->section_offsets()[shndx] = invalid_address;
1184   else
1185     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1186
1187   // If this section requires special handling, and if there are
1188   // relocs that apply to it, then we must do the special handling
1189   // before we apply the relocs.
1190   if (offset == -1 && reloc_shndx != 0)
1191     this->set_relocs_must_follow_section_writes();
1192 }
1193
1194 // Layout an input .eh_frame section.
1195
1196 template<int size, bool big_endian>
1197 void
1198 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1199     Layout* layout,
1200     const unsigned char* symbols_data,
1201     section_size_type symbols_size,
1202     const unsigned char* symbol_names_data,
1203     section_size_type symbol_names_size,
1204     unsigned int shndx,
1205     const typename This::Shdr& shdr,
1206     unsigned int reloc_shndx,
1207     unsigned int reloc_type)
1208 {
1209   gold_assert(this->has_eh_frame_);
1210
1211   off_t offset;
1212   Output_section* os = layout->layout_eh_frame(this,
1213                                                symbols_data,
1214                                                symbols_size,
1215                                                symbol_names_data,
1216                                                symbol_names_size,
1217                                                shndx,
1218                                                shdr,
1219                                                reloc_shndx,
1220                                                reloc_type,
1221                                                &offset);
1222   this->output_sections()[shndx] = os;
1223   if (os == NULL || offset == -1)
1224     {
1225       // An object can contain at most one section holding exception
1226       // frame information.
1227       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1228       this->discarded_eh_frame_shndx_ = shndx;
1229       this->section_offsets()[shndx] = invalid_address;
1230     }
1231   else
1232     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1233
1234   // If this section requires special handling, and if there are
1235   // relocs that aply to it, then we must do the special handling
1236   // before we apply the relocs.
1237   if (os != NULL && offset == -1 && reloc_shndx != 0)
1238     this->set_relocs_must_follow_section_writes();
1239 }
1240
1241 // Lay out the input sections.  We walk through the sections and check
1242 // whether they should be included in the link.  If they should, we
1243 // pass them to the Layout object, which will return an output section
1244 // and an offset.
1245 // This function is called twice sometimes, two passes, when mapping
1246 // of input sections to output sections must be delayed.
1247 // This is true for the following :
1248 // * Garbage collection (--gc-sections): Some input sections will be
1249 // discarded and hence the assignment must wait until the second pass.
1250 // In the first pass,  it is for setting up some sections as roots to
1251 // a work-list for --gc-sections and to do comdat processing.
1252 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1253 // will be folded and hence the assignment must wait.
1254 // * Using plugins to map some sections to unique segments: Mapping
1255 // some sections to unique segments requires mapping them to unique
1256 // output sections too.  This can be done via plugins now and this
1257 // information is not available in the first pass.
1258
1259 template<int size, bool big_endian>
1260 void
1261 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1262                                                Layout* layout,
1263                                                Read_symbols_data* sd)
1264 {
1265   const unsigned int shnum = this->shnum();
1266
1267   /* Should this function be called twice?  */
1268   bool is_two_pass = (parameters->options().gc_sections()
1269                       || parameters->options().icf_enabled()
1270                       || layout->is_unique_segment_for_sections_specified());
1271
1272   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1273      a two-pass approach is not needed.  */
1274   bool is_pass_one = false;
1275   bool is_pass_two = false;
1276
1277   Symbols_data* gc_sd = NULL;
1278
1279   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1280      should happen.  In the first pass, the data in sd is saved to be used
1281      later in the second pass.  */
1282   if (is_two_pass)
1283     {
1284       gc_sd = this->get_symbols_data();
1285       if (gc_sd == NULL)
1286         {
1287           gold_assert(sd != NULL);
1288           is_pass_one = true;
1289         }
1290       else
1291         {
1292           if (parameters->options().gc_sections())
1293             gold_assert(symtab->gc()->is_worklist_ready());
1294           if (parameters->options().icf_enabled())
1295             gold_assert(symtab->icf()->is_icf_ready()); 
1296           is_pass_two = true;
1297         }
1298     }
1299     
1300   if (shnum == 0)
1301     return;
1302
1303   if (is_pass_one)
1304     {
1305       // During garbage collection save the symbols data to use it when
1306       // re-entering this function.
1307       gc_sd = new Symbols_data;
1308       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1309       this->set_symbols_data(gc_sd);
1310     }
1311
1312   const unsigned char* section_headers_data = NULL;
1313   section_size_type section_names_size;
1314   const unsigned char* symbols_data = NULL;
1315   section_size_type symbols_size;
1316   const unsigned char* symbol_names_data = NULL;
1317   section_size_type symbol_names_size;
1318
1319   if (is_two_pass)
1320     {
1321       section_headers_data = gc_sd->section_headers_data;
1322       section_names_size = gc_sd->section_names_size;
1323       symbols_data = gc_sd->symbols_data;
1324       symbols_size = gc_sd->symbols_size;
1325       symbol_names_data = gc_sd->symbol_names_data;
1326       symbol_names_size = gc_sd->symbol_names_size;
1327     }
1328   else
1329     {
1330       section_headers_data = sd->section_headers->data();
1331       section_names_size = sd->section_names_size;
1332       if (sd->symbols != NULL)
1333         symbols_data = sd->symbols->data();
1334       symbols_size = sd->symbols_size;
1335       if (sd->symbol_names != NULL)
1336         symbol_names_data = sd->symbol_names->data();
1337       symbol_names_size = sd->symbol_names_size;
1338     }
1339
1340   // Get the section headers.
1341   const unsigned char* shdrs = section_headers_data;
1342   const unsigned char* pshdrs;
1343
1344   // Get the section names.
1345   const unsigned char* pnamesu = (is_two_pass
1346                                   ? gc_sd->section_names_data
1347                                   : sd->section_names->data());
1348
1349   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1350
1351   // If any input files have been claimed by plugins, we need to defer
1352   // actual layout until the replacement files have arrived.
1353   const bool should_defer_layout =
1354       (parameters->options().has_plugins()
1355        && parameters->options().plugins()->should_defer_layout());
1356   unsigned int num_sections_to_defer = 0;
1357
1358   // For each section, record the index of the reloc section if any.
1359   // Use 0 to mean that there is no reloc section, -1U to mean that
1360   // there is more than one.
1361   std::vector<unsigned int> reloc_shndx(shnum, 0);
1362   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1363   // Skip the first, dummy, section.
1364   pshdrs = shdrs + This::shdr_size;
1365   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1366     {
1367       typename This::Shdr shdr(pshdrs);
1368
1369       // Count the number of sections whose layout will be deferred.
1370       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1371         ++num_sections_to_defer;
1372
1373       unsigned int sh_type = shdr.get_sh_type();
1374       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1375         {
1376           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1377           if (target_shndx == 0 || target_shndx >= shnum)
1378             {
1379               this->error(_("relocation section %u has bad info %u"),
1380                           i, target_shndx);
1381               continue;
1382             }
1383
1384           if (reloc_shndx[target_shndx] != 0)
1385             reloc_shndx[target_shndx] = -1U;
1386           else
1387             {
1388               reloc_shndx[target_shndx] = i;
1389               reloc_type[target_shndx] = sh_type;
1390             }
1391         }
1392     }
1393
1394   Output_sections& out_sections(this->output_sections());
1395   std::vector<Address>& out_section_offsets(this->section_offsets());
1396
1397   if (!is_pass_two)
1398     {
1399       out_sections.resize(shnum);
1400       out_section_offsets.resize(shnum);
1401     }
1402
1403   // If we are only linking for symbols, then there is nothing else to
1404   // do here.
1405   if (this->input_file()->just_symbols())
1406     {
1407       if (!is_pass_two)
1408         {
1409           delete sd->section_headers;
1410           sd->section_headers = NULL;
1411           delete sd->section_names;
1412           sd->section_names = NULL;
1413         }
1414       return;
1415     }
1416
1417   if (num_sections_to_defer > 0)
1418     {
1419       parameters->options().plugins()->add_deferred_layout_object(this);
1420       this->deferred_layout_.reserve(num_sections_to_defer);
1421     }
1422
1423   // Whether we've seen a .note.GNU-stack section.
1424   bool seen_gnu_stack = false;
1425   // The flags of a .note.GNU-stack section.
1426   uint64_t gnu_stack_flags = 0;
1427
1428   // Keep track of which sections to omit.
1429   std::vector<bool> omit(shnum, false);
1430
1431   // Keep track of reloc sections when emitting relocations.
