constify to_open
[external/binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52
53 Read_symbols_data::~Read_symbols_data()
54 {
55   if (this->section_headers != NULL)
56     delete this->section_headers;
57   if (this->section_names != NULL)
58     delete this->section_names;
59   if (this->symbols != NULL)
60     delete this->symbols;
61   if (this->symbol_names != NULL)
62     delete this->symbol_names;
63   if (this->versym != NULL)
64     delete this->versym;
65   if (this->verdef != NULL)
66     delete this->verdef;
67   if (this->verneed != NULL)
68     delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
74 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81   if (!this->symtab_xindex_.empty())
82     return;
83
84   gold_assert(symtab_shndx != 0);
85
86   // Look through the sections in reverse order, on the theory that it
87   // is more likely to be near the end than the beginning.
88   unsigned int i = object->shnum();
89   while (i > 0)
90     {
91       --i;
92       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94         {
95           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96           return;
97         }
98     }
99
100   object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110                            const unsigned char* pshdrs)
111 {
112   section_size_type bytecount;
113   const unsigned char* contents;
114   if (pshdrs == NULL)
115     contents = object->section_contents(xindex_shndx, &bytecount, false);
116   else
117     {
118       const unsigned char* p = (pshdrs
119                                 + (xindex_shndx
120                                    * elfcpp::Elf_sizes<size>::shdr_size));
121       typename elfcpp::Shdr<size, big_endian> shdr(p);
122       bytecount = convert_to_section_size_type(shdr.get_sh_size());
123       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124     }
125
126   gold_assert(this->symtab_xindex_.empty());
127   this->symtab_xindex_.reserve(bytecount / 4);
128   for (section_size_type i = 0; i < bytecount; i += 4)
129     {
130       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131       // We preadjust the section indexes we save.
132       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133     }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142   if (symndx >= this->symtab_xindex_.size())
143     {
144       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145                     symndx);
146       return elfcpp::SHN_UNDEF;
147     }
148   unsigned int shndx = this->symtab_xindex_[symndx];
149   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150     {
151       object->error(_("extended index for symbol %u out of range: %u"),
152                     symndx, shndx);
153       return elfcpp::SHN_UNDEF;
154     }
155   return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file.  This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
165 Object::error(const char* format, ...) const
166 {
167   va_list args;
168   va_start(args, format);
169   char* buf = NULL;
170   if (vasprintf(&buf, format, args) < 0)
171     gold_nomem();
172   va_end(args);
173   gold_error(_("%s: %s"), this->name().c_str(), buf);
174   free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181                          bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD.  This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190                           Read_symbols_data* sd)
191 {
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194   // Read the section headers.
195   const off_t shoff = elf_file->shoff();
196   const unsigned int shnum = this->shnum();
197   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198                                                true, true);
199
200   // Read the section names.
201   const unsigned char* pshdrs = sd->section_headers->data();
202   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206     this->error(_("section name section has wrong type: %u"),
207                 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209   sd->section_names_size =
210     convert_to_section_size_type(shdrnames.get_sh_size());
211   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212                                              sd->section_names_size, false,
213                                              false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued.  SHNDX is the section index.  Return
218 // whether it is a warning section.
219
220 bool
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222                                    Symbol_table* symtab)
223 {
224   const char warn_prefix[] = ".gnu.warning.";
225   const int warn_prefix_len = sizeof warn_prefix - 1;
226   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227     {
228       // Read the section contents to get the warning text.  It would
229       // be nicer if we only did this if we have to actually issue a
230       // warning.  Unfortunately, warnings are issued as we relocate
231       // sections.  That means that we can not lock the object then,
232       // as we might try to issue the same warning multiple times
233       // simultaneously.
234       section_size_type len;
235       const unsigned char* contents = this->section_contents(shndx, &len,
236                                                              false);
237       if (len == 0)
238         {
239           const char* warning = name + warn_prefix_len;
240           contents = reinterpret_cast<const unsigned char*>(warning);
241           len = strlen(warning);
242         }
243       std::string warning(reinterpret_cast<const char*>(contents), len);
244       symtab->add_warning(name + warn_prefix_len, this, warning);
245       return true;
246     }
247   return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
254 Object::handle_split_stack_section(const char* name)
255 {
256   if (strcmp(name, ".note.GNU-split-stack") == 0)
257     {
258       this->uses_split_stack_ = true;
259       return true;
260     }
261   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262     {
263       this->has_no_split_stack_ = true;
264       return true;
265     }
266   return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277                           unsigned int section_header_size)
278 {
279   gc_sd->section_headers_data =
280          new unsigned char[(section_header_size)];
281   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282          section_header_size);
283   gc_sd->section_names_data =
284          new unsigned char[sd->section_names_size];
285   memcpy(gc_sd->section_names_data, sd->section_names->data(),
286          sd->section_names_size);
287   gc_sd->section_names_size = sd->section_names_size;
288   if (sd->symbols != NULL)
289     {
290       gc_sd->symbols_data =
291              new unsigned char[sd->symbols_size];
292       memcpy(gc_sd->symbols_data, sd->symbols->data(),
293             sd->symbols_size);
294     }
295   else
296     {
297       gc_sd->symbols_data = NULL;
298     }
299   gc_sd->symbols_size = sd->symbols_size;
300   gc_sd->external_symbols_offset = sd->external_symbols_offset;
301   if (sd->symbol_names != NULL)
302     {
303       gc_sd->symbol_names_data =
304              new unsigned char[sd->symbol_names_size];
305       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306             sd->symbol_names_size);
307     }
308   else
309     {
310       gc_sd->symbol_names_data = NULL;
311     }
312   gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link.  This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
320 Relobj::is_section_name_included(const char* name)
321 {
322   if (is_prefix_of(".ctors", name)
323       || is_prefix_of(".dtors", name)
324       || is_prefix_of(".note", name)
325       || is_prefix_of(".init", name)
326       || is_prefix_of(".fini", name)
327       || is_prefix_of(".gcc_except_table", name)
328       || is_prefix_of(".jcr", name)
329       || is_prefix_of(".preinit_array", name)
330       || (is_prefix_of(".text", name)
331           && strstr(name, "personality"))
332       || (is_prefix_of(".data", name)
333           && strstr(name, "personality"))
334       || (is_prefix_of(".sdata", name)
335           && strstr(name, "personality"))
336       || (is_prefix_of(".gnu.linkonce.d", name)
337           && strstr(name, "personality"))
338       || (is_prefix_of(".rodata", name)
339           && strstr(name, "nptl_version")))
340     {
341       return true;
342     }
343   return false;
344 }
345
346 // Finalize the incremental relocation information.  Allocates a block
347 // of relocation entries for each symbol, and sets the reloc_bases_
348 // array to point to the first entry in each block.  If CLEAR_COUNTS
349 // is TRUE, also clear the per-symbol relocation counters.
350
351 void
352 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
353 {
354   unsigned int nsyms = this->get_global_symbols()->size();
355   this->reloc_bases_ = new unsigned int[nsyms];
356
357   gold_assert(this->reloc_bases_ != NULL);
358   gold_assert(layout->incremental_inputs() != NULL);
359
360   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
361   for (unsigned int i = 0; i < nsyms; ++i)
362     {
363       this->reloc_bases_[i] = rindex;
364       rindex += this->reloc_counts_[i];
365       if (clear_counts)
366         this->reloc_counts_[i] = 0;
367     }
368   layout->incremental_inputs()->set_reloc_count(rindex);
369 }
370
371 // Class Sized_relobj.
372
373 // Iterate over local symbols, calling a visitor class V for each GOT offset
374 // associated with a local symbol.
375
376 template<int size, bool big_endian>
377 void
378 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
379     Got_offset_list::Visitor* v) const
380 {
381   unsigned int nsyms = this->local_symbol_count();
382   for (unsigned int i = 0; i < nsyms; i++)
383     {
384       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
385       if (p != this->local_got_offsets_.end())
386         {
387           const Got_offset_list* got_offsets = p->second;
388           got_offsets->for_all_got_offsets(v);
389         }
390     }
391 }
392
393 // Get the address of an output section.
394
395 template<int size, bool big_endian>
396 uint64_t
397 Sized_relobj<size, big_endian>::do_output_section_address(
398     unsigned int shndx)
399 {
400   // If the input file is linked as --just-symbols, the output
401   // section address is the input section address.
402   if (this->just_symbols())
403     return this->section_address(shndx);
404
405   const Output_section* os = this->do_output_section(shndx);
406   gold_assert(os != NULL);
407   return os->address();
408 }
409
410 // Class Sized_relobj_file.
411
412 template<int size, bool big_endian>
413 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
414     const std::string& name,
415     Input_file* input_file,
416     off_t offset,
417     const elfcpp::Ehdr<size, big_endian>& ehdr)
418   : Sized_relobj<size, big_endian>(name, input_file, offset),
419     elf_file_(this, ehdr),
420     symtab_shndx_(-1U),
421     local_symbol_count_(0),
422     output_local_symbol_count_(0),
423     output_local_dynsym_count_(0),
424     symbols_(),
425     defined_count_(0),
426     local_symbol_offset_(0),
427     local_dynsym_offset_(0),
428     local_values_(),
429     local_plt_offsets_(),
430     kept_comdat_sections_(),
431     has_eh_frame_(false),
432     discarded_eh_frame_shndx_(-1U),
433     deferred_layout_(),
434     deferred_layout_relocs_(),
435     compressed_sections_()
436 {
437   this->e_type_ = ehdr.get_e_type();
438 }
439
440 template<int size, bool big_endian>
441 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
442 {
443 }
444
445 // Set up an object file based on the file header.  This sets up the
446 // section information.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::do_setup()
451 {
452   const unsigned int shnum = this->elf_file_.shnum();
453   this->set_shnum(shnum);
454 }
455
456 // Find the SHT_SYMTAB section, given the section headers.  The ELF
457 // standard says that maybe in the future there can be more than one
458 // SHT_SYMTAB section.  Until somebody figures out how that could
459 // work, we assume there is only one.
460
461 template<int size, bool big_endian>
462 void
463 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
464 {
465   const unsigned int shnum = this->shnum();
466   this->symtab_shndx_ = 0;
467   if (shnum > 0)
468     {
469       // Look through the sections in reverse order, since gas tends
470       // to put the symbol table at the end.
471       const unsigned char* p = pshdrs + shnum * This::shdr_size;
472       unsigned int i = shnum;
473       unsigned int xindex_shndx = 0;
474       unsigned int xindex_link = 0;
475       while (i > 0)
476         {
477           --i;
478           p -= This::shdr_size;
479           typename This::Shdr shdr(p);
480           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
481             {
482               this->symtab_shndx_ = i;
483               if (xindex_shndx > 0 && xindex_link == i)
484                 {
485                   Xindex* xindex =
486                     new Xindex(this->elf_file_.large_shndx_offset());
487                   xindex->read_symtab_xindex<size, big_endian>(this,
488                                                                xindex_shndx,
489                                                                pshdrs);
490                   this->set_xindex(xindex);
491                 }
492               break;
493             }
494
495           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
496           // one.  This will work if it follows the SHT_SYMTAB
497           // section.
498           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
499             {
500               xindex_shndx = i;
501               xindex_link = this->adjust_shndx(shdr.get_sh_link());
502             }
503         }
504     }
505 }
506
507 // Return the Xindex structure to use for object with lots of
508 // sections.
509
510 template<int size, bool big_endian>
511 Xindex*
512 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
513 {
514   gold_assert(this->symtab_shndx_ != -1U);
515   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
516   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
517   return xindex;
518 }
519
520 // Return whether SHDR has the right type and flags to be a GNU
521 // .eh_frame section.
522
523 template<int size, bool big_endian>
524 bool
525 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
526     const elfcpp::Shdr<size, big_endian>* shdr) const
527 {
528   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
529   return ((sh_type == elfcpp::SHT_PROGBITS
530            || sh_type == elfcpp::SHT_X86_64_UNWIND)
531           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
532 }
533
534 // Find the section header with the given name.
535
536 template<int size, bool big_endian>
537 const unsigned char*
538 Object::find_shdr(
539     const unsigned char* pshdrs,
540     const char* name,
541     const char* names,
542     section_size_type names_size,
543     const unsigned char* hdr) const
544 {
545   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
546   const unsigned int shnum = this->shnum();
547   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
548   size_t sh_name = 0;
549
550   while (1)
551     {
552       if (hdr)
553         {
554           // We found HDR last time we were called, continue looking.
