1 // mips.cc -- mips target support for gold.
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
8 // This file is part of gold.
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
33 #include "parameters.h"
40 #include "copy-relocs.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
47 #include "attributes.h"
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
60 template<int size, bool big_endian>
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
75 template<int size, bool big_endian>
78 template<int size, bool big_endian>
81 class Mips16_stub_section_base;
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry. Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache. The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning. We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only". Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values. Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
117 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
118 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
119 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
121 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122 GOT_TYPE_STANDARD_MULTIGOT = 3,
123 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
127 // TLS type of GOT entry.
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
139 RSS_UNDEF = 0, // None - value is zero.
140 RSS_GP = 1, // Value of GP.
141 RSS_GP0 = 2, // Value of GP in object being relocated.
142 RSS_LOC = 3 // Address of location being relocated.
145 // Whether the section is readonly.
147 is_readonly_section(Output_section* output_section)
149 elfcpp::Elf_Xword section_flags = output_section->flags();
150 elfcpp::Elf_Word section_type = output_section->type();
152 if (section_type == elfcpp::SHT_NOBITS)
155 if (section_flags & elfcpp::SHF_WRITE)
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub. See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167 unsigned int r_type, bool target_is_16_bit_code)
169 // We specifically ignore branches and jumps from EF_PIC objects,
170 // where the onus is on the compiler or programmer to perform any
171 // necessary initialization of $25. Sometimes such initialization
172 // is unnecessary; for example, -mno-shared functions do not use
173 // the incoming value of $25, and may therefore be called directly.
174 if (object->is_pic())
179 case elfcpp::R_MIPS_26:
180 case elfcpp::R_MIPS_PC16:
181 case elfcpp::R_MIPS_PC21_S2:
182 case elfcpp::R_MIPS_PC26_S2:
183 case elfcpp::R_MICROMIPS_26_S1:
184 case elfcpp::R_MICROMIPS_PC7_S1:
185 case elfcpp::R_MICROMIPS_PC10_S1:
186 case elfcpp::R_MICROMIPS_PC16_S1:
187 case elfcpp::R_MICROMIPS_PC23_S2:
190 case elfcpp::R_MIPS16_26:
191 return !target_is_16_bit_code;
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid. Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
205 local_pic_function(Mips_symbol<size>* sym)
207 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208 && !sym->object()->is_dynamic()
209 && !sym->is_undefined());
211 if (sym->is_defined() && def_regular)
213 Mips_relobj<size, big_endian>* object =
214 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
216 if ((object->is_pic() || sym->is_pic())
217 && (!sym->is_mips16()
218 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
225 hi16_reloc(int r_type)
227 return (r_type == elfcpp::R_MIPS_HI16
228 || r_type == elfcpp::R_MIPS16_HI16
229 || r_type == elfcpp::R_MICROMIPS_HI16
230 || r_type == elfcpp::R_MIPS_PCHI16);
234 lo16_reloc(int r_type)
236 return (r_type == elfcpp::R_MIPS_LO16
237 || r_type == elfcpp::R_MIPS16_LO16
238 || r_type == elfcpp::R_MICROMIPS_LO16
239 || r_type == elfcpp::R_MIPS_PCLO16);
243 got16_reloc(unsigned int r_type)
245 return (r_type == elfcpp::R_MIPS_GOT16
246 || r_type == elfcpp::R_MIPS16_GOT16
247 || r_type == elfcpp::R_MICROMIPS_GOT16);
251 call_lo16_reloc(unsigned int r_type)
253 return (r_type == elfcpp::R_MIPS_CALL_LO16
254 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 got_lo16_reloc(unsigned int r_type)
260 return (r_type == elfcpp::R_MIPS_GOT_LO16
261 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 eh_reloc(unsigned int r_type)
267 return (r_type == elfcpp::R_MIPS_EH);
271 got_disp_reloc(unsigned int r_type)
273 return (r_type == elfcpp::R_MIPS_GOT_DISP
274 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 got_page_reloc(unsigned int r_type)
280 return (r_type == elfcpp::R_MIPS_GOT_PAGE
281 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 tls_gd_reloc(unsigned int r_type)
287 return (r_type == elfcpp::R_MIPS_TLS_GD
288 || r_type == elfcpp::R_MIPS16_TLS_GD
289 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 tls_gottprel_reloc(unsigned int r_type)
295 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 tls_ldm_reloc(unsigned int r_type)
303 return (r_type == elfcpp::R_MIPS_TLS_LDM
304 || r_type == elfcpp::R_MIPS16_TLS_LDM
305 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 mips16_call_reloc(unsigned int r_type)
311 return (r_type == elfcpp::R_MIPS16_26
312 || r_type == elfcpp::R_MIPS16_CALL16);
316 jal_reloc(unsigned int r_type)
318 return (r_type == elfcpp::R_MIPS_26
319 || r_type == elfcpp::R_MIPS16_26
320 || r_type == elfcpp::R_MICROMIPS_26_S1);
324 micromips_branch_reloc(unsigned int r_type)
326 return (r_type == elfcpp::R_MICROMIPS_26_S1
327 || r_type == elfcpp::R_MICROMIPS_PC16_S1
328 || r_type == elfcpp::R_MICROMIPS_PC10_S1
329 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
332 // Check if R_TYPE is a MIPS16 reloc.
334 mips16_reloc(unsigned int r_type)
338 case elfcpp::R_MIPS16_26:
339 case elfcpp::R_MIPS16_GPREL:
340 case elfcpp::R_MIPS16_GOT16:
341 case elfcpp::R_MIPS16_CALL16:
342 case elfcpp::R_MIPS16_HI16:
343 case elfcpp::R_MIPS16_LO16:
344 case elfcpp::R_MIPS16_TLS_GD:
345 case elfcpp::R_MIPS16_TLS_LDM:
346 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348 case elfcpp::R_MIPS16_TLS_GOTTPREL:
349 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
358 // Check if R_TYPE is a microMIPS reloc.
360 micromips_reloc(unsigned int r_type)
364 case elfcpp::R_MICROMIPS_26_S1:
365 case elfcpp::R_MICROMIPS_HI16:
366 case elfcpp::R_MICROMIPS_LO16:
367 case elfcpp::R_MICROMIPS_GPREL16:
368 case elfcpp::R_MICROMIPS_LITERAL:
369 case elfcpp::R_MICROMIPS_GOT16:
370 case elfcpp::R_MICROMIPS_PC7_S1:
371 case elfcpp::R_MICROMIPS_PC10_S1:
372 case elfcpp::R_MICROMIPS_PC16_S1:
373 case elfcpp::R_MICROMIPS_CALL16:
374 case elfcpp::R_MICROMIPS_GOT_DISP:
375 case elfcpp::R_MICROMIPS_GOT_PAGE:
376 case elfcpp::R_MICROMIPS_GOT_OFST:
377 case elfcpp::R_MICROMIPS_GOT_HI16:
378 case elfcpp::R_MICROMIPS_GOT_LO16:
379 case elfcpp::R_MICROMIPS_SUB:
380 case elfcpp::R_MICROMIPS_HIGHER:
381 case elfcpp::R_MICROMIPS_HIGHEST:
382 case elfcpp::R_MICROMIPS_CALL_HI16:
383 case elfcpp::R_MICROMIPS_CALL_LO16:
384 case elfcpp::R_MICROMIPS_SCN_DISP:
385 case elfcpp::R_MICROMIPS_JALR:
386 case elfcpp::R_MICROMIPS_HI0_LO16:
387 case elfcpp::R_MICROMIPS_TLS_GD:
388 case elfcpp::R_MICROMIPS_TLS_LDM:
389 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394 case elfcpp::R_MICROMIPS_GPREL7_S2:
395 case elfcpp::R_MICROMIPS_PC23_S2:
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 case elfcpp::R_MIPS_HI16:
409 case elfcpp::R_MIPS_GOT16:
410 return lo16_reloc == elfcpp::R_MIPS_LO16;
411 case elfcpp::R_MIPS_PCHI16:
412 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413 case elfcpp::R_MIPS16_HI16:
414 case elfcpp::R_MIPS16_GOT16:
415 return lo16_reloc == elfcpp::R_MIPS16_LO16;
416 case elfcpp::R_MICROMIPS_HI16:
417 case elfcpp::R_MICROMIPS_GOT16:
418 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
427 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 // (2) a SYMBOL address, where SYMBOL is not local to an input object
430 // (sym != NULL, symndx == -1)
431 // (3) a TLS LDM slot (there's only one of these per GOT.)
432 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
434 template<int size, bool big_endian>
437 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
440 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441 Mips_address addend, unsigned char tls_type,
442 unsigned int shndx, bool is_section_symbol)
443 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444 is_section_symbol_(is_section_symbol), shndx_(shndx)
445 { this->d.object = object; }
447 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448 : addend_(0), symndx_(-1U), tls_type_(tls_type),
449 is_section_symbol_(false), shndx_(-1U)
450 { this->d.sym = sym; }
452 // Return whether this entry is for a local symbol.
454 is_for_local_symbol() const
455 { return this->symndx_ != -1U; }
457 // Return whether this entry is for a global symbol.
459 is_for_global_symbol() const
460 { return this->symndx_ == -1U; }
462 // Return the hash of this entry.
466 if (this->tls_type_ == GOT_TLS_LDM)
467 return this->symndx_ + (1 << 18);
469 size_t name_hash_value = gold::string_hash<char>(
470 (this->symndx_ != -1U)
471 ? this->d.object->name().c_str()
472 : this->d.sym->name());
473 size_t addend = this->addend_;
474 return name_hash_value ^ this->symndx_ ^ addend;
477 // Return whether this entry is equal to OTHER.
479 equals(Mips_got_entry<size, big_endian>* other) const
481 if (this->tls_type_ == GOT_TLS_LDM)
484 return ((this->tls_type_ == other->tls_type_)
485 && (this->symndx_ == other->symndx_)
486 && ((this->symndx_ != -1U)
487 ? (this->d.object == other->d.object)
488 : (this->d.sym == other->d.sym))
489 && (this->addend_ == other->addend_));
492 // Return input object that needs this GOT entry.
493 Mips_relobj<size, big_endian>*
496 gold_assert(this->symndx_ != -1U);
497 return this->d.object;
500 // Return local symbol index for local GOT entries.
504 gold_assert(this->symndx_ != -1U);
505 return this->symndx_;
508 // Return the relocation addend for local GOT entries.
511 { return this->addend_; }
513 // Return global symbol for global GOT entries.
517 gold_assert(this->symndx_ == -1U);
521 // Return whether this is a TLS GOT entry.
524 { return this->tls_type_ != GOT_TLS_NONE; }
526 // Return TLS type of this GOT entry.
529 { return this->tls_type_; }
531 // Return section index of the local symbol for local GOT entries.
534 { return this->shndx_; }
536 // Return whether this is a STT_SECTION symbol.
538 is_section_symbol() const
539 { return this->is_section_symbol_; }
543 Mips_address addend_;
545 // The index of the symbol if we have a local symbol; -1 otherwise.
546 unsigned int symndx_;
550 // The input object for local symbols that needs the GOT entry.
551 Mips_relobj<size, big_endian>* object;
552 // If symndx == -1, the global symbol corresponding to this GOT entry. The
553 // symbol's entry is in the local area if mips_sym->global_got_area is
554 // GGA_NONE, otherwise it is in the global area.
555 Mips_symbol<size>* sym;
558 // The TLS type of this GOT entry. An LDM GOT entry will be a local
559 // symbol entry with r_symndx == 0.
560 unsigned char tls_type_;
562 // Whether this is a STT_SECTION symbol.
563 bool is_section_symbol_;
565 // For local GOT entries, section index of the local symbol.
569 // Hash for Mips_got_entry.
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
576 operator()(Mips_got_entry<size, big_endian>* entry) const
577 { return entry->hash(); }
580 // Equality for Mips_got_entry.
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
587 operator()(Mips_got_entry<size, big_endian>* e1,
588 Mips_got_entry<size, big_endian>* e2) const
589 { return e1->equals(e2); }
592 // Hash for Mips_symbol.
595 class Mips_symbol_hash
599 operator()(Mips_symbol<size>* sym) const
600 { return sym->hash(); }
603 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
607 struct Got_page_range
610 : next(NULL), min_addend(0), max_addend(0)
613 Got_page_range* next;
617 // Return the maximum number of GOT page entries required.
620 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
623 // Got_page_entry. This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
626 struct Got_page_entry
629 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
632 Got_page_entry(Object* object_, unsigned int symndx_)
633 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
636 // The input object that needs the GOT page entry.
638 // The index of the symbol, as stored in the relocation r_info.
640 // The ranges for this page entry.
641 Got_page_range* ranges;
642 // The maximum number of page entries needed for RANGES.
643 unsigned int num_pages;
646 // Hash for Got_page_entry.
648 struct Got_page_entry_hash
651 operator()(Got_page_entry* entry) const
652 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
655 // Equality for Got_page_entry.
657 struct Got_page_entry_eq
660 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
662 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
666 // This class is used to hold .got information when linking.
668 template<int size, bool big_endian>
671 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
674 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
676 // Unordered set of GOT entries.
677 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678 Mips_got_entry_hash<size, big_endian>,
679 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
681 // Unordered set of GOT page entries.
682 typedef Unordered_set<Got_page_entry*,
683 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
685 // Unordered set of global GOT entries.
686 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687 Global_got_entry_set;
691 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
701 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702 unsigned int symndx, Mips_address addend,
703 unsigned int r_type, unsigned int shndx,
704 bool is_section_symbol);
706 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707 // in OBJECT. FOR_CALL is true if the caller is only interested in
708 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
711 record_global_got_symbol(Mips_symbol<size>* mips_sym,
712 Mips_relobj<size, big_endian>* object,
713 unsigned int r_type, bool dyn_reloc, bool for_call);
715 // Add ENTRY to master GOT and to OBJECT's GOT.
717 record_got_entry(Mips_got_entry<size, big_endian>* entry,
718 Mips_relobj<size, big_endian>* object);
720 // Record that OBJECT has a page relocation against symbol SYMNDX and
721 // that ADDEND is the addend for that relocation.
723 record_got_page_entry(Mips_relobj<size, big_endian>* object,
724 unsigned int symndx, int addend);
726 // Create all entries that should be in the local part of the GOT.
728 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
730 // Create GOT page entries.
732 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
734 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
736 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737 unsigned int non_reloc_only_global_gotno);
739 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
741 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
743 // Create TLS GOT entries.
745 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
747 // Decide whether the symbol needs an entry in the global part of the primary
748 // GOT, setting global_got_area accordingly. Count the number of global
749 // symbols that are in the primary GOT only because they have dynamic
750 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
752 count_got_symbols(Symbol_table* symtab);
754 // Return the offset of GOT page entry for VALUE.
756 get_got_page_offset(Mips_address value,
757 Mips_output_data_got<size, big_endian>* got);
759 // Count the number of GOT entries required.
763 // Count the number of GOT entries required by ENTRY. Accumulate the result.
765 count_got_entry(Mips_got_entry<size, big_endian>* entry);
767 // Add FROM's GOT entries.
769 add_got_entries(Mips_got_info<size, big_endian>* from);
771 // Add FROM's GOT page entries.
773 add_got_page_entries(Mips_got_info<size, big_endian>* from);
778 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779 + this->tls_gotno_) * size/8);
782 // Return the number of local GOT entries.
785 { return this->local_gotno_; }
787 // Return the maximum number of page GOT entries needed.
790 { return this->page_gotno_; }
792 // Return the number of global GOT entries.
795 { return this->global_gotno_; }
797 // Set the number of global GOT entries.
799 set_global_gotno(unsigned int global_gotno)
800 { this->global_gotno_ = global_gotno; }
802 // Return the number of GGA_RELOC_ONLY global GOT entries.
804 reloc_only_gotno() const
805 { return this->reloc_only_gotno_; }
807 // Return the number of TLS GOT entries.
810 { return this->tls_gotno_; }
812 // Return the GOT type for this GOT. Used for multi-GOT links only.
814 multigot_got_type(unsigned int got_type) const
818 case GOT_TYPE_STANDARD:
819 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820 case GOT_TYPE_TLS_OFFSET:
821 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822 case GOT_TYPE_TLS_PAIR:
823 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
829 // Remove lazy-binding stubs for global symbols in this GOT.
831 remove_lazy_stubs(Target_mips<size, big_endian>* target);
833 // Return offset of this GOT from the start of .got section.
836 { return this->offset_; }
838 // Set offset of this GOT from the start of .got section.
840 set_offset(unsigned int offset)
841 { this->offset_ = offset; }
843 // Set index of this GOT in multi-GOT links.
845 set_index(unsigned int index)
846 { this->index_ = index; }
848 // Return next GOT in multi-GOT links.
849 Mips_got_info<size, big_endian>*
851 { return this->next_; }
853 // Set next GOT in multi-GOT links.
855 set_next(Mips_got_info<size, big_endian>* next)
856 { this->next_ = next; }
858 // Return the offset of TLS LDM entry for this GOT.
860 tls_ldm_offset() const
861 { return this->tls_ldm_offset_; }
863 // Set the offset of TLS LDM entry for this GOT.
865 set_tls_ldm_offset(unsigned int tls_ldm_offset)
866 { this->tls_ldm_offset_ = tls_ldm_offset; }
868 Global_got_entry_set&
870 { return this->global_got_symbols_; }
872 // Return the GOT_TLS_* type required by relocation type R_TYPE.
874 mips_elf_reloc_tls_type(unsigned int r_type)
876 if (tls_gd_reloc(r_type))
879 if (tls_ldm_reloc(r_type))
882 if (tls_gottprel_reloc(r_type))
888 // Return the number of GOT slots needed for GOT TLS type TYPE.
890 mips_tls_got_entries(unsigned int type)
910 // The number of local GOT entries.
911 unsigned int local_gotno_;
912 // The maximum number of page GOT entries needed.
913 unsigned int page_gotno_;
914 // The number of global GOT entries.
915 unsigned int global_gotno_;
916 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917 unsigned int reloc_only_gotno_;
918 // The number of TLS GOT entries.
919 unsigned int tls_gotno_;
920 // The offset of TLS LDM entry for this GOT.
921 unsigned int tls_ldm_offset_;
922 // All symbols that have global GOT entry.
923 Global_got_entry_set global_got_symbols_;
924 // A hash table holding GOT entries.
925 Got_entry_set got_entries_;
926 // A hash table of GOT page entries.
927 Got_page_entry_set got_page_entries_;
928 // The offset of first GOT page entry for this GOT.
929 unsigned int got_page_offset_start_;
930 // The offset of next available GOT page entry for this GOT.
931 unsigned int got_page_offset_next_;
932 // A hash table that maps GOT page entry value to the GOT offset where
933 // the entry is located.
934 Got_page_offsets got_page_offsets_;
935 // In multi-GOT links, a pointer to the next GOT.
936 Mips_got_info<size, big_endian>* next_;
937 // Index of this GOT in multi-GOT links.
939 // The offset of this GOT in multi-GOT links.
940 unsigned int offset_;
943 // This is a helper class used during relocation scan. It records GOT16 addend.
945 template<int size, bool big_endian>
948 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
950 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952 Mips_address _addend)
953 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957 const Sized_relobj_file<size, big_endian>* object;
964 // .MIPS.abiflags section content
966 template<bool big_endian>
969 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
974 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
978 // Version of flags structure.
980 // The level of the ISA: 1-5, 32, 64.
982 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
984 // The size of general purpose registers.
986 // The size of co-processor 1 registers.
988 // The size of co-processor 2 registers.
990 // The floating-point ABI.
992 // Processor-specific extension.
994 // Mask of ASEs used.
996 // Mask of general flags.
1001 // Mips_symbol class. Holds additional symbol information needed for Mips.
1004 class Mips_symbol : public Sized_symbol<size>
1008 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1017 // Return whether this is a MIPS16 symbol.
1021 // (st_other & STO_MIPS16) == STO_MIPS16
1022 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023 == elfcpp::STO_MIPS16 >> 2);
1026 // Return whether this is a microMIPS symbol.
1028 is_micromips() const
1030 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032 == elfcpp::STO_MICROMIPS >> 2);
1035 // Return whether the symbol needs MIPS16 fn_stub.
1037 need_fn_stub() const
1038 { return this->need_fn_stub_; }
1040 // Set that the symbol needs MIPS16 fn_stub.
1043 { this->need_fn_stub_ = true; }
1045 // Return whether this symbol is referenced by branch relocations from
1046 // any non-PIC input file.
1048 has_nonpic_branches() const
1049 { return this->has_nonpic_branches_; }
1051 // Set that this symbol is referenced by branch relocations from
1052 // any non-PIC input file.
1054 set_has_nonpic_branches()
1055 { this->has_nonpic_branches_ = true; }
1057 // Return the offset of the la25 stub for this symbol from the start of the
1058 // la25 stub section.
1060 la25_stub_offset() const
1061 { return this->la25_stub_offset_; }
1063 // Set the offset of the la25 stub for this symbol from the start of the
1064 // la25 stub section.
1066 set_la25_stub_offset(unsigned int offset)
1067 { this->la25_stub_offset_ = offset; }
1069 // Return whether the symbol has la25 stub. This is true if this symbol is
1070 // for a PIC function, and there are non-PIC branches and jumps to it.
1072 has_la25_stub() const
1073 { return this->la25_stub_offset_ != -1U; }
1075 // Return whether there is a relocation against this symbol that must be
1076 // resolved by the static linker (that is, the relocation cannot possibly
1077 // be made dynamic).
1079 has_static_relocs() const
1080 { return this->has_static_relocs_; }
1082 // Set that there is a relocation against this symbol that must be resolved
1083 // by the static linker (that is, the relocation cannot possibly be made
1086 set_has_static_relocs()
1087 { this->has_static_relocs_ = true; }
1089 // Return whether we must not create a lazy-binding stub for this symbol.
1091 no_lazy_stub() const
1092 { return this->no_lazy_stub_; }
1094 // Set that we must not create a lazy-binding stub for this symbol.
1097 { this->no_lazy_stub_ = true; }
1099 // Return the offset of the lazy-binding stub for this symbol from the start
1100 // of .MIPS.stubs section.
1102 lazy_stub_offset() const
1103 { return this->lazy_stub_offset_; }
1105 // Set the offset of the lazy-binding stub for this symbol from the start
1106 // of .MIPS.stubs section.
1108 set_lazy_stub_offset(unsigned int offset)
1109 { this->lazy_stub_offset_ = offset; }
1111 // Return whether there are any relocations for this symbol where
1112 // pointer equality matters.
1114 pointer_equality_needed() const
1115 { return this->pointer_equality_needed_; }
1117 // Set that there are relocations for this symbol where pointer equality
1120 set_pointer_equality_needed()
1121 { this->pointer_equality_needed_ = true; }
1123 // Return global GOT area where this symbol in located.
1125 global_got_area() const
1126 { return this->global_got_area_; }
1128 // Set global GOT area where this symbol in located.
1130 set_global_got_area(Global_got_area global_got_area)
1131 { this->global_got_area_ = global_got_area; }
1133 // Return the global GOT offset for this symbol. For multi-GOT links, this
1134 // returns the offset from the start of .got section to the first GOT entry
1135 // for the symbol. Note that in multi-GOT links the symbol can have entry
1136 // in more than one GOT.
1138 global_gotoffset() const
1139 { return this->global_gotoffset_; }
1141 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1142 // the symbol can have entry in more than one GOT. This method will set
1143 // the offset only if it is less than current offset.
1145 set_global_gotoffset(unsigned int offset)
1147 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148 this->global_gotoffset_ = offset;
1151 // Return whether all GOT relocations for this symbol are for calls.
1153 got_only_for_calls() const
1154 { return this->got_only_for_calls_; }
1156 // Set that there is a GOT relocation for this symbol that is not for call.
1158 set_got_not_only_for_calls()
1159 { this->got_only_for_calls_ = false; }
1161 // Return whether this is a PIC symbol.
1165 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167 == (elfcpp::STO_MIPS_PIC >> 2));
1170 // Set the flag in st_other field that marks this symbol as PIC.
1174 if (this->is_mips16())
1175 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176 this->set_nonvis((this->nonvis()
1177 & ~((elfcpp::STO_MIPS16 >> 2)
1178 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179 | (elfcpp::STO_MIPS_PIC >> 2));
1181 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183 | (elfcpp::STO_MIPS_PIC >> 2));
1186 // Set the flag in st_other field that marks this symbol as PLT.
1190 if (this->is_mips16())
1191 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192 this->set_nonvis((this->nonvis()
1193 & ((elfcpp::STO_MIPS16 >> 2)
1194 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195 | (elfcpp::STO_MIPS_PLT >> 2));
1198 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200 | (elfcpp::STO_MIPS_PLT >> 2));
1203 // Downcast a base pointer to a Mips_symbol pointer.
1204 static Mips_symbol<size>*
1205 as_mips_sym(Symbol* sym)
1206 { return static_cast<Mips_symbol<size>*>(sym); }
1208 // Downcast a base pointer to a Mips_symbol pointer.
1209 static const Mips_symbol<size>*
1210 as_mips_sym(const Symbol* sym)
1211 { return static_cast<const Mips_symbol<size>*>(sym); }
1213 // Return whether the symbol has lazy-binding stub.
1215 has_lazy_stub() const
1216 { return this->has_lazy_stub_; }
1218 // Set whether the symbol has lazy-binding stub.
1220 set_has_lazy_stub(bool has_lazy_stub)
1221 { this->has_lazy_stub_ = has_lazy_stub; }
1223 // Return whether the symbol needs a standard PLT entry.
1225 needs_mips_plt() const
1226 { return this->needs_mips_plt_; }
1228 // Set whether the symbol needs a standard PLT entry.
1230 set_needs_mips_plt(bool needs_mips_plt)
1231 { this->needs_mips_plt_ = needs_mips_plt; }
1233 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1236 needs_comp_plt() const
1237 { return this->needs_comp_plt_; }
1239 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1241 set_needs_comp_plt(bool needs_comp_plt)
1242 { this->needs_comp_plt_ = needs_comp_plt; }
1244 // Return standard PLT entry offset, or -1 if none.
1246 mips_plt_offset() const
1247 { return this->mips_plt_offset_; }
1249 // Set standard PLT entry offset.
1251 set_mips_plt_offset(unsigned int mips_plt_offset)
1252 { this->mips_plt_offset_ = mips_plt_offset; }
1254 // Return whether the symbol has standard PLT entry.
1256 has_mips_plt_offset() const
1257 { return this->mips_plt_offset_ != -1U; }
1259 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1261 comp_plt_offset() const
1262 { return this->comp_plt_offset_; }
1264 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1266 set_comp_plt_offset(unsigned int comp_plt_offset)
1267 { this->comp_plt_offset_ = comp_plt_offset; }
1269 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1271 has_comp_plt_offset() const
1272 { return this->comp_plt_offset_ != -1U; }
1274 // Return MIPS16 fn stub for a symbol.
1275 template<bool big_endian>
1276 Mips16_stub_section<size, big_endian>*
1277 get_mips16_fn_stub() const
1279 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1282 // Set MIPS16 fn stub for a symbol.
1284 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285 { this->mips16_fn_stub_ = stub; }
1287 // Return whether symbol has MIPS16 fn stub.
1289 has_mips16_fn_stub() const
1290 { return this->mips16_fn_stub_ != NULL; }
1292 // Return MIPS16 call stub for a symbol.
1293 template<bool big_endian>
1294 Mips16_stub_section<size, big_endian>*
1295 get_mips16_call_stub() const
1297 return static_cast<Mips16_stub_section<size, big_endian>*>(
1301 // Set MIPS16 call stub for a symbol.
1303 set_mips16_call_stub(Mips16_stub_section_base* stub)
1304 { this->mips16_call_stub_ = stub; }
1306 // Return whether symbol has MIPS16 call stub.
1308 has_mips16_call_stub() const
1309 { return this->mips16_call_stub_ != NULL; }
1311 // Return MIPS16 call_fp stub for a symbol.
1312 template<bool big_endian>
1313 Mips16_stub_section<size, big_endian>*
1314 get_mips16_call_fp_stub() const
1316 return static_cast<Mips16_stub_section<size, big_endian>*>(
1317 mips16_call_fp_stub_);
1320 // Set MIPS16 call_fp stub for a symbol.
1322 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323 { this->mips16_call_fp_stub_ = stub; }
1325 // Return whether symbol has MIPS16 call_fp stub.
1327 has_mips16_call_fp_stub() const
1328 { return this->mips16_call_fp_stub_ != NULL; }
1331 get_applied_secondary_got_fixup() const
1332 { return applied_secondary_got_fixup_; }
1335 set_applied_secondary_got_fixup()
1336 { this->applied_secondary_got_fixup_ = true; }
1338 // Return the hash of this symbol.
1342 return gold::string_hash<char>(this->name());
1346 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1347 // appears in any relocs other than a 16 bit call.
1350 // True if this symbol is referenced by branch relocations from
1351 // any non-PIC input file. This is used to determine whether an
1352 // la25 stub is required.
1353 bool has_nonpic_branches_;
1355 // The offset of the la25 stub for this symbol from the start of the
1356 // la25 stub section.
1357 unsigned int la25_stub_offset_;
1359 // True if there is a relocation against this symbol that must be
1360 // resolved by the static linker (that is, the relocation cannot
1361 // possibly be made dynamic).
1362 bool has_static_relocs_;
1364 // Whether we must not create a lazy-binding stub for this symbol.
1365 // This is true if the symbol has relocations related to taking the
1366 // function's address.
1369 // The offset of the lazy-binding stub for this symbol from the start of
1370 // .MIPS.stubs section.
1371 unsigned int lazy_stub_offset_;
1373 // True if there are any relocations for this symbol where pointer equality
1375 bool pointer_equality_needed_;
1377 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378 // in the global part of the GOT.
1379 Global_got_area global_got_area_;
1381 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1382 // from the start of .got section to the first GOT entry for the symbol.
1383 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384 unsigned int global_gotoffset_;
1386 // Whether all GOT relocations for this symbol are for calls.
1387 bool got_only_for_calls_;
1388 // Whether the symbol has lazy-binding stub.
1389 bool has_lazy_stub_;
1390 // Whether the symbol needs a standard PLT entry.
1391 bool needs_mips_plt_;
1392 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393 bool needs_comp_plt_;
1394 // Standard PLT entry offset, or -1 if none.
1395 unsigned int mips_plt_offset_;
1396 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397 unsigned int comp_plt_offset_;
1398 // MIPS16 fn stub for a symbol.
1399 Mips16_stub_section_base* mips16_fn_stub_;
1400 // MIPS16 call stub for a symbol.
1401 Mips16_stub_section_base* mips16_call_stub_;
1402 // MIPS16 call_fp stub for a symbol.
1403 Mips16_stub_section_base* mips16_call_fp_stub_;
1405 bool applied_secondary_got_fixup_;
1408 // Mips16_stub_section class.
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead. If no 32 bit
1417 // function calls FNNAME, the stub should be discarded. We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead. If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs. These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call. (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally. Instead, the relocation
1440 // information will indicate which symbol the section is for.
1442 // We record any stubs that we find in the symbol table.
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1446 class Mips16_stub_section_base { };
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1451 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1454 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456 found_r_mips_none_(false)
1458 gold_assert(object->is_mips16_fn_stub_section(shndx)
1459 || object->is_mips16_call_stub_section(shndx)
1460 || object->is_mips16_call_fp_stub_section(shndx));
1463 // Return the object of this stub section.
1464 Mips_relobj<size, big_endian>*
1466 { return this->object_; }
1468 // Return the size of a section.
1470 section_size() const
1471 { return this->object_->section_size(this->shndx_); }
1473 // Return section index of this stub section.
1476 { return this->shndx_; }
1478 // Return symbol index, if stub is for a local function.
1481 { return this->r_sym_; }
1483 // Return symbol, if stub is for a global function.
1486 { return this->gsym_; }
1488 // Return whether stub is for a local function.
1490 is_for_local_function() const
1491 { return this->gsym_ == NULL; }
1493 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494 // is found in the stub section. Try to find stub target.
1496 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1498 // To find target symbol for this stub, trust the first R_MIPS_NONE
1499 // relocation, if any. Otherwise trust the first relocation, whatever
1501 if (this->found_r_mips_none_)
1503 if (r_type == elfcpp::R_MIPS_NONE)
1505 this->r_sym_ = r_sym;
1507 this->found_r_mips_none_ = true;
1509 else if (!is_target_found())
1510 this->r_sym_ = r_sym;
1513 // This method is called when a new relocation R_TYPE for global symbol GSYM
1514 // is found in the stub section. Try to find stub target.
1516 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1518 // To find target symbol for this stub, trust the first R_MIPS_NONE
1519 // relocation, if any. Otherwise trust the first relocation, whatever
1521 if (this->found_r_mips_none_)
1523 if (r_type == elfcpp::R_MIPS_NONE)
1527 this->found_r_mips_none_ = true;
1529 else if (!is_target_found())
1533 // Return whether we found the stub target.
1535 is_target_found() const
1536 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1538 // Return whether this is a fn stub.
1541 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1543 // Return whether this is a call stub.
1545 is_call_stub() const
1546 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1548 // Return whether this is a call_fp stub.
1550 is_call_fp_stub() const
1551 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1553 // Return the output address.
1555 output_address() const
1557 return (this->object_->output_section(this->shndx_)->address()
1558 + this->object_->output_section_offset(this->shndx_));
1562 // The object of this stub section.
1563 Mips_relobj<size, big_endian>* object_;
1564 // The section index of this stub section.
1565 unsigned int shndx_;
1566 // The symbol index, if stub is for a local function.
1567 unsigned int r_sym_;
1568 // The symbol, if stub is for a global function.
1569 Mips_symbol<size>* gsym_;
1570 // True if we found R_MIPS_NONE relocation in this stub.
1571 bool found_r_mips_none_;
1574 // Mips_relobj class.
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1579 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581 Mips16_stubs_int_map;
1582 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1585 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588 processor_specific_flags_(0), local_symbol_is_mips16_(),
1589 local_symbol_is_micromips_(), mips16_stub_sections_(),
1590 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592 got_info_(NULL), section_is_mips16_fn_stub_(),
1593 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1597 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1602 { delete this->attributes_section_data_; }
1604 // Downcast a base pointer to a Mips_relobj pointer. This is
1605 // not type-safe but we only use Mips_relobj not the base class.
1606 static Mips_relobj<size, big_endian>*
1607 as_mips_relobj(Relobj* relobj)
1608 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1610 // Downcast a base pointer to a Mips_relobj pointer. This is
1611 // not type-safe but we only use Mips_relobj not the base class.
1612 static const Mips_relobj<size, big_endian>*
1613 as_mips_relobj(const Relobj* relobj)
1614 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1616 // Processor-specific flags in ELF file header. This is valid only after
1619 processor_specific_flags() const
1620 { return this->processor_specific_flags_; }
1622 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1623 // index. This is only valid after do_count_local_symbol is called.
1625 local_symbol_is_mips16(unsigned int r_sym) const
1627 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628 return this->local_symbol_is_mips16_[r_sym];
1631 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1632 // index. This is only valid after do_count_local_symbol is called.
1634 local_symbol_is_micromips(unsigned int r_sym) const
1636 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637 return this->local_symbol_is_micromips_[r_sym];
1640 // Get or create MIPS16 stub section.
1641 Mips16_stub_section<size, big_endian>*
1642 get_mips16_stub_section(unsigned int shndx)
1644 typename Mips16_stubs_int_map::const_iterator it =
1645 this->mips16_stub_sections_.find(shndx);
1646 if (it != this->mips16_stub_sections_.end())
1647 return (*it).second;
1649 Mips16_stub_section<size, big_endian>* stub_section =
1650 new Mips16_stub_section<size, big_endian>(this, shndx);
1651 this->mips16_stub_sections_.insert(
1652 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653 stub_section->shndx(), stub_section));
1654 return stub_section;
1657 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658 // object doesn't have fn stub for R_SYM.
1659 Mips16_stub_section<size, big_endian>*
1660 get_local_mips16_fn_stub(unsigned int r_sym) const
1662 typename Mips16_stubs_int_map::const_iterator it =
1663 this->local_mips16_fn_stubs_.find(r_sym);
1664 if (it != this->local_mips16_fn_stubs_.end())
1665 return (*it).second;
1669 // Record that this object has MIPS16 fn stub for local symbol. This method
1670 // is only called if we decided not to discard the stub.
1672 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1674 gold_assert(stub->is_for_local_function());
1675 unsigned int r_sym = stub->r_sym();
1676 this->local_mips16_fn_stubs_.insert(
1677 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1681 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682 // object doesn't have call stub for R_SYM.
1683 Mips16_stub_section<size, big_endian>*
1684 get_local_mips16_call_stub(unsigned int r_sym) const
1686 typename Mips16_stubs_int_map::const_iterator it =
1687 this->local_mips16_call_stubs_.find(r_sym);
1688 if (it != this->local_mips16_call_stubs_.end())
1689 return (*it).second;
1693 // Record that this object has MIPS16 call stub for local symbol. This method
1694 // is only called if we decided not to discard the stub.
1696 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1698 gold_assert(stub->is_for_local_function());
1699 unsigned int r_sym = stub->r_sym();
1700 this->local_mips16_call_stubs_.insert(
1701 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1705 // Record that we found "non 16-bit" call relocation against local symbol
1706 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1709 add_local_non_16bit_call(unsigned int symndx)
1710 { this->local_non_16bit_calls_.insert(symndx); }
1712 // Return true if there is any "non 16-bit" call relocation against local
1713 // symbol SYMNDX in this object.
1715 has_local_non_16bit_call_relocs(unsigned int symndx)
1717 return (this->local_non_16bit_calls_.find(symndx)
1718 != this->local_non_16bit_calls_.end());
1721 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1723 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1725 add_local_16bit_call(unsigned int symndx)
1726 { this->local_16bit_calls_.insert(symndx); }
1728 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729 // symbol SYMNDX in this object.
1731 has_local_16bit_call_relocs(unsigned int symndx)
1733 return (this->local_16bit_calls_.find(symndx)
1734 != this->local_16bit_calls_.end());
1737 // Get gp value that was used to create this object.
1740 { return this->gp_; }
1742 // Return whether the object is a PIC object.
1745 { return this->is_pic_; }
1747 // Return whether the object uses N32 ABI.
1750 { return this->is_n32_; }
1752 // Return whether the object uses N64 ABI.
1755 { return size == 64; }
1757 // Return whether the object uses NewABI conventions.
1760 { return this->is_n32() || this->is_n64(); }
1762 // Return Mips_got_info for this object.
