Add MIPS-64 support.
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "nacl.h"
48
49 namespace
50 {
51 using namespace gold;
52
53 template<int size, bool big_endian>
54 class Mips_output_data_plt;
55
56 template<int size, bool big_endian>
57 class Mips_output_data_got;
58
59 template<int size, bool big_endian>
60 class Target_mips;
61
62 template<int size, bool big_endian>
63 class Mips_output_section_reginfo;
64
65 template<int size, bool big_endian>
66 class Mips_output_data_la25_stub;
67
68 template<int size, bool big_endian>
69 class Mips_output_data_mips_stubs;
70
71 template<int size>
72 class Mips_symbol;
73
74 template<int size, bool big_endian>
75 class Mips_got_info;
76
77 template<int size, bool big_endian>
78 class Mips_relobj;
79
80 class Mips16_stub_section_base;
81
82 template<int size, bool big_endian>
83 class Mips16_stub_section;
84
85 // The ABI says that every symbol used by dynamic relocations must have
86 // a global GOT entry.  Among other things, this provides the dynamic
87 // linker with a free, directly-indexed cache.  The GOT can therefore
88 // contain symbols that are not referenced by GOT relocations themselves
89 // (in other words, it may have symbols that are not referenced by things
90 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92 // GOT relocations are less likely to overflow if we put the associated
93 // GOT entries towards the beginning.  We therefore divide the global
94 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
95 // the first area can be used for both dynamic relocations and GP-relative
96 // accesses, while those in the "reloc-only" area are for dynamic
97 // relocations only.
98
99 // These GGA_* ("Global GOT Area") values are organised so that lower
100 // values are more general than higher values.  Also, non-GGA_NONE
101 // values are ordered by the position of the area in the GOT.
102
103 enum Global_got_area
104 {
105   GGA_NORMAL = 0,
106   GGA_RELOC_ONLY = 1,
107   GGA_NONE = 2
108 };
109
110 // The types of GOT entries needed for this platform.
111 // These values are exposed to the ABI in an incremental link.
112 // Do not renumber existing values without changing the version
113 // number of the .gnu_incremental_inputs section.
114 enum Got_type
115 {
116   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
117   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
118   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
119
120   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121   GOT_TYPE_STANDARD_MULTIGOT = 3,
122   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124 };
125
126 // TLS type of GOT entry.
127 enum Got_tls_type
128 {
129   GOT_TLS_NONE = 0,
130   GOT_TLS_GD = 1,
131   GOT_TLS_LDM = 2,
132   GOT_TLS_IE = 4
133 };
134
135 // Values found in the r_ssym field of a relocation entry.
136 enum Special_relocation_symbol
137 {
138   RSS_UNDEF = 0,    // None - value is zero.
139   RSS_GP = 1,       // Value of GP.
140   RSS_GP0 = 2,      // Value of GP in object being relocated.
141   RSS_LOC = 3       // Address of location being relocated.
142 };
143
144 // Whether the section is readonly.
145 static inline bool
146 is_readonly_section(Output_section* output_section)
147 {
148   elfcpp::Elf_Xword section_flags = output_section->flags();
149   elfcpp::Elf_Word section_type = output_section->type();
150
151   if (section_type == elfcpp::SHT_NOBITS)
152     return false;
153
154   if (section_flags & elfcpp::SHF_WRITE)
155     return false;
156
157   return true;
158 }
159
160 // Return TRUE if a relocation of type R_TYPE from OBJECT might
161 // require an la25 stub.  See also local_pic_function, which determines
162 // whether the destination function ever requires a stub.
163 template<int size, bool big_endian>
164 static inline bool
165 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
166                            unsigned int r_type, bool target_is_16_bit_code)
167 {
168   // We specifically ignore branches and jumps from EF_PIC objects,
169   // where the onus is on the compiler or programmer to perform any
170   // necessary initialization of $25.  Sometimes such initialization
171   // is unnecessary; for example, -mno-shared functions do not use
172   // the incoming value of $25, and may therefore be called directly.
173   if (object->is_pic())
174     return false;
175
176   switch (r_type)
177     {
178     case elfcpp::R_MIPS_26:
179     case elfcpp::R_MIPS_PC16:
180     case elfcpp::R_MICROMIPS_26_S1:
181     case elfcpp::R_MICROMIPS_PC7_S1:
182     case elfcpp::R_MICROMIPS_PC10_S1:
183     case elfcpp::R_MICROMIPS_PC16_S1:
184     case elfcpp::R_MICROMIPS_PC23_S2:
185       return true;
186
187     case elfcpp::R_MIPS16_26:
188       return !target_is_16_bit_code;
189
190     default:
191       return false;
192     }
193 }
194
195 // Return true if SYM is a locally-defined PIC function, in the sense
196 // that it or its fn_stub might need $25 to be valid on entry.
197 // Note that MIPS16 functions set up $gp using PC-relative instructions,
198 // so they themselves never need $25 to be valid.  Only non-MIPS16
199 // entry points are of interest here.
200 template<int size, bool big_endian>
201 static inline bool
202 local_pic_function(Mips_symbol<size>* sym)
203 {
204   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
205                       && !sym->object()->is_dynamic()
206                       && !sym->is_undefined());
207
208   if (sym->is_defined() && def_regular)
209     {
210       Mips_relobj<size, big_endian>* object =
211         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
212
213       if ((object->is_pic() || sym->is_pic())
214           && (!sym->is_mips16()
215               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
216         return true;
217     }
218   return false;
219 }
220
221 static inline bool
222 hi16_reloc(int r_type)
223 {
224   return (r_type == elfcpp::R_MIPS_HI16
225           || r_type == elfcpp::R_MIPS16_HI16
226           || r_type == elfcpp::R_MICROMIPS_HI16);
227 }
228
229 static inline bool
230 lo16_reloc(int r_type)
231 {
232   return (r_type == elfcpp::R_MIPS_LO16
233           || r_type == elfcpp::R_MIPS16_LO16
234           || r_type == elfcpp::R_MICROMIPS_LO16);
235 }
236
237 static inline bool
238 got16_reloc(unsigned int r_type)
239 {
240   return (r_type == elfcpp::R_MIPS_GOT16
241           || r_type == elfcpp::R_MIPS16_GOT16
242           || r_type == elfcpp::R_MICROMIPS_GOT16);
243 }
244
245 static inline bool
246 call_lo16_reloc(unsigned int r_type)
247 {
248   return (r_type == elfcpp::R_MIPS_CALL_LO16
249           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
250 }
251
252 static inline bool
253 got_lo16_reloc(unsigned int r_type)
254 {
255   return (r_type == elfcpp::R_MIPS_GOT_LO16
256           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
257 }
258
259 static inline bool
260 eh_reloc(unsigned int r_type)
261 {
262   return (r_type == elfcpp::R_MIPS_EH);
263 }
264
265 static inline bool
266 got_disp_reloc(unsigned int r_type)
267 {
268   return (r_type == elfcpp::R_MIPS_GOT_DISP
269           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
270 }
271
272 static inline bool
273 got_page_reloc(unsigned int r_type)
274 {
275   return (r_type == elfcpp::R_MIPS_GOT_PAGE
276           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
277 }
278
279 static inline bool
280 tls_gd_reloc(unsigned int r_type)
281 {
282   return (r_type == elfcpp::R_MIPS_TLS_GD
283           || r_type == elfcpp::R_MIPS16_TLS_GD
284           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
285 }
286
287 static inline bool
288 tls_gottprel_reloc(unsigned int r_type)
289 {
290   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
291           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
292           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
293 }
294
295 static inline bool
296 tls_ldm_reloc(unsigned int r_type)
297 {
298   return (r_type == elfcpp::R_MIPS_TLS_LDM
299           || r_type == elfcpp::R_MIPS16_TLS_LDM
300           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
301 }
302
303 static inline bool
304 mips16_call_reloc(unsigned int r_type)
305 {
306   return (r_type == elfcpp::R_MIPS16_26
307           || r_type == elfcpp::R_MIPS16_CALL16);
308 }
309
310 static inline bool
311 jal_reloc(unsigned int r_type)
312 {
313   return (r_type == elfcpp::R_MIPS_26
314           || r_type == elfcpp::R_MIPS16_26
315           || r_type == elfcpp::R_MICROMIPS_26_S1);
316 }
317
318 static inline bool
319 micromips_branch_reloc(unsigned int r_type)
320 {
321   return (r_type == elfcpp::R_MICROMIPS_26_S1
322           || r_type == elfcpp::R_MICROMIPS_PC16_S1
323           || r_type == elfcpp::R_MICROMIPS_PC10_S1
324           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
325 }
326
327 // Check if R_TYPE is a MIPS16 reloc.
328 static inline bool
329 mips16_reloc(unsigned int r_type)
330 {
331   switch (r_type)
332     {
333     case elfcpp::R_MIPS16_26:
334     case elfcpp::R_MIPS16_GPREL:
335     case elfcpp::R_MIPS16_GOT16:
336     case elfcpp::R_MIPS16_CALL16:
337     case elfcpp::R_MIPS16_HI16:
338     case elfcpp::R_MIPS16_LO16:
339     case elfcpp::R_MIPS16_TLS_GD:
340     case elfcpp::R_MIPS16_TLS_LDM:
341     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
342     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
343     case elfcpp::R_MIPS16_TLS_GOTTPREL:
344     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
345     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
346       return true;
347
348     default:
349       return false;
350     }
351 }
352
353 // Check if R_TYPE is a microMIPS reloc.
354 static inline bool
355 micromips_reloc(unsigned int r_type)
356 {
357   switch (r_type)
358     {
359     case elfcpp::R_MICROMIPS_26_S1:
360     case elfcpp::R_MICROMIPS_HI16:
361     case elfcpp::R_MICROMIPS_LO16:
362     case elfcpp::R_MICROMIPS_GPREL16:
363     case elfcpp::R_MICROMIPS_LITERAL:
364     case elfcpp::R_MICROMIPS_GOT16:
365     case elfcpp::R_MICROMIPS_PC7_S1:
366     case elfcpp::R_MICROMIPS_PC10_S1:
367     case elfcpp::R_MICROMIPS_PC16_S1:
368     case elfcpp::R_MICROMIPS_CALL16:
369     case elfcpp::R_MICROMIPS_GOT_DISP:
370     case elfcpp::R_MICROMIPS_GOT_PAGE:
371     case elfcpp::R_MICROMIPS_GOT_OFST:
372     case elfcpp::R_MICROMIPS_GOT_HI16:
373     case elfcpp::R_MICROMIPS_GOT_LO16:
374     case elfcpp::R_MICROMIPS_SUB:
375     case elfcpp::R_MICROMIPS_HIGHER:
376     case elfcpp::R_MICROMIPS_HIGHEST:
377     case elfcpp::R_MICROMIPS_CALL_HI16:
378     case elfcpp::R_MICROMIPS_CALL_LO16:
379     case elfcpp::R_MICROMIPS_SCN_DISP:
380     case elfcpp::R_MICROMIPS_JALR:
381     case elfcpp::R_MICROMIPS_HI0_LO16:
382     case elfcpp::R_MICROMIPS_TLS_GD:
383     case elfcpp::R_MICROMIPS_TLS_LDM:
384     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
385     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
386     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
387     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
388     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
389     case elfcpp::R_MICROMIPS_GPREL7_S2:
390     case elfcpp::R_MICROMIPS_PC23_S2:
391       return true;
392
393     default:
394       return false;
395     }
396 }
397
398 static inline bool
399 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
400 {
401   switch (high_reloc)
402     {
403     case elfcpp::R_MIPS_HI16:
404     case elfcpp::R_MIPS_GOT16:
405       return lo16_reloc == elfcpp::R_MIPS_LO16;
406     case elfcpp::R_MIPS16_HI16:
407     case elfcpp::R_MIPS16_GOT16:
408       return lo16_reloc == elfcpp::R_MIPS16_LO16;
409     case elfcpp::R_MICROMIPS_HI16:
410     case elfcpp::R_MICROMIPS_GOT16:
411       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
412     default:
413       return false;
414     }
415 }
416
417 // This class is used to hold information about one GOT entry.
418 // There are three types of entry:
419 //
420 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
421 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
422 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
423 //          (object != NULL, symndx == -1)
424 //    (3) a TLS LDM slot
425 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
426
427 template<int size, bool big_endian>
428 class Mips_got_entry
429 {
430   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
431
432  public:
433   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
434                  Mips_address addend, unsigned char tls_type,
435                  unsigned int shndx, bool is_section_symbol)
436     : object_(object), symndx_(symndx), tls_type_(tls_type),
437       is_section_symbol_(is_section_symbol), shndx_(shndx)
438   { this->d.addend = addend; }
439
440   Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
441                  unsigned char tls_type)
442     : object_(object), symndx_(-1U), tls_type_(tls_type),
443       is_section_symbol_(false), shndx_(-1U)
444   { this->d.sym = sym; }
445
446   // Return whether this entry is for a local symbol.
447   bool
448   is_for_local_symbol() const
449   { return this->symndx_ != -1U; }
450
451   // Return whether this entry is for a global symbol.
452   bool
453   is_for_global_symbol() const
454   { return this->symndx_ == -1U; }
455
456   // Return the hash of this entry.
457   size_t
458   hash() const
459   {
460     if (this->tls_type_ == GOT_TLS_LDM)
461       return this->symndx_ + (1 << 18);
462     if (this->symndx_ != -1U)
463       {
464         uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
465         return this->symndx_ + object_id + this->d.addend;
466       }
467     else
468       {
469         uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
470         return this->symndx_ + sym_id;
471       }
472   }
473
474   // Return whether this entry is equal to OTHER.
475   bool
476   equals(Mips_got_entry<size, big_endian>* other) const
477   {
478     if (this->symndx_ != other->symndx_
479         || this->tls_type_ != other->tls_type_)
480       return false;
481     if (this->tls_type_ == GOT_TLS_LDM)
482       return true;
483     if (this->symndx_ != -1U)
484       return (this->object() == other->object()
485               && this->d.addend == other->d.addend);
486     else
487       return this->d.sym == other->d.sym;
488   }
489
490   // Return input object that needs this GOT entry.
491   Mips_relobj<size, big_endian>*
492   object() const
493   {
494     gold_assert(this->object_ != NULL);
495     return this->object_;
496   }
497
498   // Return local symbol index for local GOT entries.
499   unsigned int
500   symndx() const
501   {
502     gold_assert(this->symndx_ != -1U);
503     return this->symndx_;
504   }
505
506   // Return the relocation addend for local GOT entries.
507   Mips_address
508   addend() const
509   {
510     gold_assert(this->symndx_ != -1U);
511     return this->d.addend;
512   }
513
514   // Return global symbol for global GOT entries.
515   Mips_symbol<size>*
516   sym() const
517   {
518     gold_assert(this->symndx_ == -1U);
519     return this->d.sym;
520   }
521
522   // Return whether this is a TLS GOT entry.
523   bool
524   is_tls_entry() const
525   { return this->tls_type_ != GOT_TLS_NONE; }
526
527   // Return TLS type of this GOT entry.
528   unsigned char
529   tls_type() const
530   { return this->tls_type_; }
531
532   // Return section index of the local symbol for local GOT entries.
533   unsigned int
534   shndx() const
535   { return this->shndx_; }
536
537   // Return whether this is a STT_SECTION symbol.
538   bool
539   is_section_symbol() const
540   { return this->is_section_symbol_; }
541
542  private:
543   // The input object that needs the GOT entry.
544   Mips_relobj<size, big_endian>* object_;
545   // The index of the symbol if we have a local symbol; -1 otherwise.
546   unsigned int symndx_;
547
548   union
549   {
550     // If symndx != -1, the addend of the relocation that should be added to the
551     // symbol value.
552     Mips_address addend;
553     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
554     // symbol's entry is in the local area if mips_sym->global_got_area is
555     // GGA_NONE, otherwise it is in the global area.
556     Mips_symbol<size>* sym;
557   } d;
558
559   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
560   // symbol entry with r_symndx == 0.
561   unsigned char tls_type_;
562
563   // Whether this is a STT_SECTION symbol.
564   bool is_section_symbol_;
565
566   // For local GOT entries, section index of the local symbol.
567   unsigned int shndx_;
568 };
569
570 // Hash for Mips_got_entry.
571
572 template<int size, bool big_endian>
573 class Mips_got_entry_hash
574 {
575  public:
576   size_t
577   operator()(Mips_got_entry<size, big_endian>* entry) const
578   { return entry->hash(); }
579 };
580
581 // Equality for Mips_got_entry.
582
583 template<int size, bool big_endian>
584 class Mips_got_entry_eq
585 {
586  public:
587   bool
588   operator()(Mips_got_entry<size, big_endian>* e1,
589              Mips_got_entry<size, big_endian>* e2) const
590   { return e1->equals(e2); }
591 };
592
593 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
594 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
595 // increasing MIN_ADDEND.
596
597 struct Got_page_range
598 {
599   Got_page_range()
600     : next(NULL), min_addend(0), max_addend(0)
601   { }
602
603   Got_page_range* next;
604   int min_addend;
605   int max_addend;
606
607   // Return the maximum number of GOT page entries required.
608   int
609   get_max_pages()
610   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
611 };
612
613 // Got_page_entry.  This class describes the range of addends that are applied
614 // to page relocations against a given symbol.
615
616 struct Got_page_entry
617 {
618   Got_page_entry()
619     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
620   { }
621
622   Got_page_entry(Object* object_, unsigned int symndx_)
623     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
624   { }
625
626   // The input object that needs the GOT page entry.
627   Object* object;
628   // The index of the symbol, as stored in the relocation r_info.
629   unsigned int symndx;
630   // The ranges for this page entry.
631   Got_page_range* ranges;
632   // The maximum number of page entries needed for RANGES.
633   unsigned int num_pages;
634 };
635
636 // Hash for Got_page_entry.
637
638 struct Got_page_entry_hash
639 {
640   size_t
641   operator()(Got_page_entry* entry) const
642   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
643 };
644
645 // Equality for Got_page_entry.
646
647 struct Got_page_entry_eq
648 {
649   bool
650   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
651   {
652     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
653   }
654 };
655
656 // This class is used to hold .got information when linking.
657
658 template<int size, bool big_endian>
659 class Mips_got_info
660 {
661   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
662   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
663     Reloc_section;
664   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
665
666   // Unordered set of GOT entries.
667   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
668       Mips_got_entry_hash<size, big_endian>,
669       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
670
671   // Unordered set of GOT page entries.
672   typedef Unordered_set<Got_page_entry*,
673       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
674
675  public:
676   Mips_got_info()
677     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
678       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
679       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
680       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
681       offset_(0)
682   { }
683
684   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
685   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
686   void
687   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
688                           unsigned int symndx, Mips_address addend,
689                           unsigned int r_type, unsigned int shndx,
690                           bool is_section_symbol);
691
692   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
693   // in OBJECT.  FOR_CALL is true if the caller is only interested in
694   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
695   // relocation.
696   void
697   record_global_got_symbol(Mips_symbol<size>* mips_sym,
698                            Mips_relobj<size, big_endian>* object,
699                            unsigned int r_type, bool dyn_reloc, bool for_call);
700
701   // Add ENTRY to master GOT and to OBJECT's GOT.
702   void
703   record_got_entry(Mips_got_entry<size, big_endian>* entry,
704                    Mips_relobj<size, big_endian>* object);
705
706   // Record that OBJECT has a page relocation against symbol SYMNDX and
707   // that ADDEND is the addend for that relocation.
708   void
709   record_got_page_entry(Mips_relobj<size, big_endian>* object,
710                         unsigned int symndx, int addend);
711
712   // Create all entries that should be in the local part of the GOT.
713   void
714   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
715
716   // Create GOT page entries.
717   void
718   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
719
720   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
721   void
722   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
723                      unsigned int non_reloc_only_global_gotno);
724
725   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
726   void
727   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
728
729   // Create TLS GOT entries.
730   void
731   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
732
733   // Decide whether the symbol needs an entry in the global part of the primary
734   // GOT, setting global_got_area accordingly.  Count the number of global
735   // symbols that are in the primary GOT only because they have dynamic
736   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
737   void
738   count_got_symbols(Symbol_table* symtab);
739
740   // Return the offset of GOT page entry for VALUE.
741   unsigned int
742   get_got_page_offset(Mips_address value,
743                       Mips_output_data_got<size, big_endian>* got);
744
745   // Count the number of GOT entries required.
746   void
747   count_got_entries();
748
749   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
750   void
751   count_got_entry(Mips_got_entry<size, big_endian>* entry);
752
753   // Add FROM's GOT entries.
754   void
755   add_got_entries(Mips_got_info<size, big_endian>* from);
756
757   // Add FROM's GOT page entries.
758   void
759   add_got_page_entries(Mips_got_info<size, big_endian>* from);
760
761   // Return GOT size.
762   unsigned int
763   got_size() const
764   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
765              + this->tls_gotno_) * size/8);
766   }
767
768   // Return the number of local GOT entries.
769   unsigned int
770   local_gotno() const
771   { return this->local_gotno_; }
772
773   // Return the maximum number of page GOT entries needed.
774   unsigned int
775   page_gotno() const
776   { return this->page_gotno_; }
777
778   // Return the number of global GOT entries.
779   unsigned int
780   global_gotno() const
781   { return this->global_gotno_; }
782
783   // Set the number of global GOT entries.
784   void
785   set_global_gotno(unsigned int global_gotno)
786   { this->global_gotno_ = global_gotno; }
787
788   // Return the number of GGA_RELOC_ONLY global GOT entries.
789   unsigned int
790   reloc_only_gotno() const
791   { return this->reloc_only_gotno_; }
792
793   // Return the number of TLS GOT entries.
794   unsigned int
795   tls_gotno() const
796   { return this->tls_gotno_; }
797
798   // Return the GOT type for this GOT.  Used for multi-GOT links only.
799   unsigned int
800   multigot_got_type(unsigned int got_type) const
801   {
802     switch (got_type)
803       {
804       case GOT_TYPE_STANDARD:
805         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
806       case GOT_TYPE_TLS_OFFSET:
807         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
808       case GOT_TYPE_TLS_PAIR:
809         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
810       default:
811         gold_unreachable();
812       }
813   }
814
815   // Remove lazy-binding stubs for global symbols in this GOT.
816   void
817   remove_lazy_stubs(Target_mips<size, big_endian>* target);
818
819   // Return offset of this GOT from the start of .got section.
820   unsigned int
821   offset() const
822   { return this->offset_; }
823
824   // Set offset of this GOT from the start of .got section.
825   void
826   set_offset(unsigned int offset)
827   { this->offset_ = offset; }
828
829   // Set index of this GOT in multi-GOT links.
830   void
831   set_index(unsigned int index)
832   { this->index_ = index; }
833
834   // Return next GOT in multi-GOT links.
835   Mips_got_info<size, big_endian>*
836   next() const
837   { return this->next_; }
838
839   // Set next GOT in multi-GOT links.
840   void
841   set_next(Mips_got_info<size, big_endian>* next)
842   { this->next_ = next; }
843
844   // Return the offset of TLS LDM entry for this GOT.
845   unsigned int
846   tls_ldm_offset() const
847   { return this->tls_ldm_offset_; }
848
849   // Set the offset of TLS LDM entry for this GOT.
850   void
851   set_tls_ldm_offset(unsigned int tls_ldm_offset)
852   { this->tls_ldm_offset_ = tls_ldm_offset; }
853
854   Unordered_set<Mips_symbol<size>*>&
855   global_got_symbols()
856   { return this->global_got_symbols_; }
857
858   // Return the GOT_TLS_* type required by relocation type R_TYPE.
859   static int
860   mips_elf_reloc_tls_type(unsigned int r_type)
861   {
862     if (tls_gd_reloc(r_type))
863       return GOT_TLS_GD;
864
865     if (tls_ldm_reloc(r_type))
866       return GOT_TLS_LDM;
867
868     if (tls_gottprel_reloc(r_type))
869       return GOT_TLS_IE;
870
871     return GOT_TLS_NONE;
872   }
873
874   // Return the number of GOT slots needed for GOT TLS type TYPE.
875   static int
876   mips_tls_got_entries(unsigned int type)
877   {
878     switch (type)
879       {
880       case GOT_TLS_GD:
881       case GOT_TLS_LDM:
882         return 2;
883
884       case GOT_TLS_IE:
885         return 1;
886
887       case GOT_TLS_NONE:
888         return 0;
889
890       default:
891         gold_unreachable();
892       }
893   }
894
895  private:
896   // The number of local GOT entries.
897   unsigned int local_gotno_;
898   // The maximum number of page GOT entries needed.
899   unsigned int page_gotno_;
900   // The number of global GOT entries.
901   unsigned int global_gotno_;
902   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
903   unsigned int reloc_only_gotno_;
904   // The number of TLS GOT entries.
905   unsigned int tls_gotno_;
906   // The offset of TLS LDM entry for this GOT.
907   unsigned int tls_ldm_offset_;
908   // All symbols that have global GOT entry.
909   Unordered_set<Mips_symbol<size>*> global_got_symbols_;
910   // A hash table holding GOT entries.
911   Got_entry_set got_entries_;
912   // A hash table of GOT page entries.
913   Got_page_entry_set got_page_entries_;
914   // The offset of first GOT page entry for this GOT.
915   unsigned int got_page_offset_start_;
916   // The offset of next available GOT page entry for this GOT.
917   unsigned int got_page_offset_next_;
918   // A hash table that maps GOT page entry value to the GOT offset where
919   // the entry is located.
920   Got_page_offsets got_page_offsets_;
921   // In multi-GOT links, a pointer to the next GOT.
922   Mips_got_info<size, big_endian>* next_;
923   // Index of this GOT in multi-GOT links.
924   unsigned int index_;
925   // The offset of this GOT in multi-GOT links.
926   unsigned int offset_;
927 };
928
929 // This is a helper class used during relocation scan.  It records GOT16 addend.
930
931 template<int size, bool big_endian>
932 struct got16_addend
933 {
934   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
935
936   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
937                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
938                Mips_address _addend)
939     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
940       addend(_addend)
941   { }
942
943   const Sized_relobj_file<size, big_endian>* object;
944   unsigned int shndx;
945   unsigned int r_type;
946   unsigned int r_sym;
947   Mips_address addend;
948 };
949
950 // Mips_symbol class.  Holds additional symbol information needed for Mips.
951
952 template<int size>
953 class Mips_symbol : public Sized_symbol<size>
954 {
955  public:
956   Mips_symbol()
957     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
958       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
959       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
960       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
961       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
962       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
963       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
964   { }
965
966   // Return whether this is a MIPS16 symbol.
967   bool
968   is_mips16() const
969   {
970     // (st_other & STO_MIPS16) == STO_MIPS16
971     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
972             == elfcpp::STO_MIPS16 >> 2);
973   }
974
975   // Return whether this is a microMIPS symbol.
976   bool
977   is_micromips() const
978   {
979     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
980     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
981             == elfcpp::STO_MICROMIPS >> 2);
982   }
983
984   // Return whether the symbol needs MIPS16 fn_stub.
985   bool
986   need_fn_stub() const
987   { return this->need_fn_stub_; }
988
989   // Set that the symbol needs MIPS16 fn_stub.
990   void
991   set_need_fn_stub()
992   { this->need_fn_stub_ = true; }
993
994   // Return whether this symbol is referenced by branch relocations from
995   // any non-PIC input file.
996   bool
997   has_nonpic_branches() const
998   { return this->has_nonpic_branches_; }
999
1000   // Set that this symbol is referenced by branch relocations from
1001   // any non-PIC input file.
1002   void
1003   set_has_nonpic_branches()
1004   { this->has_nonpic_branches_ = true; }
1005
1006   // Return the offset of the la25 stub for this symbol from the start of the
1007   // la25 stub section.
1008   unsigned int
1009   la25_stub_offset() const
1010   { return this->la25_stub_offset_; }
1011
1012   // Set the offset of the la25 stub for this symbol from the start of the
1013   // la25 stub section.
1014   void
1015   set_la25_stub_offset(unsigned int offset)
1016   { this->la25_stub_offset_ = offset; }
1017
1018   // Return whether the symbol has la25 stub.  This is true if this symbol is
1019   // for a PIC function, and there are non-PIC branches and jumps to it.
1020   bool
1021   has_la25_stub() const
1022   { return this->la25_stub_offset_ != -1U; }
1023
1024   // Return whether there is a relocation against this symbol that must be
1025   // resolved by the static linker (that is, the relocation cannot possibly
1026   // be made dynamic).
1027   bool
1028   has_static_relocs() const
1029   { return this->has_static_relocs_; }
1030
1031   // Set that there is a relocation against this symbol that must be resolved
1032   // by the static linker (that is, the relocation cannot possibly be made
1033   // dynamic).
1034   void
1035   set_has_static_relocs()
1036   { this->has_static_relocs_ = true; }
1037
1038   // Return whether we must not create a lazy-binding stub for this symbol.
1039   bool
1040   no_lazy_stub() const
1041   { return this->no_lazy_stub_; }
1042
1043   // Set that we must not create a lazy-binding stub for this symbol.
1044   void
1045   set_no_lazy_stub()
1046   { this->no_lazy_stub_ = true; }
1047
1048   // Return the offset of the lazy-binding stub for this symbol from the start
1049   // of .MIPS.stubs section.
1050   unsigned int
1051   lazy_stub_offset() const
1052   { return this->lazy_stub_offset_; }
1053
1054   // Set the offset of the lazy-binding stub for this symbol from the start
1055   // of .MIPS.stubs section.
1056   void
1057   set_lazy_stub_offset(unsigned int offset)
1058   { this->lazy_stub_offset_ = offset; }
1059
1060   // Return whether there are any relocations for this symbol where
1061   // pointer equality matters.
1062   bool
1063   pointer_equality_needed() const
1064   { return this->pointer_equality_needed_; }
1065
1066   // Set that there are relocations for this symbol where pointer equality
1067   // matters.
1068   void
1069   set_pointer_equality_needed()
1070   { this->pointer_equality_needed_ = true; }
1071
1072   // Return global GOT area where this symbol in located.
1073   Global_got_area
1074   global_got_area() const
1075   { return this->global_got_area_; }
1076
1077   // Set global GOT area where this symbol in located.
1078   void
1079   set_global_got_area(Global_got_area global_got_area)
1080   { this->global_got_area_ = global_got_area; }
1081
1082   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1083   // returns the offset from the start of .got section to the first GOT entry
1084   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1085   // in more than one GOT.
1086   unsigned int
1087   global_gotoffset() const
1088   { return this->global_gotoffset_; }
1089
1090   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1091   // the symbol can have entry in more than one GOT.  This method will set
1092   // the offset only if it is less than current offset.
1093   void
1094   set_global_gotoffset(unsigned int offset)
1095   {
1096     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1097       this->global_gotoffset_ = offset;
1098   }
1099
1100   // Return whether all GOT relocations for this symbol are for calls.
1101   bool
1102   got_only_for_calls() const
1103   { return this->got_only_for_calls_; }
1104
1105   // Set that there is a GOT relocation for this symbol that is not for call.
1106   void
1107   set_got_not_only_for_calls()
1108   { this->got_only_for_calls_ = false; }
1109
1110   // Return whether this is a PIC symbol.
1111   bool
1112   is_pic() const
1113   {
1114     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1115     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1116             == (elfcpp::STO_MIPS_PIC >> 2));
1117   }
1118
1119   // Set the flag in st_other field that marks this symbol as PIC.
1120   void
1121   set_pic()
1122   {
1123     if (this->is_mips16())
1124       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1125       this->set_nonvis((this->nonvis()
1126                         & ~((elfcpp::STO_MIPS16 >> 2)
1127                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1128                        | (elfcpp::STO_MIPS_PIC >> 2));
1129     else
1130       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1131       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1132                        | (elfcpp::STO_MIPS_PIC >> 2));
1133   }
1134
1135   // Set the flag in st_other field that marks this symbol as PLT.
1136   void
1137   set_mips_plt()
1138   {
1139     if (this->is_mips16())
1140       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1141       this->set_nonvis((this->nonvis()
1142                         & ((elfcpp::STO_MIPS16 >> 2)
1143                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1144                        | (elfcpp::STO_MIPS_PLT >> 2));
1145
1146     else
1147       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1148       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1149                        | (elfcpp::STO_MIPS_PLT >> 2));
1150   }
1151
1152   // Downcast a base pointer to a Mips_symbol pointer.
1153   static Mips_symbol<size>*
1154   as_mips_sym(Symbol* sym)
1155   { return static_cast<Mips_symbol<size>*>(sym); }
1156
1157   // Downcast a base pointer to a Mips_symbol pointer.
1158   static const Mips_symbol<size>*
1159   as_mips_sym(const Symbol* sym)
1160   { return static_cast<const Mips_symbol<size>*>(sym); }
1161
1162   // Return whether the symbol has lazy-binding stub.
1163   bool
1164   has_lazy_stub() const
1165   { return this->has_lazy_stub_; }
1166
1167   // Set whether the symbol has lazy-binding stub.
1168   void
1169   set_has_lazy_stub(bool has_lazy_stub)
1170   { this->has_lazy_stub_ = has_lazy_stub; }
1171
1172   // Return whether the symbol needs a standard PLT entry.
1173   bool
1174   needs_mips_plt() const
1175   { return this->needs_mips_plt_; }
1176
1177   // Set whether the symbol needs a standard PLT entry.
1178   void
1179   set_needs_mips_plt(bool needs_mips_plt)
1180   { this->needs_mips_plt_ = needs_mips_plt; }
1181
1182   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1183   // entry.
1184   bool
1185   needs_comp_plt() const
1186   { return this->needs_comp_plt_; }
1187
1188   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1189   void
1190   set_needs_comp_plt(bool needs_comp_plt)
1191   { this->needs_comp_plt_ = needs_comp_plt; }
1192
1193   // Return standard PLT entry offset, or -1 if none.
1194   unsigned int
1195   mips_plt_offset() const
1196   { return this->mips_plt_offset_; }
1197
1198   // Set standard PLT entry offset.
1199   void
1200   set_mips_plt_offset(unsigned int mips_plt_offset)
1201   { this->mips_plt_offset_ = mips_plt_offset; }
1202
1203   // Return whether the symbol has standard PLT entry.
1204   bool
1205   has_mips_plt_offset() const
1206   { return this->mips_plt_offset_ != -1U; }
1207
1208   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1209   unsigned int
1210   comp_plt_offset() const
1211   { return this->comp_plt_offset_; }
1212
1213   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1214   void
1215   set_comp_plt_offset(unsigned int comp_plt_offset)
1216   { this->comp_plt_offset_ = comp_plt_offset; }
1217
1218   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1219   bool
1220   has_comp_plt_offset() const
1221   { return this->comp_plt_offset_ != -1U; }
1222
1223   // Return MIPS16 fn stub for a symbol.