555           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
556           sh_name = shdr.get_sh_name();
557         }
558       else
559         {
560           // Look for the next occurrence of NAME in NAMES.
561           // The fact that .shstrtab produced by current GNU tools is
562           // string merged means we shouldn't have both .not.foo and
563           // .foo in .shstrtab, and multiple .foo sections should all
564           // have the same sh_name.  However, this is not guaranteed
565           // by the ELF spec and not all ELF object file producers may
566           // be so clever.
567           size_t len = strlen(name) + 1;
568           const char *p = sh_name ? names + sh_name + len : names;
569           p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
570                                                    name, len));
571           if (p == NULL)
572             return NULL;
573           sh_name = p - names;
574           hdr = pshdrs;
575           if (sh_name == 0)
576             return hdr;
577         }
578
579       hdr += shdr_size;
580       while (hdr < hdr_end)
581         {
582           typename elfcpp::Shdr<size, big_endian> shdr(hdr);
583           if (shdr.get_sh_name() == sh_name)
584             return hdr;
585           hdr += shdr_size;
586         }
587       hdr = NULL;
588       if (sh_name == 0)
589         return hdr;
590     }
591 }
592
593 // Return whether there is a GNU .eh_frame section, given the section
594 // headers and the section names.
595
596 template<int size, bool big_endian>
597 bool
598 Sized_relobj_file<size, big_endian>::find_eh_frame(
599     const unsigned char* pshdrs,
600     const char* names,
601     section_size_type names_size) const
602 {
603   const unsigned char* s = NULL;
604
605   while (1)
606     {
607       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
608                                                      names, names_size, s);
609       if (s == NULL)
610         return false;
611
612       typename This::Shdr shdr(s);
613       if (this->check_eh_frame_flags(&shdr))
614         return true;
615     }
616 }
617
618 // Return TRUE if this is a section whose contents will be needed in the
619 // Add_symbols task.  This function is only called for sections that have
620 // already passed the test in is_compressed_debug_section(), so we know
621 // that the section name begins with ".zdebug".
622
623 static bool
624 need_decompressed_section(const char* name)
625 {
626   // Skip over the ".zdebug" and a quick check for the "_".
627   name += 7;
628   if (*name++ != '_')
629     return false;
630
631 #ifdef ENABLE_THREADS
632   // Decompressing these sections now will help only if we're
633   // multithreaded.
634   if (parameters->options().threads())
635     {
636       // We will need .zdebug_str if this is not an incremental link
637       // (i.e., we are processing string merge sections) or if we need
638       // to build a gdb index.
639       if ((!parameters->incremental() || parameters->options().gdb_index())
640           && strcmp(name, "str") == 0)
641         return true;
642
643       // We will need these other sections when building a gdb index.
644       if (parameters->options().gdb_index()
645           && (strcmp(name, "info") == 0
646               || strcmp(name, "types") == 0
647               || strcmp(name, "pubnames") == 0
648               || strcmp(name, "pubtypes") == 0
649               || strcmp(name, "ranges") == 0
650               || strcmp(name, "abbrev") == 0))
651         return true;
652     }
653 #endif
654
655   // Even when single-threaded, we will need .zdebug_str if this is
656   // not an incremental link and we are building a gdb index.
657   // Otherwise, we would decompress the section twice: once for
658   // string merge processing, and once for building the gdb index.
659   if (!parameters->incremental()
660       && parameters->options().gdb_index()
661       && strcmp(name, "str") == 0)
662     return true;
663
664   return false;
665 }
666
667 // Build a table for any compressed debug sections, mapping each section index
668 // to the uncompressed size and (if needed) the decompressed contents.
669
670 template<int size, bool big_endian>
671 Compressed_section_map*
672 build_compressed_section_map(
673     const unsigned char* pshdrs,
674     unsigned int shnum,
675     const char* names,
676     section_size_type names_size,
677     Sized_relobj_file<size, big_endian>* obj)
678 {
679   Compressed_section_map* uncompressed_map = new Compressed_section_map();
680   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
681   const unsigned char* p = pshdrs + shdr_size;
682
683   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
684     {
685       typename elfcpp::Shdr<size, big_endian> shdr(p);
686       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
687           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
688         {
689           if (shdr.get_sh_name() >= names_size)
690             {
691               obj->error(_("bad section name offset for section %u: %lu"),
692                          i, static_cast<unsigned long>(shdr.get_sh_name()));
693               continue;
694             }
695
696           const char* name = names + shdr.get_sh_name();
697           if (is_compressed_debug_section(name))
698             {
699               section_size_type len;
700               const unsigned char* contents =
701                   obj->section_contents(i, &len, false);
702               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
703               Compressed_section_info info;
704               info.size = convert_to_section_size_type(uncompressed_size);
705               info.contents = NULL;
706               if (uncompressed_size != -1ULL)
707                 {
708                   unsigned char* uncompressed_data = NULL;
709                   if (need_decompressed_section(name))
710                     {
711                       uncompressed_data = new unsigned char[uncompressed_size];
712                       if (decompress_input_section(contents, len,
713                                                    uncompressed_data,
714                                                    uncompressed_size))
715                         info.contents = uncompressed_data;
716                       else
717                         delete[] uncompressed_data;
718                     }
719                   (*uncompressed_map)[i] = info;
720                 }
721             }
722         }
723     }
724   return uncompressed_map;
725 }
726
727 // Stash away info for a number of special sections.
728 // Return true if any of the sections found require local symbols to be read.
729
730 template<int size, bool big_endian>
731 bool
732 Sized_relobj_file<size, big_endian>::do_find_special_sections(
733     Read_symbols_data* sd)
734 {
735   const unsigned char* const pshdrs = sd->section_headers->data();
736   const unsigned char* namesu = sd->section_names->data();
737   const char* names = reinterpret_cast<const char*>(namesu);
738
739   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
740     this->has_eh_frame_ = true;
741
742   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
743     this->compressed_sections_
744       = build_compressed_section_map(pshdrs, this->shnum(), names,
745                                      sd->section_names_size, this);
746   return (this->has_eh_frame_
747           || (!parameters->options().relocatable()
748               && parameters->options().gdb_index()
749               && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
750                   || memmem(names, sd->section_names_size, "debug_types",
751                             13) == 0)));
752 }
753
754 // Read the sections and symbols from an object file.
755
756 template<int size, bool big_endian>
757 void
758 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
759 {
760   this->base_read_symbols(sd);
761 }
762
763 // Read the sections and symbols from an object file.  This is common
764 // code for all target-specific overrides of do_read_symbols().
765
766 template<int size, bool big_endian>
767 void
768 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
769 {
770   this->read_section_data(&this->elf_file_, sd);
771
772   const unsigned char* const pshdrs = sd->section_headers->data();
773
774   this->find_symtab(pshdrs);
775
776   bool need_local_symbols = this->do_find_special_sections(sd);
777
778   sd->symbols = NULL;
779   sd->symbols_size = 0;
780   sd->external_symbols_offset = 0;
781   sd->symbol_names = NULL;
782   sd->symbol_names_size = 0;
783
784   if (this->symtab_shndx_ == 0)
785     {
786       // No symbol table.  Weird but legal.
787       return;
788     }
789
790   // Get the symbol table section header.
791   typename This::Shdr symtabshdr(pshdrs
792                                  + this->symtab_shndx_ * This::shdr_size);
793   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
794
795   // If this object has a .eh_frame section, or if building a .gdb_index
796   // section and there is debug info, we need all the symbols.
797   // Otherwise we only need the external symbols.  While it would be
798   // simpler to just always read all the symbols, I've seen object
799   // files with well over 2000 local symbols, which for a 64-bit
800   // object file format is over 5 pages that we don't need to read
801   // now.
802
803   const int sym_size = This::sym_size;
804   const unsigned int loccount = symtabshdr.get_sh_info();
805   this->local_symbol_count_ = loccount;
806   this->local_values_.resize(loccount);
807   section_offset_type locsize = loccount * sym_size;
808   off_t dataoff = symtabshdr.get_sh_offset();
809   section_size_type datasize =
810     convert_to_section_size_type(symtabshdr.get_sh_size());
811   off_t extoff = dataoff + locsize;
812   section_size_type extsize = datasize - locsize;
813
814   off_t readoff = need_local_symbols ? dataoff : extoff;
815   section_size_type readsize = need_local_symbols ? datasize : extsize;
816
817   if (readsize == 0)
818     {
819       // No external symbols.  Also weird but also legal.
820       return;
821     }
822
823   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
824
825   // Read the section header for the symbol names.
826   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
827   if (strtab_shndx >= this->shnum())
828     {
829       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
830       return;
831     }
832   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
833   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
834     {
835       this->error(_("symbol table name section has wrong type: %u"),
836                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
837       return;
838     }
839
840   // Read the symbol names.
841   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
842                                                strtabshdr.get_sh_size(),
843                                                false, true);
844
845   sd->symbols = fvsymtab;
846   sd->symbols_size = readsize;
847   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
848   sd->symbol_names = fvstrtab;
849   sd->symbol_names_size =
850     convert_to_section_size_type(strtabshdr.get_sh_size());
851 }
852
853 // Return the section index of symbol SYM.  Set *VALUE to its value in
854 // the object file.  Set *IS_ORDINARY if this is an ordinary section
855 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
856 // Note that for a symbol which is not defined in this object file,
857 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
858 // the final value of the symbol in the link.
859
860 template<int size, bool big_endian>
861 unsigned int
862 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
863                                                               Address* value,
864                                                               bool* is_ordinary)
865 {
866   section_size_type symbols_size;
867   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
868                                                         &symbols_size,
869                                                         false);
870
871   const size_t count = symbols_size / This::sym_size;
872   gold_assert(sym < count);
873
874   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
875   *value = elfsym.get_st_value();
876
877   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
878 }
879
880 // Return whether to include a section group in the link.  LAYOUT is
881 // used to keep track of which section groups we have already seen.
882 // INDEX is the index of the section group and SHDR is the section
883 // header.  If we do not want to include this group, we set bits in
884 // OMIT for each section which should be discarded.
885
886 template<int size, bool big_endian>
887 bool
888 Sized_relobj_file<size, big_endian>::include_section_group(
889     Symbol_table* symtab,
890     Layout* layout,
891     unsigned int index,
892     const char* name,
893     const unsigned char* shdrs,
894     const char* section_names,
895     section_size_type section_names_size,
896     std::vector<bool>* omit)
897 {
898   // Read the section contents.
899   typename This::Shdr shdr(shdrs + index * This::shdr_size);
900   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
901                                              shdr.get_sh_size(), true, false);
902   const elfcpp::Elf_Word* pword =
903     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
904
905   // The first word contains flags.  We only care about COMDAT section
906   // groups.  Other section groups are always included in the link
907   // just like ordinary sections.
908   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
909
910   // Look up the group signature, which is the name of a symbol.  ELF
911   // uses a symbol name because some group signatures are long, and
912   // the name is generally already in the symbol table, so it makes
913   // sense to put the long string just once in .strtab rather than in
914   // both .strtab and .shstrtab.
915
916   // Get the appropriate symbol table header (this will normally be
917   // the single SHT_SYMTAB section, but in principle it need not be).
918   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
919   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
920
921   // Read the symbol table entry.
922   unsigned int symndx = shdr.get_sh_info();
923   if (symndx >= symshdr.get_sh_size() / This::sym_size)
924     {
925       this->error(_("section group %u info %u out of range"),
926                   index, symndx);
927       return false;
928     }
929   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
930   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
931                                              false);
932   elfcpp::Sym<size, big_endian> sym(psym);
933
934   // Read the symbol table names.
935   section_size_type symnamelen;
936   const unsigned char* psymnamesu;
937   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
938                                       &symnamelen, true);
939   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
940
941   // Get the section group signature.
942   if (sym.get_st_name() >= symnamelen)
943     {
944       this->error(_("symbol %u name offset %u out of range"),
945                   symndx, sym.get_st_name());
946       return false;
947     }
948
949   std::string signature(psymnames + sym.get_st_name());
950
951   // It seems that some versions of gas will create a section group
952   // associated with a section symbol, and then fail to give a name to
953   // the section symbol.  In such a case, use the name of the section.
954   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
955     {
956       bool is_ordinary;
957       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
958                                                       sym.get_st_shndx(),
959                                                       &is_ordinary);
960       if (!is_ordinary || sym_shndx >= this->shnum())
961         {
962           this->error(_("symbol %u invalid section index %u"),
963                       symndx, sym_shndx);
964           return false;
965         }
966       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
967       if (member_shdr.get_sh_name() < section_names_size)
968         signature = section_names + member_shdr.get_sh_name();
969     }
970
971   // Record this section group in the layout, and see whether we've already
972   // seen one with the same signature.