1432   const bool relocatable = parameters->options().relocatable();
1433   const bool emit_relocs = (relocatable
1434                             || parameters->options().emit_relocs());
1435   std::vector<unsigned int> reloc_sections;
1436
1437   // Keep track of .eh_frame sections.
1438   std::vector<unsigned int> eh_frame_sections;
1439
1440   // Keep track of .debug_info and .debug_types sections.
1441   std::vector<unsigned int> debug_info_sections;
1442   std::vector<unsigned int> debug_types_sections;
1443
1444   // Skip the first, dummy, section.
1445   pshdrs = shdrs + This::shdr_size;
1446   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1447     {
1448       typename This::Shdr shdr(pshdrs);
1449
1450       if (shdr.get_sh_name() >= section_names_size)
1451         {
1452           this->error(_("bad section name offset for section %u: %lu"),
1453                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1454           return;
1455         }
1456
1457       const char* name = pnames + shdr.get_sh_name();
1458
1459       if (!is_pass_two)
1460         {
1461           if (this->handle_gnu_warning_section(name, i, symtab))
1462             {
1463               if (!relocatable && !parameters->options().shared())
1464                 omit[i] = true;
1465             }
1466
1467           // The .note.GNU-stack section is special.  It gives the
1468           // protection flags that this object file requires for the stack
1469           // in memory.
1470           if (strcmp(name, ".note.GNU-stack") == 0)
1471             {
1472               seen_gnu_stack = true;
1473               gnu_stack_flags |= shdr.get_sh_flags();
1474               omit[i] = true;
1475             }
1476
1477           // The .note.GNU-split-stack section is also special.  It
1478           // indicates that the object was compiled with
1479           // -fsplit-stack.
1480           if (this->handle_split_stack_section(name))
1481             {
1482               if (!relocatable && !parameters->options().shared())
1483                 omit[i] = true;
1484             }
1485
1486           // Skip attributes section.
1487           if (parameters->target().is_attributes_section(name))
1488             {
1489               omit[i] = true;
1490             }
1491
1492           bool discard = omit[i];
1493           if (!discard)
1494             {
1495               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1496                 {
1497                   if (!this->include_section_group(symtab, layout, i, name,
1498                                                    shdrs, pnames,
1499                                                    section_names_size,
1500                                                    &omit))
1501                     discard = true;
1502                 }
1503               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1504                        && Layout::is_linkonce(name))
1505                 {
1506                   if (!this->include_linkonce_section(layout, i, name, shdr))
1507                     discard = true;
1508                 }
1509             }
1510
1511           // Add the section to the incremental inputs layout.
1512           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1513           if (incremental_inputs != NULL
1514               && !discard
1515               && can_incremental_update(shdr.get_sh_type()))
1516             {
1517               off_t sh_size = shdr.get_sh_size();
1518               section_size_type uncompressed_size;
1519               if (this->section_is_compressed(i, &uncompressed_size))
1520                 sh_size = uncompressed_size;
1521               incremental_inputs->report_input_section(this, i, name, sh_size);
1522             }
1523
1524           if (discard)
1525             {
1526               // Do not include this section in the link.
1527               out_sections[i] = NULL;
1528               out_section_offsets[i] = invalid_address;
1529               continue;
1530             }
1531         }
1532
1533       if (is_pass_one && parameters->options().gc_sections())
1534         {
1535           if (this->is_section_name_included(name)
1536               || layout->keep_input_section (this, name)
1537               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1538               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1539             {
1540               symtab->gc()->worklist().push(Section_id(this, i));
1541             }
1542           // If the section name XXX can be represented as a C identifier
1543           // it cannot be discarded if there are references to
1544           // __start_XXX and __stop_XXX symbols.  These need to be
1545           // specially handled.
1546           if (is_cident(name))
1547             {
1548               symtab->gc()->add_cident_section(name, Section_id(this, i));
1549             }
1550         }
1551
1552       // When doing a relocatable link we are going to copy input
1553       // reloc sections into the output.  We only want to copy the
1554       // ones associated with sections which are not being discarded.
1555       // However, we don't know that yet for all sections.  So save
1556       // reloc sections and process them later. Garbage collection is
1557       // not triggered when relocatable code is desired.
1558       if (emit_relocs
1559           && (shdr.get_sh_type() == elfcpp::SHT_REL
1560               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1561         {
1562           reloc_sections.push_back(i);
1563           continue;
1564         }
1565
1566       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1567         continue;
1568
1569       // The .eh_frame section is special.  It holds exception frame
1570       // information that we need to read in order to generate the
1571       // exception frame header.  We process these after all the other
1572       // sections so that the exception frame reader can reliably
1573       // determine which sections are being discarded, and discard the
1574       // corresponding information.
1575       if (!relocatable
1576           && strcmp(name, ".eh_frame") == 0
1577           && this->check_eh_frame_flags(&shdr))
1578         {
1579           if (is_pass_one)
1580             {
1581               out_sections[i] = reinterpret_cast<Output_section*>(1);
1582               out_section_offsets[i] = invalid_address;
1583             }
1584           else if (should_defer_layout)
1585             this->deferred_layout_.push_back(Deferred_layout(i, name,
1586                                                              pshdrs,
1587                                                              reloc_shndx[i],
1588                                                              reloc_type[i]));
1589           else
1590             eh_frame_sections.push_back(i);
1591           continue;
1592         }
1593
1594       if (is_pass_two && parameters->options().gc_sections())
1595         {
1596           // This is executed during the second pass of garbage
1597           // collection. do_layout has been called before and some
1598           // sections have been already discarded. Simply ignore
1599           // such sections this time around.
1600           if (out_sections[i] == NULL)
1601             {
1602               gold_assert(out_section_offsets[i] == invalid_address);
1603               continue;
1604             }
1605           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1606               && symtab->gc()->is_section_garbage(this, i))
1607               {
1608                 if (parameters->options().print_gc_sections())
1609                   gold_info(_("%s: removing unused section from '%s'"
1610                               " in file '%s'"),
1611                             program_name, this->section_name(i).c_str(),
1612                             this->name().c_str());
1613                 out_sections[i] = NULL;
1614                 out_section_offsets[i] = invalid_address;
1615                 continue;
1616               }
1617         }
1618
1619       if (is_pass_two && parameters->options().icf_enabled())
1620         {
1621           if (out_sections[i] == NULL)
1622             {
1623               gold_assert(out_section_offsets[i] == invalid_address);
1624               continue;
1625             }
1626           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1627               && symtab->icf()->is_section_folded(this, i))
1628               {
1629                 if (parameters->options().print_icf_sections())
1630                   {
1631                     Section_id folded =
1632                                 symtab->icf()->get_folded_section(this, i);
1633                     Relobj* folded_obj =
1634                                 reinterpret_cast<Relobj*>(folded.first);
1635                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1636                                 "into '%s' in file '%s'"),
1637                               program_name, this->section_name(i).c_str(),
1638                               this->name().c_str(),
1639                               folded_obj->section_name(folded.second).c_str(),
1640                               folded_obj->name().c_str());
1641                   }
1642                 out_sections[i] = NULL;
1643                 out_section_offsets[i] = invalid_address;
1644                 continue;
1645               }
1646         }
1647
1648       // Defer layout here if input files are claimed by plugins.  When gc
1649       // is turned on this function is called twice.  For the second call
1650       // should_defer_layout should be false.
1651       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1652         {
1653           gold_assert(!is_pass_two);
1654           this->deferred_layout_.push_back(Deferred_layout(i, name,
1655                                                            pshdrs,
1656                                                            reloc_shndx[i],
1657                                                            reloc_type[i]));
1658           // Put dummy values here; real values will be supplied by
1659           // do_layout_deferred_sections.
1660           out_sections[i] = reinterpret_cast<Output_section*>(2);
1661           out_section_offsets[i] = invalid_address;
1662           continue;
1663         }
1664
1665       // During gc_pass_two if a section that was previously deferred is
1666       // found, do not layout the section as layout_deferred_sections will
1667       // do it later from gold.cc.
1668       if (is_pass_two
1669           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1670         continue;
1671
1672       if (is_pass_one)
1673         {
1674           // This is during garbage collection. The out_sections are
1675           // assigned in the second call to this function.
1676           out_sections[i] = reinterpret_cast<Output_section*>(1);
1677           out_section_offsets[i] = invalid_address;
1678         }
1679       else
1680         {
1681           // When garbage collection is switched on the actual layout
1682           // only happens in the second call.