1763 Mips_got_info<size, big_endian>*
1764 get_got_info() const
1765 { return this->got_info_; }
1767 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1768 Mips_got_info<size, big_endian>*
1769 get_or_create_got_info()
1771 if (!this->got_info_)
1772 this->got_info_ = new Mips_got_info<size, big_endian>();
1773 return this->got_info_;
1776 // Set Mips_got_info for this object.
1778 set_got_info(Mips_got_info<size, big_endian>* got_info)
1779 { this->got_info_ = got_info; }
1781 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1782 // after do_read_symbols is called.
1784 is_mips16_stub_section(unsigned int shndx)
1786 return (is_mips16_fn_stub_section(shndx)
1787 || is_mips16_call_stub_section(shndx)
1788 || is_mips16_call_fp_stub_section(shndx));
1791 // Return TRUE if relocations in section SHNDX can refer directly to a
1792 // MIPS16 function rather than to a hard-float stub. This is only valid
1793 // after do_read_symbols is called.
1795 section_allows_mips16_refs(unsigned int shndx)
1797 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1800 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1801 // after do_read_symbols is called.
1803 is_mips16_fn_stub_section(unsigned int shndx)
1805 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806 return this->section_is_mips16_fn_stub_[shndx];
1809 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1810 // after do_read_symbols is called.
1812 is_mips16_call_stub_section(unsigned int shndx)
1814 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815 return this->section_is_mips16_call_stub_[shndx];
1818 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1819 // valid after do_read_symbols is called.
1821 is_mips16_call_fp_stub_section(unsigned int shndx)
1823 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824 return this->section_is_mips16_call_fp_stub_[shndx];
1827 // Discard MIPS16 stub secions that are not needed.
1829 discard_mips16_stub_sections(Symbol_table* symtab);
1831 // Return whether there is a .reginfo section.
1833 has_reginfo_section() const
1834 { return this->has_reginfo_section_; }
1836 // Return gprmask from the .reginfo section of this object.
1839 { return this->gprmask_; }
1841 // Return cprmask1 from the .reginfo section of this object.
1844 { return this->cprmask1_; }
1846 // Return cprmask2 from the .reginfo section of this object.
1849 { return this->cprmask2_; }
1851 // Return cprmask3 from the .reginfo section of this object.
1854 { return this->cprmask3_; }
1856 // Return cprmask4 from the .reginfo section of this object.
1859 { return this->cprmask4_; }
1861 // This is the contents of the .MIPS.abiflags section if there is one.
1862 Mips_abiflags<big_endian>*
1864 { return this->abiflags_; }
1866 // This is the contents of the .gnu.attribute section if there is one.
1867 const Attributes_section_data*
1868 attributes_section_data() const
1869 { return this->attributes_section_data_; }
1872 // Count the local symbols.
1874 do_count_local_symbols(Stringpool_template<char>*,
1875 Stringpool_template<char>*);
1877 // Read the symbol information.
1879 do_read_symbols(Read_symbols_data* sd);
1882 // The name of the options section.
1883 const char* mips_elf_options_section_name()
1884 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1886 // processor-specific flags in ELF file header.
1887 elfcpp::Elf_Word processor_specific_flags_;
1889 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890 // This is only valid after do_count_local_symbol is called.
1891 std::vector<bool> local_symbol_is_mips16_;
1893 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894 // This is only valid after do_count_local_symbol is called.
1895 std::vector<bool> local_symbol_is_micromips_;
1897 // Map from section index to the MIPS16 stub for that section. This contains
1898 // all stubs found in this object.
1899 Mips16_stubs_int_map mips16_stub_sections_;
1901 // Local symbols that have "non 16-bit" call relocation. This relocation
1902 // would need to refer to a MIPS16 fn stub, if there is one.
1903 std::set<unsigned int> local_non_16bit_calls_;
1905 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1906 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907 // relocation that refers to the stub symbol.
1908 std::set<unsigned int> local_16bit_calls_;
1910 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911 // This contains only the stubs that we decided not to discard.
1912 Mips16_stubs_int_map local_mips16_fn_stubs_;
1914 // Map from local symbol index to the MIPS16 call stub for that symbol.
1915 // This contains only the stubs that we decided not to discard.
1916 Mips16_stubs_int_map local_mips16_call_stubs_;
1918 // gp value that was used to create this object.
1920 // Whether the object is a PIC object.
1922 // Whether the object uses N32 ABI.
1924 // Whether the object contains a .reginfo section.
1925 bool has_reginfo_section_ : 1;
1926 // The Mips_got_info for this object.
1927 Mips_got_info<size, big_endian>* got_info_;
1929 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930 // This is only valid after do_read_symbols is called.
1931 std::vector<bool> section_is_mips16_fn_stub_;
1933 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934 // This is only valid after do_read_symbols is called.
1935 std::vector<bool> section_is_mips16_call_stub_;
1937 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938 // This is only valid after do_read_symbols is called.
1939 std::vector<bool> section_is_mips16_call_fp_stub_;
1941 // .pdr section index.
1942 unsigned int pdr_shndx_;
1944 // Object attributes if there is a .gnu.attributes section or NULL.
1945 Attributes_section_data* attributes_section_data_;
1947 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948 Mips_abiflags<big_endian>* abiflags_;
1950 // gprmask from the .reginfo section of this object.
1952 // cprmask1 from the .reginfo section of this object.
1954 // cprmask2 from the .reginfo section of this object.
1956 // cprmask3 from the .reginfo section of this object.
1958 // cprmask4 from the .reginfo section of this object.
1962 // Mips_output_data_got class.
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1967 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1970 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1973 Mips_output_data_got(Target_mips<size, big_endian>* target,
1974 Symbol_table* symtab, Layout* layout)
1975 : Output_data_got<size, big_endian>(), target_(target),
1976 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978 secondary_got_relocs_()
1980 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981 this->set_addralign(16);
1984 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1987 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988 unsigned int symndx, Mips_address addend,
1989 unsigned int r_type, unsigned int shndx,
1990 bool is_section_symbol)
1992 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1997 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998 // in OBJECT. FOR_CALL is true if the caller is only interested in
1999 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2002 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003 Mips_relobj<size, big_endian>* object,
2004 unsigned int r_type, bool dyn_reloc, bool for_call)
2006 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007 dyn_reloc, for_call);
2010 // Record that OBJECT has a page relocation against symbol SYMNDX and
2011 // that ADDEND is the addend for that relocation.
2013 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014 unsigned int symndx, int addend)
2015 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2017 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2018 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019 // applied in a static link.
2021 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022 Mips_symbol<size>* gsym)
2023 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2025 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2026 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2027 // relocation that needs to be applied in a static link.
2029 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030 Sized_relobj_file<size, big_endian>* relobj,
2033 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2037 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038 // secondary GOT at OFFSET.
2040 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041 Mips_symbol<size>* gsym)
2043 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2047 // Update GOT entry at OFFSET with VALUE.
2049 update_got_entry(unsigned int offset, Mips_address value)
2051 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2054 // Return the number of entries in local part of the GOT. This includes
2055 // local entries, page entries and 2 reserved entries.
2057 get_local_gotno() const
2059 if (!this->multi_got())
2061 return (2 + this->master_got_info_->local_gotno()
2062 + this->master_got_info_->page_gotno());
2065 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2068 // Return dynamic symbol table index of the first symbol with global GOT
2071 first_global_got_dynsym_index() const
2072 { return this->first_global_got_dynsym_index_; }
2074 // Set dynamic symbol table index of the first symbol with global GOT entry.
2076 set_first_global_got_dynsym_index(unsigned int index)
2077 { this->first_global_got_dynsym_index_ = index; }
2079 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2080 // larger than 64K, create multi-GOT.
2082 lay_out_got(Layout* layout, Symbol_table* symtab,
2083 const Input_objects* input_objects);
2085 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2087 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2089 // Attempt to merge GOTs of different input objects.
2091 merge_gots(const Input_objects* input_objects);
2093 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2094 // this would lead to overflow, true if they were merged successfully.
2096 merge_got_with(Mips_got_info<size, big_endian>* from,
2097 Mips_relobj<size, big_endian>* object,
2098 Mips_got_info<size, big_endian>* to);
2100 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2101 // use OBJECT's GOT.
2103 get_got_page_offset(Mips_address value,
2104 const Mips_relobj<size, big_endian>* object)
2106 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107 ? this->master_got_info_
2108 : object->get_got_info());
2109 gold_assert(g != NULL);
2110 return g->get_got_page_offset(value, this);
2113 // Return the GOT offset of type GOT_TYPE of the global symbol
2114 // GSYM. For multi-GOT links, use OBJECT's GOT.
2115 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116 Mips_relobj<size, big_endian>* object) const
2118 if (!this->multi_got())
2119 return gsym->got_offset(got_type);
2122 Mips_got_info<size, big_endian>* g = object->get_got_info();
2123 gold_assert(g != NULL);
2124 return gsym->got_offset(g->multigot_got_type(got_type));
2128 // Return the GOT offset of type GOT_TYPE of the local symbol
2131 got_offset(unsigned int symndx, unsigned int got_type,
2132 Sized_relobj_file<size, big_endian>* object,
2133 uint64_t addend) const
2134 { return object->local_got_offset(symndx, got_type, addend); }
2136 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2138 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2140 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141 ? this->master_got_info_
2142 : object->get_got_info());
2143 gold_assert(g != NULL);
2144 return g->tls_ldm_offset();
2147 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2149 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150 Mips_relobj<size, big_endian>* object)
2152 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153 ? this->master_got_info_
2154 : object->get_got_info());
2155 gold_assert(g != NULL);
2156 g->set_tls_ldm_offset(tls_ldm_offset);
2159 // Return true for multi-GOT links.
2162 { return this->primary_got_ != NULL; }
2164 // Return the offset of OBJECT's GOT from the start of .got section.
2166 get_got_offset(const Mips_relobj<size, big_endian>* object)
2168 if (!this->multi_got())
2172 Mips_got_info<size, big_endian>* g = object->get_got_info();
2173 return g != NULL ? g->offset() : 0;
2177 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2179 add_reloc_only_entries()
2180 { this->master_got_info_->add_reloc_only_entries(this); }
2182 // Return offset of the primary GOT's entry for global symbol.
2184 get_primary_got_offset(const Mips_symbol<size>* sym) const
2186 gold_assert(sym->global_got_area() != GGA_NONE);
2187 return (this->get_local_gotno() + sym->dynsym_index()
2188 - this->first_global_got_dynsym_index()) * size/8;
2191 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192 // Input argument GOT_OFFSET is always global offset from the start of
2193 // .got section, for both single and multi-GOT links.
2194 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2195 // links, the return value is object_got_offset - 0x7FF0, where
2196 // object_got_offset is offset in the OBJECT's GOT.
2198 gp_offset(unsigned int got_offset,
2199 const Mips_relobj<size, big_endian>* object) const
2201 return (this->address() + got_offset
2202 - this->target_->adjusted_gp_value(object));
2206 // Write out the GOT table.
2208 do_write(Output_file*);
2212 // This class represent dynamic relocations that need to be applied by
2213 // gold because we are using TLS relocations in a static link.
2217 Static_reloc(unsigned int got_offset, unsigned int r_type,
2218 Mips_symbol<size>* gsym)
2219 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220 { this->u_.global.symbol = gsym; }
2222 Static_reloc(unsigned int got_offset, unsigned int r_type,
2223 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2226 this->u_.local.relobj = relobj;
2227 this->u_.local.index = index;
2230 // Return the GOT offset.
2233 { return this->got_offset_; }
2238 { return this->r_type_; }
2240 // Whether the symbol is global or not.
2242 symbol_is_global() const
2243 { return this->symbol_is_global_; }
2245 // For a relocation against a global symbol, the global symbol.
2249 gold_assert(this->symbol_is_global_);
2250 return this->u_.global.symbol;
2253 // For a relocation against a local symbol, the defining object.
2254 Sized_relobj_file<size, big_endian>*
2257 gold_assert(!this->symbol_is_global_);
2258 return this->u_.local.relobj;
2261 // For a relocation against a local symbol, the local symbol index.
2265 gold_assert(!this->symbol_is_global_);
2266 return this->u_.local.index;
2270 // GOT offset of the entry to which this relocation is applied.
2271 unsigned int got_offset_;
2272 // Type of relocation.
2273 unsigned int r_type_;
2274 // Whether this relocation is against a global symbol.
2275 bool symbol_is_global_;
2276 // A global or local symbol.
2281 // For a global symbol, the symbol itself.
2282 Mips_symbol<size>* symbol;
2286 // For a local symbol, the object defining object.
2287 Sized_relobj_file<size, big_endian>* relobj;
2288 // For a local symbol, the symbol index.
2295 Target_mips<size, big_endian>* target_;
2296 // The symbol table.
2297 Symbol_table* symbol_table_;
2300 // Static relocs to be applied to the GOT.
2301 std::vector<Static_reloc> static_relocs_;
2302 // .got section view.
2303 unsigned char* got_view_;
2304 // The dynamic symbol table index of the first symbol with global GOT entry.
2305 unsigned int first_global_got_dynsym_index_;
2306 // The master GOT information.
2307 Mips_got_info<size, big_endian>* master_got_info_;
2308 // The primary GOT information.
2309 Mips_got_info<size, big_endian>* primary_got_;
2310 // Secondary GOT fixups.
2311 std::vector<Static_reloc> secondary_got_relocs_;
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces. The first is to add:
2317 // lui $25,%hi(func)
2319 // addiu $25,$25,%lo(func)
2321 // to a separate trampoline section. The second is to add:
2323 // lui $25,%hi(func)
2324 // addiu $25,$25,%lo(func)
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2330 // We only create stubs of the first type.
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2335 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2338 Mips_output_data_la25_stub()
2339 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2342 // Create LA25 stub for a symbol.
2344 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345 Mips_symbol<size>* gsym);
2347 // Return output address of a stub.
2349 stub_address(const Mips_symbol<size>* sym) const
2351 gold_assert(sym->has_la25_stub());
2352 return this->address() + sym->la25_stub_offset();
2357 do_adjust_output_section(Output_section* os)
2358 { os->set_entsize(0); }
2361 // Template for standard LA25 stub.
2362 static const uint32_t la25_stub_entry[];
2363 // Template for microMIPS LA25 stub.
2364 static const uint32_t la25_stub_micromips_entry[];
2366 // Set the final size.
2368 set_final_data_size()
2369 { this->set_data_size(this->symbols_.size() * 16); }
2371 // Create a symbol for SYM stub's value and size, to help make the
2372 // disassembly easier to read.
2374 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375 Target_mips<size, big_endian>* target, uint64_t symsize);
2377 // Write to a map file.
2379 do_print_to_mapfile(Mapfile* mapfile) const
2380 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2382 // Write out the LA25 stub section.
2384 do_write(Output_file*);
2386 // Symbols that have LA25 stubs.
2387 std::vector<Mips_symbol<size>*> symbols_;
2390 // MIPS-specific relocation writer.
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2398 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399 typedef std::vector<Output_reloc_type> Relocs;
2402 write(typename Relocs::const_iterator p, unsigned char* pov)
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2409 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410 typedef std::vector<Output_reloc_type> Relocs;
2413 write(typename Relocs::const_iterator p, unsigned char* pov)
2415 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416 orel.put_r_offset(p->get_address());
2417 orel.put_r_sym(p->get_symbol_index());
2418 orel.put_r_ssym(RSS_UNDEF);
2419 orel.put_r_type(p->type());
2420 if (p->type() == elfcpp::R_MIPS_REL32)
2421 orel.put_r_type2(elfcpp::R_MIPS_64);
2423 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2433 Mips_output_data_reloc(bool sort_relocs)
2434 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2438 // Write out the data.
2440 do_write(Output_file* of)
2442 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2444 this->template do_write_generic<Writer>(of);
2449 // A class to handle the PLT data.
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456 size, big_endian> Reloc_section;
2459 // Create the PLT section. The ordinary .got section is an argument,
2460 // since we need to refer to the start.
2461 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462 Target_mips<size, big_endian>* target)
2463 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2467 this->rel_ = new Reloc_section(false);
2468 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469 elfcpp::SHF_ALLOC, this->rel_,
2470 ORDER_DYNAMIC_PLT_RELOCS, false);
2473 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2475 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2477 // Return the .rel.plt section data.
2480 { return this->rel_; }
2482 // Return the number of PLT entries.
2485 { return this->symbols_.size(); }
2487 // Return the offset of the first non-reserved PLT entry.
2489 first_plt_entry_offset() const
2490 { return sizeof(plt0_entry_o32); }
2492 // Return the size of a PLT entry.
2494 plt_entry_size() const
2495 { return sizeof(plt_entry); }
2497 // Set final PLT offsets. For each symbol, determine whether standard or
2498 // compressed (MIPS16 or microMIPS) PLT entry is used.
2502 // Return the offset of the first standard PLT entry.
2504 first_mips_plt_offset() const
2505 { return this->plt_header_size_; }
2507 // Return the offset of the first compressed PLT entry.
2509 first_comp_plt_offset() const
2510 { return this->plt_header_size_ + this->plt_mips_offset_; }
2512 // Return whether there are any standard PLT entries.
2514 has_standard_entries() const
2515 { return this->plt_mips_offset_ > 0; }
2517 // Return the output address of standard PLT entry.
2519 mips_entry_address(const Mips_symbol<size>* sym) const
2521 gold_assert (sym->has_mips_plt_offset());
2522 return (this->address() + this->first_mips_plt_offset()
2523 + sym->mips_plt_offset());
2526 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2528 comp_entry_address(const Mips_symbol<size>* sym) const
2530 gold_assert (sym->has_comp_plt_offset());
2531 return (this->address() + this->first_comp_plt_offset()
2532 + sym->comp_plt_offset());
2537 do_adjust_output_section(Output_section* os)
2538 { os->set_entsize(0); }
2540 // Write to a map file.
2542 do_print_to_mapfile(Mapfile* mapfile) const
2543 { mapfile->print_output_data(this, _(".plt")); }
2546 // Template for the first PLT entry.
2547 static const uint32_t plt0_entry_o32[];
2548 static const uint32_t plt0_entry_n32[];
2549 static const uint32_t plt0_entry_n64[];
2550 static const uint32_t plt0_entry_micromips_o32[];
2551 static const uint32_t plt0_entry_micromips32_o32[];
2553 // Template for subsequent PLT entries.
2554 static const uint32_t plt_entry[];
2555 static const uint32_t plt_entry_r6[];
2556 static const uint32_t plt_entry_mips16_o32[];
2557 static const uint32_t plt_entry_micromips_o32[];
2558 static const uint32_t plt_entry_micromips32_o32[];
2560 // Set the final size.
2562 set_final_data_size()
2564 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565 + this->plt_comp_offset_);
2568 // Write out the PLT data.
2570 do_write(Output_file*);
2572 // Return whether the plt header contains microMIPS code. For the sake of
2573 // cache alignment always use a standard header whenever any standard entries
2574 // are present even if microMIPS entries are present as well. This also lets
2575 // the microMIPS header rely on the value of $v0 only set by microMIPS
2576 // entries, for a small size reduction.
2578 is_plt_header_compressed() const
2580 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2584 // Return the size of the PLT header.
2586 get_plt_header_size() const
2588 if (this->target_->is_output_n64())
2589 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590 else if (this->target_->is_output_n32())
2591 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592 else if (!this->is_plt_header_compressed())
2593 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594 else if (this->target_->use_32bit_micromips_instructions())
2595 return (2 * sizeof(plt0_entry_micromips32_o32)
2596 / sizeof(plt0_entry_micromips32_o32[0]));
2598 return (2 * sizeof(plt0_entry_micromips_o32)
2599 / sizeof(plt0_entry_micromips_o32[0]));
2602 // Return the PLT header entry.
2604 get_plt_header_entry() const
2606 if (this->target_->is_output_n64())
2607 return plt0_entry_n64;
2608 else if (this->target_->is_output_n32())
2609 return plt0_entry_n32;
2610 else if (!this->is_plt_header_compressed())
2611 return plt0_entry_o32;
2612 else if (this->target_->use_32bit_micromips_instructions())
2613 return plt0_entry_micromips32_o32;
2615 return plt0_entry_micromips_o32;
2618 // Return the size of the standard PLT entry.
2620 standard_plt_entry_size() const
2621 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2623 // Return the size of the compressed PLT entry.
2625 compressed_plt_entry_size() const
2627 gold_assert(!this->target_->is_output_newabi());
2629 if (!this->target_->is_output_micromips())
2630 return (2 * sizeof(plt_entry_mips16_o32)
2631 / sizeof(plt_entry_mips16_o32[0]));
2632 else if (this->target_->use_32bit_micromips_instructions())
2633 return (2 * sizeof(plt_entry_micromips32_o32)
2634 / sizeof(plt_entry_micromips32_o32[0]));
2636 return (2 * sizeof(plt_entry_micromips_o32)
2637 / sizeof(plt_entry_micromips_o32[0]));
2640 // The reloc section.
2641 Reloc_section* rel_;
2642 // The .got.plt section.
2643 Output_data_space* got_plt_;
2644 // Symbols that have PLT entry.
2645 std::vector<Mips_symbol<size>*> symbols_;
2646 // The offset of the next standard PLT entry to create.
2647 unsigned int plt_mips_offset_;
2648 // The offset of the next compressed PLT entry to create.
2649 unsigned int plt_comp_offset_;
2650 // The size of the PLT header in bytes.
2651 unsigned int plt_header_size_;
2653 Target_mips<size, big_endian>* target_;
2656 // A class to handle the .MIPS.stubs data.
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2661 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2663 // Unordered set of .MIPS.stubs entries.
2664 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665 Mips_stubs_entry_set;
2668 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670 stub_offsets_are_set_(false), target_(target)
2673 // Create entry for a symbol.
2675 make_entry(Mips_symbol<size>*);
2677 // Remove entry for a symbol.
2679 remove_entry(Mips_symbol<size>* gsym);
2681 // Set stub offsets for symbols. This method expects that the number of
2682 // entries in dynamic symbol table is set.
2684 set_lazy_stub_offsets();
2687 set_needs_dynsym_value();
2689 // Set the number of entries in dynamic symbol table.
2691 set_dynsym_count(unsigned int dynsym_count)
2692 { this->dynsym_count_ = dynsym_count; }
2694 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695 // count is greater than 0x10000. If the dynamic symbol count is less than
2696 // 0x10000, the stub will be 4 bytes smaller.
2697 // There's no disadvantage from using microMIPS code here, so for the sake of
2698 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699 // output produced at all. This has a benefit of stubs being shorter by
2700 // 4 bytes each too, unless in the insn32 mode.
2702 stub_max_size() const
2704 if (!this->target_->is_output_micromips()
2705 || this->target_->use_32bit_micromips_instructions())
2711 // Return the size of the stub. This method expects that the final dynsym
2716 gold_assert(this->dynsym_count_ != -1U);
2717 if (this->dynsym_count_ > 0x10000)
2718 return this->stub_max_size();
2720 return this->stub_max_size() - 4;
2723 // Return output address of a stub.
2725 stub_address(const Mips_symbol<size>* sym) const
2727 gold_assert(sym->has_lazy_stub());
2728 return this->address() + sym->lazy_stub_offset();
2733 do_adjust_output_section(Output_section* os)
2734 { os->set_entsize(0); }
2736 // Write to a map file.
2738 do_print_to_mapfile(Mapfile* mapfile) const
2739 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2742 static const uint32_t lazy_stub_normal_1[];
2743 static const uint32_t lazy_stub_normal_1_n64[];
2744 static const uint32_t lazy_stub_normal_2[];
2745 static const uint32_t lazy_stub_normal_2_n64[];
2746 static const uint32_t lazy_stub_big[];
2747 static const uint32_t lazy_stub_big_n64[];
2749 static const uint32_t lazy_stub_micromips_normal_1[];
2750 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751 static const uint32_t lazy_stub_micromips_normal_2[];
2752 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753 static const uint32_t lazy_stub_micromips_big[];
2754 static const uint32_t lazy_stub_micromips_big_n64[];
2756 static const uint32_t lazy_stub_micromips32_normal_1[];
2757 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758 static const uint32_t lazy_stub_micromips32_normal_2[];
2759 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760 static const uint32_t lazy_stub_micromips32_big[];
2761 static const uint32_t lazy_stub_micromips32_big_n64[];
2763 // Set the final size.
2765 set_final_data_size()
2766 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2768 // Write out the .MIPS.stubs data.
2770 do_write(Output_file*);
2772 // .MIPS.stubs symbols
2773 Mips_stubs_entry_set symbols_;
2774 // Number of entries in dynamic symbol table.
2775 unsigned int dynsym_count_;
2776 // Whether the stub offsets are set.
2777 bool stub_offsets_are_set_;
2779 Target_mips<size, big_endian>* target_;
2782 // This class handles Mips .reginfo output section.
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2787 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2790 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791 Valtype gprmask, Valtype cprmask1,
2792 Valtype cprmask2, Valtype cprmask3,
2794 : Output_section_data(24, 4, true), target_(target),
2795 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796 cprmask3_(cprmask3), cprmask4_(cprmask4)
2800 // Write to a map file.
2802 do_print_to_mapfile(Mapfile* mapfile) const
2803 { mapfile->print_output_data(this, _(".reginfo")); }
2805 // Write out reginfo section.
2807 do_write(Output_file* of);
2810 Target_mips<size, big_endian>* target_;
2812 // gprmask of the output .reginfo section.
2814 // cprmask1 of the output .reginfo section.
2816 // cprmask2 of the output .reginfo section.
2818 // cprmask3 of the output .reginfo section.
2820 // cprmask4 of the output .reginfo section.
2824 // This class handles .MIPS.abiflags output section.
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2830 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831 : Output_section_data(24, 8, true), abiflags_(abiflags)
2835 // Write to a map file.
2837 do_print_to_mapfile(Mapfile* mapfile) const
2838 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2841 do_write(Output_file* of);
2844 const Mips_abiflags<big_endian>& abiflags_;
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process. So we have to extend the default code.
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852 public Default_scan_relocatable_relocs<Classify_reloc>
2855 // Return the strategy to use for a local symbol which is a section
2856 // symbol, given the relocation type.
2857 inline Relocatable_relocs::Reloc_strategy
2858 local_section_strategy(unsigned int r_type, Relobj* object)
2860 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2866 case elfcpp::R_MIPS_26:
2867 return Relocatable_relocs::RELOC_SPECIAL;
2870 return Default_scan_relocatable_relocs<Classify_reloc>::
2871 local_section_strategy(r_type, object);
2877 // Mips_copy_relocs class. The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2887 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2890 // Emit any saved relocations which turn out to be needed. This is
2891 // called after all the relocs have been scanned.
2893 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2897 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2900 // Emit this reloc if appropriate. This is called after we have
2901 // scanned all the relocations, so we know whether we emitted a
2902 // COPY relocation for SYM_.
2904 emit_entry(Copy_reloc_entry& entry,
2905 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906 Symbol_table* symtab, Layout* layout,
2907 Target_mips<size, big_endian>* target);
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise. The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916 bool local_protected)
2918 // If it's a local sym, of course we resolve locally.
2922 // STV_HIDDEN or STV_INTERNAL ones must be local.
2923 if (sym->visibility() == elfcpp::STV_HIDDEN
2924 || sym->visibility() == elfcpp::STV_INTERNAL)
2927 // If we don't have a definition in a regular file, then we can't
2928 // resolve locally. The sym is either undefined or dynamic.
2929 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2930 || sym->is_undefined())
2933 // Forced local symbols resolve locally.
2934 if (sym->is_forced_local())
2937 // As do non-dynamic symbols.
2938 if (!has_dynsym_entry)
2941 // At this point, we know the symbol is defined and dynamic. In an
2942 // executable it must resolve locally, likewise when building symbolic
2943 // shared libraries.
2944 if (parameters->options().output_is_executable()
2945 || parameters->options().Bsymbolic())
2948 // Now deal with defined dynamic symbols in shared libraries. Ones
2949 // with default visibility might not resolve locally.
2950 if (sym->visibility() == elfcpp::STV_DEFAULT)
2953 // STV_PROTECTED non-function symbols are local.
2954 if (sym->type() != elfcpp::STT_FUNC)
2957 // Function pointer equality tests may require that STV_PROTECTED
2958 // symbols be treated as dynamic symbols. If the address of a
2959 // function not defined in an executable is set to that function's
2960 // plt entry in the executable, then the address of the function in
2961 // a shared library must also be the plt entry in the executable.
2962 return local_protected;
2965 // Return TRUE if references to this symbol always reference the symbol in this
2968 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2970 return symbol_refs_local(sym, has_dynsym_entry, false);
2973 // Return TRUE if calls to this symbol always call the version in this object.
2975 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2977 return symbol_refs_local(sym, has_dynsym_entry, true);
2980 // Compare GOT offsets of two symbols.
2982 template<int size, bool big_endian>
2984 got_offset_compare(Symbol* sym1, Symbol* sym2)
2986 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2987 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2988 unsigned int area1 = mips_sym1->global_got_area();
2989 unsigned int area2 = mips_sym2->global_got_area();
2990 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2992 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2994 return area1 < area2;
2996 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2999 // This method divides dynamic symbols into symbols that have GOT entry, and
3000 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3001 // Mips ABI requires that symbols with the GOT entry must be at the end of
3002 // dynamic symbol table, and the order in dynamic symbol table must match the
3005 template<int size, bool big_endian>
3007 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3008 std::vector<Symbol*>* non_got_symbols,
3009 std::vector<Symbol*>* got_symbols)
3011 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3012 p != dyn_symbols->end();
3015 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3016 if (mips_sym->global_got_area() == GGA_NORMAL
3017 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3018 got_symbols->push_back(mips_sym);
3020 non_got_symbols->push_back(mips_sym);
3023 std::sort(got_symbols->begin(), got_symbols->end(),
3024 got_offset_compare<size, big_endian>);
3027 // Functor class for processing the global symbol table.
3029 template<int size, bool big_endian>
3030 class Symbol_visitor_check_symbols
3033 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3034 Layout* layout, Symbol_table* symtab)
3035 : target_(target), layout_(layout), symtab_(symtab)
3039 operator()(Sized_symbol<size>* sym)
3041 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3042 if (local_pic_function<size, big_endian>(mips_sym))
3044 // SYM is a function that might need $25 to be valid on entry.
3045 // If we're creating a non-PIC relocatable object, mark SYM as
3046 // being PIC. If we're creating a non-relocatable object with
3047 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3049 if (parameters->options().relocatable())
3051 if (!parameters->options().output_is_position_independent())
3052 mips_sym->set_pic();
3054 else if (mips_sym->has_nonpic_branches())
3056 this->target_->la25_stub_section(layout_)
3057 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3063 Target_mips<size, big_endian>* target_;
3065 Symbol_table* symtab_;
3068 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3069 // and endianness. The relocation format for MIPS-64 is non-standard.
3071 template<int sh_type, int size, bool big_endian>
3072 struct Mips_reloc_types;
3074 template<bool big_endian>
3075 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3077 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3078 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3080 static typename elfcpp::Elf_types<32>::Elf_Swxword
3081 get_r_addend(const Reloc*)
3085 set_reloc_addend(Reloc_write*,
3086 typename elfcpp::Elf_types<32>::Elf_Swxword)
3087 { gold_unreachable(); }
3090 template<bool big_endian>
3091 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3093 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3094 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3096 static typename elfcpp::Elf_types<32>::Elf_Swxword
3097 get_r_addend(const Reloc* reloc)
3098 { return reloc->get_r_addend(); }
3101 set_reloc_addend(Reloc_write* p,
3102 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3103 { p->put_r_addend(val); }
3106 template<bool big_endian>
3107 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3109 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3110 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3112 static typename elfcpp::Elf_types<64>::Elf_Swxword
3113 get_r_addend(const Reloc*)
3117 set_reloc_addend(Reloc_write*,
3118 typename elfcpp::Elf_types<64>::Elf_Swxword)
3119 { gold_unreachable(); }
3122 template<bool big_endian>
3123 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3125 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3126 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3128 static typename elfcpp::Elf_types<64>::Elf_Swxword
3129 get_r_addend(const Reloc* reloc)
3130 { return reloc->get_r_addend(); }
3133 set_reloc_addend(Reloc_write* p,
3134 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3135 { p->put_r_addend(val); }
3138 // Forward declaration.
3140 mips_get_size_for_reloc(unsigned int, Relobj*);
3142 // A class for inquiring about properties of a relocation,
3143 // used while scanning relocs during a relocatable link and
3144 // garbage collection.
3146 template<int sh_type_, int size, bool big_endian>
3147 class Mips_classify_reloc;
3149 template<int sh_type_, bool big_endian>
3150 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3151 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3154 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3156 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3159 // Return the symbol referred to by the relocation.
3160 static inline unsigned int
3161 get_r_sym(const Reltype* reloc)
3162 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3164 // Return the type of the relocation.
3165 static inline unsigned int
3166 get_r_type(const Reltype* reloc)
3167 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3169 static inline unsigned int
3170 get_r_type2(const Reltype*)
3173 static inline unsigned int
3174 get_r_type3(const Reltype*)
3177 static inline unsigned int
3178 get_r_ssym(const Reltype*)
3181 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3182 static inline unsigned int
3183 get_r_addend(const Reltype* reloc)
3185 if (sh_type_ == elfcpp::SHT_REL)
3187 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3190 // Write the r_info field to a new reloc, using the r_info field from
3191 // the original reloc, replacing the r_sym field with R_SYM.
3193 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3195 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3196 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3199 // Write the r_addend field to a new reloc.
3201 put_r_addend(Reltype_write* to,
3202 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3203 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3205 // Return the size of the addend of the relocation (only used for SHT_REL).
3207 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3208 { return mips_get_size_for_reloc(r_type, obj); }
3211 template<int sh_type_, bool big_endian>
3212 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3213 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3216 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3218 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3221 // Return the symbol referred to by the relocation.
3222 static inline unsigned int
3223 get_r_sym(const Reltype* reloc)
3224 { return reloc->get_r_sym(); }
3226 // Return the r_type of the relocation.
3227 static inline unsigned int
3228 get_r_type(const Reltype* reloc)
3229 { return reloc->get_r_type(); }
3231 // Return the r_type2 of the relocation.
3232 static inline unsigned int
3233 get_r_type2(const Reltype* reloc)
3234 { return reloc->get_r_type2(); }
3236 // Return the r_type3 of the relocation.
3237 static inline unsigned int
3238 get_r_type3(const Reltype* reloc)
3239 { return reloc->get_r_type3(); }
3241 // Return the special symbol of the relocation.
3242 static inline unsigned int
3243 get_r_ssym(const Reltype* reloc)
3244 { return reloc->get_r_ssym(); }
3246 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3247 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3248 get_r_addend(const Reltype* reloc)
3250 if (sh_type_ == elfcpp::SHT_REL)
3252 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3255 // Write the r_info field to a new reloc, using the r_info field from
3256 // the original reloc, replacing the r_sym field with R_SYM.
3258 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3260 new_reloc->put_r_sym(r_sym);
3261 new_reloc->put_r_ssym(reloc->get_r_ssym());
3262 new_reloc->put_r_type3(reloc->get_r_type3());
3263 new_reloc->put_r_type2(reloc->get_r_type2());
3264 new_reloc->put_r_type(reloc->get_r_type());
3267 // Write the r_addend field to a new reloc.
3269 put_r_addend(Reltype_write* to,
3270 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3271 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3273 // Return the size of the addend of the relocation (only used for SHT_REL).
3275 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3276 { return mips_get_size_for_reloc(r_type, obj); }
3279 template<int size, bool big_endian>
3280 class Target_mips : public Sized_target<size, big_endian>
3282 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3283 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3285 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3286 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3287 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3289 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3293 Target_mips(const Target::Target_info* info = &mips_info)
3294 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3295 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3296 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3297 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3298 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3299 entry_symbol_is_compressed_(false), insn32_(false)
3301 this->add_machine_extensions();
3304 // The offset of $gp from the beginning of the .got section.
3305 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3307 // The maximum size of the GOT for it to be addressable using 16-bit
3308 // offsets from $gp.
3309 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3311 // Make a new symbol table entry for the Mips target.
3313 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3314 { return new Mips_symbol<size>(); }
3316 // Process the relocations to determine unreferenced sections for
3317 // garbage collection.
3319 gc_process_relocs(Symbol_table* symtab,
3321 Sized_relobj_file<size, big_endian>* object,
3322 unsigned int data_shndx,
3323 unsigned int sh_type,
3324 const unsigned char* prelocs,
3326 Output_section* output_section,
3327 bool needs_special_offset_handling,
3328 size_t local_symbol_count,
3329 const unsigned char* plocal_symbols);
3331 // Scan the relocations to look for symbol adjustments.
3333 scan_relocs(Symbol_table* symtab,
3335 Sized_relobj_file<size, big_endian>* object,
3336 unsigned int data_shndx,
3337 unsigned int sh_type,
3338 const unsigned char* prelocs,
3340 Output_section* output_section,
3341 bool needs_special_offset_handling,
3342 size_t local_symbol_count,
3343 const unsigned char* plocal_symbols);
3345 // Finalize the sections.
3347 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3349 // Relocate a section.
3351 relocate_section(const Relocate_info<size, big_endian>*,
3352 unsigned int sh_type,
3353 const unsigned char* prelocs,
3355 Output_section* output_section,
3356 bool needs_special_offset_handling,
3357 unsigned char* view,
3358 Mips_address view_address,
3359 section_size_type view_size,
3360 const Reloc_symbol_changes*);
3362 // Scan the relocs during a relocatable link.
3364 scan_relocatable_relocs(Symbol_table* symtab,
3366 Sized_relobj_file<size, big_endian>* object,
3367 unsigned int data_shndx,
3368 unsigned int sh_type,
3369 const unsigned char* prelocs,
3371 Output_section* output_section,
3372 bool needs_special_offset_handling,
3373 size_t local_symbol_count,
3374 const unsigned char* plocal_symbols,
3375 Relocatable_relocs*);
3377 // Scan the relocs for --emit-relocs.
3379 emit_relocs_scan(Symbol_table* symtab,
3381 Sized_relobj_file<size, big_endian>* object,
3382 unsigned int data_shndx,
3383 unsigned int sh_type,
3384 const unsigned char* prelocs,
3386 Output_section* output_section,
3387 bool needs_special_offset_handling,
3388 size_t local_symbol_count,
3389 const unsigned char* plocal_syms,
3390 Relocatable_relocs* rr);
3392 // Emit relocations for a section.