1224   template<bool big_endian>
1225   Mips16_stub_section<size, big_endian>*
1226   get_mips16_fn_stub() const
1227   {
1228     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1229   }
1230
1231   // Set MIPS16 fn stub for a symbol.
1232   void
1233   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1234   { this->mips16_fn_stub_ = stub; }
1235
1236   // Return whether symbol has MIPS16 fn stub.
1237   bool
1238   has_mips16_fn_stub() const
1239   { return this->mips16_fn_stub_ != NULL; }
1240
1241   // Return MIPS16 call stub for a symbol.
1242   template<bool big_endian>
1243   Mips16_stub_section<size, big_endian>*
1244   get_mips16_call_stub() const
1245   {
1246     return static_cast<Mips16_stub_section<size, big_endian>*>(
1247       mips16_call_stub_);
1248   }
1249
1250   // Set MIPS16 call stub for a symbol.
1251   void
1252   set_mips16_call_stub(Mips16_stub_section_base* stub)
1253   { this->mips16_call_stub_ = stub; }
1254
1255   // Return whether symbol has MIPS16 call stub.
1256   bool
1257   has_mips16_call_stub() const
1258   { return this->mips16_call_stub_ != NULL; }
1259
1260   // Return MIPS16 call_fp stub for a symbol.
1261   template<bool big_endian>
1262   Mips16_stub_section<size, big_endian>*
1263   get_mips16_call_fp_stub() const
1264   {
1265     return static_cast<Mips16_stub_section<size, big_endian>*>(
1266       mips16_call_fp_stub_);
1267   }
1268
1269   // Set MIPS16 call_fp stub for a symbol.
1270   void
1271   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1272   { this->mips16_call_fp_stub_ = stub; }
1273
1274   // Return whether symbol has MIPS16 call_fp stub.
1275   bool
1276   has_mips16_call_fp_stub() const
1277   { return this->mips16_call_fp_stub_ != NULL; }
1278
1279   bool
1280   get_applied_secondary_got_fixup() const
1281   { return applied_secondary_got_fixup_; }
1282
1283   void
1284   set_applied_secondary_got_fixup()
1285   { this->applied_secondary_got_fixup_ = true; }
1286
1287  private:
1288   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1289   // appears in any relocs other than a 16 bit call.
1290   bool need_fn_stub_;
1291
1292   // True if this symbol is referenced by branch relocations from
1293   // any non-PIC input file.  This is used to determine whether an
1294   // la25 stub is required.
1295   bool has_nonpic_branches_;
1296
1297   // The offset of the la25 stub for this symbol from the start of the
1298   // la25 stub section.
1299   unsigned int la25_stub_offset_;
1300
1301   // True if there is a relocation against this symbol that must be
1302   // resolved by the static linker (that is, the relocation cannot
1303   // possibly be made dynamic).
1304   bool has_static_relocs_;
1305
1306   // Whether we must not create a lazy-binding stub for this symbol.
1307   // This is true if the symbol has relocations related to taking the
1308   // function's address.
1309   bool no_lazy_stub_;
1310
1311   // The offset of the lazy-binding stub for this symbol from the start of
1312   // .MIPS.stubs section.
1313   unsigned int lazy_stub_offset_;
1314
1315   // True if there are any relocations for this symbol where pointer equality
1316   // matters.
1317   bool pointer_equality_needed_;
1318
1319   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1320   // in the global part of the GOT.
1321   Global_got_area global_got_area_;
1322
1323   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1324   // from the start of .got section to the first GOT entry for the symbol.
1325   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1326   unsigned int global_gotoffset_;
1327
1328   // Whether all GOT relocations for this symbol are for calls.
1329   bool got_only_for_calls_;
1330   // Whether the symbol has lazy-binding stub.
1331   bool has_lazy_stub_;
1332   // Whether the symbol needs a standard PLT entry.
1333   bool needs_mips_plt_;
1334   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1335   bool needs_comp_plt_;
1336   // Standard PLT entry offset, or -1 if none.
1337   unsigned int mips_plt_offset_;
1338   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1339   unsigned int comp_plt_offset_;
1340   // MIPS16 fn stub for a symbol.
1341   Mips16_stub_section_base* mips16_fn_stub_;
1342   // MIPS16 call stub for a symbol.
1343   Mips16_stub_section_base* mips16_call_stub_;
1344   // MIPS16 call_fp stub for a symbol.
1345   Mips16_stub_section_base* mips16_call_fp_stub_;
1346
1347   bool applied_secondary_got_fixup_;
1348 };
1349
1350 // Mips16_stub_section class.
1351
1352 // The mips16 compiler uses a couple of special sections to handle
1353 // floating point arguments.
1354
1355 // Section names that look like .mips16.fn.FNNAME contain stubs that
1356 // copy floating point arguments from the fp regs to the gp regs and
1357 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1358 // call should be redirected to the stub instead.  If no 32 bit
1359 // function calls FNNAME, the stub should be discarded.  We need to
1360 // consider any reference to the function, not just a call, because
1361 // if the address of the function is taken we will need the stub,
1362 // since the address might be passed to a 32 bit function.
1363
1364 // Section names that look like .mips16.call.FNNAME contain stubs
1365 // that copy floating point arguments from the gp regs to the fp
1366 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1367 // then any 16 bit function that calls FNNAME should be redirected
1368 // to the stub instead.  If FNNAME is not a 32 bit function, the
1369 // stub should be discarded.
1370
1371 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1372 // which call FNNAME and then copy the return value from the fp regs
1373 // to the gp regs.  These stubs store the return address in $18 while
1374 // calling FNNAME; any function which might call one of these stubs
1375 // must arrange to save $18 around the call.  (This case is not
1376 // needed for 32 bit functions that call 16 bit functions, because
1377 // 16 bit functions always return floating point values in both
1378 // $f0/$f1 and $2/$3.)
1379
1380 // Note that in all cases FNNAME might be defined statically.
1381 // Therefore, FNNAME is not used literally.  Instead, the relocation
1382 // information will indicate which symbol the section is for.
1383
1384 // We record any stubs that we find in the symbol table.
1385
1386 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1387
1388 class Mips16_stub_section_base { };
1389
1390 template<int size, bool big_endian>
1391 class Mips16_stub_section : public Mips16_stub_section_base
1392 {
1393   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1394
1395  public:
1396   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1397     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1398       found_r_mips_none_(false)
1399   {
1400     gold_assert(object->is_mips16_fn_stub_section(shndx)
1401                 || object->is_mips16_call_stub_section(shndx)
1402                 || object->is_mips16_call_fp_stub_section(shndx));
1403   }
1404
1405   // Return the object of this stub section.
1406   Mips_relobj<size, big_endian>*
1407   object() const
1408   { return this->object_; }
1409
1410   // Return the size of a section.
1411   uint64_t
1412   section_size() const
1413   { return this->object_->section_size(this->shndx_); }
1414
1415   // Return section index of this stub section.
1416   unsigned int
1417   shndx() const
1418   { return this->shndx_; }
1419
1420   // Return symbol index, if stub is for a local function.
1421   unsigned int
1422   r_sym() const
1423   { return this->r_sym_; }
1424
1425   // Return symbol, if stub is for a global function.
1426   Mips_symbol<size>*
1427   gsym() const
1428   { return this->gsym_; }
1429
1430   // Return whether stub is for a local function.
1431   bool
1432   is_for_local_function() const
1433   { return this->gsym_ == NULL; }
1434
1435   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1436   // is found in the stub section.  Try to find stub target.
1437   void
1438   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1439   {
1440     // To find target symbol for this stub, trust the first R_MIPS_NONE
1441     // relocation, if any.  Otherwise trust the first relocation, whatever
1442     // its kind.
1443     if (this->found_r_mips_none_)
1444       return;
1445     if (r_type == elfcpp::R_MIPS_NONE)
1446       {
1447         this->r_sym_ = r_sym;
1448         this->gsym_ = NULL;
1449         this->found_r_mips_none_ = true;
1450       }
1451     else if (!is_target_found())
1452       this->r_sym_ = r_sym;
1453   }
1454
1455   // This method is called when a new relocation R_TYPE for global symbol GSYM
1456   // is found in the stub section.  Try to find stub target.
1457   void
1458   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1459   {
1460     // To find target symbol for this stub, trust the first R_MIPS_NONE
1461     // relocation, if any.  Otherwise trust the first relocation, whatever
1462     // its kind.
1463     if (this->found_r_mips_none_)
1464       return;
1465     if (r_type == elfcpp::R_MIPS_NONE)
1466       {
1467         this->gsym_ = gsym;
1468         this->r_sym_ = 0;
1469         this->found_r_mips_none_ = true;
1470       }
1471     else if (!is_target_found())
1472       this->gsym_ = gsym;
1473   }
1474
1475   // Return whether we found the stub target.
1476   bool
1477   is_target_found() const
1478   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1479
1480   // Return whether this is a fn stub.
1481   bool
1482   is_fn_stub() const
1483   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1484
1485   // Return whether this is a call stub.
1486   bool
1487   is_call_stub() const
1488   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1489
1490   // Return whether this is a call_fp stub.
1491   bool
1492   is_call_fp_stub() const
1493   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1494
1495   // Return the output address.
1496   Mips_address
1497   output_address() const
1498   {
1499     return (this->object_->output_section(this->shndx_)->address()
1500             + this->object_->output_section_offset(this->shndx_));
1501   }
1502
1503  private:
1504   // The object of this stub section.
1505   Mips_relobj<size, big_endian>* object_;
1506   // The section index of this stub section.
1507   unsigned int shndx_;
1508   // The symbol index, if stub is for a local function.
1509   unsigned int r_sym_;
1510   // The symbol, if stub is for a global function.
1511   Mips_symbol<size>* gsym_;
1512   // True if we found R_MIPS_NONE relocation in this stub.
1513   bool found_r_mips_none_;
1514 };
1515
1516 // Mips_relobj class.
1517
1518 template<int size, bool big_endian>
1519 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1520 {
1521   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1522   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1523     Mips16_stubs_int_map;
1524   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1525
1526  public:
1527   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1528               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1529     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1530       processor_specific_flags_(0), local_symbol_is_mips16_(),
1531       local_symbol_is_micromips_(), mips16_stub_sections_(),
1532       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1533       local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1534       section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1535       section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1536       cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1537   {
1538     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1539     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1540     this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1541   }
1542
1543   ~Mips_relobj()
1544   { }
1545
1546   // Downcast a base pointer to a Mips_relobj pointer.  This is
1547   // not type-safe but we only use Mips_relobj not the base class.
1548   static Mips_relobj<size, big_endian>*
1549   as_mips_relobj(Relobj* relobj)
1550   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1551
1552   // Downcast a base pointer to a Mips_relobj pointer.  This is
1553   // not type-safe but we only use Mips_relobj not the base class.
1554   static const Mips_relobj<size, big_endian>*
1555   as_mips_relobj(const Relobj* relobj)
1556   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1557
1558   // Processor-specific flags in ELF file header.  This is valid only after
1559   // reading symbols.
1560   elfcpp::Elf_Word
1561   processor_specific_flags() const
1562   { return this->processor_specific_flags_; }
1563
1564   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1565   // index.  This is only valid after do_count_local_symbol is called.
1566   bool
1567   local_symbol_is_mips16(unsigned int r_sym) const
1568   {
1569     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1570     return this->local_symbol_is_mips16_[r_sym];
1571   }
1572
1573   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1574   // index.  This is only valid after do_count_local_symbol is called.
1575   bool
1576   local_symbol_is_micromips(unsigned int r_sym) const
1577   {
1578     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1579     return this->local_symbol_is_micromips_[r_sym];
1580   }
1581
1582   // Get or create MIPS16 stub section.
1583   Mips16_stub_section<size, big_endian>*
1584   get_mips16_stub_section(unsigned int shndx)
1585   {
1586     typename Mips16_stubs_int_map::const_iterator it =
1587       this->mips16_stub_sections_.find(shndx);
1588     if (it != this->mips16_stub_sections_.end())
1589       return (*it).second;
1590
1591     Mips16_stub_section<size, big_endian>* stub_section =
1592       new Mips16_stub_section<size, big_endian>(this, shndx);
1593     this->mips16_stub_sections_.insert(
1594       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1595         stub_section->shndx(), stub_section));
1596     return stub_section;
1597   }
1598
1599   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1600   // object doesn't have fn stub for R_SYM.
1601   Mips16_stub_section<size, big_endian>*
1602   get_local_mips16_fn_stub(unsigned int r_sym) const
1603   {
1604     typename Mips16_stubs_int_map::const_iterator it =
1605       this->local_mips16_fn_stubs_.find(r_sym);
1606     if (it != this->local_mips16_fn_stubs_.end())
1607       return (*it).second;
1608     return NULL;
1609   }
1610
1611   // Record that this object has MIPS16 fn stub for local symbol.  This method
1612   // is only called if we decided not to discard the stub.
1613   void
1614   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1615   {
1616     gold_assert(stub->is_for_local_function());
1617     unsigned int r_sym = stub->r_sym();
1618     this->local_mips16_fn_stubs_.insert(
1619       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1620         r_sym, stub));
1621   }
1622
1623   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1624   // object doesn't have call stub for R_SYM.
1625   Mips16_stub_section<size, big_endian>*
1626   get_local_mips16_call_stub(unsigned int r_sym) const
1627   {
1628     typename Mips16_stubs_int_map::const_iterator it =
1629       this->local_mips16_call_stubs_.find(r_sym);
1630     if (it != this->local_mips16_call_stubs_.end())
1631       return (*it).second;
1632     return NULL;
1633   }
1634
1635   // Record that this object has MIPS16 call stub for local symbol.  This method
1636   // is only called if we decided not to discard the stub.
1637   void
1638   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1639   {
1640     gold_assert(stub->is_for_local_function());
1641     unsigned int r_sym = stub->r_sym();
1642     this->local_mips16_call_stubs_.insert(
1643       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1644         r_sym, stub));
1645   }
1646
1647   // Record that we found "non 16-bit" call relocation against local symbol
1648   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1649   // is one.
1650   void
1651   add_local_non_16bit_call(unsigned int symndx)
1652   { this->local_non_16bit_calls_.insert(symndx); }
1653
1654   // Return true if there is any "non 16-bit" call relocation against local
1655   // symbol SYMNDX in this object.
1656   bool
1657   has_local_non_16bit_call_relocs(unsigned int symndx)
1658   {
1659     return (this->local_non_16bit_calls_.find(symndx)
1660             != this->local_non_16bit_calls_.end());
1661   }
1662
1663   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1664   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1665   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1666   void
1667   add_local_16bit_call(unsigned int symndx)
1668   { this->local_16bit_calls_.insert(symndx); }
1669
1670   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1671   // symbol SYMNDX in this object.
1672   bool
1673   has_local_16bit_call_relocs(unsigned int symndx)
1674   {
1675     return (this->local_16bit_calls_.find(symndx)
1676             != this->local_16bit_calls_.end());
1677   }
1678
1679   // Get gp value that was used to create this object.
1680   Mips_address
1681   gp_value() const
1682   { return this->gp_; }
1683
1684   // Return whether the object is a PIC object.
1685   bool
1686   is_pic() const
1687   { return this->is_pic_; }
1688
1689   // Return whether the object uses N32 ABI.
1690   bool
1691   is_n32() const
1692   { return this->is_n32_; }
1693
1694   // Return whether the object uses N64 ABI.
1695   bool
1696   is_n64() const
1697   { return this->is_n64_; }
1698
1699   // Return whether the object uses NewABI conventions.
1700   bool
1701   is_newabi() const
1702   { return this->is_n32_ || this->is_n64_; }
1703
1704   // Return Mips_got_info for this object.
1705   Mips_got_info<size, big_endian>*
1706   get_got_info() const
1707   { return this->got_info_; }
1708
1709   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1710   Mips_got_info<size, big_endian>*
1711   get_or_create_got_info()
1712   {
1713     if (!this->got_info_)
1714       this->got_info_ = new Mips_got_info<size, big_endian>();
1715     return this->got_info_;
1716   }
1717
1718   // Set Mips_got_info for this object.
1719   void
1720   set_got_info(Mips_got_info<size, big_endian>* got_info)
1721   { this->got_info_ = got_info; }
1722
1723   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1724   // after do_read_symbols is called.
1725   bool
1726   is_mips16_stub_section(unsigned int shndx)
1727   {
1728     return (is_mips16_fn_stub_section(shndx)
1729             || is_mips16_call_stub_section(shndx)
1730             || is_mips16_call_fp_stub_section(shndx));
1731   }
1732
1733   // Return TRUE if relocations in section SHNDX can refer directly to a
1734   // MIPS16 function rather than to a hard-float stub.  This is only valid
1735   // after do_read_symbols is called.
1736   bool
1737   section_allows_mips16_refs(unsigned int shndx)
1738   {
1739     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1740   }
1741
1742   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1743   // after do_read_symbols is called.
1744   bool
1745   is_mips16_fn_stub_section(unsigned int shndx)
1746   {
1747     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1748     return this->section_is_mips16_fn_stub_[shndx];
1749   }
1750
1751   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1752   // after do_read_symbols is called.
1753   bool
1754   is_mips16_call_stub_section(unsigned int shndx)
1755   {
1756     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1757     return this->section_is_mips16_call_stub_[shndx];
1758   }
1759
1760   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1761   // valid after do_read_symbols is called.
1762   bool
1763   is_mips16_call_fp_stub_section(unsigned int shndx)
1764   {
1765     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1766     return this->section_is_mips16_call_fp_stub_[shndx];
1767   }
1768
1769   // Discard MIPS16 stub secions that are not needed.
1770   void
1771   discard_mips16_stub_sections(Symbol_table* symtab);
1772
1773   // Return gprmask from the .reginfo section of this object.
1774   Valtype
1775   gprmask() const
1776   { return this->gprmask_; }
1777
1778   // Return cprmask1 from the .reginfo section of this object.
1779   Valtype
1780   cprmask1() const
1781   { return this->cprmask1_; }
1782
1783   // Return cprmask2 from the .reginfo section of this object.
1784   Valtype
1785   cprmask2() const
1786   { return this->cprmask2_; }
1787
1788   // Return cprmask3 from the .reginfo section of this object.
1789   Valtype
1790   cprmask3() const
1791   { return this->cprmask3_; }
1792
1793   // Return cprmask4 from the .reginfo section of this object.
1794   Valtype
1795   cprmask4() const
1796   { return this->cprmask4_; }
1797
1798  protected:
1799   // Count the local symbols.
1800   void
1801   do_count_local_symbols(Stringpool_template<char>*,
1802                          Stringpool_template<char>*);
1803
1804   // Read the symbol information.
1805   void
1806   do_read_symbols(Read_symbols_data* sd);
1807
1808  private:
1809   // The name of the options section.
1810   const char* mips_elf_options_section_name()
1811   { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1812
1813   // processor-specific flags in ELF file header.
1814   elfcpp::Elf_Word processor_specific_flags_;
1815
1816   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1817   // This is only valid after do_count_local_symbol is called.
1818   std::vector<bool> local_symbol_is_mips16_;
1819
1820   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1821   // This is only valid after do_count_local_symbol is called.
1822   std::vector<bool> local_symbol_is_micromips_;
1823
1824   // Map from section index to the MIPS16 stub for that section.  This contains
1825   // all stubs found in this object.
1826   Mips16_stubs_int_map mips16_stub_sections_;
1827
1828   // Local symbols that have "non 16-bit" call relocation.  This relocation
1829   // would need to refer to a MIPS16 fn stub, if there is one.
1830   std::set<unsigned int> local_non_16bit_calls_;
1831
1832   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1833   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1834   // relocation that refers to the stub symbol.
1835   std::set<unsigned int> local_16bit_calls_;
1836
1837   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1838   // This contains only the stubs that we decided not to discard.
1839   Mips16_stubs_int_map local_mips16_fn_stubs_;
1840
1841   // Map from local symbol index to the MIPS16 call stub for that symbol.
1842   // This contains only the stubs that we decided not to discard.
1843   Mips16_stubs_int_map local_mips16_call_stubs_;
1844
1845   // gp value that was used to create this object.
1846   Mips_address gp_;
1847   // Whether the object is a PIC object.
1848   bool is_pic_ : 1;
1849   // Whether the object uses N32 ABI.
1850   bool is_n32_ : 1;
1851   // Whether the object uses N64 ABI.
1852   bool is_n64_ : 1;
1853   // The Mips_got_info for this object.
1854   Mips_got_info<size, big_endian>* got_info_;
1855
1856   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1857   // This is only valid after do_read_symbols is called.
1858   std::vector<bool> section_is_mips16_fn_stub_;
1859
1860   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1861   // This is only valid after do_read_symbols is called.
1862   std::vector<bool> section_is_mips16_call_stub_;
1863
1864   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1865   // This is only valid after do_read_symbols is called.
1866   std::vector<bool> section_is_mips16_call_fp_stub_;
1867
1868   // .pdr section index.
1869   unsigned int pdr_shndx_;
1870
1871   // gprmask from the .reginfo section of this object.
1872   Valtype gprmask_;
1873   // cprmask1 from the .reginfo section of this object.
1874   Valtype cprmask1_;
1875   // cprmask2 from the .reginfo section of this object.
1876   Valtype cprmask2_;
1877   // cprmask3 from the .reginfo section of this object.
1878   Valtype cprmask3_;
1879   // cprmask4 from the .reginfo section of this object.
1880   Valtype cprmask4_;
1881 };
1882
1883 // Mips_output_data_got class.
1884
1885 template<int size, bool big_endian>
1886 class Mips_output_data_got : public Output_data_got<size, big_endian>
1887 {
1888   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1889   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1890     Reloc_section;
1891   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1892
1893  public:
1894   Mips_output_data_got(Target_mips<size, big_endian>* target,
1895       Symbol_table* symtab, Layout* layout)
1896     : Output_data_got<size, big_endian>(), target_(target),
1897       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1898       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1899       secondary_got_relocs_()
1900   {
1901     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1902     this->set_addralign(16);
1903   }
1904
1905   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1906   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1907   void
1908   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1909                           unsigned int symndx, Mips_address addend,
1910                           unsigned int r_type, unsigned int shndx,
1911                           bool is_section_symbol)
1912   {
1913     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1914                                                     r_type, shndx,
1915                                                     is_section_symbol);
1916   }
1917
1918   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1919   // in OBJECT.  FOR_CALL is true if the caller is only interested in
1920   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
1921   // relocation.
1922   void
1923   record_global_got_symbol(Mips_symbol<size>* mips_sym,
1924                            Mips_relobj<size, big_endian>* object,
1925                            unsigned int r_type, bool dyn_reloc, bool for_call)
1926   {
1927     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1928                                                      dyn_reloc, for_call);
1929   }
1930
1931   // Record that OBJECT has a page relocation against symbol SYMNDX and
1932   // that ADDEND is the addend for that relocation.
1933   void
1934   record_got_page_entry(Mips_relobj<size, big_endian>* object,
1935                         unsigned int symndx, int addend)
1936   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1937
1938   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1939   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1940   // applied in a static link.
1941   void
1942   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1943                    Mips_symbol<size>* gsym)
1944   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1945
1946   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1947   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1948   // relocation that needs to be applied in a static link.
1949   void
1950   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1951                    Sized_relobj_file<size, big_endian>* relobj,
1952                    unsigned int index)
1953   {
1954     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1955                                                 index));
1956   }
1957
1958   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1959   // secondary GOT at OFFSET.
1960   void
1961   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1962                           Mips_symbol<size>* gsym)
1963   {
1964     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1965                                                        r_type, gsym));
1966   }
1967
1968   // Update GOT entry at OFFSET with VALUE.
1969   void
1970   update_got_entry(unsigned int offset, Mips_address value)
1971   {
1972     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1973   }
1974
1975   // Return the number of entries in local part of the GOT.  This includes
1976   // local entries, page entries and 2 reserved entries.
1977   unsigned int
1978   get_local_gotno() const
1979   {
1980     if (!this->multi_got())
1981       {
1982         return (2 + this->master_got_info_->local_gotno()
1983                 + this->master_got_info_->page_gotno());
1984       }
1985     else
1986       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1987   }
1988
1989   // Return dynamic symbol table index of the first symbol with global GOT
1990   // entry.
1991   unsigned int
1992   first_global_got_dynsym_index() const
1993   { return this->first_global_got_dynsym_index_; }
1994
1995   // Set dynamic symbol table index of the first symbol with global GOT entry.
1996   void
1997   set_first_global_got_dynsym_index(unsigned int index)
1998   { this->first_global_got_dynsym_index_ = index; }
1999
2000   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
2001   // larger than 64K, create multi-GOT.
2002   void
2003   lay_out_got(Layout* layout, Symbol_table* symtab,
2004               const Input_objects* input_objects);
2005
2006   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
2007   void
2008   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2009
2010   // Attempt to merge GOTs of different input objects.
2011   void
2012   merge_gots(const Input_objects* input_objects);
2013
2014   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
2015   // this would lead to overflow, true if they were merged successfully.
2016   bool
2017   merge_got_with(Mips_got_info<size, big_endian>* from,
2018                  Mips_relobj<size, big_endian>* object,
2019                  Mips_got_info<size, big_endian>* to);
2020
2021   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
2022   // use OBJECT's GOT.
2023   unsigned int
2024   get_got_page_offset(Mips_address value,
2025                       const Mips_relobj<size, big_endian>* object)
2026   {
2027     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2028                                           ? this->master_got_info_
2029                                           : object->get_got_info());
2030     gold_assert(g != NULL);
2031     return g->get_got_page_offset(value, this);
2032   }
2033
2034   // Return the GOT offset of type GOT_TYPE of the global symbol
2035   // GSYM.  For multi-GOT links, use OBJECT's GOT.
2036   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2037                           Mips_relobj<size, big_endian>* object) const
2038   {
2039     if (!this->multi_got())
2040       return gsym->got_offset(got_type);
2041     else
2042       {
2043         Mips_got_info<size, big_endian>* g = object->get_got_info();
2044         gold_assert(g != NULL);
2045         return gsym->got_offset(g->multigot_got_type(got_type));
2046       }
2047   }
2048
2049   // Return the GOT offset of type GOT_TYPE of the local symbol
2050   // SYMNDX.
2051   unsigned int
2052   got_offset(unsigned int symndx, unsigned int got_type,
2053              Sized_relobj_file<size, big_endian>* object,
2054              uint64_t addend) const
2055   { return object->local_got_offset(symndx, got_type, addend); }
2056
2057   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2058   unsigned int
2059   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2060   {
2061     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2062                                           ? this->master_got_info_
2063                                           : object->get_got_info());
2064     gold_assert(g != NULL);
2065     return g->tls_ldm_offset();
2066   }
2067
2068   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2069   void
2070   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2071                      Mips_relobj<size, big_endian>* object)
2072   {
2073     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2074                                           ? this->master_got_info_
2075                                           : object->get_got_info());
2076     gold_assert(g != NULL);
2077     g->set_tls_ldm_offset(tls_ldm_offset);
2078   }
2079
2080   // Return true for multi-GOT links.
2081   bool
2082   multi_got() const
2083   { return this->primary_got_ != NULL; }
2084
2085   // Return the offset of OBJECT's GOT from the start of .got section.
2086   unsigned int
2087   get_got_offset(const Mips_relobj<size, big_endian>* object)
2088   {
2089     if (!this->multi_got())
2090       return 0;
2091     else
2092       {
2093         Mips_got_info<size, big_endian>* g = object->get_got_info();
2094         return g != NULL ? g->offset() : 0;
2095       }
2096   }
2097
2098   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2099   void
2100   add_reloc_only_entries()
2101   { this->master_got_info_->add_reloc_only_entries(this); }
2102
2103   // Return offset of the primary GOT's entry for global symbol.
2104   unsigned int
2105   get_primary_got_offset(const Mips_symbol<size>* sym) const
2106   {
2107     gold_assert(sym->global_got_area() != GGA_NONE);
2108     return (this->get_local_gotno() + sym->dynsym_index()
2109             - this->first_global_got_dynsym_index()) * size/8;
2110   }
2111
2112   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2113   // Input argument GOT_OFFSET is always global offset from the start of
2114   // .got section, for both single and multi-GOT links.
2115   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2116   // links, the return value is object_got_offset - 0x7FF0, where
2117   // object_got_offset is offset in the OBJECT's GOT.
2118   int
2119   gp_offset(unsigned int got_offset,
2120             const Mips_relobj<size, big_endian>* object) const
2121   {
2122     return (this->address() + got_offset
2123             - this->target_->adjusted_gp_value(object));
2124   }
2125
2126  protected:
2127   // Write out the GOT table.
2128   void
2129   do_write(Output_file*);
2130
2131  private:
2132
2133   // This class represent dynamic relocations that need to be applied by
2134   // gold because we are using TLS relocations in a static link.
2135   class Static_reloc
2136   {
2137    public:
2138     Static_reloc(unsigned int got_offset, unsigned int r_type,
2139                  Mips_symbol<size>* gsym)
2140       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2141     { this->u_.global.symbol = gsym; }
2142
2143     Static_reloc(unsigned int got_offset, unsigned int r_type,
2144           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2145       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2146     {
2147       this->u_.local.relobj = relobj;
2148       this->u_.local.index = index;
2149     }
2150
2151     // Return the GOT offset.
2152     unsigned int
2153     got_offset() const
2154     { return this->got_offset_; }
2155
2156     // Relocation type.
2157     unsigned int
2158     r_type() const
2159     { return this->r_type_; }
2160
2161     // Whether the symbol is global or not.
2162     bool
2163     symbol_is_global() const
2164     { return this->symbol_is_global_; }
2165
2166     // For a relocation against a global symbol, the global symbol.
2167     Mips_symbol<size>*
2168     symbol() const
2169     {
2170       gold_assert(this->symbol_is_global_);
2171       return this->u_.global.symbol;
2172     }
2173
2174     // For a relocation against a local symbol, the defining object.
2175     Sized_relobj_file<size, big_endian>*
2176     relobj() const
2177     {
2178       gold_assert(!this->symbol_is_global_);
2179       return this->u_.local.relobj;
2180     }
2181
2182     // For a relocation against a local symbol, the local symbol index.
2183     unsigned int
2184     index() const
2185     {
2186       gold_assert(!this->symbol_is_global_);
2187       return this->u_.local.index;
2188     }
2189
2190    private:
2191     // GOT offset of the entry to which this relocation is applied.
2192     unsigned int got_offset_;
2193     // Type of relocation.
2194     unsigned int r_type_;
2195     // Whether this relocation is against a global symbol.
2196     bool symbol_is_global_;
2197     // A global or local symbol.
2198     union
2199     {
2200       struct
2201       {
2202         // For a global symbol, the symbol itself.
2203         Mips_symbol<size>* symbol;
2204       } global;
2205       struct
2206       {
2207         // For a local symbol, the object defining object.
2208         Sized_relobj_file<size, big_endian>* relobj;
2209         // For a local symbol, the symbol index.
2210         unsigned int index;
2211       } local;
2212     } u_;
2213   };
2214
2215   // The target.
2216   Target_mips<size, big_endian>* target_;
2217   // The symbol table.
2218   Symbol_table* symbol_table_;
2219   // The layout.
2220   Layout* layout_;
2221   // Static relocs to be applied to the GOT.
2222   std::vector<Static_reloc> static_relocs_;
2223   // .got section view.
2224   unsigned char* got_view_;
2225   // The dynamic symbol table index of the first symbol with global GOT entry.
2226   unsigned int first_global_got_dynsym_index_;
2227   // The master GOT information.
2228   Mips_got_info<size, big_endian>* master_got_info_;
2229   // The  primary GOT information.
2230   Mips_got_info<size, big_endian>* primary_got_;
2231   // Secondary GOT fixups.
2232   std::vector<Static_reloc> secondary_got_relocs_;
2233 };
2234
2235 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2236 // two ways of creating these interfaces.  The first is to add:
2237 //
2238 //      lui     $25,%hi(func)
2239 //      j       func
2240 //      addiu   $25,$25,%lo(func)
2241 //
2242 // to a separate trampoline section.  The second is to add:
2243 //
2244 //      lui     $25,%hi(func)
2245 //      addiu   $25,$25,%lo(func)
2246 //
2247 // immediately before a PIC function "func", but only if a function is at the
2248 // beginning of the section, and the section is not too heavily aligned (i.e we
2249 // would need to add no more than 2 nops before the stub.)
2250 //
2251 // We only create stubs of the first type.
2252
2253 template<int size, bool big_endian>
2254 class Mips_output_data_la25_stub : public Output_section_data
2255 {
2256   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2257
2258  public:
2259   Mips_output_data_la25_stub()
2260   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2261   { }
2262
2263   // Create LA25 stub for a symbol.
2264   void
2265   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2266                    Mips_symbol<size>* gsym);
2267
2268   // Return output address of a stub.
2269   Mips_address
2270   stub_address(const Mips_symbol<size>* sym) const
2271   {
2272     gold_assert(sym->has_la25_stub());
2273     return this->address() + sym->la25_stub_offset();
2274   }
2275
2276  protected:
2277   void
2278   do_adjust_output_section(Output_section* os)
2279   { os->set_entsize(0); }
2280
2281  private:
2282   // Template for standard LA25 stub.
2283   static const uint32_t la25_stub_entry[];
2284   // Template for microMIPS LA25 stub.
2285   static const uint32_t la25_stub_micromips_entry[];
2286
2287   // Set the final size.
2288   void
2289   set_final_data_size()
2290   { this->set_data_size(this->symbols_.size() * 16); }
2291
2292   // Create a symbol for SYM stub's value and size, to help make the
2293   // disassembly easier to read.
2294   void
2295   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2296                      Target_mips<size, big_endian>* target, uint64_t symsize);
2297
2298   // Write to a map file.
2299   void
2300   do_print_to_mapfile(Mapfile* mapfile) const
2301   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2302
2303   // Write out the LA25 stub section.
2304   void
2305   do_write(Output_file*);
2306
2307   // Symbols that have LA25 stubs.
2308   Unordered_set<Mips_symbol<size>*> symbols_;
2309 };
2310
2311 // MIPS-specific relocation writer.
2312
2313 template<int sh_type, bool dynamic, int size, bool big_endian>
2314 struct Mips_output_reloc_writer;
2315
2316 template<int sh_type, bool dynamic, bool big_endian>
2317 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2318 {
2319   typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2320   typedef std::vector<Output_reloc_type> Relocs;
2321
2322   static void
2323   write(typename Relocs::const_iterator p, unsigned char* pov)
2324   { p->write(pov); }
2325 };
2326
2327 template<int sh_type, bool dynamic, bool big_endian>
2328 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2329 {
2330   typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2331   typedef std::vector<Output_reloc_type> Relocs;
2332
2333   static void
2334   write(typename Relocs::const_iterator p, unsigned char* pov)
2335   {
2336     elfcpp::Mips64_rel_write<big_endian> orel(pov);
2337     orel.put_r_offset(p->get_address());
2338     orel.put_r_sym(p->get_symbol_index());
2339     orel.put_r_ssym(RSS_UNDEF);
2340     orel.put_r_type(p->type());
2341     if (p->type() == elfcpp::R_MIPS_REL32)
2342       orel.put_r_type2(elfcpp::R_MIPS_64);
2343     else
2344       orel.put_r_type2(elfcpp::R_MIPS_NONE);
2345     orel.put_r_type3(elfcpp::R_MIPS_NONE);
2346   }
2347 };
2348
2349 template<int sh_type, bool dynamic, int size, bool big_endian>
2350 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2351                                                         size, big_endian>
2352 {
2353  public:
2354   Mips_output_data_reloc(bool sort_relocs)
2355     : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2356   { }
2357
2358  protected:
2359   // Write out the data.