1683           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1684                                reloc_type[i]);
1685
1686           // When generating a .gdb_index section, we do additional
1687           // processing of .debug_info and .debug_types sections after all
1688           // the other sections for the same reason as above.
1689           if (!relocatable
1690               && parameters->options().gdb_index()
1691               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1692             {
1693               if (strcmp(name, ".debug_info") == 0
1694                   || strcmp(name, ".zdebug_info") == 0)
1695                 debug_info_sections.push_back(i);
1696               else if (strcmp(name, ".debug_types") == 0
1697                        || strcmp(name, ".zdebug_types") == 0)
1698                 debug_types_sections.push_back(i);
1699             }
1700         }
1701     }
1702
1703   if (!is_pass_two)
1704     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1705
1706   // Handle the .eh_frame sections after the other sections.
1707   gold_assert(!is_pass_one || eh_frame_sections.empty());
1708   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1709        p != eh_frame_sections.end();
1710        ++p)
1711     {
1712       unsigned int i = *p;
1713       const unsigned char* pshdr;
1714       pshdr = section_headers_data + i * This::shdr_size;
1715       typename This::Shdr shdr(pshdr);
1716
1717       this->layout_eh_frame_section(layout,
1718                                     symbols_data,
1719                                     symbols_size,
1720                                     symbol_names_data,
1721                                     symbol_names_size,
1722                                     i,
1723                                     shdr,
1724                                     reloc_shndx[i],
1725                                     reloc_type[i]);
1726     }
1727
1728   // When doing a relocatable link handle the reloc sections at the
1729   // end.  Garbage collection  and Identical Code Folding is not
1730   // turned on for relocatable code.
1731   if (emit_relocs)
1732     this->size_relocatable_relocs();
1733
1734   gold_assert(!is_two_pass || reloc_sections.empty());
1735
1736   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1737        p != reloc_sections.end();
1738        ++p)
1739     {
1740       unsigned int i = *p;
1741       const unsigned char* pshdr;
1742       pshdr = section_headers_data + i * This::shdr_size;
1743       typename This::Shdr shdr(pshdr);
1744
1745       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1746       if (data_shndx >= shnum)
1747         {
1748           // We already warned about this above.
1749           continue;
1750         }
1751
1752       Output_section* data_section = out_sections[data_shndx];
1753       if (data_section == reinterpret_cast<Output_section*>(2))
1754         {
1755           // The layout for the data section was deferred, so we need
1756           // to defer the relocation section, too.
1757           const char* name = pnames + shdr.get_sh_name();
1758           this->deferred_layout_relocs_.push_back(
1759               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1760           out_sections[i] = reinterpret_cast<Output_section*>(2);
1761           out_section_offsets[i] = invalid_address;
1762           continue;
1763         }
1764       if (data_section == NULL)
1765         {
1766           out_sections[i] = NULL;
1767           out_section_offsets[i] = invalid_address;
1768           continue;
1769         }
1770
1771       Relocatable_relocs* rr = new Relocatable_relocs();
1772       this->set_relocatable_relocs(i, rr);
1773
1774       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1775                                                 rr);
1776       out_sections[i] = os;
1777       out_section_offsets[i] = invalid_address;
1778     }
1779
1780   // When building a .gdb_index section, scan the .debug_info and
1781   // .debug_types sections.
1782   gold_assert(!is_pass_one
1783               || (debug_info_sections.empty() && debug_types_sections.empty()));
1784   for (std::vector<unsigned int>::const_iterator p
1785            = debug_info_sections.begin();
1786        p != debug_info_sections.end();
1787        ++p)
1788     {
1789       unsigned int i = *p;
1790       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1791                                i, reloc_shndx[i], reloc_type[i]);
1792     }
1793   for (std::vector<unsigned int>::const_iterator p
1794            = debug_types_sections.begin();
1795        p != debug_types_sections.end();
1796        ++p)
1797     {
1798       unsigned int i = *p;
1799       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1800                                i, reloc_shndx[i], reloc_type[i]);
1801     }
1802
1803   if (is_pass_two)
1804     {
1805       delete[] gc_sd->section_headers_data;
1806       delete[] gc_sd->section_names_data;
1807       delete[] gc_sd->symbols_data;
1808       delete[] gc_sd->symbol_names_data;
1809       this->set_symbols_data(NULL);
1810     }
1811   else
1812     {
1813       delete sd->section_headers;
1814       sd->section_headers = NULL;
1815       delete sd->section_names;
1816       sd->section_names = NULL;
1817     }
1818 }
1819
1820 // Layout sections whose layout was deferred while waiting for
1821 // input files from a plugin.
1822
1823 template<int size, bool big_endian>
1824 void
1825 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1826 {
1827   typename std::vector<Deferred_layout>::iterator deferred;
1828
1829   for (deferred = this->deferred_layout_.begin();
1830        deferred != this->deferred_layout_.end();
1831        ++deferred)
1832     {
1833       typename This::Shdr shdr(deferred->shdr_data_);
1834
1835       if (!parameters->options().relocatable()
1836           && deferred->name_ == ".eh_frame"
1837           && this->check_eh_frame_flags(&shdr))
1838         {
1839           // Checking is_section_included is not reliable for
1840           // .eh_frame sections, because they do not have an output
1841           // section.  This is not a problem normally because we call
1842           // layout_eh_frame_section unconditionally, but when
1843           // deferring sections that is not true.  We don't want to
1844           // keep all .eh_frame sections because that will cause us to
1845           // keep all sections that they refer to, which is the wrong
1846           // way around.  Instead, the eh_frame code will discard
1847           // .eh_frame sections that refer to discarded sections.
1848
1849           // Reading the symbols again here may be slow.
1850           Read_symbols_data sd;
1851           this->read_symbols(&sd);
1852           this->layout_eh_frame_section(layout,
1853                                         sd.symbols->data(),
1854                                         sd.symbols_size,
1855                                         sd.symbol_names->data(),
1856                                         sd.symbol_names_size,
1857                                         deferred->shndx_,
1858                                         shdr,
1859                                         deferred->reloc_shndx_,
1860                                         deferred->reloc_type_);
1861           continue;
1862         }
1863
1864       // If the section is not included, it is because the garbage collector
1865       // decided it is not needed.  Avoid reverting that decision.
1866       if (!this->is_section_included(deferred->shndx_))
1867         continue;
1868
1869       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1870                            shdr, deferred->reloc_shndx_,
1871                            deferred->reloc_type_);
1872     }
1873
1874   this->deferred_layout_.clear();
1875
1876   // Now handle the deferred relocation sections.
1877
1878   Output_sections& out_sections(this->output_sections());
1879   std::vector<Address>& out_section_offsets(this->section_offsets());
1880
1881   for (deferred = this->deferred_layout_relocs_.begin();
1882        deferred != this->deferred_layout_relocs_.end();
1883        ++deferred)
1884     {
1885       unsigned int shndx = deferred->shndx_;
1886       typename This::Shdr shdr(deferred->shdr_data_);
1887       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1888
1889       Output_section* data_section = out_sections[data_shndx];
1890       if (data_section == NULL)
1891         {
1892           out_sections[shndx] = NULL;
1893           out_section_offsets[shndx] = invalid_address;
1894           continue;
1895         }
1896
1897       Relocatable_relocs* rr = new Relocatable_relocs();
1898       this->set_relocatable_relocs(shndx, rr);
1899
1900       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1901                                                 data_section, rr);
1902       out_sections[shndx] = os;
1903       out_section_offsets[shndx] = invalid_address;
1904     }
1905 }
1906
1907 // Add the symbols to the symbol table.
1908
1909 template<int size, bool big_endian>
1910 void
1911 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1912                                                     Read_symbols_data* sd,
1913                                                     Layout*)
1914 {
1915   if (sd->symbols == NULL)
1916     {
1917       gold_assert(sd->symbol_names == NULL);
1918       return;
1919     }
1920
1921   const int sym_size = This::sym_size;
1922   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1923                      / sym_size);
1924   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1925     {
1926       this->error(_("size of symbols is not multiple of symbol size"));
1927       return;
1928     }
1929
1930   this->symbols_.resize(symcount);
1931
1932   const char* sym_names =
1933     reinterpret_cast<const char*>(sd->symbol_names->data());
1934   symtab->add_from_relobj(this,
1935                           sd->symbols->data() + sd->external_symbols_offset,
1936                           symcount, this->local_symbol_count_,
1937                           sym_names, sd->symbol_names_size,
1938                           &this->symbols_,
1939                           &this->defined_count_);
1940
1941   delete sd->symbols;
1942   sd->symbols = NULL;
1943   delete sd->symbol_names;
1944   sd->symbol_names = NULL;
1945 }
1946
1947 // Find out if this object, that is a member of a lib group, should be included
1948 // in the link. We check every symbol defined by this object. If the symbol
1949 // table has a strong undefined reference to that symbol, we have to include
1950 // the object.
