Revert "PowerPC PLT speculative execution barriers"
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84
85   gold_assert(symtab_shndx != 0);
86
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95         {
96           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97           return;
98         }
99     }
100
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111                            const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120                                 + (xindex_shndx
121                                    * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146                     symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153                     symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182                          bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191                           Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199                                                true, true);
200
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208                 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213                                              sd->section_names_size, false,
214                                              false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223                                    Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237                                                              false);
238       if (len == 0)
239         {
240           const char* warning = name + warn_prefix_len;
241           contents = reinterpret_cast<const unsigned char*>(warning);
242           len = strlen(warning);
243         }
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275           typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276           Unordered_map<section_offset_type,
277           typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280                                             output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315                           unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318          new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320          section_header_size);
321   gc_sd->section_names_data =
322          new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324          sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329              new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331             sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342              new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344             sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369           && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371           && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373           && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375           && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377           && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404         this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433         {
434           const Got_offset_list* got_offsets = p->second;
435           got_offsets->for_all_got_offsets(v);
436         }
437     }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_(),
482     output_views_(NULL)
483 {
484   this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header.  This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499   const unsigned int shnum = this->elf_file_.shnum();
500   this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers.  The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section.  Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512   const unsigned int shnum = this->shnum();
513   this->symtab_shndx_ = 0;
514   if (shnum > 0)
515     {
516       // Look through the sections in reverse order, since gas tends
517       // to put the symbol table at the end.
518       const unsigned char* p = pshdrs + shnum * This::shdr_size;
519       unsigned int i = shnum;
520       unsigned int xindex_shndx = 0;
521       unsigned int xindex_link = 0;
522       while (i > 0)
523         {
524           --i;
525           p -= This::shdr_size;
526           typename This::Shdr shdr(p);
527           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528             {
529               this->symtab_shndx_ = i;
530               if (xindex_shndx > 0 && xindex_link == i)
531                 {
532                   Xindex* xindex =
533                     new Xindex(this->elf_file_.large_shndx_offset());
534                   xindex->read_symtab_xindex<size, big_endian>(this,
535                                                                xindex_shndx,
536                                                                pshdrs);
537                   this->set_xindex(xindex);
538                 }
539               break;
540             }
541
542           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543           // one.  This will work if it follows the SHT_SYMTAB
544           // section.
545           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546             {
547               xindex_shndx = i;
548               xindex_link = this->adjust_shndx(shdr.get_sh_link());
549             }
550         }
551     }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561   gold_assert(this->symtab_shndx_ != -1U);
562   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564   return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573     const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576   return ((sh_type == elfcpp::SHT_PROGBITS
577            || sh_type == elfcpp::SHT_X86_64_UNWIND)
578           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586     const unsigned char* pshdrs,
587     const char* name,
588     const char* names,
589     section_size_type names_size,
590     const unsigned char* hdr) const
591 {
592   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593   const unsigned int shnum = this->shnum();
594   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595   size_t sh_name = 0;
596
597   while (1)
598     {
599       if (hdr)
600         {
601           // We found HDR last time we were called, continue looking.
602           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603           sh_name = shdr.get_sh_name();
604         }
605       else
606         {
607           // Look for the next occurrence of NAME in NAMES.
608           // The fact that .shstrtab produced by current GNU tools is
609           // string merged means we shouldn't have both .not.foo and
610           // .foo in .shstrtab, and multiple .foo sections should all
611           // have the same sh_name.  However, this is not guaranteed
612           // by the ELF spec and not all ELF object file producers may
613           // be so clever.
614           size_t len = strlen(name) + 1;
615           const char *p = sh_name ? names + sh_name + len : names;
616           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617                                                    name, len));
618           if (p == NULL)
619             return NULL;
620           sh_name = p - names;
621           hdr = pshdrs;
622           if (sh_name == 0)
623             return hdr;
624         }
625
626       hdr += shdr_size;
627       while (hdr < hdr_end)
628         {
629           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630           if (shdr.get_sh_name() == sh_name)
631             return hdr;
632           hdr += shdr_size;
633         }
634       hdr = NULL;
635       if (sh_name == 0)
636         return hdr;
637     }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646     const unsigned char* pshdrs,
647     const char* names,
648     section_size_type names_size) const
649 {
650   const unsigned char* s = NULL;
651
652   while (1)
653     {
654       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655                                                      names, names_size, s);
656       if (s == NULL)
657         return false;
658
659       typename This::Shdr shdr(s);
660       if (this->check_eh_frame_flags(&shdr))
661         return true;
662     }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task.  This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673   if (*name++ != '_')
674     return false;
675
676 #ifdef ENABLE_THREADS
677   // Decompressing these sections now will help only if we're
678   // multithreaded.
679   if (parameters->options().threads())
680     {
681       // We will need .zdebug_str if this is not an incremental link
682       // (i.e., we are processing string merge sections) or if we need
683       // to build a gdb index.
684       if ((!parameters->incremental() || parameters->options().gdb_index())
685           && strcmp(name, "str") == 0)
686         return true;
687
688       // We will need these other sections when building a gdb index.
689       if (parameters->options().gdb_index()
690           && (strcmp(name, "info") == 0
691               || strcmp(name, "types") == 0
692               || strcmp(name, "pubnames") == 0
693               || strcmp(name, "pubtypes") == 0
694               || strcmp(name, "ranges") == 0
695               || strcmp(name, "abbrev") == 0))
696         return true;
697     }
698 #endif
699
700   // Even when single-threaded, we will need .zdebug_str if this is
701   // not an incremental link and we are building a gdb index.
702   // Otherwise, we would decompress the section twice: once for
703   // string merge processing, and once for building the gdb index.
704   if (!parameters->incremental()
705       && parameters->options().gdb_index()
706       && strcmp(name, "str") == 0)
707     return true;
708
709   return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718     const unsigned char* pshdrs,
719     unsigned int shnum,
720     const char* names,
721     section_size_type names_size,
722     Object* obj,
723     bool decompress_if_needed)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734         {
735           if (shdr.get_sh_name() >= names_size)
736             {
737               obj->error(_("bad section name offset for section %u: %lu"),
738                          i, static_cast<unsigned long>(shdr.get_sh_name()));
739               continue;
740             }
741
742           const char* name = names + shdr.get_sh_name();
743           bool is_compressed = ((shdr.get_sh_flags()
744                                  & elfcpp::SHF_COMPRESSED) != 0);
745           bool is_zcompressed = (!is_compressed
746                                  && is_compressed_debug_section(name));
747
748           if (is_zcompressed || is_compressed)
749             {
750               section_size_type len;
751               const unsigned char* contents =
752                   obj->section_contents(i, &len, false);
753               uint64_t uncompressed_size;
754               if (is_zcompressed)
755                 {
756                   // Skip over the ".zdebug" prefix.
757                   name += 7;
758                   uncompressed_size = get_uncompressed_size(contents, len);
759                 }
760               else
761                 {
762                   // Skip over the ".debug" prefix.
763                   name += 6;
764                   elfcpp::Chdr<size, big_endian> chdr(contents);
765                   uncompressed_size = chdr.get_ch_size();
766                 }
767               Compressed_section_info info;
768               info.size = convert_to_section_size_type(uncompressed_size);
769               info.flag = shdr.get_sh_flags();
770               info.contents = NULL;
771               if (uncompressed_size != -1ULL)
772                 {
773                   unsigned char* uncompressed_data = NULL;
774                   if (decompress_if_needed && need_decompressed_section(name))
775                     {
776                       uncompressed_data = new unsigned char[uncompressed_size];
777                       if (decompress_input_section(contents, len,
778                                                    uncompressed_data,
779                                                    uncompressed_size,
780                                                    size, big_endian,
781                                                    shdr.get_sh_flags()))
782                         info.contents = uncompressed_data;
783                       else
784                         delete[] uncompressed_data;
785                     }
786                   (*uncompressed_map)[i] = info;
787                 }
788             }
789         }
790     }
791   return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800     Read_symbols_data* sd)
801 {
802   const unsigned char* const pshdrs = sd->section_headers->data();
803   const unsigned char* namesu = sd->section_names->data();
804   const char* names = reinterpret_cast<const char*>(namesu);
805
806   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807     this->has_eh_frame_ = true;
808
809   Compressed_section_map* compressed_sections =
810     build_compressed_section_map<size, big_endian>(
811       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812   if (compressed_sections != NULL)
813     this->set_compressed_sections(compressed_sections);
814
815   return (this->has_eh_frame_
816           || (!parameters->options().relocatable()
817               && parameters->options().gdb_index()
818               && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819                   || memmem(names, sd->section_names_size,
820                             "debug_types", 12) != NULL)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829   this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file.  This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839   this->read_section_data(&this->elf_file_, sd);
840
841   const unsigned char* const pshdrs = sd->section_headers->data();
842
843   this->find_symtab(pshdrs);
844
845   bool need_local_symbols = this->do_find_special_sections(sd);
846
847   sd->symbols = NULL;
848   sd->symbols_size = 0;
849   sd->external_symbols_offset = 0;
850   sd->symbol_names = NULL;
851   sd->symbol_names_size = 0;
852
853   if (this->symtab_shndx_ == 0)
854     {
855       // No symbol table.  Weird but legal.
856       return;
857     }
858
859   // Get the symbol table section header.
860   typename This::Shdr symtabshdr(pshdrs
861                                  + this->symtab_shndx_ * This::shdr_size);
862   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864   // If this object has a .eh_frame section, or if building a .gdb_index
865   // section and there is debug info, we need all the symbols.
866   // Otherwise we only need the external symbols.  While it would be
867   // simpler to just always read all the symbols, I've seen object
868   // files with well over 2000 local symbols, which for a 64-bit
869   // object file format is over 5 pages that we don't need to read
870   // now.
871
872   const int sym_size = This::sym_size;
873   const unsigned int loccount = symtabshdr.get_sh_info();
874   this->local_symbol_count_ = loccount;
875   this->local_values_.resize(loccount);
876   section_offset_type locsize = loccount * sym_size;
877   off_t dataoff = symtabshdr.get_sh_offset();
878   section_size_type datasize =
879     convert_to_section_size_type(symtabshdr.get_sh_size());
880   off_t extoff = dataoff + locsize;
881   section_size_type extsize = datasize - locsize;
882
883   off_t readoff = need_local_symbols ? dataoff : extoff;
884   section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886   if (readsize == 0)
887     {
888       // No external symbols.  Also weird but also legal.
889       return;
890     }
891
892   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894   // Read the section header for the symbol names.
895   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896   if (strtab_shndx >= this->shnum())
897     {
898       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899       return;
900     }
901   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903     {
904       this->error(_("symbol table name section has wrong type: %u"),
905                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
906       return;
907     }
908
909   // Read the symbol names.
910   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911                                                strtabshdr.get_sh_size(),
912                                                false, true);
913
914   sd->symbols = fvsymtab;
915   sd->symbols_size = readsize;
916   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917   sd->symbol_names = fvstrtab;
918   sd->symbol_names_size =
919     convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM.  Set *VALUE to its value in
923 // the object file.  Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932                                                               Address* value,
933                                                               bool* is_ordinary)
934 {
935   section_size_type symbols_size;
936   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937                                                         &symbols_size,
938                                                         false);
939
940   const size_t count = symbols_size / This::sym_size;
941   gold_assert(sym < count);
942
943   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944   *value = elfsym.get_st_value();
945
946   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link.  LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header.  If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958     Symbol_table* symtab,
959     Layout* layout,
960     unsigned int index,
961     const char* name,
962     const unsigned char* shdrs,
963     const char* section_names,
964     section_size_type section_names_size,
965     std::vector<bool>* omit)
966 {
967   // Read the section contents.