973   bool include_group;
974   bool is_comdat;
975   Kept_section* kept_section = NULL;
976
977   if ((flags & elfcpp::GRP_COMDAT) == 0)
978     {
979       include_group = true;
980       is_comdat = false;
981     }
982   else
983     {
984       include_group = layout->find_or_add_kept_section(signature,
985                                                        this, index, true,
986                                                        true, &kept_section);
987       is_comdat = true;
988     }
989
990   if (is_comdat && include_group)
991     {
992       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
993       if (incremental_inputs != NULL)
994         incremental_inputs->report_comdat_group(this, signature.c_str());
995     }
996
997   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
998
999   std::vector<unsigned int> shndxes;
1000   bool relocate_group = include_group && parameters->options().relocatable();
1001   if (relocate_group)
1002     shndxes.reserve(count - 1);
1003
1004   for (size_t i = 1; i < count; ++i)
1005     {
1006       elfcpp::Elf_Word shndx =
1007         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1008
1009       if (relocate_group)
1010         shndxes.push_back(shndx);
1011
1012       if (shndx >= this->shnum())
1013         {
1014           this->error(_("section %u in section group %u out of range"),
1015                       shndx, index);
1016           continue;
1017         }
1018
1019       // Check for an earlier section number, since we're going to get
1020       // it wrong--we may have already decided to include the section.
1021       if (shndx < index)
1022         this->error(_("invalid section group %u refers to earlier section %u"),
1023                     index, shndx);
1024
1025       // Get the name of the member section.
1026       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1027       if (member_shdr.get_sh_name() >= section_names_size)
1028         {
1029           // This is an error, but it will be diagnosed eventually
1030           // in do_layout, so we don't need to do anything here but
1031           // ignore it.
1032           continue;
1033         }
1034       std::string mname(section_names + member_shdr.get_sh_name());
1035
1036       if (include_group)
1037         {
1038           if (is_comdat)
1039             kept_section->add_comdat_section(mname, shndx,
1040                                              member_shdr.get_sh_size());
1041         }
1042       else
1043         {
1044           (*omit)[shndx] = true;
1045
1046           if (is_comdat)
1047             {
1048               Relobj* kept_object = kept_section->object();
1049               if (kept_section->is_comdat())
1050                 {
1051                   // Find the corresponding kept section, and store
1052                   // that info in the discarded section table.
1053                   unsigned int kept_shndx;
1054                   uint64_t kept_size;
1055                   if (kept_section->find_comdat_section(mname, &kept_shndx,
1056                                                         &kept_size))
1057                     {
1058                       // We don't keep a mapping for this section if
1059                       // it has a different size.  The mapping is only
1060                       // used for relocation processing, and we don't
1061                       // want to treat the sections as similar if the
1062                       // sizes are different.  Checking the section
1063                       // size is the approach used by the GNU linker.
1064                       if (kept_size == member_shdr.get_sh_size())
1065                         this->set_kept_comdat_section(shndx, kept_object,
1066                                                       kept_shndx);
1067                     }
1068                 }
1069               else
1070                 {
1071                   // The existing section is a linkonce section.  Add
1072                   // a mapping if there is exactly one section in the
1073                   // group (which is true when COUNT == 2) and if it
1074                   // is the same size.
1075                   if (count == 2
1076                       && (kept_section->linkonce_size()
1077                           == member_shdr.get_sh_size()))
1078                     this->set_kept_comdat_section(shndx, kept_object,
1079                                                   kept_section->shndx());
1080                 }
1081             }
1082         }
1083     }
1084
1085   if (relocate_group)
1086     layout->layout_group(symtab, this, index, name, signature.c_str(),
1087                          shdr, flags, &shndxes);
1088
1089   return include_group;
1090 }
1091
1092 // Whether to include a linkonce section in the link.  NAME is the
1093 // name of the section and SHDR is the section header.
1094
1095 // Linkonce sections are a GNU extension implemented in the original
1096 // GNU linker before section groups were defined.  The semantics are
1097 // that we only include one linkonce section with a given name.  The
1098 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1099 // where T is the type of section and SYMNAME is the name of a symbol.
1100 // In an attempt to make linkonce sections interact well with section
1101 // groups, we try to identify SYMNAME and use it like a section group
1102 // signature.  We want to block section groups with that signature,
1103 // but not other linkonce sections with that signature.  We also use
1104 // the full name of the linkonce section as a normal section group
1105 // signature.
1106
1107 template<int size, bool big_endian>
1108 bool
1109 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1110     Layout* layout,
1111     unsigned int index,
1112     const char* name,
1113     const elfcpp::Shdr<size, big_endian>& shdr)
1114 {
1115   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1116   // In general the symbol name we want will be the string following
1117   // the last '.'.  However, we have to handle the case of
1118   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1119   // some versions of gcc.  So we use a heuristic: if the name starts
1120   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1121   // we look for the last '.'.  We can't always simply skip
1122   // ".gnu.linkonce.X", because we have to deal with cases like
1123   // ".gnu.linkonce.d.rel.ro.local".
1124   const char* const linkonce_t = ".gnu.linkonce.t.";
1125   const char* symname;
1126   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1127     symname = name + strlen(linkonce_t);
1128   else
1129     symname = strrchr(name, '.') + 1;
1130   std::string sig1(symname);
1131   std::string sig2(name);
1132   Kept_section* kept1;
1133   Kept_section* kept2;
1134   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1135                                                    false, &kept1);
1136   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1137                                                    true, &kept2);
1138
1139   if (!include2)
1140     {
1141       // We are not including this section because we already saw the
1142       // name of the section as a signature.  This normally implies
1143       // that the kept section is another linkonce section.  If it is
1144       // the same size, record it as the section which corresponds to
1145       // this one.
1146       if (kept2->object() != NULL
1147           && !kept2->is_comdat()
1148           && kept2->linkonce_size() == sh_size)
1149         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1150     }
1151   else if (!include1)
1152     {
1153       // The section is being discarded on the basis of its symbol
1154       // name.  This means that the corresponding kept section was
1155       // part of a comdat group, and it will be difficult to identify
1156       // the specific section within that group that corresponds to
1157       // this linkonce section.  We'll handle the simple case where
1158       // the group has only one member section.  Otherwise, it's not
1159       // worth the effort.
1160       unsigned int kept_shndx;
1161       uint64_t kept_size;
1162       if (kept1->object() != NULL
1163           && kept1->is_comdat()
1164           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1165           && kept_size == sh_size)
1166         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1167     }
1168   else
1169     {
1170       kept1->set_linkonce_size(sh_size);
1171       kept2->set_linkonce_size(sh_size);
1172     }
1173
1174   return include1 && include2;
1175 }
1176
1177 // Layout an input section.
1178
1179 template<int size, bool big_endian>
1180 inline void
1181 Sized_relobj_file<size, big_endian>::layout_section(
1182     Layout* layout,
1183     unsigned int shndx,
1184     const char* name,
1185     const typename This::Shdr& shdr,
1186     unsigned int reloc_shndx,
1187     unsigned int reloc_type)
1188 {
1189   off_t offset;
1190   Output_section* os = layout->layout(this, shndx, name, shdr,
1191                                           reloc_shndx, reloc_type, &offset);
1192
1193   this->output_sections()[shndx] = os;
1194   if (offset == -1)
1195     this->section_offsets()[shndx] = invalid_address;
1196   else
1197     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1198
1199   // If this section requires special handling, and if there are
1200   // relocs that apply to it, then we must do the special handling
1201   // before we apply the relocs.
1202   if (offset == -1 && reloc_shndx != 0)
1203     this->set_relocs_must_follow_section_writes();
1204 }
1205
1206 // Layout an input .eh_frame section.
1207
1208 template<int size, bool big_endian>
1209 void
1210 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1211     Layout* layout,
1212     const unsigned char* symbols_data,
1213     section_size_type symbols_size,
1214     const unsigned char* symbol_names_data,
1215     section_size_type symbol_names_size,
1216     unsigned int shndx,
1217     const typename This::Shdr& shdr,
1218     unsigned int reloc_shndx,
1219     unsigned int reloc_type)
1220 {
1221   gold_assert(this->has_eh_frame_);
1222
1223   off_t offset;
1224   Output_section* os = layout->layout_eh_frame(this,
1225                                                symbols_data,
1226                                                symbols_size,
1227                                                symbol_names_data,
1228                                                symbol_names_size,
1229                                                shndx,
1230                                                shdr,
1231                                                reloc_shndx,
1232                                                reloc_type,
1233                                                &offset);
1234   this->output_sections()[shndx] = os;
1235   if (os == NULL || offset == -1)
1236     {
1237       // An object can contain at most one section holding exception
1238       // frame information.
1239       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1240       this->discarded_eh_frame_shndx_ = shndx;
1241       this->section_offsets()[shndx] = invalid_address;
1242     }
1243   else
1244     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1245
1246   // If this section requires special handling, and if there are
1247   // relocs that aply to it, then we must do the special handling
1248   // before we apply the relocs.
1249   if (os != NULL && offset == -1 && reloc_shndx != 0)
1250     this->set_relocs_must_follow_section_writes();
1251 }
1252
1253 // Lay out the input sections.  We walk through the sections and check
1254 // whether they should be included in the link.  If they should, we
1255 // pass them to the Layout object, which will return an output section
1256 // and an offset.
1257 // This function is called twice sometimes, two passes, when mapping
1258 // of input sections to output sections must be delayed.
1259 // This is true for the following :
1260 // * Garbage collection (--gc-sections): Some input sections will be
1261 // discarded and hence the assignment must wait until the second pass.
1262 // In the first pass,  it is for setting up some sections as roots to
1263 // a work-list for --gc-sections and to do comdat processing.
1264 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1265 // will be folded and hence the assignment must wait.
1266 // * Using plugins to map some sections to unique segments: Mapping
1267 // some sections to unique segments requires mapping them to unique
1268 // output sections too.  This can be done via plugins now and this
1269 // information is not available in the first pass.
1270
1271 template<int size, bool big_endian>
1272 void
1273 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1274                                                Layout* layout,
1275                                                Read_symbols_data* sd)
1276 {
1277   const unsigned int shnum = this->shnum();
1278
1279   /* Should this function be called twice?  */
1280   bool is_two_pass = (parameters->options().gc_sections()
1281                       || parameters->options().icf_enabled()
1282                       || layout->is_unique_segment_for_sections_specified());
1283
1284   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1285      a two-pass approach is not needed.  */
1286   bool is_pass_one = false;
1287   bool is_pass_two = false;
1288
1289   Symbols_data* gc_sd = NULL;
1290
1291   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1292      should happen.  In the first pass, the data in sd is saved to be used
1293      later in the second pass.  */
1294   if (is_two_pass)
1295     {
1296       gc_sd = this->get_symbols_data();
1297       if (gc_sd == NULL)
1298         {
1299           gold_assert(sd != NULL);
1300           is_pass_one = true;
1301         }
1302       else
1303         {
1304           if (parameters->options().gc_sections())
1305             gold_assert(symtab->gc()->is_worklist_ready());
1306           if (parameters->options().icf_enabled())
1307             gold_assert(symtab->icf()->is_icf_ready()); 
1308           is_pass_two = true;
1309         }
1310     }
1311     
1312   if (shnum == 0)
1313     return;
1314
1315   if (is_pass_one)
1316     {
1317       // During garbage collection save the symbols data to use it when
1318       // re-entering this function.
1319       gc_sd = new Symbols_data;
1320       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1321       this->set_symbols_data(gc_sd);
1322     }
1323
1324   const unsigned char* section_headers_data = NULL;
1325   section_size_type section_names_size;
1326   const unsigned char* symbols_data = NULL;
1327   section_size_type symbols_size;
1328   const unsigned char* symbol_names_data = NULL;
1329   section_size_type symbol_names_size;
1330
1331   if (is_two_pass)
1332     {
1333       section_headers_data = gc_sd->section_headers_data;
1334       section_names_size = gc_sd->section_names_size;
1335       symbols_data = gc_sd->symbols_data;
1336       symbols_size = gc_sd->symbols_size;
1337       symbol_names_data = gc_sd->symbol_names_data;
1338       symbol_names_size = gc_sd->symbol_names_size;
1339     }
1340   else
1341     {
1342       section_headers_data = sd->section_headers->data();
1343       section_names_size = sd->section_names_size;
1344       if (sd->symbols != NULL)
1345         symbols_data = sd->symbols->data();
1346       symbols_size = sd->symbols_size;
1347       if (sd->symbol_names != NULL)
1348         symbol_names_data = sd->symbol_names->data();
1349       symbol_names_size = sd->symbol_names_size;
1350     }
1351
1352   // Get the section headers.