1951
1952 template<int size, bool big_endian>
1953 Archive::Should_include
1954 Sized_relobj_file<size, big_endian>::do_should_include_member(
1955     Symbol_table* symtab,
1956     Layout* layout,
1957     Read_symbols_data* sd,
1958     std::string* why)
1959 {
1960   char* tmpbuf = NULL;
1961   size_t tmpbuflen = 0;
1962   const char* sym_names =
1963       reinterpret_cast<const char*>(sd->symbol_names->data());
1964   const unsigned char* syms =
1965       sd->symbols->data() + sd->external_symbols_offset;
1966   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1967   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1968                          / sym_size);
1969
1970   const unsigned char* p = syms;
1971
1972   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1973     {
1974       elfcpp::Sym<size, big_endian> sym(p);
1975       unsigned int st_shndx = sym.get_st_shndx();
1976       if (st_shndx == elfcpp::SHN_UNDEF)
1977         continue;
1978
1979       unsigned int st_name = sym.get_st_name();
1980       const char* name = sym_names + st_name;
1981       Symbol* symbol;
1982       Archive::Should_include t = Archive::should_include_member(symtab,
1983                                                                  layout,
1984                                                                  name,
1985                                                                  &symbol, why,
1986                                                                  &tmpbuf,
1987                                                                  &tmpbuflen);
1988       if (t == Archive::SHOULD_INCLUDE_YES)
1989         {
1990           if (tmpbuf != NULL)
1991             free(tmpbuf);
1992           return t;
1993         }
1994     }
1995   if (tmpbuf != NULL)
1996     free(tmpbuf);
1997   return Archive::SHOULD_INCLUDE_UNKNOWN;
1998 }
1999
2000 // Iterate over global defined symbols, calling a visitor class V for each.
2001
2002 template<int size, bool big_endian>
2003 void
2004 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2005     Read_symbols_data* sd,
2006     Library_base::Symbol_visitor_base* v)
2007 {
2008   const char* sym_names =
2009       reinterpret_cast<const char*>(sd->symbol_names->data());
2010   const unsigned char* syms =
2011       sd->symbols->data() + sd->external_symbols_offset;
2012   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2013   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2014                      / sym_size);
2015   const unsigned char* p = syms;
2016
2017   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2018     {
2019       elfcpp::Sym<size, big_endian> sym(p);
2020       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2021         v->visit(sym_names + sym.get_st_name());
2022     }
2023 }
2024
2025 // Return whether the local symbol SYMNDX has a PLT offset.
2026
2027 template<int size, bool big_endian>
2028 bool
2029 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2030     unsigned int symndx) const
2031 {
2032   typename Local_plt_offsets::const_iterator p =
2033     this->local_plt_offsets_.find(symndx);
2034   return p != this->local_plt_offsets_.end();
2035 }
2036
2037 // Get the PLT offset of a local symbol.
2038
2039 template<int size, bool big_endian>
2040 unsigned int
2041 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2042     unsigned int symndx) const
2043 {
2044   typename Local_plt_offsets::const_iterator p =
2045     this->local_plt_offsets_.find(symndx);
2046   gold_assert(p != this->local_plt_offsets_.end());
2047   return p->second;
2048 }
2049
2050 // Set the PLT offset of a local symbol.
2051
2052 template<int size, bool big_endian>
2053 void
2054 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2055     unsigned int symndx, unsigned int plt_offset)
2056 {
2057   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2058     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2059   gold_assert(ins.second);
2060 }
2061
2062 // First pass over the local symbols.  Here we add their names to
2063 // *POOL and *DYNPOOL, and we store the symbol value in
2064 // THIS->LOCAL_VALUES_.  This function is always called from a
2065 // singleton thread.  This is followed by a call to
2066 // finalize_local_symbols.
2067
2068 template<int size, bool big_endian>
2069 void
2070 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2071                                                             Stringpool* dynpool)
2072 {
2073   gold_assert(this->symtab_shndx_ != -1U);
2074   if (this->symtab_shndx_ == 0)
2075     {
2076       // This object has no symbols.  Weird but legal.
2077       return;
2078     }
2079
2080   // Read the symbol table section header.
2081   const unsigned int symtab_shndx = this->symtab_shndx_;
2082   typename This::Shdr symtabshdr(this,
2083                                  this->elf_file_.section_header(symtab_shndx));
2084   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2085
2086   // Read the local symbols.
2087   const int sym_size = This::sym_size;
2088   const unsigned int loccount = this->local_symbol_count_;
2089   gold_assert(loccount == symtabshdr.get_sh_info());
2090   off_t locsize = loccount * sym_size;
2091   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2092                                               locsize, true, true);
2093
2094   // Read the symbol names.
2095   const unsigned int strtab_shndx =
2096     this->adjust_shndx(symtabshdr.get_sh_link());
2097   section_size_type strtab_size;
2098   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2099                                                         &strtab_size,
2100                                                         true);
2101   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2102
2103   // Loop over the local symbols.
2104
2105   const Output_sections& out_sections(this->output_sections());
2106   unsigned int shnum = this->shnum();
2107   unsigned int count = 0;
2108   unsigned int dyncount = 0;
2109   // Skip the first, dummy, symbol.
2110   psyms += sym_size;
2111   bool strip_all = parameters->options().strip_all();
2112   bool discard_all = parameters->options().discard_all();
2113   bool discard_locals = parameters->options().discard_locals();
2114   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2115     {
2116       elfcpp::Sym<size, big_endian> sym(psyms);
2117
2118       Symbol_value<size>& lv(this->local_values_[i]);
2119
2120       bool is_ordinary;
2121       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2122                                                   &is_ordinary);
2123       lv.set_input_shndx(shndx, is_ordinary);
2124
2125       if (sym.get_st_type() == elfcpp::STT_SECTION)
2126         lv.set_is_section_symbol();
2127       else if (sym.get_st_type() == elfcpp::STT_TLS)
2128         lv.set_is_tls_symbol();
2129       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2130         lv.set_is_ifunc_symbol();
2131
2132       // Save the input symbol value for use in do_finalize_local_symbols().
2133       lv.set_input_value(sym.get_st_value());
2134
2135       // Decide whether this symbol should go into the output file.
2136
2137       if ((shndx < shnum && out_sections[shndx] == NULL)
2138           || shndx == this->discarded_eh_frame_shndx_)
2139         {
2140           lv.set_no_output_symtab_entry();
2141           gold_assert(!lv.needs_output_dynsym_entry());
2142           continue;
2143         }
2144
2145       if (sym.get_st_type() == elfcpp::STT_SECTION
2146           || !this->adjust_local_symbol(&lv))
2147         {
2148           lv.set_no_output_symtab_entry();
2149           gold_assert(!lv.needs_output_dynsym_entry());
2150           continue;
2151         }
2152
2153       if (sym.get_st_name() >= strtab_size)
2154         {
2155           this->error(_("local symbol %u section name out of range: %u >= %u"),
2156                       i, sym.get_st_name(),
2157                       static_cast<unsigned int>(strtab_size));
2158           lv.set_no_output_symtab_entry();
2159           continue;
2160         }
2161
2162       const char* name = pnames + sym.get_st_name();
2163
2164       // If needed, add the symbol to the dynamic symbol table string pool.
2165       if (lv.needs_output_dynsym_entry())
2166         {
2167           dynpool->add(name, true, NULL);
2168           ++dyncount;
2169         }
2170
2171       if (strip_all
2172           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2173         {
2174           lv.set_no_output_symtab_entry();
2175           continue;
2176         }
2177
2178       // If --discard-locals option is used, discard all temporary local
2179       // symbols.  These symbols start with system-specific local label
2180       // prefixes, typically .L for ELF system.  We want to be compatible
2181       // with GNU ld so here we essentially use the same check in
2182       // bfd_is_local_label().  The code is different because we already
2183       // know that:
2184       //
2185       //   - the symbol is local and thus cannot have global or weak binding.
2186       //   - the symbol is not a section symbol.
2187       //   - the symbol has a name.
2188       //
2189       // We do not discard a symbol if it needs a dynamic symbol entry.