968   typename This::Shdr shdr(shdrs + index * This::shdr_size);
969   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970                                              shdr.get_sh_size(), true, false);
971   const elfcpp::Elf_Word* pword =
972     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974   // The first word contains flags.  We only care about COMDAT section
975   // groups.  Other section groups are always included in the link
976   // just like ordinary sections.
977   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979   // Look up the group signature, which is the name of a symbol.  ELF
980   // uses a symbol name because some group signatures are long, and
981   // the name is generally already in the symbol table, so it makes
982   // sense to put the long string just once in .strtab rather than in
983   // both .strtab and .shstrtab.
984
985   // Get the appropriate symbol table header (this will normally be
986   // the single SHT_SYMTAB section, but in principle it need not be).
987   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990   // Read the symbol table entry.
991   unsigned int symndx = shdr.get_sh_info();
992   if (symndx >= symshdr.get_sh_size() / This::sym_size)
993     {
994       this->error(_("section group %u info %u out of range"),
995                   index, symndx);
996       return false;
997     }
998   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000                                              false);
1001   elfcpp::Sym<size, big_endian> sym(psym);
1002
1003   // Read the symbol table names.
1004   section_size_type symnamelen;
1005   const unsigned char* psymnamesu;
1006   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007                                       &symnamelen, true);
1008   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010   // Get the section group signature.
1011   if (sym.get_st_name() >= symnamelen)
1012     {
1013       this->error(_("symbol %u name offset %u out of range"),
1014                   symndx, sym.get_st_name());
1015       return false;
1016     }
1017
1018   std::string signature(psymnames + sym.get_st_name());
1019
1020   // It seems that some versions of gas will create a section group
1021   // associated with a section symbol, and then fail to give a name to
1022   // the section symbol.  In such a case, use the name of the section.
1023   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024     {
1025       bool is_ordinary;
1026       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027                                                       sym.get_st_shndx(),
1028                                                       &is_ordinary);
1029       if (!is_ordinary || sym_shndx >= this->shnum())
1030         {
1031           this->error(_("symbol %u invalid section index %u"),
1032                       symndx, sym_shndx);
1033           return false;
1034         }
1035       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036       if (member_shdr.get_sh_name() < section_names_size)
1037         signature = section_names + member_shdr.get_sh_name();
1038     }
1039
1040   // Record this section group in the layout, and see whether we've already
1041   // seen one with the same signature.
1042   bool include_group;
1043   bool is_comdat;
1044   Kept_section* kept_section = NULL;
1045
1046   if ((flags & elfcpp::GRP_COMDAT) == 0)
1047     {
1048       include_group = true;
1049       is_comdat = false;
1050     }
1051   else
1052     {
1053       include_group = layout->find_or_add_kept_section(signature,
1054                                                        this, index, true,
1055                                                        true, &kept_section);
1056       is_comdat = true;
1057     }
1058
1059   if (is_comdat && include_group)
1060     {
1061       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062       if (incremental_inputs != NULL)
1063         incremental_inputs->report_comdat_group(this, signature.c_str());
1064     }
1065
1066   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068   std::vector<unsigned int> shndxes;
1069   bool relocate_group = include_group && parameters->options().relocatable();
1070   if (relocate_group)
1071     shndxes.reserve(count - 1);
1072
1073   for (size_t i = 1; i < count; ++i)
1074     {
1075       elfcpp::Elf_Word shndx =
1076         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078       if (relocate_group)
1079         shndxes.push_back(shndx);
1080
1081       if (shndx >= this->shnum())
1082         {
1083           this->error(_("section %u in section group %u out of range"),
1084                       shndx, index);
1085           continue;
1086         }
1087
1088       // Check for an earlier section number, since we're going to get
1089       // it wrong--we may have already decided to include the section.
1090       if (shndx < index)
1091         this->error(_("invalid section group %u refers to earlier section %u"),
1092                     index, shndx);
1093
1094       // Get the name of the member section.
1095       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096       if (member_shdr.get_sh_name() >= section_names_size)
1097         {
1098           // This is an error, but it will be diagnosed eventually
1099           // in do_layout, so we don't need to do anything here but
1100           // ignore it.
1101           continue;
1102         }
1103       std::string mname(section_names + member_shdr.get_sh_name());
1104
1105       if (include_group)
1106         {
1107           if (is_comdat)
1108             kept_section->add_comdat_section(mname, shndx,
1109                                              member_shdr.get_sh_size());
1110         }
1111       else
1112         {
1113           (*omit)[shndx] = true;
1114
1115           if (is_comdat)
1116             {
1117               Relobj* kept_object = kept_section->object();
1118               if (kept_section->is_comdat())
1119                 {
1120                   // Find the corresponding kept section, and store
1121                   // that info in the discarded section table.
1122                   unsigned int kept_shndx;
1123                   uint64_t kept_size;
1124                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1125                                                         &kept_size))
1126                     {
1127                       // We don't keep a mapping for this section if
1128                       // it has a different size.  The mapping is only
1129                       // used for relocation processing, and we don't
1130                       // want to treat the sections as similar if the
1131                       // sizes are different.  Checking the section
1132                       // size is the approach used by the GNU linker.
1133                       if (kept_size == member_shdr.get_sh_size())
1134                         this->set_kept_comdat_section(shndx, kept_object,
1135                                                       kept_shndx);
1136                     }
1137                 }
1138               else
1139                 {
1140                   // The existing section is a linkonce section.  Add
1141                   // a mapping if there is exactly one section in the
1142                   // group (which is true when COUNT == 2) and if it
1143                   // is the same size.
1144                   if (count == 2
1145                       && (kept_section->linkonce_size()
1146                           == member_shdr.get_sh_size()))
1147                     this->set_kept_comdat_section(shndx, kept_object,
1148                                                   kept_section->shndx());
1149                 }
1150             }
1151         }
1152     }
1153
1154   if (relocate_group)
1155     layout->layout_group(symtab, this, index, name, signature.c_str(),
1156                          shdr, flags, &shndxes);
1157
1158   return include_group;
1159 }
1160
1161 // Whether to include a linkonce section in the link.  NAME is the
1162 // name of the section and SHDR is the section header.
1163
1164 // Linkonce sections are a GNU extension implemented in the original
1165 // GNU linker before section groups were defined.  The semantics are
1166 // that we only include one linkonce section with a given name.  The
1167 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1168 // where T is the type of section and SYMNAME is the name of a symbol.
1169 // In an attempt to make linkonce sections interact well with section
1170 // groups, we try to identify SYMNAME and use it like a section group
1171 // signature.  We want to block section groups with that signature,
1172 // but not other linkonce sections with that signature.  We also use
1173 // the full name of the linkonce section as a normal section group
1174 // signature.
1175
1176 template<int size, bool big_endian>
1177 bool
1178 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1179     Layout* layout,
1180     unsigned int index,
1181     const char* name,
1182     const elfcpp::Shdr<size, big_endian>& shdr)
1183 {
1184   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1185   // In general the symbol name we want will be the string following
1186   // the last '.'.  However, we have to handle the case of
1187   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1188   // some versions of gcc.  So we use a heuristic: if the name starts
1189   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1190   // we look for the last '.'.  We can't always simply skip
1191   // ".gnu.linkonce.X", because we have to deal with cases like
1192   // ".gnu.linkonce.d.rel.ro.local".
1193   const char* const linkonce_t = ".gnu.linkonce.t.";
1194   const char* symname;
1195   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1196     symname = name + strlen(linkonce_t);
1197   else
1198     symname = strrchr(name, '.') + 1;
1199   std::string sig1(symname);
1200   std::string sig2(name);
1201   Kept_section* kept1;
1202   Kept_section* kept2;
1203   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1204                                                    false, &kept1);
1205   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1206                                                    true, &kept2);
1207
1208   if (!include2)
1209     {
1210       // We are not including this section because we already saw the
1211       // name of the section as a signature.  This normally implies
1212       // that the kept section is another linkonce section.  If it is
1213       // the same size, record it as the section which corresponds to
1214       // this one.
1215       if (kept2->object() != NULL
1216           && !kept2->is_comdat()
1217           && kept2->linkonce_size() == sh_size)
1218         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1219     }
1220   else if (!include1)
1221     {
1222       // The section is being discarded on the basis of its symbol
1223       // name.  This means that the corresponding kept section was
1224       // part of a comdat group, and it will be difficult to identify
1225       // the specific section within that group that corresponds to
1226       // this linkonce section.  We'll handle the simple case where
1227       // the group has only one member section.  Otherwise, it's not
1228       // worth the effort.
1229       unsigned int kept_shndx;
1230       uint64_t kept_size;
1231       if (kept1->object() != NULL
1232           && kept1->is_comdat()
1233           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1234           && kept_size == sh_size)
1235         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1236     }
1237   else
1238     {
1239       kept1->set_linkonce_size(sh_size);
1240       kept2->set_linkonce_size(sh_size);
1241     }
1242
1243   return include1 && include2;
1244 }
1245
1246 // Layout an input section.
1247
1248 template<int size, bool big_endian>
1249 inline void
1250 Sized_relobj_file<size, big_endian>::layout_section(
1251     Layout* layout,
1252     unsigned int shndx,
1253     const char* name,
1254     const typename This::Shdr& shdr,
1255     unsigned int reloc_shndx,
1256     unsigned int reloc_type)
1257 {
1258   off_t offset;
1259   Output_section* os = layout->layout(this, shndx, name, shdr,
1260                                           reloc_shndx, reloc_type, &offset);
1261
1262   this->output_sections()[shndx] = os;
1263   if (offset == -1)
1264     this->section_offsets()[shndx] = invalid_address;
1265   else
1266     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1267
1268   // If this section requires special handling, and if there are
1269   // relocs that apply to it, then we must do the special handling
1270   // before we apply the relocs.
1271   if (offset == -1 && reloc_shndx != 0)
1272     this->set_relocs_must_follow_section_writes();
1273 }
1274
1275 // Layout an input .eh_frame section.
1276
1277 template<int size, bool big_endian>
1278 void
1279 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1280     Layout* layout,
1281     const unsigned char* symbols_data,
1282     section_size_type symbols_size,
1283     const unsigned char* symbol_names_data,
1284     section_size_type symbol_names_size,
1285     unsigned int shndx,
1286     const typename This::Shdr& shdr,
1287     unsigned int reloc_shndx,
1288     unsigned int reloc_type)
1289 {
1290   gold_assert(this->has_eh_frame_);
1291
1292   off_t offset;
1293   Output_section* os = layout->layout_eh_frame(this,
1294                                                symbols_data,
1295                                                symbols_size,
1296                                                symbol_names_data,
1297                                                symbol_names_size,
1298                                                shndx,
1299                                                shdr,
1300                                                reloc_shndx,
1301                                                reloc_type,
1302                                                &offset);
1303   this->output_sections()[shndx] = os;
1304   if (os == NULL || offset == -1)
1305     this->section_offsets()[shndx] = invalid_address;
1306   else
1307     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1308
1309   // If this section requires special handling, and if there are
1310   // relocs that aply to it, then we must do the special handling
1311   // before we apply the relocs.