1353   const unsigned char* shdrs = section_headers_data;
1354   const unsigned char* pshdrs;
1355
1356   // Get the section names.
1357   const unsigned char* pnamesu = (is_two_pass
1358                                   ? gc_sd->section_names_data
1359                                   : sd->section_names->data());
1360
1361   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1362
1363   // If any input files have been claimed by plugins, we need to defer
1364   // actual layout until the replacement files have arrived.
1365   const bool should_defer_layout =
1366       (parameters->options().has_plugins()
1367        && parameters->options().plugins()->should_defer_layout());
1368   unsigned int num_sections_to_defer = 0;
1369
1370   // For each section, record the index of the reloc section if any.
1371   // Use 0 to mean that there is no reloc section, -1U to mean that
1372   // there is more than one.
1373   std::vector<unsigned int> reloc_shndx(shnum, 0);
1374   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1375   // Skip the first, dummy, section.
1376   pshdrs = shdrs + This::shdr_size;
1377   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1378     {
1379       typename This::Shdr shdr(pshdrs);
1380
1381       // Count the number of sections whose layout will be deferred.
1382       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1383         ++num_sections_to_defer;
1384
1385       unsigned int sh_type = shdr.get_sh_type();
1386       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1387         {
1388           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1389           if (target_shndx == 0 || target_shndx >= shnum)
1390             {
1391               this->error(_("relocation section %u has bad info %u"),
1392                           i, target_shndx);
1393               continue;
1394             }
1395
1396           if (reloc_shndx[target_shndx] != 0)
1397             reloc_shndx[target_shndx] = -1U;
1398           else
1399             {
1400               reloc_shndx[target_shndx] = i;
1401               reloc_type[target_shndx] = sh_type;
1402             }
1403         }
1404     }
1405
1406   Output_sections& out_sections(this->output_sections());
1407   std::vector<Address>& out_section_offsets(this->section_offsets());
1408
1409   if (!is_pass_two)
1410     {
1411       out_sections.resize(shnum);
1412       out_section_offsets.resize(shnum);
1413     }
1414
1415   // If we are only linking for symbols, then there is nothing else to
1416   // do here.
1417   if (this->input_file()->just_symbols())
1418     {
1419       if (!is_pass_two)
1420         {
1421           delete sd->section_headers;
1422           sd->section_headers = NULL;
1423           delete sd->section_names;
1424           sd->section_names = NULL;
1425         }
1426       return;
1427     }
1428
1429   if (num_sections_to_defer > 0)
1430     {
1431       parameters->options().plugins()->add_deferred_layout_object(this);
1432       this->deferred_layout_.reserve(num_sections_to_defer);
1433     }
1434
1435   // Whether we've seen a .note.GNU-stack section.
1436   bool seen_gnu_stack = false;
1437   // The flags of a .note.GNU-stack section.
1438   uint64_t gnu_stack_flags = 0;
1439
1440   // Keep track of which sections to omit.
1441   std::vector<bool> omit(shnum, false);
1442
1443   // Keep track of reloc sections when emitting relocations.
1444   const bool relocatable = parameters->options().relocatable();
1445   const bool emit_relocs = (relocatable
1446                             || parameters->options().emit_relocs());
1447   std::vector<unsigned int> reloc_sections;
1448
1449   // Keep track of .eh_frame sections.
1450   std::vector<unsigned int> eh_frame_sections;
1451
1452   // Keep track of .debug_info and .debug_types sections.
1453   std::vector<unsigned int> debug_info_sections;
1454   std::vector<unsigned int> debug_types_sections;
1455
1456   // Skip the first, dummy, section.
1457   pshdrs = shdrs + This::shdr_size;
1458   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1459     {
1460       typename This::Shdr shdr(pshdrs);
1461
1462       if (shdr.get_sh_name() >= section_names_size)
1463         {
1464           this->error(_("bad section name offset for section %u: %lu"),
1465                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1466           return;
1467         }
1468
1469       const char* name = pnames + shdr.get_sh_name();
1470
1471       if (!is_pass_two)
1472         {
1473           if (this->handle_gnu_warning_section(name, i, symtab))
1474             {
1475               if (!relocatable && !parameters->options().shared())
1476                 omit[i] = true;
1477             }
1478
1479           // The .note.GNU-stack section is special.  It gives the
1480           // protection flags that this object file requires for the stack
1481           // in memory.
1482           if (strcmp(name, ".note.GNU-stack") == 0)
1483             {
1484               seen_gnu_stack = true;
1485               gnu_stack_flags |= shdr.get_sh_flags();
1486               omit[i] = true;
1487             }
1488
1489           // The .note.GNU-split-stack section is also special.  It
1490           // indicates that the object was compiled with
1491           // -fsplit-stack.
1492           if (this->handle_split_stack_section(name))
1493             {
1494               if (!relocatable && !parameters->options().shared())
1495                 omit[i] = true;
1496             }
1497
1498           // Skip attributes section.
1499           if (parameters->target().is_attributes_section(name))
1500             {
1501               omit[i] = true;
1502             }
1503
1504           bool discard = omit[i];
1505           if (!discard)
1506             {
1507               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1508                 {
1509                   if (!this->include_section_group(symtab, layout, i, name,
1510                                                    shdrs, pnames,
1511                                                    section_names_size,
1512                                                    &omit))
1513                     discard = true;
1514                 }
1515               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1516                        && Layout::is_linkonce(name))
1517                 {
1518                   if (!this->include_linkonce_section(layout, i, name, shdr))
1519                     discard = true;
1520                 }
1521             }
1522
1523           // Add the section to the incremental inputs layout.
1524           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1525           if (incremental_inputs != NULL
1526               && !discard
1527               && can_incremental_update(shdr.get_sh_type()))
1528             {
1529               off_t sh_size = shdr.get_sh_size();
1530               section_size_type uncompressed_size;
1531               if (this->section_is_compressed(i, &uncompressed_size))
1532                 sh_size = uncompressed_size;
1533               incremental_inputs->report_input_section(this, i, name, sh_size);
1534             }
1535
1536           if (discard)
1537             {
1538               // Do not include this section in the link.
1539               out_sections[i] = NULL;
1540               out_section_offsets[i] = invalid_address;
1541               continue;
1542             }
1543         }
1544
1545       if (is_pass_one && parameters->options().gc_sections())
1546         {
1547           if (this->is_section_name_included(name)
1548               || layout->keep_input_section (this, name)
1549               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1550               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1551             {
1552               symtab->gc()->worklist().push(Section_id(this, i));
1553             }
1554           // If the section name XXX can be represented as a C identifier
1555           // it cannot be discarded if there are references to
1556           // __start_XXX and __stop_XXX symbols.  These need to be
1557           // specially handled.
1558           if (is_cident(name))
1559             {
1560               symtab->gc()->add_cident_section(name, Section_id(this, i));
1561             }
1562         }
1563
1564       // When doing a relocatable link we are going to copy input
1565       // reloc sections into the output.  We only want to copy the
1566       // ones associated with sections which are not being discarded.
1567       // However, we don't know that yet for all sections.  So save
1568       // reloc sections and process them later. Garbage collection is
1569       // not triggered when relocatable code is desired.
1570       if (emit_relocs
1571           && (shdr.get_sh_type() == elfcpp::SHT_REL
1572               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1573         {
1574           reloc_sections.push_back(i);
1575           continue;
1576         }
1577
1578       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1579         continue;
1580
1581       // The .eh_frame section is special.  It holds exception frame
1582       // information that we need to read in order to generate the
1583       // exception frame header.  We process these after all the other
1584       // sections so that the exception frame reader can reliably
1585       // determine which sections are being discarded, and discard the
1586       // corresponding information.
1587       if (!relocatable
1588           && strcmp(name, ".eh_frame") == 0
1589           && this->check_eh_frame_flags(&shdr))
1590         {
1591           if (is_pass_one)
1592             {
1593               out_sections[i] = reinterpret_cast<Output_section*>(1);
1594               out_section_offsets[i] = invalid_address;
1595             }
1596           else if (should_defer_layout)
1597             this->deferred_layout_.push_back(Deferred_layout(i, name,
1598                                                              pshdrs,
1599                                                              reloc_shndx[i],
1600                                                              reloc_type[i]));
1601           else
1602             eh_frame_sections.push_back(i);
1603           continue;
1604         }
1605
1606       if (is_pass_two && parameters->options().gc_sections())
1607         {
1608           // This is executed during the second pass of garbage
1609           // collection. do_layout has been called before and some
1610           // sections have been already discarded. Simply ignore
1611           // such sections this time around.
1612           if (out_sections[i] == NULL)
1613             {
1614               gold_assert(out_section_offsets[i] == invalid_address);
1615               continue;
1616             }
1617           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1618               && symtab->gc()->is_section_garbage(this, i))
1619               {
1620                 if (parameters->options().print_gc_sections())
1621                   gold_info(_("%s: removing unused section from '%s'"
1622                               " in file '%s'"),
1623                             program_name, this->section_name(i).c_str(),
1624                             this->name().c_str());
1625                 out_sections[i] = NULL;
1626                 out_section_offsets[i] = invalid_address;
1627                 continue;
1628               }
1629         }
1630
1631       if (is_pass_two && parameters->options().icf_enabled())
1632         {
1633           if (out_sections[i] == NULL)
1634             {
1635               gold_assert(out_section_offsets[i] == invalid_address);
1636               continue;
1637             }
1638           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1639               && symtab->icf()->is_section_folded(this, i))
1640               {
1641                 if (parameters->options().print_icf_sections())
1642                   {
1643                     Section_id folded =
1644                                 symtab->icf()->get_folded_section(this, i);
1645                     Relobj* folded_obj =
1646                                 reinterpret_cast<Relobj*>(folded.first);
1647                     gold_info(_("%s: ICF folding section '%s' in file '%s' "
1648                                 "into '%s' in file '%s'"),
1649                               program_name, this->section_name(i).c_str(),
1650                               this->name().c_str(),
1651                               folded_obj->section_name(folded.second).c_str(),
1652                               folded_obj->name().c_str());
1653                   }
1654                 out_sections[i] = NULL;
1655                 out_section_offsets[i] = invalid_address;
1656                 continue;
1657               }
1658         }
1659
1660       // Defer layout here if input files are claimed by plugins.  When gc
1661       // is turned on this function is called twice.  For the second call
1662       // should_defer_layout should be false.
1663       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1664         {
1665           gold_assert(!is_pass_two);
1666           this->deferred_layout_.push_back(Deferred_layout(i, name,
1667                                                            pshdrs,
1668                                                            reloc_shndx[i],
1669                                                            reloc_type[i]));
1670           // Put dummy values here; real values will be supplied by
1671           // do_layout_deferred_sections.
1672           out_sections[i] = reinterpret_cast<Output_section*>(2);
1673           out_section_offsets[i] = invalid_address;
1674           continue;
1675         }
1676
1677       // During gc_pass_two if a section that was previously deferred is
1678       // found, do not layout the section as layout_deferred_sections will
1679       // do it later from gold.cc.
1680       if (is_pass_two
1681           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1682         continue;
1683
1684       if (is_pass_one)
1685         {
1686           // This is during garbage collection. The out_sections are
1687           // assigned in the second call to this function.
1688           out_sections[i] = reinterpret_cast<Output_section*>(1);
1689           out_section_offsets[i] = invalid_address;
1690         }
1691       else
1692         {
1693           // When garbage collection is switched on the actual layout
1694           // only happens in the second call.
1695           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1696                                reloc_type[i]);
1697
1698           // When generating a .gdb_index section, we do additional
1699           // processing of .debug_info and .debug_types sections after all
1700           // the other sections for the same reason as above.
1701           if (!relocatable
1702               && parameters->options().gdb_index()
1703               && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1704             {
1705               if (strcmp(name, ".debug_info") == 0
1706                   || strcmp(name, ".zdebug_info") == 0)
1707                 debug_info_sections.push_back(i);
1708               else if (strcmp(name, ".debug_types") == 0
1709                        || strcmp(name, ".zdebug_types") == 0)
1710                 debug_types_sections.push_back(i);
1711             }
1712         }
1713     }
1714
1715   if (!is_pass_two)
1716     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1717
1718   // Handle the .eh_frame sections after the other sections.