3394 relocate_relocs(const Relocate_info<size, big_endian>*,
3395 unsigned int sh_type,
3396 const unsigned char* prelocs,
3398 Output_section* output_section,
3399 typename elfcpp::Elf_types<size>::Elf_Off
3400 offset_in_output_section,
3401 unsigned char* view,
3402 Mips_address view_address,
3403 section_size_type view_size,
3404 unsigned char* reloc_view,
3405 section_size_type reloc_view_size);
3407 // Perform target-specific processing in a relocatable link. This is
3408 // only used if we use the relocation strategy RELOC_SPECIAL.
3410 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3411 unsigned int sh_type,
3412 const unsigned char* preloc_in,
3414 Output_section* output_section,
3415 typename elfcpp::Elf_types<size>::Elf_Off
3416 offset_in_output_section,
3417 unsigned char* view,
3418 Mips_address view_address,
3419 section_size_type view_size,
3420 unsigned char* preloc_out);
3422 // Return whether SYM is defined by the ABI.
3424 do_is_defined_by_abi(const Symbol* sym) const
3426 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3427 || (strcmp(sym->name(), "_gp_disp") == 0)
3428 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3431 // Return the number of entries in the GOT.
3433 got_entry_count() const
3435 if (!this->has_got_section())
3437 return this->got_size() / (size/8);
3440 // Return the number of entries in the PLT.
3442 plt_entry_count() const
3444 if (this->plt_ == NULL)
3446 return this->plt_->entry_count();
3449 // Return the offset of the first non-reserved PLT entry.
3451 first_plt_entry_offset() const
3452 { return this->plt_->first_plt_entry_offset(); }
3454 // Return the size of each PLT entry.
3456 plt_entry_size() const
3457 { return this->plt_->plt_entry_size(); }
3459 // Get the GOT section, creating it if necessary.
3460 Mips_output_data_got<size, big_endian>*
3461 got_section(Symbol_table*, Layout*);
3463 // Get the GOT section.
3464 Mips_output_data_got<size, big_endian>*
3467 gold_assert(this->got_ != NULL);
3471 // Get the .MIPS.stubs section, creating it if necessary.
3472 Mips_output_data_mips_stubs<size, big_endian>*
3473 mips_stubs_section(Layout* layout);
3475 // Get the .MIPS.stubs section.
3476 Mips_output_data_mips_stubs<size, big_endian>*
3477 mips_stubs_section() const
3479 gold_assert(this->mips_stubs_ != NULL);
3480 return this->mips_stubs_;
3483 // Get the LA25 stub section, creating it if necessary.
3484 Mips_output_data_la25_stub<size, big_endian>*
3485 la25_stub_section(Layout*);
3487 // Get the LA25 stub section.
3488 Mips_output_data_la25_stub<size, big_endian>*
3491 gold_assert(this->la25_stub_ != NULL);
3492 return this->la25_stub_;
3495 // Get gp value. It has the value of .got + 0x7FF0.
3499 if (this->gp_ != NULL)
3500 return this->gp_->value();
3504 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3505 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3507 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3509 if (this->gp_ == NULL)
3512 bool multi_got = false;
3513 if (this->has_got_section())
3514 multi_got = this->got_section()->multi_got();
3516 return this->gp_->value();
3518 return this->gp_->value() + this->got_section()->get_got_offset(object);
3521 // Get the dynamic reloc section, creating it if necessary.
3523 rel_dyn_section(Layout*);
3526 do_has_custom_set_dynsym_indexes() const
3529 // Don't emit input .reginfo/.MIPS.abiflags sections to
3530 // output .reginfo/.MIPS.abiflags.
3532 do_should_include_section(elfcpp::Elf_Word sh_type) const
3534 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3535 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3538 // Set the dynamic symbol indexes. INDEX is the index of the first
3539 // global dynamic symbol. Pointers to the symbols are stored into the
3540 // vector SYMS. The names are added to DYNPOOL. This returns an
3541 // updated dynamic symbol index.
3543 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3544 std::vector<Symbol*>* syms, Stringpool* dynpool,
3545 Versions* versions, Symbol_table* symtab) const;
3547 // Remove .MIPS.stubs entry for a symbol.
3549 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3551 if (this->mips_stubs_ != NULL)
3552 this->mips_stubs_->remove_entry(sym);
3555 // The value to write into got[1] for SVR4 targets, to identify it is
3556 // a GNU object. The dynamic linker can then use got[1] to store the
3559 mips_elf_gnu_got1_mask()
3561 if (this->is_output_n64())
3562 return (uint64_t)1 << 63;
3567 // Whether the output has microMIPS code. This is valid only after
3568 // merge_obj_e_flags() is called.
3570 is_output_micromips() const
3572 gold_assert(this->are_processor_specific_flags_set());
3573 return elfcpp::is_micromips(this->processor_specific_flags());
3576 // Whether the output uses N32 ABI. This is valid only after
3577 // merge_obj_e_flags() is called.
3579 is_output_n32() const
3581 gold_assert(this->are_processor_specific_flags_set());
3582 return elfcpp::abi_n32(this->processor_specific_flags());
3585 // Whether the output uses R6 ISA. This is valid only after
3586 // merge_obj_e_flags() is called.
3588 is_output_r6() const
3590 gold_assert(this->are_processor_specific_flags_set());
3591 return elfcpp::r6_isa(this->processor_specific_flags());
3594 // Whether the output uses N64 ABI.
3596 is_output_n64() const
3597 { return size == 64; }
3599 // Whether the output uses NEWABI. This is valid only after
3600 // merge_obj_e_flags() is called.
3602 is_output_newabi() const
3603 { return this->is_output_n32() || this->is_output_n64(); }
3605 // Whether we can only use 32-bit microMIPS instructions.
3607 use_32bit_micromips_instructions() const
3608 { return this->insn32_; }
3610 // Return the r_sym field from a relocation.
3612 get_r_sym(const unsigned char* preloc) const
3614 // Since REL and RELA relocs share the same structure through
3615 // the r_info field, we can just use REL here.
3616 Reltype rel(preloc);
3617 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3622 // Return the value to use for a dynamic symbol which requires special
3623 // treatment. This is how we support equality comparisons of function
3624 // pointers across shared library boundaries, as described in the
3625 // processor specific ABI supplement.
3627 do_dynsym_value(const Symbol* gsym) const;
3629 // Make an ELF object.
3631 do_make_elf_object(const std::string&, Input_file*, off_t,
3632 const elfcpp::Ehdr<size, big_endian>& ehdr);
3635 do_make_elf_object(const std::string&, Input_file*, off_t,
3636 const elfcpp::Ehdr<size, !big_endian>&)
3637 { gold_unreachable(); }
3639 // Adjust ELF file header.
3641 do_adjust_elf_header(unsigned char* view, int len);
3643 // Get the custom dynamic tag value.
3645 do_dynamic_tag_custom_value(elfcpp::DT) const;
3647 // Adjust the value written to the dynamic symbol table.
3649 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3651 elfcpp::Sym<size, big_endian> isym(view);
3652 elfcpp::Sym_write<size, big_endian> osym(view);
3653 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3655 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3656 // to treat compressed symbols like any other.
3657 Mips_address value = isym.get_st_value();
3658 if (mips_sym->is_mips16() && value != 0)
3660 if (!mips_sym->has_mips16_fn_stub())
3664 // If we have a MIPS16 function with a stub, the dynamic symbol
3665 // must refer to the stub, since only the stub uses the standard
3666 // calling conventions. Stub contains MIPS32 code, so don't add +1
3669 // There is a code which does this in the method
3670 // Target_mips::do_dynsym_value, but that code will only be
3671 // executed if the symbol is from dynobj.
3672 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3675 Mips16_stub_section<size, big_endian>* fn_stub =
3676 mips_sym->template get_mips16_fn_stub<big_endian>();
3677 value = fn_stub->output_address();
3678 osym.put_st_size(fn_stub->section_size());
3681 osym.put_st_value(value);
3682 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3683 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3685 else if ((mips_sym->is_micromips()
3686 // Stubs are always microMIPS if there is any microMIPS code in
3688 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3691 osym.put_st_value(value | 1);
3692 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3693 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3698 // The class which scans relocations.
3706 get_reference_flags(unsigned int r_type);
3709 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3710 Sized_relobj_file<size, big_endian>* object,
3711 unsigned int data_shndx,
3712 Output_section* output_section,
3713 const Reltype& reloc, unsigned int r_type,
3714 const elfcpp::Sym<size, big_endian>& lsym,
3718 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3719 Sized_relobj_file<size, big_endian>* object,
3720 unsigned int data_shndx,
3721 Output_section* output_section,
3722 const Relatype& reloc, unsigned int r_type,
3723 const elfcpp::Sym<size, big_endian>& lsym,
3727 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3728 Sized_relobj_file<size, big_endian>* object,
3729 unsigned int data_shndx,
3730 Output_section* output_section,
3731 const Relatype* rela,
3733 unsigned int rel_type,
3734 unsigned int r_type,
3735 const elfcpp::Sym<size, big_endian>& lsym,
3739 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3740 Sized_relobj_file<size, big_endian>* object,
3741 unsigned int data_shndx,
3742 Output_section* output_section,
3743 const Reltype& reloc, unsigned int r_type,
3747 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3748 Sized_relobj_file<size, big_endian>* object,
3749 unsigned int data_shndx,
3750 Output_section* output_section,
3751 const Relatype& reloc, unsigned int r_type,
3755 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3756 Sized_relobj_file<size, big_endian>* object,
3757 unsigned int data_shndx,
3758 Output_section* output_section,
3759 const Relatype* rela,
3761 unsigned int rel_type,
3762 unsigned int r_type,
3766 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3768 Sized_relobj_file<size, big_endian>*,
3773 const elfcpp::Sym<size, big_endian>&)
3777 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3779 Sized_relobj_file<size, big_endian>*,
3783 unsigned int, Symbol*)
3787 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3789 Sized_relobj_file<size, big_endian>*,
3794 const elfcpp::Sym<size, big_endian>&)
3798 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3800 Sized_relobj_file<size, big_endian>*,
3804 unsigned int, Symbol*)
3808 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3809 unsigned int r_type);
3812 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3813 unsigned int r_type, Symbol*);
3816 // The class which implements relocation.
3826 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3828 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3829 unsigned int r_type,
3830 Output_section* output_section,
3831 Target_mips* target);
3833 // Do a relocation. Return false if the caller should not issue
3834 // any warnings about this relocation.
3836 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3837 Target_mips*, Output_section*, size_t, const unsigned char*,
3838 const Sized_symbol<size>*, const Symbol_value<size>*,
3839 unsigned char*, Mips_address, section_size_type);
3842 // This POD class holds the dynamic relocations that should be emitted instead
3843 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3844 // relocations if it turns out that the symbol does not have static
3849 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3850 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3851 Output_section* output_section, Mips_address r_offset)
3852 : sym_(sym), r_type_(r_type), relobj_(relobj),
3853 shndx_(shndx), output_section_(output_section),
3857 // Emit this reloc if appropriate. This is called after we have
3858 // scanned all the relocations, so we know whether the symbol has
3859 // static relocations.
3861 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3862 Symbol_table* symtab)
3864 if (!this->sym_->has_static_relocs())
3866 got->record_global_got_symbol(this->sym_, this->relobj_,
3867 this->r_type_, true, false);
3868 if (!symbol_references_local(this->sym_,
3869 this->sym_->should_add_dynsym_entry(symtab)))
3870 rel_dyn->add_global(this->sym_, this->r_type_,
3871 this->output_section_, this->relobj_,
3872 this->shndx_, this->r_offset_);
3874 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3875 this->output_section_, this->relobj_,
3876 this->shndx_, this->r_offset_);
3881 Mips_symbol<size>* sym_;
3882 unsigned int r_type_;
3883 Mips_relobj<size, big_endian>* relobj_;
3884 unsigned int shndx_;
3885 Output_section* output_section_;
3886 Mips_address r_offset_;
3889 // Adjust TLS relocation type based on the options and whether this
3890 // is a local symbol.
3891 static tls::Tls_optimization
3892 optimize_tls_reloc(bool is_final, int r_type);
3894 // Return whether there is a GOT section.
3896 has_got_section() const
3897 { return this->got_ != NULL; }
3899 // Check whether the given ELF header flags describe a 32-bit binary.
3901 mips_32bit_flags(elfcpp::Elf_Word);
3904 mach_mips3000 = 3000,
3905 mach_mips3900 = 3900,
3906 mach_mips4000 = 4000,
3907 mach_mips4010 = 4010,
3908 mach_mips4100 = 4100,
3909 mach_mips4111 = 4111,
3910 mach_mips4120 = 4120,
3911 mach_mips4300 = 4300,
3912 mach_mips4400 = 4400,
3913 mach_mips4600 = 4600,
3914 mach_mips4650 = 4650,
3915 mach_mips5000 = 5000,
3916 mach_mips5400 = 5400,
3917 mach_mips5500 = 5500,
3918 mach_mips5900 = 5900,
3919 mach_mips6000 = 6000,
3920 mach_mips7000 = 7000,
3921 mach_mips8000 = 8000,
3922 mach_mips9000 = 9000,
3923 mach_mips10000 = 10000,
3924 mach_mips12000 = 12000,
3925 mach_mips14000 = 14000,
3926 mach_mips16000 = 16000,
3929 mach_mips_loongson_2e = 3001,
3930 mach_mips_loongson_2f = 3002,
3931 mach_mips_loongson_3a = 3003,
3932 mach_mips_sb1 = 12310201, // octal 'SB', 01
3933 mach_mips_octeon = 6501,
3934 mach_mips_octeonp = 6601,
3935 mach_mips_octeon2 = 6502,
3936 mach_mips_octeon3 = 6503,
3937 mach_mips_xlr = 887682, // decimal 'XLR'
3938 mach_mipsisa32 = 32,
3939 mach_mipsisa32r2 = 33,
3940 mach_mipsisa32r3 = 34,
3941 mach_mipsisa32r5 = 36,
3942 mach_mipsisa32r6 = 37,
3943 mach_mipsisa64 = 64,
3944 mach_mipsisa64r2 = 65,
3945 mach_mipsisa64r3 = 66,
3946 mach_mipsisa64r5 = 68,
3947 mach_mipsisa64r6 = 69,
3948 mach_mips_micromips = 96
3951 // Return the MACH for a MIPS e_flags value.
3953 elf_mips_mach(elfcpp::Elf_Word);
3955 // Return the MACH for each .MIPS.abiflags ISA Extension.
3957 mips_isa_ext_mach(unsigned int);
3959 // Return the .MIPS.abiflags value representing each ISA Extension.
3961 mips_isa_ext(unsigned int);
3963 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3965 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3966 Mips_abiflags<big_endian>*);
3968 // Infer the content of the ABI flags based on the elf header.
3970 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3972 // Create abiflags from elf header or from .MIPS.abiflags section.
3974 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3976 // Return the meaning of fp_abi, or "unknown" if not known.
3982 select_fp_abi(const std::string&, int, int);
3984 // Merge attributes from input object.
3986 merge_obj_attributes(const std::string&, const Attributes_section_data*);
3988 // Merge abiflags from input object.
3990 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3992 // Check whether machine EXTENSION is an extension of machine BASE.
3994 mips_mach_extends(unsigned int, unsigned int);
3996 // Merge file header flags from input object.
3998 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4000 // Encode ISA level and revision as a single value.
4002 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4003 { return (isa_level << 3) | isa_rev; }
4005 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4010 // True if we are linking for CPUs that are faster if JALR is converted to
4011 // BAL. This should be safe for all architectures. We enable this predicate
4017 // True if we are linking for CPUs that are faster if JR is converted to B.
4018 // This should be safe for all architectures. We enable this predicate for
4024 // Return the size of the GOT section.
4028 gold_assert(this->got_ != NULL);
4029 return this->got_->data_size();
4032 // Create a PLT entry for a global symbol referenced by r_type relocation.
4034 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4035 unsigned int r_type);
4037 // Get the PLT section.
4038 Mips_output_data_plt<size, big_endian>*
4041 gold_assert(this->plt_ != NULL);
4045 // Get the GOT PLT section.
4046 const Mips_output_data_plt<size, big_endian>*
4047 got_plt_section() const
4049 gold_assert(this->got_plt_ != NULL);
4050 return this->got_plt_;
4053 // Copy a relocation against a global symbol.
4055 copy_reloc(Symbol_table* symtab, Layout* layout,
4056 Sized_relobj_file<size, big_endian>* object,
4057 unsigned int shndx, Output_section* output_section,
4058 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4060 this->copy_relocs_.copy_reloc(symtab, layout,
4061 symtab->get_sized_symbol<size>(sym),
4062 object, shndx, output_section,
4063 r_type, r_offset, 0,
4064 this->rel_dyn_section(layout));
4068 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4069 Mips_relobj<size, big_endian>* relobj,
4070 unsigned int shndx, Output_section* output_section,
4071 Mips_address r_offset)
4073 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4074 output_section, r_offset));
4077 // Calculate value of _gp symbol.
4079 set_gp(Layout*, Symbol_table*);
4082 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4084 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4086 // Adds entries that describe how machines relate to one another. The entries
4087 // are ordered topologically with MIPS I extensions listed last. First
4088 // element is extension, second element is base.
4090 add_machine_extensions()
4092 // MIPS64r2 extensions.
4093 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4094 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4095 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4096 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4097 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4099 // MIPS64 extensions.
4100 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4101 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4102 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4104 // MIPS V extensions.
4105 this->add_extension(mach_mipsisa64, mach_mips5);
4107 // R10000 extensions.
4108 this->add_extension(mach_mips12000, mach_mips10000);
4109 this->add_extension(mach_mips14000, mach_mips10000);
4110 this->add_extension(mach_mips16000, mach_mips10000);
4112 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4113 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4114 // better to allow vr5400 and vr5500 code to be merged anyway, since
4115 // many libraries will just use the core ISA. Perhaps we could add
4116 // some sort of ASE flag if this ever proves a problem.
4117 this->add_extension(mach_mips5500, mach_mips5400);
4118 this->add_extension(mach_mips5400, mach_mips5000);
4120 // MIPS IV extensions.
4121 this->add_extension(mach_mips5, mach_mips8000);
4122 this->add_extension(mach_mips10000, mach_mips8000);
4123 this->add_extension(mach_mips5000, mach_mips8000);
4124 this->add_extension(mach_mips7000, mach_mips8000);
4125 this->add_extension(mach_mips9000, mach_mips8000);
4127 // VR4100 extensions.
4128 this->add_extension(mach_mips4120, mach_mips4100);
4129 this->add_extension(mach_mips4111, mach_mips4100);
4131 // MIPS III extensions.
4132 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4133 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4134 this->add_extension(mach_mips8000, mach_mips4000);
4135 this->add_extension(mach_mips4650, mach_mips4000);
4136 this->add_extension(mach_mips4600, mach_mips4000);
4137 this->add_extension(mach_mips4400, mach_mips4000);
4138 this->add_extension(mach_mips4300, mach_mips4000);
4139 this->add_extension(mach_mips4100, mach_mips4000);
4140 this->add_extension(mach_mips4010, mach_mips4000);
4141 this->add_extension(mach_mips5900, mach_mips4000);
4143 // MIPS32 extensions.
4144 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4146 // MIPS II extensions.
4147 this->add_extension(mach_mips4000, mach_mips6000);
4148 this->add_extension(mach_mipsisa32, mach_mips6000);
4150 // MIPS I extensions.
4151 this->add_extension(mach_mips6000, mach_mips3000);
4152 this->add_extension(mach_mips3900, mach_mips3000);
4155 // Add value to MIPS extenstions.
4157 add_extension(unsigned int base, unsigned int extension)
4159 std::pair<unsigned int, unsigned int> ext(base, extension);
4160 this->mips_mach_extensions_.push_back(ext);
4163 // Return the number of entries in the .dynsym section.
4164 unsigned int get_dt_mips_symtabno() const
4166 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4167 / elfcpp::Elf_sizes<size>::sym_size));
4168 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4171 // Information about this specific target which we pass to the
4172 // general Target structure.
4173 static const Target::Target_info mips_info;
4175 Mips_output_data_got<size, big_endian>* got_;
4176 // gp symbol. It has the value of .got + 0x7FF0.
4177 Sized_symbol<size>* gp_;
4179 Mips_output_data_plt<size, big_endian>* plt_;
4180 // The GOT PLT section.
4181 Output_data_space* got_plt_;
4182 // The dynamic reloc section.
4183 Reloc_section* rel_dyn_;
4184 // The .rld_map section.
4185 Output_data_zero_fill* rld_map_;
4186 // Relocs saved to avoid a COPY reloc.
4187 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4189 // A list of dyn relocs to be saved.
4190 std::vector<Dyn_reloc> dyn_relocs_;
4192 // The LA25 stub section.
4193 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4194 // Architecture extensions.
4195 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4197 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4199 // Attributes section data in output.
4200 Attributes_section_data* attributes_section_data_;
4201 // .MIPS.abiflags section data in output.
4202 Mips_abiflags<big_endian>* abiflags_;
4207 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4209 // Whether there is an input .MIPS.abiflags section.
4210 bool has_abiflags_section_;
4212 // Whether the entry symbol is mips16 or micromips.
4213 bool entry_symbol_is_compressed_;
4215 // Whether we can use only 32-bit microMIPS instructions.
4216 // TODO(sasa): This should be a linker option.
4220 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4221 // It records high part of the relocation pair.
4223 template<int size, bool big_endian>
4226 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4228 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4229 const Symbol_value<size>* _psymval, Mips_address _addend,
4230 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4231 Mips_address _address = 0, bool _gp_disp = false)
4232 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4233 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4234 address(_address), gp_disp(_gp_disp)
4237 unsigned char* view;
4238 const Mips_relobj<size, big_endian>* object;
4239 const Symbol_value<size>* psymval;
4240 Mips_address addend;
4241 unsigned int r_type;
4243 bool extract_addend;
4244 Mips_address address;
4248 template<int size, bool big_endian>
4249 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4251 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4252 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4253 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4254 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4255 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4260 STATUS_OKAY, // No error during relocation.
4261 STATUS_OVERFLOW, // Relocation overflow.
4262 STATUS_BAD_RELOC, // Relocation cannot be applied.
4263 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4267 typedef Relocate_functions<size, big_endian> Base;
4268 typedef Mips_relocate_functions<size, big_endian> This;
4270 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4271 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4272 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4274 template<int valsize>
4275 static inline typename This::Status
4276 check_overflow(Valtype value)
4279 return (Bits<valsize>::has_overflow32(value)
4280 ? This::STATUS_OVERFLOW
4281 : This::STATUS_OKAY);
4283 return (Bits<valsize>::has_overflow(value)
4284 ? This::STATUS_OVERFLOW
4285 : This::STATUS_OKAY);
4289 should_shuffle_micromips_reloc(unsigned int r_type)
4291 return (micromips_reloc(r_type)
4292 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4293 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4297 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4298 // Most mips16 instructions are 16 bits, but these instructions
4301 // The format of these instructions is:
4303 // +--------------+--------------------------------+
4304 // | JALX | X| Imm 20:16 | Imm 25:21 |
4305 // +--------------+--------------------------------+
4306 // | Immediate 15:0 |
4307 // +-----------------------------------------------+
4309 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4310 // Note that the immediate value in the first word is swapped.
4312 // When producing a relocatable object file, R_MIPS16_26 is
4313 // handled mostly like R_MIPS_26. In particular, the addend is
4314 // stored as a straight 26-bit value in a 32-bit instruction.
4315 // (gas makes life simpler for itself by never adjusting a
4316 // R_MIPS16_26 reloc to be against a section, so the addend is
4317 // always zero). However, the 32 bit instruction is stored as 2
4318 // 16-bit values, rather than a single 32-bit value. In a
4319 // big-endian file, the result is the same; in a little-endian
4320 // file, the two 16-bit halves of the 32 bit value are swapped.
4321 // This is so that a disassembler can recognize the jal
4324 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4325 // instruction stored as two 16-bit values. The addend A is the
4326 // contents of the targ26 field. The calculation is the same as
4327 // R_MIPS_26. When storing the calculated value, reorder the
4328 // immediate value as shown above, and don't forget to store the
4329 // value as two 16-bit values.
4331 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4335 // +--------+----------------------+
4339 // +--------+----------------------+
4342 // +----------+------+-------------+
4344 // | sub1 | | sub2 |
4345 // |0 9|10 15|16 31|
4346 // +----------+--------------------+
4347 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4348 // ((sub1 << 16) | sub2)).
4350 // When producing a relocatable object file, the calculation is
4351 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4352 // When producing a fully linked file, the calculation is
4353 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4354 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4356 // The table below lists the other MIPS16 instruction relocations.
4357 // Each one is calculated in the same way as the non-MIPS16 relocation
4358 // given on the right, but using the extended MIPS16 layout of 16-bit
4359 // immediate fields:
4361 // R_MIPS16_GPREL R_MIPS_GPREL16
4362 // R_MIPS16_GOT16 R_MIPS_GOT16
4363 // R_MIPS16_CALL16 R_MIPS_CALL16
4364 // R_MIPS16_HI16 R_MIPS_HI16
4365 // R_MIPS16_LO16 R_MIPS_LO16
4367 // A typical instruction will have a format like this:
4369 // +--------------+--------------------------------+
4370 // | EXTEND | Imm 10:5 | Imm 15:11 |
4371 // +--------------+--------------------------------+
4372 // | Major | rx | ry | Imm 4:0 |
4373 // +--------------+--------------------------------+
4375 // EXTEND is the five bit value 11110. Major is the instruction
4378 // All we need to do here is shuffle the bits appropriately.
4379 // As above, the two 16-bit halves must be swapped on a
4380 // little-endian system.
4382 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4383 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4384 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4387 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4390 if (!mips16_reloc(r_type)
4391 && !should_shuffle_micromips_reloc(r_type))
4394 // Pick up the first and second halfwords of the instruction.
4395 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4396 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4399 if (micromips_reloc(r_type)
4400 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4401 val = first << 16 | second;
4402 else if (r_type != elfcpp::R_MIPS16_26)
4403 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4404 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4406 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4407 | ((first & 0x1f) << 21) | second);
4409 elfcpp::Swap<32, big_endian>::writeval(view, val);
4413 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4415 if (!mips16_reloc(r_type)
4416 && !should_shuffle_micromips_reloc(r_type))
4419 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4420 Valtype16 first, second;
4422 if (micromips_reloc(r_type)
4423 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4425 second = val & 0xffff;
4428 else if (r_type != elfcpp::R_MIPS16_26)
4430 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4431 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4435 second = val & 0xffff;
4436 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4437 | ((val >> 21) & 0x1f);
4440 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4441 elfcpp::Swap<16, big_endian>::writeval(view, first);
4444 // R_MIPS_16: S + sign-extend(A)
4445 static inline typename This::Status
4446 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4447 const Symbol_value<size>* psymval, Mips_address addend_a,
4448 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4450 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4451 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4453 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4456 Valtype x = psymval->value(object, addend);
4457 val = Bits<16>::bit_select32(val, x, 0xffffU);
4461 *calculated_value = x;
4462 return This::STATUS_OKAY;
4465 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4467 return check_overflow<16>(x);
4471 static inline typename This::Status
4472 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4473 const Symbol_value<size>* psymval, Mips_address addend_a,
4474 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4476 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4477 Valtype addend = (extract_addend
4478 ? elfcpp::Swap<32, big_endian>::readval(wv)
4480 Valtype x = psymval->value(object, addend);
4483 *calculated_value = x;
4485 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4487 return This::STATUS_OKAY;
4490 // R_MIPS_JALR, R_MICROMIPS_JALR
4491 static inline typename This::Status
4492 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4493 const Symbol_value<size>* psymval, Mips_address address,
4494 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4495 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4496 bool calculate_only, Valtype* calculated_value)
4498 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4499 Valtype addend = extract_addend ? 0 : addend_a;
4500 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4502 // Try converting J(AL)R to B(AL), if the target is in range.
4503 if (!parameters->options().relocatable()
4504 && r_type == elfcpp::R_MIPS_JALR
4506 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4507 || (jr_to_b && val == 0x03200008))) // jr t9
4509 int offset = psymval->value(object, addend) - (address + 4);
4510 if (!Bits<18>::has_overflow32(offset))
4512 if (val == 0x03200008) // jr t9
4513 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4515 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4520 *calculated_value = val;
4522 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4524 return This::STATUS_OKAY;
4527 // R_MIPS_PC32: S + A - P
4528 static inline typename This::Status
4529 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4530 const Symbol_value<size>* psymval, Mips_address address,
4531 Mips_address addend_a, bool extract_addend, bool calculate_only,
4532 Valtype* calculated_value)
4534 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4535 Valtype addend = (extract_addend
4536 ? elfcpp::Swap<32, big_endian>::readval(wv)
4538 Valtype x = psymval->value(object, addend) - address;
4541 *calculated_value = x;
4543 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4545 return This::STATUS_OKAY;
4548 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4549 static inline typename This::Status
4550 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4551 const Symbol_value<size>* psymval, Mips_address address,
4552 bool local, Mips_address addend_a, bool extract_addend,
4553 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4554 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4556 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4557 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4562 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4563 addend = (val & 0x03ffffff) << 1;
4565 addend = (val & 0x03ffffff) << 2;
4570 // Make sure the target of JALX is word-aligned. Bit 0 must be
4571 // the correct ISA mode selector and bit 1 must be 0.
4572 if (!calculate_only && cross_mode_jump
4573 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4575 gold_warning(_("JALX to a non-word-aligned address"));
4576 return This::STATUS_BAD_RELOC;
4579 // Shift is 2, unusually, for microMIPS JALX.
4580 unsigned int shift =
4581 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4585 x = addend | ((address + 4) & (0xfc000000 << shift));
4589 x = Bits<27>::sign_extend32(addend);
4591 x = Bits<28>::sign_extend32(addend);
4593 x = psymval->value(object, x) >> shift;
4595 if (!calculate_only && !local && !gsym->is_weak_undefined())
4597 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4599 gold_error(_("relocation truncated to fit: %u against '%s'"),
4600 r_type, gsym->name());
4601 return This::STATUS_OVERFLOW;
4605 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4607 // If required, turn JAL into JALX.
4608 if (cross_mode_jump)
4611 Valtype32 opcode = val >> 26;
4612 Valtype32 jalx_opcode;
4614 // Check to see if the opcode is already JAL or JALX.
4615 if (r_type == elfcpp::R_MIPS16_26)
4617 ok = (opcode == 0x6) || (opcode == 0x7);
4620 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4622 ok = (opcode == 0x3d) || (opcode == 0x3c);
4627 ok = (opcode == 0x3) || (opcode == 0x1d);
4631 // If the opcode is not JAL or JALX, there's a problem. We cannot
4632 // convert J or JALS to JALX.
4633 if (!calculate_only && !ok)
4635 gold_error(_("Unsupported jump between ISA modes; consider "
4636 "recompiling with interlinking enabled."));
4637 return This::STATUS_BAD_RELOC;
4640 // Make this the JALX opcode.
4641 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4644 // Try converting JAL to BAL, if the target is in range.
4645 if (!parameters->options().relocatable()
4648 && r_type == elfcpp::R_MIPS_26
4649 && (val >> 26) == 0x3))) // jal addr
4651 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4652 int offset = dest - (address + 4);
4653 if (!Bits<18>::has_overflow32(offset))
4655 if (val == 0x03200008) // jr t9
4656 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4658 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4663 *calculated_value = val;
4665 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4667 return This::STATUS_OKAY;
4671 static inline typename This::Status
4672 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4673 const Symbol_value<size>* psymval, Mips_address address,
4674 Mips_address addend_a, bool extract_addend, bool calculate_only,
4675 Valtype* calculated_value)
4677 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4678 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4680 Valtype addend = (extract_addend
4681 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4684 Valtype x = psymval->value(object, addend) - address;
4685 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4689 *calculated_value = x >> 2;
4690 return This::STATUS_OKAY;
4693 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4695 if (psymval->value(object, addend) & 3)
4696 return This::STATUS_PCREL_UNALIGNED;
4698 return check_overflow<18>(x);
4702 static inline typename This::Status
4703 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4704 const Symbol_value<size>* psymval, Mips_address address,
4705 Mips_address addend_a, bool extract_addend, bool calculate_only,
4706 Valtype* calculated_value)
4708 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4709 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4711 Valtype addend = (extract_addend
4712 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4715 Valtype x = psymval->value(object, addend) - address;
4716 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4720 *calculated_value = x >> 2;
4721 return This::STATUS_OKAY;
4724 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4726 if (psymval->value(object, addend) & 3)
4727 return This::STATUS_PCREL_UNALIGNED;
4729 return check_overflow<23>(x);
4733 static inline typename This::Status
4734 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4735 const Symbol_value<size>* psymval, Mips_address address,
4736 Mips_address addend_a, bool extract_addend, bool calculate_only,
4737 Valtype* calculated_value)
4739 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4740 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4742 Valtype addend = (extract_addend
4743 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4746 Valtype x = psymval->value(object, addend) - address;
4747 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4751 *calculated_value = x >> 2;
4752 return This::STATUS_OKAY;
4755 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4757 if (psymval->value(object, addend) & 3)
4758 return This::STATUS_PCREL_UNALIGNED;
4760 return check_overflow<28>(x);
4764 static inline typename This::Status
4765 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4766 const Symbol_value<size>* psymval, Mips_address address,
4767 Mips_address addend_a, bool extract_addend, bool calculate_only,
4768 Valtype* calculated_value)
4770 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4771 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4773 Valtype addend = (extract_addend
4774 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4777 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4778 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4782 *calculated_value = x >> 3;
4783 return This::STATUS_OKAY;
4786 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4788 if (psymval->value(object, addend) & 7)
4789 return This::STATUS_PCREL_UNALIGNED;
4791 return check_overflow<21>(x);
4795 static inline typename This::Status
4796 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4797 const Symbol_value<size>* psymval, Mips_address address,
4798 Mips_address addend_a, bool extract_addend, bool calculate_only,
4799 Valtype* calculated_value)
4801 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4802 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4804 Valtype addend = (extract_addend
4805 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4808 Valtype x = psymval->value(object, addend) - address;
4809 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4813 *calculated_value = x >> 2;
4814 return This::STATUS_OKAY;
4817 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4819 if (psymval->value(object, addend) & 3)
4820 return This::STATUS_PCREL_UNALIGNED;
4822 return check_overflow<21>(x);
4826 static inline typename This::Status
4827 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4828 const Symbol_value<size>* psymval, Mips_address addend,
4829 Mips_address address, unsigned int r_sym, bool extract_addend)
4831 // Record the relocation. It will be resolved when we find pclo16 part.
4832 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4833 addend, 0, r_sym, extract_addend, address));
4834 return This::STATUS_OKAY;
4838 static inline typename This::Status
4839 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4840 const Symbol_value<size>* psymval, Mips_address addend_hi,
4841 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4842 bool calculate_only, Valtype* calculated_value)
4844 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4845 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4847 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4850 Valtype value = psymval->value(object, addend) - address;
4851 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4852 val = Bits<32>::bit_select32(val, x, 0xffff);
4855 *calculated_value = x;
4857 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4859 return This::STATUS_OKAY;
4863 static inline typename This::Status
4864 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4865 const Symbol_value<size>* psymval, Mips_address addend_a,
4866 bool extract_addend, Mips_address address, unsigned int r_sym,
4867 unsigned int rel_type, bool calculate_only,
4868 Valtype* calculated_value)
4870 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4871 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4873 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4876 if (rel_type == elfcpp::SHT_REL)
4878 // Resolve pending R_MIPS_PCHI16 relocations.
4879 typename std::list<reloc_high<size, big_endian> >::iterator it =
4880 pchi16_relocs.begin();
4881 while (it != pchi16_relocs.end())
4883 reloc_high<size, big_endian> pchi16 = *it;
4884 if (pchi16.r_sym == r_sym)
4886 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4887 pchi16.addend, pchi16.address,
4888 pchi16.extract_addend, addend, calculate_only,
4890 it = pchi16_relocs.erase(it);
4897 // Resolve R_MIPS_PCLO16 relocation.
4898 Valtype x = psymval->value(object, addend) - address;
4899 val = Bits<32>::bit_select32(val, x, 0xffff);
4902 *calculated_value = x;
4904 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4906 return This::STATUS_OKAY;
4909 // R_MICROMIPS_PC7_S1
4910 static inline typename This::Status
4911 relmicromips_pc7_s1(unsigned char* view,
4912 const Mips_relobj<size, big_endian>* object,
4913 const Symbol_value<size>* psymval, Mips_address address,
4914 Mips_address addend_a, bool extract_addend,
4915 bool calculate_only, Valtype* calculated_value)
4917 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4918 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4920 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4923 Valtype x = psymval->value(object, addend) - address;
4924 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4928 *calculated_value = x >> 1;
4929 return This::STATUS_OKAY;
4932 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4934 return check_overflow<8>(x);
4937 // R_MICROMIPS_PC10_S1
4938 static inline typename This::Status
4939 relmicromips_pc10_s1(unsigned char* view,
4940 const Mips_relobj<size, big_endian>* object,
4941 const Symbol_value<size>* psymval, Mips_address address,
4942 Mips_address addend_a, bool extract_addend,
4943 bool calculate_only, Valtype* calculated_value)
4945 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4946 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4948 Valtype addend = (extract_addend
4949 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4952 Valtype x = psymval->value(object, addend) - address;
4953 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4957 *calculated_value = x >> 1;
4958 return This::STATUS_OKAY;
4961 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4963 return check_overflow<11>(x);
4966 // R_MICROMIPS_PC16_S1
4967 static inline typename This::Status
4968 relmicromips_pc16_s1(unsigned char* view,
4969 const Mips_relobj<size, big_endian>* object,
4970 const Symbol_value<size>* psymval, Mips_address address,
4971 Mips_address addend_a, bool extract_addend,
4972 bool calculate_only, Valtype* calculated_value)
4974 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4975 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4977 Valtype addend = (extract_addend
4978 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4981 Valtype x = psymval->value(object, addend) - address;
4982 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4986 *calculated_value = x >> 1;
4987 return This::STATUS_OKAY;
4990 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4992 return check_overflow<17>(x);
4995 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4996 static inline typename This::Status
4997 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4998 const Symbol_value<size>* psymval, Mips_address addend,
4999 Mips_address address, bool gp_disp, unsigned int r_type,
5000 unsigned int r_sym, bool extract_addend)
5002 // Record the relocation. It will be resolved when we find lo16 part.
5003 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5004 addend, r_type, r_sym, extract_addend, address,
5006 return This::STATUS_OKAY;
5009 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5010 static inline typename This::Status
5011 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5012 const Symbol_value<size>* psymval, Mips_address addend_hi,
5013 Mips_address address, bool is_gp_disp, unsigned int r_type,
5014 bool extract_addend, Valtype32 addend_lo,
5015 Target_mips<size, big_endian>* target, bool calculate_only,
5016 Valtype* calculated_value)
5018 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5019 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5021 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5026 value = psymval->value(object, addend);
5029 // For MIPS16 ABI code we generate this sequence
5030 // 0: li $v0,%hi(_gp_disp)
5031 // 4: addiupc $v1,%lo(_gp_disp)
5035 // So the offsets of hi and lo relocs are the same, but the
5036 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5037 // ADDIUPC clears the low two bits of the instruction address,
5038 // so the base is ($t9 + 4) & ~3.