1312   if (os != NULL && offset == -1 && reloc_shndx != 0)
1313     this->set_relocs_must_follow_section_writes();
1314 }
1315
1316 // Lay out the input sections.  We walk through the sections and check
1317 // whether they should be included in the link.  If they should, we
1318 // pass them to the Layout object, which will return an output section
1319 // and an offset.
1320 // This function is called twice sometimes, two passes, when mapping
1321 // of input sections to output sections must be delayed.
1322 // This is true for the following :
1323 // * Garbage collection (--gc-sections): Some input sections will be
1324 // discarded and hence the assignment must wait until the second pass.
1325 // In the first pass,  it is for setting up some sections as roots to
1326 // a work-list for --gc-sections and to do comdat processing.
1327 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1328 // will be folded and hence the assignment must wait.
1329 // * Using plugins to map some sections to unique segments: Mapping
1330 // some sections to unique segments requires mapping them to unique
1331 // output sections too.  This can be done via plugins now and this
1332 // information is not available in the first pass.
1333
1334 template<int size, bool big_endian>
1335 void
1336 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1337                                                Layout* layout,
1338                                                Read_symbols_data* sd)
1339 {
1340   const unsigned int shnum = this->shnum();
1341
1342   /* Should this function be called twice?  */
1343   bool is_two_pass = (parameters->options().gc_sections()
1344                       || parameters->options().icf_enabled()
1345                       || layout->is_unique_segment_for_sections_specified());
1346
1347   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1348      a two-pass approach is not needed.  */
1349   bool is_pass_one = false;
1350   bool is_pass_two = false;
1351
1352   Symbols_data* gc_sd = NULL;
1353
1354   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1355      should happen.  In the first pass, the data in sd is saved to be used
1356      later in the second pass.  */
1357   if (is_two_pass)
1358     {
1359       gc_sd = this->get_symbols_data();
1360       if (gc_sd == NULL)
1361         {
1362           gold_assert(sd != NULL);
1363           is_pass_one = true;
1364         }
1365       else
1366         {
1367           if (parameters->options().gc_sections())
1368             gold_assert(symtab->gc()->is_worklist_ready());
1369           if (parameters->options().icf_enabled())
1370             gold_assert(symtab->icf()->is_icf_ready()); 
1371           is_pass_two = true;
1372         }
1373     }
1374     
1375   if (shnum == 0)
1376     return;
1377
1378   if (is_pass_one)
1379     {
1380       // During garbage collection save the symbols data to use it when
1381       // re-entering this function.
1382       gc_sd = new Symbols_data;
1383       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1384       this->set_symbols_data(gc_sd);
1385     }
1386
1387   const unsigned char* section_headers_data = NULL;
1388   section_size_type section_names_size;
1389   const unsigned char* symbols_data = NULL;
1390   section_size_type symbols_size;
1391   const unsigned char* symbol_names_data = NULL;
1392   section_size_type symbol_names_size;
1393
1394   if (is_two_pass)
1395     {
1396       section_headers_data = gc_sd->section_headers_data;
1397       section_names_size = gc_sd->section_names_size;
1398       symbols_data = gc_sd->symbols_data;
1399       symbols_size = gc_sd->symbols_size;
1400       symbol_names_data = gc_sd->symbol_names_data;
1401       symbol_names_size = gc_sd->symbol_names_size;
1402     }
1403   else
1404     {
1405       section_headers_data = sd->section_headers->data();
1406       section_names_size = sd->section_names_size;
1407       if (sd->symbols != NULL)
1408         symbols_data = sd->symbols->data();
1409       symbols_size = sd->symbols_size;
1410       if (sd->symbol_names != NULL)
1411         symbol_names_data = sd->symbol_names->data();
1412       symbol_names_size = sd->symbol_names_size;
1413     }
1414
1415   // Get the section headers.
1416   const unsigned char* shdrs = section_headers_data;
1417   const unsigned char* pshdrs;
1418
1419   // Get the section names.
1420   const unsigned char* pnamesu = (is_two_pass
1421                                   ? gc_sd->section_names_data
1422                                   : sd->section_names->data());
1423
1424   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1425
1426   // If any input files have been claimed by plugins, we need to defer
1427   // actual layout until the replacement files have arrived.
1428   const bool should_defer_layout =
1429       (parameters->options().has_plugins()
1430        && parameters->options().plugins()->should_defer_layout());
1431   unsigned int num_sections_to_defer = 0;
1432
1433   // For each section, record the index of the reloc section if any.
1434   // Use 0 to mean that there is no reloc section, -1U to mean that
1435   // there is more than one.
1436   std::vector<unsigned int> reloc_shndx(shnum, 0);
1437   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1438   // Skip the first, dummy, section.
1439   pshdrs = shdrs + This::shdr_size;
1440   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1441     {
1442       typename This::Shdr shdr(pshdrs);
1443
1444       // Count the number of sections whose layout will be deferred.
1445       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1446         ++num_sections_to_defer;
1447
1448       unsigned int sh_type = shdr.get_sh_type();
1449       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1450         {
1451           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1452           if (target_shndx == 0 || target_shndx >= shnum)
1453             {
1454               this->error(_("relocation section %u has bad info %u"),
1455                           i, target_shndx);
1456               continue;
1457             }
1458
1459           if (reloc_shndx[target_shndx] != 0)
1460             reloc_shndx[target_shndx] = -1U;
1461           else
1462             {
1463               reloc_shndx[target_shndx] = i;
1464               reloc_type[target_shndx] = sh_type;
1465             }
1466         }
1467     }
1468
1469   Output_sections& out_sections(this->output_sections());
1470   std::vector<Address>& out_section_offsets(this->section_offsets());
1471
1472   if (!is_pass_two)
1473     {
1474       out_sections.resize(shnum);
1475       out_section_offsets.resize(shnum);
1476     }
1477
1478   // If we are only linking for symbols, then there is nothing else to
1479   // do here.
1480   if (this->input_file()->just_symbols())
1481     {
1482       if (!is_pass_two)
1483         {
1484           delete sd->section_headers;
1485           sd->section_headers = NULL;
1486           delete sd->section_names;
1487           sd->section_names = NULL;
1488         }
1489       return;
1490     }
1491
1492   if (num_sections_to_defer > 0)
1493     {
1494       parameters->options().plugins()->add_deferred_layout_object(this);
1495       this->deferred_layout_.reserve(num_sections_to_defer);
1496       this->is_deferred_layout_ = true;
1497     }
1498
1499   // Whether we've seen a .note.GNU-stack section.
1500   bool seen_gnu_stack = false;
1501   // The flags of a .note.GNU-stack section.
1502   uint64_t gnu_stack_flags = 0;
1503
1504   // Keep track of which sections to omit.
1505   std::vector<bool> omit(shnum, false);
1506
1507   // Keep track of reloc sections when emitting relocations.
1508   const bool relocatable = parameters->options().relocatable();
1509   const bool emit_relocs = (relocatable
1510                             || parameters->options().emit_relocs());
1511   std::vector<unsigned int> reloc_sections;
1512
1513   // Keep track of .eh_frame sections.
1514   std::vector<unsigned int> eh_frame_sections;
1515
1516   // Keep track of .debug_info and .debug_types sections.
1517   std::vector<unsigned int> debug_info_sections;
1518   std::vector<unsigned int> debug_types_sections;
1519
1520   // Skip the first, dummy, section.
1521   pshdrs = shdrs + This::shdr_size;
1522   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1523     {
1524       typename This::Shdr shdr(pshdrs);
1525
1526       if (shdr.get_sh_name() >= section_names_size)
1527         {
1528           this->error(_("bad section name offset for section %u: %lu"),
1529                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1530           return;
1531         }
1532
1533       const char* name = pnames + shdr.get_sh_name();
1534
1535       if (!is_pass_two)
1536         {
1537           if (this->handle_gnu_warning_section(name, i, symtab))
1538             {
1539               if (!relocatable && !parameters->options().shared())
1540                 omit[i] = true;
1541             }
1542
1543           // The .note.GNU-stack section is special.  It gives the
1544           // protection flags that this object file requires for the stack
1545           // in memory.
1546           if (strcmp(name, ".note.GNU-stack") == 0)
1547             {
1548               seen_gnu_stack = true;
1549               gnu_stack_flags |= shdr.get_sh_flags();
1550               omit[i] = true;
1551             }
1552
1553           // The .note.GNU-split-stack section is also special.  It
1554           // indicates that the object was compiled with
1555           // -fsplit-stack.
1556           if (this->handle_split_stack_section(name))
1557             {
1558               if (!relocatable && !parameters->options().shared())
1559                 omit[i] = true;
1560             }
1561
1562           // Skip attributes section.
1563           if (parameters->target().is_attributes_section(name))
1564             {
1565               omit[i] = true;
1566             }
1567
1568           bool discard = omit[i];
1569           if (!discard)
1570             {
1571               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1572                 {
1573                   if (!this->include_section_group(symtab, layout, i, name,
1574                                                    shdrs, pnames,
1575                                                    section_names_size,
1576                                                    &omit))
1577                     discard = true;
1578                 }
1579               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1580                        && Layout::is_linkonce(name))
1581                 {
1582                   if (!this->include_linkonce_section(layout, i, name, shdr))
1583                     discard = true;
1584                 }
1585             }
1586
1587           // Add the section to the incremental inputs layout.
1588           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1589           if (incremental_inputs != NULL
1590               && !discard
1591               && can_incremental_update(shdr.get_sh_type()))
1592             {
1593               off_t sh_size = shdr.get_sh_size();
1594               section_size_type uncompressed_size;
1595               if (this->section_is_compressed(i, &uncompressed_size))
1596                 sh_size = uncompressed_size;
1597               incremental_inputs->report_input_section(this, i, name, sh_size);
1598             }
1599
1600           if (discard)
1601             {
1602               // Do not include this section in the link.
1603               out_sections[i] = NULL;
1604               out_section_offsets[i] = invalid_address;
1605               continue;
1606             }
1607         }
1608
1609       if (is_pass_one && parameters->options().gc_sections())
1610         {
1611           if (this->is_section_name_included(name)
1612               || layout->keep_input_section (this, name)
1613               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1614               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1615             {
1616               symtab->gc()->worklist().push_back(Section_id(this, i));
1617             }
1618           // If the section name XXX can be represented as a C identifier
1619           // it cannot be discarded if there are references to
1620           // __start_XXX and __stop_XXX symbols.  These need to be
1621           // specially handled.
1622           if (is_cident(name))
1623             {
1624               symtab->gc()->add_cident_section(name, Section_id(this, i));
1625             }
1626         }
1627
1628       // When doing a relocatable link we are going to copy input
1629       // reloc sections into the output.  We only want to copy the
1630       // ones associated with sections which are not being discarded.
1631       // However, we don't know that yet for all sections.  So save
1632       // reloc sections and process them later. Garbage collection is
1633       // not triggered when relocatable code is desired.
1634       if (emit_relocs
1635           && (shdr.get_sh_type() == elfcpp::SHT_REL
1636               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1637         {
1638           reloc_sections.push_back(i);
1639           continue;
1640         }
1641
1642       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1643         continue;
1644
1645       // The .eh_frame section is special.  It holds exception frame
1646       // information that we need to read in order to generate the
1647       // exception frame header.  We process these after all the other
1648       // sections so that the exception frame reader can reliably
1649       // determine which sections are being discarded, and discard the
1650       // corresponding information.