2360   void
2361   do_write(Output_file* of)
2362   {
2363     typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2364         big_endian> Writer;
2365     this->template do_write_generic<Writer>(of);
2366   }
2367 };
2368
2369
2370 // A class to handle the PLT data.
2371
2372 template<int size, bool big_endian>
2373 class Mips_output_data_plt : public Output_section_data
2374 {
2375   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2376   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2377                                  size, big_endian> Reloc_section;
2378
2379  public:
2380   // Create the PLT section.  The ordinary .got section is an argument,
2381   // since we need to refer to the start.
2382   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2383                        Target_mips<size, big_endian>* target)
2384     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2385       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2386       target_(target)
2387   {
2388     this->rel_ = new Reloc_section(false);
2389     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2390                                     elfcpp::SHF_ALLOC, this->rel_,
2391                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2392   }
2393
2394   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2395   void
2396   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2397
2398   // Return the .rel.plt section data.
2399   const Reloc_section*
2400   rel_plt() const
2401   { return this->rel_; }
2402
2403   // Return the number of PLT entries.
2404   unsigned int
2405   entry_count() const
2406   { return this->symbols_.size(); }
2407
2408   // Return the offset of the first non-reserved PLT entry.
2409   unsigned int
2410   first_plt_entry_offset() const
2411   { return sizeof(plt0_entry_o32); }
2412
2413   // Return the size of a PLT entry.
2414   unsigned int
2415   plt_entry_size() const
2416   { return sizeof(plt_entry); }
2417
2418   // Set final PLT offsets.  For each symbol, determine whether standard or
2419   // compressed (MIPS16 or microMIPS) PLT entry is used.
2420   void
2421   set_plt_offsets();
2422
2423   // Return the offset of the first standard PLT entry.
2424   unsigned int
2425   first_mips_plt_offset() const
2426   { return this->plt_header_size_; }
2427
2428   // Return the offset of the first compressed PLT entry.
2429   unsigned int
2430   first_comp_plt_offset() const
2431   { return this->plt_header_size_ + this->plt_mips_offset_; }
2432
2433   // Return whether there are any standard PLT entries.
2434   bool
2435   has_standard_entries() const
2436   { return this->plt_mips_offset_ > 0; }
2437
2438   // Return the output address of standard PLT entry.
2439   Mips_address
2440   mips_entry_address(const Mips_symbol<size>* sym) const
2441   {
2442     gold_assert (sym->has_mips_plt_offset());
2443     return (this->address() + this->first_mips_plt_offset()
2444             + sym->mips_plt_offset());
2445   }
2446
2447   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2448   Mips_address
2449   comp_entry_address(const Mips_symbol<size>* sym) const
2450   {
2451     gold_assert (sym->has_comp_plt_offset());
2452     return (this->address() + this->first_comp_plt_offset()
2453             + sym->comp_plt_offset());
2454   }
2455
2456  protected:
2457   void
2458   do_adjust_output_section(Output_section* os)
2459   { os->set_entsize(0); }
2460
2461   // Write to a map file.
2462   void
2463   do_print_to_mapfile(Mapfile* mapfile) const
2464   { mapfile->print_output_data(this, _(".plt")); }
2465
2466  private:
2467   // Template for the first PLT entry.
2468   static const uint32_t plt0_entry_o32[];
2469   static const uint32_t plt0_entry_n32[];
2470   static const uint32_t plt0_entry_n64[];
2471   static const uint32_t plt0_entry_micromips_o32[];
2472   static const uint32_t plt0_entry_micromips32_o32[];
2473
2474   // Template for subsequent PLT entries.
2475   static const uint32_t plt_entry[];
2476   static const uint32_t plt_entry_mips16_o32[];
2477   static const uint32_t plt_entry_micromips_o32[];
2478   static const uint32_t plt_entry_micromips32_o32[];
2479
2480   // Set the final size.
2481   void
2482   set_final_data_size()
2483   {
2484     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2485                         + this->plt_comp_offset_);
2486   }
2487
2488   // Write out the PLT data.
2489   void
2490   do_write(Output_file*);
2491
2492   // Return whether the plt header contains microMIPS code.  For the sake of
2493   // cache alignment always use a standard header whenever any standard entries
2494   // are present even if microMIPS entries are present as well.  This also lets
2495   // the microMIPS header rely on the value of $v0 only set by microMIPS
2496   // entries, for a small size reduction.
2497   bool
2498   is_plt_header_compressed() const
2499   {
2500     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2501     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2502   }
2503
2504   // Return the size of the PLT header.
2505   unsigned int
2506   get_plt_header_size() const
2507   {
2508     if (this->target_->is_output_n64())
2509       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2510     else if (this->target_->is_output_n32())
2511       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2512     else if (!this->is_plt_header_compressed())
2513       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2514     else if (this->target_->use_32bit_micromips_instructions())
2515       return (2 * sizeof(plt0_entry_micromips32_o32)
2516               / sizeof(plt0_entry_micromips32_o32[0]));
2517     else
2518       return (2 * sizeof(plt0_entry_micromips_o32)
2519               / sizeof(plt0_entry_micromips_o32[0]));
2520   }
2521
2522   // Return the PLT header entry.
2523   const uint32_t*
2524   get_plt_header_entry() const
2525   {
2526     if (this->target_->is_output_n64())
2527       return plt0_entry_n64;
2528     else if (this->target_->is_output_n32())
2529       return plt0_entry_n32;
2530     else if (!this->is_plt_header_compressed())
2531       return plt0_entry_o32;
2532     else if (this->target_->use_32bit_micromips_instructions())
2533       return plt0_entry_micromips32_o32;
2534     else
2535       return plt0_entry_micromips_o32;
2536   }
2537
2538   // Return the size of the standard PLT entry.
2539   unsigned int
2540   standard_plt_entry_size() const
2541   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2542
2543   // Return the size of the compressed PLT entry.
2544   unsigned int
2545   compressed_plt_entry_size() const
2546   {
2547     gold_assert(!this->target_->is_output_newabi());
2548
2549     if (!this->target_->is_output_micromips())
2550       return (2 * sizeof(plt_entry_mips16_o32)
2551               / sizeof(plt_entry_mips16_o32[0]));
2552     else if (this->target_->use_32bit_micromips_instructions())
2553       return (2 * sizeof(plt_entry_micromips32_o32)
2554               / sizeof(plt_entry_micromips32_o32[0]));
2555     else
2556       return (2 * sizeof(plt_entry_micromips_o32)
2557               / sizeof(plt_entry_micromips_o32[0]));
2558   }
2559
2560   // The reloc section.
2561   Reloc_section* rel_;
2562   // The .got.plt section.
2563   Output_data_space* got_plt_;
2564   // Symbols that have PLT entry.
2565   std::vector<Mips_symbol<size>*> symbols_;
2566   // The offset of the next standard PLT entry to create.
2567   unsigned int plt_mips_offset_;
2568   // The offset of the next compressed PLT entry to create.
2569   unsigned int plt_comp_offset_;
2570   // The size of the PLT header in bytes.
2571   unsigned int plt_header_size_;
2572   // The target.
2573   Target_mips<size, big_endian>* target_;
2574 };
2575
2576 // A class to handle the .MIPS.stubs data.
2577
2578 template<int size, bool big_endian>
2579 class Mips_output_data_mips_stubs : public Output_section_data
2580 {
2581   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2582
2583  public:
2584    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2585      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2586        stub_offsets_are_set_(false), target_(target)
2587    { }
2588
2589   // Create entry for a symbol.
2590   void
2591   make_entry(Mips_symbol<size>*);
2592
2593   // Remove entry for a symbol.
2594   void
2595   remove_entry(Mips_symbol<size>* gsym);
2596
2597   // Set stub offsets for symbols.  This method expects that the number of
2598   // entries in dynamic symbol table is set.
2599   void
2600   set_lazy_stub_offsets();
2601
2602   void
2603   set_needs_dynsym_value();
2604
2605    // Set the number of entries in dynamic symbol table.
2606   void
2607   set_dynsym_count(unsigned int dynsym_count)
2608   { this->dynsym_count_ = dynsym_count; }
2609
2610   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2611   // count is greater than 0x10000.  If the dynamic symbol count is less than
2612   // 0x10000, the stub will be 4 bytes smaller.
2613   // There's no disadvantage from using microMIPS code here, so for the sake of
2614   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2615   // output produced at all.  This has a benefit of stubs being shorter by
2616   // 4 bytes each too, unless in the insn32 mode.
2617   unsigned int
2618   stub_max_size() const
2619   {
2620     if (!this->target_->is_output_micromips()
2621         || this->target_->use_32bit_micromips_instructions())
2622       return 20;
2623     else
2624       return 16;
2625   }
2626
2627   // Return the size of the stub.  This method expects that the final dynsym
2628   // count is set.
2629   unsigned int
2630   stub_size() const
2631   {
2632     gold_assert(this->dynsym_count_ != -1U);
2633     if (this->dynsym_count_ > 0x10000)
2634       return this->stub_max_size();
2635     else
2636       return this->stub_max_size() - 4;
2637   }
2638
2639   // Return output address of a stub.
2640   Mips_address
2641   stub_address(const Mips_symbol<size>* sym) const
2642   {
2643     gold_assert(sym->has_lazy_stub());
2644     return this->address() + sym->lazy_stub_offset();
2645   }
2646
2647  protected:
2648   void
2649   do_adjust_output_section(Output_section* os)
2650   { os->set_entsize(0); }
2651
2652   // Write to a map file.
2653   void
2654   do_print_to_mapfile(Mapfile* mapfile) const
2655   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2656
2657  private:
2658   static const uint32_t lazy_stub_normal_1[];
2659   static const uint32_t lazy_stub_normal_1_n64[];
2660   static const uint32_t lazy_stub_normal_2[];
2661   static const uint32_t lazy_stub_normal_2_n64[];
2662   static const uint32_t lazy_stub_big[];
2663   static const uint32_t lazy_stub_big_n64[];
2664
2665   static const uint32_t lazy_stub_micromips_normal_1[];
2666   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2667   static const uint32_t lazy_stub_micromips_normal_2[];
2668   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2669   static const uint32_t lazy_stub_micromips_big[];
2670   static const uint32_t lazy_stub_micromips_big_n64[];
2671
2672   static const uint32_t lazy_stub_micromips32_normal_1[];
2673   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2674   static const uint32_t lazy_stub_micromips32_normal_2[];
2675   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2676   static const uint32_t lazy_stub_micromips32_big[];
2677   static const uint32_t lazy_stub_micromips32_big_n64[];
2678
2679   // Set the final size.
2680   void
2681   set_final_data_size()
2682   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2683
2684   // Write out the .MIPS.stubs data.
2685   void
2686   do_write(Output_file*);
2687
2688   // .MIPS.stubs symbols
2689   Unordered_set<Mips_symbol<size>*> symbols_;
2690   // Number of entries in dynamic symbol table.
2691   unsigned int dynsym_count_;
2692   // Whether the stub offsets are set.
2693   bool stub_offsets_are_set_;
2694   // The target.
2695   Target_mips<size, big_endian>* target_;
2696 };
2697
2698 // This class handles Mips .reginfo output section.
2699
2700 template<int size, bool big_endian>
2701 class Mips_output_section_reginfo : public Output_section
2702 {
2703   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2704
2705  public:
2706   Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2707                               elfcpp::Elf_Xword flags,
2708                               Target_mips<size, big_endian>* target)
2709     : Output_section(name, type, flags), target_(target), gprmask_(0),
2710       cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2711   { }
2712
2713   // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2714   static Mips_output_section_reginfo<size, big_endian>*
2715   as_mips_output_section_reginfo(Output_section* os)
2716   { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2717
2718   // Set masks of the output .reginfo section.
2719   void
2720   set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2721             Valtype cprmask3, Valtype cprmask4)
2722   {
2723     this->gprmask_ = gprmask;
2724     this->cprmask1_ = cprmask1;
2725     this->cprmask2_ = cprmask2;
2726     this->cprmask3_ = cprmask3;
2727     this->cprmask4_ = cprmask4;
2728   }
2729
2730  protected:
2731   // Set the final data size.
2732   void
2733   set_final_data_size()
2734   { this->set_data_size(24); }
2735
2736   // Write out reginfo section.
2737   void
2738   do_write(Output_file* of);
2739
2740  private:
2741   Target_mips<size, big_endian>* target_;
2742
2743   // gprmask of the output .reginfo section.
2744   Valtype gprmask_;
2745   // cprmask1 of the output .reginfo section.
2746   Valtype cprmask1_;
2747   // cprmask2 of the output .reginfo section.
2748   Valtype cprmask2_;
2749   // cprmask3 of the output .reginfo section.
2750   Valtype cprmask3_;
2751   // cprmask4 of the output .reginfo section.
2752   Valtype cprmask4_;
2753 };
2754
2755 // The MIPS target has relocation types which default handling of relocatable
2756 // relocation cannot process.  So we have to extend the default code.
2757
2758 template<bool big_endian, typename Classify_reloc>
2759 class Mips_scan_relocatable_relocs :
2760   public Default_scan_relocatable_relocs<Classify_reloc>
2761 {
2762  public:
2763   // Return the strategy to use for a local symbol which is a section
2764   // symbol, given the relocation type.
2765   inline Relocatable_relocs::Reloc_strategy
2766   local_section_strategy(unsigned int r_type, Relobj* object)
2767   {
2768     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2769       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2770     else
2771       {
2772         switch (r_type)
2773           {
2774           case elfcpp::R_MIPS_26:
2775             return Relocatable_relocs::RELOC_SPECIAL;
2776
2777           default:
2778             return Default_scan_relocatable_relocs<Classify_reloc>::
2779                 local_section_strategy(r_type, object);
2780           }
2781       }
2782   }
2783 };
2784
2785 // Mips_copy_relocs class.  The only difference from the base class is the
2786 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2787 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2788 // cannot be made dynamic, a COPY reloc is emitted.
2789
2790 template<int sh_type, int size, bool big_endian>
2791 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2792 {
2793  public:
2794   Mips_copy_relocs()
2795     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2796   { }
2797
2798   // Emit any saved relocations which turn out to be needed.  This is
2799   // called after all the relocs have been scanned.
2800   void
2801   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2802             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2803
2804  private:
2805   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2806     Copy_reloc_entry;
2807
2808   // Emit this reloc if appropriate.  This is called after we have
2809   // scanned all the relocations, so we know whether we emitted a
2810   // COPY relocation for SYM_.
2811   void
2812   emit_entry(Copy_reloc_entry& entry,
2813              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2814              Symbol_table* symtab, Layout* layout,
2815              Target_mips<size, big_endian>* target);
2816 };
2817
2818
2819 // Return true if the symbol SYM should be considered to resolve local
2820 // to the current module, and false otherwise.  The logic is taken from
2821 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2822 static bool
2823 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2824                   bool local_protected)
2825 {
2826   // If it's a local sym, of course we resolve locally.
2827   if (sym == NULL)
2828     return true;
2829
2830   // STV_HIDDEN or STV_INTERNAL ones must be local.
2831   if (sym->visibility() == elfcpp::STV_HIDDEN
2832       || sym->visibility() == elfcpp::STV_INTERNAL)
2833     return true;
2834
2835   // If we don't have a definition in a regular file, then we can't
2836   // resolve locally.  The sym is either undefined or dynamic.
2837   if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2838       || sym->is_undefined())
2839     return false;
2840
2841   // Forced local symbols resolve locally.
2842   if (sym->is_forced_local())
2843     return true;
2844
2845   // As do non-dynamic symbols.
2846   if (!has_dynsym_entry)
2847     return true;
2848
2849   // At this point, we know the symbol is defined and dynamic.  In an
2850   // executable it must resolve locally, likewise when building symbolic
2851   // shared libraries.
2852   if (parameters->options().output_is_executable()
2853       || parameters->options().Bsymbolic())
2854     return true;
2855
2856   // Now deal with defined dynamic symbols in shared libraries.  Ones
2857   // with default visibility might not resolve locally.
2858   if (sym->visibility() == elfcpp::STV_DEFAULT)
2859     return false;
2860
2861   // STV_PROTECTED non-function symbols are local.
2862   if (sym->type() != elfcpp::STT_FUNC)
2863     return true;
2864
2865   // Function pointer equality tests may require that STV_PROTECTED
2866   // symbols be treated as dynamic symbols.  If the address of a
2867   // function not defined in an executable is set to that function's
2868   // plt entry in the executable, then the address of the function in
2869   // a shared library must also be the plt entry in the executable.
2870   return local_protected;
2871 }
2872
2873 // Return TRUE if references to this symbol always reference the symbol in this
2874 // object.
2875 static bool
2876 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2877 {
2878   return symbol_refs_local(sym, has_dynsym_entry, false);
2879 }
2880
2881 // Return TRUE if calls to this symbol always call the version in this object.
2882 static bool
2883 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2884 {
2885   return symbol_refs_local(sym, has_dynsym_entry, true);
2886 }
2887
2888 // Compare GOT offsets of two symbols.
2889
2890 template<int size, bool big_endian>
2891 static bool
2892 got_offset_compare(Symbol* sym1, Symbol* sym2)
2893 {
2894   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2895   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2896   unsigned int area1 = mips_sym1->global_got_area();
2897   unsigned int area2 = mips_sym2->global_got_area();
2898   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2899
2900   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2901   if (area1 != area2)
2902     return area1 < area2;
2903
2904   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2905 }
2906
2907 // This method divides dynamic symbols into symbols that have GOT entry, and
2908 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
2909 // Mips ABI requires that symbols with the GOT entry must be at the end of
2910 // dynamic symbol table, and the order in dynamic symbol table must match the
2911 // order in GOT.
2912
2913 template<int size, bool big_endian>
2914 static void
2915 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2916                     std::vector<Symbol*>* non_got_symbols,
2917                     std::vector<Symbol*>* got_symbols)
2918 {
2919   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2920        p != dyn_symbols->end();
2921        ++p)
2922     {
2923       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2924       if (mips_sym->global_got_area() == GGA_NORMAL
2925           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2926         got_symbols->push_back(mips_sym);
2927       else
2928         non_got_symbols->push_back(mips_sym);
2929     }
2930
2931   std::sort(got_symbols->begin(), got_symbols->end(),
2932             got_offset_compare<size, big_endian>);
2933 }
2934
2935 // Functor class for processing the global symbol table.
2936
2937 template<int size, bool big_endian>
2938 class Symbol_visitor_check_symbols
2939 {
2940  public:
2941   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2942     Layout* layout, Symbol_table* symtab)
2943     : target_(target), layout_(layout), symtab_(symtab)
2944   { }
2945
2946   void
2947   operator()(Sized_symbol<size>* sym)
2948   {
2949     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2950     if (local_pic_function<size, big_endian>(mips_sym))
2951       {
2952         // SYM is a function that might need $25 to be valid on entry.
2953         // If we're creating a non-PIC relocatable object, mark SYM as
2954         // being PIC.  If we're creating a non-relocatable object with
2955         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2956         // stub.
2957         if (parameters->options().relocatable())
2958           {
2959             if (!parameters->options().output_is_position_independent())
2960               mips_sym->set_pic();
2961           }
2962         else if (mips_sym->has_nonpic_branches())
2963           {
2964             this->target_->la25_stub_section(layout_)
2965                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2966           }
2967       }
2968   }
2969
2970  private:
2971   Target_mips<size, big_endian>* target_;
2972   Layout* layout_;
2973   Symbol_table* symtab_;
2974 };
2975
2976 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
2977 // and endianness. The relocation format for MIPS-64 is non-standard.
2978
2979 template<int sh_type, int size, bool big_endian>
2980 struct Mips_reloc_types;
2981
2982 template<bool big_endian>
2983 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
2984 {
2985   typedef typename elfcpp::Rel<32, big_endian> Reloc;
2986   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
2987
2988   static typename elfcpp::Elf_types<32>::Elf_Swxword
2989   get_r_addend(const Reloc*)
2990   { return 0; }
2991
2992   static inline void
2993   set_reloc_addend(Reloc_write*,
2994                    typename elfcpp::Elf_types<32>::Elf_Swxword)
2995   { gold_unreachable(); }
2996 };
2997
2998 template<bool big_endian>
2999 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3000 {
3001   typedef typename elfcpp::Rela<32, big_endian> Reloc;
3002   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3003
3004   static typename elfcpp::Elf_types<32>::Elf_Swxword
3005   get_r_addend(const Reloc* reloc)
3006   { return reloc->get_r_addend(); }
3007
3008   static inline void
3009   set_reloc_addend(Reloc_write* p,
3010                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
3011   { p->put_r_addend(val); }
3012 };
3013
3014 template<bool big_endian>
3015 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3016 {
3017   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3018   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3019
3020   static typename elfcpp::Elf_types<64>::Elf_Swxword
3021   get_r_addend(const Reloc*)
3022   { return 0; }
3023
3024   static inline void
3025   set_reloc_addend(Reloc_write*,
3026                    typename elfcpp::Elf_types<64>::Elf_Swxword)
3027   { gold_unreachable(); }
3028 };
3029
3030 template<bool big_endian>
3031 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3032 {
3033   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3034   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3035
3036   static typename elfcpp::Elf_types<64>::Elf_Swxword
3037   get_r_addend(const Reloc* reloc)
3038   { return reloc->get_r_addend(); }
3039
3040   static inline void
3041   set_reloc_addend(Reloc_write* p,
3042                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
3043   { p->put_r_addend(val); }
3044 };
3045
3046 // Forward declaration.
3047 static unsigned int
3048 mips_get_size_for_reloc(unsigned int, Relobj*);
3049
3050 // A class for inquiring about properties of a relocation,
3051 // used while scanning relocs during a relocatable link and
3052 // garbage collection.
3053
3054 template<int sh_type_, int size, bool big_endian>
3055 class Mips_classify_reloc;
3056
3057 template<int sh_type_, bool big_endian>
3058 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3059     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3060 {
3061  public:
3062   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3063       Reltype;
3064   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3065       Reltype_write;
3066
3067   // Return the symbol referred to by the relocation.
3068   static inline unsigned int
3069   get_r_sym(const Reltype* reloc)
3070   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3071
3072   // Return the type of the relocation.
3073   static inline unsigned int
3074   get_r_type(const Reltype* reloc)
3075   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3076
3077   static inline unsigned int
3078   get_r_type2(const Reltype*)
3079   { return 0; }
3080
3081   static inline unsigned int
3082   get_r_type3(const Reltype*)
3083   { return 0; }
3084
3085   static inline unsigned int
3086   get_r_ssym(const Reltype*)
3087   { return 0; }
3088
3089   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3090   static inline unsigned int
3091   get_r_addend(const Reltype* reloc)
3092   {
3093     if (sh_type_ == elfcpp::SHT_REL)
3094       return 0;
3095     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3096   }
3097
3098   // Write the r_info field to a new reloc, using the r_info field from
3099   // the original reloc, replacing the r_sym field with R_SYM.
3100   static inline void
3101   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3102   {
3103     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3104     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3105   }
3106
3107   // Write the r_addend field to a new reloc.
3108   static inline void
3109   put_r_addend(Reltype_write* to,
3110                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3111   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3112
3113   // Return the size of the addend of the relocation (only used for SHT_REL).
3114   static unsigned int
3115   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3116   { return mips_get_size_for_reloc(r_type, obj); }
3117 };
3118
3119 template<int sh_type_, bool big_endian>
3120 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3121     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3122 {
3123  public:
3124   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3125       Reltype;
3126   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3127       Reltype_write;
3128
3129   // Return the symbol referred to by the relocation.
3130   static inline unsigned int
3131   get_r_sym(const Reltype* reloc)
3132   { return reloc->get_r_sym(); }
3133
3134   // Return the r_type of the relocation.
3135   static inline unsigned int
3136   get_r_type(const Reltype* reloc)
3137   { return reloc->get_r_type(); }
3138
3139   // Return the r_type2 of the relocation.
3140   static inline unsigned int
3141   get_r_type2(const Reltype* reloc)
3142   { return reloc->get_r_type2(); }
3143
3144   // Return the r_type3 of the relocation.
3145   static inline unsigned int
3146   get_r_type3(const Reltype* reloc)
3147   { return reloc->get_r_type3(); }
3148
3149   // Return the special symbol of the relocation.
3150   static inline unsigned int
3151   get_r_ssym(const Reltype* reloc)
3152   { return reloc->get_r_ssym(); }
3153
3154   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3155   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3156   get_r_addend(const Reltype* reloc)
3157   {
3158     if (sh_type_ == elfcpp::SHT_REL)
3159       return 0;
3160     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3161   }
3162
3163   // Write the r_info field to a new reloc, using the r_info field from
3164   // the original reloc, replacing the r_sym field with R_SYM.
3165   static inline void
3166   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3167   {
3168     new_reloc->put_r_sym(r_sym);
3169     new_reloc->put_r_ssym(reloc->get_r_ssym());
3170     new_reloc->put_r_type3(reloc->get_r_type3());
3171     new_reloc->put_r_type2(reloc->get_r_type2());
3172     new_reloc->put_r_type(reloc->get_r_type());
3173   }
3174
3175   // Write the r_addend field to a new reloc.
3176   static inline void
3177   put_r_addend(Reltype_write* to,
3178                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3179   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3180
3181   // Return the size of the addend of the relocation (only used for SHT_REL).
3182   static unsigned int
3183   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3184   { return mips_get_size_for_reloc(r_type, obj); }
3185 };
3186
3187 template<int size, bool big_endian>
3188 class Target_mips : public Sized_target<size, big_endian>
3189 {
3190   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3191   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3192     Reloc_section;
3193   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3194   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3195   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3196       Reltype;
3197   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3198       Relatype;
3199
3200  public:
3201   Target_mips(const Target::Target_info* info = &mips_info)
3202     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3203       got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
3204       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3205       mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
3206       got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
3207   {
3208     this->add_machine_extensions();
3209   }
3210
3211   // The offset of $gp from the beginning of the .got section.
3212   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3213
3214   // The maximum size of the GOT for it to be addressable using 16-bit
3215   // offsets from $gp.
3216   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3217
3218   // Make a new symbol table entry for the Mips target.
3219   Sized_symbol<size>*
3220   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3221   { return new Mips_symbol<size>(); }
3222
3223   // Process the relocations to determine unreferenced sections for
3224   // garbage collection.
3225   void
3226   gc_process_relocs(Symbol_table* symtab,
3227                     Layout* layout,
3228                     Sized_relobj_file<size, big_endian>* object,
3229                     unsigned int data_shndx,
3230                     unsigned int sh_type,
3231                     const unsigned char* prelocs,
3232                     size_t reloc_count,
3233                     Output_section* output_section,
3234                     bool needs_special_offset_handling,
3235                     size_t local_symbol_count,
3236                     const unsigned char* plocal_symbols);
3237
3238   // Scan the relocations to look for symbol adjustments.
3239   void
3240   scan_relocs(Symbol_table* symtab,
3241               Layout* layout,
3242               Sized_relobj_file<size, big_endian>* object,
3243               unsigned int data_shndx,
3244               unsigned int sh_type,
3245               const unsigned char* prelocs,
3246               size_t reloc_count,
3247               Output_section* output_section,
3248               bool needs_special_offset_handling,
3249               size_t local_symbol_count,
3250               const unsigned char* plocal_symbols);
3251
3252   // Finalize the sections.
3253   void
3254   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3255
3256   // Relocate a section.
3257   void
3258   relocate_section(const Relocate_info<size, big_endian>*,
3259                    unsigned int sh_type,
3260                    const unsigned char* prelocs,
3261                    size_t reloc_count,
3262                    Output_section* output_section,
3263                    bool needs_special_offset_handling,
3264                    unsigned char* view,
3265                    Mips_address view_address,
3266                    section_size_type view_size,
3267                    const Reloc_symbol_changes*);
3268
3269   // Scan the relocs during a relocatable link.
3270   void
3271   scan_relocatable_relocs(Symbol_table* symtab,
3272                           Layout* layout,
3273                           Sized_relobj_file<size, big_endian>* object,
3274                           unsigned int data_shndx,
3275                           unsigned int sh_type,
3276                           const unsigned char* prelocs,
3277                           size_t reloc_count,
3278                           Output_section* output_section,
3279                           bool needs_special_offset_handling,
3280                           size_t local_symbol_count,
3281                           const unsigned char* plocal_symbols,
3282                           Relocatable_relocs*);
3283
3284   // Scan the relocs for --emit-relocs.
3285   void
3286   emit_relocs_scan(Symbol_table* symtab,
3287                    Layout* layout,
3288                    Sized_relobj_file<size, big_endian>* object,
3289                    unsigned int data_shndx,
3290                    unsigned int sh_type,
3291                    const unsigned char* prelocs,
3292                    size_t reloc_count,
3293                    Output_section* output_section,
3294                    bool needs_special_offset_handling,
3295                    size_t local_symbol_count,
3296                    const unsigned char* plocal_syms,
3297                    Relocatable_relocs* rr);
3298
3299   // Emit relocations for a section.
3300   void
3301   relocate_relocs(const Relocate_info<size, big_endian>*,
3302                   unsigned int sh_type,
3303                   const unsigned char* prelocs,
3304                   size_t reloc_count,
3305                   Output_section* output_section,
3306                   typename elfcpp::Elf_types<size>::Elf_Off
3307                     offset_in_output_section,
3308                   unsigned char* view,
3309                   Mips_address view_address,
3310                   section_size_type view_size,
3311                   unsigned char* reloc_view,
3312                   section_size_type reloc_view_size);
3313
3314   // Perform target-specific processing in a relocatable link.  This is
3315   // only used if we use the relocation strategy RELOC_SPECIAL.
3316   void
3317   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3318                                unsigned int sh_type,
3319                                const unsigned char* preloc_in,
3320                                size_t relnum,
3321                                Output_section* output_section,
3322                                typename elfcpp::Elf_types<size>::Elf_Off
3323                                  offset_in_output_section,
3324                                unsigned char* view,
3325                                Mips_address view_address,
3326                                section_size_type view_size,
3327                                unsigned char* preloc_out);
3328
3329   // Return whether SYM is defined by the ABI.
3330   bool
3331   do_is_defined_by_abi(const Symbol* sym) const
3332   {
3333     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3334             || (strcmp(sym->name(), "_gp_disp") == 0)
3335             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3336   }
3337
3338   // Return the number of entries in the GOT.
3339   unsigned int
3340   got_entry_count() const
3341   {
3342     if (!this->has_got_section())
3343       return 0;
3344     return this->got_size() / (size/8);
3345   }
3346
3347   // Return the number of entries in the PLT.
3348   unsigned int
3349   plt_entry_count() const
3350   {
3351     if (this->plt_ == NULL)
3352       return 0;
3353     return this->plt_->entry_count();
3354   }
3355
3356   // Return the offset of the first non-reserved PLT entry.
3357   unsigned int
3358   first_plt_entry_offset() const
3359   { return this->plt_->first_plt_entry_offset(); }
3360
3361   // Return the size of each PLT entry.
3362   unsigned int
3363   plt_entry_size() const
3364   { return this->plt_->plt_entry_size(); }
3365
3366   // Get the GOT section, creating it if necessary.
3367   Mips_output_data_got<size, big_endian>*
3368   got_section(Symbol_table*, Layout*);
3369
3370   // Get the GOT section.
3371   Mips_output_data_got<size, big_endian>*
3372   got_section() const
3373   {
3374     gold_assert(this->got_ != NULL);
3375     return this->got_;
3376   }
3377
3378   // Get the .MIPS.stubs section, creating it if necessary.
3379   Mips_output_data_mips_stubs<size, big_endian>*
3380   mips_stubs_section(Layout* layout);
3381
3382   // Get the .MIPS.stubs section.
3383   Mips_output_data_mips_stubs<size, big_endian>*
3384   mips_stubs_section() const
3385   {
3386     gold_assert(this->mips_stubs_ != NULL);
3387     return this->mips_stubs_;
3388   }
3389
3390   // Get the LA25 stub section, creating it if necessary.
3391   Mips_output_data_la25_stub<size, big_endian>*
3392   la25_stub_section(Layout*);
3393
3394   // Get the LA25 stub section.
3395   Mips_output_data_la25_stub<size, big_endian>*
3396   la25_stub_section()
3397   {
3398     gold_assert(this->la25_stub_ != NULL);
3399     return this->la25_stub_;
3400   }
3401
3402   // Get gp value.  It has the value of .got + 0x7FF0.
3403   Mips_address
3404   gp_value() const
3405   {
3406     if (this->gp_ != NULL)
3407       return this->gp_->value();
3408     return 0;
3409   }
3410
3411   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3412   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3413   Mips_address
3414   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3415   {
3416     if (this->gp_ == NULL)
3417       return 0;
3418
3419     bool multi_got = false;
3420     if (this->has_got_section())
3421       multi_got = this->got_section()->multi_got();
3422     if (!multi_got)
3423       return this->gp_->value();
3424     else
3425       return this->gp_->value() + this->got_section()->get_got_offset(object);
3426   }
3427
3428   // Get the dynamic reloc section, creating it if necessary.
3429   Reloc_section*
3430   rel_dyn_section(Layout*);
3431
3432   bool
3433   do_has_custom_set_dynsym_indexes() const
3434   { return true; }
3435
3436   // Don't emit input .reginfo sections to output .reginfo.
3437   bool
3438   do_should_include_section(elfcpp::Elf_Word sh_type) const
3439   { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3440
3441   // Set the dynamic symbol indexes.  INDEX is the index of the first
3442   // global dynamic symbol.  Pointers to the symbols are stored into the
3443   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3444   // updated dynamic symbol index.
3445   unsigned int
3446   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3447                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3448                         Versions* versions, Symbol_table* symtab) const;
3449
3450   // Remove .MIPS.stubs entry for a symbol.
3451   void
3452   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3453   {
3454     if (this->mips_stubs_ != NULL)
3455       this->mips_stubs_->remove_entry(sym);
3456   }
3457
3458   // The value to write into got[1] for SVR4 targets, to identify it is
3459   // a GNU object.  The dynamic linker can then use got[1] to store the
3460   // module pointer.