2190       if (discard_locals
2191           && sym.get_st_type() != elfcpp::STT_FILE
2192           && !lv.needs_output_dynsym_entry()
2193           && lv.may_be_discarded_from_output_symtab()
2194           && parameters->target().is_local_label_name(name))
2195         {
2196           lv.set_no_output_symtab_entry();
2197           continue;
2198         }
2199
2200       // Discard the local symbol if -retain_symbols_file is specified
2201       // and the local symbol is not in that file.
2202       if (!parameters->options().should_retain_symbol(name))
2203         {
2204           lv.set_no_output_symtab_entry();
2205           continue;
2206         }
2207
2208       // Add the symbol to the symbol table string pool.
2209       pool->add(name, true, NULL);
2210       ++count;
2211     }
2212
2213   this->output_local_symbol_count_ = count;
2214   this->output_local_dynsym_count_ = dyncount;
2215 }
2216
2217 // Compute the final value of a local symbol.
2218
2219 template<int size, bool big_endian>
2220 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2221 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2222     unsigned int r_sym,
2223     const Symbol_value<size>* lv_in,
2224     Symbol_value<size>* lv_out,
2225     bool relocatable,
2226     const Output_sections& out_sections,
2227     const std::vector<Address>& out_offsets,
2228     const Symbol_table* symtab)
2229 {
2230   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2231   // we may have a memory leak.
2232   gold_assert(lv_out->has_output_value());
2233
2234   bool is_ordinary;
2235   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2236
2237   // Set the output symbol value.
2238
2239   if (!is_ordinary)
2240     {
2241       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2242         lv_out->set_output_value(lv_in->input_value());
2243       else
2244         {
2245           this->error(_("unknown section index %u for local symbol %u"),
2246                       shndx, r_sym);
2247           lv_out->set_output_value(0);
2248           return This::CFLV_ERROR;
2249         }
2250     }
2251   else
2252     {
2253       if (shndx >= this->shnum())
2254         {
2255           this->error(_("local symbol %u section index %u out of range"),
2256                       r_sym, shndx);
2257           lv_out->set_output_value(0);
2258           return This::CFLV_ERROR;
2259         }
2260
2261       Output_section* os = out_sections[shndx];
2262       Address secoffset = out_offsets[shndx];
2263       if (symtab->is_section_folded(this, shndx))
2264         {
2265           gold_assert(os == NULL && secoffset == invalid_address);
2266           // Get the os of the section it is folded onto.
2267           Section_id folded = symtab->icf()->get_folded_section(this,
2268                                                                 shndx);
2269           gold_assert(folded.first != NULL);
2270           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2271             <Sized_relobj_file<size, big_endian>*>(folded.first);
2272           os = folded_obj->output_section(folded.second);
2273           gold_assert(os != NULL);
2274           secoffset = folded_obj->get_output_section_offset(folded.second);
2275
2276           // This could be a relaxed input section.
2277           if (secoffset == invalid_address)
2278             {
2279               const Output_relaxed_input_section* relaxed_section =
2280                 os->find_relaxed_input_section(folded_obj, folded.second);
2281               gold_assert(relaxed_section != NULL);
2282               secoffset = relaxed_section->address() - os->address();
2283             }
2284         }
2285
2286       if (os == NULL)
2287         {
2288           // This local symbol belongs to a section we are discarding.
2289           // In some cases when applying relocations later, we will
2290           // attempt to match it to the corresponding kept section,
2291           // so we leave the input value unchanged here.
2292           return This::CFLV_DISCARDED;
2293         }
2294       else if (secoffset == invalid_address)
2295         {
2296           uint64_t start;
2297
2298           // This is a SHF_MERGE section or one which otherwise
2299           // requires special handling.
2300           if (shndx == this->discarded_eh_frame_shndx_)
2301             {
2302               // This local symbol belongs to a discarded .eh_frame
2303               // section.  Just treat it like the case in which
2304               // os == NULL above.
2305               gold_assert(this->has_eh_frame_);
2306               return This::CFLV_DISCARDED;
2307             }
2308           else if (!lv_in->is_section_symbol())
2309             {
2310               // This is not a section symbol.  We can determine
2311               // the final value now.
2312               lv_out->set_output_value(
2313                   os->output_address(this, shndx, lv_in->input_value()));
2314             }
2315           else if (!os->find_starting_output_address(this, shndx, &start))
2316             {
2317               // This is a section symbol, but apparently not one in a
2318               // merged section.  First check to see if this is a relaxed
2319               // input section.  If so, use its address.  Otherwise just
2320               // use the start of the output section.  This happens with
2321               // relocatable links when the input object has section
2322               // symbols for arbitrary non-merge sections.
2323               const Output_section_data* posd =
2324                 os->find_relaxed_input_section(this, shndx);
2325               if (posd != NULL)
2326                 {
2327                   Address relocatable_link_adjustment =
2328                     relocatable ? os->address() : 0;
2329                   lv_out->set_output_value(posd->address()
2330                                            - relocatable_link_adjustment);
2331                 }
2332               else
2333                 lv_out->set_output_value(os->address());
2334             }
2335           else
2336             {
2337               // We have to consider the addend to determine the
2338               // value to use in a relocation.  START is the start
2339               // of this input section.  If we are doing a relocatable
2340               // link, use offset from start output section instead of
2341               // address.
2342               Address adjusted_start =
2343                 relocatable ? start - os->address() : start;
2344               Merged_symbol_value<size>* msv =
2345                 new Merged_symbol_value<size>(lv_in->input_value(),
2346                                               adjusted_start);
2347               lv_out->set_merged_symbol_value(msv);
2348             }
2349         }
2350       else if (lv_in->is_tls_symbol())
2351         lv_out->set_output_value(os->tls_offset()
2352                                  + secoffset
2353                                  + lv_in->input_value());
2354       else
2355         lv_out->set_output_value((relocatable ? 0 : os->address())
2356                                  + secoffset
2357                                  + lv_in->input_value());
2358     }
2359   return This::CFLV_OK;
2360 }
2361
2362 // Compute final local symbol value.  R_SYM is the index of a local
2363 // symbol in symbol table.  LV points to a symbol value, which is
2364 // expected to hold the input value and to be over-written by the
2365 // final value.  SYMTAB points to a symbol table.  Some targets may want
2366 // to know would-be-finalized local symbol values in relaxation.
2367 // Hence we provide this method.  Since this method updates *LV, a
2368 // callee should make a copy of the original local symbol value and
2369 // use the copy instead of modifying an object's local symbols before
2370 // everything is finalized.  The caller should also free up any allocated
2371 // memory in the return value in *LV.
2372 template<int size, bool big_endian>
2373 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2374 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2375     unsigned int r_sym,
2376     const Symbol_value<size>* lv_in,
2377     Symbol_value<size>* lv_out,
2378     const Symbol_table* symtab)
2379 {
2380   // This is just a wrapper of compute_final_local_value_internal.
2381   const bool relocatable = parameters->options().relocatable();
2382   const Output_sections& out_sections(this->output_sections());
2383   const std::vector<Address>& out_offsets(this->section_offsets());
2384   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2385                                                   relocatable, out_sections,
2386                                                   out_offsets, symtab);
2387 }
2388
2389 // Finalize the local symbols.  Here we set the final value in
2390 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2391 // This function is always called from a singleton thread.  The actual
2392 // output of the local symbols will occur in a separate task.
2393
2394 template<int size, bool big_endian>
2395 unsigned int
2396 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2397     unsigned int index,
2398     off_t off,
2399     Symbol_table* symtab)
2400 {
2401   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2402
2403   const unsigned int loccount = this->local_symbol_count_;
2404   this->local_symbol_offset_ = off;
2405
2406   const bool relocatable = parameters->options().relocatable();
2407   const Output_sections& out_sections(this->output_sections());
2408   const std::vector<Address>& out_offsets(this->section_offsets());
2409
2410   for (unsigned int i = 1; i < loccount; ++i)
2411     {
2412       Symbol_value<size>* lv = &this->local_values_[i];
2413
2414       Compute_final_local_value_status cflv_status =
2415         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2416                                                  out_sections, out_offsets,
2417                                                  symtab);
2418       switch (cflv_status)
2419         {
2420         case CFLV_OK:
2421           if (!lv->is_output_symtab_index_set())
2422             {
2423               lv->set_output_symtab_index(index);
2424               ++index;
2425             }
2426           break;
2427         case CFLV_DISCARDED:
2428         case CFLV_ERROR:
2429           // Do nothing.
2430           break;
2431         default:
2432           gold_unreachable();
2433         }
2434     }
2435   return index;
2436 }
2437
2438 // Set the output dynamic symbol table indexes for the local variables.