5040 if (r_type == elfcpp::R_MIPS16_HI16)
5041 gp_disp = (target->adjusted_gp_value(object)
5042 - ((address + 4) & ~0x3));
5043 // The microMIPS .cpload sequence uses the same assembly
5044 // instructions as the traditional psABI version, but the
5045 // incoming $t9 has the low bit set.
5046 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5047 gp_disp = target->adjusted_gp_value(object) - address - 1;
5049 gp_disp = target->adjusted_gp_value(object) - address;
5050 value = gp_disp + addend;
5052 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5053 val = Bits<32>::bit_select32(val, x, 0xffff);
5057 *calculated_value = x;
5058 return This::STATUS_OKAY;
5061 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5063 return (is_gp_disp ? check_overflow<16>(x)
5064 : This::STATUS_OKAY);
5067 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5068 static inline typename This::Status
5069 relgot16_local(unsigned char* view,
5070 const Mips_relobj<size, big_endian>* object,
5071 const Symbol_value<size>* psymval, Mips_address addend_a,
5072 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5074 // Record the relocation. It will be resolved when we find lo16 part.
5075 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5076 addend_a, r_type, r_sym, extract_addend));
5077 return This::STATUS_OKAY;
5080 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5081 static inline typename This::Status
5082 do_relgot16_local(unsigned char* view,
5083 const Mips_relobj<size, big_endian>* object,
5084 const Symbol_value<size>* psymval, Mips_address addend_hi,
5085 bool extract_addend, Valtype32 addend_lo,
5086 Target_mips<size, big_endian>* target, bool calculate_only,
5087 Valtype* calculated_value)
5089 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5090 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5092 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5095 // Find GOT page entry.
5096 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5099 unsigned int got_offset =
5100 target->got_section()->get_got_page_offset(value, object);
5102 // Resolve the relocation.
5103 Valtype x = target->got_section()->gp_offset(got_offset, object);
5104 val = Bits<32>::bit_select32(val, x, 0xffff);
5108 *calculated_value = x;
5109 return This::STATUS_OKAY;
5112 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5114 return check_overflow<16>(x);
5117 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5118 static inline typename This::Status
5119 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5120 const Mips_relobj<size, big_endian>* object,
5121 const Symbol_value<size>* psymval, Mips_address addend_a,
5122 bool extract_addend, Mips_address address, bool is_gp_disp,
5123 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5124 bool calculate_only, Valtype* calculated_value)
5126 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5127 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5129 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5132 if (rel_type == elfcpp::SHT_REL)
5134 typename This::Status reloc_status = This::STATUS_OKAY;
5135 // Resolve pending R_MIPS_HI16 relocations.
5136 typename std::list<reloc_high<size, big_endian> >::iterator it =
5137 hi16_relocs.begin();
5138 while (it != hi16_relocs.end())
5140 reloc_high<size, big_endian> hi16 = *it;
5141 if (hi16.r_sym == r_sym
5142 && is_matching_lo16_reloc(hi16.r_type, r_type))
5144 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5145 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5146 hi16.addend, hi16.address, hi16.gp_disp,
5147 hi16.r_type, hi16.extract_addend, addend,
5148 target, calculate_only, calculated_value);
5149 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5150 if (reloc_status == This::STATUS_OVERFLOW)
5151 return This::STATUS_OVERFLOW;
5152 it = hi16_relocs.erase(it);
5158 // Resolve pending local R_MIPS_GOT16 relocations.
5159 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5160 got16_relocs.begin();
5161 while (it2 != got16_relocs.end())
5163 reloc_high<size, big_endian> got16 = *it2;
5164 if (got16.r_sym == r_sym
5165 && is_matching_lo16_reloc(got16.r_type, r_type))
5167 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5169 reloc_status = do_relgot16_local(got16.view, got16.object,
5170 got16.psymval, got16.addend,
5171 got16.extract_addend, addend, target,
5172 calculate_only, calculated_value);
5174 mips_reloc_shuffle(got16.view, got16.r_type, false);
5175 if (reloc_status == This::STATUS_OVERFLOW)
5176 return This::STATUS_OVERFLOW;
5177 it2 = got16_relocs.erase(it2);
5184 // Resolve R_MIPS_LO16 relocation.
5187 x = psymval->value(object, addend);
5190 // See the comment for R_MIPS16_HI16 above for the reason
5191 // for this conditional.
5193 if (r_type == elfcpp::R_MIPS16_LO16)
5194 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5195 else if (r_type == elfcpp::R_MICROMIPS_LO16
5196 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5197 gp_disp = target->adjusted_gp_value(object) - address + 3;
5199 gp_disp = target->adjusted_gp_value(object) - address + 4;
5200 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5201 // for overflow. Relocations against _gp_disp are normally
5202 // generated from the .cpload pseudo-op. It generates code
5203 // that normally looks like this:
5205 // lui $gp,%hi(_gp_disp)
5206 // addiu $gp,$gp,%lo(_gp_disp)
5209 // Here $t9 holds the address of the function being called,
5210 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5211 // relocation can easily overflow in this situation, but the
5212 // R_MIPS_HI16 relocation will handle the overflow.
5213 // Therefore, we consider this a bug in the MIPS ABI, and do
5214 // not check for overflow here.
5215 x = gp_disp + addend;
5217 val = Bits<32>::bit_select32(val, x, 0xffff);
5220 *calculated_value = x;
5222 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5224 return This::STATUS_OKAY;
5227 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5228 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5229 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5230 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5231 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5232 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5233 static inline typename This::Status
5234 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5235 Valtype* calculated_value)
5237 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5238 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5239 Valtype x = gp_offset;
5240 val = Bits<32>::bit_select32(val, x, 0xffff);
5244 *calculated_value = x;
5245 return This::STATUS_OKAY;
5248 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5250 return check_overflow<16>(x);
5254 static inline typename This::Status
5255 releh(unsigned char* view, int gp_offset, bool calculate_only,
5256 Valtype* calculated_value)
5258 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5259 Valtype x = gp_offset;
5263 *calculated_value = x;
5264 return This::STATUS_OKAY;
5267 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5269 return check_overflow<32>(x);
5272 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5273 static inline typename This::Status
5274 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5275 const Mips_relobj<size, big_endian>* object,
5276 const Symbol_value<size>* psymval, Mips_address addend_a,
5277 bool extract_addend, bool calculate_only,
5278 Valtype* calculated_value)
5280 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5281 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5282 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5284 // Find a GOT page entry that points to within 32KB of symbol + addend.
5285 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5286 unsigned int got_offset =
5287 target->got_section()->get_got_page_offset(value, object);
5289 Valtype x = target->got_section()->gp_offset(got_offset, object);
5290 val = Bits<32>::bit_select32(val, x, 0xffff);
5294 *calculated_value = x;
5295 return This::STATUS_OKAY;
5298 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5300 return check_overflow<16>(x);
5303 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5304 static inline typename This::Status
5305 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5306 const Mips_relobj<size, big_endian>* object,
5307 const Symbol_value<size>* psymval, Mips_address addend_a,
5308 bool extract_addend, bool local, bool calculate_only,
5309 Valtype* calculated_value)
5311 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5312 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5313 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5315 // For a local symbol, find a GOT page entry that points to within 32KB of
5316 // symbol + addend. Relocation value is the offset of the GOT page entry's
5317 // value from symbol + addend.
5318 // For a global symbol, relocation value is addend.
5322 // Find GOT page entry.
5323 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5325 target->got_section()->get_got_page_offset(value, object);
5327 x = psymval->value(object, addend) - value;
5331 val = Bits<32>::bit_select32(val, x, 0xffff);
5335 *calculated_value = x;
5336 return This::STATUS_OKAY;
5339 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5341 return check_overflow<16>(x);
5344 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5345 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5346 static inline typename This::Status
5347 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5348 Valtype* calculated_value)
5350 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5351 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5352 Valtype x = gp_offset;
5353 x = ((x + 0x8000) >> 16) & 0xffff;
5354 val = Bits<32>::bit_select32(val, x, 0xffff);
5357 *calculated_value = x;
5359 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5361 return This::STATUS_OKAY;
5364 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5365 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5366 static inline typename This::Status
5367 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5368 Valtype* calculated_value)
5370 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5371 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5372 Valtype x = gp_offset;
5373 val = Bits<32>::bit_select32(val, x, 0xffff);
5376 *calculated_value = x;
5378 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5380 return This::STATUS_OKAY;
5383 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5384 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5385 static inline typename This::Status
5386 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5387 const Symbol_value<size>* psymval, Mips_address gp,
5388 Mips_address addend_a, bool extract_addend, bool local,
5389 unsigned int r_type, bool calculate_only,
5390 Valtype* calculated_value)
5392 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5393 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5398 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5399 addend = (val & 0x7f) << 2;
5401 addend = val & 0xffff;
5402 // Only sign-extend the addend if it was extracted from the
5403 // instruction. If the addend was separate, leave it alone,
5404 // otherwise we may lose significant bits.
5405 addend = Bits<16>::sign_extend32(addend);
5410 Valtype x = psymval->value(object, addend) - gp;
5412 // If the symbol was local, any earlier relocatable links will
5413 // have adjusted its addend with the gp offset, so compensate
5414 // for that now. Don't do it for symbols forced local in this
5415 // link, though, since they won't have had the gp offset applied
5418 x += object->gp_value();
5420 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5421 val = Bits<32>::bit_select32(val, x, 0x7f);
5423 val = Bits<32>::bit_select32(val, x, 0xffff);
5427 *calculated_value = x;
5428 return This::STATUS_OKAY;
5431 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5433 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5435 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5436 "limit (see option -G)"));
5437 return This::STATUS_OVERFLOW;
5439 return This::STATUS_OKAY;
5443 static inline typename This::Status
5444 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5445 const Symbol_value<size>* psymval, Mips_address gp,
5446 Mips_address addend_a, bool extract_addend, bool calculate_only,
5447 Valtype* calculated_value)
5449 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5450 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5451 Valtype addend = extract_addend ? val : addend_a;
5453 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5454 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5457 *calculated_value = x;
5459 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5461 return This::STATUS_OKAY;
5464 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5465 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5466 // R_MICROMIPS_TLS_DTPREL_HI16
5467 static inline typename This::Status
5468 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5469 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5470 Mips_address addend_a, bool extract_addend, bool calculate_only,
5471 Valtype* calculated_value)
5473 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5474 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5475 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5477 // tls symbol values are relative to tls_segment()->vaddr()
5478 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5479 val = Bits<32>::bit_select32(val, x, 0xffff);
5482 *calculated_value = x;
5484 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5486 return This::STATUS_OKAY;
5489 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5490 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5491 // R_MICROMIPS_TLS_DTPREL_LO16,
5492 static inline typename This::Status
5493 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5494 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5495 Mips_address addend_a, bool extract_addend, bool calculate_only,
5496 Valtype* calculated_value)
5498 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5499 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5500 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5502 // tls symbol values are relative to tls_segment()->vaddr()
5503 Valtype x = psymval->value(object, addend) - tp_offset;
5504 val = Bits<32>::bit_select32(val, x, 0xffff);
5507 *calculated_value = x;
5509 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5511 return This::STATUS_OKAY;
5514 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5515 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5516 static inline typename This::Status
5517 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5518 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5519 Mips_address addend_a, bool extract_addend, bool calculate_only,
5520 Valtype* calculated_value)
5522 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5523 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5524 Valtype addend = extract_addend ? val : addend_a;
5526 // tls symbol values are relative to tls_segment()->vaddr()
5527 Valtype x = psymval->value(object, addend) - tp_offset;
5530 *calculated_value = x;
5532 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5534 return This::STATUS_OKAY;
5537 // R_MIPS_SUB, R_MICROMIPS_SUB
5538 static inline typename This::Status
5539 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5540 const Symbol_value<size>* psymval, Mips_address addend_a,
5541 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5543 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5544 Valtype64 addend = (extract_addend
5545 ? elfcpp::Swap<64, big_endian>::readval(wv)
5548 Valtype64 x = psymval->value(object, -addend);
5550 *calculated_value = x;
5552 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5554 return This::STATUS_OKAY;
5558 static inline typename This::Status
5559 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5560 const Symbol_value<size>* psymval, Mips_address addend_a,
5561 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5562 bool apply_addend_only)
5564 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5565 Valtype64 addend = (extract_addend
5566 ? elfcpp::Swap<64, big_endian>::readval(wv)
5569 Valtype64 x = psymval->value(object, addend);
5571 *calculated_value = x;
5574 if (apply_addend_only)
5576 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5579 return This::STATUS_OKAY;
5582 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5583 static inline typename This::Status
5584 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5585 const Symbol_value<size>* psymval, Mips_address addend_a,
5586 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5588 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5589 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5590 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5593 Valtype x = psymval->value(object, addend);
5594 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5595 val = Bits<32>::bit_select32(val, x, 0xffff);
5598 *calculated_value = x;
5600 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5602 return This::STATUS_OKAY;
5605 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5606 static inline typename This::Status
5607 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5608 const Symbol_value<size>* psymval, Mips_address addend_a,
5609 bool extract_addend, bool calculate_only,
5610 Valtype* calculated_value)
5612 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5613 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5614 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5617 Valtype x = psymval->value(object, addend);
5618 x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5619 val = Bits<32>::bit_select32(val, x, 0xffff);
5622 *calculated_value = x;
5624 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5626 return This::STATUS_OKAY;
5630 template<int size, bool big_endian>
5631 typename std::list<reloc_high<size, big_endian> >
5632 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5634 template<int size, bool big_endian>
5635 typename std::list<reloc_high<size, big_endian> >
5636 Mips_relocate_functions<size, big_endian>::got16_relocs;
5638 template<int size, bool big_endian>
5639 typename std::list<reloc_high<size, big_endian> >
5640 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5642 // Mips_got_info methods.
5644 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5645 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5647 template<int size, bool big_endian>
5649 Mips_got_info<size, big_endian>::record_local_got_symbol(
5650 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5651 Mips_address addend, unsigned int r_type, unsigned int shndx,
5652 bool is_section_symbol)
5654 Mips_got_entry<size, big_endian>* entry =
5655 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5656 mips_elf_reloc_tls_type(r_type),
5657 shndx, is_section_symbol);
5658 this->record_got_entry(entry, object);
5661 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5662 // in OBJECT. FOR_CALL is true if the caller is only interested in
5663 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5666 template<int size, bool big_endian>
5668 Mips_got_info<size, big_endian>::record_global_got_symbol(
5669 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5670 unsigned int r_type, bool dyn_reloc, bool for_call)
5673 mips_sym->set_got_not_only_for_calls();
5675 // A global symbol in the GOT must also be in the dynamic symbol table.
5676 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5678 switch (mips_sym->visibility())
5680 case elfcpp::STV_INTERNAL:
5681 case elfcpp::STV_HIDDEN:
5682 mips_sym->set_is_forced_local();
5685 mips_sym->set_needs_dynsym_entry();
5690 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5691 if (tls_type == GOT_TLS_NONE)
5692 this->global_got_symbols_.insert(mips_sym);
5696 if (mips_sym->global_got_area() == GGA_NONE)
5697 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5701 Mips_got_entry<size, big_endian>* entry =
5702 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5704 this->record_got_entry(entry, object);
5707 // Add ENTRY to master GOT and to OBJECT's GOT.
5709 template<int size, bool big_endian>
5711 Mips_got_info<size, big_endian>::record_got_entry(
5712 Mips_got_entry<size, big_endian>* entry,
5713 Mips_relobj<size, big_endian>* object)
5715 this->got_entries_.insert(entry);
5717 // Create the GOT entry for the OBJECT's GOT.
5718 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5719 Mips_got_entry<size, big_endian>* entry2 =
5720 new Mips_got_entry<size, big_endian>(*entry);
5722 g->got_entries_.insert(entry2);
5725 // Record that OBJECT has a page relocation against symbol SYMNDX and
5726 // that ADDEND is the addend for that relocation.
5727 // This function creates an upper bound on the number of GOT slots
5728 // required; no attempt is made to combine references to non-overridable
5729 // global symbols across multiple input files.
5731 template<int size, bool big_endian>
5733 Mips_got_info<size, big_endian>::record_got_page_entry(
5734 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5736 struct Got_page_range **range_ptr, *range;
5737 int old_pages, new_pages;
5739 // Find the Got_page_entry for this symbol.
5740 Got_page_entry* entry = new Got_page_entry(object, symndx);
5741 typename Got_page_entry_set::iterator it =
5742 this->got_page_entries_.find(entry);
5743 if (it != this->got_page_entries_.end())
5746 this->got_page_entries_.insert(entry);
5748 // Add the same entry to the OBJECT's GOT.
5749 Got_page_entry* entry2 = NULL;
5750 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5751 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5753 entry2 = new Got_page_entry(*entry);
5754 g2->got_page_entries_.insert(entry2);
5757 // Skip over ranges whose maximum extent cannot share a page entry
5759 range_ptr = &entry->ranges;
5760 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5761 range_ptr = &(*range_ptr)->next;
5763 // If we scanned to the end of the list, or found a range whose
5764 // minimum extent cannot share a page entry with ADDEND, create
5765 // a new singleton range.
5767 if (!range || addend < range->min_addend - 0xffff)
5769 range = new Got_page_range();
5770 range->next = *range_ptr;
5771 range->min_addend = addend;
5772 range->max_addend = addend;
5777 ++entry2->num_pages;
5778 ++this->page_gotno_;
5783 // Remember how many pages the old range contributed.
5784 old_pages = range->get_max_pages();
5786 // Update the ranges.
5787 if (addend < range->min_addend)
5788 range->min_addend = addend;
5789 else if (addend > range->max_addend)
5791 if (range->next && addend >= range->next->min_addend - 0xffff)
5793 old_pages += range->next->get_max_pages();
5794 range->max_addend = range->next->max_addend;
5795 range->next = range->next->next;
5798 range->max_addend = addend;
5801 // Record any change in the total estimate.
5802 new_pages = range->get_max_pages();
5803 if (old_pages != new_pages)
5805 entry->num_pages += new_pages - old_pages;
5807 entry2->num_pages += new_pages - old_pages;
5808 this->page_gotno_ += new_pages - old_pages;
5809 g2->page_gotno_ += new_pages - old_pages;
5813 // Create all entries that should be in the local part of the GOT.
5815 template<int size, bool big_endian>
5817 Mips_got_info<size, big_endian>::add_local_entries(
5818 Target_mips<size, big_endian>* target, Layout* layout)
5820 Mips_output_data_got<size, big_endian>* got = target->got_section();
5821 // First two GOT entries are reserved. The first entry will be filled at
5822 // runtime. The second entry will be used by some runtime loaders.
5823 got->add_constant(0);
5824 got->add_constant(target->mips_elf_gnu_got1_mask());
5826 for (typename Got_entry_set::iterator
5827 p = this->got_entries_.begin();
5828 p != this->got_entries_.end();
5831 Mips_got_entry<size, big_endian>* entry = *p;
5832 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5834 got->add_local(entry->object(), entry->symndx(),
5835 GOT_TYPE_STANDARD, entry->addend());
5836 unsigned int got_offset = entry->object()->local_got_offset(
5837 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5838 if (got->multi_got() && this->index_ > 0
5839 && parameters->options().output_is_position_independent())
5841 if (!entry->is_section_symbol())
5842 target->rel_dyn_section(layout)->add_local(entry->object(),
5843 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5845 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5846 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5852 this->add_page_entries(target, layout);
5854 // Add global entries that should be in the local area.
5855 for (typename Got_entry_set::iterator
5856 p = this->got_entries_.begin();
5857 p != this->got_entries_.end();
5860 Mips_got_entry<size, big_endian>* entry = *p;
5861 if (!entry->is_for_global_symbol())
5864 Mips_symbol<size>* mips_sym = entry->sym();
5865 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5867 unsigned int got_type;
5868 if (!got->multi_got())
5869 got_type = GOT_TYPE_STANDARD;
5871 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5872 if (got->add_global(mips_sym, got_type))
5874 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5875 if (got->multi_got() && this->index_ > 0
5876 && parameters->options().output_is_position_independent())
5877 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5878 mips_sym, elfcpp::R_MIPS_REL32, got,
5879 mips_sym->got_offset(got_type));
5885 // Create GOT page entries.
5887 template<int size, bool big_endian>
5889 Mips_got_info<size, big_endian>::add_page_entries(
5890 Target_mips<size, big_endian>* target, Layout* layout)
5892 if (this->page_gotno_ == 0)
5895 Mips_output_data_got<size, big_endian>* got = target->got_section();
5896 this->got_page_offset_start_ = got->add_constant(0);
5897 if (got->multi_got() && this->index_ > 0
5898 && parameters->options().output_is_position_independent())
5899 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5900 this->got_page_offset_start_);
5901 int num_entries = this->page_gotno_;
5902 unsigned int prev_offset = this->got_page_offset_start_;
5903 while (--num_entries > 0)
5905 unsigned int next_offset = got->add_constant(0);
5906 if (got->multi_got() && this->index_ > 0
5907 && parameters->options().output_is_position_independent())
5908 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5910 gold_assert(next_offset == prev_offset + size/8);
5911 prev_offset = next_offset;
5913 this->got_page_offset_next_ = this->got_page_offset_start_;
5916 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5918 template<int size, bool big_endian>
5920 Mips_got_info<size, big_endian>::add_global_entries(
5921 Target_mips<size, big_endian>* target, Layout* layout,
5922 unsigned int non_reloc_only_global_gotno)
5924 Mips_output_data_got<size, big_endian>* got = target->got_section();
5925 // Add GGA_NORMAL entries.
5926 unsigned int count = 0;
5927 for (typename Got_entry_set::iterator
5928 p = this->got_entries_.begin();
5929 p != this->got_entries_.end();
5932 Mips_got_entry<size, big_endian>* entry = *p;
5933 if (!entry->is_for_global_symbol())
5936 Mips_symbol<size>* mips_sym = entry->sym();
5937 if (mips_sym->global_got_area() != GGA_NORMAL)
5940 unsigned int got_type;
5941 if (!got->multi_got())
5942 got_type = GOT_TYPE_STANDARD;
5944 // In multi-GOT links, global symbol can be in both primary and
5945 // secondary GOT(s). By creating custom GOT type
5946 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5947 // is added to secondary GOT(s).
5948 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5949 if (!got->add_global(mips_sym, got_type))
5952 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5953 if (got->multi_got() && this->index_ == 0)
5955 if (got->multi_got() && this->index_ > 0)
5957 if (parameters->options().output_is_position_independent()
5958 || (!parameters->doing_static_link()
5959 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5961 target->rel_dyn_section(layout)->add_global(
5962 mips_sym, elfcpp::R_MIPS_REL32, got,
5963 mips_sym->got_offset(got_type));
5964 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5965 elfcpp::R_MIPS_REL32, mips_sym);
5970 if (!got->multi_got() || this->index_ == 0)
5972 if (got->multi_got())
5974 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5975 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5976 // entries correspond to dynamic symbol indexes.
5977 while (count < non_reloc_only_global_gotno)
5979 got->add_constant(0);
5984 // Add GGA_RELOC_ONLY entries.
5985 got->add_reloc_only_entries();
5989 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5991 template<int size, bool big_endian>
5993 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5994 Mips_output_data_got<size, big_endian>* got)
5996 for (typename Global_got_entry_set::iterator
5997 p = this->global_got_symbols_.begin();
5998 p != this->global_got_symbols_.end();
6001 Mips_symbol<size>* mips_sym = *p;
6002 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6004 unsigned int got_type;
6005 if (!got->multi_got())
6006 got_type = GOT_TYPE_STANDARD;
6008 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6009 if (got->add_global(mips_sym, got_type))
6010 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6015 // Create TLS GOT entries.
6017 template<int size, bool big_endian>
6019 Mips_got_info<size, big_endian>::add_tls_entries(
6020 Target_mips<size, big_endian>* target, Layout* layout)
6022 Mips_output_data_got<size, big_endian>* got = target->got_section();
6023 // Add local tls entries.
6024 for (typename Got_entry_set::iterator
6025 p = this->got_entries_.begin();
6026 p != this->got_entries_.end();
6029 Mips_got_entry<size, big_endian>* entry = *p;
6030 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6033 if (entry->tls_type() == GOT_TLS_GD)
6035 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6036 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6037 : elfcpp::R_MIPS_TLS_DTPMOD64);
6038 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6039 : elfcpp::R_MIPS_TLS_DTPREL64);
6041 if (!parameters->doing_static_link())
6043 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6044 entry->shndx(), got_type,
6045 target->rel_dyn_section(layout),
6046 r_type1, entry->addend());
6047 unsigned int got_offset =
6048 entry->object()->local_got_offset(entry->symndx(), got_type,
6050 got->add_static_reloc(got_offset + size/8, r_type2,
6051 entry->object(), entry->symndx());
6055 // We are doing a static link. Mark it as belong to module 1,
6057 unsigned int got_offset = got->add_constant(1);
6058 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6061 got->add_constant(0);
6062 got->add_static_reloc(got_offset + size/8, r_type2,
6063 entry->object(), entry->symndx());
6066 else if (entry->tls_type() == GOT_TLS_IE)
6068 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6069 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6070 : elfcpp::R_MIPS_TLS_TPREL64);
6071 if (!parameters->doing_static_link())
6072 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6073 target->rel_dyn_section(layout), r_type,
6077 got->add_local(entry->object(), entry->symndx(), got_type,
6079 unsigned int got_offset =
6080 entry->object()->local_got_offset(entry->symndx(), got_type,
6082 got->add_static_reloc(got_offset, r_type, entry->object(),
6086 else if (entry->tls_type() == GOT_TLS_LDM)
6088 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6089 : elfcpp::R_MIPS_TLS_DTPMOD64);
6090 unsigned int got_offset;
6091 if (!parameters->doing_static_link())
6093 got_offset = got->add_constant(0);
6094 target->rel_dyn_section(layout)->add_local(
6095 entry->object(), 0, r_type, got, got_offset);
6098 // We are doing a static link. Just mark it as belong to module 1,
6100 got_offset = got->add_constant(1);
6102 got->add_constant(0);
6103 got->set_tls_ldm_offset(got_offset, entry->object());
6109 // Add global tls entries.
6110 for (typename Got_entry_set::iterator
6111 p = this->got_entries_.begin();
6112 p != this->got_entries_.end();
6115 Mips_got_entry<size, big_endian>* entry = *p;
6116 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6119 Mips_symbol<size>* mips_sym = entry->sym();
6120 if (entry->tls_type() == GOT_TLS_GD)
6122 unsigned int got_type;
6123 if (!got->multi_got())
6124 got_type = GOT_TYPE_TLS_PAIR;
6126 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6127 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6128 : elfcpp::R_MIPS_TLS_DTPMOD64);
6129 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6130 : elfcpp::R_MIPS_TLS_DTPREL64);
6131 if (!parameters->doing_static_link())
6132 got->add_global_pair_with_rel(mips_sym, got_type,
6133 target->rel_dyn_section(layout), r_type1, r_type2);
6136 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6137 // GOT entries. The first one is initialized to be 1, which is the
6138 // module index for the main executable and the second one 0. A
6139 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6140 // the second GOT entry and will be applied by gold.
6141 unsigned int got_offset = got->add_constant(1);
6142 mips_sym->set_got_offset(got_type, got_offset);
6143 got->add_constant(0);
6144 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6147 else if (entry->tls_type() == GOT_TLS_IE)
6149 unsigned int got_type;
6150 if (!got->multi_got())
6151 got_type = GOT_TYPE_TLS_OFFSET;
6153 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6154 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6155 : elfcpp::R_MIPS_TLS_TPREL64);
6156 if (!parameters->doing_static_link())
6157 got->add_global_with_rel(mips_sym, got_type,
6158 target->rel_dyn_section(layout), r_type);
6161 got->add_global(mips_sym, got_type);
6162 unsigned int got_offset = mips_sym->got_offset(got_type);
6163 got->add_static_reloc(got_offset, r_type, mips_sym);
6171 // Decide whether the symbol needs an entry in the global part of the primary
6172 // GOT, setting global_got_area accordingly. Count the number of global
6173 // symbols that are in the primary GOT only because they have dynamic
6174 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6176 template<int size, bool big_endian>
6178 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6180 for (typename Global_got_entry_set::iterator
6181 p = this->global_got_symbols_.begin();
6182 p != this->global_got_symbols_.end();
6185 Mips_symbol<size>* sym = *p;
6186 // Make a final decision about whether the symbol belongs in the
6187 // local or global GOT. Symbols that bind locally can (and in the
6188 // case of forced-local symbols, must) live in the local GOT.
6189 // Those that are aren't in the dynamic symbol table must also
6190 // live in the local GOT.
6192 if (!sym->should_add_dynsym_entry(symtab)
6193 || (sym->got_only_for_calls()
6194 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6195 : symbol_references_local(sym,
6196 sym->should_add_dynsym_entry(symtab))))
6197 // The symbol belongs in the local GOT. We no longer need this
6198 // entry if it was only used for relocations; those relocations
6199 // will be against the null or section symbol instead.
6200 sym->set_global_got_area(GGA_NONE);
6201 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6203 ++this->reloc_only_gotno_;
6204 ++this->global_gotno_ ;
6209 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6210 // VALUE if it is not initialized.
6212 template<int size, bool big_endian>
6214 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6215 Mips_output_data_got<size, big_endian>* got)
6217 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6218 if (it != this->got_page_offsets_.end())
6221 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6222 + (size/8) * this->page_gotno_);
6224 unsigned int got_offset = this->got_page_offset_next_;
6225 this->got_page_offsets_[value] = got_offset;
6226 this->got_page_offset_next_ += size/8;
6227 got->update_got_entry(got_offset, value);
6231 // Remove lazy-binding stubs for global symbols in this GOT.
6233 template<int size, bool big_endian>
6235 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6236 Target_mips<size, big_endian>* target)
6238 for (typename Got_entry_set::iterator
6239 p = this->got_entries_.begin();
6240 p != this->got_entries_.end();
6243 Mips_got_entry<size, big_endian>* entry = *p;
6244 if (entry->is_for_global_symbol())
6245 target->remove_lazy_stub_entry(entry->sym());
6249 // Count the number of GOT entries required.
6251 template<int size, bool big_endian>
6253 Mips_got_info<size, big_endian>::count_got_entries()
6255 for (typename Got_entry_set::iterator
6256 p = this->got_entries_.begin();
6257 p != this->got_entries_.end();
6260 this->count_got_entry(*p);
6264 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6266 template<int size, bool big_endian>
6268 Mips_got_info<size, big_endian>::count_got_entry(
6269 Mips_got_entry<size, big_endian>* entry)
6271 if (entry->is_tls_entry())
6272 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6273 else if (entry->is_for_local_symbol()
6274 || entry->sym()->global_got_area() == GGA_NONE)
6275 ++this->local_gotno_;
6277 ++this->global_gotno_;
6280 // Add FROM's GOT entries.
6282 template<int size, bool big_endian>
6284 Mips_got_info<size, big_endian>::add_got_entries(
6285 Mips_got_info<size, big_endian>* from)
6287 for (typename Got_entry_set::iterator
6288 p = from->got_entries_.begin();
6289 p != from->got_entries_.end();
6292 Mips_got_entry<size, big_endian>* entry = *p;
6293 if (this->got_entries_.find(entry) == this->got_entries_.end())
6295 Mips_got_entry<size, big_endian>* entry2 =
6296 new Mips_got_entry<size, big_endian>(*entry);
6297 this->got_entries_.insert(entry2);
6298 this->count_got_entry(entry);
6303 // Add FROM's GOT page entries.
6305 template<int size, bool big_endian>
6307 Mips_got_info<size, big_endian>::add_got_page_entries(
6308 Mips_got_info<size, big_endian>* from)
6310 for (typename Got_page_entry_set::iterator
6311 p = from->got_page_entries_.begin();
6312 p != from->got_page_entries_.end();
6315 Got_page_entry* entry = *p;
6316 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6318 Got_page_entry* entry2 = new Got_page_entry(*entry);
6319 this->got_page_entries_.insert(entry2);
6320 this->page_gotno_ += entry->num_pages;
6325 // Mips_output_data_got methods.
6327 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6328 // larger than 64K, create multi-GOT.
6330 template<int size, bool big_endian>
6332 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6333 Symbol_table* symtab, const Input_objects* input_objects)
6335 // Decide which symbols need to go in the global part of the GOT and
6336 // count the number of reloc-only GOT symbols.
6337 this->master_got_info_->count_got_symbols(symtab);
6339 // Count the number of GOT entries.
6340 this->master_got_info_->count_got_entries();
6342 unsigned int got_size = this->master_got_info_->got_size();
6343 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6344 this->lay_out_multi_got(layout, input_objects);
6347 // Record that all objects use single GOT.
6348 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6349 p != input_objects->relobj_end();
6352 Mips_relobj<size, big_endian>* object =
6353 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6354 if (object->get_got_info() != NULL)
6355 object->set_got_info(this->master_got_info_);
6358 this->master_got_info_->add_local_entries(this->target_, layout);
6359 this->master_got_info_->add_global_entries(this->target_, layout,
6361 this->master_got_info_->add_tls_entries(this->target_, layout);
6365 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6367 template<int size, bool big_endian>
6369 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6370 const Input_objects* input_objects)
6372 // Try to merge the GOTs of input objects together, as long as they
6373 // don't seem to exceed the maximum GOT size, choosing one of them
6374 // to be the primary GOT.
6375 this->merge_gots(input_objects);
6377 // Every symbol that is referenced in a dynamic relocation must be
6378 // present in the primary GOT.
6379 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6383 unsigned int offset = 0;
6384 Mips_got_info<size, big_endian>* g = this->primary_got_;
6388 g->set_offset(offset);
6390 g->add_local_entries(this->target_, layout);
6392 g->add_global_entries(this->target_, layout,
6393 (this->master_got_info_->global_gotno()
6394 - this->master_got_info_->reloc_only_gotno()));
6396 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6397 g->add_tls_entries(this->target_, layout);
6399 // Forbid global symbols in every non-primary GOT from having
6400 // lazy-binding stubs.
6402 g->remove_lazy_stubs(this->target_);
6405 offset += g->got_size();
6411 // Attempt to merge GOTs of different input objects. Try to use as much as
6412 // possible of the primary GOT, since it doesn't require explicit dynamic
6413 // relocations, but don't use objects that would reference global symbols
6414 // out of the addressable range. Failing the primary GOT, attempt to merge
6415 // with the current GOT, or finish the current GOT and then make make the new
6418 template<int size, bool big_endian>
6420 Mips_output_data_got<size, big_endian>::merge_gots(
6421 const Input_objects* input_objects)
6423 gold_assert(this->primary_got_ == NULL);
6424 Mips_got_info<size, big_endian>* current = NULL;
6426 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6427 p != input_objects->relobj_end();
6430 Mips_relobj<size, big_endian>* object =
6431 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6433 Mips_got_info<size, big_endian>* g = object->get_got_info();
6437 g->count_got_entries();
6439 // Work out the number of page, local and TLS entries.
6440 unsigned int estimate = this->master_got_info_->page_gotno();
6441 if (estimate > g->page_gotno())
6442 estimate = g->page_gotno();
6443 estimate += g->local_gotno() + g->tls_gotno();
6445 // We place TLS GOT entries after both locals and globals. The globals
6446 // for the primary GOT may overflow the normal GOT size limit, so be
6447 // sure not to merge a GOT which requires TLS with the primary GOT in that
6448 // case. This doesn't affect non-primary GOTs.
6449 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6450 : g->global_gotno());
6452 unsigned int max_count =
6453 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6454 if (estimate <= max_count)
6456 // If we don't have a primary GOT, use it as
6457 // a starting point for the primary GOT.
6458 if (!this->primary_got_)
6460 this->primary_got_ = g;
6464 // Try merging with the primary GOT.
6465 if (this->merge_got_with(g, object, this->primary_got_))
6469 // If we can merge with the last-created GOT, do it.
6470 if (current && this->merge_got_with(g, object, current))
6473 // Well, we couldn't merge, so create a new GOT. Don't check if it
6474 // fits; if it turns out that it doesn't, we'll get relocation
6475 // overflows anyway.
6476 g->set_next(current);
6480 // If we do not find any suitable primary GOT, create an empty one.
6481 if (this->primary_got_ == NULL)
6482 this->primary_got_ = new Mips_got_info<size, big_endian>();
6484 // Link primary GOT with secondary GOTs.
6485 this->primary_got_->set_next(current);
6488 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6489 // this would lead to overflow, true if they were merged successfully.
6491 template<int size, bool big_endian>
6493 Mips_output_data_got<size, big_endian>::merge_got_with(
6494 Mips_got_info<size, big_endian>* from,
6495 Mips_relobj<size, big_endian>* object,
6496 Mips_got_info<size, big_endian>* to)
6498 // Work out how many page entries we would need for the combined GOT.
6499 unsigned int estimate = this->master_got_info_->page_gotno();
6500 if (estimate >= from->page_gotno() + to->page_gotno())
6501 estimate = from->page_gotno() + to->page_gotno();
6503 // Conservatively estimate how many local and TLS entries would be needed.
6504 estimate += from->local_gotno() + to->local_gotno();
6505 estimate += from->tls_gotno() + to->tls_gotno();
6507 // If we're merging with the primary got, any TLS relocations will
6508 // come after the full set of global entries. Otherwise estimate those
6509 // conservatively as well.
6510 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6511 estimate += this->master_got_info_->global_gotno();
6513 estimate += from->global_gotno() + to->global_gotno();
6515 // Bail out if the combined GOT might be too big.
6516 unsigned int max_count =
6517 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6518 if (estimate > max_count)
6521 // Transfer the object's GOT information from FROM to TO.
6522 to->add_got_entries(from);
6523 to->add_got_page_entries(from);
6525 // Record that OBJECT should use output GOT TO.
6526 object->set_got_info(to);
6531 // Write out the GOT.
6533 template<int size, bool big_endian>
6535 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6537 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6538 Mips_stubs_entry_set;
6540 // Call parent to write out GOT.
6541 Output_data_got<size, big_endian>::do_write(of);
6543 const off_t offset = this->offset();
6544 const section_size_type oview_size =
6545 convert_to_section_size_type(this->data_size());
6546 unsigned char* const oview = of->get_output_view(offset, oview_size);
6548 // Needed for fixing values of .got section.