1651       if (!relocatable
1652           && strcmp(name, ".eh_frame") == 0
1653           && this->check_eh_frame_flags(&shdr))
1654         {
1655           if (is_pass_one)
1656             {
1657               if (this->is_deferred_layout())
1658                 out_sections[i] = reinterpret_cast<Output_section*>(2);
1659               else
1660                 out_sections[i] = reinterpret_cast<Output_section*>(1);
1661               out_section_offsets[i] = invalid_address;
1662             }
1663           else if (this->is_deferred_layout())
1664             this->deferred_layout_.push_back(Deferred_layout(i, name,
1665                                                              pshdrs,
1666                                                              reloc_shndx[i],
1667                                                              reloc_type[i]));
1668           else
1669             eh_frame_sections.push_back(i);
1670           continue;
1671         }
1672
1673       if (is_pass_two && parameters->options().gc_sections())
1674         {
1675           // This is executed during the second pass of garbage
1676           // collection. do_layout has been called before and some
1677           // sections have been already discarded. Simply ignore
1678           // such sections this time around.
1679           if (out_sections[i] == NULL)
1680             {
1681               gold_assert(out_section_offsets[i] == invalid_address);
1682               continue;
1683             }
1684           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1685               && symtab->gc()->is_section_garbage(this, i))
1686               {
1687                 if (parameters->options().print_gc_sections())
1688                   gold_info(_("%s: removing unused section from '%s'"
1689                               " in file '%s'"),
1690                             program_name, this->section_name(i).c_str(),
1691                             this->name().c_str());
1692                 out_sections[i] = NULL;
1693                 out_section_offsets[i] = invalid_address;
1694                 continue;
1695               }
1696         }
1697
1698       if (is_pass_two && parameters->options().icf_enabled())
1699         {
1700           if (out_sections[i] == NULL)
1701             {
1702               gold_assert(out_section_offsets[i] == invalid_address);
1703               continue;
1704             }
1705           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1706               && symtab->icf()->is_section_folded(this, i))
1707               {
1708                 if (parameters->options().print_icf_sections())
1709                   {
1710                     Section_id folded =
1711                                 symtab->icf()->get_folded_section(this, i);
1712                     Relobj* folded_obj =
1713                                 reinterpret_cast<Relobj*>(folded.first);
1714                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1715                                 "into '%s' in file '%s'"),
1716                               program_name, this->section_name(i).c_str(),
1717                               this->name().c_str(),
1718                               folded_obj->section_name(folded.second).c_str(),
1719                               folded_obj->name().c_str());
1720                   }
1721                 out_sections[i] = NULL;
1722                 out_section_offsets[i] = invalid_address;
1723                 continue;
1724               }
1725         }
1726
1727       // Defer layout here if input files are claimed by plugins.  When gc
1728       // is turned on this function is called twice; we only want to do this
1729       // on the first pass.
1730       if (!is_pass_two
1731           && this->is_deferred_layout()
1732           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1733         {
1734           this->deferred_layout_.push_back(Deferred_layout(i, name,
1735                                                            pshdrs,
1736                                                            reloc_shndx[i],
1737                                                            reloc_type[i]));
1738           // Put dummy values here; real values will be supplied by
1739           // do_layout_deferred_sections.
1740           out_sections[i] = reinterpret_cast<Output_section*>(2);
1741           out_section_offsets[i] = invalid_address;
1742           continue;
1743         }
1744
1745       // During gc_pass_two if a section that was previously deferred is
1746       // found, do not layout the section as layout_deferred_sections will
1747       // do it later from gold.cc.
1748       if (is_pass_two
1749           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1750         continue;
1751
1752       if (is_pass_one)
1753         {
1754           // This is during garbage collection. The out_sections are
1755           // assigned in the second call to this function.
1756           out_sections[i] = reinterpret_cast<Output_section*>(1);
1757           out_section_offsets[i] = invalid_address;
1758         }
1759       else
1760         {
1761           // When garbage collection is switched on the actual layout
1762           // only happens in the second call.
1763           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1764                                reloc_type[i]);
1765
1766           // When generating a .gdb_index section, we do additional
1767           // processing of .debug_info and .debug_types sections after all
1768           // the other sections for the same reason as above.
1769           if (!relocatable
1770               && parameters->options().gdb_index()
1771               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1772             {
1773               if (strcmp(name, ".debug_info") == 0
1774                   || strcmp(name, ".zdebug_info") == 0)
1775                 debug_info_sections.push_back(i);
1776               else if (strcmp(name, ".debug_types") == 0
1777                        || strcmp(name, ".zdebug_types") == 0)
1778                 debug_types_sections.push_back(i);
1779             }
1780         }
1781     }
1782
1783   if (!is_pass_two)
1784     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1785
1786   // Handle the .eh_frame sections after the other sections.
1787   gold_assert(!is_pass_one || eh_frame_sections.empty());
1788   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1789        p != eh_frame_sections.end();
1790        ++p)
1791     {
1792       unsigned int i = *p;
1793       const unsigned char* pshdr;
1794       pshdr = section_headers_data + i * This::shdr_size;
1795       typename This::Shdr shdr(pshdr);
1796
1797       this->layout_eh_frame_section(layout,
1798                                     symbols_data,
1799                                     symbols_size,
1800                                     symbol_names_data,
1801                                     symbol_names_size,
1802                                     i,
1803                                     shdr,
1804                                     reloc_shndx[i],
1805                                     reloc_type[i]);
1806     }
1807
1808   // When doing a relocatable link handle the reloc sections at the
1809   // end.  Garbage collection  and Identical Code Folding is not
1810   // turned on for relocatable code.
1811   if (emit_relocs)
1812     this->size_relocatable_relocs();
1813
1814   gold_assert(!is_two_pass || reloc_sections.empty());
1815
1816   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1817        p != reloc_sections.end();
1818        ++p)
1819     {
1820       unsigned int i = *p;
1821       const unsigned char* pshdr;
1822       pshdr = section_headers_data + i * This::shdr_size;
1823       typename This::Shdr shdr(pshdr);
1824
1825       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1826       if (data_shndx >= shnum)
1827         {
1828           // We already warned about this above.
1829           continue;
1830         }
1831
1832       Output_section* data_section = out_sections[data_shndx];
1833       if (data_section == reinterpret_cast<Output_section*>(2))
1834         {
1835           if (is_pass_two)
1836             continue;
1837           // The layout for the data section was deferred, so we need
1838           // to defer the relocation section, too.
1839           const char* name = pnames + shdr.get_sh_name();
1840           this->deferred_layout_relocs_.push_back(
1841               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1842           out_sections[i] = reinterpret_cast<Output_section*>(2);
1843           out_section_offsets[i] = invalid_address;
1844           continue;
1845         }
1846       if (data_section == NULL)
1847         {
1848           out_sections[i] = NULL;
1849           out_section_offsets[i] = invalid_address;
1850           continue;
1851         }
1852
1853       Relocatable_relocs* rr = new Relocatable_relocs();
1854       this->set_relocatable_relocs(i, rr);
1855
1856       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1857                                                 rr);
1858       out_sections[i] = os;
1859       out_section_offsets[i] = invalid_address;
1860     }
1861
1862   // When building a .gdb_index section, scan the .debug_info and
1863   // .debug_types sections.
1864   gold_assert(!is_pass_one
1865               || (debug_info_sections.empty() && debug_types_sections.empty()));
1866   for (std::vector<unsigned int>::const_iterator p
1867            = debug_info_sections.begin();
1868        p != debug_info_sections.end();
1869        ++p)
1870     {
1871       unsigned int i = *p;
1872       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1873                                i, reloc_shndx[i], reloc_type[i]);
1874     }
1875   for (std::vector<unsigned int>::const_iterator p
1876            = debug_types_sections.begin();
1877        p != debug_types_sections.end();
1878        ++p)
1879     {
1880       unsigned int i = *p;
1881       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1882                                i, reloc_shndx[i], reloc_type[i]);
1883     }
1884
1885   if (is_pass_two)
1886     {
1887       delete[] gc_sd->section_headers_data;
1888       delete[] gc_sd->section_names_data;
1889       delete[] gc_sd->symbols_data;
1890       delete[] gc_sd->symbol_names_data;
1891       this->set_symbols_data(NULL);
1892     }
1893   else
1894     {
1895       delete sd->section_headers;
1896       sd->section_headers = NULL;
1897       delete sd->section_names;
1898       sd->section_names = NULL;
1899     }
1900 }
1901
1902 // Layout sections whose layout was deferred while waiting for
1903 // input files from a plugin.
1904
1905 template<int size, bool big_endian>
1906 void
1907 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1908 {
1909   typename std::vector<Deferred_layout>::iterator deferred;
1910
1911   for (deferred = this->deferred_layout_.begin();
1912        deferred != this->deferred_layout_.end();
1913        ++deferred)
1914     {
1915       typename This::Shdr shdr(deferred->shdr_data_);
1916
1917       if (!parameters->options().relocatable()
1918           && deferred->name_ == ".eh_frame"
1919           && this->check_eh_frame_flags(&shdr))
1920         {
1921           // Checking is_section_included is not reliable for
1922           // .eh_frame sections, because they do not have an output
1923           // section.  This is not a problem normally because we call
1924           // layout_eh_frame_section unconditionally, but when
1925           // deferring sections that is not true.  We don't want to
1926           // keep all .eh_frame sections because that will cause us to
1927           // keep all sections that they refer to, which is the wrong
1928           // way around.  Instead, the eh_frame code will discard
1929           // .eh_frame sections that refer to discarded sections.
1930
1931           // Reading the symbols again here may be slow.
1932           Read_symbols_data sd;
1933           this->base_read_symbols(&sd);
1934           this->layout_eh_frame_section(layout,
1935                                         sd.symbols->data(),
1936                                         sd.symbols_size,
1937                                         sd.symbol_names->data(),
1938                                         sd.symbol_names_size,
1939                                         deferred->shndx_,
1940                                         shdr,
1941                                         deferred->reloc_shndx_,
1942                                         deferred->reloc_type_);
1943           continue;
1944         }
1945
1946       // If the section is not included, it is because the garbage collector
1947       // decided it is not needed.  Avoid reverting that decision.
1948       if (!this->is_section_included(deferred->shndx_))
1949         continue;
1950
1951       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1952                            shdr, deferred->reloc_shndx_,
1953                            deferred->reloc_type_);
1954     }
1955
1956   this->deferred_layout_.clear();
1957
1958   // Now handle the deferred relocation sections.
1959
1960   Output_sections& out_sections(this->output_sections());
1961   std::vector<Address>& out_section_offsets(this->section_offsets());
1962
1963   for (deferred = this->deferred_layout_relocs_.begin();
1964        deferred != this->deferred_layout_relocs_.end();
1965        ++deferred)
1966     {
1967       unsigned int shndx = deferred->shndx_;
1968       typename This::Shdr shdr(deferred->shdr_data_);
1969       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1970
1971       Output_section* data_section = out_sections[data_shndx];
1972       if (data_section == NULL)
1973         {
1974           out_sections[shndx] = NULL;
1975           out_section_offsets[shndx] = invalid_address;
1976           continue;
1977         }
1978
1979       Relocatable_relocs* rr = new Relocatable_relocs();
1980       this->set_relocatable_relocs(shndx, rr);
1981
1982       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1983                                                 data_section, rr);
1984       out_sections[shndx] = os;
1985       out_section_offsets[shndx] = invalid_address;
1986     }
1987 }
1988
1989 // Add the symbols to the symbol table.