2439
2440 template<int size, bool big_endian>
2441 unsigned int
2442 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2443     unsigned int index)
2444 {
2445   const unsigned int loccount = this->local_symbol_count_;
2446   for (unsigned int i = 1; i < loccount; ++i)
2447     {
2448       Symbol_value<size>& lv(this->local_values_[i]);
2449       if (lv.needs_output_dynsym_entry())
2450         {
2451           lv.set_output_dynsym_index(index);
2452           ++index;
2453         }
2454     }
2455   return index;
2456 }
2457
2458 // Set the offset where local dynamic symbol information will be stored.
2459 // Returns the count of local symbols contributed to the symbol table by
2460 // this object.
2461
2462 template<int size, bool big_endian>
2463 unsigned int
2464 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2465 {
2466   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2467   this->local_dynsym_offset_ = off;
2468   return this->output_local_dynsym_count_;
2469 }
2470
2471 // If Symbols_data is not NULL get the section flags from here otherwise
2472 // get it from the file.
2473
2474 template<int size, bool big_endian>
2475 uint64_t
2476 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2477 {
2478   Symbols_data* sd = this->get_symbols_data();
2479   if (sd != NULL)
2480     {
2481       const unsigned char* pshdrs = sd->section_headers_data
2482                                     + This::shdr_size * shndx;
2483       typename This::Shdr shdr(pshdrs);
2484       return shdr.get_sh_flags();
2485     }
2486   // If sd is NULL, read the section header from the file.
2487   return this->elf_file_.section_flags(shndx);
2488 }
2489
2490 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2491 // in icf.cc
2492
2493 template<int size, bool big_endian>
2494 uint64_t
2495 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2496 {
2497   Symbols_data* sd = this->get_symbols_data();
2498   gold_assert(sd != NULL);
2499
2500   const unsigned char* pshdrs = sd->section_headers_data
2501                                 + This::shdr_size * shndx;
2502   typename This::Shdr shdr(pshdrs);
2503   return shdr.get_sh_entsize();
2504 }
2505
2506 // Write out the local symbols.
2507
2508 template<int size, bool big_endian>
2509 void
2510 Sized_relobj_file<size, big_endian>::write_local_symbols(
2511     Output_file* of,
2512     const Stringpool* sympool,
2513     const Stringpool* dynpool,
2514     Output_symtab_xindex* symtab_xindex,
2515     Output_symtab_xindex* dynsym_xindex,
2516     off_t symtab_off)
2517 {
2518   const bool strip_all = parameters->options().strip_all();
2519   if (strip_all)
2520     {
2521       if (this->output_local_dynsym_count_ == 0)
2522         return;
2523       this->output_local_symbol_count_ = 0;
2524     }
2525
2526   gold_assert(this->symtab_shndx_ != -1U);
2527   if (this->symtab_shndx_ == 0)
2528     {
2529       // This object has no symbols.  Weird but legal.
2530       return;
2531     }
2532
2533   // Read the symbol table section header.
2534   const unsigned int symtab_shndx = this->symtab_shndx_;
2535   typename This::Shdr symtabshdr(this,
2536                                  this->elf_file_.section_header(symtab_shndx));
2537   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2538   const unsigned int loccount = this->local_symbol_count_;
2539   gold_assert(loccount == symtabshdr.get_sh_info());
2540
2541   // Read the local symbols.
2542   const int sym_size = This::sym_size;
2543   off_t locsize = loccount * sym_size;
2544   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2545                                               locsize, true, false);
2546
2547   // Read the symbol names.
2548   const unsigned int strtab_shndx =
2549     this->adjust_shndx(symtabshdr.get_sh_link());
2550   section_size_type strtab_size;
2551   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2552                                                         &strtab_size,
2553                                                         false);
2554   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2555
2556   // Get views into the output file for the portions of the symbol table
2557   // and the dynamic symbol table that we will be writing.
2558   off_t output_size = this->output_local_symbol_count_ * sym_size;
2559   unsigned char* oview = NULL;
2560   if (output_size > 0)
2561     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2562                                 output_size);
2563
2564   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2565   unsigned char* dyn_oview = NULL;
2566   if (dyn_output_size > 0)
2567     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2568                                     dyn_output_size);
2569
2570   const Output_sections out_sections(this->output_sections());
2571
2572   gold_assert(this->local_values_.size() == loccount);
2573
2574   unsigned char* ov = oview;
2575   unsigned char* dyn_ov = dyn_oview;
2576   psyms += sym_size;
2577   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2578     {
2579       elfcpp::Sym<size, big_endian> isym(psyms);
2580
2581       Symbol_value<size>& lv(this->local_values_[i]);
2582
2583       bool is_ordinary;
2584       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2585                                                      &is_ordinary);
2586       if (is_ordinary)
2587         {
2588           gold_assert(st_shndx < out_sections.size());
2589           if (out_sections[st_shndx] == NULL)
2590             continue;
2591           st_shndx = out_sections[st_shndx]->out_shndx();
2592           if (st_shndx >= elfcpp::SHN_LORESERVE)
2593             {
2594               if (lv.has_output_symtab_entry())
2595                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2596               if (lv.has_output_dynsym_entry())
2597                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2598               st_shndx = elfcpp::SHN_XINDEX;
2599             }
2600         }
2601
2602       // Write the symbol to the output symbol table.
2603       if (lv.has_output_symtab_entry())
2604         {
2605           elfcpp::Sym_write<size, big_endian> osym(ov);
2606
2607           gold_assert(isym.get_st_name() < strtab_size);
2608           const char* name = pnames + isym.get_st_name();
2609           osym.put_st_name(sympool->get_offset(name));
2610           osym.put_st_value(this->local_values_[i].value(this, 0));
2611           osym.put_st_size(isym.get_st_size());
2612           osym.put_st_info(isym.get_st_info());
2613           osym.put_st_other(isym.get_st_other());
2614           osym.put_st_shndx(st_shndx);
2615
2616           ov += sym_size;
2617         }
2618
2619       // Write the symbol to the output dynamic symbol table.
2620       if (lv.has_output_dynsym_entry())
2621         {
2622           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2623           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2624
2625           gold_assert(isym.get_st_name() < strtab_size);
2626           const char* name = pnames + isym.get_st_name();
2627           osym.put_st_name(dynpool->get_offset(name));
2628           osym.put_st_value(this->local_values_[i].value(this, 0));
2629           osym.put_st_size(isym.get_st_size());
2630           osym.put_st_info(isym.get_st_info());
2631           osym.put_st_other(isym.get_st_other());
2632           osym.put_st_shndx(st_shndx);
2633
2634           dyn_ov += sym_size;
2635         }
2636     }
2637
2638
2639   if (output_size > 0)
2640     {
2641       gold_assert(ov - oview == output_size);
2642       of->write_output_view(symtab_off + this->local_symbol_offset_,
2643                             output_size, oview);
2644     }
2645
2646   if (dyn_output_size > 0)
2647     {
2648       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2649       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2650                             dyn_oview);
2651     }
2652 }
2653
2654 // Set *INFO to symbolic information about the offset OFFSET in the
2655 // section SHNDX.  Return true if we found something, false if we
2656 // found nothing.
2657
2658 template<int size, bool big_endian>
2659 bool
2660 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2661     unsigned int shndx,
2662     off_t offset,
2663     Symbol_location_info* info)
2664 {
2665   if (this->symtab_shndx_ == 0)
2666     return false;
2667
2668   section_size_type symbols_size;
2669   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2670                                                         &symbols_size,
2671                                                         false);
2672
2673   unsigned int symbol_names_shndx =
2674     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2675   section_size_type names_size;
2676   const unsigned char* symbol_names_u =
2677     this->section_contents(symbol_names_shndx, &names_size, false);
2678   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2679
2680   const int sym_size = This::sym_size;
2681   const size_t count = symbols_size / sym_size;
2682
2683   const unsigned char* p = symbols;
2684   for (size_t i = 0; i < count; ++i, p += sym_size)
2685     {
2686       elfcpp::Sym<size, big_endian> sym(p);
2687
2688       if (sym.get_st_type() == elfcpp::STT_FILE)
2689         {
2690           if (sym.get_st_name() >= names_size)
2691             info->source_file = "(invalid)";
2692           else
2693             info->source_file = symbol_names + sym.get_st_name();
2694           continue;
2695         }
2696
2697       bool is_ordinary;
2698       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2699                                                      &is_ordinary);
2700       if (is_ordinary
2701           && st_shndx == shndx
2702           && static_cast<off_t>(sym.get_st_value()) <= offset
2703           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2704               > offset))
2705         {
2706           info->enclosing_symbol_type = sym.get_st_type();
2707           if (sym.get_st_name() > names_size)
2708             info->enclosing_symbol_name = "(invalid)";
2709           else
2710             {
2711               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2712               if (parameters->options().do_demangle())
2713                 {
2714                   char* demangled_name = cplus_demangle(
2715                       info->enclosing_symbol_name.c_str(),
2716                       DMGL_ANSI | DMGL_PARAMS);
2717                   if (demangled_name != NULL)
2718                     {
2719                       info->enclosing_symbol_name.assign(demangled_name);
2720                       free(demangled_name);
2721                     }
2722                 }
2723             }
2724           return true;
2725         }
2726     }
2727
2728   return false;
2729 }
2730
2731 // Look for a kept section corresponding to the given discarded section,
2732 // and return its output address.  This is used only for relocations in
2733 // debugging sections.  If we can't find the kept section, return 0.