6549 this->got_view_ = oview;
6551 // Write lazy stub addresses.
6552 for (typename Mips_stubs_entry_set::iterator
6553 p = this->master_got_info_->global_got_symbols().begin();
6554 p != this->master_got_info_->global_got_symbols().end();
6557 Mips_symbol<size>* mips_sym = *p;
6558 if (mips_sym->has_lazy_stub())
6560 Valtype* wv = reinterpret_cast<Valtype*>(
6561 oview + this->get_primary_got_offset(mips_sym));
6563 this->target_->mips_stubs_section()->stub_address(mips_sym);
6564 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6568 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6569 for (typename Mips_stubs_entry_set::iterator
6570 p = this->master_got_info_->global_got_symbols().begin();
6571 p != this->master_got_info_->global_got_symbols().end();
6574 Mips_symbol<size>* mips_sym = *p;
6575 if (!this->multi_got()
6576 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6577 && mips_sym->global_got_area() == GGA_NONE
6578 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6580 Valtype* wv = reinterpret_cast<Valtype*>(
6581 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6582 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6586 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6591 if (!this->secondary_got_relocs_.empty())
6593 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6594 // secondary GOT entries with non-zero initial value copy the value
6595 // to the corresponding primary GOT entry, and set the secondary GOT
6597 // TODO(sasa): This is workaround. It needs to be investigated further.
6599 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6601 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6602 if (reloc.symbol_is_global())
6604 Mips_symbol<size>* gsym = reloc.symbol();
6605 gold_assert(gsym != NULL);
6607 unsigned got_offset = reloc.got_offset();
6608 gold_assert(got_offset < oview_size);
6610 // Find primary GOT entry.
6611 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6612 oview + this->get_primary_got_offset(gsym));
6614 // Find secondary GOT entry.
6615 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6617 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6620 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6621 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6622 gsym->set_applied_secondary_got_fixup();
6627 of->write_output_view(offset, oview_size, oview);
6630 // We are done if there is no fix up.
6631 if (this->static_relocs_.empty())
6634 Output_segment* tls_segment = this->layout_->tls_segment();
6635 gold_assert(tls_segment != NULL);
6637 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6639 Static_reloc& reloc(this->static_relocs_[i]);
6642 if (!reloc.symbol_is_global())
6644 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6645 const Symbol_value<size>* psymval =
6646 object->local_symbol(reloc.index());
6648 // We are doing static linking. Issue an error and skip this
6649 // relocation if the symbol is undefined or in a discarded_section.
6651 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6652 if ((shndx == elfcpp::SHN_UNDEF)
6654 && shndx != elfcpp::SHN_UNDEF
6655 && !object->is_section_included(shndx)
6656 && !this->symbol_table_->is_section_folded(object, shndx)))
6658 gold_error(_("undefined or discarded local symbol %u from "
6659 " object %s in GOT"),
6660 reloc.index(), reloc.relobj()->name().c_str());
6664 value = psymval->value(object, 0);
6668 const Mips_symbol<size>* gsym = reloc.symbol();
6669 gold_assert(gsym != NULL);
6671 // We are doing static linking. Issue an error and skip this
6672 // relocation if the symbol is undefined or in a discarded_section
6673 // unless it is a weakly_undefined symbol.
6674 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6675 && !gsym->is_weak_undefined())
6677 gold_error(_("undefined or discarded symbol %s in GOT"),
6682 if (!gsym->is_weak_undefined())
6683 value = gsym->value();
6688 unsigned got_offset = reloc.got_offset();
6689 gold_assert(got_offset < oview_size);
6691 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6694 switch (reloc.r_type())
6696 case elfcpp::R_MIPS_TLS_DTPMOD32:
6697 case elfcpp::R_MIPS_TLS_DTPMOD64:
6700 case elfcpp::R_MIPS_TLS_DTPREL32:
6701 case elfcpp::R_MIPS_TLS_DTPREL64:
6702 x = value - elfcpp::DTP_OFFSET;
6704 case elfcpp::R_MIPS_TLS_TPREL32:
6705 case elfcpp::R_MIPS_TLS_TPREL64:
6706 x = value - elfcpp::TP_OFFSET;
6713 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6716 of->write_output_view(offset, oview_size, oview);
6719 // Mips_relobj methods.
6721 // Count the local symbols. The Mips backend needs to know if a symbol
6722 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6723 // because the Symbol object keeps the ELF symbol type and st_other field.
6724 // For local symbol it is harder because we cannot access this information.
6725 // So we override the do_count_local_symbol in parent and scan local symbols to
6726 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6727 // I do not want to slow down other ports by calling a per symbol target hook
6728 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6730 template<int size, bool big_endian>
6732 Mips_relobj<size, big_endian>::do_count_local_symbols(
6733 Stringpool_template<char>* pool,
6734 Stringpool_template<char>* dynpool)
6736 // Ask parent to count the local symbols.
6737 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6738 const unsigned int loccount = this->local_symbol_count();
6742 // Initialize the mips16 and micromips function bit-vector.
6743 this->local_symbol_is_mips16_.resize(loccount, false);
6744 this->local_symbol_is_micromips_.resize(loccount, false);
6746 // Read the symbol table section header.
6747 const unsigned int symtab_shndx = this->symtab_shndx();
6748 elfcpp::Shdr<size, big_endian>
6749 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6750 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6752 // Read the local symbols.
6753 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6754 gold_assert(loccount == symtabshdr.get_sh_info());
6755 off_t locsize = loccount * sym_size;
6756 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6757 locsize, true, true);
6759 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6761 // Skip the first dummy symbol.
6763 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6765 elfcpp::Sym<size, big_endian> sym(psyms);
6766 unsigned char st_other = sym.get_st_other();
6767 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6768 this->local_symbol_is_micromips_[i] =
6769 elfcpp::elf_st_is_micromips(st_other);
6773 // Read the symbol information.
6775 template<int size, bool big_endian>
6777 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6779 // Call parent class to read symbol information.
6780 this->base_read_symbols(sd);
6782 // Read processor-specific flags in ELF file header.
6783 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6784 elfcpp::Elf_sizes<size>::ehdr_size,
6786 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6787 this->processor_specific_flags_ = ehdr.get_e_flags();
6789 // Get the section names.
6790 const unsigned char* pnamesu = sd->section_names->data();
6791 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6793 // Initialize the mips16 stub section bit-vectors.
6794 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6795 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6796 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6798 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6799 const unsigned char* pshdrs = sd->section_headers->data();
6800 const unsigned char* ps = pshdrs + shdr_size;
6801 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6803 elfcpp::Shdr<size, big_endian> shdr(ps);
6805 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6807 this->has_reginfo_section_ = true;
6808 // Read the gp value that was used to create this object. We need the
6809 // gp value while processing relocs. The .reginfo section is not used
6810 // in the 64-bit MIPS ELF ABI.
6811 section_offset_type section_offset = shdr.get_sh_offset();
6812 section_size_type section_size =
6813 convert_to_section_size_type(shdr.get_sh_size());
6814 const unsigned char* view =
6815 this->get_view(section_offset, section_size, true, false);
6817 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6819 // Read the rest of .reginfo.
6820 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6821 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6822 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6823 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6824 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6827 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6829 gold_assert(this->attributes_section_data_ == NULL);
6830 section_offset_type section_offset = shdr.get_sh_offset();
6831 section_size_type section_size =
6832 convert_to_section_size_type(shdr.get_sh_size());
6833 const unsigned char* view =
6834 this->get_view(section_offset, section_size, true, false);
6835 this->attributes_section_data_ =
6836 new Attributes_section_data(view, section_size);
6839 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6841 gold_assert(this->abiflags_ == NULL);
6842 section_offset_type section_offset = shdr.get_sh_offset();
6843 section_size_type section_size =
6844 convert_to_section_size_type(shdr.get_sh_size());
6845 const unsigned char* view =
6846 this->get_view(section_offset, section_size, true, false);
6847 this->abiflags_ = new Mips_abiflags<big_endian>();
6849 this->abiflags_->version =
6850 elfcpp::Swap<16, big_endian>::readval(view);
6851 if (this->abiflags_->version != 0)
6853 gold_error(_("%s: .MIPS.abiflags section has "
6854 "unsupported version %u"),
6855 this->name().c_str(),
6856 this->abiflags_->version);
6859 this->abiflags_->isa_level =
6860 elfcpp::Swap<8, big_endian>::readval(view + 2);
6861 this->abiflags_->isa_rev =
6862 elfcpp::Swap<8, big_endian>::readval(view + 3);
6863 this->abiflags_->gpr_size =
6864 elfcpp::Swap<8, big_endian>::readval(view + 4);
6865 this->abiflags_->cpr1_size =
6866 elfcpp::Swap<8, big_endian>::readval(view + 5);
6867 this->abiflags_->cpr2_size =
6868 elfcpp::Swap<8, big_endian>::readval(view + 6);
6869 this->abiflags_->fp_abi =
6870 elfcpp::Swap<8, big_endian>::readval(view + 7);
6871 this->abiflags_->isa_ext =
6872 elfcpp::Swap<32, big_endian>::readval(view + 8);
6873 this->abiflags_->ases =
6874 elfcpp::Swap<32, big_endian>::readval(view + 12);
6875 this->abiflags_->flags1 =
6876 elfcpp::Swap<32, big_endian>::readval(view + 16);
6877 this->abiflags_->flags2 =
6878 elfcpp::Swap<32, big_endian>::readval(view + 20);
6881 // In the 64-bit ABI, .MIPS.options section holds register information.
6882 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6883 // starts with this header:
6887 // // Type of option.
6888 // unsigned char kind[1];
6889 // // Size of option descriptor, including header.
6890 // unsigned char size[1];
6891 // // Section index of affected section, or 0 for global option.
6892 // unsigned char section[2];
6893 // // Information specific to this kind of option.
6894 // unsigned char info[4];
6897 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6898 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6899 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6901 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6903 section_offset_type section_offset = shdr.get_sh_offset();
6904 section_size_type section_size =
6905 convert_to_section_size_type(shdr.get_sh_size());
6906 const unsigned char* view =
6907 this->get_view(section_offset, section_size, true, false);
6908 const unsigned char* end = view + section_size;
6910 while (view + 8 <= end)
6912 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6913 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6916 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6918 this->name().c_str(),
6919 this->mips_elf_options_section_name(), sz);
6923 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6925 // In the 64 bit ABI, an ODK_REGINFO option is the following
6926 // structure. The info field of the options header is not
6931 // // Mask of general purpose registers used.
6932 // unsigned char ri_gprmask[4];
6934 // unsigned char ri_pad[4];
6935 // // Mask of co-processor registers used.
6936 // unsigned char ri_cprmask[4][4];
6937 // // GP register value for this object file.
6938 // unsigned char ri_gp_value[8];
6941 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6944 else if (kind == elfcpp::ODK_REGINFO)
6946 // In the 32 bit ABI, an ODK_REGINFO option is the following
6947 // structure. The info field of the options header is not
6948 // used. The same structure is used in .reginfo section.
6952 // unsigned char ri_gprmask[4];
6953 // unsigned char ri_cprmask[4][4];
6954 // unsigned char ri_gp_value[4];
6957 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6964 const char* name = pnames + shdr.get_sh_name();
6965 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6966 this->section_is_mips16_call_stub_[i] =
6967 is_prefix_of(".mips16.call.", name);
6968 this->section_is_mips16_call_fp_stub_[i] =
6969 is_prefix_of(".mips16.call.fp.", name);
6971 if (strcmp(name, ".pdr") == 0)
6973 gold_assert(this->pdr_shndx_ == -1U);
6974 this->pdr_shndx_ = i;
6979 // Discard MIPS16 stub secions that are not needed.
6981 template<int size, bool big_endian>
6983 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6985 for (typename Mips16_stubs_int_map::const_iterator
6986 it = this->mips16_stub_sections_.begin();
6987 it != this->mips16_stub_sections_.end(); ++it)
6989 Mips16_stub_section<size, big_endian>* stub_section = it->second;
6990 if (!stub_section->is_target_found())
6992 gold_error(_("no relocation found in mips16 stub section '%s'"),
6993 stub_section->object()
6994 ->section_name(stub_section->shndx()).c_str());
6997 bool discard = false;
6998 if (stub_section->is_for_local_function())
7000 if (stub_section->is_fn_stub())
7002 // This stub is for a local symbol. This stub will only
7003 // be needed if there is some relocation in this object,
7004 // other than a 16 bit function call, which refers to this
7006 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7009 this->add_local_mips16_fn_stub(stub_section);
7013 // This stub is for a local symbol. This stub will only
7014 // be needed if there is some relocation (R_MIPS16_26) in
7015 // this object that refers to this symbol.
7016 gold_assert(stub_section->is_call_stub()
7017 || stub_section->is_call_fp_stub());
7018 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7021 this->add_local_mips16_call_stub(stub_section);
7026 Mips_symbol<size>* gsym = stub_section->gsym();
7027 if (stub_section->is_fn_stub())
7029 if (gsym->has_mips16_fn_stub())
7030 // We already have a stub for this function.
7034 gsym->set_mips16_fn_stub(stub_section);
7035 if (gsym->should_add_dynsym_entry(symtab))
7037 // If we have a MIPS16 function with a stub, the
7038 // dynamic symbol must refer to the stub, since only
7039 // the stub uses the standard calling conventions.
7040 gsym->set_need_fn_stub();
7041 if (gsym->is_from_dynobj())
7042 gsym->set_needs_dynsym_value();
7045 if (!gsym->need_fn_stub())
7048 else if (stub_section->is_call_stub())
7050 if (gsym->is_mips16())
7051 // We don't need the call_stub; this is a 16 bit
7052 // function, so calls from other 16 bit functions are
7055 else if (gsym->has_mips16_call_stub())
7056 // We already have a stub for this function.
7059 gsym->set_mips16_call_stub(stub_section);
7063 gold_assert(stub_section->is_call_fp_stub());
7064 if (gsym->is_mips16())
7065 // We don't need the call_stub; this is a 16 bit
7066 // function, so calls from other 16 bit functions are
7069 else if (gsym->has_mips16_call_fp_stub())
7070 // We already have a stub for this function.
7073 gsym->set_mips16_call_fp_stub(stub_section);
7077 this->set_output_section(stub_section->shndx(), NULL);
7081 // Mips_output_data_la25_stub methods.
7083 // Template for standard LA25 stub.
7084 template<int size, bool big_endian>
7086 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7088 0x3c190000, // lui $25,%hi(func)
7089 0x08000000, // j func
7090 0x27390000, // add $25,$25,%lo(func)
7094 // Template for microMIPS LA25 stub.
7095 template<int size, bool big_endian>
7097 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7099 0x41b9, 0x0000, // lui t9,%hi(func)
7100 0xd400, 0x0000, // j func
7101 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7102 0x0000, 0x0000 // nop
7105 // Create la25 stub for a symbol.
7107 template<int size, bool big_endian>
7109 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7110 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7111 Mips_symbol<size>* gsym)
7113 if (!gsym->has_la25_stub())
7115 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7116 this->symbols_.push_back(gsym);
7117 this->create_stub_symbol(gsym, symtab, target, 16);
7121 // Create a symbol for SYM stub's value and size, to help make the disassembly
7124 template<int size, bool big_endian>
7126 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7127 Mips_symbol<size>* sym, Symbol_table* symtab,
7128 Target_mips<size, big_endian>* target, uint64_t symsize)
7130 std::string name(".pic.");
7131 name += sym->name();
7133 unsigned int offset = sym->la25_stub_offset();
7134 if (sym->is_micromips())
7137 // Make it a local function.
7138 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7139 Symbol_table::PREDEFINED,
7140 target->la25_stub_section(),
7141 offset, symsize, elfcpp::STT_FUNC,
7143 elfcpp::STV_DEFAULT, 0,
7145 new_sym->set_is_forced_local();
7148 // Write out la25 stubs. This uses the hand-coded instructions above,
7149 // and adjusts them as needed.
7151 template<int size, bool big_endian>
7153 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7155 const off_t offset = this->offset();
7156 const section_size_type oview_size =
7157 convert_to_section_size_type(this->data_size());
7158 unsigned char* const oview = of->get_output_view(offset, oview_size);
7160 for (typename std::vector<Mips_symbol<size>*>::iterator
7161 p = this->symbols_.begin();
7162 p != this->symbols_.end();
7165 Mips_symbol<size>* sym = *p;
7166 unsigned char* pov = oview + sym->la25_stub_offset();
7168 Mips_address target = sym->value();
7169 if (!sym->is_micromips())
7171 elfcpp::Swap<32, big_endian>::writeval(pov,
7172 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7173 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7174 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7175 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7176 la25_stub_entry[2] | (target & 0xffff));
7177 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7182 // First stub instruction. Paste high 16-bits of the target.
7183 elfcpp::Swap<16, big_endian>::writeval(pov,
7184 la25_stub_micromips_entry[0]);
7185 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7186 ((target + 0x8000) >> 16) & 0xffff);
7187 // Second stub instruction. Paste low 26-bits of the target, shifted
7189 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7190 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7191 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7192 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7193 // Third stub instruction. Paste low 16-bits of the target.
7194 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7195 la25_stub_micromips_entry[4]);
7196 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7197 // Fourth stub instruction.
7198 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7199 la25_stub_micromips_entry[6]);
7200 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7201 la25_stub_micromips_entry[7]);
7205 of->write_output_view(offset, oview_size, oview);
7208 // Mips_output_data_plt methods.
7210 // The format of the first PLT entry in an O32 executable.
7211 template<int size, bool big_endian>
7212 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7214 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7215 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7216 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7217 0x031cc023, // subu $24, $24, $28
7218 0x03e07825, // or $15, $31, zero
7219 0x0018c082, // srl $24, $24, 2
7220 0x0320f809, // jalr $25
7221 0x2718fffe // subu $24, $24, 2
7224 // The format of the first PLT entry in an N32 executable. Different
7225 // because gp ($28) is not available; we use t2 ($14) instead.
7226 template<int size, bool big_endian>
7227 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7229 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7230 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7231 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7232 0x030ec023, // subu $24, $24, $14
7233 0x03e07825, // or $15, $31, zero
7234 0x0018c082, // srl $24, $24, 2
7235 0x0320f809, // jalr $25
7236 0x2718fffe // subu $24, $24, 2
7239 // The format of the first PLT entry in an N64 executable. Different
7240 // from N32 because of the increased size of GOT entries.
7241 template<int size, bool big_endian>
7242 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7244 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7245 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7246 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7247 0x030ec023, // subu $24, $24, $14
7248 0x03e07825, // or $15, $31, zero
7249 0x0018c0c2, // srl $24, $24, 3
7250 0x0320f809, // jalr $25
7251 0x2718fffe // subu $24, $24, 2
7254 // The format of the microMIPS first PLT entry in an O32 executable.
7255 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7256 // of the GOTPLT entry handled, so this stub may only be used when
7257 // all the subsequent PLT entries are microMIPS code too.
7259 // The trailing NOP is for alignment and correct disassembly only.
7260 template<int size, bool big_endian>
7261 const uint32_t Mips_output_data_plt<size, big_endian>::
7262 plt0_entry_micromips_o32[] =
7264 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7265 0xff23, 0x0000, // lw $25, 0($3)
7266 0x0535, // subu $2, $2, $3
7267 0x2525, // srl $2, $2, 2
7268 0x3302, 0xfffe, // subu $24, $2, 2
7269 0x0dff, // move $15, $31
7270 0x45f9, // jalrs $25
7271 0x0f83, // move $28, $3
7275 // The format of the microMIPS first PLT entry in an O32 executable
7276 // in the insn32 mode.
7277 template<int size, bool big_endian>
7278 const uint32_t Mips_output_data_plt<size, big_endian>::
7279 plt0_entry_micromips32_o32[] =
7281 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7282 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7283 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7284 0x0398, 0xc1d0, // subu $24, $24, $28
7285 0x001f, 0x7a90, // or $15, $31, zero
7286 0x0318, 0x1040, // srl $24, $24, 2
7287 0x03f9, 0x0f3c, // jalr $25
7288 0x3318, 0xfffe // subu $24, $24, 2
7291 // The format of subsequent standard entries in the PLT.
7292 template<int size, bool big_endian>
7293 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7295 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7296 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7297 0x03200008, // jr $25
7298 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7301 // The format of subsequent R6 PLT entries.
7302 template<int size, bool big_endian>
7303 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7305 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7306 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7307 0x03200009, // jr $25
7308 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7311 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7312 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7313 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7314 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7315 // target function address in register v0.
7316 template<int size, bool big_endian>
7317 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7319 0xb303, // lw $3, 12($pc)
7320 0x651b, // move $24, $3
7321 0x9b60, // lw $3, 0($3)
7323 0x653b, // move $25, $3
7325 0x0000, 0x0000 // .word (.got.plt entry)
7328 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7329 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7330 template<int size, bool big_endian>
7331 const uint32_t Mips_output_data_plt<size, big_endian>::
7332 plt_entry_micromips_o32[] =
7334 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7335 0xff22, 0x0000, // lw $25, 0($2)
7337 0x0f02 // move $24, $2
7340 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7341 template<int size, bool big_endian>
7342 const uint32_t Mips_output_data_plt<size, big_endian>::
7343 plt_entry_micromips32_o32[] =
7345 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7346 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7347 0x0019, 0x0f3c, // jr $25
7348 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7351 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7353 template<int size, bool big_endian>
7355 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7356 unsigned int r_type)
7358 gold_assert(!gsym->has_plt_offset());
7360 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7361 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7362 + sizeof(plt0_entry_o32));
7363 this->symbols_.push_back(gsym);
7365 // Record whether the relocation requires a standard MIPS
7366 // or a compressed code entry.
7367 if (jal_reloc(r_type))
7369 if (r_type == elfcpp::R_MIPS_26)
7370 gsym->set_needs_mips_plt(true);
7372 gsym->set_needs_comp_plt(true);
7375 section_offset_type got_offset = this->got_plt_->current_data_size();
7377 // Every PLT entry needs a GOT entry which points back to the PLT
7378 // entry (this will be changed by the dynamic linker, normally
7379 // lazily when the function is called).
7380 this->got_plt_->set_current_data_size(got_offset + size/8);
7382 gsym->set_needs_dynsym_entry();
7383 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7387 // Set final PLT offsets. For each symbol, determine whether standard or
7388 // compressed (MIPS16 or microMIPS) PLT entry is used.
7390 template<int size, bool big_endian>
7392 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7394 // The sizes of individual PLT entries.
7395 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7396 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7397 ? this->compressed_plt_entry_size() : 0);
7399 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7400 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7402 Mips_symbol<size>* mips_sym = *p;
7404 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7405 // so always use a standard entry there.
7407 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7408 // all MIPS16 calls will go via that stub, and there is no benefit
7409 // to having a MIPS16 entry. And in the case of call_stub a
7410 // standard entry actually has to be used as the stub ends with a J
7412 if (this->target_->is_output_newabi()
7413 || mips_sym->has_mips16_call_stub()
7414 || mips_sym->has_mips16_call_fp_stub())
7416 mips_sym->set_needs_mips_plt(true);
7417 mips_sym->set_needs_comp_plt(false);
7420 // Otherwise, if there are no direct calls to the function, we
7421 // have a free choice of whether to use standard or compressed
7422 // entries. Prefer microMIPS entries if the object is known to
7423 // contain microMIPS code, so that it becomes possible to create
7424 // pure microMIPS binaries. Prefer standard entries otherwise,
7425 // because MIPS16 ones are no smaller and are usually slower.
7426 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7428 if (this->target_->is_output_micromips())
7429 mips_sym->set_needs_comp_plt(true);
7431 mips_sym->set_needs_mips_plt(true);
7434 if (mips_sym->needs_mips_plt())
7436 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7437 this->plt_mips_offset_ += plt_mips_entry_size;
7439 if (mips_sym->needs_comp_plt())
7441 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7442 this->plt_comp_offset_ += plt_comp_entry_size;
7446 // Figure out the size of the PLT header if we know that we are using it.
7447 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7448 this->plt_header_size_ = this->get_plt_header_size();
7451 // Write out the PLT. This uses the hand-coded instructions above,
7452 // and adjusts them as needed.
7454 template<int size, bool big_endian>
7456 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7458 const off_t offset = this->offset();
7459 const section_size_type oview_size =
7460 convert_to_section_size_type(this->data_size());
7461 unsigned char* const oview = of->get_output_view(offset, oview_size);
7463 const off_t gotplt_file_offset = this->got_plt_->offset();
7464 const section_size_type gotplt_size =
7465 convert_to_section_size_type(this->got_plt_->data_size());
7466 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7468 unsigned char* pov = oview;
7470 Mips_address plt_address = this->address();
7472 // Calculate the address of .got.plt.
7473 Mips_address gotplt_addr = this->got_plt_->address();
7474 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7475 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7477 // The PLT sequence is not safe for N64 if .got.plt's address can
7478 // not be loaded in two instructions.
7479 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7480 || ~(gotplt_addr | 0x7fffffff) == 0);
7482 // Write the PLT header.
7483 const uint32_t* plt0_entry = this->get_plt_header_entry();
7484 if (plt0_entry == plt0_entry_micromips_o32)
7486 // Write microMIPS PLT header.
7487 gold_assert(gotplt_addr % 4 == 0);
7489 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7491 // ADDIUPC has a span of +/-16MB, check we're in range.
7492 if (gotpc_offset + 0x1000000 >= 0x2000000)
7494 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7495 "ADDIUPC"), (long)gotpc_offset);
7499 elfcpp::Swap<16, big_endian>::writeval(pov,
7500 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7501 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7502 (gotpc_offset >> 2) & 0xffff);
7504 for (unsigned int i = 2;
7505 i < (sizeof(plt0_entry_micromips_o32)
7506 / sizeof(plt0_entry_micromips_o32[0]));
7509 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7513 else if (plt0_entry == plt0_entry_micromips32_o32)
7515 // Write microMIPS PLT header in insn32 mode.
7516 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7517 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7518 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7519 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7520 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7521 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7523 for (unsigned int i = 6;
7524 i < (sizeof(plt0_entry_micromips32_o32)
7525 / sizeof(plt0_entry_micromips32_o32[0]));
7528 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7534 // Write standard PLT header.
7535 elfcpp::Swap<32, big_endian>::writeval(pov,
7536 plt0_entry[0] | gotplt_addr_high);
7537 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7538 plt0_entry[1] | gotplt_addr_low);
7539 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7540 plt0_entry[2] | gotplt_addr_low);
7542 for (int i = 3; i < 8; i++)
7544 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7550 unsigned char* gotplt_pov = gotplt_view;
7551 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7553 // The first two entries in .got.plt are reserved.
7554 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7555 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7557 unsigned int gotplt_offset = 2 * got_entry_size;
7558 gotplt_pov += 2 * got_entry_size;
7560 // Calculate the address of the PLT header.
7561 Mips_address header_address = (plt_address
7562 + (this->is_plt_header_compressed() ? 1 : 0));
7564 // Initialize compressed PLT area view.
7565 unsigned char* pov2 = pov + this->plt_mips_offset_;
7567 // Write the PLT entries.
7568 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7569 p = this->symbols_.begin();
7570 p != this->symbols_.end();
7571 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7573 Mips_symbol<size>* mips_sym = *p;
7575 // Calculate the address of the .got.plt entry.
7576 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7577 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7579 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7581 // Initially point the .got.plt entry at the PLT header.
7582 if (this->target_->is_output_n64())
7583 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7585 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7587 // Now handle the PLT itself. First the standard entry.
7588 if (mips_sym->has_mips_plt_offset())
7590 // Pick the load opcode (LW or LD).
7591 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7594 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7597 // Fill in the PLT entry itself.
7598 elfcpp::Swap<32, big_endian>::writeval(pov,
7599 entry[0] | gotplt_entry_addr_hi);
7600 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7601 entry[1] | gotplt_entry_addr_lo | load);
7602 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7603 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7604 entry[3] | gotplt_entry_addr_lo);
7608 // Now the compressed entry. They come after any standard ones.
7609 if (mips_sym->has_comp_plt_offset())
7611 if (!this->target_->is_output_micromips())
7613 // Write MIPS16 PLT entry.
7614 const uint32_t* plt_entry = plt_entry_mips16_o32;
7616 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7617 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7618 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7619 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7620 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7621 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7622 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7626 else if (this->target_->use_32bit_micromips_instructions())
7628 // Write microMIPS PLT entry in insn32 mode.
7629 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7631 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7632 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7633 gotplt_entry_addr_hi);
7634 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7635 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7636 gotplt_entry_addr_lo);
7637 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7638 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7639 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7640 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7641 gotplt_entry_addr_lo);
7646 // Write microMIPS PLT entry.
7647 const uint32_t* plt_entry = plt_entry_micromips_o32;
7649 gold_assert(gotplt_entry_addr % 4 == 0);
7651 Mips_address loc_address = plt_address + pov2 - oview;
7652 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7654 // ADDIUPC has a span of +/-16MB, check we're in range.
7655 if (gotpc_offset + 0x1000000 >= 0x2000000)
7657 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7658 "range of ADDIUPC"), (long)gotpc_offset);
7662 elfcpp::Swap<16, big_endian>::writeval(pov2,
7663 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7664 elfcpp::Swap<16, big_endian>::writeval(
7665 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7666 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7667 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7668 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7669 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7675 // Check the number of bytes written for standard entries.
7676 gold_assert(static_cast<section_size_type>(
7677 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7678 // Check the number of bytes written for compressed entries.
7679 gold_assert((static_cast<section_size_type>(pov2 - pov)
7680 == this->plt_comp_offset_));
7681 // Check the total number of bytes written.
7682 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7684 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7687 of->write_output_view(offset, oview_size, oview);
7688 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7691 // Mips_output_data_mips_stubs methods.
7693 // The format of the lazy binding stub when dynamic symbol count is less than
7694 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7695 template<int size, bool big_endian>
7697 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7699 0x8f998010, // lw t9,0x8010(gp)
7700 0x03e07825, // or t7,ra,zero
7701 0x0320f809, // jalr t9,ra
7702 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7705 // The format of the lazy binding stub when dynamic symbol count is less than
7706 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7707 template<int size, bool big_endian>
7709 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7711 0xdf998010, // ld t9,0x8010(gp)
7712 0x03e07825, // or t7,ra,zero
7713 0x0320f809, // jalr t9,ra
7714 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7717 // The format of the lazy binding stub when dynamic symbol count is less than
7718 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7719 template<int size, bool big_endian>
7721 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7723 0x8f998010, // lw t9,0x8010(gp)
7724 0x03e07825, // or t7,ra,zero
7725 0x0320f809, // jalr t9,ra
7726 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7729 // The format of the lazy binding stub when dynamic symbol count is less than
7730 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7731 template<int size, bool big_endian>
7733 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7735 0xdf998010, // ld t9,0x8010(gp)
7736 0x03e07825, // or t7,ra,zero
7737 0x0320f809, // jalr t9,ra
7738 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7741 // The format of the lazy binding stub when dynamic symbol count is greater than
7742 // 64K, and ABI is not N64.
7743 template<int size, bool big_endian>
7744 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7746 0x8f998010, // lw t9,0x8010(gp)
7747 0x03e07825, // or t7,ra,zero
7748 0x3c180000, // lui t8,DYN_INDEX
7749 0x0320f809, // jalr t9,ra
7750 0x37180000 // ori t8,t8,DYN_INDEX
7753 // The format of the lazy binding stub when dynamic symbol count is greater than
7754 // 64K, and ABI is N64.
7755 template<int size, bool big_endian>
7757 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7759 0xdf998010, // ld t9,0x8010(gp)
7760 0x03e07825, // or t7,ra,zero
7761 0x3c180000, // lui t8,DYN_INDEX
7762 0x0320f809, // jalr t9,ra
7763 0x37180000 // ori t8,t8,DYN_INDEX
7768 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7769 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7770 template<int size, bool big_endian>
7772 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7774 0xff3c, 0x8010, // lw t9,0x8010(gp)
7775 0x0dff, // move t7,ra
7777 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7780 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7781 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7782 template<int size, bool big_endian>
7784 Mips_output_data_mips_stubs<size, big_endian>::
7785 lazy_stub_micromips_normal_1_n64[] =
7787 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7788 0x0dff, // move t7,ra
7790 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7793 // The format of the microMIPS lazy binding stub when dynamic symbol
7794 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7795 // and ABI is not N64.
7796 template<int size, bool big_endian>
7798 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7800 0xff3c, 0x8010, // lw t9,0x8010(gp)
7801 0x0dff, // move t7,ra
7803 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7806 // The format of the microMIPS lazy binding stub when dynamic symbol
7807 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7809 template<int size, bool big_endian>
7811 Mips_output_data_mips_stubs<size, big_endian>::
7812 lazy_stub_micromips_normal_2_n64[] =
7814 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7815 0x0dff, // move t7,ra
7817 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7820 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7821 // greater than 64K, and ABI is not N64.
7822 template<int size, bool big_endian>
7824 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7826 0xff3c, 0x8010, // lw t9,0x8010(gp)
7827 0x0dff, // move t7,ra
7828 0x41b8, 0x0000, // lui t8,DYN_INDEX
7830 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7833 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7834 // greater than 64K, and ABI is N64.
7835 template<int size, bool big_endian>
7837 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7839 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7840 0x0dff, // move t7,ra
7841 0x41b8, 0x0000, // lui t8,DYN_INDEX
7843 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7846 // 32-bit microMIPS stubs.
7848 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7849 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7850 // can use only 32-bit instructions.
7851 template<int size, bool big_endian>
7853 Mips_output_data_mips_stubs<size, big_endian>::
7854 lazy_stub_micromips32_normal_1[] =
7856 0xff3c, 0x8010, // lw t9,0x8010(gp)
7857 0x001f, 0x7a90, // or t7,ra,zero
7858 0x03f9, 0x0f3c, // jalr ra,t9
7859 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7862 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7863 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7864 // use only 32-bit instructions.
7865 template<int size, bool big_endian>
7867 Mips_output_data_mips_stubs<size, big_endian>::
7868 lazy_stub_micromips32_normal_1_n64[] =
7870 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7871 0x001f, 0x7a90, // or t7,ra,zero
7872 0x03f9, 0x0f3c, // jalr ra,t9
7873 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7876 // The format of the microMIPS lazy binding stub when dynamic symbol
7877 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7878 // ABI is not N64, and we can use only 32-bit instructions.
7879 template<int size, bool big_endian>
7881 Mips_output_data_mips_stubs<size, big_endian>::
7882 lazy_stub_micromips32_normal_2[] =
7884 0xff3c, 0x8010, // lw t9,0x8010(gp)
7885 0x001f, 0x7a90, // or t7,ra,zero
7886 0x03f9, 0x0f3c, // jalr ra,t9
7887 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7890 // The format of the microMIPS lazy binding stub when dynamic symbol
7891 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7892 // ABI is N64, and we can use only 32-bit instructions.
7893 template<int size, bool big_endian>
7895 Mips_output_data_mips_stubs<size, big_endian>::
7896 lazy_stub_micromips32_normal_2_n64[] =
7898 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7899 0x001f, 0x7a90, // or t7,ra,zero
7900 0x03f9, 0x0f3c, // jalr ra,t9
7901 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7904 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7905 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7906 template<int size, bool big_endian>
7908 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7910 0xff3c, 0x8010, // lw t9,0x8010(gp)
7911 0x001f, 0x7a90, // or t7,ra,zero
7912 0x41b8, 0x0000, // lui t8,DYN_INDEX
7913 0x03f9, 0x0f3c, // jalr ra,t9
7914 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7917 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7918 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7919 template<int size, bool big_endian>
7921 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7923 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7924 0x001f, 0x7a90, // or t7,ra,zero
7925 0x41b8, 0x0000, // lui t8,DYN_INDEX
7926 0x03f9, 0x0f3c, // jalr ra,t9
7927 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7930 // Create entry for a symbol.
7932 template<int size, bool big_endian>
7934 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7935 Mips_symbol<size>* gsym)
7937 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7939 this->symbols_.insert(gsym);
7940 gsym->set_has_lazy_stub(true);
7944 // Remove entry for a symbol.
7946 template<int size, bool big_endian>
7948 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7949 Mips_symbol<size>* gsym)
7951 if (gsym->has_lazy_stub())
7953 this->symbols_.erase(gsym);
7954 gsym->set_has_lazy_stub(false);
7958 // Set stub offsets for symbols. This method expects that the number of
7959 // entries in dynamic symbol table is set.
7961 template<int size, bool big_endian>
7963 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7965 gold_assert(this->dynsym_count_ != -1U);
7967 if (this->stub_offsets_are_set_)
7970 unsigned int stub_size = this->stub_size();
7971 unsigned int offset = 0;
7972 for (typename Mips_stubs_entry_set::const_iterator
7973 p = this->symbols_.begin();
7974 p != this->symbols_.end();
7975 ++p, offset += stub_size)
7977 Mips_symbol<size>* mips_sym = *p;
7978 mips_sym->set_lazy_stub_offset(offset);
7980 this->stub_offsets_are_set_ = true;
7983 template<int size, bool big_endian>
7985 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7987 for (typename Mips_stubs_entry_set::const_iterator
7988 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7990 Mips_symbol<size>* sym = *p;
7991 if (sym->is_from_dynobj())
7992 sym->set_needs_dynsym_value();
7996 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
7997 // adjusts them as needed.
7999 template<int size, bool big_endian>
8001 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8003 const off_t offset = this->offset();
8004 const section_size_type oview_size =
8005 convert_to_section_size_type(this->data_size());
8006 unsigned char* const oview = of->get_output_view(offset, oview_size);
8008 bool big_stub = this->dynsym_count_ > 0x10000;
8010 unsigned char* pov = oview;
8011 for (typename Mips_stubs_entry_set::const_iterator
8012 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8014 Mips_symbol<size>* sym = *p;
8015 const uint32_t* lazy_stub;
8016 bool n64 = this->target_->is_output_n64();
8018 if (!this->target_->is_output_micromips())
8020 // Write standard (non-microMIPS) stub.
8023 if (sym->dynsym_index() & ~0x7fff)
8024 // Dynsym index is between 32K and 64K.
8025 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8027 // Dynsym index is less than 32K.
8028 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8031 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8034 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8035 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8041 // LUI instruction of the big stub. Paste high 16 bits of the
8043 elfcpp::Swap<32, big_endian>::writeval(pov,
8044 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8048 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8049 // Last stub instruction. Paste low 16 bits of the dynsym index.
8050 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8051 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8054 else if (this->target_->use_32bit_micromips_instructions())
8056 // Write microMIPS stub in insn32 mode.
8059 if (sym->dynsym_index() & ~0x7fff)
8060 // Dynsym index is between 32K and 64K.