3461   uint64_t
3462   mips_elf_gnu_got1_mask()
3463   {
3464     if (this->is_output_n64())
3465       return (uint64_t)1 << 63;
3466     else
3467       return 1 << 31;
3468   }
3469
3470   // Whether the output has microMIPS code.  This is valid only after
3471   // merge_processor_specific_flags() is called.
3472   bool
3473   is_output_micromips() const
3474   {
3475     gold_assert(this->are_processor_specific_flags_set());
3476     return elfcpp::is_micromips(this->processor_specific_flags());
3477   }
3478
3479   // Whether the output uses N32 ABI.  This is valid only after
3480   // merge_processor_specific_flags() is called.
3481   bool
3482   is_output_n32() const
3483   {
3484     gold_assert(this->are_processor_specific_flags_set());
3485     return elfcpp::abi_n32(this->processor_specific_flags());
3486   }
3487
3488   // Whether the output uses N64 ABI.  This is valid only after
3489   // merge_processor_specific_flags() is called.
3490   bool
3491   is_output_n64() const
3492   {
3493     gold_assert(this->are_processor_specific_flags_set());
3494     return elfcpp::abi_64(this->ei_class_);
3495   }
3496
3497   // Whether the output uses NEWABI.  This is valid only after
3498   // merge_processor_specific_flags() is called.
3499   bool
3500   is_output_newabi() const
3501   { return this->is_output_n32() || this->is_output_n64(); }
3502
3503   // Whether we can only use 32-bit microMIPS instructions.
3504   bool
3505   use_32bit_micromips_instructions() const
3506   { return this->insn32_; }
3507
3508   // Return the r_sym field from a relocation.
3509   unsigned int
3510   get_r_sym(const unsigned char* preloc) const
3511   {
3512     // Since REL and RELA relocs share the same structure through
3513     // the r_info field, we can just use REL here.
3514     Reltype rel(preloc);
3515     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3516         get_r_sym(&rel);
3517   }
3518
3519  protected:
3520   // Return the value to use for a dynamic symbol which requires special
3521   // treatment.  This is how we support equality comparisons of function
3522   // pointers across shared library boundaries, as described in the
3523   // processor specific ABI supplement.
3524   uint64_t
3525   do_dynsym_value(const Symbol* gsym) const;
3526
3527   // Make an ELF object.
3528   Object*
3529   do_make_elf_object(const std::string&, Input_file*, off_t,
3530                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3531
3532   Object*
3533   do_make_elf_object(const std::string&, Input_file*, off_t,
3534                      const elfcpp::Ehdr<size, !big_endian>&)
3535   { gold_unreachable(); }
3536
3537   // Make an output section.
3538   Output_section*
3539   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3540                          elfcpp::Elf_Xword flags)
3541     {
3542       if (type == elfcpp::SHT_MIPS_REGINFO)
3543         return new Mips_output_section_reginfo<size, big_endian>(name, type,
3544                                                                  flags, this);
3545       else
3546         return new Output_section(name, type, flags);
3547     }
3548
3549   // Adjust ELF file header.
3550   void
3551   do_adjust_elf_header(unsigned char* view, int len);
3552
3553   // Get the custom dynamic tag value.
3554   unsigned int
3555   do_dynamic_tag_custom_value(elfcpp::DT) const;
3556
3557   // Adjust the value written to the dynamic symbol table.
3558   virtual void
3559   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3560   {
3561     elfcpp::Sym<size, big_endian> isym(view);
3562     elfcpp::Sym_write<size, big_endian> osym(view);
3563     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3564
3565     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3566     // to treat compressed symbols like any other.
3567     Mips_address value = isym.get_st_value();
3568     if (mips_sym->is_mips16() && value != 0)
3569       {
3570         if (!mips_sym->has_mips16_fn_stub())
3571           value |= 1;
3572         else
3573           {
3574             // If we have a MIPS16 function with a stub, the dynamic symbol
3575             // must refer to the stub, since only the stub uses the standard
3576             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3577             // in this case.
3578
3579             // There is a code which does this in the method
3580             // Target_mips::do_dynsym_value, but that code will only be
3581             // executed if the symbol is from dynobj.
3582             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3583             // table.
3584
3585             Mips16_stub_section<size, big_endian>* fn_stub =
3586               mips_sym->template get_mips16_fn_stub<big_endian>();
3587             value = fn_stub->output_address();
3588             osym.put_st_size(fn_stub->section_size());
3589           }
3590
3591         osym.put_st_value(value);
3592         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3593                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3594       }
3595     else if ((mips_sym->is_micromips()
3596               // Stubs are always microMIPS if there is any microMIPS code in
3597               // the output.
3598               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3599              && value != 0)
3600       {
3601         osym.put_st_value(value | 1);
3602         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3603                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3604       }
3605   }
3606
3607  private:
3608   // The class which scans relocations.
3609   class Scan
3610   {
3611    public:
3612     Scan()
3613     { }
3614
3615     static inline int
3616     get_reference_flags(unsigned int r_type);
3617
3618     inline void
3619     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3620           Sized_relobj_file<size, big_endian>* object,
3621           unsigned int data_shndx,
3622           Output_section* output_section,
3623           const Reltype& reloc, unsigned int r_type,
3624           const elfcpp::Sym<size, big_endian>& lsym,
3625           bool is_discarded);
3626
3627     inline void
3628     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3629           Sized_relobj_file<size, big_endian>* object,
3630           unsigned int data_shndx,
3631           Output_section* output_section,
3632           const Relatype& reloc, unsigned int r_type,
3633           const elfcpp::Sym<size, big_endian>& lsym,
3634           bool is_discarded);
3635
3636     inline void
3637     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3638           Sized_relobj_file<size, big_endian>* object,
3639           unsigned int data_shndx,
3640           Output_section* output_section,
3641           const Relatype* rela,
3642           const Reltype* rel,
3643           unsigned int rel_type,
3644           unsigned int r_type,
3645           const elfcpp::Sym<size, big_endian>& lsym,
3646           bool is_discarded);
3647
3648     inline void
3649     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3650            Sized_relobj_file<size, big_endian>* object,
3651            unsigned int data_shndx,
3652            Output_section* output_section,
3653            const Reltype& reloc, unsigned int r_type,
3654            Symbol* gsym);
3655
3656     inline void
3657     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3658            Sized_relobj_file<size, big_endian>* object,
3659            unsigned int data_shndx,
3660            Output_section* output_section,
3661            const Relatype& reloc, unsigned int r_type,
3662            Symbol* gsym);
3663
3664     inline void
3665     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3666            Sized_relobj_file<size, big_endian>* object,
3667            unsigned int data_shndx,
3668            Output_section* output_section,
3669            const Relatype* rela,
3670            const Reltype* rel,
3671            unsigned int rel_type,
3672            unsigned int r_type,
3673            Symbol* gsym);
3674
3675     inline bool
3676     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3677                                         Target_mips*,
3678                                         Sized_relobj_file<size, big_endian>*,
3679                                         unsigned int,
3680                                         Output_section*,
3681                                         const Reltype&,
3682                                         unsigned int,
3683                                         const elfcpp::Sym<size, big_endian>&)
3684     { return false; }
3685
3686     inline bool
3687     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3688                                          Target_mips*,
3689                                          Sized_relobj_file<size, big_endian>*,
3690                                          unsigned int,
3691                                          Output_section*,
3692                                          const Reltype&,
3693                                          unsigned int, Symbol*)
3694     { return false; }
3695
3696     inline bool
3697     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3698                                         Target_mips*,
3699                                         Sized_relobj_file<size, big_endian>*,
3700                                         unsigned int,
3701                                         Output_section*,
3702                                         const Relatype&,
3703                                         unsigned int,
3704                                         const elfcpp::Sym<size, big_endian>&)
3705     { return false; }
3706
3707     inline bool
3708     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3709                                          Target_mips*,
3710                                          Sized_relobj_file<size, big_endian>*,
3711                                          unsigned int,
3712                                          Output_section*,
3713                                          const Relatype&,
3714                                          unsigned int, Symbol*)
3715     { return false; }
3716    private:
3717     static void
3718     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3719                             unsigned int r_type);
3720
3721     static void
3722     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3723                              unsigned int r_type, Symbol*);
3724   };
3725
3726   // The class which implements relocation.
3727   class Relocate
3728   {
3729    public:
3730     Relocate()
3731     { }
3732
3733     ~Relocate()
3734     { }
3735
3736     // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3737     inline bool
3738     should_apply_static_reloc(const Mips_symbol<size>* gsym,
3739                               unsigned int r_type,
3740                               Output_section* output_section,
3741                               Target_mips* target);
3742
3743     // Do a relocation.  Return false if the caller should not issue
3744     // any warnings about this relocation.
3745     inline bool
3746     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3747              Target_mips*, Output_section*, size_t, const unsigned char*,
3748              const Sized_symbol<size>*, const Symbol_value<size>*,
3749              unsigned char*, Mips_address, section_size_type);
3750   };
3751
3752   // This POD class holds the dynamic relocations that should be emitted instead
3753   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3754   // relocations if it turns out that the symbol does not have static
3755   // relocations.
3756   class Dyn_reloc
3757   {
3758    public:
3759     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3760               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3761               Output_section* output_section, Mips_address r_offset)
3762       : sym_(sym), r_type_(r_type), relobj_(relobj),
3763         shndx_(shndx), output_section_(output_section),
3764         r_offset_(r_offset)
3765     { }
3766
3767     // Emit this reloc if appropriate.  This is called after we have
3768     // scanned all the relocations, so we know whether the symbol has
3769     // static relocations.
3770     void
3771     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3772          Symbol_table* symtab)
3773     {
3774       if (!this->sym_->has_static_relocs())
3775         {
3776           got->record_global_got_symbol(this->sym_, this->relobj_,
3777                                         this->r_type_, true, false);
3778           if (!symbol_references_local(this->sym_,
3779                                 this->sym_->should_add_dynsym_entry(symtab)))
3780             rel_dyn->add_global(this->sym_, this->r_type_,
3781                                 this->output_section_, this->relobj_,
3782                                 this->shndx_, this->r_offset_);
3783           else
3784             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3785                                           this->output_section_, this->relobj_,
3786                                           this->shndx_, this->r_offset_);
3787         }
3788     }
3789
3790    private:
3791     Mips_symbol<size>* sym_;
3792     unsigned int r_type_;
3793     Mips_relobj<size, big_endian>* relobj_;
3794     unsigned int shndx_;
3795     Output_section* output_section_;
3796     Mips_address r_offset_;
3797   };
3798
3799   // Adjust TLS relocation type based on the options and whether this
3800   // is a local symbol.
3801   static tls::Tls_optimization
3802   optimize_tls_reloc(bool is_final, int r_type);
3803
3804   // Return whether there is a GOT section.
3805   bool
3806   has_got_section() const
3807   { return this->got_ != NULL; }
3808
3809   // Check whether the given ELF header flags describe a 32-bit binary.
3810   bool
3811   mips_32bit_flags(elfcpp::Elf_Word);
3812
3813   enum Mips_mach {
3814     mach_mips3000             = 3000,
3815     mach_mips3900             = 3900,
3816     mach_mips4000             = 4000,
3817     mach_mips4010             = 4010,
3818     mach_mips4100             = 4100,
3819     mach_mips4111             = 4111,
3820     mach_mips4120             = 4120,
3821     mach_mips4300             = 4300,
3822     mach_mips4400             = 4400,
3823     mach_mips4600             = 4600,
3824     mach_mips4650             = 4650,
3825     mach_mips5000             = 5000,
3826     mach_mips5400             = 5400,
3827     mach_mips5500             = 5500,
3828     mach_mips6000             = 6000,
3829     mach_mips7000             = 7000,
3830     mach_mips8000             = 8000,
3831     mach_mips9000             = 9000,
3832     mach_mips10000            = 10000,
3833     mach_mips12000            = 12000,
3834     mach_mips14000            = 14000,
3835     mach_mips16000            = 16000,
3836     mach_mips16               = 16,
3837     mach_mips5                = 5,
3838     mach_mips_loongson_2e     = 3001,
3839     mach_mips_loongson_2f     = 3002,
3840     mach_mips_loongson_3a     = 3003,
3841     mach_mips_sb1             = 12310201, // octal 'SB', 01
3842     mach_mips_octeon          = 6501,
3843     mach_mips_octeonp         = 6601,
3844     mach_mips_octeon2         = 6502,
3845     mach_mips_xlr             = 887682,   // decimal 'XLR'
3846     mach_mipsisa32            = 32,
3847     mach_mipsisa32r2          = 33,
3848     mach_mipsisa64            = 64,
3849     mach_mipsisa64r2          = 65,
3850     mach_mips_micromips       = 96
3851   };
3852
3853   // Return the MACH for a MIPS e_flags value.
3854   unsigned int
3855   elf_mips_mach(elfcpp::Elf_Word);
3856
3857   // Check whether machine EXTENSION is an extension of machine BASE.
3858   bool
3859   mips_mach_extends(unsigned int, unsigned int);
3860
3861   // Merge processor specific flags.
3862   void
3863   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3864                                  unsigned char, bool);
3865
3866   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3867   static inline bool
3868   jal_to_bal()
3869   { return false; }
3870
3871   // True if we are linking for CPUs that are faster if JALR is converted to
3872   // BAL.  This should be safe for all architectures.  We enable this predicate
3873   // for all CPUs.
3874   static inline bool
3875   jalr_to_bal()
3876   { return true; }
3877
3878   // True if we are linking for CPUs that are faster if JR is converted to B.
3879   // This should be safe for all architectures.  We enable this predicate for
3880   // all CPUs.
3881   static inline bool
3882   jr_to_b()
3883   { return true; }
3884
3885   // Return the size of the GOT section.
3886   section_size_type
3887   got_size() const
3888   {
3889     gold_assert(this->got_ != NULL);
3890     return this->got_->data_size();
3891   }
3892
3893   // Create a PLT entry for a global symbol referenced by r_type relocation.
3894   void
3895   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3896                  unsigned int r_type);
3897
3898   // Get the PLT section.
3899   Mips_output_data_plt<size, big_endian>*
3900   plt_section() const
3901   {
3902     gold_assert(this->plt_ != NULL);
3903     return this->plt_;
3904   }
3905
3906   // Get the GOT PLT section.
3907   const Mips_output_data_plt<size, big_endian>*
3908   got_plt_section() const
3909   {
3910     gold_assert(this->got_plt_ != NULL);
3911     return this->got_plt_;
3912   }
3913
3914   // Copy a relocation against a global symbol.
3915   void
3916   copy_reloc(Symbol_table* symtab, Layout* layout,
3917              Sized_relobj_file<size, big_endian>* object,
3918              unsigned int shndx, Output_section* output_section,
3919              Symbol* sym, unsigned int r_type, Mips_address r_offset)
3920   {
3921     this->copy_relocs_.copy_reloc(symtab, layout,
3922                                   symtab->get_sized_symbol<size>(sym),
3923                                   object, shndx, output_section,
3924                                   r_type, r_offset, 0,
3925                                   this->rel_dyn_section(layout));
3926   }
3927
3928   void
3929   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3930                 Mips_relobj<size, big_endian>* relobj,
3931                 unsigned int shndx, Output_section* output_section,
3932                 Mips_address r_offset)
3933   {
3934     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3935                                           output_section, r_offset));
3936   }
3937
3938   // Calculate value of _gp symbol.
3939   void
3940   set_gp(Layout*, Symbol_table*);
3941
3942   const char*
3943   elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3944   const char*
3945   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3946
3947   // Adds entries that describe how machines relate to one another.  The entries
3948   // are ordered topologically with MIPS I extensions listed last.  First
3949   // element is extension, second element is base.
3950   void
3951   add_machine_extensions()
3952   {
3953     // MIPS64r2 extensions.
3954     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3955     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3956     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3957
3958     // MIPS64 extensions.
3959     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3960     this->add_extension(mach_mips_sb1, mach_mipsisa64);
3961     this->add_extension(mach_mips_xlr, mach_mipsisa64);
3962     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3963
3964     // MIPS V extensions.
3965     this->add_extension(mach_mipsisa64, mach_mips5);
3966
3967     // R10000 extensions.
3968     this->add_extension(mach_mips12000, mach_mips10000);
3969     this->add_extension(mach_mips14000, mach_mips10000);
3970     this->add_extension(mach_mips16000, mach_mips10000);
3971
3972     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
3973     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
3974     // better to allow vr5400 and vr5500 code to be merged anyway, since
3975     // many libraries will just use the core ISA.  Perhaps we could add
3976     // some sort of ASE flag if this ever proves a problem.
3977     this->add_extension(mach_mips5500, mach_mips5400);
3978     this->add_extension(mach_mips5400, mach_mips5000);
3979
3980     // MIPS IV extensions.
3981     this->add_extension(mach_mips5, mach_mips8000);
3982     this->add_extension(mach_mips10000, mach_mips8000);
3983     this->add_extension(mach_mips5000, mach_mips8000);
3984     this->add_extension(mach_mips7000, mach_mips8000);
3985     this->add_extension(mach_mips9000, mach_mips8000);
3986
3987     // VR4100 extensions.
3988     this->add_extension(mach_mips4120, mach_mips4100);
3989     this->add_extension(mach_mips4111, mach_mips4100);
3990
3991     // MIPS III extensions.
3992     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3993     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3994     this->add_extension(mach_mips8000, mach_mips4000);
3995     this->add_extension(mach_mips4650, mach_mips4000);
3996     this->add_extension(mach_mips4600, mach_mips4000);
3997     this->add_extension(mach_mips4400, mach_mips4000);
3998     this->add_extension(mach_mips4300, mach_mips4000);
3999     this->add_extension(mach_mips4100, mach_mips4000);
4000     this->add_extension(mach_mips4010, mach_mips4000);
4001
4002     // MIPS32 extensions.
4003     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4004
4005     // MIPS II extensions.
4006     this->add_extension(mach_mips4000, mach_mips6000);
4007     this->add_extension(mach_mipsisa32, mach_mips6000);
4008
4009     // MIPS I extensions.
4010     this->add_extension(mach_mips6000, mach_mips3000);
4011     this->add_extension(mach_mips3900, mach_mips3000);
4012   }
4013
4014   // Add value to MIPS extenstions.
4015   void
4016   add_extension(unsigned int base, unsigned int extension)
4017   {
4018     std::pair<unsigned int, unsigned int> ext(base, extension);
4019     this->mips_mach_extensions_.push_back(ext);
4020   }
4021
4022   // Return the number of entries in the .dynsym section.
4023   unsigned int get_dt_mips_symtabno() const
4024   {
4025     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4026                            / elfcpp::Elf_sizes<size>::sym_size));
4027     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4028   }
4029
4030   // Information about this specific target which we pass to the
4031   // general Target structure.
4032   static const Target::Target_info mips_info;
4033   // The GOT section.
4034   Mips_output_data_got<size, big_endian>* got_;
4035   // gp symbol.  It has the value of .got + 0x7FF0.
4036   Sized_symbol<size>* gp_;
4037   // The PLT section.
4038   Mips_output_data_plt<size, big_endian>* plt_;
4039   // The GOT PLT section.
4040   Output_data_space* got_plt_;
4041   // The dynamic reloc section.
4042   Reloc_section* rel_dyn_;
4043   // Relocs saved to avoid a COPY reloc.
4044   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4045
4046   // A list of dyn relocs to be saved.
4047   std::vector<Dyn_reloc> dyn_relocs_;
4048
4049   // The LA25 stub section.
4050   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4051   // Architecture extensions.
4052   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4053   // .MIPS.stubs
4054   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4055
4056   unsigned char ei_class_;
4057   unsigned int mach_;
4058   Layout* layout_;
4059
4060   typename std::list<got16_addend<size, big_endian> > got16_addends_;
4061
4062   // Whether the entry symbol is mips16 or micromips.
4063   bool entry_symbol_is_compressed_;
4064
4065   // Whether we can use only 32-bit microMIPS instructions.
4066   // TODO(sasa): This should be a linker option.
4067   bool insn32_;
4068 };
4069
4070 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4071 // It records high part of the relocation pair.
4072
4073 template<int size, bool big_endian>
4074 struct reloc_high
4075 {
4076   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4077
4078   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4079              const Symbol_value<size>* _psymval, Mips_address _addend,
4080              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4081              Mips_address _address = 0, bool _gp_disp = false)
4082     : view(_view), object(_object), psymval(_psymval), addend(_addend),
4083       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4084       address(_address), gp_disp(_gp_disp)
4085   { }
4086
4087   unsigned char* view;
4088   const Mips_relobj<size, big_endian>* object;
4089   const Symbol_value<size>* psymval;
4090   Mips_address addend;
4091   unsigned int r_type;
4092   unsigned int r_sym;
4093   bool extract_addend;
4094   Mips_address address;
4095   bool gp_disp;
4096 };
4097
4098 template<int size, bool big_endian>
4099 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4100 {
4101   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4102   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4103   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4104   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4105   typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4106
4107  public:
4108   typedef enum
4109   {
4110     STATUS_OKAY,        // No error during relocation.
4111     STATUS_OVERFLOW,    // Relocation overflow.
4112     STATUS_BAD_RELOC    // Relocation cannot be applied.
4113   } Status;
4114
4115  private:
4116   typedef Relocate_functions<size, big_endian> Base;
4117   typedef Mips_relocate_functions<size, big_endian> This;
4118
4119   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4120   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4121
4122   template<int valsize>
4123   static inline typename This::Status
4124   check_overflow(Valtype value)
4125   {
4126     if (size == 32)
4127       return (Bits<valsize>::has_overflow32(value)
4128               ? This::STATUS_OVERFLOW
4129               : This::STATUS_OKAY);
4130
4131     return (Bits<valsize>::has_overflow(value)
4132             ? This::STATUS_OVERFLOW
4133             : This::STATUS_OKAY);
4134   }
4135
4136   static inline bool
4137   should_shuffle_micromips_reloc(unsigned int r_type)
4138   {
4139     return (micromips_reloc(r_type)
4140             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4141             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4142   }
4143
4144  public:
4145   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4146   //   Most mips16 instructions are 16 bits, but these instructions
4147   //   are 32 bits.
4148   //
4149   //   The format of these instructions is:
4150   //
4151   //   +--------------+--------------------------------+
4152   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
4153   //   +--------------+--------------------------------+
4154   //   |                Immediate  15:0                |
4155   //   +-----------------------------------------------+
4156   //
4157   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4158   //   Note that the immediate value in the first word is swapped.
4159   //
4160   //   When producing a relocatable object file, R_MIPS16_26 is
4161   //   handled mostly like R_MIPS_26.  In particular, the addend is
4162   //   stored as a straight 26-bit value in a 32-bit instruction.
4163   //   (gas makes life simpler for itself by never adjusting a
4164   //   R_MIPS16_26 reloc to be against a section, so the addend is
4165   //   always zero).  However, the 32 bit instruction is stored as 2
4166   //   16-bit values, rather than a single 32-bit value.  In a
4167   //   big-endian file, the result is the same; in a little-endian
4168   //   file, the two 16-bit halves of the 32 bit value are swapped.
4169   //   This is so that a disassembler can recognize the jal
4170   //   instruction.
4171   //
4172   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4173   //   instruction stored as two 16-bit values.  The addend A is the
4174   //   contents of the targ26 field.  The calculation is the same as
4175   //   R_MIPS_26.  When storing the calculated value, reorder the
4176   //   immediate value as shown above, and don't forget to store the
4177   //   value as two 16-bit values.
4178   //
4179   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4180   //   defined as
4181   //
4182   //   big-endian:
4183   //   +--------+----------------------+
4184   //   |        |                      |
4185   //   |        |    targ26-16         |
4186   //   |31    26|25                   0|
4187   //   +--------+----------------------+
4188   //
4189   //   little-endian:
4190   //   +----------+------+-------------+
4191   //   |          |      |             |
4192   //   |  sub1    |      |     sub2    |
4193   //   |0        9|10  15|16         31|
4194   //   +----------+--------------------+
4195   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4196   //   ((sub1 << 16) | sub2)).
4197   //
4198   //   When producing a relocatable object file, the calculation is
4199   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4200   //   When producing a fully linked file, the calculation is
4201   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4202   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4203   //
4204   //   The table below lists the other MIPS16 instruction relocations.
4205   //   Each one is calculated in the same way as the non-MIPS16 relocation
4206   //   given on the right, but using the extended MIPS16 layout of 16-bit
4207   //   immediate fields:
4208   //
4209   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4210   //      R_MIPS16_GOT16          R_MIPS_GOT16
4211   //      R_MIPS16_CALL16         R_MIPS_CALL16
4212   //      R_MIPS16_HI16           R_MIPS_HI16
4213   //      R_MIPS16_LO16           R_MIPS_LO16
4214   //
4215   //   A typical instruction will have a format like this:
4216   //
4217   //   +--------------+--------------------------------+
4218   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4219   //   +--------------+--------------------------------+
4220   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4221   //   +--------------+--------------------------------+
4222   //
4223   //   EXTEND is the five bit value 11110.  Major is the instruction
4224   //   opcode.
4225   //
4226   //   All we need to do here is shuffle the bits appropriately.
4227   //   As above, the two 16-bit halves must be swapped on a
4228   //   little-endian system.
4229
4230   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4231   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4232   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4233
4234   static void
4235   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4236                        bool jal_shuffle)
4237   {
4238     if (!mips16_reloc(r_type)
4239         && !should_shuffle_micromips_reloc(r_type))
4240       return;
4241
4242     // Pick up the first and second halfwords of the instruction.
4243     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4244     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4245     Valtype32 val;
4246
4247     if (micromips_reloc(r_type)
4248         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4249       val = first << 16 | second;
4250     else if (r_type != elfcpp::R_MIPS16_26)
4251       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4252              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4253     else
4254       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4255              | ((first & 0x1f) << 21) | second);
4256
4257     elfcpp::Swap<32, big_endian>::writeval(view, val);
4258   }
4259
4260   static void
4261   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4262   {
4263     if (!mips16_reloc(r_type)
4264         && !should_shuffle_micromips_reloc(r_type))
4265       return;
4266
4267     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4268     Valtype16 first, second;
4269
4270     if (micromips_reloc(r_type)
4271         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4272       {
4273         second = val & 0xffff;
4274         first = val >> 16;
4275       }
4276     else if (r_type != elfcpp::R_MIPS16_26)
4277       {
4278         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4279         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4280       }
4281     else
4282       {
4283         second = val & 0xffff;
4284         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4285                  | ((val >> 21) & 0x1f);
4286       }
4287
4288     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4289     elfcpp::Swap<16, big_endian>::writeval(view, first);
4290   }
4291
4292   // R_MIPS_16: S + sign-extend(A)
4293   static inline typename This::Status
4294   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4295         const Symbol_value<size>* psymval, Mips_address addend_a,
4296         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4297   {
4298     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4299     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4300
4301     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4302                                      : addend_a);
4303
4304     Valtype x = psymval->value(object, addend);
4305     val = Bits<16>::bit_select32(val, x, 0xffffU);
4306
4307     if (calculate_only)
4308       {
4309         *calculated_value = x;
4310         return This::STATUS_OKAY;
4311       }
4312     else
4313       elfcpp::Swap<16, big_endian>::writeval(wv, val);
4314
4315     return check_overflow<16>(x);
4316   }
4317
4318   // R_MIPS_32: S + A
4319   static inline typename This::Status
4320   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4321         const Symbol_value<size>* psymval, Mips_address addend_a,
4322         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4323   {
4324     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4325     Valtype addend = (extract_addend
4326                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4327                         : addend_a);
4328     Valtype x = psymval->value(object, addend);
4329
4330     if (calculate_only)
4331       *calculated_value = x;
4332     else
4333       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4334
4335     return This::STATUS_OKAY;
4336   }
4337
4338   // R_MIPS_JALR, R_MICROMIPS_JALR
4339   static inline typename This::Status
4340   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4341           const Symbol_value<size>* psymval, Mips_address address,
4342           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4343           unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4344           bool calculate_only, Valtype* calculated_value)
4345   {
4346     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4347     Valtype addend = extract_addend ? 0 : addend_a;
4348     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4349
4350     // Try converting J(AL)R to B(AL), if the target is in range.
4351     if (!parameters->options().relocatable()
4352         && r_type == elfcpp::R_MIPS_JALR
4353         && !cross_mode_jump
4354         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4355             || (jr_to_b && val == 0x03200008)))   // jr t9
4356       {
4357         int offset = psymval->value(object, addend) - (address + 4);
4358         if (!Bits<18>::has_overflow32(offset))
4359           {
4360             if (val == 0x03200008)   // jr t9
4361               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4362             else
4363               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4364           }
4365       }
4366
4367     if (calculate_only)
4368       *calculated_value = val;
4369     else
4370       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4371
4372     return This::STATUS_OKAY;
4373   }
4374
4375   // R_MIPS_PC32: S + A - P
4376   static inline typename This::Status
4377   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4378           const Symbol_value<size>* psymval, Mips_address address,
4379           Mips_address addend_a, bool extract_addend, bool calculate_only,
4380           Valtype* calculated_value)
4381   {
4382     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4383     Valtype addend = (extract_addend
4384                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4385                         : addend_a);
4386     Valtype x = psymval->value(object, addend) - address;
4387
4388     if (calculate_only)
4389        *calculated_value = x;
4390     else
4391       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4392
4393     return This::STATUS_OKAY;
4394   }
4395
4396   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4397   static inline typename This::Status
4398   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4399         const Symbol_value<size>* psymval, Mips_address address,
4400         bool local, Mips_address addend_a, bool extract_addend,
4401         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4402         bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4403   {
4404     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4405     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4406
4407     Valtype addend;
4408     if (extract_addend)
4409       {
4410         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4411           addend = (val & 0x03ffffff) << 1;
4412         else
4413           addend = (val & 0x03ffffff) << 2;
4414       }
4415     else
4416       addend = addend_a;
4417
4418     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4419     // the correct ISA mode selector and bit 1 must be 0.
4420     if (!calculate_only && cross_mode_jump
4421         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4422       {
4423         gold_warning(_("JALX to a non-word-aligned address"));
4424         return This::STATUS_BAD_RELOC;
4425       }
4426
4427     // Shift is 2, unusually, for microMIPS JALX.
4428     unsigned int shift =
4429         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4430
4431     Valtype x;
4432     if (local)
4433       x = addend | ((address + 4) & (0xfc000000 << shift));
4434     else
4435       {
4436         if (shift == 1)
4437           x = Bits<27>::sign_extend32(addend);
4438         else
4439           x = Bits<28>::sign_extend32(addend);
4440       }
4441     x = psymval->value(object, x) >> shift;
4442
4443     if (!calculate_only && !local && !gsym->is_weak_undefined())
4444       {
4445         if ((x >> 26) != ((address + 4) >> (26 + shift)))
4446           {
4447             gold_error(_("relocation truncated to fit: %u against '%s'"),
4448                        r_type, gsym->name());
4449             return This::STATUS_OVERFLOW;
4450           }
4451       }
4452
4453     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4454
4455     // If required, turn JAL into JALX.
4456     if (cross_mode_jump)
4457       {
4458         bool ok;
4459         Valtype32 opcode = val >> 26;
4460         Valtype32 jalx_opcode;
4461
4462         // Check to see if the opcode is already JAL or JALX.
4463         if (r_type == elfcpp::R_MIPS16_26)
4464           {
4465             ok = (opcode == 0x6) || (opcode == 0x7);
4466             jalx_opcode = 0x7;
4467           }
4468         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4469           {
4470             ok = (opcode == 0x3d) || (opcode == 0x3c);
4471             jalx_opcode = 0x3c;
4472           }
4473         else
4474           {
4475             ok = (opcode == 0x3) || (opcode == 0x1d);
4476             jalx_opcode = 0x1d;
4477           }
4478
4479         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4480         // convert J or JALS to JALX.
4481         if (!calculate_only && !ok)
4482           {
4483             gold_error(_("Unsupported jump between ISA modes; consider "
4484                          "recompiling with interlinking enabled."));
4485             return This::STATUS_BAD_RELOC;
4486           }
4487
4488         // Make this the JALX opcode.
4489         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4490       }
4491
4492     // Try converting JAL to BAL, if the target is in range.
4493     if (!parameters->options().relocatable()
4494         && !cross_mode_jump
4495         && ((jal_to_bal
4496             && r_type == elfcpp::R_MIPS_26
4497             && (val >> 26) == 0x3)))    // jal addr
4498       {
4499         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4500         int offset = dest - (address + 4);
4501         if (!Bits<18>::has_overflow32(offset))
4502           {
4503             if (val == 0x03200008)   // jr t9
4504               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4505             else
4506               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4507           }
4508       }
4509
4510     if (calculate_only)
4511       *calculated_value = val;
4512     else
4513       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4514
4515     return This::STATUS_OKAY;
4516   }
4517
4518   // R_MIPS_PC16
4519   static inline typename This::Status
4520   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4521           const Symbol_value<size>* psymval, Mips_address address,
4522           Mips_address addend_a, bool extract_addend, bool calculate_only,
4523           Valtype* calculated_value)
4524   {
4525     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4526     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4527
4528     Valtype addend = (extract_addend
4529                       ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4530                       : addend_a);
4531
4532     Valtype x = psymval->value(object, addend) - address;
4533     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4534
4535     if (calculate_only)
4536       {
4537         *calculated_value = x >> 2;
4538         return This::STATUS_OKAY;
4539       }
4540     else
4541       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4542
4543     return check_overflow<18>(x);
4544   }
4545
4546   // R_MICROMIPS_PC7_S1
4547   static inline typename This::Status
4548   relmicromips_pc7_s1(unsigned char* view,
4549                       const Mips_relobj<size, big_endian>* object,
4550                       const Symbol_value<size>* psymval, Mips_address address,
4551                       Mips_address addend_a, bool extract_addend,
4552                       bool calculate_only, Valtype* calculated_value)
4553   {
4554     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4555     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4556
4557     Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4558                                     : addend_a;
4559
4560     Valtype x = psymval->value(object, addend) - address;
4561     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4562
4563     if (calculate_only)
4564       {
4565         *calculated_value = x >> 1;
4566         return This::STATUS_OKAY;
4567       }
4568     else
4569       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4570
4571     return check_overflow<8>(x);
4572   }
4573
4574   // R_MICROMIPS_PC10_S1
4575   static inline typename This::Status
4576   relmicromips_pc10_s1(unsigned char* view,
4577                        const Mips_relobj<size, big_endian>* object,
4578                        const Symbol_value<size>* psymval, Mips_address address,
4579                        Mips_address addend_a, bool extract_addend,
4580                        bool calculate_only, Valtype* calculated_value)
4581   {
4582     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4583     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4584
4585     Valtype addend = (extract_addend
4586                       ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4587                       : addend_a);
4588
4589     Valtype x = psymval->value(object, addend) - address;
4590     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4591
4592     if (calculate_only)
4593       {
4594         *calculated_value = x >> 1;
4595         return This::STATUS_OKAY;
4596       }
4597     else
4598       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4599
4600     return check_overflow<11>(x);
4601   }
4602
4603   // R_MICROMIPS_PC16_S1
4604   static inline typename This::Status
4605   relmicromips_pc16_s1(unsigned char* view,
4606                        const Mips_relobj<size, big_endian>* object,
4607                        const Symbol_value<size>* psymval, Mips_address address,
4608                        Mips_address addend_a, bool extract_addend,
4609                        bool calculate_only, Valtype* calculated_value)
4610   {
4611     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4612     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4613
4614     Valtype addend = (extract_addend
4615                       ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4616                       : addend_a);
4617
4618     Valtype x = psymval->value(object, addend) - address;
4619     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4620
4621     if (calculate_only)
4622       {
4623         *calculated_value = x >> 1;
4624         return This::STATUS_OKAY;
4625       }
4626     else
4627       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4628
4629     return check_overflow<17>(x);
4630   }
4631
4632   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4633   static inline typename This::Status
4634   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4635           const Symbol_value<size>* psymval, Mips_address addend,
4636           Mips_address address, bool gp_disp, unsigned int r_type,
4637           unsigned int r_sym, bool extract_addend)
4638   {
4639     // Record the relocation.  It will be resolved when we find lo16 part.