1990
1991 template<int size, bool big_endian>
1992 void
1993 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1994                                                     Read_symbols_data* sd,
1995                                                     Layout*)
1996 {
1997   if (sd->symbols == NULL)
1998     {
1999       gold_assert(sd->symbol_names == NULL);
2000       return;
2001     }
2002
2003   const int sym_size = This::sym_size;
2004   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2005                      / sym_size);
2006   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2007     {
2008       this->error(_("size of symbols is not multiple of symbol size"));
2009       return;
2010     }
2011
2012   this->symbols_.resize(symcount);
2013
2014   const char* sym_names =
2015     reinterpret_cast<const char*>(sd->symbol_names->data());
2016   symtab->add_from_relobj(this,
2017                           sd->symbols->data() + sd->external_symbols_offset,
2018                           symcount, this->local_symbol_count_,
2019                           sym_names, sd->symbol_names_size,
2020                           &this->symbols_,
2021                           &this->defined_count_);
2022
2023   delete sd->symbols;
2024   sd->symbols = NULL;
2025   delete sd->symbol_names;
2026   sd->symbol_names = NULL;
2027 }
2028
2029 // Find out if this object, that is a member of a lib group, should be included
2030 // in the link. We check every symbol defined by this object. If the symbol
2031 // table has a strong undefined reference to that symbol, we have to include
2032 // the object.
2033
2034 template<int size, bool big_endian>
2035 Archive::Should_include
2036 Sized_relobj_file<size, big_endian>::do_should_include_member(
2037     Symbol_table* symtab,
2038     Layout* layout,
2039     Read_symbols_data* sd,
2040     std::string* why)
2041 {
2042   char* tmpbuf = NULL;
2043   size_t tmpbuflen = 0;
2044   const char* sym_names =
2045       reinterpret_cast<const char*>(sd->symbol_names->data());
2046   const unsigned char* syms =
2047       sd->symbols->data() + sd->external_symbols_offset;
2048   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2049   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2050                          / sym_size);
2051
2052   const unsigned char* p = syms;
2053
2054   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2055     {
2056       elfcpp::Sym<size, big_endian> sym(p);
2057       unsigned int st_shndx = sym.get_st_shndx();
2058       if (st_shndx == elfcpp::SHN_UNDEF)
2059         continue;
2060
2061       unsigned int st_name = sym.get_st_name();
2062       const char* name = sym_names + st_name;
2063       Symbol* symbol;
2064       Archive::Should_include t = Archive::should_include_member(symtab,
2065                                                                  layout,
2066                                                                  name,
2067                                                                  &symbol, why,
2068                                                                  &tmpbuf,
2069                                                                  &tmpbuflen);
2070       if (t == Archive::SHOULD_INCLUDE_YES)
2071         {
2072           if (tmpbuf != NULL)
2073             free(tmpbuf);
2074           return t;
2075         }
2076     }
2077   if (tmpbuf != NULL)
2078     free(tmpbuf);
2079   return Archive::SHOULD_INCLUDE_UNKNOWN;
2080 }
2081
2082 // Iterate over global defined symbols, calling a visitor class V for each.
2083
2084 template<int size, bool big_endian>
2085 void
2086 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2087     Read_symbols_data* sd,
2088     Library_base::Symbol_visitor_base* v)
2089 {
2090   const char* sym_names =
2091       reinterpret_cast<const char*>(sd->symbol_names->data());
2092   const unsigned char* syms =
2093       sd->symbols->data() + sd->external_symbols_offset;
2094   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2095   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2096                      / sym_size);
2097   const unsigned char* p = syms;
2098
2099   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2100     {
2101       elfcpp::Sym<size, big_endian> sym(p);
2102       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2103         v->visit(sym_names + sym.get_st_name());
2104     }
2105 }
2106
2107 // Return whether the local symbol SYMNDX has a PLT offset.
2108
2109 template<int size, bool big_endian>
2110 bool
2111 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2112     unsigned int symndx) const
2113 {
2114   typename Local_plt_offsets::const_iterator p =
2115     this->local_plt_offsets_.find(symndx);
2116   return p != this->local_plt_offsets_.end();
2117 }
2118
2119 // Get the PLT offset of a local symbol.
2120
2121 template<int size, bool big_endian>
2122 unsigned int
2123 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2124     unsigned int symndx) const
2125 {
2126   typename Local_plt_offsets::const_iterator p =
2127     this->local_plt_offsets_.find(symndx);
2128   gold_assert(p != this->local_plt_offsets_.end());
2129   return p->second;
2130 }
2131
2132 // Set the PLT offset of a local symbol.
2133
2134 template<int size, bool big_endian>
2135 void
2136 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2137     unsigned int symndx, unsigned int plt_offset)
2138 {
2139   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2140     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2141   gold_assert(ins.second);
2142 }
2143
2144 // First pass over the local symbols.  Here we add their names to
2145 // *POOL and *DYNPOOL, and we store the symbol value in
2146 // THIS->LOCAL_VALUES_.  This function is always called from a
2147 // singleton thread.  This is followed by a call to
2148 // finalize_local_symbols.
2149
2150 template<int size, bool big_endian>
2151 void
2152 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2153                                                             Stringpool* dynpool)
2154 {
2155   gold_assert(this->symtab_shndx_ != -1U);
2156   if (this->symtab_shndx_ == 0)
2157     {
2158       // This object has no symbols.  Weird but legal.
2159       return;
2160     }
2161
2162   // Read the symbol table section header.
2163   const unsigned int symtab_shndx = this->symtab_shndx_;
2164   typename This::Shdr symtabshdr(this,
2165                                  this->elf_file_.section_header(symtab_shndx));
2166   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2167
2168   // Read the local symbols.
2169   const int sym_size = This::sym_size;
2170   const unsigned int loccount = this->local_symbol_count_;
2171   gold_assert(loccount == symtabshdr.get_sh_info());
2172   off_t locsize = loccount * sym_size;
2173   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2174                                               locsize, true, true);
2175
2176   // Read the symbol names.
2177   const unsigned int strtab_shndx =
2178     this->adjust_shndx(symtabshdr.get_sh_link());
2179   section_size_type strtab_size;
2180   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2181                                                         &strtab_size,
2182                                                         true);
2183   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2184
2185   // Loop over the local symbols.
2186
2187   const Output_sections& out_sections(this->output_sections());
2188   std::vector<Address>& out_section_offsets(this->section_offsets());
2189   unsigned int shnum = this->shnum();
2190   unsigned int count = 0;
2191   unsigned int dyncount = 0;
2192   // Skip the first, dummy, symbol.
2193   psyms += sym_size;
2194   bool strip_all = parameters->options().strip_all();
2195   bool discard_all = parameters->options().discard_all();
2196   bool discard_locals = parameters->options().discard_locals();
2197   bool discard_sec_merge = parameters->options().discard_sec_merge();
2198   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2199     {
2200       elfcpp::Sym<size, big_endian> sym(psyms);
2201
2202       Symbol_value<size>& lv(this->local_values_[i]);
2203
2204       bool is_ordinary;
2205       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2206                                                   &is_ordinary);
2207       lv.set_input_shndx(shndx, is_ordinary);
2208
2209       if (sym.get_st_type() == elfcpp::STT_SECTION)
2210         lv.set_is_section_symbol();
2211       else if (sym.get_st_type() == elfcpp::STT_TLS)
2212         lv.set_is_tls_symbol();
2213       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2214         lv.set_is_ifunc_symbol();
2215
2216       // Save the input symbol value for use in do_finalize_local_symbols().
2217       lv.set_input_value(sym.get_st_value());
2218
2219       // Decide whether this symbol should go into the output file.
2220
2221       if (is_ordinary
2222           && shndx < shnum
2223           && (out_sections[shndx] == NULL
2224               || (out_sections[shndx]->order() == ORDER_EHFRAME
2225                   && out_section_offsets[shndx] == invalid_address)))
2226         {
2227           // This is either a discarded section or an optimized .eh_frame
2228           // section.
2229           lv.set_no_output_symtab_entry();
2230           gold_assert(!lv.needs_output_dynsym_entry());
2231           continue;
2232         }
2233
2234       if (sym.get_st_type() == elfcpp::STT_SECTION
2235           || !this->adjust_local_symbol(&lv))
2236         {
2237           lv.set_no_output_symtab_entry();
2238           gold_assert(!lv.needs_output_dynsym_entry());
2239           continue;
2240         }
2241
2242       if (sym.get_st_name() >= strtab_size)
2243         {
2244           this->error(_("local symbol %u section name out of range: %u >= %u"),
2245                       i, sym.get_st_name(),
2246                       static_cast<unsigned int>(strtab_size));
2247           lv.set_no_output_symtab_entry();
2248           continue;
2249         }
2250
2251       const char* name = pnames + sym.get_st_name();
2252
2253       // If needed, add the symbol to the dynamic symbol table string pool.
2254       if (lv.needs_output_dynsym_entry())
2255         {
2256           dynpool->add(name, true, NULL);
2257           ++dyncount;
2258         }
2259
2260       if (strip_all
2261           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2262         {
2263           lv.set_no_output_symtab_entry();
2264           continue;
2265         }
2266
2267       // By default, discard temporary local symbols in merge sections.
2268       // If --discard-locals option is used, discard all temporary local
2269       // symbols.  These symbols start with system-specific local label
2270       // prefixes, typically .L for ELF system.  We want to be compatible
2271       // with GNU ld so here we essentially use the same check in
2272       // bfd_is_local_label().  The code is different because we already
2273       // know that:
2274       //
2275       //   - the symbol is local and thus cannot have global or weak binding.
2276       //   - the symbol is not a section symbol.
2277       //   - the symbol has a name.
2278       //
2279       // We do not discard a symbol if it needs a dynamic symbol entry.
2280       if ((discard_locals
2281            || (discard_sec_merge
2282                && is_ordinary
2283                && out_section_offsets[shndx] == invalid_address))
2284           && sym.get_st_type() != elfcpp::STT_FILE
2285           && !lv.needs_output_dynsym_entry()
2286           && lv.may_be_discarded_from_output_symtab()
2287           && parameters->target().is_local_label_name(name))
2288         {
2289           lv.set_no_output_symtab_entry();
2290           continue;
2291         }
2292
2293       // Discard the local symbol if -retain_symbols_file is specified
2294       // and the local symbol is not in that file.
2295       if (!parameters->options().should_retain_symbol(name))
2296         {
2297           lv.set_no_output_symtab_entry();
2298           continue;
2299         }
2300
2301       // Add the symbol to the symbol table string pool.
2302       pool->add(name, true, NULL);
2303       ++count;
2304     }
2305
2306   this->output_local_symbol_count_ = count;
2307   this->output_local_dynsym_count_ = dyncount;
2308 }
2309
2310 // Compute the final value of a local symbol.
2311
2312 template<int size, bool big_endian>
2313 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2314 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2315     unsigned int r_sym,
2316     const Symbol_value<size>* lv_in,
2317     Symbol_value<size>* lv_out,
2318     bool relocatable,
2319     const Output_sections& out_sections,
2320     const std::vector<Address>& out_offsets,
2321     const Symbol_table* symtab)
2322 {
2323   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2324   // we may have a memory leak.
2325   gold_assert(lv_out->has_output_value());
2326
2327   bool is_ordinary;
2328   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2329
2330   // Set the output symbol value.