8061 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8062 : lazy_stub_micromips32_normal_2;
8064 // Dynsym index is less than 32K.
8065 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8066 : lazy_stub_micromips32_normal_1;
8069 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8070 : lazy_stub_micromips32_big;
8073 // First stub instruction. We emit 32-bit microMIPS instructions by
8074 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8075 // the instruction where the opcode is must always come first, for
8076 // both little and big endian.
8077 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8078 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8079 // Second stub instruction.
8080 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8081 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8086 // LUI instruction of the big stub. Paste high 16 bits of the
8088 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8089 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8090 (sym->dynsym_index() >> 16) & 0x7fff);
8094 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8095 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8096 // Last stub instruction. Paste low 16 bits of the dynsym index.
8097 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8098 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8099 sym->dynsym_index() & 0xffff);
8104 // Write microMIPS stub.
8107 if (sym->dynsym_index() & ~0x7fff)
8108 // Dynsym index is between 32K and 64K.
8109 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8110 : lazy_stub_micromips_normal_2;
8112 // Dynsym index is less than 32K.
8113 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8114 : lazy_stub_micromips_normal_1;
8117 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8118 : lazy_stub_micromips_big;
8121 // First stub instruction. We emit 32-bit microMIPS instructions by
8122 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8123 // the instruction where the opcode is must always come first, for
8124 // both little and big endian.
8125 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8126 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8127 // Second stub instruction.
8128 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8133 // LUI instruction of the big stub. Paste high 16 bits of the
8135 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8136 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8137 (sym->dynsym_index() >> 16) & 0x7fff);
8141 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8142 // Last stub instruction. Paste low 16 bits of the dynsym index.
8143 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8144 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8145 sym->dynsym_index() & 0xffff);
8150 // We always allocate 20 bytes for every stub, because final dynsym count is
8151 // not known in method do_finalize_sections. There are 4 unused bytes per
8152 // stub if final dynsym count is less than 0x10000.
8153 unsigned int used = pov - oview;
8154 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8155 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8157 // Fill the unused space with zeroes.
8158 // TODO(sasa): Can we strip unused bytes during the relaxation?
8160 memset(pov, 0, unused);
8162 of->write_output_view(offset, oview_size, oview);
8165 // Mips_output_section_reginfo methods.
8167 template<int size, bool big_endian>
8169 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8171 off_t offset = this->offset();
8172 off_t data_size = this->data_size();
8174 unsigned char* view = of->get_output_view(offset, data_size);
8175 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8176 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8177 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8178 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8179 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8180 // Write the gp value.
8181 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8182 this->target_->gp_value());
8184 of->write_output_view(offset, data_size, view);
8187 // Mips_output_section_abiflags methods.
8189 template<int size, bool big_endian>
8191 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8193 off_t offset = this->offset();
8194 off_t data_size = this->data_size();
8196 unsigned char* view = of->get_output_view(offset, data_size);
8197 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8198 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8199 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8200 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8201 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8202 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8203 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8204 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8205 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8206 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8207 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8209 of->write_output_view(offset, data_size, view);
8212 // Mips_copy_relocs methods.
8214 // Emit any saved relocs.
8216 template<int sh_type, int size, bool big_endian>
8218 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8219 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8220 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8222 for (typename Copy_relocs<sh_type, size, big_endian>::
8223 Copy_reloc_entries::iterator p = this->entries_.begin();
8224 p != this->entries_.end();
8226 emit_entry(*p, reloc_section, symtab, layout, target);
8228 // We no longer need the saved information.
8229 this->entries_.clear();
8232 // Emit the reloc if appropriate.
8234 template<int sh_type, int size, bool big_endian>
8236 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8237 Copy_reloc_entry& entry,
8238 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8239 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8241 // If the symbol is no longer defined in a dynamic object, then we
8242 // emitted a COPY relocation, and we do not want to emit this
8243 // dynamic relocation.
8244 if (!entry.sym_->is_from_dynobj())
8247 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8248 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8249 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8251 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8252 if (can_make_dynamic && !sym->has_static_relocs())
8254 Mips_relobj<size, big_endian>* object =
8255 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8256 target->got_section(symtab, layout)->record_global_got_symbol(
8257 sym, object, entry.reloc_type_, true, false);
8258 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8259 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8260 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8262 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8263 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8264 entry.shndx_, entry.address_);
8267 this->make_copy_reloc(symtab, layout,
8268 static_cast<Sized_symbol<size>*>(entry.sym_),
8273 // Target_mips methods.
8275 // Return the value to use for a dynamic symbol which requires special
8276 // treatment. This is how we support equality comparisons of function
8277 // pointers across shared library boundaries, as described in the
8278 // processor specific ABI supplement.
8280 template<int size, bool big_endian>
8282 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8285 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8287 if (!mips_sym->has_lazy_stub())
8289 if (mips_sym->has_plt_offset())
8291 // We distinguish between PLT entries and lazy-binding stubs by
8292 // giving the former an st_other value of STO_MIPS_PLT. Set the
8293 // value to the stub address if there are any relocations in the
8294 // binary where pointer equality matters.
8295 if (mips_sym->pointer_equality_needed())
8297 // Prefer a standard MIPS PLT entry.
8298 if (mips_sym->has_mips_plt_offset())
8299 value = this->plt_section()->mips_entry_address(mips_sym);
8301 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8309 // First, set stub offsets for symbols. This method expects that the
8310 // number of entries in dynamic symbol table is set.
8311 this->mips_stubs_section()->set_lazy_stub_offsets();
8313 // The run-time linker uses the st_value field of the symbol
8314 // to reset the global offset table entry for this external
8315 // to its stub address when unlinking a shared object.
8316 value = this->mips_stubs_section()->stub_address(mips_sym);
8319 if (mips_sym->has_mips16_fn_stub())
8321 // If we have a MIPS16 function with a stub, the dynamic symbol must
8322 // refer to the stub, since only the stub uses the standard calling
8324 value = mips_sym->template
8325 get_mips16_fn_stub<big_endian>()->output_address();
8331 // Get the dynamic reloc section, creating it if necessary. It's always
8332 // .rel.dyn, even for MIPS64.
8334 template<int size, bool big_endian>
8335 typename Target_mips<size, big_endian>::Reloc_section*
8336 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8338 if (this->rel_dyn_ == NULL)
8340 gold_assert(layout != NULL);
8341 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8342 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8343 elfcpp::SHF_ALLOC, this->rel_dyn_,
8344 ORDER_DYNAMIC_RELOCS, false);
8346 // First entry in .rel.dyn has to be null.
8347 // This is hack - we define dummy output data and set its address to 0,
8348 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8349 // This ensures that the entry is null.
8350 Output_data* od = new Output_data_zero_fill(0, 0);
8352 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8354 return this->rel_dyn_;
8357 // Get the GOT section, creating it if necessary.
8359 template<int size, bool big_endian>
8360 Mips_output_data_got<size, big_endian>*
8361 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8364 if (this->got_ == NULL)
8366 gold_assert(symtab != NULL && layout != NULL);
8368 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8370 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8371 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8372 elfcpp::SHF_MIPS_GPREL),
8373 this->got_, ORDER_DATA, false);
8375 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8376 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8377 Symbol_table::PREDEFINED,
8379 0, 0, elfcpp::STT_OBJECT,
8381 elfcpp::STV_DEFAULT, 0,
8388 // Calculate value of _gp symbol.
8390 template<int size, bool big_endian>
8392 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8394 if (this->gp_ != NULL)
8397 Output_data* section = layout->find_output_section(".got");
8398 if (section == NULL)
8400 // If there is no .got section, gp should be based on .sdata.
8401 // TODO(sasa): This is probably not needed. This was needed for older
8402 // MIPS architectures which accessed both GOT and .sdata section using
8403 // gp-relative addressing. Modern Mips Linux ELF architectures don't
8404 // access .sdata using gp-relative addressing.
8405 for (Layout::Section_list::const_iterator
8406 p = layout->section_list().begin();
8407 p != layout->section_list().end();
8410 if (strcmp((*p)->name(), ".sdata") == 0)
8418 Sized_symbol<size>* gp =
8419 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8422 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
8423 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
8426 elfcpp::STV_DEFAULT, 0,
8430 else if (section != NULL)
8432 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8433 "_gp", NULL, Symbol_table::PREDEFINED,
8434 section, MIPS_GP_OFFSET, 0,
8437 elfcpp::STV_DEFAULT,
8443 // Set the dynamic symbol indexes. INDEX is the index of the first
8444 // global dynamic symbol. Pointers to the symbols are stored into the
8445 // vector SYMS. The names are added to DYNPOOL. This returns an
8446 // updated dynamic symbol index.
8448 template<int size, bool big_endian>
8450 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8451 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8452 std::vector<Symbol*>* syms, Stringpool* dynpool,
8453 Versions* versions, Symbol_table* symtab) const
8455 std::vector<Symbol*> non_got_symbols;
8456 std::vector<Symbol*> got_symbols;
8458 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8461 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8462 p != non_got_symbols.end();
8467 // Note that SYM may already have a dynamic symbol index, since
8468 // some symbols appear more than once in the symbol table, with
8469 // and without a version.
8471 if (!sym->has_dynsym_index())
8473 sym->set_dynsym_index(index);
8475 syms->push_back(sym);
8476 dynpool->add(sym->name(), false, NULL);
8478 // Record any version information.
8479 if (sym->version() != NULL)
8480 versions->record_version(symtab, dynpool, sym);
8482 // If the symbol is defined in a dynamic object and is
8483 // referenced in a regular object, then mark the dynamic
8484 // object as needed. This is used to implement --as-needed.
8485 if (sym->is_from_dynobj() && sym->in_reg())
8486 sym->object()->set_is_needed();
8490 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8491 p != got_symbols.end();
8495 if (!sym->has_dynsym_index())
8497 // Record any version information.
8498 if (sym->version() != NULL)
8499 versions->record_version(symtab, dynpool, sym);
8503 index = versions->finalize(symtab, index, syms);
8505 int got_sym_count = 0;
8506 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8507 p != got_symbols.end();
8512 if (!sym->has_dynsym_index())
8515 sym->set_dynsym_index(index);
8517 syms->push_back(sym);
8518 dynpool->add(sym->name(), false, NULL);
8520 // If the symbol is defined in a dynamic object and is
8521 // referenced in a regular object, then mark the dynamic
8522 // object as needed. This is used to implement --as-needed.
8523 if (sym->is_from_dynobj() && sym->in_reg())
8524 sym->object()->set_is_needed();
8528 // Set index of the first symbol that has .got entry.
8529 this->got_->set_first_global_got_dynsym_index(
8530 got_sym_count > 0 ? index - got_sym_count : -1U);
8532 if (this->mips_stubs_ != NULL)
8533 this->mips_stubs_->set_dynsym_count(index);
8538 // Create a PLT entry for a global symbol referenced by r_type relocation.
8540 template<int size, bool big_endian>
8542 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8544 Mips_symbol<size>* gsym,
8545 unsigned int r_type)
8547 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8550 if (this->plt_ == NULL)
8552 // Create the GOT section first.
8553 this->got_section(symtab, layout);
8555 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8556 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8557 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8558 this->got_plt_, ORDER_DATA, false);
8560 // The first two entries are reserved.
8561 this->got_plt_->set_current_data_size(2 * size/8);
8563 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8566 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8568 | elfcpp::SHF_EXECINSTR),
8569 this->plt_, ORDER_PLT, false);
8571 // Make the sh_info field of .rel.plt point to .plt.
8572 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8573 rel_plt_os->set_info_section(this->plt_->output_section());
8576 this->plt_->add_entry(gsym, r_type);
8580 // Get the .MIPS.stubs section, creating it if necessary.
8582 template<int size, bool big_endian>
8583 Mips_output_data_mips_stubs<size, big_endian>*
8584 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8586 if (this->mips_stubs_ == NULL)
8589 new Mips_output_data_mips_stubs<size, big_endian>(this);
8590 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8592 | elfcpp::SHF_EXECINSTR),
8593 this->mips_stubs_, ORDER_PLT, false);
8595 return this->mips_stubs_;
8598 // Get the LA25 stub section, creating it if necessary.
8600 template<int size, bool big_endian>
8601 Mips_output_data_la25_stub<size, big_endian>*
8602 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8604 if (this->la25_stub_ == NULL)
8606 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8607 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8609 | elfcpp::SHF_EXECINSTR),
8610 this->la25_stub_, ORDER_TEXT, false);
8612 return this->la25_stub_;
8615 // Process the relocations to determine unreferenced sections for
8616 // garbage collection.
8618 template<int size, bool big_endian>
8620 Target_mips<size, big_endian>::gc_process_relocs(
8621 Symbol_table* symtab,
8623 Sized_relobj_file<size, big_endian>* object,
8624 unsigned int data_shndx,
8625 unsigned int sh_type,
8626 const unsigned char* prelocs,
8628 Output_section* output_section,
8629 bool needs_special_offset_handling,
8630 size_t local_symbol_count,
8631 const unsigned char* plocal_symbols)
8633 typedef Target_mips<size, big_endian> Mips;
8635 if (sh_type == elfcpp::SHT_REL)
8637 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8640 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8649 needs_special_offset_handling,
8653 else if (sh_type == elfcpp::SHT_RELA)
8655 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8658 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8667 needs_special_offset_handling,
8675 // Scan relocations for a section.
8677 template<int size, bool big_endian>
8679 Target_mips<size, big_endian>::scan_relocs(
8680 Symbol_table* symtab,
8682 Sized_relobj_file<size, big_endian>* object,
8683 unsigned int data_shndx,
8684 unsigned int sh_type,
8685 const unsigned char* prelocs,
8687 Output_section* output_section,
8688 bool needs_special_offset_handling,
8689 size_t local_symbol_count,
8690 const unsigned char* plocal_symbols)
8692 typedef Target_mips<size, big_endian> Mips;
8694 if (sh_type == elfcpp::SHT_REL)
8696 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8699 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8708 needs_special_offset_handling,
8712 else if (sh_type == elfcpp::SHT_RELA)
8714 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8717 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8726 needs_special_offset_handling,
8732 template<int size, bool big_endian>
8734 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8736 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8737 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8738 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8739 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8740 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8741 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8742 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8743 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8746 // Return the MACH for a MIPS e_flags value.
8747 template<int size, bool big_endian>
8749 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8751 switch (flags & elfcpp::EF_MIPS_MACH)
8753 case elfcpp::E_MIPS_MACH_3900:
8754 return mach_mips3900;
8756 case elfcpp::E_MIPS_MACH_4010:
8757 return mach_mips4010;
8759 case elfcpp::E_MIPS_MACH_4100:
8760 return mach_mips4100;
8762 case elfcpp::E_MIPS_MACH_4111:
8763 return mach_mips4111;
8765 case elfcpp::E_MIPS_MACH_4120:
8766 return mach_mips4120;
8768 case elfcpp::E_MIPS_MACH_4650:
8769 return mach_mips4650;
8771 case elfcpp::E_MIPS_MACH_5400:
8772 return mach_mips5400;
8774 case elfcpp::E_MIPS_MACH_5500:
8775 return mach_mips5500;
8777 case elfcpp::E_MIPS_MACH_5900:
8778 return mach_mips5900;
8780 case elfcpp::E_MIPS_MACH_9000:
8781 return mach_mips9000;
8783 case elfcpp::E_MIPS_MACH_SB1:
8784 return mach_mips_sb1;
8786 case elfcpp::E_MIPS_MACH_LS2E:
8787 return mach_mips_loongson_2e;
8789 case elfcpp::E_MIPS_MACH_LS2F:
8790 return mach_mips_loongson_2f;
8792 case elfcpp::E_MIPS_MACH_LS3A:
8793 return mach_mips_loongson_3a;
8795 case elfcpp::E_MIPS_MACH_OCTEON3:
8796 return mach_mips_octeon3;
8798 case elfcpp::E_MIPS_MACH_OCTEON2:
8799 return mach_mips_octeon2;
8801 case elfcpp::E_MIPS_MACH_OCTEON:
8802 return mach_mips_octeon;
8804 case elfcpp::E_MIPS_MACH_XLR:
8805 return mach_mips_xlr;
8808 switch (flags & elfcpp::EF_MIPS_ARCH)
8811 case elfcpp::E_MIPS_ARCH_1:
8812 return mach_mips3000;
8814 case elfcpp::E_MIPS_ARCH_2:
8815 return mach_mips6000;
8817 case elfcpp::E_MIPS_ARCH_3:
8818 return mach_mips4000;
8820 case elfcpp::E_MIPS_ARCH_4:
8821 return mach_mips8000;
8823 case elfcpp::E_MIPS_ARCH_5:
8826 case elfcpp::E_MIPS_ARCH_32:
8827 return mach_mipsisa32;
8829 case elfcpp::E_MIPS_ARCH_64:
8830 return mach_mipsisa64;
8832 case elfcpp::E_MIPS_ARCH_32R2:
8833 return mach_mipsisa32r2;
8835 case elfcpp::E_MIPS_ARCH_32R6:
8836 return mach_mipsisa32r6;
8838 case elfcpp::E_MIPS_ARCH_64R2:
8839 return mach_mipsisa64r2;
8841 case elfcpp::E_MIPS_ARCH_64R6:
8842 return mach_mipsisa64r6;
8849 // Return the MACH for each .MIPS.abiflags ISA Extension.
8851 template<int size, bool big_endian>
8853 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8857 case elfcpp::AFL_EXT_3900:
8858 return mach_mips3900;
8860 case elfcpp::AFL_EXT_4010:
8861 return mach_mips4010;
8863 case elfcpp::AFL_EXT_4100:
8864 return mach_mips4100;
8866 case elfcpp::AFL_EXT_4111:
8867 return mach_mips4111;
8869 case elfcpp::AFL_EXT_4120:
8870 return mach_mips4120;
8872 case elfcpp::AFL_EXT_4650:
8873 return mach_mips4650;
8875 case elfcpp::AFL_EXT_5400:
8876 return mach_mips5400;
8878 case elfcpp::AFL_EXT_5500:
8879 return mach_mips5500;
8881 case elfcpp::AFL_EXT_5900:
8882 return mach_mips5900;
8884 case elfcpp::AFL_EXT_10000:
8885 return mach_mips10000;
8887 case elfcpp::AFL_EXT_LOONGSON_2E:
8888 return mach_mips_loongson_2e;
8890 case elfcpp::AFL_EXT_LOONGSON_2F:
8891 return mach_mips_loongson_2f;
8893 case elfcpp::AFL_EXT_LOONGSON_3A:
8894 return mach_mips_loongson_3a;
8896 case elfcpp::AFL_EXT_SB1:
8897 return mach_mips_sb1;
8899 case elfcpp::AFL_EXT_OCTEON:
8900 return mach_mips_octeon;
8902 case elfcpp::AFL_EXT_OCTEONP:
8903 return mach_mips_octeonp;
8905 case elfcpp::AFL_EXT_OCTEON2:
8906 return mach_mips_octeon2;
8908 case elfcpp::AFL_EXT_XLR:
8909 return mach_mips_xlr;
8912 return mach_mips3000;
8916 // Return the .MIPS.abiflags value representing each ISA Extension.
8918 template<int size, bool big_endian>
8920 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8925 return elfcpp::AFL_EXT_3900;
8928 return elfcpp::AFL_EXT_4010;
8931 return elfcpp::AFL_EXT_4100;
8934 return elfcpp::AFL_EXT_4111;
8937 return elfcpp::AFL_EXT_4120;
8940 return elfcpp::AFL_EXT_4650;
8943 return elfcpp::AFL_EXT_5400;
8946 return elfcpp::AFL_EXT_5500;
8949 return elfcpp::AFL_EXT_5900;
8951 case mach_mips10000:
8952 return elfcpp::AFL_EXT_10000;
8954 case mach_mips_loongson_2e:
8955 return elfcpp::AFL_EXT_LOONGSON_2E;
8957 case mach_mips_loongson_2f:
8958 return elfcpp::AFL_EXT_LOONGSON_2F;
8960 case mach_mips_loongson_3a:
8961 return elfcpp::AFL_EXT_LOONGSON_3A;
8964 return elfcpp::AFL_EXT_SB1;
8966 case mach_mips_octeon:
8967 return elfcpp::AFL_EXT_OCTEON;
8969 case mach_mips_octeonp:
8970 return elfcpp::AFL_EXT_OCTEONP;
8972 case mach_mips_octeon3:
8973 return elfcpp::AFL_EXT_OCTEON3;
8975 case mach_mips_octeon2:
8976 return elfcpp::AFL_EXT_OCTEON2;
8979 return elfcpp::AFL_EXT_XLR;
8986 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8988 template<int size, bool big_endian>
8990 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8991 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8994 switch (e_flags & elfcpp::EF_MIPS_ARCH)
8996 case elfcpp::E_MIPS_ARCH_1:
8997 new_isa = this->level_rev(1, 0);
8999 case elfcpp::E_MIPS_ARCH_2:
9000 new_isa = this->level_rev(2, 0);
9002 case elfcpp::E_MIPS_ARCH_3:
9003 new_isa = this->level_rev(3, 0);
9005 case elfcpp::E_MIPS_ARCH_4:
9006 new_isa = this->level_rev(4, 0);
9008 case elfcpp::E_MIPS_ARCH_5:
9009 new_isa = this->level_rev(5, 0);
9011 case elfcpp::E_MIPS_ARCH_32:
9012 new_isa = this->level_rev(32, 1);
9014 case elfcpp::E_MIPS_ARCH_32R2:
9015 new_isa = this->level_rev(32, 2);
9017 case elfcpp::E_MIPS_ARCH_32R6:
9018 new_isa = this->level_rev(32, 6);
9020 case elfcpp::E_MIPS_ARCH_64:
9021 new_isa = this->level_rev(64, 1);
9023 case elfcpp::E_MIPS_ARCH_64R2:
9024 new_isa = this->level_rev(64, 2);
9026 case elfcpp::E_MIPS_ARCH_64R6:
9027 new_isa = this->level_rev(64, 6);
9030 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9031 this->elf_mips_mach_name(e_flags));
9034 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9036 // Decode a single value into level and revision.
9037 abiflags->isa_level = new_isa >> 3;
9038 abiflags->isa_rev = new_isa & 0x7;
9041 // Update the isa_ext if needed.
9042 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9043 this->elf_mips_mach(e_flags)))
9044 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9047 // Infer the content of the ABI flags based on the elf header.
9049 template<int size, bool big_endian>
9051 Target_mips<size, big_endian>::infer_abiflags(
9052 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9054 const Attributes_section_data* pasd = relobj->attributes_section_data();
9055 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9056 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9058 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9061 // Read fp_abi from the .gnu.attribute section.
9062 const Object_attribute* attr =
9063 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9064 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9067 abiflags->fp_abi = attr_fp_abi;
9068 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9069 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9070 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9071 : elfcpp::AFL_REG_64;
9073 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9074 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9075 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9076 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9077 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9078 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9079 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9080 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9081 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9083 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9084 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9085 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9086 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9087 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9088 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9090 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9091 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9092 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9093 && abiflags->isa_level >= 32
9094 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9095 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9098 // Create abiflags from elf header or from .MIPS.abiflags section.
9100 template<int size, bool big_endian>
9102 Target_mips<size, big_endian>::create_abiflags(
9103 Mips_relobj<size, big_endian>* relobj,
9104 Mips_abiflags<big_endian>* abiflags)
9106 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9107 Mips_abiflags<big_endian> header_abiflags;
9109 this->infer_abiflags(relobj, &header_abiflags);
9111 if (sec_abiflags == NULL)
9113 // If there is no input .MIPS.abiflags section, use abiflags created
9115 *abiflags = header_abiflags;
9119 this->has_abiflags_section_ = true;
9121 // It is not possible to infer the correct ISA revision for R3 or R5
9122 // so drop down to R2 for the checks.
9123 unsigned char isa_rev = sec_abiflags->isa_rev;
9124 if (isa_rev == 3 || isa_rev == 5)
9127 // Check compatibility between abiflags created from elf header
9128 // and abiflags from .MIPS.abiflags section in this object file.
9129 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9130 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9131 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9132 relobj->name().c_str());
9133 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9134 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9135 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9136 ".MIPS.abiflags"), relobj->name().c_str());
9137 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9138 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9139 relobj->name().c_str());
9140 // The isa_ext is allowed to be an extension of what can be inferred
9142 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9143 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9144 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9145 ".MIPS.abiflags"), relobj->name().c_str());
9146 if (sec_abiflags->flags2 != 0)
9147 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9148 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9149 sec_abiflags->flags2);
9150 // Use abiflags from .MIPS.abiflags section.
9151 *abiflags = *sec_abiflags;
9154 // Return the meaning of fp_abi, or "unknown" if not known.
9156 template<int size, bool big_endian>
9158 Target_mips<size, big_endian>::fp_abi_string(int fp)
9162 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9163 return "-mdouble-float";
9164 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9165 return "-msingle-float";
9166 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9167 return "-msoft-float";
9168 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9169 return _("-mips32r2 -mfp64 (12 callee-saved)");
9170 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9172 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9173 return "-mgp32 -mfp64";
9174 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9175 return "-mgp32 -mfp64 -mno-odd-spreg";
9183 template<int size, bool big_endian>
9185 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9188 if (in_fp == out_fp)
9191 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9193 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9194 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9195 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9196 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9198 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9199 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9200 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9201 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9202 return out_fp; // Keep the current setting.
9203 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9204 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9206 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9207 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9208 return out_fp; // Keep the current setting.
9209 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9210 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9211 fp_abi_string(in_fp), fp_abi_string(out_fp));
9215 // Merge attributes from input object.
9217 template<int size, bool big_endian>
9219 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9220 const Attributes_section_data* pasd)
9222 // Return if there is no attributes section data.
9226 // If output has no object attributes, just copy.
9227 if (this->attributes_section_data_ == NULL)
9229 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9233 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9234 Object_attribute::OBJ_ATTR_GNU);
9236 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9237 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9239 // Merge Tag_compatibility attributes and any common GNU ones.
9240 this->attributes_section_data_->merge(name.c_str(), pasd);
9243 // Merge abiflags from input object.
9245 template<int size, bool big_endian>
9247 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9248 Mips_abiflags<big_endian>* in_abiflags)
9250 // If output has no abiflags, just copy.
9251 if (this->abiflags_ == NULL)
9253 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9257 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9258 this->abiflags_->fp_abi);
9261 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9262 in_abiflags->isa_level);
9263 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9264 in_abiflags->isa_rev);
9265 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9266 in_abiflags->gpr_size);
9267 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9268 in_abiflags->cpr1_size);
9269 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9270 in_abiflags->cpr2_size);
9271 this->abiflags_->ases |= in_abiflags->ases;
9272 this->abiflags_->flags1 |= in_abiflags->flags1;
9275 // Check whether machine EXTENSION is an extension of machine BASE.
9276 template<int size, bool big_endian>
9278 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9279 unsigned int extension)
9281 if (extension == base)
9284 if ((base == mach_mipsisa32)
9285 && this->mips_mach_extends(mach_mipsisa64, extension))
9288 if ((base == mach_mipsisa32r2)
9289 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9292 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9293 if (extension == this->mips_mach_extensions_[i].first)
9295 extension = this->mips_mach_extensions_[i].second;
9296 if (extension == base)
9303 // Merge file header flags from input object.
9305 template<int size, bool big_endian>
9307 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9308 elfcpp::Elf_Word in_flags)
9310 // If flags are not set yet, just copy them.
9311 if (!this->are_processor_specific_flags_set())
9313 this->set_processor_specific_flags(in_flags);
9314 this->mach_ = this->elf_mips_mach(in_flags);
9318 elfcpp::Elf_Word new_flags = in_flags;
9319 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9320 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9321 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9323 // Check flag compatibility.
9324 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9325 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9327 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9328 // doesn't seem to matter.
9329 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9330 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9332 // MIPSpro generates ucode info in n64 objects. Again, we should
9333 // just be able to ignore this.
9334 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9335 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9337 if (new_flags == old_flags)
9339 this->set_processor_specific_flags(merged_flags);
9343 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9344 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9345 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9348 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9349 merged_flags |= elfcpp::EF_MIPS_CPIC;
9350 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9351 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9353 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9354 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9356 // Compare the ISAs.
9357 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9358 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9359 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9361 // Output ISA isn't the same as, or an extension of, input ISA.
9362 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9364 // Copy the architecture info from input object to output. Also copy
9365 // the 32-bit flag (if set) so that we continue to recognise
9366 // output as a 32-bit binary.
9367 this->mach_ = this->elf_mips_mach(in_flags);
9368 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9369 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9370 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9372 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9373 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9375 // Copy across the ABI flags if output doesn't use them
9376 // and if that was what caused us to treat input object as 32-bit.
9377 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9378 && this->mips_32bit_flags(new_flags)
9379 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9380 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9383 // The ISAs aren't compatible.
9384 gold_error(_("%s: linking %s module with previous %s modules"),
9385 name.c_str(), this->elf_mips_mach_name(in_flags),
9386 this->elf_mips_mach_name(merged_flags));
9389 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9390 | elfcpp::EF_MIPS_32BITMODE));
9391 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9392 | elfcpp::EF_MIPS_32BITMODE));
9395 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9397 // Only error if both are set (to different values).
9398 if ((new_flags & elfcpp::EF_MIPS_ABI)
9399 && (old_flags & elfcpp::EF_MIPS_ABI))
9400 gold_error(_("%s: ABI mismatch: linking %s module with "
9401 "previous %s modules"), name.c_str(),
9402 this->elf_mips_abi_name(in_flags),
9403 this->elf_mips_abi_name(merged_flags));
9405 new_flags &= ~elfcpp::EF_MIPS_ABI;
9406 old_flags &= ~elfcpp::EF_MIPS_ABI;
9409 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9410 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9411 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9412 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9414 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9415 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9416 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9417 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9418 int micro_mis = old_m16 && new_micro;
9419 int m16_mis = old_micro && new_m16;
9421 if (m16_mis || micro_mis)
9422 gold_error(_("%s: ASE mismatch: linking %s module with "
9423 "previous %s modules"), name.c_str(),
9424 m16_mis ? "MIPS16" : "microMIPS",
9425 m16_mis ? "microMIPS" : "MIPS16");
9427 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9429 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9430 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9433 // Compare NaN encodings.
9434 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9436 gold_error(_("%s: linking %s module with previous %s modules"),
9438 (new_flags & elfcpp::EF_MIPS_NAN2008
9439 ? "-mnan=2008" : "-mnan=legacy"),
9440 (old_flags & elfcpp::EF_MIPS_NAN2008
9441 ? "-mnan=2008" : "-mnan=legacy"));
9443 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9444 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9447 // Compare FP64 state.
9448 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9450 gold_error(_("%s: linking %s module with previous %s modules"),
9452 (new_flags & elfcpp::EF_MIPS_FP64
9453 ? "-mfp64" : "-mfp32"),
9454 (old_flags & elfcpp::EF_MIPS_FP64
9455 ? "-mfp64" : "-mfp32"));
9457 new_flags &= ~elfcpp::EF_MIPS_FP64;
9458 old_flags &= ~elfcpp::EF_MIPS_FP64;
9461 // Warn about any other mismatches.
9462 if (new_flags != old_flags)
9463 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9464 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9466 this->set_processor_specific_flags(merged_flags);
9469 // Adjust ELF file header.
9471 template<int size, bool big_endian>
9473 Target_mips<size, big_endian>::do_adjust_elf_header(
9474 unsigned char* view,
9477 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9479 elfcpp::Ehdr<size, big_endian> ehdr(view);
9480 unsigned char e_ident[elfcpp::EI_NIDENT];
9481 elfcpp::Elf_Word flags = this->processor_specific_flags();
9482 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9484 unsigned char ei_abiversion = 0;
9485 elfcpp::Elf_Half type = ehdr.get_e_type();
9486 if (type == elfcpp::ET_EXEC
9487 && parameters->options().copyreloc()
9488 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9489 == elfcpp::EF_MIPS_CPIC)
9492 if (this->abiflags_ != NULL
9493 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9494 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9497 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9498 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9499 oehdr.put_e_ident(e_ident);
9501 if (this->entry_symbol_is_compressed_)
9502 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9505 // do_make_elf_object to override the same function in the base class.
9506 // We need to use a target-specific sub-class of
9507 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9508 // Hence we need to have our own ELF object creation.
9510 template<int size, bool big_endian>
9512 Target_mips<size, big_endian>::do_make_elf_object(
9513 const std::string& name,
9514 Input_file* input_file,
9515 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9517 int et = ehdr.get_e_type();
9518 // ET_EXEC files are valid input for --just-symbols/-R,
9519 // and we treat them as relocatable objects.
9520 if (et == elfcpp::ET_REL
9521 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9523 Mips_relobj<size, big_endian>* obj =
9524 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9528 else if (et == elfcpp::ET_DYN)
9530 // TODO(sasa): Should we create Mips_dynobj?
9531 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9535 gold_error(_("%s: unsupported ELF file type %d"),
9541 // Finalize the sections.
9543 template <int size, bool big_endian>
9545 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9546 const Input_objects* input_objects,
9547 Symbol_table* symtab)
9549 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9550 // DT_FINI have correct values.
9551 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9552 symtab->lookup(parameters->options().init()));
9553 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9554 init->set_value(init->value() | 1);
9555 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9556 symtab->lookup(parameters->options().fini()));
9557 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9558 fini->set_value(fini->value() | 1);
9560 // Check whether the entry symbol is mips16 or micromips. This is needed to
9561 // adjust entry address in ELF header.
9562 Mips_symbol<size>* entry =
9563 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9564 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9565 || entry->is_micromips()));
9567 if (!parameters->doing_static_link()
9568 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9569 || strcmp(parameters->options().hash_style(), "both") == 0))
9571 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9572 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9573 // MIPS ABI requires a mapping between the GOT and the symbol table.
9574 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9577 // Check whether the final section that was scanned has HI16 or GOT16
9578 // relocations without the corresponding LO16 part.
9579 if (this->got16_addends_.size() > 0)
9580 gold_error("Can't find matching LO16 reloc");
9583 this->set_gp(layout, symtab);
9585 // Check for any mips16 stub sections that we can discard.
9586 if (!parameters->options().relocatable())
9588 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9589 p != input_objects->relobj_end();
9592 Mips_relobj<size, big_endian>* object =
9593 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9594 object->discard_mips16_stub_sections(symtab);
9598 Valtype gprmask = 0;
9599 Valtype cprmask1 = 0;
9600 Valtype cprmask2 = 0;
9601 Valtype cprmask3 = 0;
9602 Valtype cprmask4 = 0;
9603 bool has_reginfo_section = false;
9605 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9606 p != input_objects->relobj_end();
9609 Mips_relobj<size, big_endian>* relobj =
9610 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9612 // Merge .reginfo contents of input objects.
9613 if (relobj->has_reginfo_section())
9615 has_reginfo_section = true;
9616 gprmask |= relobj->gprmask();
9617 cprmask1 |= relobj->cprmask1();
9618 cprmask2 |= relobj->cprmask2();
9619 cprmask3 |= relobj->cprmask3();
9620 cprmask4 |= relobj->cprmask4();
9623 Input_file::Format format = relobj->input_file()->format();
9624 if (format != Input_file::FORMAT_ELF)
9627 // If all input sections will be discarded, don't use this object
9628 // file for merging processor specific flags.
9629 bool should_merge_processor_specific_flags = false;
9631 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9632 if (relobj->output_section(i) != NULL)
9634 should_merge_processor_specific_flags = true;
9638 if (!should_merge_processor_specific_flags)
9641 // Merge processor specific flags.
9642 Mips_abiflags<big_endian> in_abiflags;
9644 this->create_abiflags(relobj, &in_abiflags);
9645 this->merge_obj_e_flags(relobj->name(),
9646 relobj->processor_specific_flags());
9647 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9648 this->merge_obj_attributes(relobj->name(),
9649 relobj->attributes_section_data());
9652 // Create a .gnu.attributes section if we have merged any attributes
9654 if (this->attributes_section_data_ != NULL)
9656 Output_attributes_section_data* attributes_section =
9657 new Output_attributes_section_data(*this->attributes_section_data_);
9658 layout->add_output_section_data(".gnu.attributes",
9659 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9660 attributes_section, ORDER_INVALID, false);
9663 // Create .MIPS.abiflags output section if there is an input section.
9664 if (this->has_abiflags_section_)
9666 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9667 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9669 Output_section* os =
9670 layout->add_output_section_data(".MIPS.abiflags",
9671 elfcpp::SHT_MIPS_ABIFLAGS,
9673 abiflags_section, ORDER_INVALID, false);
9675 if (!parameters->options().relocatable() && os != NULL)
9677 Output_segment* abiflags_segment =
9678 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9679 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9683 if (has_reginfo_section && !parameters->options().gc_sections())
9685 // Create .reginfo output section.
9686 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9687 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9689 cprmask3, cprmask4);
9691 Output_section* os =
9692 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9693 elfcpp::SHF_ALLOC, reginfo_section,
9694 ORDER_INVALID, false);
9696 if (!parameters->options().relocatable() && os != NULL)
9698 Output_segment* reginfo_segment =
9699 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9701 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9705 if (this->plt_ != NULL)
9707 // Set final PLT offsets for symbols.
9708 this->plt_section()->set_plt_offsets();
9710 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9711 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9712 // there are no standard PLT entries present.
9713 unsigned char nonvis = 0;
9714 if (this->is_output_micromips()
9715 && !this->plt_section()->has_standard_entries())
9716 nonvis = elfcpp::STO_MICROMIPS >> 2;
9717 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9718 Symbol_table::PREDEFINED,
9720 0, 0, elfcpp::STT_FUNC,
9722 elfcpp::STV_DEFAULT, nonvis,
9726 if (this->mips_stubs_ != NULL)
9728 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9729 unsigned char nonvis = 0;
9730 if (this->is_output_micromips())
9731 nonvis = elfcpp::STO_MICROMIPS >> 2;
9732 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9733 Symbol_table::PREDEFINED,
9735 0, 0, elfcpp::STT_FUNC,
9737 elfcpp::STV_DEFAULT, nonvis,
9741 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9742 // In case there is no .got section, create one.
9743 this->got_section(symtab, layout);
9745 // Emit any relocs we saved in an attempt to avoid generating COPY
9747 if (this->copy_relocs_.any_saved_relocs())
9748 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9751 // Emit dynamic relocs.
9752 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9753 p != this->dyn_relocs_.end();
9755 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9757 if (this->has_got_section())
9758 this->got_section()->lay_out_got(layout, symtab, input_objects);
9760 if (this->mips_stubs_ != NULL)
9761 this->mips_stubs_->set_needs_dynsym_value();
9763 // Check for functions that might need $25 to be valid on entry.