4640     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4641                           addend, r_type, r_sym, extract_addend, address,
4642                           gp_disp));
4643     return This::STATUS_OKAY;
4644   }
4645
4646   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4647   static inline typename This::Status
4648   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4649              const Symbol_value<size>* psymval, Mips_address addend_hi,
4650              Mips_address address, bool is_gp_disp, unsigned int r_type,
4651              bool extract_addend, Valtype32 addend_lo,
4652              Target_mips<size, big_endian>* target, bool calculate_only,
4653              Valtype* calculated_value)
4654   {
4655     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4656     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4657
4658     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4659                                        : addend_hi);
4660
4661     Valtype32 value;
4662     if (!is_gp_disp)
4663       value = psymval->value(object, addend);
4664     else
4665       {
4666         // For MIPS16 ABI code we generate this sequence
4667         //    0: li      $v0,%hi(_gp_disp)
4668         //    4: addiupc $v1,%lo(_gp_disp)
4669         //    8: sll     $v0,16
4670         //   12: addu    $v0,$v1
4671         //   14: move    $gp,$v0
4672         // So the offsets of hi and lo relocs are the same, but the
4673         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4674         // ADDIUPC clears the low two bits of the instruction address,
4675         // so the base is ($t9 + 4) & ~3.
4676         Valtype32 gp_disp;
4677         if (r_type == elfcpp::R_MIPS16_HI16)
4678           gp_disp = (target->adjusted_gp_value(object)
4679                      - ((address + 4) & ~0x3));
4680         // The microMIPS .cpload sequence uses the same assembly
4681         // instructions as the traditional psABI version, but the
4682         // incoming $t9 has the low bit set.
4683         else if (r_type == elfcpp::R_MICROMIPS_HI16)
4684           gp_disp = target->adjusted_gp_value(object) - address - 1;
4685         else
4686           gp_disp = target->adjusted_gp_value(object) - address;
4687         value = gp_disp + addend;
4688       }
4689     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4690     val = Bits<32>::bit_select32(val, x, 0xffff);
4691
4692     if (calculate_only)
4693       {
4694         *calculated_value = x;
4695         return This::STATUS_OKAY;
4696       }
4697     else
4698       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4699
4700     return (is_gp_disp ? check_overflow<16>(x)
4701                        : This::STATUS_OKAY);
4702   }
4703
4704   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4705   static inline typename This::Status
4706   relgot16_local(unsigned char* view,
4707                  const Mips_relobj<size, big_endian>* object,
4708                  const Symbol_value<size>* psymval, Mips_address addend_a,
4709                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
4710   {
4711     // Record the relocation.  It will be resolved when we find lo16 part.
4712     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4713                            addend_a, r_type, r_sym, extract_addend));
4714     return This::STATUS_OKAY;
4715   }
4716
4717   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4718   static inline typename This::Status
4719   do_relgot16_local(unsigned char* view,
4720                     const Mips_relobj<size, big_endian>* object,
4721                     const Symbol_value<size>* psymval, Mips_address addend_hi,
4722                     bool extract_addend, Valtype32 addend_lo,
4723                     Target_mips<size, big_endian>* target, bool calculate_only,
4724                     Valtype* calculated_value)
4725   {
4726     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4727     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4728
4729     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4730                                        : addend_hi);
4731
4732     // Find GOT page entry.
4733     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4734                           & 0xffff;
4735     value <<= 16;
4736     unsigned int got_offset =
4737       target->got_section()->get_got_page_offset(value, object);
4738
4739     // Resolve the relocation.
4740     Valtype x = target->got_section()->gp_offset(got_offset, object);
4741     val = Bits<32>::bit_select32(val, x, 0xffff);
4742
4743     if (calculate_only)
4744       {
4745         *calculated_value = x;
4746         return This::STATUS_OKAY;
4747       }
4748     else
4749       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4750
4751     return check_overflow<16>(x);
4752   }
4753
4754   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4755   static inline typename This::Status
4756   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4757           const Mips_relobj<size, big_endian>* object,
4758           const Symbol_value<size>* psymval, Mips_address addend_a,
4759           bool extract_addend, Mips_address address, bool is_gp_disp,
4760           unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
4761           bool calculate_only, Valtype* calculated_value)
4762   {
4763     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4764     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4765
4766     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4767                                      : addend_a);
4768
4769     if (rel_type == elfcpp::SHT_REL)
4770       {
4771         typename This::Status reloc_status = This::STATUS_OKAY;
4772         // Resolve pending R_MIPS_HI16 relocations.
4773         typename std::list<reloc_high<size, big_endian> >::iterator it =
4774           hi16_relocs.begin();
4775         while (it != hi16_relocs.end())
4776           {
4777             reloc_high<size, big_endian> hi16 = *it;
4778             if (hi16.r_sym == r_sym
4779                 && is_matching_lo16_reloc(hi16.r_type, r_type))
4780               {
4781                 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
4782                 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
4783                                        hi16.addend, hi16.address, hi16.gp_disp,
4784                                        hi16.r_type, hi16.extract_addend, addend,
4785                                        target, calculate_only, calculated_value);
4786                 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
4787                 if (reloc_status == This::STATUS_OVERFLOW)
4788                   return This::STATUS_OVERFLOW;
4789                 it = hi16_relocs.erase(it);
4790               }
4791             else
4792               ++it;
4793           }
4794
4795         // Resolve pending local R_MIPS_GOT16 relocations.
4796         typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4797           got16_relocs.begin();
4798         while (it2 != got16_relocs.end())
4799           {
4800             reloc_high<size, big_endian> got16 = *it2;
4801             if (got16.r_sym == r_sym
4802                 && is_matching_lo16_reloc(got16.r_type, r_type))
4803               {
4804                 mips_reloc_unshuffle(got16.view, got16.r_type, false);
4805
4806                 reloc_status = do_relgot16_local(got16.view, got16.object,
4807                                      got16.psymval, got16.addend,
4808                                      got16.extract_addend, addend, target,
4809                                      calculate_only, calculated_value);
4810
4811                 mips_reloc_shuffle(got16.view, got16.r_type, false);
4812                 if (reloc_status == This::STATUS_OVERFLOW)
4813                   return This::STATUS_OVERFLOW;
4814                 it2 = got16_relocs.erase(it2);
4815               }
4816             else
4817               ++it2;
4818           }
4819       }
4820
4821     // Resolve R_MIPS_LO16 relocation.
4822     Valtype x;
4823     if (!is_gp_disp)
4824       x = psymval->value(object, addend);
4825     else
4826       {
4827         // See the comment for R_MIPS16_HI16 above for the reason
4828         // for this conditional.
4829         Valtype32 gp_disp;
4830         if (r_type == elfcpp::R_MIPS16_LO16)
4831           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4832         else if (r_type == elfcpp::R_MICROMIPS_LO16
4833                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4834           gp_disp = target->adjusted_gp_value(object) - address + 3;
4835         else
4836           gp_disp = target->adjusted_gp_value(object) - address + 4;
4837         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4838         // for overflow.  Relocations against _gp_disp are normally
4839         // generated from the .cpload pseudo-op.  It generates code
4840         // that normally looks like this:
4841
4842         //   lui    $gp,%hi(_gp_disp)
4843         //   addiu  $gp,$gp,%lo(_gp_disp)
4844         //   addu   $gp,$gp,$t9
4845
4846         // Here $t9 holds the address of the function being called,
4847         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
4848         // relocation can easily overflow in this situation, but the
4849         // R_MIPS_HI16 relocation will handle the overflow.
4850         // Therefore, we consider this a bug in the MIPS ABI, and do
4851         // not check for overflow here.
4852         x = gp_disp + addend;
4853       }
4854     val = Bits<32>::bit_select32(val, x, 0xffff);
4855
4856     if (calculate_only)
4857       *calculated_value = x;
4858     else
4859       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4860
4861     return This::STATUS_OKAY;
4862   }
4863
4864   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4865   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4866   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4867   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4868   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4869   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4870   static inline typename This::Status
4871   relgot(unsigned char* view, int gp_offset, bool calculate_only,
4872          Valtype* calculated_value)
4873   {
4874     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4875     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4876     Valtype x = gp_offset;
4877     val = Bits<32>::bit_select32(val, x, 0xffff);
4878
4879     if (calculate_only)
4880       {
4881         *calculated_value = x;
4882         return This::STATUS_OKAY;
4883       }
4884     else
4885       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4886
4887     return check_overflow<16>(x);
4888   }
4889
4890   // R_MIPS_EH
4891   static inline typename This::Status
4892   releh(unsigned char* view, int gp_offset, bool calculate_only,
4893         Valtype* calculated_value)
4894   {
4895     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4896     Valtype x = gp_offset;
4897
4898     if (calculate_only)
4899       {
4900         *calculated_value = x;
4901         return This::STATUS_OKAY;
4902       }
4903     else
4904       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4905
4906     return check_overflow<32>(x);
4907   }
4908
4909   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4910   static inline typename This::Status
4911   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4912              const Mips_relobj<size, big_endian>* object,
4913              const Symbol_value<size>* psymval, Mips_address addend_a,
4914              bool extract_addend, bool calculate_only,
4915              Valtype* calculated_value)
4916   {
4917     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4918     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4919     Valtype addend = extract_addend ? val & 0xffff : addend_a;
4920
4921     // Find a GOT page entry that points to within 32KB of symbol + addend.
4922     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4923     unsigned int  got_offset =
4924       target->got_section()->get_got_page_offset(value, object);
4925
4926     Valtype x = target->got_section()->gp_offset(got_offset, object);
4927     val = Bits<32>::bit_select32(val, x, 0xffff);
4928
4929     if (calculate_only)
4930       {
4931         *calculated_value = x;
4932         return This::STATUS_OKAY;
4933       }
4934     else
4935       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4936
4937     return check_overflow<16>(x);
4938   }
4939
4940   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4941   static inline typename This::Status
4942   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4943              const Mips_relobj<size, big_endian>* object,
4944              const Symbol_value<size>* psymval, Mips_address addend_a,
4945              bool extract_addend, bool local, bool calculate_only,
4946              Valtype* calculated_value)
4947   {
4948     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4949     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4950     Valtype addend = extract_addend ? val & 0xffff : addend_a;
4951
4952     // For a local symbol, find a GOT page entry that points to within 32KB of
4953     // symbol + addend.  Relocation value is the offset of the GOT page entry's
4954     // value from symbol + addend.
4955     // For a global symbol, relocation value is addend.
4956     Valtype x;
4957     if (local)
4958       {
4959         // Find GOT page entry.
4960         Mips_address value = ((psymval->value(object, addend) + 0x8000)
4961                               & ~0xffff);
4962         target->got_section()->get_got_page_offset(value, object);
4963
4964         x = psymval->value(object, addend) - value;
4965       }
4966     else
4967       x = addend;
4968     val = Bits<32>::bit_select32(val, x, 0xffff);
4969
4970     if (calculate_only)
4971       {
4972         *calculated_value = x;
4973         return This::STATUS_OKAY;
4974       }
4975     else
4976       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4977
4978     return check_overflow<16>(x);
4979   }
4980
4981   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4982   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4983   static inline typename This::Status
4984   relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
4985               Valtype* calculated_value)
4986   {
4987     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4988     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4989     Valtype x = gp_offset;
4990     x = ((x + 0x8000) >> 16) & 0xffff;
4991     val = Bits<32>::bit_select32(val, x, 0xffff);
4992
4993     if (calculate_only)
4994       *calculated_value = x;
4995     else
4996       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4997
4998     return This::STATUS_OKAY;
4999   }
5000
5001   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5002   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5003   static inline typename This::Status
5004   relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5005               Valtype* calculated_value)
5006   {
5007     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5008     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5009     Valtype x = gp_offset;
5010     val = Bits<32>::bit_select32(val, x, 0xffff);
5011
5012     if (calculate_only)
5013       *calculated_value = x;
5014     else
5015       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5016
5017     return This::STATUS_OKAY;
5018   }
5019
5020   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5021   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5022   static inline typename This::Status
5023   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5024            const Symbol_value<size>* psymval, Mips_address gp,
5025            Mips_address addend_a, bool extract_addend, bool local,
5026            unsigned int r_type, bool calculate_only,
5027            Valtype* calculated_value)
5028   {
5029     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5030     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5031
5032     Valtype addend;
5033     if (extract_addend)
5034       {
5035         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5036           addend = (val & 0x7f) << 2;
5037         else
5038           addend = val & 0xffff;
5039         // Only sign-extend the addend if it was extracted from the
5040         // instruction.  If the addend was separate, leave it alone,
5041         // otherwise we may lose significant bits.
5042         addend = Bits<16>::sign_extend32(addend);
5043       }
5044     else
5045       addend = addend_a;
5046
5047     Valtype x = psymval->value(object, addend) - gp;
5048
5049     // If the symbol was local, any earlier relocatable links will
5050     // have adjusted its addend with the gp offset, so compensate
5051     // for that now.  Don't do it for symbols forced local in this
5052     // link, though, since they won't have had the gp offset applied
5053     // to them before.
5054     if (local)
5055       x += object->gp_value();
5056
5057     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5058       val = Bits<32>::bit_select32(val, x, 0x7f);
5059     else
5060       val = Bits<32>::bit_select32(val, x, 0xffff);
5061
5062     if (calculate_only)
5063       {
5064         *calculated_value = x;
5065         return This::STATUS_OKAY;
5066       }
5067     else
5068       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5069
5070     if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5071       {
5072         gold_error(_("small-data section exceeds 64KB; lower small-data size "
5073                      "limit (see option -G)"));
5074         return This::STATUS_OVERFLOW;
5075       }
5076     return This::STATUS_OKAY;
5077   }
5078
5079   // R_MIPS_GPREL32
5080   static inline typename This::Status
5081   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5082              const Symbol_value<size>* psymval, Mips_address gp,
5083              Mips_address addend_a, bool extract_addend, bool calculate_only,
5084              Valtype* calculated_value)
5085   {
5086     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5087     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5088     Valtype addend = extract_addend ? val : addend_a;
5089
5090     // R_MIPS_GPREL32 relocations are defined for local symbols only.
5091     Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5092
5093     if (calculate_only)
5094       *calculated_value = x;
5095     else
5096       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5097
5098     return This::STATUS_OKAY;
5099  }
5100
5101   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5102   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5103   // R_MICROMIPS_TLS_DTPREL_HI16
5104   static inline typename This::Status
5105   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5106              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5107              Mips_address addend_a, bool extract_addend, bool calculate_only,
5108              Valtype* calculated_value)
5109   {
5110     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5111     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5112     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5113
5114     // tls symbol values are relative to tls_segment()->vaddr()
5115     Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5116     val = Bits<32>::bit_select32(val, x, 0xffff);
5117
5118     if (calculate_only)
5119       *calculated_value = x;
5120     else
5121       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5122
5123     return This::STATUS_OKAY;
5124   }
5125
5126   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5127   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5128   // R_MICROMIPS_TLS_DTPREL_LO16,
5129   static inline typename This::Status
5130   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5131              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5132              Mips_address addend_a, bool extract_addend, bool calculate_only,
5133              Valtype* calculated_value)
5134   {
5135     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5136     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5137     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5138
5139     // tls symbol values are relative to tls_segment()->vaddr()
5140     Valtype x = psymval->value(object, addend) - tp_offset;
5141     val = Bits<32>::bit_select32(val, x, 0xffff);
5142
5143     if (calculate_only)
5144       *calculated_value = x;
5145     else
5146       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5147
5148     return This::STATUS_OKAY;
5149   }
5150
5151   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5152   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5153   static inline typename This::Status
5154   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5155            const Symbol_value<size>* psymval, Valtype32 tp_offset,
5156            Mips_address addend_a, bool extract_addend, bool calculate_only,
5157            Valtype* calculated_value)
5158   {
5159     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5160     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5161     Valtype addend = extract_addend ? val : addend_a;
5162
5163     // tls symbol values are relative to tls_segment()->vaddr()
5164     Valtype x = psymval->value(object, addend) - tp_offset;
5165
5166     if (calculate_only)
5167       *calculated_value = x;
5168     else
5169       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5170
5171     return This::STATUS_OKAY;
5172   }
5173
5174   // R_MIPS_SUB, R_MICROMIPS_SUB
5175   static inline typename This::Status
5176   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5177          const Symbol_value<size>* psymval, Mips_address addend_a,
5178          bool extract_addend, bool calculate_only, Valtype* calculated_value)
5179   {
5180     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5181     Valtype64 addend = (extract_addend
5182                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5183                         : addend_a);
5184
5185     Valtype64 x = psymval->value(object, -addend);
5186     if (calculate_only)
5187       *calculated_value = x;
5188     else
5189       elfcpp::Swap<64, big_endian>::writeval(wv, x);
5190
5191     return This::STATUS_OKAY;
5192   }
5193
5194   // R_MIPS_64: S + A
5195   static inline typename This::Status
5196   rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5197         const Symbol_value<size>* psymval, Mips_address addend_a,
5198         bool extract_addend, bool calculate_only, Valtype* calculated_value,
5199         bool apply_addend_only)
5200   {
5201     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5202     Valtype64 addend = (extract_addend
5203                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5204                         : addend_a);
5205
5206     Valtype64 x = psymval->value(object, addend);
5207     if (calculate_only)
5208       *calculated_value = x;
5209     else
5210       {
5211         if (apply_addend_only)
5212           x = addend;
5213         elfcpp::Swap<64, big_endian>::writeval(wv, x);
5214       }
5215
5216     return This::STATUS_OKAY;
5217   }
5218
5219 };
5220
5221 template<int size, bool big_endian>
5222 typename std::list<reloc_high<size, big_endian> >
5223     Mips_relocate_functions<size, big_endian>::hi16_relocs;
5224
5225 template<int size, bool big_endian>
5226 typename std::list<reloc_high<size, big_endian> >
5227     Mips_relocate_functions<size, big_endian>::got16_relocs;
5228
5229 // Mips_got_info methods.
5230
5231 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5232 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5233
5234 template<int size, bool big_endian>
5235 void
5236 Mips_got_info<size, big_endian>::record_local_got_symbol(
5237     Mips_relobj<size, big_endian>* object, unsigned int symndx,
5238     Mips_address addend, unsigned int r_type, unsigned int shndx,
5239     bool is_section_symbol)
5240 {
5241   Mips_got_entry<size, big_endian>* entry =
5242     new Mips_got_entry<size, big_endian>(object, symndx, addend,
5243                                          mips_elf_reloc_tls_type(r_type),
5244                                          shndx, is_section_symbol);
5245   this->record_got_entry(entry, object);
5246 }
5247
5248 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5249 // in OBJECT.  FOR_CALL is true if the caller is only interested in
5250 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
5251 // relocation.
5252
5253 template<int size, bool big_endian>
5254 void
5255 Mips_got_info<size, big_endian>::record_global_got_symbol(
5256     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5257     unsigned int r_type, bool dyn_reloc, bool for_call)
5258 {
5259   if (!for_call)
5260     mips_sym->set_got_not_only_for_calls();
5261
5262   // A global symbol in the GOT must also be in the dynamic symbol table.
5263   if (!mips_sym->needs_dynsym_entry())
5264     {
5265       switch (mips_sym->visibility())
5266         {
5267         case elfcpp::STV_INTERNAL:
5268         case elfcpp::STV_HIDDEN:
5269           mips_sym->set_is_forced_local();
5270           break;
5271         default:
5272           mips_sym->set_needs_dynsym_entry();
5273           break;
5274         }
5275     }
5276
5277   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5278   if (tls_type == GOT_TLS_NONE)
5279     this->global_got_symbols_.insert(mips_sym);
5280
5281   if (dyn_reloc)
5282     {
5283       if (mips_sym->global_got_area() == GGA_NONE)
5284         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5285       return;
5286     }
5287
5288   Mips_got_entry<size, big_endian>* entry =
5289     new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
5290
5291   this->record_got_entry(entry, object);
5292 }
5293
5294 // Add ENTRY to master GOT and to OBJECT's GOT.
5295
5296 template<int size, bool big_endian>
5297 void
5298 Mips_got_info<size, big_endian>::record_got_entry(
5299     Mips_got_entry<size, big_endian>* entry,
5300     Mips_relobj<size, big_endian>* object)
5301 {
5302   if (this->got_entries_.find(entry) == this->got_entries_.end())
5303     this->got_entries_.insert(entry);
5304
5305   // Create the GOT entry for the OBJECT's GOT.
5306   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5307   Mips_got_entry<size, big_endian>* entry2 =
5308     new Mips_got_entry<size, big_endian>(*entry);
5309
5310   if (g->got_entries_.find(entry2) == g->got_entries_.end())
5311     g->got_entries_.insert(entry2);
5312 }
5313
5314 // Record that OBJECT has a page relocation against symbol SYMNDX and
5315 // that ADDEND is the addend for that relocation.
5316 // This function creates an upper bound on the number of GOT slots
5317 // required; no attempt is made to combine references to non-overridable
5318 // global symbols across multiple input files.
5319
5320 template<int size, bool big_endian>
5321 void
5322 Mips_got_info<size, big_endian>::record_got_page_entry(
5323     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5324 {
5325   struct Got_page_range **range_ptr, *range;
5326   int old_pages, new_pages;
5327
5328   // Find the Got_page_entry for this symbol.
5329   Got_page_entry* entry = new Got_page_entry(object, symndx);
5330   typename Got_page_entry_set::iterator it =
5331     this->got_page_entries_.find(entry);
5332   if (it != this->got_page_entries_.end())
5333     entry = *it;
5334   else
5335     this->got_page_entries_.insert(entry);
5336
5337   // Add the same entry to the OBJECT's GOT.
5338   Got_page_entry* entry2 = NULL;
5339   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5340   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5341     {
5342       entry2 = new Got_page_entry(*entry);
5343       g2->got_page_entries_.insert(entry2);
5344     }
5345
5346   // Skip over ranges whose maximum extent cannot share a page entry
5347   // with ADDEND.
5348   range_ptr = &entry->ranges;
5349   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5350     range_ptr = &(*range_ptr)->next;
5351
5352   // If we scanned to the end of the list, or found a range whose
5353   // minimum extent cannot share a page entry with ADDEND, create
5354   // a new singleton range.
5355   range = *range_ptr;
5356   if (!range || addend < range->min_addend - 0xffff)
5357     {
5358       range = new Got_page_range();
5359       range->next = *range_ptr;
5360       range->min_addend = addend;
5361       range->max_addend = addend;
5362
5363       *range_ptr = range;
5364       ++entry->num_pages;
5365       if (entry2 != NULL)
5366         ++entry2->num_pages;
5367       ++this->page_gotno_;
5368       ++g2->page_gotno_;
5369       return;
5370     }
5371
5372   // Remember how many pages the old range contributed.
5373   old_pages = range->get_max_pages();
5374
5375   // Update the ranges.
5376   if (addend < range->min_addend)
5377     range->min_addend = addend;
5378   else if (addend > range->max_addend)
5379     {
5380       if (range->next && addend >= range->next->min_addend - 0xffff)
5381         {
5382           old_pages += range->next->get_max_pages();
5383           range->max_addend = range->next->max_addend;
5384           range->next = range->next->next;
5385         }
5386       else
5387         range->max_addend = addend;
5388     }
5389
5390   // Record any change in the total estimate.
5391   new_pages = range->get_max_pages();
5392   if (old_pages != new_pages)
5393     {
5394       entry->num_pages += new_pages - old_pages;
5395       if (entry2 != NULL)
5396         entry2->num_pages += new_pages - old_pages;
5397       this->page_gotno_ += new_pages - old_pages;
5398       g2->page_gotno_ += new_pages - old_pages;
5399     }
5400 }
5401
5402 // Create all entries that should be in the local part of the GOT.
5403
5404 template<int size, bool big_endian>
5405 void
5406 Mips_got_info<size, big_endian>::add_local_entries(
5407     Target_mips<size, big_endian>* target, Layout* layout)
5408 {
5409   Mips_output_data_got<size, big_endian>* got = target->got_section();
5410   // First two GOT entries are reserved.  The first entry will be filled at
5411   // runtime.  The second entry will be used by some runtime loaders.
5412   got->add_constant(0);
5413   got->add_constant(target->mips_elf_gnu_got1_mask());
5414
5415   for (typename Got_entry_set::iterator
5416        p = this->got_entries_.begin();
5417        p != this->got_entries_.end();
5418        ++p)
5419     {
5420       Mips_got_entry<size, big_endian>* entry = *p;
5421       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5422         {
5423           got->add_local(entry->object(), entry->symndx(),
5424                          GOT_TYPE_STANDARD, entry->addend());
5425           unsigned int got_offset = entry->object()->local_got_offset(
5426               entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5427           if (got->multi_got() && this->index_ > 0
5428               && parameters->options().output_is_position_independent())
5429           {
5430             if (!entry->is_section_symbol())
5431               target->rel_dyn_section(layout)->add_local(entry->object(),
5432                   entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5433             else
5434               target->rel_dyn_section(layout)->add_symbolless_local_addend(
5435                   entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5436                   got, got_offset);
5437           }
5438         }
5439     }
5440
5441   this->add_page_entries(target, layout);
5442
5443   // Add global entries that should be in the local area.
5444   for (typename Got_entry_set::iterator
5445        p = this->got_entries_.begin();
5446        p != this->got_entries_.end();
5447        ++p)
5448     {
5449       Mips_got_entry<size, big_endian>* entry = *p;
5450       if (!entry->is_for_global_symbol())
5451         continue;
5452
5453       Mips_symbol<size>* mips_sym = entry->sym();
5454       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5455         {
5456           unsigned int got_type;
5457           if (!got->multi_got())
5458             got_type = GOT_TYPE_STANDARD;
5459           else
5460             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5461           if (got->add_global(mips_sym, got_type))
5462             {
5463               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5464               if (got->multi_got() && this->index_ > 0
5465                   && parameters->options().output_is_position_independent())
5466                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5467                     mips_sym, elfcpp::R_MIPS_REL32, got,
5468                     mips_sym->got_offset(got_type));
5469             }
5470         }
5471     }
5472 }
5473
5474 // Create GOT page entries.
5475
5476 template<int size, bool big_endian>
5477 void
5478 Mips_got_info<size, big_endian>::add_page_entries(
5479     Target_mips<size, big_endian>* target, Layout* layout)
5480 {
5481   if (this->page_gotno_ == 0)
5482     return;
5483
5484   Mips_output_data_got<size, big_endian>* got = target->got_section();
5485   this->got_page_offset_start_ = got->add_constant(0);
5486   if (got->multi_got() && this->index_ > 0
5487       && parameters->options().output_is_position_independent())
5488     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5489                                                   this->got_page_offset_start_);
5490   int num_entries = this->page_gotno_;
5491   unsigned int prev_offset = this->got_page_offset_start_;
5492   while (--num_entries > 0)
5493     {
5494       unsigned int next_offset = got->add_constant(0);
5495       if (got->multi_got() && this->index_ > 0
5496           && parameters->options().output_is_position_independent())
5497         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5498                                                       next_offset);
5499       gold_assert(next_offset == prev_offset + size/8);
5500       prev_offset = next_offset;
5501     }
5502   this->got_page_offset_next_ = this->got_page_offset_start_;
5503 }
5504
5505 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5506
5507 template<int size, bool big_endian>
5508 void
5509 Mips_got_info<size, big_endian>::add_global_entries(
5510     Target_mips<size, big_endian>* target, Layout* layout,
5511     unsigned int non_reloc_only_global_gotno)
5512 {
5513   Mips_output_data_got<size, big_endian>* got = target->got_section();
5514   // Add GGA_NORMAL entries.
5515   unsigned int count = 0;
5516   for (typename Got_entry_set::iterator
5517        p = this->got_entries_.begin();
5518        p != this->got_entries_.end();
5519        ++p)
5520     {
5521       Mips_got_entry<size, big_endian>* entry = *p;
5522       if (!entry->is_for_global_symbol())
5523         continue;
5524
5525       Mips_symbol<size>* mips_sym = entry->sym();
5526       if (mips_sym->global_got_area() != GGA_NORMAL)
5527         continue;
5528
5529       unsigned int got_type;
5530       if (!got->multi_got())
5531         got_type = GOT_TYPE_STANDARD;
5532       else
5533         // In multi-GOT links, global symbol can be in both primary and
5534         // secondary GOT(s).  By creating custom GOT type
5535         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5536         // is added to secondary GOT(s).
5537         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5538       if (!got->add_global(mips_sym, got_type))
5539         continue;
5540
5541       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5542       if (got->multi_got() && this->index_ == 0)
5543         count++;
5544       if (got->multi_got() && this->index_ > 0)
5545         {
5546           if (parameters->options().output_is_position_independent()
5547               || (!parameters->doing_static_link()
5548                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5549             {
5550               target->rel_dyn_section(layout)->add_global(
5551                   mips_sym, elfcpp::R_MIPS_REL32, got,
5552                   mips_sym->got_offset(got_type));
5553               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5554                                            elfcpp::R_MIPS_REL32, mips_sym);
5555             }
5556         }
5557     }
5558
5559   if (!got->multi_got() || this->index_ == 0)
5560     {
5561       if (got->multi_got())
5562         {
5563           // We need to allocate space in the primary GOT for GGA_NORMAL entries
5564           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5565           // entries correspond to dynamic symbol indexes.
5566           while (count < non_reloc_only_global_gotno)
5567             {
5568               got->add_constant(0);
5569               ++count;
5570             }
5571         }
5572
5573       // Add GGA_RELOC_ONLY entries.
5574       got->add_reloc_only_entries();
5575     }
5576 }
5577
5578 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5579
5580 template<int size, bool big_endian>
5581 void
5582 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5583     Mips_output_data_got<size, big_endian>* got)
5584 {
5585   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5586        p = this->global_got_symbols_.begin();
5587        p != this->global_got_symbols_.end();
5588        ++p)
5589     {
5590       Mips_symbol<size>* mips_sym = *p;
5591       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5592         {
5593           unsigned int got_type;
5594           if (!got->multi_got())
5595             got_type = GOT_TYPE_STANDARD;
5596           else
5597             got_type = GOT_TYPE_STANDARD_MULTIGOT;
5598           if (got->add_global(mips_sym, got_type))
5599             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5600         }
5601     }
5602 }
5603
5604 // Create TLS GOT entries.
5605
5606 template<int size, bool big_endian>
5607 void
5608 Mips_got_info<size, big_endian>::add_tls_entries(
5609     Target_mips<size, big_endian>* target, Layout* layout)
5610 {
5611   Mips_output_data_got<size, big_endian>* got = target->got_section();
5612   // Add local tls entries.
5613   for (typename Got_entry_set::iterator
5614        p = this->got_entries_.begin();
5615        p != this->got_entries_.end();
5616        ++p)
5617     {
5618       Mips_got_entry<size, big_endian>* entry = *p;
5619       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5620         continue;
5621
5622       if (entry->tls_type() == GOT_TLS_GD)
5623         {
5624           unsigned int got_type = GOT_TYPE_TLS_PAIR;
5625           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5626                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5627           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5628                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5629
5630           if (!parameters->doing_static_link())
5631             {
5632               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5633                                            entry->shndx(), got_type,
5634                                            target->rel_dyn_section(layout),
5635                                            r_type1, entry->addend());
5636               unsigned int got_offset =
5637                 entry->object()->local_got_offset(entry->symndx(), got_type,
5638                                                   entry->addend());
5639               got->add_static_reloc(got_offset + size/8, r_type2,
5640                                     entry->object(), entry->symndx());
5641             }
5642           else
5643             {
5644               // We are doing a static link.  Mark it as belong to module 1,
5645               // the executable.
5646               unsigned int got_offset = got->add_constant(1);
5647               entry->object()->set_local_got_offset(entry->symndx(), got_type,
5648                                                     got_offset,
5649                                                     entry->addend());
5650               got->add_constant(0);
5651               got->add_static_reloc(got_offset + size/8, r_type2,
5652                                     entry->object(), entry->symndx());
5653             }
5654         }
5655       else if (entry->tls_type() == GOT_TLS_IE)
5656         {
5657           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5658           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5659                                             : elfcpp::R_MIPS_TLS_TPREL64);
5660           if (!parameters->doing_static_link())
5661             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5662                                     target->rel_dyn_section(layout), r_type,
5663                                     entry->addend());
5664           else
5665             {
5666               got->add_local(entry->object(), entry->symndx(), got_type,
5667                              entry->addend());
5668               unsigned int got_offset =
5669                   entry->object()->local_got_offset(entry->symndx(), got_type,
5670                                                     entry->addend());
5671               got->add_static_reloc(got_offset, r_type, entry->object(),
5672                                     entry->symndx());
5673             }
5674         }
5675       else if (entry->tls_type() == GOT_TLS_LDM)
5676         {
5677           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5678                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
5679           unsigned int got_offset;
5680           if (!parameters->doing_static_link())
5681             {
5682               got_offset = got->add_constant(0);
5683               target->rel_dyn_section(layout)->add_local(
5684                   entry->object(), 0, r_type, got, got_offset);
5685             }
5686           else
5687             // We are doing a static link.  Just mark it as belong to module 1,
5688             // the executable.
5689             got_offset = got->add_constant(1);
5690
5691           got->add_constant(0);
5692           got->set_tls_ldm_offset(got_offset, entry->object());
5693         }
5694       else
5695         gold_unreachable();
5696     }
5697
5698   // Add global tls entries.