2734
2735 template<int size, bool big_endian>
2736 typename Sized_relobj_file<size, big_endian>::Address
2737 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2738     unsigned int shndx,
2739     bool* found) const
2740 {
2741   Relobj* kept_object;
2742   unsigned int kept_shndx;
2743   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2744     {
2745       Sized_relobj_file<size, big_endian>* kept_relobj =
2746         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2747       Output_section* os = kept_relobj->output_section(kept_shndx);
2748       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2749       if (os != NULL && offset != invalid_address)
2750         {
2751           *found = true;
2752           return os->address() + offset;
2753         }
2754     }
2755   *found = false;
2756   return 0;
2757 }
2758
2759 // Get symbol counts.
2760
2761 template<int size, bool big_endian>
2762 void
2763 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2764     const Symbol_table*,
2765     size_t* defined,
2766     size_t* used) const
2767 {
2768   *defined = this->defined_count_;
2769   size_t count = 0;
2770   for (typename Symbols::const_iterator p = this->symbols_.begin();
2771        p != this->symbols_.end();
2772        ++p)
2773     if (*p != NULL
2774         && (*p)->source() == Symbol::FROM_OBJECT
2775         && (*p)->object() == this
2776         && (*p)->is_defined())
2777       ++count;
2778   *used = count;
2779 }
2780
2781 // Return a view of the decompressed contents of a section.  Set *PLEN
2782 // to the size.  Set *IS_NEW to true if the contents need to be freed
2783 // by the caller.
2784
2785 template<int size, bool big_endian>
2786 const unsigned char*
2787 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2788     unsigned int shndx,
2789     section_size_type* plen,
2790     bool* is_new)
2791 {
2792   section_size_type buffer_size;
2793   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2794                                                           false);
2795
2796   if (this->compressed_sections_ == NULL)
2797     {
2798       *plen = buffer_size;
2799       *is_new = false;
2800       return buffer;
2801     }
2802
2803   Compressed_section_map::const_iterator p =
2804       this->compressed_sections_->find(shndx);
2805   if (p == this->compressed_sections_->end())
2806     {
2807       *plen = buffer_size;
2808       *is_new = false;
2809       return buffer;
2810     }
2811
2812   section_size_type uncompressed_size = p->second.size;
2813   if (p->second.contents != NULL)
2814     {
2815       *plen = uncompressed_size;
2816       *is_new = false;
2817       return p->second.contents;
2818     }
2819
2820   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2821   if (!decompress_input_section(buffer,
2822                                 buffer_size,
2823                                 uncompressed_data,
2824                                 uncompressed_size))
2825     this->error(_("could not decompress section %s"),
2826                 this->do_section_name(shndx).c_str());
2827
2828   // We could cache the results in p->second.contents and store
2829   // false in *IS_NEW, but build_compressed_section_map() would
2830   // have done so if it had expected it to be profitable.  If
2831   // we reach this point, we expect to need the contents only
2832   // once in this pass.
2833   *plen = uncompressed_size;
2834   *is_new = true;
2835   return uncompressed_data;
2836 }
2837
2838 // Discard any buffers of uncompressed sections.  This is done
2839 // at the end of the Add_symbols task.
2840
2841 template<int size, bool big_endian>
2842 void
2843 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2844 {
2845   if (this->compressed_sections_ == NULL)
2846     return;
2847
2848   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2849        p != this->compressed_sections_->end();
2850        ++p)
2851     {
2852       if (p->second.contents != NULL)
2853         {
2854           delete[] p->second.contents;
2855           p->second.contents = NULL;
2856         }
2857     }
2858 }
2859
2860 // Input_objects methods.
2861
2862 // Add a regular relocatable object to the list.  Return false if this
2863 // object should be ignored.
2864
2865 bool
2866 Input_objects::add_object(Object* obj)
2867 {
2868   // Print the filename if the -t/--trace option is selected.
2869   if (parameters->options().trace())
2870     gold_info("%s", obj->name().c_str());
2871
2872   if (!obj->is_dynamic())
2873     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2874   else
2875     {
2876       // See if this is a duplicate SONAME.
2877       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2878       const char* soname = dynobj->soname();
2879
2880       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2881         this->sonames_.insert(soname);
2882       if (!ins.second)
2883         {
2884           // We have already seen a dynamic object with this soname.
2885           return false;
2886         }
2887
2888       this->dynobj_list_.push_back(dynobj);
2889     }
2890
2891   // Add this object to the cross-referencer if requested.
2892   if (parameters->options().user_set_print_symbol_counts()
2893       || parameters->options().cref())
2894     {
2895       if (this->cref_ == NULL)
2896         this->cref_ = new Cref();
2897       this->cref_->add_object(obj);
2898     }
2899
2900   return true;
2901 }
2902
2903 // For each dynamic object, record whether we've seen all of its
2904 // explicit dependencies.
2905
2906 void
2907 Input_objects::check_dynamic_dependencies() const
2908 {
2909   bool issued_copy_dt_needed_error = false;
2910   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2911        p != this->dynobj_list_.end();
2912        ++p)
2913     {
2914       const Dynobj::Needed& needed((*p)->needed());
2915       bool found_all = true;
2916       Dynobj::Needed::const_iterator pneeded;
2917       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2918         {
2919           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2920             {
2921               found_all = false;
2922               break;
2923             }
2924         }
2925       (*p)->set_has_unknown_needed_entries(!found_all);
2926
2927       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2928       // that gold does not support.  However, they cause no trouble
2929       // unless there is a DT_NEEDED entry that we don't know about;
2930       // warn only in that case.
2931       if (!found_all
2932           && !issued_copy_dt_needed_error
2933           && (parameters->options().copy_dt_needed_entries()
2934               || parameters->options().add_needed()))
2935         {
2936           const char* optname;
2937           if (parameters->options().copy_dt_needed_entries())
2938             optname = "--copy-dt-needed-entries";
2939           else
2940             optname = "--add-needed";
2941           gold_error(_("%s is not supported but is required for %s in %s"),
2942                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2943           issued_copy_dt_needed_error = true;
2944         }
2945     }
2946 }
2947
2948 // Start processing an archive.
2949
2950 void
2951 Input_objects::archive_start(Archive* archive)
2952 {
2953   if (parameters->options().user_set_print_symbol_counts()
2954       || parameters->options().cref())
2955     {
2956       if (this->cref_ == NULL)
2957         this->cref_ = new Cref();
2958       this->cref_->add_archive_start(archive);
2959     }
2960 }
2961
2962 // Stop processing an archive.
2963
2964 void
2965 Input_objects::archive_stop(Archive* archive)
2966 {
2967   if (parameters->options().user_set_print_symbol_counts()
2968       || parameters->options().cref())
2969     this->cref_->add_archive_stop(archive);
2970 }
2971
2972 // Print symbol counts
2973
2974 void
2975 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2976 {
2977   if (parameters->options().user_set_print_symbol_counts()
2978       && this->cref_ != NULL)
2979     this->cref_->print_symbol_counts(symtab);
2980 }
2981
2982 // Print a cross reference table.
2983
2984 void
2985 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2986 {
2987   if (parameters->options().cref() && this->cref_ != NULL)
2988     this->cref_->print_cref(symtab, f);
2989 }
2990
2991 // Relocate_info methods.
2992
2993 // Return a string describing the location of a relocation when file
2994 // and lineno information is not available.  This is only used in
2995 // error messages.