9764 // TODO(sasa): Can we do this without iterating over all symbols?
9765 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9766 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9769 // Add NULL segment.
9770 if (!parameters->options().relocatable())
9771 layout->make_output_segment(elfcpp::PT_NULL, 0);
9773 // Fill in some more dynamic tags.
9774 // TODO(sasa): Add more dynamic tags.
9775 const Reloc_section* rel_plt = (this->plt_ == NULL
9776 ? NULL : this->plt_->rel_plt());
9777 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9778 this->rel_dyn_, true, false);
9780 Output_data_dynamic* const odyn = layout->dynamic_data();
9782 && !parameters->options().relocatable()
9783 && !parameters->doing_static_link())
9786 // This element holds a 32-bit version id for the Runtime
9787 // Linker Interface. This will start at integer value 1.
9789 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9792 d_val = elfcpp::RHF_NOTPOT;
9793 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9795 // Save layout for using when emitting custom dynamic tags.
9796 this->layout_ = layout;
9798 // This member holds the base address of the segment.
9799 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9801 // This member holds the number of entries in the .dynsym section.
9802 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9804 // This member holds the index of the first dynamic symbol
9805 // table entry that corresponds to an entry in the global offset table.
9806 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9808 // This member holds the number of local GOT entries.
9809 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9810 this->got_->get_local_gotno());
9812 if (this->plt_ != NULL)
9813 // DT_MIPS_PLTGOT dynamic tag
9814 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9816 if (!parameters->options().shared())
9818 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9820 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9821 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9822 this->rld_map_, ORDER_INVALID, false);
9824 // __RLD_MAP will be filled in by the runtime loader to contain
9825 // a pointer to the _r_debug structure.
9826 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9827 Symbol_table::PREDEFINED,
9829 0, 0, elfcpp::STT_OBJECT,
9831 elfcpp::STV_DEFAULT, 0,
9834 if (!rld_map->is_forced_local())
9835 rld_map->set_needs_dynsym_entry();
9837 if (!parameters->options().pie())
9838 // This member holds the absolute address of the debug pointer.
9839 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9841 // This member holds the offset to the debug pointer,
9842 // relative to the address of the tag.
9843 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9848 // Get the custom dynamic tag value.
9849 template<int size, bool big_endian>
9851 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9855 case elfcpp::DT_MIPS_BASE_ADDRESS:
9857 // The base address of the segment.
9858 // At this point, the segment list has been sorted into final order,
9859 // so just return vaddr of the first readable PT_LOAD segment.
9860 Output_segment* seg =
9861 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9862 gold_assert(seg != NULL);
9863 return seg->vaddr();
9866 case elfcpp::DT_MIPS_SYMTABNO:
9867 // The number of entries in the .dynsym section.
9868 return this->get_dt_mips_symtabno();
9870 case elfcpp::DT_MIPS_GOTSYM:
9872 // The index of the first dynamic symbol table entry that corresponds
9873 // to an entry in the GOT.
9874 if (this->got_->first_global_got_dynsym_index() != -1U)
9875 return this->got_->first_global_got_dynsym_index();
9877 // In case if we don't have global GOT symbols we default to setting
9878 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9879 return this->get_dt_mips_symtabno();
9882 case elfcpp::DT_MIPS_RLD_MAP_REL:
9884 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9885 // relative to the address of the tag.
9886 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9887 unsigned int entry_offset =
9888 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9889 gold_assert(entry_offset != -1U);
9890 return this->rld_map_->address() - (odyn->address() + entry_offset);
9893 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9896 return (unsigned int)-1;
9899 // Relocate section data.
9901 template<int size, bool big_endian>
9903 Target_mips<size, big_endian>::relocate_section(
9904 const Relocate_info<size, big_endian>* relinfo,
9905 unsigned int sh_type,
9906 const unsigned char* prelocs,
9908 Output_section* output_section,
9909 bool needs_special_offset_handling,
9910 unsigned char* view,
9911 Mips_address address,
9912 section_size_type view_size,
9913 const Reloc_symbol_changes* reloc_symbol_changes)
9915 typedef Target_mips<size, big_endian> Mips;
9916 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9918 if (sh_type == elfcpp::SHT_REL)
9920 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9923 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9924 gold::Default_comdat_behavior, Classify_reloc>(
9930 needs_special_offset_handling,
9934 reloc_symbol_changes);
9936 else if (sh_type == elfcpp::SHT_RELA)
9938 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9941 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9942 gold::Default_comdat_behavior, Classify_reloc>(
9948 needs_special_offset_handling,
9952 reloc_symbol_changes);
9956 // Return the size of a relocation while scanning during a relocatable
9960 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9964 case elfcpp::R_MIPS_NONE:
9965 case elfcpp::R_MIPS_TLS_DTPMOD64:
9966 case elfcpp::R_MIPS_TLS_DTPREL64:
9967 case elfcpp::R_MIPS_TLS_TPREL64:
9970 case elfcpp::R_MIPS_32:
9971 case elfcpp::R_MIPS_TLS_DTPMOD32:
9972 case elfcpp::R_MIPS_TLS_DTPREL32:
9973 case elfcpp::R_MIPS_TLS_TPREL32:
9974 case elfcpp::R_MIPS_REL32:
9975 case elfcpp::R_MIPS_PC32:
9976 case elfcpp::R_MIPS_GPREL32:
9977 case elfcpp::R_MIPS_JALR:
9978 case elfcpp::R_MIPS_EH:
9981 case elfcpp::R_MIPS_16:
9982 case elfcpp::R_MIPS_HI16:
9983 case elfcpp::R_MIPS_LO16:
9984 case elfcpp::R_MIPS_HIGHER:
9985 case elfcpp::R_MIPS_HIGHEST:
9986 case elfcpp::R_MIPS_GPREL16:
9987 case elfcpp::R_MIPS16_HI16:
9988 case elfcpp::R_MIPS16_LO16:
9989 case elfcpp::R_MIPS_PC16:
9990 case elfcpp::R_MIPS_PCHI16:
9991 case elfcpp::R_MIPS_PCLO16:
9992 case elfcpp::R_MIPS_GOT16:
9993 case elfcpp::R_MIPS16_GOT16:
9994 case elfcpp::R_MIPS_CALL16:
9995 case elfcpp::R_MIPS16_CALL16:
9996 case elfcpp::R_MIPS_GOT_HI16:
9997 case elfcpp::R_MIPS_CALL_HI16:
9998 case elfcpp::R_MIPS_GOT_LO16:
9999 case elfcpp::R_MIPS_CALL_LO16:
10000 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10001 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10002 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10003 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10004 case elfcpp::R_MIPS16_GPREL:
10005 case elfcpp::R_MIPS_GOT_DISP:
10006 case elfcpp::R_MIPS_LITERAL:
10007 case elfcpp::R_MIPS_GOT_PAGE:
10008 case elfcpp::R_MIPS_GOT_OFST:
10009 case elfcpp::R_MIPS_TLS_GD:
10010 case elfcpp::R_MIPS_TLS_LDM:
10011 case elfcpp::R_MIPS_TLS_GOTTPREL:
10014 // These relocations are not byte sized
10015 case elfcpp::R_MIPS_26:
10016 case elfcpp::R_MIPS16_26:
10017 case elfcpp::R_MIPS_PC21_S2:
10018 case elfcpp::R_MIPS_PC26_S2:
10019 case elfcpp::R_MIPS_PC18_S3:
10020 case elfcpp::R_MIPS_PC19_S2:
10023 case elfcpp::R_MIPS_COPY:
10024 case elfcpp::R_MIPS_JUMP_SLOT:
10025 object->error(_("unexpected reloc %u in object file"), r_type);
10029 object->error(_("unsupported reloc %u in object file"), r_type);
10034 // Scan the relocs during a relocatable link.
10036 template<int size, bool big_endian>
10038 Target_mips<size, big_endian>::scan_relocatable_relocs(
10039 Symbol_table* symtab,
10041 Sized_relobj_file<size, big_endian>* object,
10042 unsigned int data_shndx,
10043 unsigned int sh_type,
10044 const unsigned char* prelocs,
10045 size_t reloc_count,
10046 Output_section* output_section,
10047 bool needs_special_offset_handling,
10048 size_t local_symbol_count,
10049 const unsigned char* plocal_symbols,
10050 Relocatable_relocs* rr)
10052 if (sh_type == elfcpp::SHT_REL)
10054 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10056 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10057 Scan_relocatable_relocs;
10059 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10067 needs_special_offset_handling,
10068 local_symbol_count,
10072 else if (sh_type == elfcpp::SHT_RELA)
10074 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10076 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10077 Scan_relocatable_relocs;
10079 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10087 needs_special_offset_handling,
10088 local_symbol_count,
10093 gold_unreachable();
10096 // Scan the relocs for --emit-relocs.
10098 template<int size, bool big_endian>
10100 Target_mips<size, big_endian>::emit_relocs_scan(
10101 Symbol_table* symtab,
10103 Sized_relobj_file<size, big_endian>* object,
10104 unsigned int data_shndx,
10105 unsigned int sh_type,
10106 const unsigned char* prelocs,
10107 size_t reloc_count,
10108 Output_section* output_section,
10109 bool needs_special_offset_handling,
10110 size_t local_symbol_count,
10111 const unsigned char* plocal_syms,
10112 Relocatable_relocs* rr)
10114 if (sh_type == elfcpp::SHT_REL)
10116 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10118 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10119 Emit_relocs_strategy;
10121 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10129 needs_special_offset_handling,
10130 local_symbol_count,
10134 else if (sh_type == elfcpp::SHT_RELA)
10136 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10138 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10139 Emit_relocs_strategy;
10141 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10149 needs_special_offset_handling,
10150 local_symbol_count,
10155 gold_unreachable();
10158 // Emit relocations for a section.
10160 template<int size, bool big_endian>
10162 Target_mips<size, big_endian>::relocate_relocs(
10163 const Relocate_info<size, big_endian>* relinfo,
10164 unsigned int sh_type,
10165 const unsigned char* prelocs,
10166 size_t reloc_count,
10167 Output_section* output_section,
10168 typename elfcpp::Elf_types<size>::Elf_Off
10169 offset_in_output_section,
10170 unsigned char* view,
10171 Mips_address view_address,
10172 section_size_type view_size,
10173 unsigned char* reloc_view,
10174 section_size_type reloc_view_size)
10176 if (sh_type == elfcpp::SHT_REL)
10178 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10181 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10186 offset_in_output_section,
10193 else if (sh_type == elfcpp::SHT_RELA)
10195 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10198 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10203 offset_in_output_section,
10211 gold_unreachable();
10214 // Perform target-specific processing in a relocatable link. This is
10215 // only used if we use the relocation strategy RELOC_SPECIAL.
10217 template<int size, bool big_endian>
10219 Target_mips<size, big_endian>::relocate_special_relocatable(
10220 const Relocate_info<size, big_endian>* relinfo,
10221 unsigned int sh_type,
10222 const unsigned char* preloc_in,
10224 Output_section* output_section,
10225 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10226 unsigned char* view,
10227 Mips_address view_address,
10229 unsigned char* preloc_out)
10231 // We can only handle REL type relocation sections.
10232 gold_assert(sh_type == elfcpp::SHT_REL);
10234 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10236 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10239 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10241 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10243 Mips_relobj<size, big_endian>* object =
10244 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10245 const unsigned int local_count = object->local_symbol_count();
10247 Reltype reloc(preloc_in);
10248 Reltype_write reloc_write(preloc_out);
10250 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10251 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10252 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10254 // Get the new symbol index.
10255 // We only use RELOC_SPECIAL strategy in local relocations.
10256 gold_assert(r_sym < local_count);
10258 // We are adjusting a section symbol. We need to find
10259 // the symbol table index of the section symbol for
10260 // the output section corresponding to input section
10261 // in which this symbol is defined.
10263 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10264 gold_assert(is_ordinary);
10265 Output_section* os = object->output_section(shndx);
10266 gold_assert(os != NULL);
10267 gold_assert(os->needs_symtab_index());
10268 unsigned int new_symndx = os->symtab_index();
10270 // Get the new offset--the location in the output section where
10271 // this relocation should be applied.
10273 Mips_address offset = reloc.get_r_offset();
10274 Mips_address new_offset;
10275 if (offset_in_output_section != invalid_address)
10276 new_offset = offset + offset_in_output_section;
10279 section_offset_type sot_offset =
10280 convert_types<section_offset_type, Mips_address>(offset);
10281 section_offset_type new_sot_offset =
10282 output_section->output_offset(object, relinfo->data_shndx,
10284 gold_assert(new_sot_offset != -1);
10285 new_offset = new_sot_offset;
10288 // In an object file, r_offset is an offset within the section.
10289 // In an executable or dynamic object, generated by
10290 // --emit-relocs, r_offset is an absolute address.
10291 if (!parameters->options().relocatable())
10293 new_offset += view_address;
10294 if (offset_in_output_section != invalid_address)
10295 new_offset -= offset_in_output_section;
10298 reloc_write.put_r_offset(new_offset);
10299 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10301 // Handle the reloc addend.
10302 // The relocation uses a section symbol in the input file.
10303 // We are adjusting it to use a section symbol in the output
10304 // file. The input section symbol refers to some address in
10305 // the input section. We need the relocation in the output
10306 // file to refer to that same address. This adjustment to
10307 // the addend is the same calculation we use for a simple
10308 // absolute relocation for the input section symbol.
10309 Valtype calculated_value = 0;
10310 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10312 unsigned char* paddend = view + offset;
10313 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10316 case elfcpp::R_MIPS_26:
10317 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10318 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10319 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10320 false, &calculated_value);
10324 gold_unreachable();
10327 // Report any errors.
10328 switch (reloc_status)
10330 case Reloc_funcs::STATUS_OKAY:
10332 case Reloc_funcs::STATUS_OVERFLOW:
10333 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10334 _("relocation overflow"));
10336 case Reloc_funcs::STATUS_BAD_RELOC:
10337 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10338 _("unexpected opcode while processing relocation"));
10341 gold_unreachable();
10345 // Optimize the TLS relocation type based on what we know about the
10346 // symbol. IS_FINAL is true if the final address of this symbol is
10347 // known at link time.
10349 template<int size, bool big_endian>
10350 tls::Tls_optimization
10351 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10353 // FIXME: Currently we do not do any TLS optimization.
10354 return tls::TLSOPT_NONE;
10357 // Scan a relocation for a local symbol.
10359 template<int size, bool big_endian>
10361 Target_mips<size, big_endian>::Scan::local(
10362 Symbol_table* symtab,
10364 Target_mips<size, big_endian>* target,
10365 Sized_relobj_file<size, big_endian>* object,
10366 unsigned int data_shndx,
10367 Output_section* output_section,
10368 const Relatype* rela,
10369 const Reltype* rel,
10370 unsigned int rel_type,
10371 unsigned int r_type,
10372 const elfcpp::Sym<size, big_endian>& lsym,
10378 Mips_address r_offset;
10379 unsigned int r_sym;
10380 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10382 if (rel_type == elfcpp::SHT_RELA)
10384 r_offset = rela->get_r_offset();
10385 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10387 r_addend = rela->get_r_addend();
10391 r_offset = rel->get_r_offset();
10392 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10397 Mips_relobj<size, big_endian>* mips_obj =
10398 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10400 if (mips_obj->is_mips16_stub_section(data_shndx))
10402 mips_obj->get_mips16_stub_section(data_shndx)
10403 ->new_local_reloc_found(r_type, r_sym);
10406 if (r_type == elfcpp::R_MIPS_NONE)
10407 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10411 if (!mips16_call_reloc(r_type)
10412 && !mips_obj->section_allows_mips16_refs(data_shndx))
10413 // This reloc would need to refer to a MIPS16 hard-float stub, if
10414 // there is one. We ignore MIPS16 stub sections and .pdr section when
10415 // looking for relocs that would need to refer to MIPS16 stubs.
10416 mips_obj->add_local_non_16bit_call(r_sym);
10418 if (r_type == elfcpp::R_MIPS16_26
10419 && !mips_obj->section_allows_mips16_refs(data_shndx))
10420 mips_obj->add_local_16bit_call(r_sym);
10424 case elfcpp::R_MIPS_GOT16:
10425 case elfcpp::R_MIPS_CALL16:
10426 case elfcpp::R_MIPS_CALL_HI16:
10427 case elfcpp::R_MIPS_CALL_LO16:
10428 case elfcpp::R_MIPS_GOT_HI16:
10429 case elfcpp::R_MIPS_GOT_LO16:
10430 case elfcpp::R_MIPS_GOT_PAGE:
10431 case elfcpp::R_MIPS_GOT_OFST:
10432 case elfcpp::R_MIPS_GOT_DISP:
10433 case elfcpp::R_MIPS_TLS_GOTTPREL:
10434 case elfcpp::R_MIPS_TLS_GD:
10435 case elfcpp::R_MIPS_TLS_LDM:
10436 case elfcpp::R_MIPS16_GOT16:
10437 case elfcpp::R_MIPS16_CALL16:
10438 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10439 case elfcpp::R_MIPS16_TLS_GD:
10440 case elfcpp::R_MIPS16_TLS_LDM:
10441 case elfcpp::R_MICROMIPS_GOT16:
10442 case elfcpp::R_MICROMIPS_CALL16:
10443 case elfcpp::R_MICROMIPS_CALL_HI16:
10444 case elfcpp::R_MICROMIPS_CALL_LO16:
10445 case elfcpp::R_MICROMIPS_GOT_HI16:
10446 case elfcpp::R_MICROMIPS_GOT_LO16:
10447 case elfcpp::R_MICROMIPS_GOT_PAGE:
10448 case elfcpp::R_MICROMIPS_GOT_OFST:
10449 case elfcpp::R_MICROMIPS_GOT_DISP:
10450 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10451 case elfcpp::R_MICROMIPS_TLS_GD:
10452 case elfcpp::R_MICROMIPS_TLS_LDM:
10453 case elfcpp::R_MIPS_EH:
10454 // We need a GOT section.
10455 target->got_section(symtab, layout);
10462 if (call_lo16_reloc(r_type)
10463 || got_lo16_reloc(r_type)
10464 || got_disp_reloc(r_type)
10465 || eh_reloc(r_type))
10467 // We may need a local GOT entry for this relocation. We
10468 // don't count R_MIPS_GOT_PAGE because we can estimate the
10469 // maximum number of pages needed by looking at the size of
10470 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10471 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10472 // R_MIPS_CALL_HI16 because these are always followed by an
10473 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10474 Mips_output_data_got<size, big_endian>* got =
10475 target->got_section(symtab, layout);
10476 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10477 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10478 is_section_symbol);
10483 case elfcpp::R_MIPS_CALL16:
10484 case elfcpp::R_MIPS16_CALL16:
10485 case elfcpp::R_MICROMIPS_CALL16:
10486 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10487 (unsigned long)r_offset);
10490 case elfcpp::R_MIPS_GOT_PAGE:
10491 case elfcpp::R_MICROMIPS_GOT_PAGE:
10492 case elfcpp::R_MIPS16_GOT16:
10493 case elfcpp::R_MIPS_GOT16:
10494 case elfcpp::R_MIPS_GOT_HI16:
10495 case elfcpp::R_MIPS_GOT_LO16:
10496 case elfcpp::R_MICROMIPS_GOT16:
10497 case elfcpp::R_MICROMIPS_GOT_HI16:
10498 case elfcpp::R_MICROMIPS_GOT_LO16:
10500 // This relocation needs a page entry in the GOT.
10501 // Get the section contents.
10502 section_size_type view_size = 0;
10503 const unsigned char* view = object->section_contents(data_shndx,
10504 &view_size, false);
10507 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10508 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10511 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10512 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10513 object, data_shndx, r_type, r_sym, addend));
10515 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10519 case elfcpp::R_MIPS_HI16:
10520 case elfcpp::R_MIPS_PCHI16:
10521 case elfcpp::R_MIPS16_HI16:
10522 case elfcpp::R_MICROMIPS_HI16:
10523 // Record the reloc so that we can check whether the corresponding LO16
10525 if (rel_type == elfcpp::SHT_REL)
10526 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10527 object, data_shndx, r_type, r_sym, 0));
10530 case elfcpp::R_MIPS_LO16:
10531 case elfcpp::R_MIPS_PCLO16:
10532 case elfcpp::R_MIPS16_LO16:
10533 case elfcpp::R_MICROMIPS_LO16:
10535 if (rel_type != elfcpp::SHT_REL)
10538 // Find corresponding GOT16/HI16 relocation.
10540 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10541 // be immediately following. However, for the IRIX6 ABI, the next
10542 // relocation may be a composed relocation consisting of several
10543 // relocations for the same address. In that case, the R_MIPS_LO16
10544 // relocation may occur as one of these. We permit a similar
10545 // extension in general, as that is useful for GCC.
10547 // In some cases GCC dead code elimination removes the LO16 but
10548 // keeps the corresponding HI16. This is strictly speaking a
10549 // violation of the ABI but not immediately harmful.
10551 typename std::list<got16_addend<size, big_endian> >::iterator it =
10552 target->got16_addends_.begin();
10553 while (it != target->got16_addends_.end())
10555 got16_addend<size, big_endian> _got16_addend = *it;
10557 // TODO(sasa): Split got16_addends_ list into two lists - one for
10558 // GOT16 relocs and the other for HI16 relocs.
10560 // Report an error if we find HI16 or GOT16 reloc from the
10561 // previous section without the matching LO16 part.
10562 if (_got16_addend.object != object
10563 || _got16_addend.shndx != data_shndx)
10565 gold_error("Can't find matching LO16 reloc");
10569 if (_got16_addend.r_sym != r_sym
10570 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10576 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10577 // For GOT16, we need to calculate combined addend and record GOT page
10579 if (got16_reloc(_got16_addend.r_type))
10582 section_size_type view_size = 0;
10583 const unsigned char* view = object->section_contents(data_shndx,
10588 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10589 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10591 addend = (_got16_addend.addend << 16) + addend;
10592 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10596 it = target->got16_addends_.erase(it);
10604 case elfcpp::R_MIPS_32:
10605 case elfcpp::R_MIPS_REL32:
10606 case elfcpp::R_MIPS_64:
10608 if (parameters->options().output_is_position_independent())
10610 // If building a shared library (or a position-independent
10611 // executable), we need to create a dynamic relocation for
10613 if (is_readonly_section(output_section))
10615 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10616 rel_dyn->add_symbolless_local_addend(object, r_sym,
10617 elfcpp::R_MIPS_REL32,
10618 output_section, data_shndx,
10624 case elfcpp::R_MIPS_TLS_GOTTPREL:
10625 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10626 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10627 case elfcpp::R_MIPS_TLS_LDM:
10628 case elfcpp::R_MIPS16_TLS_LDM:
10629 case elfcpp::R_MICROMIPS_TLS_LDM:
10630 case elfcpp::R_MIPS_TLS_GD:
10631 case elfcpp::R_MIPS16_TLS_GD:
10632 case elfcpp::R_MICROMIPS_TLS_GD:
10634 bool output_is_shared = parameters->options().shared();
10635 const tls::Tls_optimization optimized_type
10636 = Target_mips<size, big_endian>::optimize_tls_reloc(
10637 !output_is_shared, r_type);
10640 case elfcpp::R_MIPS_TLS_GD:
10641 case elfcpp::R_MIPS16_TLS_GD:
10642 case elfcpp::R_MICROMIPS_TLS_GD:
10643 if (optimized_type == tls::TLSOPT_NONE)
10645 // Create a pair of GOT entries for the module index and
10646 // dtv-relative offset.
10647 Mips_output_data_got<size, big_endian>* got =
10648 target->got_section(symtab, layout);
10649 unsigned int shndx = lsym.get_st_shndx();
10651 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10654 object->error(_("local symbol %u has bad shndx %u"),
10658 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10663 // FIXME: TLS optimization not supported yet.
10664 gold_unreachable();
10668 case elfcpp::R_MIPS_TLS_LDM:
10669 case elfcpp::R_MIPS16_TLS_LDM:
10670 case elfcpp::R_MICROMIPS_TLS_LDM:
10671 if (optimized_type == tls::TLSOPT_NONE)
10673 // We always record LDM symbols as local with index 0.
10674 target->got_section()->record_local_got_symbol(mips_obj, 0,
10680 // FIXME: TLS optimization not supported yet.
10681 gold_unreachable();
10684 case elfcpp::R_MIPS_TLS_GOTTPREL:
10685 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10686 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10687 layout->set_has_static_tls();
10688 if (optimized_type == tls::TLSOPT_NONE)
10690 // Create a GOT entry for the tp-relative offset.
10691 Mips_output_data_got<size, big_endian>* got =
10692 target->got_section(symtab, layout);
10693 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10698 // FIXME: TLS optimization not supported yet.
10699 gold_unreachable();
10704 gold_unreachable();
10713 // Refuse some position-dependent relocations when creating a
10714 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10715 // not PIC, but we can create dynamic relocations and the result
10716 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10717 // combined with R_MIPS_GOT16.
10718 if (parameters->options().shared())
10722 case elfcpp::R_MIPS16_HI16:
10723 case elfcpp::R_MIPS_HI16:
10724 case elfcpp::R_MIPS_HIGHER:
10725 case elfcpp::R_MIPS_HIGHEST:
10726 case elfcpp::R_MICROMIPS_HI16:
10727 case elfcpp::R_MICROMIPS_HIGHER:
10728 case elfcpp::R_MICROMIPS_HIGHEST:
10729 // Don't refuse a high part relocation if it's against
10730 // no symbol (e.g. part of a compound relocation).
10735 case elfcpp::R_MIPS16_26:
10736 case elfcpp::R_MIPS_26:
10737 case elfcpp::R_MICROMIPS_26_S1:
10738 gold_error(_("%s: relocation %u against `%s' can not be used when "
10739 "making a shared object; recompile with -fPIC"),
10740 object->name().c_str(), r_type, "a local symbol");
10747 template<int size, bool big_endian>
10749 Target_mips<size, big_endian>::Scan::local(
10750 Symbol_table* symtab,
10752 Target_mips<size, big_endian>* target,
10753 Sized_relobj_file<size, big_endian>* object,
10754 unsigned int data_shndx,
10755 Output_section* output_section,
10756 const Reltype& reloc,
10757 unsigned int r_type,
10758 const elfcpp::Sym<size, big_endian>& lsym,
10771 (const Relatype*) NULL,
10775 lsym, is_discarded);
10779 template<int size, bool big_endian>
10781 Target_mips<size, big_endian>::Scan::local(
10782 Symbol_table* symtab,
10784 Target_mips<size, big_endian>* target,
10785 Sized_relobj_file<size, big_endian>* object,
10786 unsigned int data_shndx,
10787 Output_section* output_section,
10788 const Relatype& reloc,
10789 unsigned int r_type,
10790 const elfcpp::Sym<size, big_endian>& lsym,
10804 (const Reltype*) NULL,
10807 lsym, is_discarded);
10810 // Scan a relocation for a global symbol.
10812 template<int size, bool big_endian>
10814 Target_mips<size, big_endian>::Scan::global(
10815 Symbol_table* symtab,
10817 Target_mips<size, big_endian>* target,
10818 Sized_relobj_file<size, big_endian>* object,
10819 unsigned int data_shndx,
10820 Output_section* output_section,
10821 const Relatype* rela,
10822 const Reltype* rel,
10823 unsigned int rel_type,
10824 unsigned int r_type,
10827 Mips_address r_offset;
10828 unsigned int r_sym;
10829 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10831 if (rel_type == elfcpp::SHT_RELA)
10833 r_offset = rela->get_r_offset();
10834 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10836 r_addend = rela->get_r_addend();
10840 r_offset = rel->get_r_offset();
10841 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10846 Mips_relobj<size, big_endian>* mips_obj =
10847 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10848 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10850 if (mips_obj->is_mips16_stub_section(data_shndx))
10852 mips_obj->get_mips16_stub_section(data_shndx)
10853 ->new_global_reloc_found(r_type, mips_sym);
10856 if (r_type == elfcpp::R_MIPS_NONE)
10857 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10861 if (!mips16_call_reloc(r_type)
10862 && !mips_obj->section_allows_mips16_refs(data_shndx))
10863 // This reloc would need to refer to a MIPS16 hard-float stub, if
10864 // there is one. We ignore MIPS16 stub sections and .pdr section when
10865 // looking for relocs that would need to refer to MIPS16 stubs.
10866 mips_sym->set_need_fn_stub();
10868 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
10869 // section. We check here to avoid creating a dynamic reloc against
10870 // _GLOBAL_OFFSET_TABLE_.
10871 if (!target->has_got_section()
10872 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
10873 target->got_section(symtab, layout);
10875 // We need PLT entries if there are static-only relocations against
10876 // an externally-defined function. This can technically occur for
10877 // shared libraries if there are branches to the symbol, although it
10878 // is unlikely that this will be used in practice due to the short
10879 // ranges involved. It can occur for any relative or absolute relocation
10880 // in executables; in that case, the PLT entry becomes the function's
10881 // canonical address.
10882 bool static_reloc = false;
10884 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10885 // relocation into a dynamic one.
10886 bool can_make_dynamic = false;
10889 case elfcpp::R_MIPS_GOT16:
10890 case elfcpp::R_MIPS_CALL16:
10891 case elfcpp::R_MIPS_CALL_HI16:
10892 case elfcpp::R_MIPS_CALL_LO16:
10893 case elfcpp::R_MIPS_GOT_HI16:
10894 case elfcpp::R_MIPS_GOT_LO16:
10895 case elfcpp::R_MIPS_GOT_PAGE:
10896 case elfcpp::R_MIPS_GOT_OFST:
10897 case elfcpp::R_MIPS_GOT_DISP:
10898 case elfcpp::R_MIPS_TLS_GOTTPREL:
10899 case elfcpp::R_MIPS_TLS_GD:
10900 case elfcpp::R_MIPS_TLS_LDM:
10901 case elfcpp::R_MIPS16_GOT16:
10902 case elfcpp::R_MIPS16_CALL16:
10903 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10904 case elfcpp::R_MIPS16_TLS_GD:
10905 case elfcpp::R_MIPS16_TLS_LDM:
10906 case elfcpp::R_MICROMIPS_GOT16:
10907 case elfcpp::R_MICROMIPS_CALL16:
10908 case elfcpp::R_MICROMIPS_CALL_HI16:
10909 case elfcpp::R_MICROMIPS_CALL_LO16:
10910 case elfcpp::R_MICROMIPS_GOT_HI16:
10911 case elfcpp::R_MICROMIPS_GOT_LO16:
10912 case elfcpp::R_MICROMIPS_GOT_PAGE:
10913 case elfcpp::R_MICROMIPS_GOT_OFST:
10914 case elfcpp::R_MICROMIPS_GOT_DISP:
10915 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10916 case elfcpp::R_MICROMIPS_TLS_GD:
10917 case elfcpp::R_MICROMIPS_TLS_LDM:
10918 case elfcpp::R_MIPS_EH:
10919 // We need a GOT section.
10920 target->got_section(symtab, layout);
10923 // This is just a hint; it can safely be ignored. Don't set
10924 // has_static_relocs for the corresponding symbol.
10925 case elfcpp::R_MIPS_JALR:
10926 case elfcpp::R_MICROMIPS_JALR:
10929 case elfcpp::R_MIPS_GPREL16:
10930 case elfcpp::R_MIPS_GPREL32:
10931 case elfcpp::R_MIPS16_GPREL:
10932 case elfcpp::R_MICROMIPS_GPREL16:
10934 // GP-relative relocations always resolve to a definition in a
10935 // regular input file, ignoring the one-definition rule. This is
10936 // important for the GP setup sequence in NewABI code, which
10937 // always resolves to a local function even if other relocations
10938 // against the symbol wouldn't.
10939 //constrain_symbol_p = FALSE;
10942 case elfcpp::R_MIPS_32:
10943 case elfcpp::R_MIPS_REL32:
10944 case elfcpp::R_MIPS_64:
10945 if ((parameters->options().shared()
10946 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10947 && (!is_readonly_section(output_section)
10948 || mips_obj->is_pic())))
10949 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10951 if (r_type != elfcpp::R_MIPS_REL32)
10952 mips_sym->set_pointer_equality_needed();
10953 can_make_dynamic = true;
10959 // Most static relocations require pointer equality, except
10961 mips_sym->set_pointer_equality_needed();
10964 case elfcpp::R_MIPS_26:
10965 case elfcpp::R_MIPS_PC16:
10966 case elfcpp::R_MIPS_PC21_S2:
10967 case elfcpp::R_MIPS_PC26_S2:
10968 case elfcpp::R_MIPS16_26:
10969 case elfcpp::R_MICROMIPS_26_S1:
10970 case elfcpp::R_MICROMIPS_PC7_S1:
10971 case elfcpp::R_MICROMIPS_PC10_S1:
10972 case elfcpp::R_MICROMIPS_PC16_S1:
10973 case elfcpp::R_MICROMIPS_PC23_S2:
10974 static_reloc = true;
10975 mips_sym->set_has_static_relocs();
10979 // If there are call relocations against an externally-defined symbol,
10980 // see whether we can create a MIPS lazy-binding stub for it. We can
10981 // only do this if all references to the function are through call
10982 // relocations, and in that case, the traditional lazy-binding stubs
10983 // are much more efficient than PLT entries.
10986 case elfcpp::R_MIPS16_CALL16:
10987 case elfcpp::R_MIPS_CALL16:
10988 case elfcpp::R_MIPS_CALL_HI16:
10989 case elfcpp::R_MIPS_CALL_LO16:
10990 case elfcpp::R_MIPS_JALR:
10991 case elfcpp::R_MICROMIPS_CALL16:
10992 case elfcpp::R_MICROMIPS_CALL_HI16:
10993 case elfcpp::R_MICROMIPS_CALL_LO16:
10994 case elfcpp::R_MICROMIPS_JALR:
10995 if (!mips_sym->no_lazy_stub())
10997 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10998 // Calls from shared objects to undefined symbols of type
10999 // STT_NOTYPE need lazy-binding stub.
11000 || (mips_sym->is_undefined() && parameters->options().shared()))
11001 target->mips_stubs_section(layout)->make_entry(mips_sym);
11006 // We must not create a stub for a symbol that has relocations
11007 // related to taking the function's address.
11008 mips_sym->set_no_lazy_stub();
11009 target->remove_lazy_stub_entry(mips_sym);
11014 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11015 mips_sym->is_mips16()))
11016 mips_sym->set_has_nonpic_branches();
11018 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11019 // and has a special meaning.
11020 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11021 && strcmp(gsym->name(), "_gp_disp") == 0
11022 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11023 if (static_reloc && gsym->needs_plt_entry())
11025 target->make_plt_entry(symtab, layout, mips_sym, r_type);
11027 // Since this is not a PC-relative relocation, we may be
11028 // taking the address of a function. In that case we need to
11029 // set the entry in the dynamic symbol table to the address of
11031 if (gsym->is_from_dynobj() && !parameters->options().shared())
11033 gsym->set_needs_dynsym_value();
11034 // We distinguish between PLT entries and lazy-binding stubs by
11035 // giving the former an st_other value of STO_MIPS_PLT. Set the
11036 // flag if there are any relocations in the binary where pointer
11037 // equality matters.
11038 if (mips_sym->pointer_equality_needed())
11039 mips_sym->set_mips_plt();
11042 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11044 // Absolute addressing relocations.
11045 // Make a dynamic relocation if necessary.
11046 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11048 if (gsym->may_need_copy_reloc())
11050 target->copy_reloc(symtab, layout, object, data_shndx,
11051 output_section, gsym, r_type, r_offset);
11053 else if (can_make_dynamic)
11055 // Create .rel.dyn section.
11056 target->rel_dyn_section(layout);
11057 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11058 data_shndx, output_section, r_offset);
11061 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11066 bool for_call = false;
11069 case elfcpp::R_MIPS_CALL16:
11070 case elfcpp::R_MIPS16_CALL16:
11071 case elfcpp::R_MICROMIPS_CALL16:
11072 case elfcpp::R_MIPS_CALL_HI16:
11073 case elfcpp::R_MIPS_CALL_LO16:
11074 case elfcpp::R_MICROMIPS_CALL_HI16:
11075 case elfcpp::R_MICROMIPS_CALL_LO16:
11079 case elfcpp::R_MIPS16_GOT16:
11080 case elfcpp::R_MIPS_GOT16:
11081 case elfcpp::R_MIPS_GOT_HI16:
11082 case elfcpp::R_MIPS_GOT_LO16:
11083 case elfcpp::R_MICROMIPS_GOT16:
11084 case elfcpp::R_MICROMIPS_GOT_HI16:
11085 case elfcpp::R_MICROMIPS_GOT_LO16:
11086 case elfcpp::R_MIPS_GOT_DISP:
11087 case elfcpp::R_MICROMIPS_GOT_DISP:
11088 case elfcpp::R_MIPS_EH:
11090 // The symbol requires a GOT entry.
11091 Mips_output_data_got<size, big_endian>* got =
11092 target->got_section(symtab, layout);
11093 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11095 mips_sym->set_global_got_area(GGA_NORMAL);
11099 case elfcpp::R_MIPS_GOT_PAGE:
11100 case elfcpp::R_MICROMIPS_GOT_PAGE:
11102 // This relocation needs a page entry in the GOT.
11103 // Get the section contents.
11104 section_size_type view_size = 0;
11105 const unsigned char* view =
11106 object->section_contents(data_shndx, &view_size, false);
11109 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11110 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11112 Mips_output_data_got<size, big_endian>* got =
11113 target->got_section(symtab, layout);
11114 got->record_got_page_entry(mips_obj, r_sym, addend);
11116 // If this is a global, overridable symbol, GOT_PAGE will
11117 // decay to GOT_DISP, so we'll need a GOT entry for it.
11118 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11119 && !mips_sym->object()->is_dynamic()
11120 && !mips_sym->is_undefined());
11122 || (parameters->options().output_is_position_independent()
11123 && !parameters->options().Bsymbolic()
11124 && !mips_sym->is_forced_local()))
11126 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11128 mips_sym->set_global_got_area(GGA_NORMAL);
11133 case elfcpp::R_MIPS_TLS_GOTTPREL:
11134 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11135 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11136 case elfcpp::R_MIPS_TLS_LDM:
11137 case elfcpp::R_MIPS16_TLS_LDM:
11138 case elfcpp::R_MICROMIPS_TLS_LDM:
11139 case elfcpp::R_MIPS_TLS_GD:
11140 case elfcpp::R_MIPS16_TLS_GD:
11141 case elfcpp::R_MICROMIPS_TLS_GD:
11143 const bool is_final = gsym->final_value_is_known();
11144 const tls::Tls_optimization optimized_type =
11145 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11149 case elfcpp::R_MIPS_TLS_GD:
11150 case elfcpp::R_MIPS16_TLS_GD:
11151 case elfcpp::R_MICROMIPS_TLS_GD:
11152 if (optimized_type == tls::TLSOPT_NONE)
11154 // Create a pair of GOT entries for the module index and
11155 // dtv-relative offset.