1719   gold_assert(!is_pass_one || eh_frame_sections.empty());
1720   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1721        p != eh_frame_sections.end();
1722        ++p)
1723     {
1724       unsigned int i = *p;
1725       const unsigned char* pshdr;
1726       pshdr = section_headers_data + i * This::shdr_size;
1727       typename This::Shdr shdr(pshdr);
1728
1729       this->layout_eh_frame_section(layout,
1730                                     symbols_data,
1731                                     symbols_size,
1732                                     symbol_names_data,
1733                                     symbol_names_size,
1734                                     i,
1735                                     shdr,
1736                                     reloc_shndx[i],
1737                                     reloc_type[i]);
1738     }
1739
1740   // When doing a relocatable link handle the reloc sections at the
1741   // end.  Garbage collection  and Identical Code Folding is not
1742   // turned on for relocatable code.
1743   if (emit_relocs)
1744     this->size_relocatable_relocs();
1745
1746   gold_assert(!is_two_pass || reloc_sections.empty());
1747
1748   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1749        p != reloc_sections.end();
1750        ++p)
1751     {
1752       unsigned int i = *p;
1753       const unsigned char* pshdr;
1754       pshdr = section_headers_data + i * This::shdr_size;
1755       typename This::Shdr shdr(pshdr);
1756
1757       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1758       if (data_shndx >= shnum)
1759         {
1760           // We already warned about this above.
1761           continue;
1762         }
1763
1764       Output_section* data_section = out_sections[data_shndx];
1765       if (data_section == reinterpret_cast<Output_section*>(2))
1766         {
1767           // The layout for the data section was deferred, so we need
1768           // to defer the relocation section, too.
1769           const char* name = pnames + shdr.get_sh_name();
1770           this->deferred_layout_relocs_.push_back(
1771               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1772           out_sections[i] = reinterpret_cast<Output_section*>(2);
1773           out_section_offsets[i] = invalid_address;
1774           continue;
1775         }
1776       if (data_section == NULL)
1777         {
1778           out_sections[i] = NULL;
1779           out_section_offsets[i] = invalid_address;
1780           continue;
1781         }
1782
1783       Relocatable_relocs* rr = new Relocatable_relocs();
1784       this->set_relocatable_relocs(i, rr);
1785
1786       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1787                                                 rr);
1788       out_sections[i] = os;
1789       out_section_offsets[i] = invalid_address;
1790     }
1791
1792   // When building a .gdb_index section, scan the .debug_info and
1793   // .debug_types sections.
1794   gold_assert(!is_pass_one
1795               || (debug_info_sections.empty() && debug_types_sections.empty()));
1796   for (std::vector<unsigned int>::const_iterator p
1797            = debug_info_sections.begin();
1798        p != debug_info_sections.end();
1799        ++p)
1800     {
1801       unsigned int i = *p;
1802       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1803                                i, reloc_shndx[i], reloc_type[i]);
1804     }
1805   for (std::vector<unsigned int>::const_iterator p
1806            = debug_types_sections.begin();
1807        p != debug_types_sections.end();
1808        ++p)
1809     {
1810       unsigned int i = *p;
1811       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1812                                i, reloc_shndx[i], reloc_type[i]);
1813     }
1814
1815   if (is_pass_two)
1816     {
1817       delete[] gc_sd->section_headers_data;
1818       delete[] gc_sd->section_names_data;
1819       delete[] gc_sd->symbols_data;
1820       delete[] gc_sd->symbol_names_data;
1821       this->set_symbols_data(NULL);
1822     }
1823   else
1824     {
1825       delete sd->section_headers;
1826       sd->section_headers = NULL;
1827       delete sd->section_names;
1828       sd->section_names = NULL;
1829     }
1830 }
1831
1832 // Layout sections whose layout was deferred while waiting for
1833 // input files from a plugin.
1834
1835 template<int size, bool big_endian>
1836 void
1837 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1838 {
1839   typename std::vector<Deferred_layout>::iterator deferred;
1840
1841   for (deferred = this->deferred_layout_.begin();
1842        deferred != this->deferred_layout_.end();
1843        ++deferred)
1844     {
1845       typename This::Shdr shdr(deferred->shdr_data_);
1846
1847       if (!parameters->options().relocatable()
1848           && deferred->name_ == ".eh_frame"
1849           && this->check_eh_frame_flags(&shdr))
1850         {
1851           // Checking is_section_included is not reliable for
1852           // .eh_frame sections, because they do not have an output
1853           // section.  This is not a problem normally because we call
1854           // layout_eh_frame_section unconditionally, but when
1855           // deferring sections that is not true.  We don't want to
1856           // keep all .eh_frame sections because that will cause us to
1857           // keep all sections that they refer to, which is the wrong
1858           // way around.  Instead, the eh_frame code will discard
1859           // .eh_frame sections that refer to discarded sections.
1860
1861           // Reading the symbols again here may be slow.
1862           Read_symbols_data sd;
1863           this->base_read_symbols(&sd);
1864           this->layout_eh_frame_section(layout,
1865                                         sd.symbols->data(),
1866                                         sd.symbols_size,
1867                                         sd.symbol_names->data(),
1868                                         sd.symbol_names_size,
1869                                         deferred->shndx_,
1870                                         shdr,
1871                                         deferred->reloc_shndx_,
1872                                         deferred->reloc_type_);
1873           continue;
1874         }
1875
1876       // If the section is not included, it is because the garbage collector
1877       // decided it is not needed.  Avoid reverting that decision.
1878       if (!this->is_section_included(deferred->shndx_))
1879         continue;
1880
1881       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1882                            shdr, deferred->reloc_shndx_,
1883                            deferred->reloc_type_);
1884     }
1885
1886   this->deferred_layout_.clear();
1887
1888   // Now handle the deferred relocation sections.
1889
1890   Output_sections& out_sections(this->output_sections());
1891   std::vector<Address>& out_section_offsets(this->section_offsets());
1892
1893   for (deferred = this->deferred_layout_relocs_.begin();
1894        deferred != this->deferred_layout_relocs_.end();
1895        ++deferred)
1896     {
1897       unsigned int shndx = deferred->shndx_;
1898       typename This::Shdr shdr(deferred->shdr_data_);
1899       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1900
1901       Output_section* data_section = out_sections[data_shndx];
1902       if (data_section == NULL)
1903         {
1904           out_sections[shndx] = NULL;
1905           out_section_offsets[shndx] = invalid_address;
1906           continue;
1907         }
1908
1909       Relocatable_relocs* rr = new Relocatable_relocs();
1910       this->set_relocatable_relocs(shndx, rr);
1911
1912       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1913                                                 data_section, rr);
1914       out_sections[shndx] = os;
1915       out_section_offsets[shndx] = invalid_address;
1916     }
1917 }
1918
1919 // Add the symbols to the symbol table.
1920
1921 template<int size, bool big_endian>
1922 void
1923 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1924                                                     Read_symbols_data* sd,
1925                                                     Layout*)
1926 {
1927   if (sd->symbols == NULL)
1928     {
1929       gold_assert(sd->symbol_names == NULL);
1930       return;
1931     }
1932
1933   const int sym_size = This::sym_size;
1934   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1935                      / sym_size);
1936   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1937     {
1938       this->error(_("size of symbols is not multiple of symbol size"));
1939       return;
1940     }
1941
1942   this->symbols_.resize(symcount);
1943
1944   const char* sym_names =
1945     reinterpret_cast<const char*>(sd->symbol_names->data());
1946   symtab->add_from_relobj(this,
1947                           sd->symbols->data() + sd->external_symbols_offset,
1948                           symcount, this->local_symbol_count_,
1949                           sym_names, sd->symbol_names_size,
1950                           &this->symbols_,
1951                           &this->defined_count_);
1952
1953   delete sd->symbols;
1954   sd->symbols = NULL;
1955   delete sd->symbol_names;
1956   sd->symbol_names = NULL;
1957 }
1958
1959 // Find out if this object, that is a member of a lib group, should be included
1960 // in the link. We check every symbol defined by this object. If the symbol
1961 // table has a strong undefined reference to that symbol, we have to include
1962 // the object.
1963
1964 template<int size, bool big_endian>
1965 Archive::Should_include
1966 Sized_relobj_file<size, big_endian>::do_should_include_member(
1967     Symbol_table* symtab,
1968     Layout* layout,
1969     Read_symbols_data* sd,
1970     std::string* why)
1971 {
1972   char* tmpbuf = NULL;
1973   size_t tmpbuflen = 0;
1974   const char* sym_names =
1975       reinterpret_cast<const char*>(sd->symbol_names->data());
1976   const unsigned char* syms =
1977       sd->symbols->data() + sd->external_symbols_offset;
1978   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1979   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1980                          / sym_size);
1981
1982   const unsigned char* p = syms;
1983
1984   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1985     {
1986       elfcpp::Sym<size, big_endian> sym(p);
1987       unsigned int st_shndx = sym.get_st_shndx();
1988       if (st_shndx == elfcpp::SHN_UNDEF)
1989         continue;
1990
1991       unsigned int st_name = sym.get_st_name();
1992       const char* name = sym_names + st_name;
1993       Symbol* symbol;
1994       Archive::Should_include t = Archive::should_include_member(symtab,
1995                                                                  layout,
1996                                                                  name,
1997                                                                  &symbol, why,
1998                                                                  &tmpbuf,
1999                                                                  &tmpbuflen);
2000       if (t == Archive::SHOULD_INCLUDE_YES)
2001         {
2002           if (tmpbuf != NULL)
2003             free(tmpbuf);
2004           return t;
2005         }
2006     }
2007   if (tmpbuf != NULL)
2008     free(tmpbuf);
2009   return Archive::SHOULD_INCLUDE_UNKNOWN;
2010 }
2011
2012 // Iterate over global defined symbols, calling a visitor class V for each.
2013
2014 template<int size, bool big_endian>
2015 void
2016 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2017     Read_symbols_data* sd,
2018     Library_base::Symbol_visitor_base* v)
2019 {
2020   const char* sym_names =
2021       reinterpret_cast<const char*>(sd->symbol_names->data());
2022   const unsigned char* syms =
2023       sd->symbols->data() + sd->external_symbols_offset;
2024   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2025   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2026                      / sym_size);
2027   const unsigned char* p = syms;
2028
2029   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2030     {
2031       elfcpp::Sym<size, big_endian> sym(p);
2032       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2033         v->visit(sym_names + sym.get_st_name());
2034     }
2035 }
2036
2037 // Return whether the local symbol SYMNDX has a PLT offset.
2038
2039 template<int size, bool big_endian>
2040 bool
2041 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2042     unsigned int symndx) const
2043 {
2044   typename Local_plt_offsets::const_iterator p =
2045     this->local_plt_offsets_.find(symndx);
2046   return p != this->local_plt_offsets_.end();
2047 }
2048
2049 // Get the PLT offset of a local symbol.
2050
2051 template<int size, bool big_endian>
2052 unsigned int
2053 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2054     unsigned int symndx) const
2055 {
2056   typename Local_plt_offsets::const_iterator p =
2057     this->local_plt_offsets_.find(symndx);
2058   gold_assert(p != this->local_plt_offsets_.end());
2059   return p->second;
2060 }
2061
2062 // Set the PLT offset of a local symbol.
2063
2064 template<int size, bool big_endian>
2065 void
2066 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2067     unsigned int symndx, unsigned int plt_offset)
2068 {
2069   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2070     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2071   gold_assert(ins.second);
2072 }
2073
2074 // First pass over the local symbols.  Here we add their names to
2075 // *POOL and *DYNPOOL, and we store the symbol value in
2076 // THIS->LOCAL_VALUES_.  This function is always called from a
2077 // singleton thread.  This is followed by a call to
2078 // finalize_local_symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2083                                                             Stringpool* dynpool)
2084 {
2085   gold_assert(this->symtab_shndx_ != -1U);
2086   if (this->symtab_shndx_ == 0)
2087     {
2088       // This object has no symbols.  Weird but legal.
2089       return;
2090     }
2091
2092   // Read the symbol table section header.
2093   const unsigned int symtab_shndx = this->symtab_shndx_;
2094   typename This::Shdr symtabshdr(this,
2095                                  this->elf_file_.section_header(symtab_shndx));
2096   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2097
2098   // Read the local symbols.