5699   for (typename Got_entry_set::iterator
5700        p = this->got_entries_.begin();
5701        p != this->got_entries_.end();
5702        ++p)
5703     {
5704       Mips_got_entry<size, big_endian>* entry = *p;
5705       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5706         continue;
5707
5708       Mips_symbol<size>* mips_sym = entry->sym();
5709       if (entry->tls_type() == GOT_TLS_GD)
5710         {
5711           unsigned int got_type;
5712           if (!got->multi_got())
5713             got_type = GOT_TYPE_TLS_PAIR;
5714           else
5715             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5716           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5717                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5718           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5719                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5720           if (!parameters->doing_static_link())
5721             got->add_global_pair_with_rel(mips_sym, got_type,
5722                              target->rel_dyn_section(layout), r_type1, r_type2);
5723           else
5724             {
5725               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
5726               // GOT entries.  The first one is initialized to be 1, which is the
5727               // module index for the main executable and the second one 0.  A
5728               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5729               // the second GOT entry and will be applied by gold.
5730               unsigned int got_offset = got->add_constant(1);
5731               mips_sym->set_got_offset(got_type, got_offset);
5732               got->add_constant(0);
5733               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5734             }
5735         }
5736       else if (entry->tls_type() == GOT_TLS_IE)
5737         {
5738           unsigned int got_type;
5739           if (!got->multi_got())
5740             got_type = GOT_TYPE_TLS_OFFSET;
5741           else
5742             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5743           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5744                                             : elfcpp::R_MIPS_TLS_TPREL64);
5745           if (!parameters->doing_static_link())
5746             got->add_global_with_rel(mips_sym, got_type,
5747                                      target->rel_dyn_section(layout), r_type);
5748           else
5749             {
5750               got->add_global(mips_sym, got_type);
5751               unsigned int got_offset = mips_sym->got_offset(got_type);
5752               got->add_static_reloc(got_offset, r_type, mips_sym);
5753             }
5754         }
5755       else
5756         gold_unreachable();
5757     }
5758 }
5759
5760 // Decide whether the symbol needs an entry in the global part of the primary
5761 // GOT, setting global_got_area accordingly.  Count the number of global
5762 // symbols that are in the primary GOT only because they have dynamic
5763 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
5764
5765 template<int size, bool big_endian>
5766 void
5767 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5768 {
5769   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5770        p = this->global_got_symbols_.begin();
5771        p != this->global_got_symbols_.end();
5772        ++p)
5773     {
5774       Mips_symbol<size>* sym = *p;
5775       // Make a final decision about whether the symbol belongs in the
5776       // local or global GOT.  Symbols that bind locally can (and in the
5777       // case of forced-local symbols, must) live in the local GOT.
5778       // Those that are aren't in the dynamic symbol table must also
5779       // live in the local GOT.
5780
5781       if (!sym->should_add_dynsym_entry(symtab)
5782           || (sym->got_only_for_calls()
5783               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5784               : symbol_references_local(sym,
5785                                         sym->should_add_dynsym_entry(symtab))))
5786         // The symbol belongs in the local GOT.  We no longer need this
5787         // entry if it was only used for relocations; those relocations
5788         // will be against the null or section symbol instead.
5789         sym->set_global_got_area(GGA_NONE);
5790       else if (sym->global_got_area() == GGA_RELOC_ONLY)
5791         {
5792           ++this->reloc_only_gotno_;
5793           ++this->global_gotno_ ;
5794         }
5795     }
5796 }
5797
5798 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
5799 // VALUE if it is not initialized.
5800
5801 template<int size, bool big_endian>
5802 unsigned int
5803 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5804     Mips_output_data_got<size, big_endian>* got)
5805 {
5806   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5807   if (it != this->got_page_offsets_.end())
5808     return it->second;
5809
5810   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5811               + (size/8) * this->page_gotno_);
5812
5813   unsigned int got_offset = this->got_page_offset_next_;
5814   this->got_page_offsets_[value] = got_offset;
5815   this->got_page_offset_next_ += size/8;
5816   got->update_got_entry(got_offset, value);
5817   return got_offset;
5818 }
5819
5820 // Remove lazy-binding stubs for global symbols in this GOT.
5821
5822 template<int size, bool big_endian>
5823 void
5824 Mips_got_info<size, big_endian>::remove_lazy_stubs(
5825     Target_mips<size, big_endian>* target)
5826 {
5827   for (typename Got_entry_set::iterator
5828        p = this->got_entries_.begin();
5829        p != this->got_entries_.end();
5830        ++p)
5831     {
5832       Mips_got_entry<size, big_endian>* entry = *p;
5833       if (entry->is_for_global_symbol())
5834         target->remove_lazy_stub_entry(entry->sym());
5835     }
5836 }
5837
5838 // Count the number of GOT entries required.
5839
5840 template<int size, bool big_endian>
5841 void
5842 Mips_got_info<size, big_endian>::count_got_entries()
5843 {
5844   for (typename Got_entry_set::iterator
5845        p = this->got_entries_.begin();
5846        p != this->got_entries_.end();
5847        ++p)
5848     {
5849       this->count_got_entry(*p);
5850     }
5851 }
5852
5853 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
5854
5855 template<int size, bool big_endian>
5856 void
5857 Mips_got_info<size, big_endian>::count_got_entry(
5858     Mips_got_entry<size, big_endian>* entry)
5859 {
5860   if (entry->is_tls_entry())
5861     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5862   else if (entry->is_for_local_symbol()
5863            || entry->sym()->global_got_area() == GGA_NONE)
5864     ++this->local_gotno_;
5865   else
5866     ++this->global_gotno_;
5867 }
5868
5869 // Add FROM's GOT entries.
5870
5871 template<int size, bool big_endian>
5872 void
5873 Mips_got_info<size, big_endian>::add_got_entries(
5874     Mips_got_info<size, big_endian>* from)
5875 {
5876   for (typename Got_entry_set::iterator
5877        p = from->got_entries_.begin();
5878        p != from->got_entries_.end();
5879        ++p)
5880     {
5881       Mips_got_entry<size, big_endian>* entry = *p;
5882       if (this->got_entries_.find(entry) == this->got_entries_.end())
5883         {
5884           Mips_got_entry<size, big_endian>* entry2 =
5885             new Mips_got_entry<size, big_endian>(*entry);
5886           this->got_entries_.insert(entry2);
5887           this->count_got_entry(entry);
5888         }
5889     }
5890 }
5891
5892 // Add FROM's GOT page entries.
5893
5894 template<int size, bool big_endian>
5895 void
5896 Mips_got_info<size, big_endian>::add_got_page_entries(
5897     Mips_got_info<size, big_endian>* from)
5898 {
5899   for (typename Got_page_entry_set::iterator
5900        p = from->got_page_entries_.begin();
5901        p != from->got_page_entries_.end();
5902        ++p)
5903     {
5904       Got_page_entry* entry = *p;
5905       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5906         {
5907           Got_page_entry* entry2 = new Got_page_entry(*entry);
5908           this->got_page_entries_.insert(entry2);
5909           this->page_gotno_ += entry->num_pages;
5910         }
5911     }
5912 }
5913
5914 // Mips_output_data_got methods.
5915
5916 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
5917 // larger than 64K, create multi-GOT.
5918
5919 template<int size, bool big_endian>
5920 void
5921 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5922     Symbol_table* symtab, const Input_objects* input_objects)
5923 {
5924   // Decide which symbols need to go in the global part of the GOT and
5925   // count the number of reloc-only GOT symbols.
5926   this->master_got_info_->count_got_symbols(symtab);
5927
5928   // Count the number of GOT entries.
5929   this->master_got_info_->count_got_entries();
5930
5931   unsigned int got_size = this->master_got_info_->got_size();
5932   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5933     this->lay_out_multi_got(layout, input_objects);
5934   else
5935     {
5936       // Record that all objects use single GOT.
5937       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5938            p != input_objects->relobj_end();
5939            ++p)
5940         {
5941           Mips_relobj<size, big_endian>* object =
5942             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5943           if (object->get_got_info() != NULL)
5944             object->set_got_info(this->master_got_info_);
5945         }
5946
5947       this->master_got_info_->add_local_entries(this->target_, layout);
5948       this->master_got_info_->add_global_entries(this->target_, layout,
5949                                                  /*not used*/-1U);
5950       this->master_got_info_->add_tls_entries(this->target_, layout);
5951     }
5952 }
5953
5954 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
5955
5956 template<int size, bool big_endian>
5957 void
5958 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5959     const Input_objects* input_objects)
5960 {
5961   // Try to merge the GOTs of input objects together, as long as they
5962   // don't seem to exceed the maximum GOT size, choosing one of them
5963   // to be the primary GOT.
5964   this->merge_gots(input_objects);
5965
5966   // Every symbol that is referenced in a dynamic relocation must be
5967   // present in the primary GOT.
5968   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5969
5970   // Add GOT entries.
5971   unsigned int i = 0;
5972   unsigned int offset = 0;
5973   Mips_got_info<size, big_endian>* g = this->primary_got_;
5974   do
5975     {
5976       g->set_index(i);
5977       g->set_offset(offset);
5978
5979       g->add_local_entries(this->target_, layout);
5980       if (i == 0)
5981         g->add_global_entries(this->target_, layout,
5982                               (this->master_got_info_->global_gotno()
5983                                - this->master_got_info_->reloc_only_gotno()));
5984       else
5985         g->add_global_entries(this->target_, layout, /*not used*/-1U);
5986       g->add_tls_entries(this->target_, layout);
5987
5988       // Forbid global symbols in every non-primary GOT from having
5989       // lazy-binding stubs.
5990       if (i > 0)
5991         g->remove_lazy_stubs(this->target_);
5992
5993       ++i;
5994       offset += g->got_size();
5995       g = g->next();
5996     }
5997   while (g);
5998 }
5999
6000 // Attempt to merge GOTs of different input objects.  Try to use as much as
6001 // possible of the primary GOT, since it doesn't require explicit dynamic
6002 // relocations, but don't use objects that would reference global symbols
6003 // out of the addressable range.  Failing the primary GOT, attempt to merge
6004 // with the current GOT, or finish the current GOT and then make make the new
6005 // GOT current.
6006
6007 template<int size, bool big_endian>
6008 void
6009 Mips_output_data_got<size, big_endian>::merge_gots(
6010     const Input_objects* input_objects)
6011 {
6012   gold_assert(this->primary_got_ == NULL);
6013   Mips_got_info<size, big_endian>* current = NULL;
6014
6015   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6016        p != input_objects->relobj_end();
6017        ++p)
6018     {
6019       Mips_relobj<size, big_endian>* object =
6020         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6021
6022       Mips_got_info<size, big_endian>* g = object->get_got_info();
6023       if (g == NULL)
6024         continue;
6025
6026       g->count_got_entries();
6027
6028       // Work out the number of page, local and TLS entries.
6029       unsigned int estimate = this->master_got_info_->page_gotno();
6030       if (estimate > g->page_gotno())
6031         estimate = g->page_gotno();
6032       estimate += g->local_gotno() + g->tls_gotno();
6033
6034       // We place TLS GOT entries after both locals and globals.  The globals
6035       // for the primary GOT may overflow the normal GOT size limit, so be
6036       // sure not to merge a GOT which requires TLS with the primary GOT in that
6037       // case.  This doesn't affect non-primary GOTs.
6038       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6039                                       : g->global_gotno());
6040
6041       unsigned int max_count =
6042         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6043       if (estimate <= max_count)
6044         {
6045           // If we don't have a primary GOT, use it as
6046           // a starting point for the primary GOT.
6047           if (!this->primary_got_)
6048             {
6049               this->primary_got_ = g;
6050               continue;
6051             }
6052
6053           // Try merging with the primary GOT.
6054           if (this->merge_got_with(g, object, this->primary_got_))
6055             continue;
6056         }
6057
6058       // If we can merge with the last-created GOT, do it.
6059       if (current && this->merge_got_with(g, object, current))
6060         continue;
6061
6062       // Well, we couldn't merge, so create a new GOT.  Don't check if it
6063       // fits; if it turns out that it doesn't, we'll get relocation
6064       // overflows anyway.
6065       g->set_next(current);
6066       current = g;
6067     }
6068
6069   // If we do not find any suitable primary GOT, create an empty one.
6070   if (this->primary_got_ == NULL)
6071     this->primary_got_ = new Mips_got_info<size, big_endian>();
6072
6073   // Link primary GOT with secondary GOTs.
6074   this->primary_got_->set_next(current);
6075 }
6076
6077 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
6078 // this would lead to overflow, true if they were merged successfully.
6079
6080 template<int size, bool big_endian>
6081 bool
6082 Mips_output_data_got<size, big_endian>::merge_got_with(
6083     Mips_got_info<size, big_endian>* from,
6084     Mips_relobj<size, big_endian>* object,
6085     Mips_got_info<size, big_endian>* to)
6086 {
6087   // Work out how many page entries we would need for the combined GOT.
6088   unsigned int estimate = this->master_got_info_->page_gotno();
6089   if (estimate >= from->page_gotno() + to->page_gotno())
6090     estimate = from->page_gotno() + to->page_gotno();
6091
6092   // Conservatively estimate how many local and TLS entries would be needed.
6093   estimate += from->local_gotno() + to->local_gotno();
6094   estimate += from->tls_gotno() + to->tls_gotno();
6095
6096   // If we're merging with the primary got, any TLS relocations will
6097   // come after the full set of global entries.  Otherwise estimate those
6098   // conservatively as well.
6099   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6100     estimate += this->master_got_info_->global_gotno();
6101   else
6102     estimate += from->global_gotno() + to->global_gotno();
6103
6104   // Bail out if the combined GOT might be too big.
6105   unsigned int max_count =
6106     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6107   if (estimate > max_count)
6108     return false;
6109
6110   // Transfer the object's GOT information from FROM to TO.
6111   to->add_got_entries(from);
6112   to->add_got_page_entries(from);
6113
6114   // Record that OBJECT should use output GOT TO.
6115   object->set_got_info(to);
6116
6117   return true;
6118 }
6119
6120 // Write out the GOT.
6121
6122 template<int size, bool big_endian>
6123 void
6124 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6125 {
6126   // Call parent to write out GOT.
6127   Output_data_got<size, big_endian>::do_write(of);
6128
6129   const off_t offset = this->offset();
6130   const section_size_type oview_size =
6131     convert_to_section_size_type(this->data_size());
6132   unsigned char* const oview = of->get_output_view(offset, oview_size);
6133
6134   // Needed for fixing values of .got section.
6135   this->got_view_ = oview;
6136
6137   // Write lazy stub addresses.
6138   for (typename Unordered_set<Mips_symbol<size>*>::iterator
6139        p = this->master_got_info_->global_got_symbols().begin();
6140        p != this->master_got_info_->global_got_symbols().end();
6141        ++p)
6142     {
6143       Mips_symbol<size>* mips_sym = *p;
6144       if (mips_sym->has_lazy_stub())
6145         {
6146           Valtype* wv = reinterpret_cast<Valtype*>(
6147             oview + this->get_primary_got_offset(mips_sym));
6148           Valtype value =
6149             this->target_->mips_stubs_section()->stub_address(mips_sym);
6150           elfcpp::Swap<size, big_endian>::writeval(wv, value);
6151         }
6152     }
6153
6154   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6155   for (typename Unordered_set<Mips_symbol<size>*>::iterator
6156        p = this->master_got_info_->global_got_symbols().begin();
6157        p != this->master_got_info_->global_got_symbols().end();
6158        ++p)
6159     {
6160       Mips_symbol<size>* mips_sym = *p;
6161       if (!this->multi_got()
6162           && (mips_sym->is_mips16() || mips_sym->is_micromips())
6163           && mips_sym->global_got_area() == GGA_NONE
6164           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6165         {
6166           Valtype* wv = reinterpret_cast<Valtype*>(
6167             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6168           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6169           if (value != 0)
6170             {
6171               value |= 1;
6172               elfcpp::Swap<size, big_endian>::writeval(wv, value);
6173             }
6174         }
6175     }
6176
6177   if (!this->secondary_got_relocs_.empty())
6178     {
6179       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
6180       // secondary GOT entries with non-zero initial value copy the value
6181       // to the corresponding primary GOT entry, and set the secondary GOT
6182       // entry to zero.
6183       // TODO(sasa): This is workaround.  It needs to be investigated further.
6184
6185       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6186         {
6187           Static_reloc& reloc(this->secondary_got_relocs_[i]);
6188           if (reloc.symbol_is_global())
6189             {
6190               Mips_symbol<size>* gsym = reloc.symbol();
6191               gold_assert(gsym != NULL);
6192
6193               unsigned got_offset = reloc.got_offset();
6194               gold_assert(got_offset < oview_size);
6195
6196               // Find primary GOT entry.
6197               Valtype* wv_prim = reinterpret_cast<Valtype*>(
6198                 oview + this->get_primary_got_offset(gsym));
6199
6200               // Find secondary GOT entry.
6201               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6202
6203               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6204               if (value != 0)
6205                 {
6206                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6207                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6208                   gsym->set_applied_secondary_got_fixup();
6209                 }
6210             }
6211         }
6212
6213       of->write_output_view(offset, oview_size, oview);
6214     }
6215
6216   // We are done if there is no fix up.
6217   if (this->static_relocs_.empty())
6218     return;
6219
6220   Output_segment* tls_segment = this->layout_->tls_segment();
6221   gold_assert(tls_segment != NULL);
6222
6223   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6224     {
6225       Static_reloc& reloc(this->static_relocs_[i]);
6226
6227       Mips_address value;
6228       if (!reloc.symbol_is_global())
6229         {
6230           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6231           const Symbol_value<size>* psymval =
6232             object->local_symbol(reloc.index());
6233
6234           // We are doing static linking.  Issue an error and skip this
6235           // relocation if the symbol is undefined or in a discarded_section.
6236           bool is_ordinary;
6237           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6238           if ((shndx == elfcpp::SHN_UNDEF)
6239               || (is_ordinary
6240                   && shndx != elfcpp::SHN_UNDEF
6241                   && !object->is_section_included(shndx)
6242                   && !this->symbol_table_->is_section_folded(object, shndx)))
6243             {
6244               gold_error(_("undefined or discarded local symbol %u from "
6245                            " object %s in GOT"),
6246                          reloc.index(), reloc.relobj()->name().c_str());
6247               continue;
6248             }
6249
6250           value = psymval->value(object, 0);
6251         }
6252       else
6253         {
6254           const Mips_symbol<size>* gsym = reloc.symbol();
6255           gold_assert(gsym != NULL);
6256
6257           // We are doing static linking.  Issue an error and skip this
6258           // relocation if the symbol is undefined or in a discarded_section
6259           // unless it is a weakly_undefined symbol.
6260           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6261               && !gsym->is_weak_undefined())
6262             {
6263               gold_error(_("undefined or discarded symbol %s in GOT"),
6264                          gsym->name());
6265               continue;
6266             }
6267
6268           if (!gsym->is_weak_undefined())
6269             value = gsym->value();
6270           else
6271             value = 0;
6272         }
6273
6274       unsigned got_offset = reloc.got_offset();
6275       gold_assert(got_offset < oview_size);
6276
6277       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6278       Valtype x;
6279
6280       switch (reloc.r_type())
6281         {
6282         case elfcpp::R_MIPS_TLS_DTPMOD32:
6283         case elfcpp::R_MIPS_TLS_DTPMOD64:
6284           x = value;
6285           break;
6286         case elfcpp::R_MIPS_TLS_DTPREL32:
6287         case elfcpp::R_MIPS_TLS_DTPREL64:
6288           x = value - elfcpp::DTP_OFFSET;
6289           break;
6290         case elfcpp::R_MIPS_TLS_TPREL32:
6291         case elfcpp::R_MIPS_TLS_TPREL64:
6292           x = value - elfcpp::TP_OFFSET;
6293           break;
6294         default:
6295           gold_unreachable();
6296           break;
6297         }
6298
6299       elfcpp::Swap<size, big_endian>::writeval(wv, x);
6300     }
6301
6302   of->write_output_view(offset, oview_size, oview);
6303 }
6304
6305 // Mips_relobj methods.
6306
6307 // Count the local symbols.  The Mips backend needs to know if a symbol
6308 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
6309 // because the Symbol object keeps the ELF symbol type and st_other field.
6310 // For local symbol it is harder because we cannot access this information.
6311 // So we override the do_count_local_symbol in parent and scan local symbols to
6312 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
6313 // I do not want to slow down other ports by calling a per symbol target hook
6314 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6315
6316 template<int size, bool big_endian>
6317 void
6318 Mips_relobj<size, big_endian>::do_count_local_symbols(
6319     Stringpool_template<char>* pool,
6320     Stringpool_template<char>* dynpool)
6321 {
6322   // Ask parent to count the local symbols.
6323   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6324   const unsigned int loccount = this->local_symbol_count();
6325   if (loccount == 0)
6326     return;
6327
6328   // Initialize the mips16 and micromips function bit-vector.
6329   this->local_symbol_is_mips16_.resize(loccount, false);
6330   this->local_symbol_is_micromips_.resize(loccount, false);
6331
6332   // Read the symbol table section header.
6333   const unsigned int symtab_shndx = this->symtab_shndx();
6334   elfcpp::Shdr<size, big_endian>
6335     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6336   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6337
6338   // Read the local symbols.
6339   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6340   gold_assert(loccount == symtabshdr.get_sh_info());
6341   off_t locsize = loccount * sym_size;
6342   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6343                                               locsize, true, true);
6344
6345   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6346
6347   // Skip the first dummy symbol.
6348   psyms += sym_size;
6349   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6350     {
6351       elfcpp::Sym<size, big_endian> sym(psyms);
6352       unsigned char st_other = sym.get_st_other();
6353       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6354       this->local_symbol_is_micromips_[i] =
6355         elfcpp::elf_st_is_micromips(st_other);
6356     }
6357 }
6358
6359 // Read the symbol information.
6360
6361 template<int size, bool big_endian>
6362 void
6363 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6364 {
6365   // Call parent class to read symbol information.
6366   this->base_read_symbols(sd);
6367
6368   // Read processor-specific flags in ELF file header.
6369   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6370                                             elfcpp::Elf_sizes<size>::ehdr_size,
6371                                             true, false);
6372   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6373   this->processor_specific_flags_ = ehdr.get_e_flags();
6374
6375   // Get the section names.
6376   const unsigned char* pnamesu = sd->section_names->data();
6377   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6378
6379   // Initialize the mips16 stub section bit-vectors.
6380   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6381   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6382   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6383
6384   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6385   const unsigned char* pshdrs = sd->section_headers->data();
6386   const unsigned char* ps = pshdrs + shdr_size;
6387   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6388     {
6389       elfcpp::Shdr<size, big_endian> shdr(ps);
6390
6391       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6392         {
6393           // Read the gp value that was used to create this object.  We need the
6394           // gp value while processing relocs.  The .reginfo section is not used
6395           // in the 64-bit MIPS ELF ABI.
6396           section_offset_type section_offset = shdr.get_sh_offset();
6397           section_size_type section_size =
6398             convert_to_section_size_type(shdr.get_sh_size());
6399           const unsigned char* view =
6400              this->get_view(section_offset, section_size, true, false);
6401
6402           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6403
6404           // Read the rest of .reginfo.
6405           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6406           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6407           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6408           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6409           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6410         }
6411
6412       // In the 64-bit ABI, .MIPS.options section holds register information.
6413       // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6414       // starts with this header:
6415       //
6416       // typedef struct
6417       // {
6418       //   // Type of option.
6419       //   unsigned char kind[1];
6420       //   // Size of option descriptor, including header.
6421       //   unsigned char size[1];
6422       //   // Section index of affected section, or 0 for global option.
6423       //   unsigned char section[2];
6424       //   // Information specific to this kind of option.
6425       //   unsigned char info[4];
6426       // };
6427       //
6428       // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6429       // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
6430       // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6431
6432       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6433         {
6434           section_offset_type section_offset = shdr.get_sh_offset();
6435           section_size_type section_size =
6436             convert_to_section_size_type(shdr.get_sh_size());
6437           const unsigned char* view =
6438              this->get_view(section_offset, section_size, true, false);
6439           const unsigned char* end = view + section_size;
6440
6441           while (view + 8 <= end)
6442             {
6443               unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6444               unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6445               if (sz < 8)
6446                 {
6447                   gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6448                                "than its header"),
6449                              this->name().c_str(),
6450                              this->mips_elf_options_section_name(), sz);
6451                   break;
6452                 }
6453
6454               if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6455                 {
6456                   // In the 64 bit ABI, an ODK_REGINFO option is the following
6457                   // structure.  The info field of the options header is not
6458                   // used.
6459                   //
6460                   // typedef struct
6461                   // {
6462                   //   // Mask of general purpose registers used.
6463                   //   unsigned char ri_gprmask[4];
6464                   //   // Padding.
6465                   //   unsigned char ri_pad[4];
6466                   //   // Mask of co-processor registers used.
6467                   //   unsigned char ri_cprmask[4][4];
6468                   //   // GP register value for this object file.
6469                   //   unsigned char ri_gp_value[8];
6470                   // };
6471
6472                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6473                                                                       + 32);
6474                 }
6475               else if (kind == elfcpp::ODK_REGINFO)
6476                 {
6477                   // In the 32 bit ABI, an ODK_REGINFO option is the following
6478                   // structure.  The info field of the options header is not
6479                   // used.  The same structure is used in .reginfo section.
6480                   //
6481                   // typedef struct
6482                   // {
6483                   //   unsigned char ri_gprmask[4];
6484                   //   unsigned char ri_cprmask[4][4];
6485                   //   unsigned char ri_gp_value[4];
6486                   // };
6487
6488                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6489                                                                       + 28);
6490                 }
6491               view += sz;
6492             }
6493         }
6494
6495       const char* name = pnames + shdr.get_sh_name();
6496       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6497       this->section_is_mips16_call_stub_[i] =
6498         is_prefix_of(".mips16.call.", name);
6499       this->section_is_mips16_call_fp_stub_[i] =
6500         is_prefix_of(".mips16.call.fp.", name);
6501
6502       if (strcmp(name, ".pdr") == 0)
6503         {
6504           gold_assert(this->pdr_shndx_ == -1U);
6505           this->pdr_shndx_ = i;
6506         }
6507     }
6508 }
6509
6510 // Discard MIPS16 stub secions that are not needed.
6511
6512 template<int size, bool big_endian>
6513 void
6514 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6515 {
6516   for (typename Mips16_stubs_int_map::const_iterator
6517        it = this->mips16_stub_sections_.begin();
6518        it != this->mips16_stub_sections_.end(); ++it)
6519     {
6520       Mips16_stub_section<size, big_endian>* stub_section = it->second;
6521       if (!stub_section->is_target_found())
6522         {
6523           gold_error(_("no relocation found in mips16 stub section '%s'"),
6524                      stub_section->object()
6525                        ->section_name(stub_section->shndx()).c_str());
6526         }
6527
6528       bool discard = false;
6529       if (stub_section->is_for_local_function())
6530         {
6531           if (stub_section->is_fn_stub())
6532             {
6533               // This stub is for a local symbol.  This stub will only
6534               // be needed if there is some relocation in this object,
6535               // other than a 16 bit function call, which refers to this
6536               // symbol.
6537               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
6538                 discard = true;
6539               else
6540                 this->add_local_mips16_fn_stub(stub_section);
6541             }
6542           else
6543             {
6544               // This stub is for a local symbol.  This stub will only
6545               // be needed if there is some relocation (R_MIPS16_26) in
6546               // this object that refers to this symbol.
6547               gold_assert(stub_section->is_call_stub()
6548                           || stub_section->is_call_fp_stub());
6549               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
6550                 discard = true;
6551               else
6552                 this->add_local_mips16_call_stub(stub_section);
6553             }
6554         }
6555       else
6556         {
6557           Mips_symbol<size>* gsym = stub_section->gsym();
6558           if (stub_section->is_fn_stub())
6559             {
6560               if (gsym->has_mips16_fn_stub())
6561                 // We already have a stub for this function.
6562                 discard = true;
6563               else
6564                 {
6565                   gsym->set_mips16_fn_stub(stub_section);
6566                   if (gsym->should_add_dynsym_entry(symtab))
6567                     {
6568                       // If we have a MIPS16 function with a stub, the
6569                       // dynamic symbol must refer to the stub, since only
6570                       // the stub uses the standard calling conventions.
6571                       gsym->set_need_fn_stub();
6572                       if (gsym->is_from_dynobj())
6573                         gsym->set_needs_dynsym_value();
6574                     }
6575                 }
6576               if (!gsym->need_fn_stub())
6577                 discard = true;
6578             }
6579           else if (stub_section->is_call_stub())
6580             {
6581               if (gsym->is_mips16())
6582                 // We don't need the call_stub; this is a 16 bit
6583                 // function, so calls from other 16 bit functions are
6584                 // OK.
6585                 discard = true;
6586               else if (gsym->has_mips16_call_stub())
6587                 // We already have a stub for this function.
6588                 discard = true;
6589               else
6590                 gsym->set_mips16_call_stub(stub_section);
6591             }
6592           else
6593             {
6594               gold_assert(stub_section->is_call_fp_stub());
6595               if (gsym->is_mips16())
6596                 // We don't need the call_stub; this is a 16 bit
6597                 // function, so calls from other 16 bit functions are
6598                 // OK.
6599                 discard = true;
6600               else if (gsym->has_mips16_call_fp_stub())
6601                 // We already have a stub for this function.
6602                 discard = true;
6603               else
6604                 gsym->set_mips16_call_fp_stub(stub_section);
6605             }
6606         }
6607       if (discard)
6608         this->set_output_section(stub_section->shndx(), NULL);
6609    }
6610 }
6611
6612 // Mips_output_data_la25_stub methods.
6613
6614 // Template for standard LA25 stub.
6615 template<int size, bool big_endian>
6616 const uint32_t
6617 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6618 {
6619   0x3c190000,           // lui $25,%hi(func)
6620   0x08000000,           // j func
6621   0x27390000,           // add $25,$25,%lo(func)
6622   0x00000000            // nop
6623 };
6624
6625 // Template for microMIPS LA25 stub.
6626 template<int size, bool big_endian>
6627 const uint32_t
6628 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6629 {
6630   0x41b9, 0x0000,       // lui t9,%hi(func)
6631   0xd400, 0x0000,       // j func
6632   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
6633   0x0000, 0x0000        // nop
6634 };
6635
6636 // Create la25 stub for a symbol.
6637
6638 template<int size, bool big_endian>
6639 void
6640 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6641     Symbol_table* symtab, Target_mips<size, big_endian>* target,
6642     Mips_symbol<size>* gsym)
6643 {
6644   if (!gsym->has_la25_stub())
6645     {
6646       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6647       this->symbols_.insert(gsym);
6648       this->create_stub_symbol(gsym, symtab, target, 16);
6649     }
6650 }
6651
6652 // Create a symbol for SYM stub's value and size, to help make the disassembly
6653 // easier to read.
6654
6655 template<int size, bool big_endian>
6656 void
6657 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6658     Mips_symbol<size>* sym, Symbol_table* symtab,
6659     Target_mips<size, big_endian>* target, uint64_t symsize)
6660 {
6661   std::string name(".pic.");
6662   name += sym->name();
6663
6664   unsigned int offset = sym->la25_stub_offset();
6665   if (sym->is_micromips())
6666     offset |= 1;
6667
6668   // Make it a local function.
6669   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6670                                       Symbol_table::PREDEFINED,
6671                                       target->la25_stub_section(),
6672                                       offset, symsize, elfcpp::STT_FUNC,
6673                                       elfcpp::STB_LOCAL,
6674                                       elfcpp::STV_DEFAULT, 0,
6675                                       false, false);
6676   new_sym->set_is_forced_local();
6677 }
6678
6679 // Write out la25 stubs.  This uses the hand-coded instructions above,
6680 // and adjusts them as needed.
6681
6682 template<int size, bool big_endian>
6683 void
6684 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6685 {
6686   const off_t offset = this->offset();
6687   const section_size_type oview_size =
6688     convert_to_section_size_type(this->data_size());
6689   unsigned char* const oview = of->get_output_view(offset, oview_size);
6690
6691   for (typename Unordered_set<Mips_symbol<size>*>::iterator
6692        p = this->symbols_.begin();
6693        p != this->symbols_.end();
6694        ++p)
6695     {
6696       Mips_symbol<size>* sym = *p;
6697       unsigned char* pov = oview + sym->la25_stub_offset();
6698
6699       Mips_address target = sym->value();
6700       if (!sym->is_micromips())
6701         {
6702           elfcpp::Swap<32, big_endian>::writeval(pov,
6703               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6704           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6705               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6706           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6707               la25_stub_entry[2] | (target & 0xffff));
6708           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6709         }
6710       else
6711         {
6712           target |= 1;
6713           // First stub instruction.  Paste high 16-bits of the target.
6714           elfcpp::Swap<16, big_endian>::writeval(pov,
6715                                                  la25_stub_micromips_entry[0]);
6716           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6717               ((target + 0x8000) >> 16) & 0xffff);
6718           // Second stub instruction.  Paste low 26-bits of the target, shifted
6719           // right by 1.
6720           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6721               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6722           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6723               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6724           // Third stub instruction.  Paste low 16-bits of the target.
6725           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6726                                                  la25_stub_micromips_entry[4]);
6727           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6728           // Fourth stub instruction.
6729           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6730                                                  la25_stub_micromips_entry[6]);
6731           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6732                                                  la25_stub_micromips_entry[7]);
6733         }
6734     }
6735
6736   of->write_output_view(offset, oview_size, oview);
6737 }
6738
6739 // Mips_output_data_plt methods.
6740
6741 // The format of the first PLT entry in an O32 executable.
6742 template<int size, bool big_endian>
6743 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6744 {
6745   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
6746   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
6747   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
6748   0x031cc023,         // subu $24, $24, $28
6749   0x03e07825,         // or $15, $31, zero
6750   0x0018c082,         // srl $24, $24, 2
6751   0x0320f809,         // jalr $25
6752   0x2718fffe          // subu $24, $24, 2
6753 };
6754
6755 // The format of the first PLT entry in an N32 executable.  Different
6756 // because gp ($28) is not available; we use t2 ($14) instead.
6757 template<int size, bool big_endian>
6758 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6759 {
6760   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
6761   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
6762   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
6763   0x030ec023,         // subu $24, $24, $14
6764   0x03e07825,         // or $15, $31, zero
6765   0x0018c082,         // srl $24, $24, 2
6766   0x0320f809,         // jalr $25
6767   0x2718fffe          // subu $24, $24, 2
6768 };
6769
6770 // The format of the first PLT entry in an N64 executable.  Different
6771 // from N32 because of the increased size of GOT entries.
6772 template<int size, bool big_endian>
6773 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6774 {
6775   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
6776   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
6777   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
6778   0x030ec023,         // subu $24, $24, $14
6779   0x03e07825,         // or $15, $31, zero
6780   0x0018c0c2,         // srl $24, $24, 3
6781   0x0320f809,         // jalr $25
6782   0x2718fffe          // subu $24, $24, 2
6783 };
6784
6785 // The format of the microMIPS first PLT entry in an O32 executable.