11156 Mips_output_data_got<size, big_endian>* got =
11157 target->got_section(symtab, layout);
11158 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11163 // FIXME: TLS optimization not supported yet.
11164 gold_unreachable();
11168 case elfcpp::R_MIPS_TLS_LDM:
11169 case elfcpp::R_MIPS16_TLS_LDM:
11170 case elfcpp::R_MICROMIPS_TLS_LDM:
11171 if (optimized_type == tls::TLSOPT_NONE)
11173 // We always record LDM symbols as local with index 0.
11174 target->got_section()->record_local_got_symbol(mips_obj, 0,
11180 // FIXME: TLS optimization not supported yet.
11181 gold_unreachable();
11184 case elfcpp::R_MIPS_TLS_GOTTPREL:
11185 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11186 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11187 layout->set_has_static_tls();
11188 if (optimized_type == tls::TLSOPT_NONE)
11190 // Create a GOT entry for the tp-relative offset.
11191 Mips_output_data_got<size, big_endian>* got =
11192 target->got_section(symtab, layout);
11193 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11198 // FIXME: TLS optimization not supported yet.
11199 gold_unreachable();
11204 gold_unreachable();
11208 case elfcpp::R_MIPS_COPY:
11209 case elfcpp::R_MIPS_JUMP_SLOT:
11210 // These are relocations which should only be seen by the
11211 // dynamic linker, and should never be seen here.
11212 gold_error(_("%s: unexpected reloc %u in object file"),
11213 object->name().c_str(), r_type);
11220 // Refuse some position-dependent relocations when creating a
11221 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11222 // not PIC, but we can create dynamic relocations and the result
11223 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11224 // combined with R_MIPS_GOT16.
11225 if (parameters->options().shared())
11229 case elfcpp::R_MIPS16_HI16:
11230 case elfcpp::R_MIPS_HI16:
11231 case elfcpp::R_MIPS_HIGHER:
11232 case elfcpp::R_MIPS_HIGHEST:
11233 case elfcpp::R_MICROMIPS_HI16:
11234 case elfcpp::R_MICROMIPS_HIGHER:
11235 case elfcpp::R_MICROMIPS_HIGHEST:
11236 // Don't refuse a high part relocation if it's against
11237 // no symbol (e.g. part of a compound relocation).
11241 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11242 // and has a special meaning.
11243 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11247 case elfcpp::R_MIPS16_26:
11248 case elfcpp::R_MIPS_26:
11249 case elfcpp::R_MICROMIPS_26_S1:
11250 gold_error(_("%s: relocation %u against `%s' can not be used when "
11251 "making a shared object; recompile with -fPIC"),
11252 object->name().c_str(), r_type, gsym->name());
11259 template<int size, bool big_endian>
11261 Target_mips<size, big_endian>::Scan::global(
11262 Symbol_table* symtab,
11264 Target_mips<size, big_endian>* target,
11265 Sized_relobj_file<size, big_endian>* object,
11266 unsigned int data_shndx,
11267 Output_section* output_section,
11268 const Relatype& reloc,
11269 unsigned int r_type,
11280 (const Reltype*) NULL,
11286 template<int size, bool big_endian>
11288 Target_mips<size, big_endian>::Scan::global(
11289 Symbol_table* symtab,
11291 Target_mips<size, big_endian>* target,
11292 Sized_relobj_file<size, big_endian>* object,
11293 unsigned int data_shndx,
11294 Output_section* output_section,
11295 const Reltype& reloc,
11296 unsigned int r_type,
11306 (const Relatype*) NULL,
11313 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11314 // In cases where Scan::local() or Scan::global() has created
11315 // a dynamic relocation, the addend of the relocation is carried
11316 // in the data, and we must not apply the static relocation.
11318 template<int size, bool big_endian>
11320 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11321 const Mips_symbol<size>* gsym,
11322 unsigned int r_type,
11323 Output_section* output_section,
11324 Target_mips* target)
11326 // If the output section is not allocated, then we didn't call
11327 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11329 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11336 // For global symbols, we use the same helper routines used in the
11338 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11339 && !gsym->may_need_copy_reloc())
11341 // We have generated dynamic reloc (R_MIPS_REL32).
11343 bool multi_got = false;
11344 if (target->has_got_section())
11345 multi_got = target->got_section()->multi_got();
11346 bool has_got_offset;
11348 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11350 has_got_offset = gsym->global_gotoffset() != -1U;
11351 if (!has_got_offset)
11354 // Apply the relocation only if the symbol is in the local got.
11355 // Do not apply the relocation if the symbol is in the global
11357 return symbol_references_local(gsym, gsym->has_dynsym_index());
11360 // We have not generated dynamic reloc.
11365 // Perform a relocation.
11367 template<int size, bool big_endian>
11369 Target_mips<size, big_endian>::Relocate::relocate(
11370 const Relocate_info<size, big_endian>* relinfo,
11371 unsigned int rel_type,
11372 Target_mips* target,
11373 Output_section* output_section,
11375 const unsigned char* preloc,
11376 const Sized_symbol<size>* gsym,
11377 const Symbol_value<size>* psymval,
11378 unsigned char* view,
11379 Mips_address address,
11382 Mips_address r_offset;
11383 unsigned int r_sym;
11384 unsigned int r_type;
11385 unsigned int r_type2;
11386 unsigned int r_type3;
11387 unsigned char r_ssym;
11388 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11390 if (rel_type == elfcpp::SHT_RELA)
11392 const Relatype rela(preloc);
11393 r_offset = rela.get_r_offset();
11394 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11396 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11398 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11399 get_r_type2(&rela);
11400 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11401 get_r_type3(&rela);
11402 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11404 r_addend = rela.get_r_addend();
11408 const Reltype rel(preloc);
11409 r_offset = rel.get_r_offset();
11410 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11412 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11420 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11421 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11423 Mips_relobj<size, big_endian>* object =
11424 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11426 bool target_is_16_bit_code = false;
11427 bool target_is_micromips_code = false;
11428 bool cross_mode_jump;
11430 Symbol_value<size> symval;
11432 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11434 bool changed_symbol_value = false;
11437 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11438 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11439 if (target_is_16_bit_code || target_is_micromips_code)
11441 // MIPS16/microMIPS text labels should be treated as odd.
11442 symval.set_output_value(psymval->value(object, 1));
11444 changed_symbol_value = true;
11449 target_is_16_bit_code = mips_sym->is_mips16();
11450 target_is_micromips_code = mips_sym->is_micromips();
11452 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11453 // it odd. This will cause something like .word SYM to come up with
11454 // the right value when it is loaded into the PC.
11456 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11457 && psymval->value(object, 0) != 0)
11459 symval.set_output_value(psymval->value(object, 0) | 1);
11461 changed_symbol_value = true;
11464 // Pick the value to use for symbols defined in shared objects.
11465 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11466 || mips_sym->has_lazy_stub())
11468 Mips_address value;
11469 if (!mips_sym->has_lazy_stub())
11471 // Prefer a standard MIPS PLT entry.
11472 if (mips_sym->has_mips_plt_offset())
11474 value = target->plt_section()->mips_entry_address(mips_sym);
11475 target_is_micromips_code = false;
11476 target_is_16_bit_code = false;
11480 value = (target->plt_section()->comp_entry_address(mips_sym)
11482 if (target->is_output_micromips())
11483 target_is_micromips_code = true;
11485 target_is_16_bit_code = true;
11489 value = target->mips_stubs_section()->stub_address(mips_sym);
11491 symval.set_output_value(value);
11496 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11497 // Note that such a symbol must always be a global symbol.
11498 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11499 && !object->is_newabi());
11501 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11502 // Note that such a symbol must always be a global symbol.
11503 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11508 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11509 gold_error_at_location(relinfo, relnum, r_offset,
11510 _("relocations against _gp_disp are permitted only"
11511 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11513 else if (gnu_local_gp)
11515 // __gnu_local_gp is _gp symbol.
11516 symval.set_output_value(target->adjusted_gp_value(object));
11520 // If this is a reference to a 16-bit function with a stub, we need
11521 // to redirect the relocation to the stub unless:
11523 // (a) the relocation is for a MIPS16 JAL;
11525 // (b) the relocation is for a MIPS16 PIC call, and there are no
11526 // non-MIPS16 uses of the GOT slot; or
11528 // (c) the section allows direct references to MIPS16 functions.
11529 if (r_type != elfcpp::R_MIPS16_26
11530 && !parameters->options().relocatable()
11531 && ((mips_sym != NULL
11532 && mips_sym->has_mips16_fn_stub()
11533 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11534 || (mips_sym == NULL
11535 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11536 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11538 // This is a 32- or 64-bit call to a 16-bit function. We should
11539 // have already noticed that we were going to need the
11541 Mips_address value;
11542 if (mips_sym == NULL)
11543 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11546 gold_assert(mips_sym->need_fn_stub());
11547 if (mips_sym->has_la25_stub())
11548 value = target->la25_stub_section()->stub_address(mips_sym);
11551 value = mips_sym->template
11552 get_mips16_fn_stub<big_endian>()->output_address();
11555 symval.set_output_value(value);
11557 changed_symbol_value = true;
11559 // The target is 16-bit, but the stub isn't.
11560 target_is_16_bit_code = false;
11562 // If this is a MIPS16 call with a stub, that is made through the PLT or
11563 // to a standard MIPS function, we need to redirect the call to the stub.
11564 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11565 // indirect calls should use an indirect stub instead.
11566 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11567 && ((mips_sym != NULL
11568 && (mips_sym->has_mips16_call_stub()
11569 || mips_sym->has_mips16_call_fp_stub()))
11570 || (mips_sym == NULL
11571 && object->get_local_mips16_call_stub(r_sym) != NULL))
11572 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11573 || !target_is_16_bit_code))
11575 Mips16_stub_section<size, big_endian>* call_stub;
11576 if (mips_sym == NULL)
11577 call_stub = object->get_local_mips16_call_stub(r_sym);
11580 // If both call_stub and call_fp_stub are defined, we can figure
11581 // out which one to use by checking which one appears in the input
11583 if (mips_sym->has_mips16_call_stub()
11584 && mips_sym->has_mips16_call_fp_stub())
11587 for (unsigned int i = 1; i < object->shnum(); ++i)
11589 if (object->is_mips16_call_fp_stub_section(i))
11591 call_stub = mips_sym->template
11592 get_mips16_call_fp_stub<big_endian>();
11597 if (call_stub == NULL)
11599 mips_sym->template get_mips16_call_stub<big_endian>();
11601 else if (mips_sym->has_mips16_call_stub())
11602 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11604 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11607 symval.set_output_value(call_stub->output_address());
11609 changed_symbol_value = true;
11611 // If this is a direct call to a PIC function, redirect to the
11613 else if (mips_sym != NULL
11614 && mips_sym->has_la25_stub()
11615 && relocation_needs_la25_stub<size, big_endian>(
11616 object, r_type, target_is_16_bit_code))
11618 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11619 if (mips_sym->is_micromips())
11621 symval.set_output_value(value);
11624 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11625 // entry is used if a standard PLT entry has also been made.
11626 else if ((r_type == elfcpp::R_MIPS16_26
11627 || r_type == elfcpp::R_MICROMIPS_26_S1)
11628 && !parameters->options().relocatable()
11629 && mips_sym != NULL
11630 && mips_sym->has_plt_offset()
11631 && mips_sym->has_comp_plt_offset()
11632 && mips_sym->has_mips_plt_offset())
11634 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11636 symval.set_output_value(value);
11639 target_is_16_bit_code = !target->is_output_micromips();
11640 target_is_micromips_code = target->is_output_micromips();
11643 // Make sure MIPS16 and microMIPS are not used together.
11644 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11645 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11647 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11650 // Calls from 16-bit code to 32-bit code and vice versa require the
11651 // mode change. However, we can ignore calls to undefined weak symbols,
11652 // which should never be executed at runtime. This exception is important
11653 // because the assembly writer may have "known" that any definition of the
11654 // symbol would be 16-bit code, and that direct jumps were therefore
11657 (!parameters->options().relocatable()
11658 && !(gsym != NULL && gsym->is_weak_undefined())
11659 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11660 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11661 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11662 && (target_is_16_bit_code || target_is_micromips_code))));
11664 bool local = (mips_sym == NULL
11665 || (mips_sym->got_only_for_calls()
11666 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11667 : symbol_references_local(mips_sym,
11668 mips_sym->has_dynsym_index())));
11670 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11671 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11672 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11673 if (got_page_reloc(r_type) && !local)
11674 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11675 : elfcpp::R_MIPS_GOT_DISP);
11677 unsigned int got_offset = 0;
11680 bool calculate_only = false;
11681 Valtype calculated_value = 0;
11682 bool extract_addend = rel_type == elfcpp::SHT_REL;
11683 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11685 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11687 // For Mips64 N64 ABI, there may be up to three operations specified per
11688 // record, by the fields r_type, r_type2, and r_type3. The first operation
11689 // takes its addend from the relocation record. Each subsequent operation
11690 // takes as its addend the result of the previous operation.
11691 // The first operation in a record which references a symbol uses the symbol
11692 // implied by r_sym. The next operation in a record which references a symbol
11693 // uses the special symbol value given by the r_ssym field. A third operation
11694 // in a record which references a symbol will assume a NULL symbol,
11695 // i.e. value zero.
11698 // Check if a record references to a symbol.
11699 for (unsigned int i = 0; i < 3; ++i)
11701 if (r_types[i] == elfcpp::R_MIPS_NONE)
11705 // Check if the next relocation is for the same instruction.
11706 calculate_only = i == 2 ? false
11707 : r_types[i+1] != elfcpp::R_MIPS_NONE;
11709 if (object->is_n64())
11713 // Handle special symbol for r_type2 relocation type.
11717 symval.set_output_value(0);
11720 symval.set_output_value(target->gp_value());
11723 symval.set_output_value(object->gp_value());
11726 symval.set_output_value(address);
11729 gold_unreachable();
11735 // For r_type3 symbol value is 0.
11736 symval.set_output_value(0);
11740 bool update_got_entry = false;
11741 switch (r_types[i])
11743 case elfcpp::R_MIPS_NONE:
11745 case elfcpp::R_MIPS_16:
11746 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11747 extract_addend, calculate_only,
11748 &calculated_value);
11751 case elfcpp::R_MIPS_32:
11752 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11754 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11755 extract_addend, calculate_only,
11756 &calculated_value);
11757 if (mips_sym != NULL
11758 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11759 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11761 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11762 // already updated by adding +1.
11763 if (mips_sym->has_mips16_fn_stub())
11765 gold_assert(mips_sym->need_fn_stub());
11766 Mips16_stub_section<size, big_endian>* fn_stub =
11767 mips_sym->template get_mips16_fn_stub<big_endian>();
11769 symval.set_output_value(fn_stub->output_address());
11772 got_offset = mips_sym->global_gotoffset();
11773 update_got_entry = true;
11777 case elfcpp::R_MIPS_64:
11778 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11780 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11781 extract_addend, calculate_only,
11782 &calculated_value, false);
11783 else if (target->is_output_n64() && r_addend != 0)
11784 // Only apply the addend. The static relocation was RELA, but the
11785 // dynamic relocation is REL, so we need to apply the addend.
11786 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11787 extract_addend, calculate_only,
11788 &calculated_value, true);
11790 case elfcpp::R_MIPS_REL32:
11791 gold_unreachable();
11793 case elfcpp::R_MIPS_PC32:
11794 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11795 r_addend, extract_addend,
11797 &calculated_value);
11800 case elfcpp::R_MIPS16_26:
11801 // The calculation for R_MIPS16_26 is just the same as for an
11802 // R_MIPS_26. It's only the storage of the relocated field into
11803 // the output file that's different. So, we just fall through to the
11804 // R_MIPS_26 case here.
11805 case elfcpp::R_MIPS_26:
11806 case elfcpp::R_MICROMIPS_26_S1:
11807 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11808 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11809 r_types[i], target->jal_to_bal(), calculate_only,
11810 &calculated_value);
11813 case elfcpp::R_MIPS_HI16:
11814 case elfcpp::R_MIPS16_HI16:
11815 case elfcpp::R_MICROMIPS_HI16:
11816 if (rel_type == elfcpp::SHT_RELA)
11817 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11819 gp_disp, r_types[i],
11821 target, calculate_only,
11822 &calculated_value);
11823 else if (rel_type == elfcpp::SHT_REL)
11824 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11825 address, gp_disp, r_types[i],
11826 r_sym, extract_addend);
11828 gold_unreachable();
11831 case elfcpp::R_MIPS_LO16:
11832 case elfcpp::R_MIPS16_LO16:
11833 case elfcpp::R_MICROMIPS_LO16:
11834 case elfcpp::R_MICROMIPS_HI0_LO16:
11835 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11836 r_addend, extract_addend, address,
11837 gp_disp, r_types[i], r_sym,
11838 rel_type, calculate_only,
11839 &calculated_value);
11842 case elfcpp::R_MIPS_LITERAL:
11843 case elfcpp::R_MICROMIPS_LITERAL:
11844 // Because we don't merge literal sections, we can handle this
11845 // just like R_MIPS_GPREL16. In the long run, we should merge
11846 // shared literals, and then we will need to additional work
11851 case elfcpp::R_MIPS_GPREL16:
11852 case elfcpp::R_MIPS16_GPREL:
11853 case elfcpp::R_MICROMIPS_GPREL7_S2:
11854 case elfcpp::R_MICROMIPS_GPREL16:
11855 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11856 target->adjusted_gp_value(object),
11857 r_addend, extract_addend,
11858 gsym == NULL, r_types[i],
11859 calculate_only, &calculated_value);
11862 case elfcpp::R_MIPS_PC16:
11863 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11864 r_addend, extract_addend,
11866 &calculated_value);
11869 case elfcpp::R_MIPS_PC21_S2:
11870 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11871 r_addend, extract_addend,
11873 &calculated_value);
11876 case elfcpp::R_MIPS_PC26_S2:
11877 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11878 r_addend, extract_addend,
11880 &calculated_value);
11883 case elfcpp::R_MIPS_PC18_S3:
11884 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11885 r_addend, extract_addend,
11887 &calculated_value);
11890 case elfcpp::R_MIPS_PC19_S2:
11891 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11892 r_addend, extract_addend,
11894 &calculated_value);
11897 case elfcpp::R_MIPS_PCHI16:
11898 if (rel_type == elfcpp::SHT_RELA)
11899 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11903 &calculated_value);
11904 else if (rel_type == elfcpp::SHT_REL)
11905 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11906 r_addend, address, r_sym,
11909 gold_unreachable();
11912 case elfcpp::R_MIPS_PCLO16:
11913 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11914 extract_addend, address, r_sym,
11915 rel_type, calculate_only,
11916 &calculated_value);
11918 case elfcpp::R_MICROMIPS_PC7_S1:
11919 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11923 &calculated_value);
11925 case elfcpp::R_MICROMIPS_PC10_S1:
11926 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11928 r_addend, extract_addend,
11930 &calculated_value);
11932 case elfcpp::R_MICROMIPS_PC16_S1:
11933 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11935 r_addend, extract_addend,
11937 &calculated_value);
11939 case elfcpp::R_MIPS_GPREL32:
11940 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11941 target->adjusted_gp_value(object),
11942 r_addend, extract_addend,
11944 &calculated_value);
11946 case elfcpp::R_MIPS_GOT_HI16:
11947 case elfcpp::R_MIPS_CALL_HI16:
11948 case elfcpp::R_MICROMIPS_GOT_HI16:
11949 case elfcpp::R_MICROMIPS_CALL_HI16:
11951 got_offset = target->got_section()->got_offset(gsym,
11955 got_offset = target->got_section()->got_offset(r_sym,
11958 gp_offset = target->got_section()->gp_offset(got_offset, object);
11959 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11961 &calculated_value);
11962 update_got_entry = changed_symbol_value;
11965 case elfcpp::R_MIPS_GOT_LO16:
11966 case elfcpp::R_MIPS_CALL_LO16:
11967 case elfcpp::R_MICROMIPS_GOT_LO16:
11968 case elfcpp::R_MICROMIPS_CALL_LO16:
11970 got_offset = target->got_section()->got_offset(gsym,
11974 got_offset = target->got_section()->got_offset(r_sym,
11977 gp_offset = target->got_section()->gp_offset(got_offset, object);
11978 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11980 &calculated_value);
11981 update_got_entry = changed_symbol_value;
11984 case elfcpp::R_MIPS_GOT_DISP:
11985 case elfcpp::R_MICROMIPS_GOT_DISP:
11986 case elfcpp::R_MIPS_EH:
11988 got_offset = target->got_section()->got_offset(gsym,
11992 got_offset = target->got_section()->got_offset(r_sym,
11995 gp_offset = target->got_section()->gp_offset(got_offset, object);
11996 if (eh_reloc(r_types[i]))
11997 reloc_status = Reloc_funcs::releh(view, gp_offset,
11999 &calculated_value);
12001 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12003 &calculated_value);
12005 case elfcpp::R_MIPS_CALL16:
12006 case elfcpp::R_MIPS16_CALL16:
12007 case elfcpp::R_MICROMIPS_CALL16:
12008 gold_assert(gsym != NULL);
12009 got_offset = target->got_section()->got_offset(gsym,
12012 gp_offset = target->got_section()->gp_offset(got_offset, object);
12013 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12014 calculate_only, &calculated_value);
12015 // TODO(sasa): We should also initialize update_got_entry
12016 // in other place swhere relgot is called.
12017 update_got_entry = changed_symbol_value;
12020 case elfcpp::R_MIPS_GOT16:
12021 case elfcpp::R_MIPS16_GOT16:
12022 case elfcpp::R_MICROMIPS_GOT16:
12025 got_offset = target->got_section()->got_offset(gsym,
12028 gp_offset = target->got_section()->gp_offset(got_offset, object);
12029 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12031 &calculated_value);
12035 if (rel_type == elfcpp::SHT_RELA)
12036 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12041 &calculated_value);
12042 else if (rel_type == elfcpp::SHT_REL)
12043 reloc_status = Reloc_funcs::relgot16_local(view, object,
12046 r_types[i], r_sym);
12048 gold_unreachable();
12050 update_got_entry = changed_symbol_value;
12053 case elfcpp::R_MIPS_TLS_GD:
12054 case elfcpp::R_MIPS16_TLS_GD:
12055 case elfcpp::R_MICROMIPS_TLS_GD:
12057 got_offset = target->got_section()->got_offset(gsym,
12061 got_offset = target->got_section()->got_offset(r_sym,
12064 gp_offset = target->got_section()->gp_offset(got_offset, object);
12065 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12066 &calculated_value);
12069 case elfcpp::R_MIPS_TLS_GOTTPREL:
12070 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12071 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12073 got_offset = target->got_section()->got_offset(gsym,
12074 GOT_TYPE_TLS_OFFSET,
12077 got_offset = target->got_section()->got_offset(r_sym,
12078 GOT_TYPE_TLS_OFFSET,
12080 gp_offset = target->got_section()->gp_offset(got_offset, object);
12081 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12082 &calculated_value);
12085 case elfcpp::R_MIPS_TLS_LDM:
12086 case elfcpp::R_MIPS16_TLS_LDM:
12087 case elfcpp::R_MICROMIPS_TLS_LDM:
12088 // Relocate the field with the offset of the GOT entry for
12089 // the module index.
12090 got_offset = target->got_section()->tls_ldm_offset(object);
12091 gp_offset = target->got_section()->gp_offset(got_offset, object);
12092 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12093 &calculated_value);
12096 case elfcpp::R_MIPS_GOT_PAGE:
12097 case elfcpp::R_MICROMIPS_GOT_PAGE:
12098 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12099 r_addend, extract_addend,
12101 &calculated_value);
12104 case elfcpp::R_MIPS_GOT_OFST:
12105 case elfcpp::R_MICROMIPS_GOT_OFST:
12106 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12107 r_addend, extract_addend,
12108 local, calculate_only,
12109 &calculated_value);
12112 case elfcpp::R_MIPS_JALR:
12113 case elfcpp::R_MICROMIPS_JALR:
12114 // This relocation is only a hint. In some cases, we optimize
12115 // it into a bal instruction. But we don't try to optimize
12116 // when the symbol does not resolve locally.
12118 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12119 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12120 r_addend, extract_addend,
12121 cross_mode_jump, r_types[i],
12122 target->jalr_to_bal(),
12125 &calculated_value);
12128 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12129 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12130 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12131 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12132 elfcpp::DTP_OFFSET, r_addend,
12133 extract_addend, calculate_only,
12134 &calculated_value);
12136 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12137 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12138 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12139 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12140 elfcpp::DTP_OFFSET, r_addend,
12141 extract_addend, calculate_only,
12142 &calculated_value);
12144 case elfcpp::R_MIPS_TLS_DTPREL32:
12145 case elfcpp::R_MIPS_TLS_DTPREL64:
12146 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12147 elfcpp::DTP_OFFSET, r_addend,
12148 extract_addend, calculate_only,
12149 &calculated_value);
12151 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12152 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12153 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12154 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12155 elfcpp::TP_OFFSET, r_addend,
12156 extract_addend, calculate_only,
12157 &calculated_value);
12159 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12160 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12161 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12162 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12163 elfcpp::TP_OFFSET, r_addend,
12164 extract_addend, calculate_only,
12165 &calculated_value);
12167 case elfcpp::R_MIPS_TLS_TPREL32:
12168 case elfcpp::R_MIPS_TLS_TPREL64:
12169 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12170 elfcpp::TP_OFFSET, r_addend,
12171 extract_addend, calculate_only,
12172 &calculated_value);
12174 case elfcpp::R_MIPS_SUB:
12175 case elfcpp::R_MICROMIPS_SUB:
12176 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12178 calculate_only, &calculated_value);
12180 case elfcpp::R_MIPS_HIGHER:
12181 case elfcpp::R_MICROMIPS_HIGHER:
12182 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12183 extract_addend, calculate_only,
12184 &calculated_value);
12186 case elfcpp::R_MIPS_HIGHEST:
12187 case elfcpp::R_MICROMIPS_HIGHEST:
12188 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12189 r_addend, extract_addend,
12191 &calculated_value);
12194 gold_error_at_location(relinfo, relnum, r_offset,
12195 _("unsupported reloc %u"), r_types[i]);
12199 if (update_got_entry)
12201 Mips_output_data_got<size, big_endian>* got = target->got_section();
12202 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12203 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12204 psymval->value(object, 0));
12206 got->update_got_entry(got_offset, psymval->value(object, 0));
12209 r_addend = calculated_value;
12212 bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12214 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12216 // Report any errors.
12217 switch (reloc_status)
12219 case Reloc_funcs::STATUS_OKAY:
12221 case Reloc_funcs::STATUS_OVERFLOW:
12222 gold_error_at_location(relinfo, relnum, r_offset,
12223 _("relocation overflow"));
12225 case Reloc_funcs::STATUS_BAD_RELOC:
12226 gold_error_at_location(relinfo, relnum, r_offset,
12227 _("unexpected opcode while processing relocation"));
12229 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12230 gold_error_at_location(relinfo, relnum, r_offset,
12231 _("unaligned PC-relative relocation"));
12234 gold_unreachable();
12240 // Get the Reference_flags for a particular relocation.
12242 template<int size, bool big_endian>
12244 Target_mips<size, big_endian>::Scan::get_reference_flags(
12245 unsigned int r_type)
12249 case elfcpp::R_MIPS_NONE:
12250 // No symbol reference.
12253 case elfcpp::R_MIPS_16:
12254 case elfcpp::R_MIPS_32:
12255 case elfcpp::R_MIPS_64:
12256 case elfcpp::R_MIPS_HI16:
12257 case elfcpp::R_MIPS_LO16:
12258 case elfcpp::R_MIPS_HIGHER:
12259 case elfcpp::R_MIPS_HIGHEST:
12260 case elfcpp::R_MIPS16_HI16:
12261 case elfcpp::R_MIPS16_LO16:
12262 case elfcpp::R_MICROMIPS_HI16:
12263 case elfcpp::R_MICROMIPS_LO16:
12264 case elfcpp::R_MICROMIPS_HIGHER:
12265 case elfcpp::R_MICROMIPS_HIGHEST:
12266 return Symbol::ABSOLUTE_REF;
12268 case elfcpp::R_MIPS_26:
12269 case elfcpp::R_MIPS16_26:
12270 case elfcpp::R_MICROMIPS_26_S1:
12271 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12273 case elfcpp::R_MIPS_PC18_S3:
12274 case elfcpp::R_MIPS_PC19_S2:
12275 case elfcpp::R_MIPS_PCHI16:
12276 case elfcpp::R_MIPS_PCLO16:
12277 case elfcpp::R_MIPS_GPREL32:
12278 case elfcpp::R_MIPS_GPREL16:
12279 case elfcpp::R_MIPS_REL32:
12280 case elfcpp::R_MIPS16_GPREL:
12281 return Symbol::RELATIVE_REF;
12283 case elfcpp::R_MIPS_PC16:
12284 case elfcpp::R_MIPS_PC32:
12285 case elfcpp::R_MIPS_PC21_S2:
12286 case elfcpp::R_MIPS_PC26_S2:
12287 case elfcpp::R_MIPS_JALR:
12288 case elfcpp::R_MICROMIPS_JALR:
12289 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12291 case elfcpp::R_MIPS_GOT16:
12292 case elfcpp::R_MIPS_CALL16:
12293 case elfcpp::R_MIPS_GOT_DISP:
12294 case elfcpp::R_MIPS_GOT_HI16:
12295 case elfcpp::R_MIPS_GOT_LO16:
12296 case elfcpp::R_MIPS_CALL_HI16:
12297 case elfcpp::R_MIPS_CALL_LO16:
12298 case elfcpp::R_MIPS_LITERAL:
12299 case elfcpp::R_MIPS_GOT_PAGE:
12300 case elfcpp::R_MIPS_GOT_OFST:
12301 case elfcpp::R_MIPS16_GOT16:
12302 case elfcpp::R_MIPS16_CALL16:
12303 case elfcpp::R_MICROMIPS_GOT16:
12304 case elfcpp::R_MICROMIPS_CALL16:
12305 case elfcpp::R_MICROMIPS_GOT_HI16:
12306 case elfcpp::R_MICROMIPS_GOT_LO16:
12307 case elfcpp::R_MICROMIPS_CALL_HI16:
12308 case elfcpp::R_MICROMIPS_CALL_LO16:
12309 case elfcpp::R_MIPS_EH:
12310 // Absolute in GOT.
12311 return Symbol::RELATIVE_REF;
12313 case elfcpp::R_MIPS_TLS_DTPMOD32:
12314 case elfcpp::R_MIPS_TLS_DTPREL32:
12315 case elfcpp::R_MIPS_TLS_DTPMOD64:
12316 case elfcpp::R_MIPS_TLS_DTPREL64:
12317 case elfcpp::R_MIPS_TLS_GD:
12318 case elfcpp::R_MIPS_TLS_LDM:
12319 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12320 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12321 case elfcpp::R_MIPS_TLS_GOTTPREL:
12322 case elfcpp::R_MIPS_TLS_TPREL32:
12323 case elfcpp::R_MIPS_TLS_TPREL64:
12324 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12325 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12326 case elfcpp::R_MIPS16_TLS_GD:
12327 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12328 case elfcpp::R_MICROMIPS_TLS_GD:
12329 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12330 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12331 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12332 return Symbol::TLS_REF;
12334 case elfcpp::R_MIPS_COPY:
12335 case elfcpp::R_MIPS_JUMP_SLOT:
12337 // Not expected. We will give an error later.
12342 // Report an unsupported relocation against a local symbol.
12344 template<int size, bool big_endian>
12346 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12347 Sized_relobj_file<size, big_endian>* object,
12348 unsigned int r_type)
12350 gold_error(_("%s: unsupported reloc %u against local symbol"),
12351 object->name().c_str(), r_type);
12354 // Report an unsupported relocation against a global symbol.
12356 template<int size, bool big_endian>
12358 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12359 Sized_relobj_file<size, big_endian>* object,
12360 unsigned int r_type,
12363 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12364 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12367 // Return printable name for ABI.
12368 template<int size, bool big_endian>
12370 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12372 switch (e_flags & elfcpp::EF_MIPS_ABI)
12375 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12377 else if (size == 64)
12381 case elfcpp::E_MIPS_ABI_O32:
12383 case elfcpp::E_MIPS_ABI_O64:
12385 case elfcpp::E_MIPS_ABI_EABI32:
12387 case elfcpp::E_MIPS_ABI_EABI64:
12390 return "unknown abi";
12394 template<int size, bool big_endian>
12396 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12398 switch (e_flags & elfcpp::EF_MIPS_MACH)
12400 case elfcpp::E_MIPS_MACH_3900:
12401 return "mips:3900";
12402 case elfcpp::E_MIPS_MACH_4010:
12403 return "mips:4010";
12404 case elfcpp::E_MIPS_MACH_4100:
12405 return "mips:4100";
12406 case elfcpp::E_MIPS_MACH_4111:
12407 return "mips:4111";
12408 case elfcpp::E_MIPS_MACH_4120:
12409 return "mips:4120";
12410 case elfcpp::E_MIPS_MACH_4650:
12411 return "mips:4650";
12412 case elfcpp::E_MIPS_MACH_5400:
12413 return "mips:5400";
12414 case elfcpp::E_MIPS_MACH_5500:
12415 return "mips:5500";
12416 case elfcpp::E_MIPS_MACH_5900:
12417 return "mips:5900";
12418 case elfcpp::E_MIPS_MACH_SB1:
12420 case elfcpp::E_MIPS_MACH_9000:
12421 return "mips:9000";
12422 case elfcpp::E_MIPS_MACH_LS2E:
12423 return "mips:loongson_2e";
12424 case elfcpp::E_MIPS_MACH_LS2F:
12425 return "mips:loongson_2f";
12426 case elfcpp::E_MIPS_MACH_LS3A:
12427 return "mips:loongson_3a";
12428 case elfcpp::E_MIPS_MACH_OCTEON:
12429 return "mips:octeon";
12430 case elfcpp::E_MIPS_MACH_OCTEON2:
12431 return "mips:octeon2";
12432 case elfcpp::E_MIPS_MACH_OCTEON3:
12433 return "mips:octeon3";
12434 case elfcpp::E_MIPS_MACH_XLR:
12437 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12440 case elfcpp::E_MIPS_ARCH_1:
12441 return "mips:3000";
12443 case elfcpp::E_MIPS_ARCH_2:
12444 return "mips:6000";
12446 case elfcpp::E_MIPS_ARCH_3:
12447 return "mips:4000";
12449 case elfcpp::E_MIPS_ARCH_4:
12450 return "mips:8000";
12452 case elfcpp::E_MIPS_ARCH_5:
12453 return "mips:mips5";
12455 case elfcpp::E_MIPS_ARCH_32:
12456 return "mips:isa32";
12458 case elfcpp::E_MIPS_ARCH_64:
12459 return "mips:isa64";
12461 case elfcpp::E_MIPS_ARCH_32R2:
12462 return "mips:isa32r2";
12464 case elfcpp::E_MIPS_ARCH_32R6:
12465 return "mips:isa32r6";
12467 case elfcpp::E_MIPS_ARCH_64R2:
12468 return "mips:isa64r2";
12470 case elfcpp::E_MIPS_ARCH_64R6:
12471 return "mips:isa64r6";
12474 return "unknown CPU";
12477 template<int size, bool big_endian>
12478 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12481 big_endian, // is_big_endian
12482 elfcpp::EM_MIPS, // machine_code
12483 true, // has_make_symbol
12484 false, // has_resolve
12485 false, // has_code_fill
12486 true, // is_default_stack_executable
12487 false, // can_icf_inline_merge_sections
12489 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12490 0x400000, // default_text_segment_address
12491 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12492 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12493 false, // isolate_execinstr
12494 0, // rosegment_gap
12495 elfcpp::SHN_UNDEF, // small_common_shndx
12496 elfcpp::SHN_UNDEF, // large_common_shndx
12497 0, // small_common_section_flags
12498 0, // large_common_section_flags
12499 NULL, // attributes_section
12500 NULL, // attributes_vendor
12501 "__start", // entry_symbol_name
12502 32, // hash_entry_size
12505 template<int size, bool big_endian>
12506 class Target_mips_nacl : public Target_mips<size, big_endian>
12510 : Target_mips<size, big_endian>(&mips_nacl_info)
12514 static const Target::Target_info mips_nacl_info;
12517 template<int size, bool big_endian>
12518 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12521 big_endian, // is_big_endian
12522 elfcpp::EM_MIPS, // machine_code
12523 true, // has_make_symbol
12524 false, // has_resolve
12525 false, // has_code_fill
12526 true, // is_default_stack_executable
12527 false, // can_icf_inline_merge_sections
12529 "/lib/ld.so.1", // dynamic_linker
12530 0x20000, // default_text_segment_address
12531 0x10000, // abi_pagesize (overridable by -z max-page-size)
12532 0x10000, // common_pagesize (overridable by -z common-page-size)
12533 true, // isolate_execinstr
12534 0x10000000, // rosegment_gap
12535 elfcpp::SHN_UNDEF, // small_common_shndx
12536 elfcpp::SHN_UNDEF, // large_common_shndx
12537 0, // small_common_section_flags
12538 0, // large_common_section_flags
12539 NULL, // attributes_section
12540 NULL, // attributes_vendor
12541 "_start", // entry_symbol_name
12542 32, // hash_entry_size
12545 // Target selector for Mips. Note this is never instantiated directly.
12546 // It's only used in Target_selector_mips_nacl, below.
12548 template<int size, bool big_endian>
12549 class Target_selector_mips : public Target_selector
12552 Target_selector_mips()
12553 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12555 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12556 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12558 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12559 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12562 Target* do_instantiate_target()
12563 { return new Target_mips<size, big_endian>(); }
12566 template<int size, bool big_endian>
12567 class Target_selector_mips_nacl
12568 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12569 Target_mips_nacl<size, big_endian> >
12572 Target_selector_mips_nacl()
12573 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12574 Target_mips_nacl<size, big_endian> >(
12575 // NaCl currently supports only MIPS32 little-endian.
12576 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12580 Target_selector_mips_nacl<32, true> target_selector_mips32;
12581 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12582 Target_selector_mips_nacl<64, true> target_selector_mips64;
12583 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12585 } // End anonymous namespace.