2099   const int sym_size = This::sym_size;
2100   const unsigned int loccount = this->local_symbol_count_;
2101   gold_assert(loccount == symtabshdr.get_sh_info());
2102   off_t locsize = loccount * sym_size;
2103   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2104                                               locsize, true, true);
2105
2106   // Read the symbol names.
2107   const unsigned int strtab_shndx =
2108     this->adjust_shndx(symtabshdr.get_sh_link());
2109   section_size_type strtab_size;
2110   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2111                                                         &strtab_size,
2112                                                         true);
2113   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2114
2115   // Loop over the local symbols.
2116
2117   const Output_sections& out_sections(this->output_sections());
2118   unsigned int shnum = this->shnum();
2119   unsigned int count = 0;
2120   unsigned int dyncount = 0;
2121   // Skip the first, dummy, symbol.
2122   psyms += sym_size;
2123   bool strip_all = parameters->options().strip_all();
2124   bool discard_all = parameters->options().discard_all();
2125   bool discard_locals = parameters->options().discard_locals();
2126   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2127     {
2128       elfcpp::Sym<size, big_endian> sym(psyms);
2129
2130       Symbol_value<size>& lv(this->local_values_[i]);
2131
2132       bool is_ordinary;
2133       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2134                                                   &is_ordinary);
2135       lv.set_input_shndx(shndx, is_ordinary);
2136
2137       if (sym.get_st_type() == elfcpp::STT_SECTION)
2138         lv.set_is_section_symbol();
2139       else if (sym.get_st_type() == elfcpp::STT_TLS)
2140         lv.set_is_tls_symbol();
2141       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2142         lv.set_is_ifunc_symbol();
2143
2144       // Save the input symbol value for use in do_finalize_local_symbols().
2145       lv.set_input_value(sym.get_st_value());
2146
2147       // Decide whether this symbol should go into the output file.
2148
2149       if ((shndx < shnum && out_sections[shndx] == NULL)
2150           || shndx == this->discarded_eh_frame_shndx_)
2151         {
2152           lv.set_no_output_symtab_entry();
2153           gold_assert(!lv.needs_output_dynsym_entry());
2154           continue;
2155         }
2156
2157       if (sym.get_st_type() == elfcpp::STT_SECTION
2158           || !this->adjust_local_symbol(&lv))
2159         {
2160           lv.set_no_output_symtab_entry();
2161           gold_assert(!lv.needs_output_dynsym_entry());
2162           continue;
2163         }
2164
2165       if (sym.get_st_name() >= strtab_size)
2166         {
2167           this->error(_("local symbol %u section name out of range: %u >= %u"),
2168                       i, sym.get_st_name(),
2169                       static_cast<unsigned int>(strtab_size));
2170           lv.set_no_output_symtab_entry();
2171           continue;
2172         }
2173
2174       const char* name = pnames + sym.get_st_name();
2175
2176       // If needed, add the symbol to the dynamic symbol table string pool.
2177       if (lv.needs_output_dynsym_entry())
2178         {
2179           dynpool->add(name, true, NULL);
2180           ++dyncount;
2181         }
2182
2183       if (strip_all
2184           || (discard_all && lv.may_be_discarded_from_output_symtab()))
2185         {
2186           lv.set_no_output_symtab_entry();
2187           continue;
2188         }
2189
2190       // If --discard-locals option is used, discard all temporary local
2191       // symbols.  These symbols start with system-specific local label
2192       // prefixes, typically .L for ELF system.  We want to be compatible
2193       // with GNU ld so here we essentially use the same check in
2194       // bfd_is_local_label().  The code is different because we already
2195       // know that:
2196       //
2197       //   - the symbol is local and thus cannot have global or weak binding.
2198       //   - the symbol is not a section symbol.
2199       //   - the symbol has a name.
2200       //
2201       // We do not discard a symbol if it needs a dynamic symbol entry.
2202       if (discard_locals
2203           && sym.get_st_type() != elfcpp::STT_FILE
2204           && !lv.needs_output_dynsym_entry()
2205           && lv.may_be_discarded_from_output_symtab()
2206           && parameters->target().is_local_label_name(name))
2207         {
2208           lv.set_no_output_symtab_entry();
2209           continue;
2210         }
2211
2212       // Discard the local symbol if -retain_symbols_file is specified
2213       // and the local symbol is not in that file.
2214       if (!parameters->options().should_retain_symbol(name))
2215         {
2216           lv.set_no_output_symtab_entry();
2217           continue;
2218         }
2219
2220       // Add the symbol to the symbol table string pool.
2221       pool->add(name, true, NULL);
2222       ++count;
2223     }
2224
2225   this->output_local_symbol_count_ = count;
2226   this->output_local_dynsym_count_ = dyncount;
2227 }
2228
2229 // Compute the final value of a local symbol.
2230
2231 template<int size, bool big_endian>
2232 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2233 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2234     unsigned int r_sym,
2235     const Symbol_value<size>* lv_in,
2236     Symbol_value<size>* lv_out,
2237     bool relocatable,
2238     const Output_sections& out_sections,
2239     const std::vector<Address>& out_offsets,
2240     const Symbol_table* symtab)
2241 {
2242   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2243   // we may have a memory leak.
2244   gold_assert(lv_out->has_output_value());
2245
2246   bool is_ordinary;
2247   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2248
2249   // Set the output symbol value.
2250
2251   if (!is_ordinary)
2252     {
2253       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2254         lv_out->set_output_value(lv_in->input_value());
2255       else
2256         {
2257           this->error(_("unknown section index %u for local symbol %u"),
2258                       shndx, r_sym);
2259           lv_out->set_output_value(0);
2260           return This::CFLV_ERROR;
2261         }
2262     }
2263   else
2264     {
2265       if (shndx >= this->shnum())
2266         {
2267           this->error(_("local symbol %u section index %u out of range"),
2268                       r_sym, shndx);
2269           lv_out->set_output_value(0);
2270           return This::CFLV_ERROR;
2271         }
2272
2273       Output_section* os = out_sections[shndx];
2274       Address secoffset = out_offsets[shndx];
2275       if (symtab->is_section_folded(this, shndx))
2276         {
2277           gold_assert(os == NULL && secoffset == invalid_address);
2278           // Get the os of the section it is folded onto.
2279           Section_id folded = symtab->icf()->get_folded_section(this,
2280                                                                 shndx);
2281           gold_assert(folded.first != NULL);
2282           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2283             <Sized_relobj_file<size, big_endian>*>(folded.first);
2284           os = folded_obj->output_section(folded.second);
2285           gold_assert(os != NULL);
2286           secoffset = folded_obj->get_output_section_offset(folded.second);
2287
2288           // This could be a relaxed input section.
2289           if (secoffset == invalid_address)
2290             {
2291               const Output_relaxed_input_section* relaxed_section =
2292                 os->find_relaxed_input_section(folded_obj, folded.second);
2293               gold_assert(relaxed_section != NULL);
2294               secoffset = relaxed_section->address() - os->address();
2295             }
2296         }
2297
2298       if (os == NULL)
2299         {
2300           // This local symbol belongs to a section we are discarding.
2301           // In some cases when applying relocations later, we will
2302           // attempt to match it to the corresponding kept section,
2303           // so we leave the input value unchanged here.
2304           return This::CFLV_DISCARDED;
2305         }
2306       else if (secoffset == invalid_address)
2307         {
2308           uint64_t start;
2309
2310           // This is a SHF_MERGE section or one which otherwise
2311           // requires special handling.
2312           if (shndx == this->discarded_eh_frame_shndx_)
2313             {
2314               // This local symbol belongs to a discarded .eh_frame
2315               // section.  Just treat it like the case in which
2316               // os == NULL above.
2317               gold_assert(this->has_eh_frame_);
2318               return This::CFLV_DISCARDED;
2319             }
2320           else if (!lv_in->is_section_symbol())
2321             {
2322               // This is not a section symbol.  We can determine
2323               // the final value now.
2324               lv_out->set_output_value(
2325                   os->output_address(this, shndx, lv_in->input_value()));
2326             }
2327           else if (!os->find_starting_output_address(this, shndx, &start))
2328             {
2329               // This is a section symbol, but apparently not one in a
2330               // merged section.  First check to see if this is a relaxed
2331               // input section.  If so, use its address.  Otherwise just
2332               // use the start of the output section.  This happens with
2333               // relocatable links when the input object has section
2334               // symbols for arbitrary non-merge sections.
2335               const Output_section_data* posd =
2336                 os->find_relaxed_input_section(this, shndx);
2337               if (posd != NULL)
2338                 {
2339                   Address relocatable_link_adjustment =
2340                     relocatable ? os->address() : 0;
2341                   lv_out->set_output_value(posd->address()
2342                                            - relocatable_link_adjustment);
2343                 }
2344               else
2345                 lv_out->set_output_value(os->address());
2346             }
2347           else
2348             {
2349               // We have to consider the addend to determine the
2350               // value to use in a relocation.  START is the start
2351               // of this input section.  If we are doing a relocatable
2352               // link, use offset from start output section instead of
2353               // address.
2354               Address adjusted_start =
2355                 relocatable ? start - os->address() : start;
2356               Merged_symbol_value<size>* msv =
2357                 new Merged_symbol_value<size>(lv_in->input_value(),
2358                                               adjusted_start);
2359               lv_out->set_merged_symbol_value(msv);
2360             }
2361         }
2362       else if (lv_in->is_tls_symbol())
2363         lv_out->set_output_value(os->tls_offset()
2364                                  + secoffset
2365                                  + lv_in->input_value());
2366       else
2367         lv_out->set_output_value((relocatable ? 0 : os->address())
2368                                  + secoffset
2369                                  + lv_in->input_value());
2370     }
2371   return This::CFLV_OK;
2372 }
2373
2374 // Compute final local symbol value.  R_SYM is the index of a local
2375 // symbol in symbol table.  LV points to a symbol value, which is
2376 // expected to hold the input value and to be over-written by the
2377 // final value.  SYMTAB points to a symbol table.  Some targets may want
2378 // to know would-be-finalized local symbol values in relaxation.
2379 // Hence we provide this method.  Since this method updates *LV, a
2380 // callee should make a copy of the original local symbol value and
2381 // use the copy instead of modifying an object's local symbols before
2382 // everything is finalized.  The caller should also free up any allocated
2383 // memory in the return value in *LV.
2384 template<int size, bool big_endian>
2385 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2386 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2387     unsigned int r_sym,
2388     const Symbol_value<size>* lv_in,
2389     Symbol_value<size>* lv_out,
2390     const Symbol_table* symtab)
2391 {
2392   // This is just a wrapper of compute_final_local_value_internal.
2393   const bool relocatable = parameters->options().relocatable();
2394   const Output_sections& out_sections(this->output_sections());
2395   const std::vector<Address>& out_offsets(this->section_offsets());
2396   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2397                                                   relocatable, out_sections,
2398                                                   out_offsets, symtab);
2399 }
2400
2401 // Finalize the local symbols.  Here we set the final value in
2402 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2403 // This function is always called from a singleton thread.  The actual
2404 // output of the local symbols will occur in a separate task.
2405
2406 template<int size, bool big_endian>
2407 unsigned int
2408 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2409     unsigned int index,
2410     off_t off,
2411     Symbol_table* symtab)
2412 {
2413   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2414
2415   const unsigned int loccount = this->local_symbol_count_;
2416   this->local_symbol_offset_ = off;
2417
2418   const bool relocatable = parameters->options().relocatable();
2419   const Output_sections& out_sections(this->output_sections());
2420   const std::vector<Address>& out_offsets(this->section_offsets());
2421
2422   for (unsigned int i = 1; i < loccount; ++i)
2423     {
2424       Symbol_value<size>* lv = &this->local_values_[i];
2425
2426       Compute_final_local_value_status cflv_status =
2427         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2428                                                  out_sections, out_offsets,
2429                                                  symtab);
2430       switch (cflv_status)
2431         {
2432         case CFLV_OK:
2433           if (!lv->is_output_symtab_index_set())
2434             {
2435               lv->set_output_symtab_index(index);
2436               ++index;
2437             }
2438           break;
2439         case CFLV_DISCARDED:
2440         case CFLV_ERROR:
2441           // Do nothing.
2442           break;
2443         default:
2444           gold_unreachable();
2445         }
2446     }
2447   return index;
2448 }
2449
2450 // Set the output dynamic symbol table indexes for the local variables.