6786 // We rely on v0 ($2) rather than t8 ($24) to contain the address
6787 // of the GOTPLT entry handled, so this stub may only be used when
6788 // all the subsequent PLT entries are microMIPS code too.
6789 //
6790 // The trailing NOP is for alignment and correct disassembly only.
6791 template<int size, bool big_endian>
6792 const uint32_t Mips_output_data_plt<size, big_endian>::
6793 plt0_entry_micromips_o32[] =
6794 {
6795   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
6796   0xff23, 0x0000,      // lw $25, 0($3)
6797   0x0535,              // subu $2, $2, $3
6798   0x2525,              // srl $2, $2, 2
6799   0x3302, 0xfffe,      // subu $24, $2, 2
6800   0x0dff,              // move $15, $31
6801   0x45f9,              // jalrs $25
6802   0x0f83,              // move $28, $3
6803   0x0c00               // nop
6804 };
6805
6806 // The format of the microMIPS first PLT entry in an O32 executable
6807 // in the insn32 mode.
6808 template<int size, bool big_endian>
6809 const uint32_t Mips_output_data_plt<size, big_endian>::
6810 plt0_entry_micromips32_o32[] =
6811 {
6812   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
6813   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
6814   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
6815   0x0398, 0xc1d0,      // subu $24, $24, $28
6816   0x001f, 0x7a90,      // or $15, $31, zero
6817   0x0318, 0x1040,      // srl $24, $24, 2
6818   0x03f9, 0x0f3c,      // jalr $25
6819   0x3318, 0xfffe       // subu $24, $24, 2
6820 };
6821
6822 // The format of subsequent standard entries in the PLT.
6823 template<int size, bool big_endian>
6824 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6825 {
6826   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
6827   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
6828   0x03200008,           // jr $25
6829   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
6830 };
6831
6832 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
6833 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
6834 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6835 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6836 // target function address in register v0.
6837 template<int size, bool big_endian>
6838 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6839 {
6840   0xb303,              // lw $3, 12($pc)
6841   0x651b,              // move $24, $3
6842   0x9b60,              // lw $3, 0($3)
6843   0xeb00,              // jr $3
6844   0x653b,              // move $25, $3
6845   0x6500,              // nop
6846   0x0000, 0x0000       // .word (.got.plt entry)
6847 };
6848
6849 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
6850 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
6851 template<int size, bool big_endian>
6852 const uint32_t Mips_output_data_plt<size, big_endian>::
6853 plt_entry_micromips_o32[] =
6854 {
6855   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
6856   0xff22, 0x0000,      // lw $25, 0($2)
6857   0x4599,              // jr $25
6858   0x0f02               // move $24, $2
6859 };
6860
6861 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6862 template<int size, bool big_endian>
6863 const uint32_t Mips_output_data_plt<size, big_endian>::
6864 plt_entry_micromips32_o32[] =
6865 {
6866   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
6867   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
6868   0x0019, 0x0f3c,      // jr $25
6869   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
6870 };
6871
6872 // Add an entry to the PLT for a symbol referenced by r_type relocation.
6873
6874 template<int size, bool big_endian>
6875 void
6876 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6877                                                   unsigned int r_type)
6878 {
6879   gold_assert(!gsym->has_plt_offset());
6880
6881   // Final PLT offset for a symbol will be set in method set_plt_offsets().
6882   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6883                        + sizeof(plt0_entry_o32));
6884   this->symbols_.push_back(gsym);
6885
6886   // Record whether the relocation requires a standard MIPS
6887   // or a compressed code entry.
6888   if (jal_reloc(r_type))
6889    {
6890      if (r_type == elfcpp::R_MIPS_26)
6891        gsym->set_needs_mips_plt(true);
6892      else
6893        gsym->set_needs_comp_plt(true);
6894    }
6895
6896   section_offset_type got_offset = this->got_plt_->current_data_size();
6897
6898   // Every PLT entry needs a GOT entry which points back to the PLT
6899   // entry (this will be changed by the dynamic linker, normally
6900   // lazily when the function is called).
6901   this->got_plt_->set_current_data_size(got_offset + size/8);
6902
6903   gsym->set_needs_dynsym_entry();
6904   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6905                          got_offset);
6906 }
6907
6908 // Set final PLT offsets.  For each symbol, determine whether standard or
6909 // compressed (MIPS16 or microMIPS) PLT entry is used.
6910
6911 template<int size, bool big_endian>
6912 void
6913 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6914 {
6915   // The sizes of individual PLT entries.
6916   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6917   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6918                                       ? this->compressed_plt_entry_size() : 0);
6919
6920   for (typename std::vector<Mips_symbol<size>*>::const_iterator
6921        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6922     {
6923       Mips_symbol<size>* mips_sym = *p;
6924
6925       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6926       // so always use a standard entry there.
6927       //
6928       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6929       // all MIPS16 calls will go via that stub, and there is no benefit
6930       // to having a MIPS16 entry.  And in the case of call_stub a
6931       // standard entry actually has to be used as the stub ends with a J
6932       // instruction.
6933       if (this->target_->is_output_newabi()
6934           || mips_sym->has_mips16_call_stub()
6935           || mips_sym->has_mips16_call_fp_stub())
6936         {
6937           mips_sym->set_needs_mips_plt(true);
6938           mips_sym->set_needs_comp_plt(false);
6939         }
6940
6941       // Otherwise, if there are no direct calls to the function, we
6942       // have a free choice of whether to use standard or compressed
6943       // entries.  Prefer microMIPS entries if the object is known to
6944       // contain microMIPS code, so that it becomes possible to create
6945       // pure microMIPS binaries.  Prefer standard entries otherwise,
6946       // because MIPS16 ones are no smaller and are usually slower.
6947       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6948         {
6949           if (this->target_->is_output_micromips())
6950             mips_sym->set_needs_comp_plt(true);
6951           else
6952             mips_sym->set_needs_mips_plt(true);
6953         }
6954
6955       if (mips_sym->needs_mips_plt())
6956         {
6957           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6958           this->plt_mips_offset_ += plt_mips_entry_size;
6959         }
6960       if (mips_sym->needs_comp_plt())
6961         {
6962           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6963           this->plt_comp_offset_ += plt_comp_entry_size;
6964         }
6965     }
6966
6967     // Figure out the size of the PLT header if we know that we are using it.
6968     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6969       this->plt_header_size_ = this->get_plt_header_size();
6970 }
6971
6972 // Write out the PLT.  This uses the hand-coded instructions above,
6973 // and adjusts them as needed.
6974
6975 template<int size, bool big_endian>
6976 void
6977 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6978 {
6979   const off_t offset = this->offset();
6980   const section_size_type oview_size =
6981     convert_to_section_size_type(this->data_size());
6982   unsigned char* const oview = of->get_output_view(offset, oview_size);
6983
6984   const off_t gotplt_file_offset = this->got_plt_->offset();
6985   const section_size_type gotplt_size =
6986     convert_to_section_size_type(this->got_plt_->data_size());
6987   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6988                                                          gotplt_size);
6989   unsigned char* pov = oview;
6990
6991   Mips_address plt_address = this->address();
6992
6993   // Calculate the address of .got.plt.
6994   Mips_address gotplt_addr = this->got_plt_->address();
6995   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6996   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6997
6998   // The PLT sequence is not safe for N64 if .got.plt's address can
6999   // not be loaded in two instructions.
7000   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7001               || ~(gotplt_addr | 0x7fffffff) == 0);
7002
7003   // Write the PLT header.
7004   const uint32_t* plt0_entry = this->get_plt_header_entry();
7005   if (plt0_entry == plt0_entry_micromips_o32)
7006     {
7007       // Write microMIPS PLT header.
7008       gold_assert(gotplt_addr % 4 == 0);
7009
7010       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7011
7012       // ADDIUPC has a span of +/-16MB, check we're in range.
7013       if (gotpc_offset + 0x1000000 >= 0x2000000)
7014        {
7015          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7016                     "ADDIUPC"), (long)gotpc_offset);
7017          return;
7018        }
7019
7020       elfcpp::Swap<16, big_endian>::writeval(pov,
7021                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7022       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7023                                              (gotpc_offset >> 2) & 0xffff);
7024       pov += 4;
7025       for (unsigned int i = 2;
7026            i < (sizeof(plt0_entry_micromips_o32)
7027                 / sizeof(plt0_entry_micromips_o32[0]));
7028            i++)
7029         {
7030           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7031           pov += 2;
7032         }
7033     }
7034   else if (plt0_entry == plt0_entry_micromips32_o32)
7035     {
7036       // Write microMIPS PLT header in insn32 mode.
7037       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7038       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7039       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7040       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7041       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7042       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7043       pov += 12;
7044       for (unsigned int i = 6;
7045            i < (sizeof(plt0_entry_micromips32_o32)
7046                 / sizeof(plt0_entry_micromips32_o32[0]));
7047            i++)
7048         {
7049           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7050           pov += 2;
7051         }
7052     }
7053   else
7054     {
7055       // Write standard PLT header.
7056       elfcpp::Swap<32, big_endian>::writeval(pov,
7057                                              plt0_entry[0] | gotplt_addr_high);
7058       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7059                                              plt0_entry[1] | gotplt_addr_low);
7060       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7061                                              plt0_entry[2] | gotplt_addr_low);
7062       pov += 12;
7063       for (int i = 3; i < 8; i++)
7064         {
7065           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7066           pov += 4;
7067         }
7068     }
7069
7070
7071   unsigned char* gotplt_pov = gotplt_view;
7072   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7073
7074   // The first two entries in .got.plt are reserved.
7075   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7076   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7077
7078   unsigned int gotplt_offset = 2 * got_entry_size;
7079   gotplt_pov += 2 * got_entry_size;
7080
7081   // Calculate the address of the PLT header.
7082   Mips_address header_address = (plt_address
7083                                  + (this->is_plt_header_compressed() ? 1 : 0));
7084
7085   // Initialize compressed PLT area view.
7086   unsigned char* pov2 = pov + this->plt_mips_offset_;
7087
7088   // Write the PLT entries.
7089   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7090        p = this->symbols_.begin();
7091        p != this->symbols_.end();
7092        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7093     {
7094       Mips_symbol<size>* mips_sym = *p;
7095
7096       // Calculate the address of the .got.plt entry.
7097       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7098       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7099                                        & 0xffff);
7100       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7101
7102       // Initially point the .got.plt entry at the PLT header.
7103       if (this->target_->is_output_n64())
7104         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7105       else
7106         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7107
7108       // Now handle the PLT itself.  First the standard entry.
7109       if (mips_sym->has_mips_plt_offset())
7110         {
7111           // Pick the load opcode (LW or LD).
7112           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7113                                                          : 0x8c000000;
7114
7115           // Fill in the PLT entry itself.
7116           elfcpp::Swap<32, big_endian>::writeval(pov,
7117               plt_entry[0] | gotplt_entry_addr_hi);
7118           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7119               plt_entry[1] | gotplt_entry_addr_lo | load);
7120           elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
7121           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7122               plt_entry[3] | gotplt_entry_addr_lo);
7123           pov += 16;
7124         }
7125
7126       // Now the compressed entry.  They come after any standard ones.
7127       if (mips_sym->has_comp_plt_offset())
7128         {
7129           if (!this->target_->is_output_micromips())
7130             {
7131               // Write MIPS16 PLT entry.
7132               const uint32_t* plt_entry = plt_entry_mips16_o32;
7133
7134               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7135               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7136               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7137               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7138               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7139               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7140               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7141                                                      gotplt_entry_addr);
7142               pov2 += 16;
7143             }
7144           else if (this->target_->use_32bit_micromips_instructions())
7145             {
7146               // Write microMIPS PLT entry in insn32 mode.
7147               const uint32_t* plt_entry = plt_entry_micromips32_o32;
7148
7149               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7150               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7151                                                      gotplt_entry_addr_hi);
7152               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7153               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7154                                                      gotplt_entry_addr_lo);
7155               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7156               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7157               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7158               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7159                                                      gotplt_entry_addr_lo);
7160               pov2 += 16;
7161             }
7162           else
7163             {
7164               // Write microMIPS PLT entry.
7165               const uint32_t* plt_entry = plt_entry_micromips_o32;
7166
7167               gold_assert(gotplt_entry_addr % 4 == 0);
7168
7169               Mips_address loc_address = plt_address + pov2 - oview;
7170               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7171
7172               // ADDIUPC has a span of +/-16MB, check we're in range.
7173               if (gotpc_offset + 0x1000000 >= 0x2000000)
7174                 {
7175                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
7176                              "range of ADDIUPC"), (long)gotpc_offset);
7177                   return;
7178                 }
7179
7180               elfcpp::Swap<16, big_endian>::writeval(pov2,
7181                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7182               elfcpp::Swap<16, big_endian>::writeval(
7183                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7184               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7185               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7186               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7187               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7188               pov2 += 12;
7189             }
7190         }
7191     }
7192
7193   // Check the number of bytes written for standard entries.
7194   gold_assert(static_cast<section_size_type>(
7195       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7196   // Check the number of bytes written for compressed entries.
7197   gold_assert((static_cast<section_size_type>(pov2 - pov)
7198                == this->plt_comp_offset_));
7199   // Check the total number of bytes written.
7200   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7201
7202   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7203               == gotplt_size);
7204
7205   of->write_output_view(offset, oview_size, oview);
7206   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7207 }
7208
7209 // Mips_output_data_mips_stubs methods.
7210
7211 // The format of the lazy binding stub when dynamic symbol count is less than
7212 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7213 template<int size, bool big_endian>
7214 const uint32_t
7215 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7216 {
7217   0x8f998010,         // lw t9,0x8010(gp)
7218   0x03e07825,         // or t7,ra,zero
7219   0x0320f809,         // jalr t9,ra
7220   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
7221 };
7222
7223 // The format of the lazy binding stub when dynamic symbol count is less than
7224 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7225 template<int size, bool big_endian>
7226 const uint32_t
7227 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7228 {
7229   0xdf998010,         // ld t9,0x8010(gp)
7230   0x03e07825,         // or t7,ra,zero
7231   0x0320f809,         // jalr t9,ra
7232   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
7233 };
7234
7235 // The format of the lazy binding stub when dynamic symbol count is less than
7236 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7237 template<int size, bool big_endian>
7238 const uint32_t
7239 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7240 {
7241   0x8f998010,         // lw t9,0x8010(gp)
7242   0x03e07825,         // or t7,ra,zero
7243   0x0320f809,         // jalr t9,ra
7244   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7245 };
7246
7247 // The format of the lazy binding stub when dynamic symbol count is less than
7248 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7249 template<int size, bool big_endian>
7250 const uint32_t
7251 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7252 {
7253   0xdf998010,         // ld t9,0x8010(gp)
7254   0x03e07825,         // or t7,ra,zero
7255   0x0320f809,         // jalr t9,ra
7256   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7257 };
7258
7259 // The format of the lazy binding stub when dynamic symbol count is greater than
7260 // 64K, and ABI is not N64.
7261 template<int size, bool big_endian>
7262 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7263 {
7264   0x8f998010,         // lw t9,0x8010(gp)
7265   0x03e07825,         // or t7,ra,zero
7266   0x3c180000,         // lui t8,DYN_INDEX
7267   0x0320f809,         // jalr t9,ra
7268   0x37180000          // ori t8,t8,DYN_INDEX
7269 };
7270
7271 // The format of the lazy binding stub when dynamic symbol count is greater than
7272 // 64K, and ABI is N64.
7273 template<int size, bool big_endian>
7274 const uint32_t
7275 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7276 {
7277   0xdf998010,         // ld t9,0x8010(gp)
7278   0x03e07825,         // or t7,ra,zero
7279   0x3c180000,         // lui t8,DYN_INDEX
7280   0x0320f809,         // jalr t9,ra
7281   0x37180000          // ori t8,t8,DYN_INDEX
7282 };
7283
7284 // microMIPS stubs.
7285
7286 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7287 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7288 template<int size, bool big_endian>
7289 const uint32_t
7290 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7291 {
7292   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7293   0x0dff,             // move t7,ra
7294   0x45d9,             // jalr t9
7295   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7296 };
7297
7298 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7299 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7300 template<int size, bool big_endian>
7301 const uint32_t
7302 Mips_output_data_mips_stubs<size, big_endian>::
7303 lazy_stub_micromips_normal_1_n64[] =
7304 {
7305   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7306   0x0dff,             // move t7,ra
7307   0x45d9,             // jalr t9
7308   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7309 };
7310
7311 // The format of the microMIPS lazy binding stub when dynamic symbol
7312 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7313 // and ABI is not N64.
7314 template<int size, bool big_endian>
7315 const uint32_t
7316 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7317 {
7318   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7319   0x0dff,             // move t7,ra
7320   0x45d9,             // jalr t9
7321   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7322 };
7323
7324 // The format of the microMIPS lazy binding stub when dynamic symbol
7325 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7326 // and ABI is N64.
7327 template<int size, bool big_endian>
7328 const uint32_t
7329 Mips_output_data_mips_stubs<size, big_endian>::
7330 lazy_stub_micromips_normal_2_n64[] =
7331 {
7332   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7333   0x0dff,             // move t7,ra
7334   0x45d9,             // jalr t9
7335   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7336 };
7337
7338 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7339 // greater than 64K, and ABI is not N64.
7340 template<int size, bool big_endian>
7341 const uint32_t
7342 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7343 {
7344   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7345   0x0dff,             // move t7,ra
7346   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7347   0x45d9,             // jalr t9
7348   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7349 };
7350
7351 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7352 // greater than 64K, and ABI is N64.
7353 template<int size, bool big_endian>
7354 const uint32_t
7355 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7356 {
7357   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7358   0x0dff,             // move t7,ra
7359   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7360   0x45d9,             // jalr t9
7361   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7362 };
7363
7364 // 32-bit microMIPS stubs.
7365
7366 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7367 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7368 // can use only 32-bit instructions.
7369 template<int size, bool big_endian>
7370 const uint32_t
7371 Mips_output_data_mips_stubs<size, big_endian>::
7372 lazy_stub_micromips32_normal_1[] =
7373 {
7374   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7375   0x001f, 0x7a90,     // or t7,ra,zero
7376   0x03f9, 0x0f3c,     // jalr ra,t9
7377   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7378 };
7379
7380 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7381 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7382 // use only 32-bit instructions.
7383 template<int size, bool big_endian>
7384 const uint32_t
7385 Mips_output_data_mips_stubs<size, big_endian>::
7386 lazy_stub_micromips32_normal_1_n64[] =
7387 {
7388   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7389   0x001f, 0x7a90,     // or t7,ra,zero
7390   0x03f9, 0x0f3c,     // jalr ra,t9
7391   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7392 };
7393
7394 // The format of the microMIPS lazy binding stub when dynamic symbol
7395 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7396 // ABI is not N64, and we can use only 32-bit instructions.
7397 template<int size, bool big_endian>
7398 const uint32_t
7399 Mips_output_data_mips_stubs<size, big_endian>::
7400 lazy_stub_micromips32_normal_2[] =
7401 {
7402   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7403   0x001f, 0x7a90,     // or t7,ra,zero
7404   0x03f9, 0x0f3c,     // jalr ra,t9
7405   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7406 };
7407
7408 // The format of the microMIPS lazy binding stub when dynamic symbol
7409 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7410 // ABI is N64, and we can use only 32-bit instructions.
7411 template<int size, bool big_endian>
7412 const uint32_t
7413 Mips_output_data_mips_stubs<size, big_endian>::
7414 lazy_stub_micromips32_normal_2_n64[] =
7415 {
7416   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7417   0x001f, 0x7a90,     // or t7,ra,zero
7418   0x03f9, 0x0f3c,     // jalr ra,t9
7419   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7420 };
7421
7422 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7423 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7424 template<int size, bool big_endian>
7425 const uint32_t
7426 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7427 {
7428   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7429   0x001f, 0x7a90,     // or t7,ra,zero
7430   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7431   0x03f9, 0x0f3c,     // jalr ra,t9
7432   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7433 };
7434
7435 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7436 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7437 template<int size, bool big_endian>
7438 const uint32_t
7439 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7440 {
7441   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7442   0x001f, 0x7a90,     // or t7,ra,zero
7443   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7444   0x03f9, 0x0f3c,     // jalr ra,t9
7445   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7446 };
7447
7448 // Create entry for a symbol.
7449
7450 template<int size, bool big_endian>
7451 void
7452 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7453     Mips_symbol<size>* gsym)
7454 {
7455   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7456     {
7457       this->symbols_.insert(gsym);
7458       gsym->set_has_lazy_stub(true);
7459     }
7460 }
7461
7462 // Remove entry for a symbol.
7463
7464 template<int size, bool big_endian>
7465 void
7466 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7467     Mips_symbol<size>* gsym)
7468 {
7469   if (gsym->has_lazy_stub())
7470     {
7471       this->symbols_.erase(gsym);
7472       gsym->set_has_lazy_stub(false);
7473     }
7474 }
7475
7476 // Set stub offsets for symbols.  This method expects that the number of
7477 // entries in dynamic symbol table is set.
7478
7479 template<int size, bool big_endian>
7480 void
7481 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7482 {
7483   gold_assert(this->dynsym_count_ != -1U);
7484
7485   if (this->stub_offsets_are_set_)
7486     return;
7487
7488   unsigned int stub_size = this->stub_size();
7489   unsigned int offset = 0;
7490   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7491        p = this->symbols_.begin();
7492        p != this->symbols_.end();
7493        ++p, offset += stub_size)
7494     {
7495       Mips_symbol<size>* mips_sym = *p;
7496       mips_sym->set_lazy_stub_offset(offset);
7497     }
7498   this->stub_offsets_are_set_ = true;
7499 }
7500
7501 template<int size, bool big_endian>
7502 void
7503 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7504 {
7505   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7506        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7507     {
7508       Mips_symbol<size>* sym = *p;
7509       if (sym->is_from_dynobj())
7510         sym->set_needs_dynsym_value();
7511     }
7512 }
7513
7514 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
7515 // adjusts them as needed.
7516
7517 template<int size, bool big_endian>
7518 void
7519 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7520 {
7521   const off_t offset = this->offset();
7522   const section_size_type oview_size =
7523     convert_to_section_size_type(this->data_size());
7524   unsigned char* const oview = of->get_output_view(offset, oview_size);
7525
7526   bool big_stub = this->dynsym_count_ > 0x10000;
7527
7528   unsigned char* pov = oview;
7529   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7530        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7531     {
7532       Mips_symbol<size>* sym = *p;
7533       const uint32_t* lazy_stub;
7534       bool n64 = this->target_->is_output_n64();
7535
7536       if (!this->target_->is_output_micromips())
7537         {
7538           // Write standard (non-microMIPS) stub.
7539           if (!big_stub)
7540             {
7541               if (sym->dynsym_index() & ~0x7fff)
7542                 // Dynsym index is between 32K and 64K.
7543                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
7544               else
7545                 // Dynsym index is less than 32K.
7546                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
7547             }
7548           else
7549             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
7550
7551           unsigned int i = 0;
7552           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7553           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
7554           pov += 8;
7555
7556           i += 2;
7557           if (big_stub)
7558             {
7559               // LUI instruction of the big stub.  Paste high 16 bits of the
7560               // dynsym index.
7561               elfcpp::Swap<32, big_endian>::writeval(pov,
7562                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
7563               pov += 4;
7564               i += 1;
7565             }
7566           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7567           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7568           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7569               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
7570           pov += 8;
7571         }
7572       else if (this->target_->use_32bit_micromips_instructions())
7573         {
7574           // Write microMIPS stub in insn32 mode.
7575           if (!big_stub)
7576             {
7577               if (sym->dynsym_index() & ~0x7fff)
7578                 // Dynsym index is between 32K and 64K.
7579                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
7580                                 : lazy_stub_micromips32_normal_2;
7581               else
7582                 // Dynsym index is less than 32K.
7583                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
7584                                 : lazy_stub_micromips32_normal_1;
7585             }
7586           else
7587             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
7588                             : lazy_stub_micromips32_big;
7589
7590           unsigned int i = 0;
7591           // First stub instruction.  We emit 32-bit microMIPS instructions by
7592           // emitting two 16-bit parts because on microMIPS the 16-bit part of
7593           // the instruction where the opcode is must always come first, for
7594           // both little and big endian.
7595           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7596           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7597           // Second stub instruction.
7598           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7599           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
7600           pov += 8;
7601           i += 4;
7602           if (big_stub)
7603             {
7604               // LUI instruction of the big stub.  Paste high 16 bits of the
7605               // dynsym index.
7606               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7607               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7608                   (sym->dynsym_index() >> 16) & 0x7fff);
7609               pov += 4;
7610               i += 2;
7611             }
7612           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7613           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7614           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7615           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7616           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7617               sym->dynsym_index() & 0xffff);
7618           pov += 8;
7619         }
7620       else
7621         {
7622           // Write microMIPS stub.
7623           if (!big_stub)
7624             {
7625               if (sym->dynsym_index() & ~0x7fff)
7626                 // Dynsym index is between 32K and 64K.
7627                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7628                                 : lazy_stub_micromips_normal_2;
7629               else
7630                 // Dynsym index is less than 32K.
7631                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7632                                 : lazy_stub_micromips_normal_1;
7633             }
7634           else
7635             lazy_stub = n64 ? lazy_stub_micromips_big_n64
7636                             : lazy_stub_micromips_big;
7637
7638           unsigned int i = 0;
7639           // First stub instruction.  We emit 32-bit microMIPS instructions by
7640           // emitting two 16-bit parts because on microMIPS the 16-bit part of
7641           // the instruction where the opcode is must always come first, for
7642           // both little and big endian.
7643           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7644           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7645           // Second stub instruction.
7646           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7647           pov += 6;
7648           i += 3;
7649           if (big_stub)
7650             {
7651               // LUI instruction of the big stub.  Paste high 16 bits of the
7652               // dynsym index.
7653               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7654               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7655                   (sym->dynsym_index() >> 16) & 0x7fff);
7656               pov += 4;
7657               i += 2;
7658             }
7659           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7660           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7661           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7662           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7663               sym->dynsym_index() & 0xffff);
7664           pov += 6;
7665         }
7666     }
7667
7668   // We always allocate 20 bytes for every stub, because final dynsym count is
7669   // not known in method do_finalize_sections.  There are 4 unused bytes per
7670   // stub if final dynsym count is less than 0x10000.
7671   unsigned int used = pov - oview;
7672   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7673   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7674
7675   // Fill the unused space with zeroes.
7676   // TODO(sasa): Can we strip unused bytes during the relaxation?
7677   if (unused > 0)
7678     memset(pov, 0, unused);
7679
7680   of->write_output_view(offset, oview_size, oview);
7681 }
7682
7683 // Mips_output_section_reginfo methods.
7684
7685 template<int size, bool big_endian>
7686 void
7687 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7688 {
7689   off_t offset = this->offset();
7690   off_t data_size = this->data_size();
7691
7692   unsigned char* view = of->get_output_view(offset, data_size);
7693   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7694   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7695   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7696   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7697   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7698   // Write the gp value.
7699   elfcpp::Swap<size, big_endian>::writeval(view + 20,
7700                                            this->target_->gp_value());
7701
7702   of->write_output_view(offset, data_size, view);
7703 }
7704
7705 // Mips_copy_relocs methods.
7706
7707 // Emit any saved relocs.
7708
7709 template<int sh_type, int size, bool big_endian>
7710 void
7711 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7712     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7713     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7714 {
7715   for (typename Copy_relocs<sh_type, size, big_endian>::
7716        Copy_reloc_entries::iterator p = this->entries_.begin();
7717        p != this->entries_.end();
7718        ++p)
7719     emit_entry(*p, reloc_section, symtab, layout, target);
7720
7721   // We no longer need the saved information.
7722   this->entries_.clear();
7723 }
7724
7725 // Emit the reloc if appropriate.
7726
7727 template<int sh_type, int size, bool big_endian>
7728 void
7729 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7730     Copy_reloc_entry& entry,
7731     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7732     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7733 {
7734   // If the symbol is no longer defined in a dynamic object, then we
7735   // emitted a COPY relocation, and we do not want to emit this
7736   // dynamic relocation.
7737   if (!entry.sym_->is_from_dynobj())
7738     return;
7739
7740   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7741                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7742                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
7743
7744   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7745   if (can_make_dynamic && !sym->has_static_relocs())
7746     {
7747       Mips_relobj<size, big_endian>* object =
7748         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7749       target->got_section(symtab, layout)->record_global_got_symbol(
7750                           sym, object, entry.reloc_type_, true, false);
7751       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7752         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7753             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7754       else
7755         target->rel_dyn_section(layout)->add_symbolless_global_addend(
7756             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7757             entry.shndx_, entry.address_);
7758     }
7759   else
7760     this->make_copy_reloc(symtab, layout,
7761                           static_cast<Sized_symbol<size>*>(entry.sym_),
7762                           reloc_section);
7763 }
7764
7765 // Target_mips methods.
7766
7767 // Return the value to use for a dynamic symbol which requires special
7768 // treatment.  This is how we support equality comparisons of function
7769 // pointers across shared library boundaries, as described in the
7770 // processor specific ABI supplement.
7771
7772 template<int size, bool big_endian>
7773 uint64_t
7774 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7775 {
7776   uint64_t value = 0;
7777   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7778
7779   if (!mips_sym->has_lazy_stub())
7780     {
7781       if (mips_sym->has_plt_offset())
7782         {
7783           // We distinguish between PLT entries and lazy-binding stubs by
7784           // giving the former an st_other value of STO_MIPS_PLT.  Set the
7785           // value to the stub address if there are any relocations in the
7786           // binary where pointer equality matters.
7787           if (mips_sym->pointer_equality_needed())
7788             {
7789               // Prefer a standard MIPS PLT entry.
7790               if (mips_sym->has_mips_plt_offset())
7791                 value = this->plt_section()->mips_entry_address(mips_sym);
7792               else
7793                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7794             }
7795           else
7796             value = 0;
7797         }
7798     }
7799   else
7800     {
7801       // First, set stub offsets for symbols.  This method expects that the
7802       // number of entries in dynamic symbol table is set.
7803       this->mips_stubs_section()->set_lazy_stub_offsets();
7804
7805       // The run-time linker uses the st_value field of the symbol
7806       // to reset the global offset table entry for this external
7807       // to its stub address when unlinking a shared object.
7808       value = this->mips_stubs_section()->stub_address(mips_sym);
7809     }
7810
7811   if (mips_sym->has_mips16_fn_stub())
7812     {
7813       // If we have a MIPS16 function with a stub, the dynamic symbol must
7814       // refer to the stub, since only the stub uses the standard calling
7815       // conventions.
7816       value = mips_sym->template
7817               get_mips16_fn_stub<big_endian>()->output_address();
7818     }
7819
7820   return value;
7821 }
7822
7823 // Get the dynamic reloc section, creating it if necessary.  It's always
7824 // .rel.dyn, even for MIPS64.
7825
7826 template<int size, bool big_endian>
7827 typename Target_mips<size, big_endian>::Reloc_section*
7828 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7829 {
7830   if (this->rel_dyn_ == NULL)
7831     {
7832       gold_assert(layout != NULL);
7833       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7834       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7835                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
7836                                       ORDER_DYNAMIC_RELOCS, false);
7837
7838       // First entry in .rel.dyn has to be null.
7839       // This is hack - we define dummy output data and set its address to 0,
7840       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7841       // This ensures that the entry is null.
7842       Output_data* od = new Output_data_zero_fill(0, 0);
7843       od->set_address(0);
7844       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7845     }
7846   return this->rel_dyn_;
7847 }
7848
7849 // Get the GOT section, creating it if necessary.
7850
7851 template<int size, bool big_endian>
7852 Mips_output_data_got<size, big_endian>*
7853 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7854                                            Layout* layout)
7855 {
7856   if (this->got_ == NULL)
7857     {
7858       gold_assert(symtab != NULL && layout != NULL);
7859
7860       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7861                                                               layout);
7862       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7863                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7864                                       elfcpp::SHF_MIPS_GPREL),
7865                                       this->got_, ORDER_DATA, false);
7866
7867       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7868       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7869                                     Symbol_table::PREDEFINED,
7870                                     this->got_,
7871                                     0, 0, elfcpp::STT_OBJECT,
7872                                     elfcpp::STB_GLOBAL,
7873                                     elfcpp::STV_DEFAULT, 0,
7874                                     false, false);
7875     }
7876
7877   return this->got_;
7878 }
7879
7880 // Calculate value of _gp symbol.
7881
7882 template<int size, bool big_endian>
7883 void
7884 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7885 {
7886   if (this->gp_ != NULL)
7887     return;
7888
7889   Output_data* section = layout->find_output_section(".got");
7890   if (section == NULL)
7891     {
7892       // If there is no .got section, gp should be based on .sdata.
7893       // TODO(sasa): This is probably not needed.  This was needed for older
7894       // MIPS architectures which accessed both GOT and .sdata section using
7895       // gp-relative addressing.  Modern Mips Linux ELF architectures don't
7896       // access .sdata using gp-relative addressing.
7897       for (Layout::Section_list::const_iterator
7898            p = layout->section_list().begin();
7899            p != layout->section_list().end();
7900            ++p)
7901         {
7902           if (strcmp((*p)->name(), ".sdata") == 0)
7903             {
7904               section = *p;
7905               break;
7906             }
7907         }
7908     }
7909
7910   Sized_symbol<size>* gp =
7911     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7912   if (gp != NULL)
7913     {
7914       if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7915         gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7916                              elfcpp::STT_OBJECT,
7917                              elfcpp::STB_GLOBAL,
7918                              elfcpp::STV_DEFAULT, 0,
7919                              false, false);
7920       this->gp_ = gp;
7921     }
7922   else if (section != NULL)
7923     {
7924       gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7925                                       "_gp", NULL, Symbol_table::PREDEFINED,
7926                                       section, MIPS_GP_OFFSET, 0,
7927                                       elfcpp::STT_OBJECT,
7928                                       elfcpp::STB_GLOBAL,
7929                                       elfcpp::STV_DEFAULT,
7930                                       0, false, false));
7931       this->gp_ = gp;
7932     }
7933 }
7934
7935 // Set the dynamic symbol indexes.  INDEX is the index of the first
7936 // global dynamic symbol.  Pointers to the symbols are stored into the
7937 // vector SYMS.  The names are added to DYNPOOL.  This returns an
7938 // updated dynamic symbol index.
7939
7940 template<int size, bool big_endian>
7941 unsigned int
7942 Target_mips<size, big_endian>::do_set_dynsym_indexes(
7943     std::vector<Symbol*>* dyn_symbols, unsigned int index,
7944     std::vector<Symbol*>* syms, Stringpool* dynpool,
7945     Versions* versions, Symbol_table* symtab) const
7946 {
7947   std::vector<Symbol*> non_got_symbols;
7948   std::vector<Symbol*> got_symbols;
7949
7950   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7951                                         &got_symbols);
7952
7953   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7954        p != non_got_symbols.end();
7955        ++p)
7956     {
7957       Symbol* sym = *p;
7958
7959       // Note that SYM may already have a dynamic symbol index, since
7960       // some symbols appear more than once in the symbol table, with
7961       // and without a version.