2331
2332   if (!is_ordinary)
2333     {
2334       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2335         lv_out->set_output_value(lv_in->input_value());
2336       else
2337         {
2338           this->error(_("unknown section index %u for local symbol %u"),
2339                       shndx, r_sym);
2340           lv_out->set_output_value(0);
2341           return This::CFLV_ERROR;
2342         }
2343     }
2344   else
2345     {
2346       if (shndx >= this->shnum())
2347         {
2348           this->error(_("local symbol %u section index %u out of range"),
2349                       r_sym, shndx);
2350           lv_out->set_output_value(0);
2351           return This::CFLV_ERROR;
2352         }
2353
2354       Output_section* os = out_sections[shndx];
2355       Address secoffset = out_offsets[shndx];
2356       if (symtab->is_section_folded(this, shndx))
2357         {
2358           gold_assert(os == NULL && secoffset == invalid_address);
2359           // Get the os of the section it is folded onto.
2360           Section_id folded = symtab->icf()->get_folded_section(this,
2361                                                                 shndx);
2362           gold_assert(folded.first != NULL);
2363           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2364             <Sized_relobj_file<size, big_endian>*>(folded.first);
2365           os = folded_obj->output_section(folded.second);
2366           gold_assert(os != NULL);
2367           secoffset = folded_obj->get_output_section_offset(folded.second);
2368
2369           // This could be a relaxed input section.
2370           if (secoffset == invalid_address)
2371             {
2372               const Output_relaxed_input_section* relaxed_section =
2373                 os->find_relaxed_input_section(folded_obj, folded.second);
2374               gold_assert(relaxed_section != NULL);
2375               secoffset = relaxed_section->address() - os->address();
2376             }
2377         }
2378
2379       if (os == NULL)
2380         {
2381           // This local symbol belongs to a section we are discarding.
2382           // In some cases when applying relocations later, we will
2383           // attempt to match it to the corresponding kept section,
2384           // so we leave the input value unchanged here.
2385           return This::CFLV_DISCARDED;
2386         }
2387       else if (secoffset == invalid_address)
2388         {
2389           uint64_t start;
2390
2391           // This is a SHF_MERGE section or one which otherwise
2392           // requires special handling.
2393           if (os->order() == ORDER_EHFRAME)
2394             {
2395               // This local symbol belongs to a discarded or optimized
2396               // .eh_frame section.  Just treat it like the case in which
2397               // os == NULL above.
2398               gold_assert(this->has_eh_frame_);
2399               return This::CFLV_DISCARDED;
2400             }
2401           else if (!lv_in->is_section_symbol())
2402             {
2403               // This is not a section symbol.  We can determine
2404               // the final value now.
2405               uint64_t value =
2406                 os->output_address(this, shndx, lv_in->input_value());
2407               if (relocatable)
2408                 value -= os->address();
2409               lv_out->set_output_value(value);
2410             }
2411           else if (!os->find_starting_output_address(this, shndx, &start))
2412             {
2413               // This is a section symbol, but apparently not one in a
2414               // merged section.  First check to see if this is a relaxed
2415               // input section.  If so, use its address.  Otherwise just
2416               // use the start of the output section.  This happens with
2417               // relocatable links when the input object has section
2418               // symbols for arbitrary non-merge sections.
2419               const Output_section_data* posd =
2420                 os->find_relaxed_input_section(this, shndx);
2421               if (posd != NULL)
2422                 {
2423                   uint64_t value = posd->address();
2424                   if (relocatable)
2425                     value -= os->address();
2426                   lv_out->set_output_value(value);
2427                 }
2428               else
2429                 lv_out->set_output_value(os->address());
2430             }
2431           else
2432             {
2433               // We have to consider the addend to determine the
2434               // value to use in a relocation.  START is the start
2435               // of this input section.  If we are doing a relocatable
2436               // link, use offset from start output section instead of
2437               // address.
2438               Address adjusted_start =
2439                 relocatable ? start - os->address() : start;
2440               Merged_symbol_value<size>* msv =
2441                 new Merged_symbol_value<size>(lv_in->input_value(),
2442                                               adjusted_start);
2443               lv_out->set_merged_symbol_value(msv);
2444             }
2445         }
2446       else if (lv_in->is_tls_symbol()
2447                || (lv_in->is_section_symbol()
2448                    && (os->flags() & elfcpp::SHF_TLS)))
2449         lv_out->set_output_value(os->tls_offset()
2450                                  + secoffset
2451                                  + lv_in->input_value());
2452       else
2453         lv_out->set_output_value((relocatable ? 0 : os->address())
2454                                  + secoffset
2455                                  + lv_in->input_value());
2456     }
2457   return This::CFLV_OK;
2458 }
2459
2460 // Compute final local symbol value.  R_SYM is the index of a local
2461 // symbol in symbol table.  LV points to a symbol value, which is
2462 // expected to hold the input value and to be over-written by the
2463 // final value.  SYMTAB points to a symbol table.  Some targets may want
2464 // to know would-be-finalized local symbol values in relaxation.
2465 // Hence we provide this method.  Since this method updates *LV, a
2466 // callee should make a copy of the original local symbol value and
2467 // use the copy instead of modifying an object's local symbols before
2468 // everything is finalized.  The caller should also free up any allocated
2469 // memory in the return value in *LV.
2470 template<int size, bool big_endian>
2471 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2472 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2473     unsigned int r_sym,
2474     const Symbol_value<size>* lv_in,
2475     Symbol_value<size>* lv_out,
2476     const Symbol_table* symtab)
2477 {
2478   // This is just a wrapper of compute_final_local_value_internal.
2479   const bool relocatable = parameters->options().relocatable();
2480   const Output_sections& out_sections(this->output_sections());
2481   const std::vector<Address>& out_offsets(this->section_offsets());
2482   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2483                                                   relocatable, out_sections,
2484                                                   out_offsets, symtab);
2485 }
2486
2487 // Finalize the local symbols.  Here we set the final value in
2488 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2489 // This function is always called from a singleton thread.  The actual
2490 // output of the local symbols will occur in a separate task.
2491
2492 template<int size, bool big_endian>
2493 unsigned int
2494 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2495     unsigned int index,
2496     off_t off,
2497     Symbol_table* symtab)
2498 {
2499   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2500
2501   const unsigned int loccount = this->local_symbol_count_;
2502   this->local_symbol_offset_ = off;
2503
2504   const bool relocatable = parameters->options().relocatable();
2505   const Output_sections& out_sections(this->output_sections());
2506   const std::vector<Address>& out_offsets(this->section_offsets());
2507
2508   for (unsigned int i = 1; i < loccount; ++i)
2509     {
2510       Symbol_value<size>* lv = &this->local_values_[i];
2511
2512       Compute_final_local_value_status cflv_status =
2513         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2514                                                  out_sections, out_offsets,
2515                                                  symtab);
2516       switch (cflv_status)
2517         {
2518         case CFLV_OK:
2519           if (!lv->is_output_symtab_index_set())
2520             {
2521               lv->set_output_symtab_index(index);
2522               ++index;
2523             }
2524           break;
2525         case CFLV_DISCARDED:
2526         case CFLV_ERROR:
2527           // Do nothing.
2528           break;
2529         default:
2530           gold_unreachable();
2531         }
2532     }
2533   return index;
2534 }
2535
2536 // Set the output dynamic symbol table indexes for the local variables.
2537
2538 template<int size, bool big_endian>
2539 unsigned int
2540 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2541     unsigned int index)
2542 {
2543   const unsigned int loccount = this->local_symbol_count_;
2544   for (unsigned int i = 1; i < loccount; ++i)
2545     {
2546       Symbol_value<size>& lv(this->local_values_[i]);
2547       if (lv.needs_output_dynsym_entry())
2548         {
2549           lv.set_output_dynsym_index(index);
2550           ++index;
2551         }
2552     }
2553   return index;
2554 }
2555
2556 // Set the offset where local dynamic symbol information will be stored.
2557 // Returns the count of local symbols contributed to the symbol table by
2558 // this object.
2559
2560 template<int size, bool big_endian>
2561 unsigned int
2562 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2563 {
2564   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2565   this->local_dynsym_offset_ = off;
2566   return this->output_local_dynsym_count_;
2567 }
2568
2569 // If Symbols_data is not NULL get the section flags from here otherwise
2570 // get it from the file.
2571
2572 template<int size, bool big_endian>
2573 uint64_t
2574 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2575 {
2576   Symbols_data* sd = this->get_symbols_data();
2577   if (sd != NULL)
2578     {
2579       const unsigned char* pshdrs = sd->section_headers_data
2580                                     + This::shdr_size * shndx;
2581       typename This::Shdr shdr(pshdrs);
2582       return shdr.get_sh_flags();
2583     }
2584   // If sd is NULL, read the section header from the file.
2585   return this->elf_file_.section_flags(shndx);
2586 }
2587
2588 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2589 // in icf.cc
2590
2591 template<int size, bool big_endian>
2592 uint64_t
2593 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2594 {
2595   Symbols_data* sd = this->get_symbols_data();
2596   gold_assert(sd != NULL);
2597
2598   const unsigned char* pshdrs = sd->section_headers_data
2599                                 + This::shdr_size * shndx;
2600   typename This::Shdr shdr(pshdrs);
2601   return shdr.get_sh_entsize();
2602 }
2603
2604 // Write out the local symbols.
2605
2606 template<int size, bool big_endian>
2607 void
2608 Sized_relobj_file<size, big_endian>::write_local_symbols(
2609     Output_file* of,
2610     const Stringpool* sympool,
2611     const Stringpool* dynpool,
2612     Output_symtab_xindex* symtab_xindex,
2613     Output_symtab_xindex* dynsym_xindex,
2614     off_t symtab_off)
2615 {
2616   const bool strip_all = parameters->options().strip_all();
2617   if (strip_all)
2618     {
2619       if (this->output_local_dynsym_count_ == 0)
2620         return;
2621       this->output_local_symbol_count_ = 0;
2622     }
2623
2624   gold_assert(this->symtab_shndx_ != -1U);
2625   if (this->symtab_shndx_ == 0)
2626     {
2627       // This object has no symbols.  Weird but legal.
2628       return;
2629     }
2630
2631   // Read the symbol table section header.
2632   const unsigned int symtab_shndx = this->symtab_shndx_;
2633   typename This::Shdr symtabshdr(this,
2634                                  this->elf_file_.section_header(symtab_shndx));
2635   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2636   const unsigned int loccount = this->local_symbol_count_;
2637   gold_assert(loccount == symtabshdr.get_sh_info());
2638
2639   // Read the local symbols.
2640   const int sym_size = This::sym_size;
2641   off_t locsize = loccount * sym_size;
2642   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2643                                               locsize, true, false);
2644
2645   // Read the symbol names.
2646   const unsigned int strtab_shndx =
2647     this->adjust_shndx(symtabshdr.get_sh_link());
2648   section_size_type strtab_size;
2649   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2650                                                         &strtab_size,
2651                                                         false);
2652   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2653
2654   // Get views into the output file for the portions of the symbol table
2655   // and the dynamic symbol table that we will be writing.