2451
2452 template<int size, bool big_endian>
2453 unsigned int
2454 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2455     unsigned int index)
2456 {
2457   const unsigned int loccount = this->local_symbol_count_;
2458   for (unsigned int i = 1; i < loccount; ++i)
2459     {
2460       Symbol_value<size>& lv(this->local_values_[i]);
2461       if (lv.needs_output_dynsym_entry())
2462         {
2463           lv.set_output_dynsym_index(index);
2464           ++index;
2465         }
2466     }
2467   return index;
2468 }
2469
2470 // Set the offset where local dynamic symbol information will be stored.
2471 // Returns the count of local symbols contributed to the symbol table by
2472 // this object.
2473
2474 template<int size, bool big_endian>
2475 unsigned int
2476 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2477 {
2478   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2479   this->local_dynsym_offset_ = off;
2480   return this->output_local_dynsym_count_;
2481 }
2482
2483 // If Symbols_data is not NULL get the section flags from here otherwise
2484 // get it from the file.
2485
2486 template<int size, bool big_endian>
2487 uint64_t
2488 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2489 {
2490   Symbols_data* sd = this->get_symbols_data();
2491   if (sd != NULL)
2492     {
2493       const unsigned char* pshdrs = sd->section_headers_data
2494                                     + This::shdr_size * shndx;
2495       typename This::Shdr shdr(pshdrs);
2496       return shdr.get_sh_flags();
2497     }
2498   // If sd is NULL, read the section header from the file.
2499   return this->elf_file_.section_flags(shndx);
2500 }
2501
2502 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2503 // in icf.cc
2504
2505 template<int size, bool big_endian>
2506 uint64_t
2507 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2508 {
2509   Symbols_data* sd = this->get_symbols_data();
2510   gold_assert(sd != NULL);
2511
2512   const unsigned char* pshdrs = sd->section_headers_data
2513                                 + This::shdr_size * shndx;
2514   typename This::Shdr shdr(pshdrs);
2515   return shdr.get_sh_entsize();
2516 }
2517
2518 // Write out the local symbols.
2519
2520 template<int size, bool big_endian>
2521 void
2522 Sized_relobj_file<size, big_endian>::write_local_symbols(
2523     Output_file* of,
2524     const Stringpool* sympool,
2525     const Stringpool* dynpool,
2526     Output_symtab_xindex* symtab_xindex,
2527     Output_symtab_xindex* dynsym_xindex,
2528     off_t symtab_off)
2529 {
2530   const bool strip_all = parameters->options().strip_all();
2531   if (strip_all)
2532     {
2533       if (this->output_local_dynsym_count_ == 0)
2534         return;
2535       this->output_local_symbol_count_ = 0;
2536     }
2537
2538   gold_assert(this->symtab_shndx_ != -1U);
2539   if (this->symtab_shndx_ == 0)
2540     {
2541       // This object has no symbols.  Weird but legal.
2542       return;
2543     }
2544
2545   // Read the symbol table section header.
2546   const unsigned int symtab_shndx = this->symtab_shndx_;
2547   typename This::Shdr symtabshdr(this,
2548                                  this->elf_file_.section_header(symtab_shndx));
2549   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2550   const unsigned int loccount = this->local_symbol_count_;
2551   gold_assert(loccount == symtabshdr.get_sh_info());
2552
2553   // Read the local symbols.
2554   const int sym_size = This::sym_size;
2555   off_t locsize = loccount * sym_size;
2556   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2557                                               locsize, true, false);
2558
2559   // Read the symbol names.
2560   const unsigned int strtab_shndx =
2561     this->adjust_shndx(symtabshdr.get_sh_link());
2562   section_size_type strtab_size;
2563   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2564                                                         &strtab_size,
2565                                                         false);
2566   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2567
2568   // Get views into the output file for the portions of the symbol table
2569   // and the dynamic symbol table that we will be writing.
2570   off_t output_size = this->output_local_symbol_count_ * sym_size;
2571   unsigned char* oview = NULL;
2572   if (output_size > 0)
2573     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2574                                 output_size);
2575
2576   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2577   unsigned char* dyn_oview = NULL;
2578   if (dyn_output_size > 0)
2579     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2580                                     dyn_output_size);
2581
2582   const Output_sections out_sections(this->output_sections());
2583
2584   gold_assert(this->local_values_.size() == loccount);
2585
2586   unsigned char* ov = oview;
2587   unsigned char* dyn_ov = dyn_oview;
2588   psyms += sym_size;
2589   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2590     {
2591       elfcpp::Sym<size, big_endian> isym(psyms);
2592
2593       Symbol_value<size>& lv(this->local_values_[i]);
2594
2595       bool is_ordinary;
2596       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2597                                                      &is_ordinary);
2598       if (is_ordinary)
2599         {
2600           gold_assert(st_shndx < out_sections.size());
2601           if (out_sections[st_shndx] == NULL)
2602             continue;
2603           st_shndx = out_sections[st_shndx]->out_shndx();
2604           if (st_shndx >= elfcpp::SHN_LORESERVE)
2605             {
2606               if (lv.has_output_symtab_entry())
2607                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2608               if (lv.has_output_dynsym_entry())
2609                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2610               st_shndx = elfcpp::SHN_XINDEX;
2611             }
2612         }
2613
2614       // Write the symbol to the output symbol table.
2615       if (lv.has_output_symtab_entry())
2616         {
2617           elfcpp::Sym_write<size, big_endian> osym(ov);
2618
2619           gold_assert(isym.get_st_name() < strtab_size);
2620           const char* name = pnames + isym.get_st_name();
2621           osym.put_st_name(sympool->get_offset(name));
2622           osym.put_st_value(this->local_values_[i].value(this, 0));
2623           osym.put_st_size(isym.get_st_size());
2624           osym.put_st_info(isym.get_st_info());
2625           osym.put_st_other(isym.get_st_other());
2626           osym.put_st_shndx(st_shndx);
2627
2628           ov += sym_size;
2629         }
2630
2631       // Write the symbol to the output dynamic symbol table.
2632       if (lv.has_output_dynsym_entry())
2633         {
2634           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2635           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2636
2637           gold_assert(isym.get_st_name() < strtab_size);
2638           const char* name = pnames + isym.get_st_name();
2639           osym.put_st_name(dynpool->get_offset(name));
2640           osym.put_st_value(this->local_values_[i].value(this, 0));
2641           osym.put_st_size(isym.get_st_size());
2642           osym.put_st_info(isym.get_st_info());
2643           osym.put_st_other(isym.get_st_other());
2644           osym.put_st_shndx(st_shndx);
2645
2646           dyn_ov += sym_size;
2647         }
2648     }
2649
2650
2651   if (output_size > 0)
2652     {
2653       gold_assert(ov - oview == output_size);
2654       of->write_output_view(symtab_off + this->local_symbol_offset_,
2655                             output_size, oview);
2656     }
2657
2658   if (dyn_output_size > 0)
2659     {
2660       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2661       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2662                             dyn_oview);
2663     }
2664 }
2665
2666 // Set *INFO to symbolic information about the offset OFFSET in the
2667 // section SHNDX.  Return true if we found something, false if we
2668 // found nothing.
2669
2670 template<int size, bool big_endian>
2671 bool
2672 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2673     unsigned int shndx,
2674     off_t offset,
2675     Symbol_location_info* info)
2676 {
2677   if (this->symtab_shndx_ == 0)
2678     return false;
2679
2680   section_size_type symbols_size;
2681   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2682                                                         &symbols_size,
2683                                                         false);
2684
2685   unsigned int symbol_names_shndx =
2686     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2687   section_size_type names_size;
2688   const unsigned char* symbol_names_u =
2689     this->section_contents(symbol_names_shndx, &names_size, false);
2690   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2691
2692   const int sym_size = This::sym_size;
2693   const size_t count = symbols_size / sym_size;
2694
2695   const unsigned char* p = symbols;
2696   for (size_t i = 0; i < count; ++i, p += sym_size)
2697     {
2698       elfcpp::Sym<size, big_endian> sym(p);
2699
2700       if (sym.get_st_type() == elfcpp::STT_FILE)
2701         {
2702           if (sym.get_st_name() >= names_size)
2703             info->source_file = "(invalid)";
2704           else
2705             info->source_file = symbol_names + sym.get_st_name();
2706           continue;
2707         }
2708
2709       bool is_ordinary;
2710       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2711                                                      &is_ordinary);
2712       if (is_ordinary
2713           && st_shndx == shndx
2714           && static_cast<off_t>(sym.get_st_value()) <= offset
2715           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2716               > offset))
2717         {
2718           info->enclosing_symbol_type = sym.get_st_type();
2719           if (sym.get_st_name() > names_size)
2720             info->enclosing_symbol_name = "(invalid)";
2721           else
2722             {
2723               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2724               if (parameters->options().do_demangle())
2725                 {
2726                   char* demangled_name = cplus_demangle(
2727                       info->enclosing_symbol_name.c_str(),
2728                       DMGL_ANSI | DMGL_PARAMS);
2729                   if (demangled_name != NULL)
2730                     {
2731                       info->enclosing_symbol_name.assign(demangled_name);
2732                       free(demangled_name);
2733                     }
2734                 }
2735             }
2736           return true;
2737         }
2738     }
2739
2740   return false;
2741 }
2742
2743 // Look for a kept section corresponding to the given discarded section,
2744 // and return its output address.  This is used only for relocations in
2745 // debugging sections.  If we can't find the kept section, return 0.
2746
2747 template<int size, bool big_endian>
2748 typename Sized_relobj_file<size, big_endian>::Address
2749 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2750     unsigned int shndx,
2751     bool* found) const
2752 {
2753   Relobj* kept_object;
2754   unsigned int kept_shndx;
2755   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2756     {
2757       Sized_relobj_file<size, big_endian>* kept_relobj =
2758         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2759       Output_section* os = kept_relobj->output_section(kept_shndx);
2760       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2761       if (os != NULL && offset != invalid_address)
2762         {
2763           *found = true;
2764           return os->address() + offset;
2765         }
2766     }
2767   *found = false;
2768   return 0;
2769 }
2770
2771 // Get symbol counts.
2772
2773 template<int size, bool big_endian>
2774 void
2775 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2776     const Symbol_table*,
2777     size_t* defined,
2778     size_t* used) const
2779 {
2780   *defined = this->defined_count_;
2781   size_t count = 0;
2782   for (typename Symbols::const_iterator p = this->symbols_.begin();
2783        p != this->symbols_.end();
2784        ++p)
2785     if (*p != NULL
2786         && (*p)->source() == Symbol::FROM_OBJECT
2787         && (*p)->object() == this
2788         && (*p)->is_defined())
2789       ++count;
2790   *used = count;
2791 }
2792
2793 // Return a view of the decompressed contents of a section.  Set *PLEN
2794 // to the size.  Set *IS_NEW to true if the contents need to be freed
2795 // by the caller.
2796
2797 template<int size, bool big_endian>
2798 const unsigned char*
2799 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2800     unsigned int shndx,
2801     section_size_type* plen,
2802     bool* is_new)
2803 {
2804   section_size_type buffer_size;
2805   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2806                                                           false);
2807
2808   if (this->compressed_sections_ == NULL)
2809     {
2810       *plen = buffer_size;
2811       *is_new = false;
2812       return buffer;
2813     }
2814
2815   Compressed_section_map::const_iterator p =
2816       this->compressed_sections_->find(shndx);
2817   if (p == this->compressed_sections_->end())
2818     {
2819       *plen = buffer_size;
2820       *is_new = false;
2821       return buffer;
2822     }
2823
2824   section_size_type uncompressed_size = p->second.size;
2825   if (p->second.contents != NULL)
2826     {
2827       *plen = uncompressed_size;
2828       *is_new = false;
2829       return p->second.contents;
2830     }
2831
2832   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2833   if (!decompress_input_section(buffer,
2834                                 buffer_size,
2835                                 uncompressed_data,
2836                                 uncompressed_size))
2837     this->error(_("could not decompress section %s"),
2838                 this->do_section_name(shndx).c_str());
2839
2840   // We could cache the results in p->second.contents and store
2841   // false in *IS_NEW, but build_compressed_section_map() would
2842   // have done so if it had expected it to be profitable.  If
2843   // we reach this point, we expect to need the contents only
2844   // once in this pass.
2845   *plen = uncompressed_size;
2846   *is_new = true;
2847   return uncompressed_data;
2848 }
2849
2850 // Discard any buffers of uncompressed sections.  This is done
2851 // at the end of the Add_symbols task.
2852
2853 template<int size, bool big_endian>
2854 void
2855 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2856 {
2857   if (this->compressed_sections_ == NULL)
2858     return;
2859
2860   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2861        p != this->compressed_sections_->end();
2862        ++p)
2863     {
2864       if (p->second.contents != NULL)
2865         {
2866           delete[] p->second.contents;
2867           p->second.contents = NULL;
2868         }
2869     }
2870 }
2871
2872 // Input_objects methods.