2996
2997 template<int size, bool big_endian>
2998 std::string
2999 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3000 {
3001   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3002   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3003   if (!ret.empty())
3004     return ret;
3005
3006   ret = this->object->name();
3007
3008   Symbol_location_info info;
3009   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3010     {
3011       if (!info.source_file.empty())
3012         {
3013           ret += ":";
3014           ret += info.source_file;
3015         }
3016       ret += ":";
3017       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3018         ret += _("function ");
3019       ret += info.enclosing_symbol_name;
3020       return ret;
3021     }
3022
3023   ret += "(";
3024   ret += this->object->section_name(this->data_shndx);
3025   char buf[100];
3026   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3027   ret += buf;
3028   return ret;
3029 }
3030
3031 } // End namespace gold.
3032
3033 namespace
3034 {
3035
3036 using namespace gold;
3037
3038 // Read an ELF file with the header and return the appropriate
3039 // instance of Object.
3040
3041 template<int size, bool big_endian>
3042 Object*
3043 make_elf_sized_object(const std::string& name, Input_file* input_file,
3044                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3045                       bool* punconfigured)
3046 {
3047   Target* target = select_target(input_file, offset,
3048                                  ehdr.get_e_machine(), size, big_endian,
3049                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3050                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3051   if (target == NULL)
3052     gold_fatal(_("%s: unsupported ELF machine number %d"),
3053                name.c_str(), ehdr.get_e_machine());
3054
3055   if (!parameters->target_valid())
3056     set_parameters_target(target);
3057   else if (target != &parameters->target())
3058     {
3059       if (punconfigured != NULL)
3060         *punconfigured = true;
3061       else
3062         gold_error(_("%s: incompatible target"), name.c_str());
3063       return NULL;
3064     }
3065
3066   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3067                                                    ehdr);
3068 }
3069
3070 } // End anonymous namespace.
3071
3072 namespace gold
3073 {
3074
3075 // Return whether INPUT_FILE is an ELF object.
3076
3077 bool
3078 is_elf_object(Input_file* input_file, off_t offset,
3079               const unsigned char** start, int* read_size)
3080 {
3081   off_t filesize = input_file->file().filesize();
3082   int want = elfcpp::Elf_recognizer::max_header_size;
3083   if (filesize - offset < want)
3084     want = filesize - offset;
3085
3086   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3087                                                        true, false);
3088   *start = p;
3089   *read_size = want;
3090
3091   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3092 }
3093
3094 // Read an ELF file and return the appropriate instance of Object.
3095
3096 Object*
3097 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3098                 const unsigned char* p, section_offset_type bytes,
3099                 bool* punconfigured)
3100 {
3101   if (punconfigured != NULL)
3102     *punconfigured = false;
3103
3104   std::string error;
3105   bool big_endian = false;
3106   int size = 0;
3107   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3108                                                &big_endian, &error))
3109     {
3110       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3111       return NULL;
3112     }
3113
3114   if (size == 32)
3115     {
3116       if (big_endian)
3117         {
3118 #ifdef HAVE_TARGET_32_BIG
3119           elfcpp::Ehdr<32, true> ehdr(p);
3120           return make_elf_sized_object<32, true>(name, input_file,
3121                                                  offset, ehdr, punconfigured);
3122 #else
3123           if (punconfigured != NULL)
3124             *punconfigured = true;
3125           else
3126             gold_error(_("%s: not configured to support "
3127                          "32-bit big-endian object"),
3128                        name.c_str());
3129           return NULL;
3130 #endif
3131         }
3132       else
3133         {
3134 #ifdef HAVE_TARGET_32_LITTLE
3135           elfcpp::Ehdr<32, false> ehdr(p);
3136           return make_elf_sized_object<32, false>(name, input_file,
3137                                                   offset, ehdr, punconfigured);
3138 #else
3139           if (punconfigured != NULL)
3140             *punconfigured = true;
3141           else
3142             gold_error(_("%s: not configured to support "
3143                          "32-bit little-endian object"),
3144                        name.c_str());
3145           return NULL;
3146 #endif
3147         }
3148     }
3149   else if (size == 64)
3150     {
3151       if (big_endian)
3152         {
3153 #ifdef HAVE_TARGET_64_BIG
3154           elfcpp::Ehdr<64, true> ehdr(p);
3155           return make_elf_sized_object<64, true>(name, input_file,
3156                                                  offset, ehdr, punconfigured);
3157 #else
3158           if (punconfigured != NULL)
3159             *punconfigured = true;
3160           else
3161             gold_error(_("%s: not configured to support "
3162                          "64-bit big-endian object"),
3163                        name.c_str());
3164           return NULL;
3165 #endif
3166         }
3167       else
3168         {
3169 #ifdef HAVE_TARGET_64_LITTLE
3170           elfcpp::Ehdr<64, false> ehdr(p);
3171           return make_elf_sized_object<64, false>(name, input_file,
3172                                                   offset, ehdr, punconfigured);
3173 #else
3174           if (punconfigured != NULL)
3175             *punconfigured = true;
3176           else
3177             gold_error(_("%s: not configured to support "
3178                          "64-bit little-endian object"),
3179                        name.c_str());
3180           return NULL;
3181 #endif
3182         }
3183     }
3184   else
3185     gold_unreachable();
3186 }
3187
3188 // Instantiate the templates we need.
3189
3190 #ifdef HAVE_TARGET_32_LITTLE
3191 template
3192 void
3193 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3194                                      Read_symbols_data*);
3195 template
3196 const unsigned char*
3197 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3198                             section_size_type, const unsigned char*) const;
3199 #endif
3200
3201 #ifdef HAVE_TARGET_32_BIG
3202 template
3203 void
3204 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3205                                     Read_symbols_data*);
3206 template
3207 const unsigned char*
3208 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3209                            section_size_type, const unsigned char*) const;
3210 #endif
3211
3212 #ifdef HAVE_TARGET_64_LITTLE
3213 template
3214 void
3215 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3216                                      Read_symbols_data*);
3217 template
3218 const unsigned char*
3219 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3220                             section_size_type, const unsigned char*) const;
3221 #endif
3222
3223 #ifdef HAVE_TARGET_64_BIG
3224 template
3225 void
3226 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3227                                     Read_symbols_data*);
3228 template
3229 const unsigned char*
3230 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3231                            section_size_type, const unsigned char*) const;
3232 #endif
3233
3234 #ifdef HAVE_TARGET_32_LITTLE
3235 template
3236 class Sized_relobj<32, false>;
3237
3238 template
3239 class Sized_relobj_file<32, false>;
3240 #endif
3241
3242 #ifdef HAVE_TARGET_32_BIG
3243 template
3244 class Sized_relobj<32, true>;
3245
3246 template
3247 class Sized_relobj_file<32, true>;
3248 #endif
3249
3250 #ifdef HAVE_TARGET_64_LITTLE
3251 template
3252 class Sized_relobj<64, false>;
3253
3254 template
3255 class Sized_relobj_file<64, false>;
3256 #endif
3257
3258 #ifdef HAVE_TARGET_64_BIG
3259 template
3260 class Sized_relobj<64, true>;
3261
3262 template
3263 class Sized_relobj_file<64, true>;
3264 #endif
3265
3266 #ifdef HAVE_TARGET_32_LITTLE
3267 template
3268 struct Relocate_info<32, false>;
3269 #endif
3270
3271 #ifdef HAVE_TARGET_32_BIG
3272 template
3273 struct Relocate_info<32, true>;
3274 #endif
3275
3276 #ifdef HAVE_TARGET_64_LITTLE
3277 template
3278 struct Relocate_info<64, false>;
3279 #endif
3280
3281 #ifdef HAVE_TARGET_64_BIG
3282 template
3283 struct Relocate_info<64, true>;
3284 #endif
3285
3286 #ifdef HAVE_TARGET_32_LITTLE
3287 template
3288 void
3289 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3290
3291 template
3292 void
3293 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3294                                       const unsigned char*);
3295 #endif
3296
3297 #ifdef HAVE_TARGET_32_BIG
3298 template
3299 void
3300 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3301
3302 template
3303 void
3304 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3305                                      const unsigned char*);
3306 #endif
3307
3308 #ifdef HAVE_TARGET_64_LITTLE
3309 template
3310 void
3311 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3312
3313 template
3314 void
3315 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3316                                       const unsigned char*);
3317 #endif
3318
3319 #ifdef HAVE_TARGET_64_BIG
3320 template
3321 void
3322 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3323
3324 template
3325 void
3326 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3327                                      const unsigned char*);
3328 #endif
3329
3330 } // End namespace gold.