2656   off_t output_size = this->output_local_symbol_count_ * sym_size;
2657   unsigned char* oview = NULL;
2658   if (output_size > 0)
2659     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2660                                 output_size);
2661
2662   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2663   unsigned char* dyn_oview = NULL;
2664   if (dyn_output_size > 0)
2665     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2666                                     dyn_output_size);
2667
2668   const Output_sections& out_sections(this->output_sections());
2669
2670   gold_assert(this->local_values_.size() == loccount);
2671
2672   unsigned char* ov = oview;
2673   unsigned char* dyn_ov = dyn_oview;
2674   psyms += sym_size;
2675   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2676     {
2677       elfcpp::Sym<size, big_endian> isym(psyms);
2678
2679       Symbol_value<size>& lv(this->local_values_[i]);
2680
2681       bool is_ordinary;
2682       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2683                                                      &is_ordinary);
2684       if (is_ordinary)
2685         {
2686           gold_assert(st_shndx < out_sections.size());
2687           if (out_sections[st_shndx] == NULL)
2688             continue;
2689           st_shndx = out_sections[st_shndx]->out_shndx();
2690           if (st_shndx >= elfcpp::SHN_LORESERVE)
2691             {
2692               if (lv.has_output_symtab_entry())
2693                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2694               if (lv.has_output_dynsym_entry())
2695                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2696               st_shndx = elfcpp::SHN_XINDEX;
2697             }
2698         }
2699
2700       // Write the symbol to the output symbol table.
2701       if (lv.has_output_symtab_entry())
2702         {
2703           elfcpp::Sym_write<size, big_endian> osym(ov);
2704
2705           gold_assert(isym.get_st_name() < strtab_size);
2706           const char* name = pnames + isym.get_st_name();
2707           osym.put_st_name(sympool->get_offset(name));
2708           osym.put_st_value(lv.value(this, 0));
2709           osym.put_st_size(isym.get_st_size());
2710           osym.put_st_info(isym.get_st_info());
2711           osym.put_st_other(isym.get_st_other());
2712           osym.put_st_shndx(st_shndx);
2713
2714           ov += sym_size;
2715         }
2716
2717       // Write the symbol to the output dynamic symbol table.
2718       if (lv.has_output_dynsym_entry())
2719         {
2720           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2721           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2722
2723           gold_assert(isym.get_st_name() < strtab_size);
2724           const char* name = pnames + isym.get_st_name();
2725           osym.put_st_name(dynpool->get_offset(name));
2726           osym.put_st_value(lv.value(this, 0));
2727           osym.put_st_size(isym.get_st_size());
2728           osym.put_st_info(isym.get_st_info());
2729           osym.put_st_other(isym.get_st_other());
2730           osym.put_st_shndx(st_shndx);
2731
2732           dyn_ov += sym_size;
2733         }
2734     }
2735
2736
2737   if (output_size > 0)
2738     {
2739       gold_assert(ov - oview == output_size);
2740       of->write_output_view(symtab_off + this->local_symbol_offset_,
2741                             output_size, oview);
2742     }
2743
2744   if (dyn_output_size > 0)
2745     {
2746       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2747       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2748                             dyn_oview);
2749     }
2750 }
2751
2752 // Set *INFO to symbolic information about the offset OFFSET in the
2753 // section SHNDX.  Return true if we found something, false if we
2754 // found nothing.
2755
2756 template<int size, bool big_endian>
2757 bool
2758 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2759     unsigned int shndx,
2760     off_t offset,
2761     Symbol_location_info* info)
2762 {
2763   if (this->symtab_shndx_ == 0)
2764     return false;
2765
2766   section_size_type symbols_size;
2767   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2768                                                         &symbols_size,
2769                                                         false);
2770
2771   unsigned int symbol_names_shndx =
2772     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2773   section_size_type names_size;
2774   const unsigned char* symbol_names_u =
2775     this->section_contents(symbol_names_shndx, &names_size, false);
2776   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2777
2778   const int sym_size = This::sym_size;
2779   const size_t count = symbols_size / sym_size;
2780
2781   const unsigned char* p = symbols;
2782   for (size_t i = 0; i < count; ++i, p += sym_size)
2783     {
2784       elfcpp::Sym<size, big_endian> sym(p);
2785
2786       if (sym.get_st_type() == elfcpp::STT_FILE)
2787         {
2788           if (sym.get_st_name() >= names_size)
2789             info->source_file = "(invalid)";
2790           else
2791             info->source_file = symbol_names + sym.get_st_name();
2792           continue;
2793         }
2794
2795       bool is_ordinary;
2796       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2797                                                      &is_ordinary);
2798       if (is_ordinary
2799           && st_shndx == shndx
2800           && static_cast<off_t>(sym.get_st_value()) <= offset
2801           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2802               > offset))
2803         {
2804           info->enclosing_symbol_type = sym.get_st_type();
2805           if (sym.get_st_name() > names_size)
2806             info->enclosing_symbol_name = "(invalid)";
2807           else
2808             {
2809               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2810               if (parameters->options().do_demangle())
2811                 {
2812                   char* demangled_name = cplus_demangle(
2813                       info->enclosing_symbol_name.c_str(),
2814                       DMGL_ANSI | DMGL_PARAMS);
2815                   if (demangled_name != NULL)
2816                     {
2817                       info->enclosing_symbol_name.assign(demangled_name);
2818                       free(demangled_name);
2819                     }
2820                 }
2821             }
2822           return true;
2823         }
2824     }
2825
2826   return false;
2827 }
2828
2829 // Look for a kept section corresponding to the given discarded section,
2830 // and return its output address.  This is used only for relocations in
2831 // debugging sections.  If we can't find the kept section, return 0.
2832
2833 template<int size, bool big_endian>
2834 typename Sized_relobj_file<size, big_endian>::Address
2835 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2836     unsigned int shndx,
2837     bool* found) const
2838 {
2839   Relobj* kept_object;
2840   unsigned int kept_shndx;
2841   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2842     {
2843       Sized_relobj_file<size, big_endian>* kept_relobj =
2844         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2845       Output_section* os = kept_relobj->output_section(kept_shndx);
2846       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2847       if (os != NULL && offset != invalid_address)
2848         {
2849           *found = true;
2850           return os->address() + offset;
2851         }
2852     }
2853   *found = false;
2854   return 0;
2855 }
2856
2857 // Get symbol counts.
2858
2859 template<int size, bool big_endian>
2860 void
2861 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2862     const Symbol_table*,
2863     size_t* defined,
2864     size_t* used) const
2865 {
2866   *defined = this->defined_count_;
2867   size_t count = 0;
2868   for (typename Symbols::const_iterator p = this->symbols_.begin();
2869        p != this->symbols_.end();
2870        ++p)
2871     if (*p != NULL
2872         && (*p)->source() == Symbol::FROM_OBJECT
2873         && (*p)->object() == this
2874         && (*p)->is_defined())
2875       ++count;
2876   *used = count;
2877 }
2878
2879 // Return a view of the decompressed contents of a section.  Set *PLEN
2880 // to the size.  Set *IS_NEW to true if the contents need to be freed
2881 // by the caller.
2882
2883 const unsigned char*
2884 Object::decompressed_section_contents(
2885     unsigned int shndx,
2886     section_size_type* plen,
2887     bool* is_new)
2888 {
2889   section_size_type buffer_size;
2890   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2891                                                           false);
2892
2893   if (this->compressed_sections_ == NULL)
2894     {
2895       *plen = buffer_size;
2896       *is_new = false;
2897       return buffer;
2898     }
2899
2900   Compressed_section_map::const_iterator p =
2901       this->compressed_sections_->find(shndx);
2902   if (p == this->compressed_sections_->end())
2903     {
2904       *plen = buffer_size;
2905       *is_new = false;
2906       return buffer;
2907     }
2908
2909   section_size_type uncompressed_size = p->second.size;
2910   if (p->second.contents != NULL)
2911     {
2912       *plen = uncompressed_size;
2913       *is_new = false;
2914       return p->second.contents;
2915     }
2916
2917   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2918   if (!decompress_input_section(buffer,
2919                                 buffer_size,
2920                                 uncompressed_data,
2921                                 uncompressed_size,
2922                                 elfsize(),
2923                                 is_big_endian(),
2924                                 p->second.flag))
2925     this->error(_("could not decompress section %s"),
2926                 this->do_section_name(shndx).c_str());
2927
2928   // We could cache the results in p->second.contents and store
2929   // false in *IS_NEW, but build_compressed_section_map() would
2930   // have done so if it had expected it to be profitable.  If
2931   // we reach this point, we expect to need the contents only
2932   // once in this pass.
2933   *plen = uncompressed_size;
2934   *is_new = true;
2935   return uncompressed_data;
2936 }
2937
2938 // Discard any buffers of uncompressed sections.  This is done
2939 // at the end of the Add_symbols task.
2940
2941 void
2942 Object::discard_decompressed_sections()
2943 {
2944   if (this->compressed_sections_ == NULL)
2945     return;
2946
2947   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2948        p != this->compressed_sections_->end();
2949        ++p)
2950     {
2951       if (p->second.contents != NULL)
2952         {
2953           delete[] p->second.contents;
2954           p->second.contents = NULL;
2955         }
2956     }
2957 }
2958
2959 // Input_objects methods.
2960
2961 // Add a regular relocatable object to the list.  Return false if this
2962 // object should be ignored.
2963
2964 bool
2965 Input_objects::add_object(Object* obj)
2966 {
2967   // Print the filename if the -t/--trace option is selected.
2968   if (parameters->options().trace())
2969     gold_info("%s", obj->name().c_str());
2970
2971   if (!obj->is_dynamic())
2972     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2973   else
2974     {
2975       // See if this is a duplicate SONAME.
2976       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2977       const char* soname = dynobj->soname();
2978
2979       Unordered_map<std::string, Object*>::value_type val(soname, obj);
2980       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2981         this->sonames_.insert(val);
2982       if (!ins.second)
2983         {
2984           // We have already seen a dynamic object with this soname.
2985           // If any instances of this object on the command line have
2986           // the --no-as-needed flag, make sure the one we keep is
2987           // marked so.
2988           if (!obj->as_needed())
2989             {
2990               gold_assert(ins.first->second != NULL);
2991               ins.first->second->clear_as_needed();
2992             }
2993           return false;
2994         }
2995
2996       this->dynobj_list_.push_back(dynobj);
2997     }
2998
2999   // Add this object to the cross-referencer if requested.
3000   if (parameters->options().user_set_print_symbol_counts()
3001       || parameters->options().cref())
3002     {
3003       if (this->cref_ == NULL)
3004         this->cref_ = new Cref();
3005       this->cref_->add_object(obj);
3006     }
3007
3008   return true;
3009 }
3010
3011 // For each dynamic object, record whether we've seen all of its
3012 // explicit dependencies.
3013
3014 void
3015 Input_objects::check_dynamic_dependencies() const
3016 {
3017   bool issued_copy_dt_needed_error = false;
3018   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3019        p != this->dynobj_list_.end();
3020        ++p)
3021     {
3022       const Dynobj::Needed& needed((*p)->needed());
3023       bool found_all = true;
3024       Dynobj::Needed::const_iterator pneeded;
3025       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3026         {
3027           if (this->sonames_.find(*pneeded) == this->sonames_.end())
3028             {
3029               found_all = false;
3030               break;
3031             }
3032         }
3033       (*p)->set_has_unknown_needed_entries(!found_all);
3034
3035       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3036       // that gold does not support.  However, they cause no trouble
3037       // unless there is a DT_NEEDED entry that we don't know about;
3038       // warn only in that case.