2873
2874 // Add a regular relocatable object to the list.  Return false if this
2875 // object should be ignored.
2876
2877 bool
2878 Input_objects::add_object(Object* obj)
2879 {
2880   // Print the filename if the -t/--trace option is selected.
2881   if (parameters->options().trace())
2882     gold_info("%s", obj->name().c_str());
2883
2884   if (!obj->is_dynamic())
2885     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2886   else
2887     {
2888       // See if this is a duplicate SONAME.
2889       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2890       const char* soname = dynobj->soname();
2891
2892       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2893         this->sonames_.insert(soname);
2894       if (!ins.second)
2895         {
2896           // We have already seen a dynamic object with this soname.
2897           return false;
2898         }
2899
2900       this->dynobj_list_.push_back(dynobj);
2901     }
2902
2903   // Add this object to the cross-referencer if requested.
2904   if (parameters->options().user_set_print_symbol_counts()
2905       || parameters->options().cref())
2906     {
2907       if (this->cref_ == NULL)
2908         this->cref_ = new Cref();
2909       this->cref_->add_object(obj);
2910     }
2911
2912   return true;
2913 }
2914
2915 // For each dynamic object, record whether we've seen all of its
2916 // explicit dependencies.
2917
2918 void
2919 Input_objects::check_dynamic_dependencies() const
2920 {
2921   bool issued_copy_dt_needed_error = false;
2922   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2923        p != this->dynobj_list_.end();
2924        ++p)
2925     {
2926       const Dynobj::Needed& needed((*p)->needed());
2927       bool found_all = true;
2928       Dynobj::Needed::const_iterator pneeded;
2929       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2930         {
2931           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2932             {
2933               found_all = false;
2934               break;
2935             }
2936         }
2937       (*p)->set_has_unknown_needed_entries(!found_all);
2938
2939       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2940       // that gold does not support.  However, they cause no trouble
2941       // unless there is a DT_NEEDED entry that we don't know about;
2942       // warn only in that case.
2943       if (!found_all
2944           && !issued_copy_dt_needed_error
2945           && (parameters->options().copy_dt_needed_entries()
2946               || parameters->options().add_needed()))
2947         {
2948           const char* optname;
2949           if (parameters->options().copy_dt_needed_entries())
2950             optname = "--copy-dt-needed-entries";
2951           else
2952             optname = "--add-needed";
2953           gold_error(_("%s is not supported but is required for %s in %s"),
2954                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2955           issued_copy_dt_needed_error = true;
2956         }
2957     }
2958 }
2959
2960 // Start processing an archive.
2961
2962 void
2963 Input_objects::archive_start(Archive* archive)
2964 {
2965   if (parameters->options().user_set_print_symbol_counts()
2966       || parameters->options().cref())
2967     {
2968       if (this->cref_ == NULL)
2969         this->cref_ = new Cref();
2970       this->cref_->add_archive_start(archive);
2971     }
2972 }
2973
2974 // Stop processing an archive.
2975
2976 void
2977 Input_objects::archive_stop(Archive* archive)
2978 {
2979   if (parameters->options().user_set_print_symbol_counts()
2980       || parameters->options().cref())
2981     this->cref_->add_archive_stop(archive);
2982 }
2983
2984 // Print symbol counts
2985
2986 void
2987 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2988 {
2989   if (parameters->options().user_set_print_symbol_counts()
2990       && this->cref_ != NULL)
2991     this->cref_->print_symbol_counts(symtab);
2992 }
2993
2994 // Print a cross reference table.
2995
2996 void
2997 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2998 {
2999   if (parameters->options().cref() && this->cref_ != NULL)
3000     this->cref_->print_cref(symtab, f);
3001 }
3002
3003 // Relocate_info methods.
3004
3005 // Return a string describing the location of a relocation when file
3006 // and lineno information is not available.  This is only used in
3007 // error messages.
3008
3009 template<int size, bool big_endian>
3010 std::string
3011 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3012 {
3013   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3014   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3015   if (!ret.empty())
3016     return ret;
3017
3018   ret = this->object->name();
3019
3020   Symbol_location_info info;
3021   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3022     {
3023       if (!info.source_file.empty())
3024         {
3025           ret += ":";
3026           ret += info.source_file;
3027         }
3028       ret += ":";
3029       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3030         ret += _("function ");
3031       ret += info.enclosing_symbol_name;
3032       return ret;
3033     }
3034
3035   ret += "(";
3036   ret += this->object->section_name(this->data_shndx);
3037   char buf[100];
3038   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3039   ret += buf;
3040   return ret;
3041 }
3042
3043 } // End namespace gold.
3044
3045 namespace
3046 {
3047
3048 using namespace gold;
3049
3050 // Read an ELF file with the header and return the appropriate
3051 // instance of Object.
3052
3053 template<int size, bool big_endian>
3054 Object*
3055 make_elf_sized_object(const std::string& name, Input_file* input_file,
3056                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3057                       bool* punconfigured)
3058 {
3059   Target* target = select_target(input_file, offset,
3060                                  ehdr.get_e_machine(), size, big_endian,
3061                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
3062                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3063   if (target == NULL)
3064     gold_fatal(_("%s: unsupported ELF machine number %d"),
3065                name.c_str(), ehdr.get_e_machine());
3066
3067   if (!parameters->target_valid())
3068     set_parameters_target(target);
3069   else if (target != &parameters->target())
3070     {
3071       if (punconfigured != NULL)
3072         *punconfigured = true;
3073       else
3074         gold_error(_("%s: incompatible target"), name.c_str());
3075       return NULL;
3076     }
3077
3078   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3079                                                    ehdr);
3080 }
3081
3082 } // End anonymous namespace.
3083
3084 namespace gold
3085 {
3086
3087 // Return whether INPUT_FILE is an ELF object.
3088
3089 bool
3090 is_elf_object(Input_file* input_file, off_t offset,
3091               const unsigned char** start, int* read_size)
3092 {
3093   off_t filesize = input_file->file().filesize();
3094   int want = elfcpp::Elf_recognizer::max_header_size;
3095   if (filesize - offset < want)
3096     want = filesize - offset;
3097
3098   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3099                                                        true, false);
3100   *start = p;
3101   *read_size = want;
3102
3103   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3104 }
3105
3106 // Read an ELF file and return the appropriate instance of Object.
3107
3108 Object*
3109 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3110                 const unsigned char* p, section_offset_type bytes,
3111                 bool* punconfigured)
3112 {
3113   if (punconfigured != NULL)
3114     *punconfigured = false;
3115
3116   std::string error;
3117   bool big_endian = false;
3118   int size = 0;
3119   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3120                                                &big_endian, &error))
3121     {
3122       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3123       return NULL;
3124     }
3125
3126   if (size == 32)
3127     {
3128       if (big_endian)
3129         {
3130 #ifdef HAVE_TARGET_32_BIG
3131           elfcpp::Ehdr<32, true> ehdr(p);
3132           return make_elf_sized_object<32, true>(name, input_file,
3133                                                  offset, ehdr, punconfigured);
3134 #else
3135           if (punconfigured != NULL)
3136             *punconfigured = true;
3137           else
3138             gold_error(_("%s: not configured to support "
3139                          "32-bit big-endian object"),
3140                        name.c_str());
3141           return NULL;
3142 #endif
3143         }
3144       else
3145         {
3146 #ifdef HAVE_TARGET_32_LITTLE
3147           elfcpp::Ehdr<32, false> ehdr(p);
3148           return make_elf_sized_object<32, false>(name, input_file,
3149                                                   offset, ehdr, punconfigured);
3150 #else
3151           if (punconfigured != NULL)
3152             *punconfigured = true;
3153           else
3154             gold_error(_("%s: not configured to support "
3155                          "32-bit little-endian object"),
3156                        name.c_str());
3157           return NULL;
3158 #endif
3159         }
3160     }
3161   else if (size == 64)
3162     {
3163       if (big_endian)
3164         {
3165 #ifdef HAVE_TARGET_64_BIG
3166           elfcpp::Ehdr<64, true> ehdr(p);
3167           return make_elf_sized_object<64, true>(name, input_file,
3168                                                  offset, ehdr, punconfigured);
3169 #else
3170           if (punconfigured != NULL)
3171             *punconfigured = true;
3172           else
3173             gold_error(_("%s: not configured to support "
3174                          "64-bit big-endian object"),
3175                        name.c_str());
3176           return NULL;
3177 #endif
3178         }
3179       else
3180         {
3181 #ifdef HAVE_TARGET_64_LITTLE
3182           elfcpp::Ehdr<64, false> ehdr(p);
3183           return make_elf_sized_object<64, false>(name, input_file,
3184                                                   offset, ehdr, punconfigured);
3185 #else
3186           if (punconfigured != NULL)
3187             *punconfigured = true;
3188           else
3189             gold_error(_("%s: not configured to support "
3190                          "64-bit little-endian object"),
3191                        name.c_str());
3192           return NULL;
3193 #endif
3194         }
3195     }
3196   else
3197     gold_unreachable();
3198 }
3199
3200 // Instantiate the templates we need.
3201
3202 #ifdef HAVE_TARGET_32_LITTLE
3203 template
3204 void
3205 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3206                                      Read_symbols_data*);
3207 template
3208 const unsigned char*
3209 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3210                             section_size_type, const unsigned char*) const;
3211 #endif
3212
3213 #ifdef HAVE_TARGET_32_BIG
3214 template
3215 void
3216 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3217                                     Read_symbols_data*);
3218 template
3219 const unsigned char*
3220 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3221                            section_size_type, const unsigned char*) const;
3222 #endif
3223
3224 #ifdef HAVE_TARGET_64_LITTLE
3225 template
3226 void
3227 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3228                                      Read_symbols_data*);
3229 template
3230 const unsigned char*
3231 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3232                             section_size_type, const unsigned char*) const;
3233 #endif
3234
3235 #ifdef HAVE_TARGET_64_BIG
3236 template
3237 void
3238 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3239                                     Read_symbols_data*);
3240 template
3241 const unsigned char*
3242 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3243                            section_size_type, const unsigned char*) const;
3244 #endif
3245
3246 #ifdef HAVE_TARGET_32_LITTLE
3247 template
3248 class Sized_relobj<32, false>;
3249
3250 template
3251 class Sized_relobj_file<32, false>;
3252 #endif
3253
3254 #ifdef HAVE_TARGET_32_BIG
3255 template
3256 class Sized_relobj<32, true>;
3257
3258 template
3259 class Sized_relobj_file<32, true>;
3260 #endif
3261
3262 #ifdef HAVE_TARGET_64_LITTLE
3263 template
3264 class Sized_relobj<64, false>;
3265
3266 template
3267 class Sized_relobj_file<64, false>;
3268 #endif
3269
3270 #ifdef HAVE_TARGET_64_BIG
3271 template
3272 class Sized_relobj<64, true>;
3273
3274 template
3275 class Sized_relobj_file<64, true>;
3276 #endif
3277
3278 #ifdef HAVE_TARGET_32_LITTLE
3279 template
3280 struct Relocate_info<32, false>;
3281 #endif
3282
3283 #ifdef HAVE_TARGET_32_BIG
3284 template
3285 struct Relocate_info<32, true>;
3286 #endif
3287
3288 #ifdef HAVE_TARGET_64_LITTLE
3289 template
3290 struct Relocate_info<64, false>;
3291 #endif
3292
3293 #ifdef HAVE_TARGET_64_BIG
3294 template
3295 struct Relocate_info<64, true>;
3296 #endif
3297
3298 #ifdef HAVE_TARGET_32_LITTLE
3299 template
3300 void
3301 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3302
3303 template
3304 void
3305 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3306                                       const unsigned char*);
3307 #endif
3308
3309 #ifdef HAVE_TARGET_32_BIG
3310 template
3311 void
3312 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3313
3314 template
3315 void
3316 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3317                                      const unsigned char*);
3318 #endif
3319
3320 #ifdef HAVE_TARGET_64_LITTLE
3321 template
3322 void
3323 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3324
3325 template
3326 void
3327 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3328                                       const unsigned char*);
3329 #endif
3330
3331 #ifdef HAVE_TARGET_64_BIG
3332 template
3333 void
3334 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3335
3336 template
3337 void
3338 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3339                                      const unsigned char*);
3340 #endif
3341
3342 } // End namespace gold.