3039       if (!found_all
3040           && !issued_copy_dt_needed_error
3041           && (parameters->options().copy_dt_needed_entries()
3042               || parameters->options().add_needed()))
3043         {
3044           const char* optname;
3045           if (parameters->options().copy_dt_needed_entries())
3046             optname = "--copy-dt-needed-entries";
3047           else
3048             optname = "--add-needed";
3049           gold_error(_("%s is not supported but is required for %s in %s"),
3050                      optname, (*pneeded).c_str(), (*p)->name().c_str());
3051           issued_copy_dt_needed_error = true;
3052         }
3053     }
3054 }
3055
3056 // Start processing an archive.
3057
3058 void
3059 Input_objects::archive_start(Archive* archive)
3060 {
3061   if (parameters->options().user_set_print_symbol_counts()
3062       || parameters->options().cref())
3063     {
3064       if (this->cref_ == NULL)
3065         this->cref_ = new Cref();
3066       this->cref_->add_archive_start(archive);
3067     }
3068 }
3069
3070 // Stop processing an archive.
3071
3072 void
3073 Input_objects::archive_stop(Archive* archive)
3074 {
3075   if (parameters->options().user_set_print_symbol_counts()
3076       || parameters->options().cref())
3077     this->cref_->add_archive_stop(archive);
3078 }
3079
3080 // Print symbol counts
3081
3082 void
3083 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3084 {
3085   if (parameters->options().user_set_print_symbol_counts()
3086       && this->cref_ != NULL)
3087     this->cref_->print_symbol_counts(symtab);
3088 }
3089
3090 // Print a cross reference table.
3091
3092 void
3093 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3094 {
3095   if (parameters->options().cref() && this->cref_ != NULL)
3096     this->cref_->print_cref(symtab, f);
3097 }
3098
3099 // Relocate_info methods.
3100
3101 // Return a string describing the location of a relocation when file
3102 // and lineno information is not available.  This is only used in
3103 // error messages.
3104
3105 template<int size, bool big_endian>
3106 std::string
3107 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3108 {
3109   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3110   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3111   if (!ret.empty())
3112     return ret;
3113
3114   ret = this->object->name();
3115
3116   Symbol_location_info info;
3117   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3118     {
3119       if (!info.source_file.empty())
3120         {
3121           ret += ":";
3122           ret += info.source_file;
3123         }
3124       ret += ":";
3125       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3126         ret += _("function ");
3127       ret += info.enclosing_symbol_name;
3128       return ret;
3129     }
3130
3131   ret += "(";
3132   ret += this->object->section_name(this->data_shndx);
3133   char buf[100];
3134   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3135   ret += buf;
3136   return ret;
3137 }
3138
3139 } // End namespace gold.
3140
3141 namespace
3142 {
3143
3144 using namespace gold;
3145
3146 // Read an ELF file with the header and return the appropriate
3147 // instance of Object.
3148
3149 template<int size, bool big_endian>
3150 Object*
3151 make_elf_sized_object(const std::string& name, Input_file* input_file,
3152                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3153                       bool* punconfigured)
3154 {
3155   Target* target = select_target(input_file, offset,
3156                                  ehdr.get_e_machine(), size, big_endian,
3157                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3158                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3159   if (target == NULL)
3160     gold_fatal(_("%s: unsupported ELF machine number %d"),
3161                name.c_str(), ehdr.get_e_machine());
3162
3163   if (!parameters->target_valid())
3164     set_parameters_target(target);
3165   else if (target != &parameters->target())
3166     {
3167       if (punconfigured != NULL)
3168         *punconfigured = true;
3169       else
3170         gold_error(_("%s: incompatible target"), name.c_str());
3171       return NULL;
3172     }
3173
3174   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3175                                                    ehdr);
3176 }
3177
3178 } // End anonymous namespace.
3179
3180 namespace gold
3181 {
3182
3183 // Return whether INPUT_FILE is an ELF object.
3184
3185 bool
3186 is_elf_object(Input_file* input_file, off_t offset,
3187               const unsigned char** start, int* read_size)
3188 {
3189   off_t filesize = input_file->file().filesize();
3190   int want = elfcpp::Elf_recognizer::max_header_size;
3191   if (filesize - offset < want)
3192     want = filesize - offset;
3193
3194   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3195                                                        true, false);
3196   *start = p;
3197   *read_size = want;
3198
3199   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3200 }
3201
3202 // Read an ELF file and return the appropriate instance of Object.
3203
3204 Object*
3205 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3206                 const unsigned char* p, section_offset_type bytes,
3207                 bool* punconfigured)
3208 {
3209   if (punconfigured != NULL)
3210     *punconfigured = false;
3211
3212   std::string error;
3213   bool big_endian = false;
3214   int size = 0;
3215   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3216                                                &big_endian, &error))
3217     {
3218       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3219       return NULL;
3220     }
3221
3222   if (size == 32)
3223     {
3224       if (big_endian)
3225         {
3226 #ifdef HAVE_TARGET_32_BIG
3227           elfcpp::Ehdr<32, true> ehdr(p);
3228           return make_elf_sized_object<32, true>(name, input_file,
3229                                                  offset, ehdr, punconfigured);
3230 #else
3231           if (punconfigured != NULL)
3232             *punconfigured = true;
3233           else
3234             gold_error(_("%s: not configured to support "
3235                          "32-bit big-endian object"),
3236                        name.c_str());
3237           return NULL;
3238 #endif
3239         }
3240       else
3241         {
3242 #ifdef HAVE_TARGET_32_LITTLE
3243           elfcpp::Ehdr<32, false> ehdr(p);
3244           return make_elf_sized_object<32, false>(name, input_file,
3245                                                   offset, ehdr, punconfigured);
3246 #else
3247           if (punconfigured != NULL)
3248             *punconfigured = true;
3249           else
3250             gold_error(_("%s: not configured to support "
3251                          "32-bit little-endian object"),
3252                        name.c_str());
3253           return NULL;
3254 #endif
3255         }
3256     }
3257   else if (size == 64)
3258     {
3259       if (big_endian)
3260         {
3261 #ifdef HAVE_TARGET_64_BIG
3262           elfcpp::Ehdr<64, true> ehdr(p);
3263           return make_elf_sized_object<64, true>(name, input_file,
3264                                                  offset, ehdr, punconfigured);
3265 #else
3266           if (punconfigured != NULL)
3267             *punconfigured = true;
3268           else
3269             gold_error(_("%s: not configured to support "
3270                          "64-bit big-endian object"),
3271                        name.c_str());
3272           return NULL;
3273 #endif
3274         }
3275       else
3276         {
3277 #ifdef HAVE_TARGET_64_LITTLE
3278           elfcpp::Ehdr<64, false> ehdr(p);
3279           return make_elf_sized_object<64, false>(name, input_file,
3280                                                   offset, ehdr, punconfigured);
3281 #else
3282           if (punconfigured != NULL)
3283             *punconfigured = true;
3284           else
3285             gold_error(_("%s: not configured to support "
3286                          "64-bit little-endian object"),
3287                        name.c_str());
3288           return NULL;
3289 #endif
3290         }
3291     }
3292   else
3293     gold_unreachable();
3294 }
3295
3296 // Instantiate the templates we need.
3297
3298 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3299 template
3300 void
3301 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3302       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3303       Unordered_map<section_offset_type,
3304       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3305 #endif
3306
3307 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3308 template
3309 void
3310 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3311       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3312       Unordered_map<section_offset_type,
3313       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3314 #endif
3315
3316 #ifdef HAVE_TARGET_32_LITTLE
3317 template
3318 void
3319 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3320                                      Read_symbols_data*);
3321 template
3322 const unsigned char*
3323 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3324                             section_size_type, const unsigned char*) const;
3325 #endif
3326
3327 #ifdef HAVE_TARGET_32_BIG
3328 template
3329 void
3330 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3331                                     Read_symbols_data*);
3332 template
3333 const unsigned char*
3334 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3335                            section_size_type, const unsigned char*) const;
3336 #endif
3337
3338 #ifdef HAVE_TARGET_64_LITTLE
3339 template
3340 void
3341 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3342                                      Read_symbols_data*);
3343 template
3344 const unsigned char*
3345 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3346                             section_size_type, const unsigned char*) const;
3347 #endif
3348
3349 #ifdef HAVE_TARGET_64_BIG
3350 template
3351 void
3352 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3353                                     Read_symbols_data*);
3354 template
3355 const unsigned char*
3356 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3357                            section_size_type, const unsigned char*) const;
3358 #endif
3359
3360 #ifdef HAVE_TARGET_32_LITTLE
3361 template
3362 class Sized_relobj<32, false>;
3363
3364 template
3365 class Sized_relobj_file<32, false>;
3366 #endif
3367
3368 #ifdef HAVE_TARGET_32_BIG
3369 template
3370 class Sized_relobj<32, true>;
3371
3372 template
3373 class Sized_relobj_file<32, true>;
3374 #endif
3375
3376 #ifdef HAVE_TARGET_64_LITTLE
3377 template
3378 class Sized_relobj<64, false>;
3379
3380 template
3381 class Sized_relobj_file<64, false>;
3382 #endif
3383
3384 #ifdef HAVE_TARGET_64_BIG
3385 template
3386 class Sized_relobj<64, true>;
3387
3388 template
3389 class Sized_relobj_file<64, true>;
3390 #endif
3391
3392 #ifdef HAVE_TARGET_32_LITTLE
3393 template
3394 struct Relocate_info<32, false>;
3395 #endif
3396
3397 #ifdef HAVE_TARGET_32_BIG
3398 template
3399 struct Relocate_info<32, true>;
3400 #endif
3401
3402 #ifdef HAVE_TARGET_64_LITTLE
3403 template
3404 struct Relocate_info<64, false>;
3405 #endif
3406
3407 #ifdef HAVE_TARGET_64_BIG
3408 template
3409 struct Relocate_info<64, true>;
3410 #endif
3411
3412 #ifdef HAVE_TARGET_32_LITTLE
3413 template
3414 void
3415 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3416
3417 template
3418 void
3419 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3420                                       const unsigned char*);
3421 #endif
3422
3423 #ifdef HAVE_TARGET_32_BIG
3424 template
3425 void
3426 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3427
3428 template
3429 void
3430 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3431                                      const unsigned char*);
3432 #endif
3433
3434 #ifdef HAVE_TARGET_64_LITTLE
3435 template
3436 void
3437 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3438
3439 template
3440 void
3441 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3442                                       const unsigned char*);
3443 #endif
3444
3445 #ifdef HAVE_TARGET_64_BIG
3446 template
3447 void
3448 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3449
3450 template
3451 void
3452 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3453                                      const unsigned char*);
3454 #endif
3455
3456 #ifdef HAVE_TARGET_32_LITTLE
3457 template
3458 Compressed_section_map*
3459 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3460                                         const char*, section_size_type, 
3461                                         Object*, bool);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 Compressed_section_map*
3467 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3468                                         const char*, section_size_type, 
3469                                         Object*, bool);
3470 #endif
3471
3472 #ifdef HAVE_TARGET_64_LITTLE
3473 template
3474 Compressed_section_map*
3475 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3476                                         const char*, section_size_type, 
3477                                         Object*, bool);
3478 #endif
3479
3480 #ifdef HAVE_TARGET_64_BIG
3481 template
3482 Compressed_section_map*
3483 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3484                                         const char*, section_size_type, 
3485                                         Object*, bool);
3486 #endif
3487
3488 } // End namespace gold.