7962
7963       if (!sym->has_dynsym_index())
7964         {
7965           sym->set_dynsym_index(index);
7966           ++index;
7967           syms->push_back(sym);
7968           dynpool->add(sym->name(), false, NULL);
7969
7970           // Record any version information.
7971           if (sym->version() != NULL)
7972             versions->record_version(symtab, dynpool, sym);
7973
7974           // If the symbol is defined in a dynamic object and is
7975           // referenced in a regular object, then mark the dynamic
7976           // object as needed.  This is used to implement --as-needed.
7977           if (sym->is_from_dynobj() && sym->in_reg())
7978             sym->object()->set_is_needed();
7979         }
7980     }
7981
7982   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7983        p != got_symbols.end();
7984        ++p)
7985     {
7986       Symbol* sym = *p;
7987       if (!sym->has_dynsym_index())
7988         {
7989           // Record any version information.
7990           if (sym->version() != NULL)
7991             versions->record_version(symtab, dynpool, sym);
7992         }
7993     }
7994
7995   index = versions->finalize(symtab, index, syms);
7996
7997   int got_sym_count = 0;
7998   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7999        p != got_symbols.end();
8000        ++p)
8001     {
8002       Symbol* sym = *p;
8003
8004       if (!sym->has_dynsym_index())
8005         {
8006           ++got_sym_count;
8007           sym->set_dynsym_index(index);
8008           ++index;
8009           syms->push_back(sym);
8010           dynpool->add(sym->name(), false, NULL);
8011
8012           // If the symbol is defined in a dynamic object and is
8013           // referenced in a regular object, then mark the dynamic
8014           // object as needed.  This is used to implement --as-needed.
8015           if (sym->is_from_dynobj() && sym->in_reg())
8016             sym->object()->set_is_needed();
8017         }
8018     }
8019
8020   // Set index of the first symbol that has .got entry.
8021   this->got_->set_first_global_got_dynsym_index(
8022     got_sym_count > 0 ? index - got_sym_count : -1U);
8023
8024   if (this->mips_stubs_ != NULL)
8025     this->mips_stubs_->set_dynsym_count(index);
8026
8027   return index;
8028 }
8029
8030 // Create a PLT entry for a global symbol referenced by r_type relocation.
8031
8032 template<int size, bool big_endian>
8033 void
8034 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8035                                               Layout* layout,
8036                                               Mips_symbol<size>* gsym,
8037                                               unsigned int r_type)
8038 {
8039   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8040     return;
8041
8042   if (this->plt_ == NULL)
8043     {
8044       // Create the GOT section first.
8045       this->got_section(symtab, layout);
8046
8047       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8048       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8049                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8050                                       this->got_plt_, ORDER_DATA, false);
8051
8052       // The first two entries are reserved.
8053       this->got_plt_->set_current_data_size(2 * size/8);
8054
8055       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8056                                                               this->got_plt_,
8057                                                               this);
8058       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8059                                       (elfcpp::SHF_ALLOC
8060                                        | elfcpp::SHF_EXECINSTR),
8061                                       this->plt_, ORDER_PLT, false);
8062     }
8063
8064   this->plt_->add_entry(gsym, r_type);
8065 }
8066
8067
8068 // Get the .MIPS.stubs section, creating it if necessary.
8069
8070 template<int size, bool big_endian>
8071 Mips_output_data_mips_stubs<size, big_endian>*
8072 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8073 {
8074   if (this->mips_stubs_ == NULL)
8075     {
8076       this->mips_stubs_ =
8077         new Mips_output_data_mips_stubs<size, big_endian>(this);
8078       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8079                                       (elfcpp::SHF_ALLOC
8080                                        | elfcpp::SHF_EXECINSTR),
8081                                       this->mips_stubs_, ORDER_PLT, false);
8082     }
8083   return this->mips_stubs_;
8084 }
8085
8086 // Get the LA25 stub section, creating it if necessary.
8087
8088 template<int size, bool big_endian>
8089 Mips_output_data_la25_stub<size, big_endian>*
8090 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8091 {
8092   if (this->la25_stub_ == NULL)
8093     {
8094       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8095       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8096                                       (elfcpp::SHF_ALLOC
8097                                        | elfcpp::SHF_EXECINSTR),
8098                                       this->la25_stub_, ORDER_TEXT, false);
8099     }
8100   return this->la25_stub_;
8101 }
8102
8103 // Process the relocations to determine unreferenced sections for
8104 // garbage collection.
8105
8106 template<int size, bool big_endian>
8107 void
8108 Target_mips<size, big_endian>::gc_process_relocs(
8109                         Symbol_table* symtab,
8110                         Layout* layout,
8111                         Sized_relobj_file<size, big_endian>* object,
8112                         unsigned int data_shndx,
8113                         unsigned int sh_type,
8114                         const unsigned char* prelocs,
8115                         size_t reloc_count,
8116                         Output_section* output_section,
8117                         bool needs_special_offset_handling,
8118                         size_t local_symbol_count,
8119                         const unsigned char* plocal_symbols)
8120 {
8121   typedef Target_mips<size, big_endian> Mips;
8122
8123   if (sh_type == elfcpp::SHT_REL)
8124     {
8125       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8126           Classify_reloc;
8127
8128       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8129         symtab,
8130         layout,
8131         this,
8132         object,
8133         data_shndx,
8134         prelocs,
8135         reloc_count,
8136         output_section,
8137         needs_special_offset_handling,
8138         local_symbol_count,
8139         plocal_symbols);
8140     }
8141   else if (sh_type == elfcpp::SHT_RELA)
8142     {
8143       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8144           Classify_reloc;
8145
8146       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8147         symtab,
8148         layout,
8149         this,
8150         object,
8151         data_shndx,
8152         prelocs,
8153         reloc_count,
8154         output_section,
8155         needs_special_offset_handling,
8156         local_symbol_count,
8157         plocal_symbols);
8158     }
8159   else
8160     gold_unreachable();
8161 }
8162
8163 // Scan relocations for a section.
8164
8165 template<int size, bool big_endian>
8166 void
8167 Target_mips<size, big_endian>::scan_relocs(
8168                         Symbol_table* symtab,
8169                         Layout* layout,
8170                         Sized_relobj_file<size, big_endian>* object,
8171                         unsigned int data_shndx,
8172                         unsigned int sh_type,
8173                         const unsigned char* prelocs,
8174                         size_t reloc_count,
8175                         Output_section* output_section,
8176                         bool needs_special_offset_handling,
8177                         size_t local_symbol_count,
8178                         const unsigned char* plocal_symbols)
8179 {
8180   typedef Target_mips<size, big_endian> Mips;
8181
8182   if (sh_type == elfcpp::SHT_REL)
8183     {
8184       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8185           Classify_reloc;
8186
8187       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8188         symtab,
8189         layout,
8190         this,
8191         object,
8192         data_shndx,
8193         prelocs,
8194         reloc_count,
8195         output_section,
8196         needs_special_offset_handling,
8197         local_symbol_count,
8198         plocal_symbols);
8199     }
8200   else if (sh_type == elfcpp::SHT_RELA)
8201     {
8202       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8203           Classify_reloc;
8204
8205       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8206         symtab,
8207         layout,
8208         this,
8209         object,
8210         data_shndx,
8211         prelocs,
8212         reloc_count,
8213         output_section,
8214         needs_special_offset_handling,
8215         local_symbol_count,
8216         plocal_symbols);
8217     }
8218 }
8219
8220 template<int size, bool big_endian>
8221 bool
8222 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8223 {
8224   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8225           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8226           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8227           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8228           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8229           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8230           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
8231 }
8232
8233 // Return the MACH for a MIPS e_flags value.
8234 template<int size, bool big_endian>
8235 unsigned int
8236 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8237 {
8238   switch (flags & elfcpp::EF_MIPS_MACH)
8239     {
8240     case elfcpp::E_MIPS_MACH_3900:
8241       return mach_mips3900;
8242
8243     case elfcpp::E_MIPS_MACH_4010:
8244       return mach_mips4010;
8245
8246     case elfcpp::E_MIPS_MACH_4100:
8247       return mach_mips4100;
8248
8249     case elfcpp::E_MIPS_MACH_4111:
8250       return mach_mips4111;
8251
8252     case elfcpp::E_MIPS_MACH_4120:
8253       return mach_mips4120;
8254
8255     case elfcpp::E_MIPS_MACH_4650:
8256       return mach_mips4650;
8257
8258     case elfcpp::E_MIPS_MACH_5400:
8259       return mach_mips5400;
8260
8261     case elfcpp::E_MIPS_MACH_5500:
8262       return mach_mips5500;
8263
8264     case elfcpp::E_MIPS_MACH_9000:
8265       return mach_mips9000;
8266
8267     case elfcpp::E_MIPS_MACH_SB1:
8268       return mach_mips_sb1;
8269
8270     case elfcpp::E_MIPS_MACH_LS2E:
8271       return mach_mips_loongson_2e;
8272
8273     case elfcpp::E_MIPS_MACH_LS2F:
8274       return mach_mips_loongson_2f;
8275
8276     case elfcpp::E_MIPS_MACH_LS3A:
8277       return mach_mips_loongson_3a;
8278
8279     case elfcpp::E_MIPS_MACH_OCTEON2:
8280       return mach_mips_octeon2;
8281
8282     case elfcpp::E_MIPS_MACH_OCTEON:
8283       return mach_mips_octeon;
8284
8285     case elfcpp::E_MIPS_MACH_XLR:
8286       return mach_mips_xlr;
8287
8288     default:
8289       switch (flags & elfcpp::EF_MIPS_ARCH)
8290         {
8291         default:
8292         case elfcpp::E_MIPS_ARCH_1:
8293           return mach_mips3000;
8294
8295         case elfcpp::E_MIPS_ARCH_2:
8296           return mach_mips6000;
8297
8298         case elfcpp::E_MIPS_ARCH_3:
8299           return mach_mips4000;
8300
8301         case elfcpp::E_MIPS_ARCH_4:
8302           return mach_mips8000;
8303
8304         case elfcpp::E_MIPS_ARCH_5:
8305           return mach_mips5;
8306
8307         case elfcpp::E_MIPS_ARCH_32:
8308           return mach_mipsisa32;
8309
8310         case elfcpp::E_MIPS_ARCH_64:
8311           return mach_mipsisa64;
8312
8313         case elfcpp::E_MIPS_ARCH_32R2:
8314           return mach_mipsisa32r2;
8315
8316         case elfcpp::E_MIPS_ARCH_64R2:
8317           return mach_mipsisa64r2;
8318         }
8319     }
8320
8321   return 0;
8322 }
8323
8324 // Check whether machine EXTENSION is an extension of machine BASE.
8325 template<int size, bool big_endian>
8326 bool
8327 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
8328                                                  unsigned int extension)
8329 {
8330   if (extension == base)
8331     return true;
8332
8333   if ((base == mach_mipsisa32)
8334       && this->mips_mach_extends(mach_mipsisa64, extension))
8335     return true;
8336
8337   if ((base == mach_mipsisa32r2)
8338       && this->mips_mach_extends(mach_mipsisa64r2, extension))
8339     return true;
8340
8341   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
8342     if (extension == this->mips_mach_extensions_[i].first)
8343       {
8344         extension = this->mips_mach_extensions_[i].second;
8345         if (extension == base)
8346           return true;
8347       }
8348
8349   return false;
8350 }
8351
8352 template<int size, bool big_endian>
8353 void
8354 Target_mips<size, big_endian>::merge_processor_specific_flags(
8355     const std::string& name, elfcpp::Elf_Word in_flags,
8356     unsigned char in_ei_class, bool dyn_obj)
8357 {
8358   // If flags are not set yet, just copy them.
8359   if (!this->are_processor_specific_flags_set())
8360     {
8361       this->set_processor_specific_flags(in_flags);
8362       this->ei_class_ = in_ei_class;
8363       this->mach_ = this->elf_mips_mach(in_flags);
8364       return;
8365     }
8366
8367   elfcpp::Elf_Word new_flags = in_flags;
8368   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
8369   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
8370   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
8371
8372   // Check flag compatibility.
8373   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
8374   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
8375
8376   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
8377   // doesn't seem to matter.
8378   new_flags &= ~elfcpp::EF_MIPS_XGOT;
8379   old_flags &= ~elfcpp::EF_MIPS_XGOT;
8380
8381   // MIPSpro generates ucode info in n64 objects.  Again, we should
8382   // just be able to ignore this.
8383   new_flags &= ~elfcpp::EF_MIPS_UCODE;
8384   old_flags &= ~elfcpp::EF_MIPS_UCODE;
8385
8386   // DSOs should only be linked with CPIC code.
8387   if (dyn_obj)
8388     new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
8389
8390   if (new_flags == old_flags)
8391     {
8392       this->set_processor_specific_flags(merged_flags);
8393       return;
8394     }
8395
8396   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
8397       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
8398     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
8399                  name.c_str());
8400
8401   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
8402     merged_flags |= elfcpp::EF_MIPS_CPIC;
8403   if (!(new_flags & elfcpp::EF_MIPS_PIC))
8404     merged_flags &= ~elfcpp::EF_MIPS_PIC;
8405
8406   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
8407   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
8408
8409   // Compare the ISAs.
8410   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
8411     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
8412   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
8413     {
8414       // Output ISA isn't the same as, or an extension of, input ISA.
8415       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
8416         {
8417           // Copy the architecture info from input object to output.  Also copy
8418           // the 32-bit flag (if set) so that we continue to recognise
8419           // output as a 32-bit binary.
8420           this->mach_ = this->elf_mips_mach(in_flags);
8421           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
8422           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
8423                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
8424
8425           // Copy across the ABI flags if output doesn't use them
8426           // and if that was what caused us to treat input object as 32-bit.
8427           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
8428               && this->mips_32bit_flags(new_flags)
8429               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
8430             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
8431         }
8432       else
8433         // The ISAs aren't compatible.
8434         gold_error(_("%s: linking %s module with previous %s modules"),
8435                    name.c_str(), this->elf_mips_mach_name(in_flags),
8436                    this->elf_mips_mach_name(merged_flags));
8437     }
8438
8439   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
8440                 | elfcpp::EF_MIPS_32BITMODE));
8441   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
8442                 | elfcpp::EF_MIPS_32BITMODE));
8443
8444   // Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
8445   // EI_CLASS differently from any 32-bit ABI.
8446   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
8447       || (in_ei_class != this->ei_class_))
8448     {
8449       // Only error if both are set (to different values).
8450       if (((new_flags & elfcpp::EF_MIPS_ABI)
8451            && (old_flags & elfcpp::EF_MIPS_ABI))
8452           || (in_ei_class != this->ei_class_))
8453         gold_error(_("%s: ABI mismatch: linking %s module with "
8454                      "previous %s modules"), name.c_str(),
8455                    this->elf_mips_abi_name(in_flags, in_ei_class),
8456                    this->elf_mips_abi_name(merged_flags, this->ei_class_));
8457
8458       new_flags &= ~elfcpp::EF_MIPS_ABI;
8459       old_flags &= ~elfcpp::EF_MIPS_ABI;
8460     }
8461
8462   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
8463   // and allow arbitrary mixing of the remaining ASEs (retain the union).
8464   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
8465       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
8466     {
8467       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
8468       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
8469       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
8470       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
8471       int micro_mis = old_m16 && new_micro;
8472       int m16_mis = old_micro && new_m16;
8473
8474       if (m16_mis || micro_mis)
8475         gold_error(_("%s: ASE mismatch: linking %s module with "
8476                      "previous %s modules"), name.c_str(),
8477                    m16_mis ? "MIPS16" : "microMIPS",
8478                    m16_mis ? "microMIPS" : "MIPS16");
8479
8480       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
8481
8482       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
8483       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
8484     }
8485
8486   // Warn about any other mismatches.
8487   if (new_flags != old_flags)
8488     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
8489                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
8490
8491   this->set_processor_specific_flags(merged_flags);
8492 }
8493
8494 // Adjust ELF file header.
8495
8496 template<int size, bool big_endian>
8497 void
8498 Target_mips<size, big_endian>::do_adjust_elf_header(
8499     unsigned char* view,
8500     int len)
8501 {
8502   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
8503
8504   elfcpp::Ehdr<size, big_endian> ehdr(view);
8505   unsigned char e_ident[elfcpp::EI_NIDENT];
8506   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
8507
8508   e_ident[elfcpp::EI_CLASS] = this->ei_class_;
8509
8510   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
8511   oehdr.put_e_ident(e_ident);
8512   if (this->entry_symbol_is_compressed_)
8513     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
8514 }
8515
8516 // do_make_elf_object to override the same function in the base class.
8517 // We need to use a target-specific sub-class of
8518 // Sized_relobj_file<size, big_endian> to store Mips specific information.
8519 // Hence we need to have our own ELF object creation.
8520
8521 template<int size, bool big_endian>
8522 Object*
8523 Target_mips<size, big_endian>::do_make_elf_object(
8524     const std::string& name,
8525     Input_file* input_file,
8526     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
8527 {
8528   int et = ehdr.get_e_type();
8529   // ET_EXEC files are valid input for --just-symbols/-R,
8530   // and we treat them as relocatable objects.
8531   if (et == elfcpp::ET_REL
8532       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
8533     {
8534       Mips_relobj<size, big_endian>* obj =
8535         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
8536       obj->setup();
8537       return obj;
8538     }
8539   else if (et == elfcpp::ET_DYN)
8540     {
8541       // TODO(sasa): Should we create Mips_dynobj?
8542       return Target::do_make_elf_object(name, input_file, offset, ehdr);
8543     }
8544   else
8545     {
8546       gold_error(_("%s: unsupported ELF file type %d"),
8547                  name.c_str(), et);
8548       return NULL;
8549     }
8550 }
8551
8552 // Finalize the sections.
8553
8554 template <int size, bool big_endian>
8555 void
8556 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
8557                                         const Input_objects* input_objects,
8558                                         Symbol_table* symtab)
8559 {
8560   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
8561   // DT_FINI have correct values.
8562   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
8563       symtab->lookup(parameters->options().init()));
8564   if (init != NULL && (init->is_mips16() || init->is_micromips()))
8565     init->set_value(init->value() | 1);
8566   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
8567       symtab->lookup(parameters->options().fini()));
8568   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
8569     fini->set_value(fini->value() | 1);
8570
8571   // Check whether the entry symbol is mips16 or micromips.  This is needed to
8572   // adjust entry address in ELF header.
8573   Mips_symbol<size>* entry =
8574     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
8575   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
8576                                        || entry->is_micromips()));
8577
8578   if (!parameters->doing_static_link()
8579       && (strcmp(parameters->options().hash_style(), "gnu") == 0
8580           || strcmp(parameters->options().hash_style(), "both") == 0))
8581     {
8582       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
8583       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
8584       // MIPS ABI requires a mapping between the GOT and the symbol table.
8585       gold_error(".gnu.hash is incompatible with the MIPS ABI");
8586     }
8587
8588   // Check whether the final section that was scanned has HI16 or GOT16
8589   // relocations without the corresponding LO16 part.
8590   if (this->got16_addends_.size() > 0)
8591       gold_error("Can't find matching LO16 reloc");
8592
8593   // Set _gp value.
8594   this->set_gp(layout, symtab);
8595
8596   // Check for any mips16 stub sections that we can discard.
8597   if (!parameters->options().relocatable())
8598     {
8599       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8600           p != input_objects->relobj_end();
8601           ++p)
8602         {
8603           Mips_relobj<size, big_endian>* object =
8604             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8605           object->discard_mips16_stub_sections(symtab);
8606         }
8607     }
8608
8609   // Merge processor-specific flags.
8610   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8611        p != input_objects->relobj_end();
8612        ++p)
8613     {
8614       Mips_relobj<size, big_endian>* relobj =
8615         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8616
8617       Input_file::Format format = relobj->input_file()->format();
8618       if (format == Input_file::FORMAT_ELF)
8619         {
8620           // Read processor-specific flags in ELF file header.
8621           const unsigned char* pehdr = relobj->get_view(
8622                                             elfcpp::file_header_offset,
8623                                             elfcpp::Elf_sizes<size>::ehdr_size,
8624                                             true, false);
8625
8626           elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8627           elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8628           unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8629           // If all input sections will be discarded, don't use this object
8630           // file for merging processor specific flags.
8631           bool should_merge_processor_specific_flags = false;
8632
8633           for (unsigned int i = 1; i < relobj->shnum(); ++i)
8634             if (relobj->output_section(i) != NULL)
8635               {
8636                 should_merge_processor_specific_flags = true;
8637                 break;
8638               }
8639
8640           if (should_merge_processor_specific_flags)
8641             this->merge_processor_specific_flags(relobj->name(), in_flags,
8642                                                  ei_class, false);
8643         }
8644     }
8645
8646   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8647        p != input_objects->dynobj_end();
8648        ++p)
8649     {
8650       Sized_dynobj<size, big_endian>* dynobj =
8651         static_cast<Sized_dynobj<size, big_endian>*>(*p);
8652
8653       // Read processor-specific flags.
8654       const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8655                                            elfcpp::Elf_sizes<size>::ehdr_size,
8656                                            true, false);
8657
8658       elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8659       elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8660       unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8661
8662       this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8663                                            true);
8664     }
8665
8666   // Merge .reginfo contents of input objects.
8667   Valtype gprmask = 0;
8668   Valtype cprmask1 = 0;
8669   Valtype cprmask2 = 0;
8670   Valtype cprmask3 = 0;
8671   Valtype cprmask4 = 0;
8672   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8673        p != input_objects->relobj_end();
8674        ++p)
8675     {
8676       Mips_relobj<size, big_endian>* relobj =
8677         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8678
8679       gprmask |= relobj->gprmask();
8680       cprmask1 |= relobj->cprmask1();
8681       cprmask2 |= relobj->cprmask2();
8682       cprmask3 |= relobj->cprmask3();
8683       cprmask4 |= relobj->cprmask4();
8684     }
8685
8686   if (this->plt_ != NULL)
8687     {
8688       // Set final PLT offsets for symbols.
8689       this->plt_section()->set_plt_offsets();
8690
8691       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8692       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8693       // there are no standard PLT entries present.
8694       unsigned char nonvis = 0;
8695       if (this->is_output_micromips()
8696           && !this->plt_section()->has_standard_entries())
8697         nonvis = elfcpp::STO_MICROMIPS >> 2;
8698       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8699                                     Symbol_table::PREDEFINED,
8700                                     this->plt_,
8701                                     0, 0, elfcpp::STT_FUNC,
8702                                     elfcpp::STB_LOCAL,
8703                                     elfcpp::STV_DEFAULT, nonvis,
8704                                     false, false);
8705     }
8706
8707   if (this->mips_stubs_ != NULL)
8708     {
8709       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8710       unsigned char nonvis = 0;
8711       if (this->is_output_micromips())
8712         nonvis = elfcpp::STO_MICROMIPS >> 2;
8713       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8714                                     Symbol_table::PREDEFINED,
8715                                     this->mips_stubs_,
8716                                     0, 0, elfcpp::STT_FUNC,
8717                                     elfcpp::STB_LOCAL,
8718                                     elfcpp::STV_DEFAULT, nonvis,
8719                                     false, false);
8720     }
8721
8722   if (!parameters->options().relocatable() && !parameters->doing_static_link())
8723     // In case there is no .got section, create one.
8724     this->got_section(symtab, layout);
8725
8726   // Emit any relocs we saved in an attempt to avoid generating COPY
8727   // relocs.
8728   if (this->copy_relocs_.any_saved_relocs())
8729     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8730                                  this);
8731
8732   // Emit dynamic relocs.
8733   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8734        p != this->dyn_relocs_.end();
8735        ++p)
8736     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8737
8738   if (this->has_got_section())
8739     this->got_section()->lay_out_got(layout, symtab, input_objects);
8740
8741   if (this->mips_stubs_ != NULL)
8742     this->mips_stubs_->set_needs_dynsym_value();
8743
8744   // Check for functions that might need $25 to be valid on entry.
8745   // TODO(sasa): Can we do this without iterating over all symbols?
8746   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8747   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8748                                                                symtab));
8749
8750   // Add NULL segment.
8751   if (!parameters->options().relocatable())
8752     layout->make_output_segment(elfcpp::PT_NULL, 0);
8753
8754   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8755        p != layout->section_list().end();
8756        ++p)
8757     {
8758       if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8759         {
8760           Mips_output_section_reginfo<size, big_endian>* reginfo =
8761             Mips_output_section_reginfo<size, big_endian>::
8762               as_mips_output_section_reginfo(*p);
8763
8764           reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8765
8766           if (!parameters->options().relocatable())
8767             {
8768               Output_segment* reginfo_segment =
8769                 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8770                                             elfcpp::PF_R);
8771               reginfo_segment->add_output_section_to_nonload(reginfo,
8772                                                              elfcpp::PF_R);
8773             }
8774         }
8775     }
8776
8777   // Fill in some more dynamic tags.
8778   // TODO(sasa): Add more dynamic tags.
8779   const Reloc_section* rel_plt = (this->plt_ == NULL
8780                                   ? NULL : this->plt_->rel_plt());
8781   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8782                                   this->rel_dyn_, true, false);
8783
8784   Output_data_dynamic* const odyn = layout->dynamic_data();
8785   if (odyn != NULL
8786       && !parameters->options().relocatable()
8787       && !parameters->doing_static_link())
8788   {
8789     unsigned int d_val;
8790     // This element holds a 32-bit version id for the Runtime
8791     // Linker Interface.  This will start at integer value 1.
8792     d_val = 0x01;
8793     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8794
8795     // Dynamic flags
8796     d_val = elfcpp::RHF_NOTPOT;
8797     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8798
8799     // Save layout for using when emiting custom dynamic tags.
8800     this->layout_ = layout;
8801
8802     // This member holds the base address of the segment.
8803     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8804
8805     // This member holds the number of entries in the .dynsym section.
8806     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8807
8808     // This member holds the index of the first dynamic symbol
8809     // table entry that corresponds to an entry in the global offset table.
8810     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8811
8812     // This member holds the number of local GOT entries.
8813     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8814                        this->got_->get_local_gotno());
8815
8816     if (this->plt_ != NULL)
8817       // DT_MIPS_PLTGOT dynamic tag
8818       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8819   }
8820  }
8821
8822 // Get the custom dynamic tag value.
8823 template<int size, bool big_endian>
8824 unsigned int
8825 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8826 {
8827   switch (tag)
8828     {
8829     case elfcpp::DT_MIPS_BASE_ADDRESS:
8830       {
8831         // The base address of the segment.
8832         // At this point, the segment list has been sorted into final order,
8833         // so just return vaddr of the first readable PT_LOAD segment.
8834         Output_segment* seg =
8835           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8836         gold_assert(seg != NULL);
8837         return seg->vaddr();
8838       }
8839
8840     case elfcpp::DT_MIPS_SYMTABNO:
8841       // The number of entries in the .dynsym section.
8842       return this->get_dt_mips_symtabno();
8843
8844     case elfcpp::DT_MIPS_GOTSYM:
8845       {
8846         // The index of the first dynamic symbol table entry that corresponds
8847         // to an entry in the GOT.
8848         if (this->got_->first_global_got_dynsym_index() != -1U)
8849           return this->got_->first_global_got_dynsym_index();
8850         else
8851           // In case if we don't have global GOT symbols we default to setting
8852           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8853           return this->get_dt_mips_symtabno();
8854       }
8855
8856     default:
8857       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8858     }
8859
8860   return (unsigned int)-1;
8861 }
8862
8863 // Relocate section data.
8864
8865 template<int size, bool big_endian>
8866 void
8867 Target_mips<size, big_endian>::relocate_section(
8868                         const Relocate_info<size, big_endian>* relinfo,
8869                         unsigned int sh_type,
8870                         const unsigned char* prelocs,
8871                         size_t reloc_count,
8872                         Output_section* output_section,
8873                         bool needs_special_offset_handling,
8874                         unsigned char* view,
8875                         Mips_address address,
8876                         section_size_type view_size,
8877                         const Reloc_symbol_changes* reloc_symbol_changes)
8878 {
8879   typedef Target_mips<size, big_endian> Mips;
8880   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8881
8882   if (sh_type == elfcpp::SHT_REL)
8883     {
8884       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8885           Classify_reloc;
8886
8887       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
8888                              gold::Default_comdat_behavior, Classify_reloc>(
8889         relinfo,
8890         this,
8891         prelocs,
8892         reloc_count,
8893         output_section,
8894         needs_special_offset_handling,
8895         view,
8896         address,
8897         view_size,
8898         reloc_symbol_changes);
8899     }
8900   else if (sh_type == elfcpp::SHT_RELA)
8901     {
8902       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8903           Classify_reloc;
8904
8905       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
8906                              gold::Default_comdat_behavior, Classify_reloc>(
8907         relinfo,
8908         this,
8909         prelocs,
8910         reloc_count,
8911         output_section,
8912         needs_special_offset_handling,
8913         view,
8914         address,
8915         view_size,
8916         reloc_symbol_changes);
8917     }
8918 }
8919
8920 // Return the size of a relocation while scanning during a relocatable
8921 // link.
8922
8923 unsigned int
8924 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
8925 {
8926   switch (r_type)
8927     {
8928     case elfcpp::R_MIPS_NONE:
8929     case elfcpp::R_MIPS_TLS_DTPMOD64:
8930     case elfcpp::R_MIPS_TLS_DTPREL64:
8931     case elfcpp::R_MIPS_TLS_TPREL64:
8932       return 0;
8933
8934     case elfcpp::R_MIPS_32:
8935     case elfcpp::R_MIPS_TLS_DTPMOD32:
8936     case elfcpp::R_MIPS_TLS_DTPREL32:
8937     case elfcpp::R_MIPS_TLS_TPREL32:
8938     case elfcpp::R_MIPS_REL32:
8939     case elfcpp::R_MIPS_PC32:
8940     case elfcpp::R_MIPS_GPREL32:
8941     case elfcpp::R_MIPS_JALR:
8942     case elfcpp::R_MIPS_EH:
8943       return 4;
8944
8945     case elfcpp::R_MIPS_16:
8946     case elfcpp::R_MIPS_HI16:
8947     case elfcpp::R_MIPS_LO16:
8948     case elfcpp::R_MIPS_GPREL16:
8949     case elfcpp::R_MIPS16_HI16:
8950     case elfcpp::R_MIPS16_LO16:
8951     case elfcpp::R_MIPS_PC16:
8952     case elfcpp::R_MIPS_GOT16:
8953     case elfcpp::R_MIPS16_GOT16:
8954     case elfcpp::R_MIPS_CALL16:
8955     case elfcpp::R_MIPS16_CALL16:
8956     case elfcpp::R_MIPS_GOT_HI16:
8957     case elfcpp::R_MIPS_CALL_HI16:
8958     case elfcpp::R_MIPS_GOT_LO16:
8959     case elfcpp::R_MIPS_CALL_LO16:
8960     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8961     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8962     case elfcpp::R_MIPS_TLS_TPREL_HI16:
8963     case elfcpp::R_MIPS_TLS_TPREL_LO16:
8964     case elfcpp::R_MIPS16_GPREL:
8965     case elfcpp::R_MIPS_GOT_DISP:
8966     case elfcpp::R_MIPS_LITERAL:
8967     case elfcpp::R_MIPS_GOT_PAGE:
8968     case elfcpp::R_MIPS_GOT_OFST:
8969     case elfcpp::R_MIPS_TLS_GD:
8970     case elfcpp::R_MIPS_TLS_LDM:
8971     case elfcpp::R_MIPS_TLS_GOTTPREL:
8972       return 2;
8973
8974     // These relocations are not byte sized
8975     case elfcpp::R_MIPS_26:
8976     case elfcpp::R_MIPS16_26:
8977       return 4;
8978
8979     case elfcpp::R_MIPS_COPY:
8980     case elfcpp::R_MIPS_JUMP_SLOT:
8981       object->error(_("unexpected reloc %u in object file"), r_type);
8982       return 0;
8983
8984     default:
8985       object->error(_("unsupported reloc %u in object file"), r_type);
8986       return 0;
8987   }
8988 }
8989
8990 // Scan the relocs during a relocatable link.
8991
8992 template<int size, bool big_endian>
8993 void
8994 Target_mips<size, big_endian>::scan_relocatable_relocs(
8995                         Symbol_table* symtab,
8996                         Layout* layout,
8997                         Sized_relobj_file<size, big_endian>* object,
8998                         unsigned int data_shndx,
8999                         unsigned int sh_type,
9000                         const unsigned char* prelocs,
9001                         size_t reloc_count,
9002                         Output_section* output_section,
9003                         bool needs_special_offset_handling,
9004                         size_t local_symbol_count,
9005                         const unsigned char* plocal_symbols,
9006                         Relocatable_relocs* rr)
9007 {
9008   if (sh_type == elfcpp::SHT_REL)
9009     {
9010       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9011           Classify_reloc;
9012       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9013           Scan_relocatable_relocs;
9014
9015       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9016         symtab,
9017         layout,
9018         object,
9019         data_shndx,
9020         prelocs,
9021         reloc_count,
9022         output_section,
9023         needs_special_offset_handling,
9024         local_symbol_count,
9025         plocal_symbols,
9026         rr);
9027     }
9028   else if (sh_type == elfcpp::SHT_RELA)
9029     {
9030       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9031           Classify_reloc;
9032       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9033           Scan_relocatable_relocs;
9034
9035       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9036         symtab,
9037         layout,
9038         object,
9039         data_shndx,
9040         prelocs,
9041         reloc_count,
9042         output_section,
9043         needs_special_offset_handling,
9044         local_symbol_count,
9045         plocal_symbols,
9046         rr);
9047     }
9048   else
9049     gold_unreachable();
9050 }
9051
9052 // Scan the relocs for --emit-relocs.
9053
9054 template<int size, bool big_endian>
9055 void
9056 Target_mips<size, big_endian>::emit_relocs_scan(
9057     Symbol_table* symtab,
9058     Layout* layout,
9059     Sized_relobj_file<size, big_endian>* object,
9060     unsigned int data_shndx,
9061     unsigned int sh_type,
9062     const unsigned char* prelocs,
9063     size_t reloc_count,
9064     Output_section* output_section,
9065     bool needs_special_offset_handling,
9066     size_t local_symbol_count,
9067     const unsigned char* plocal_syms,
9068     Relocatable_relocs* rr)
9069 {
9070   if (sh_type == elfcpp::SHT_REL)
9071     {
9072       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9073           Classify_reloc;
9074       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9075           Emit_relocs_strategy;
9076
9077       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9078         symtab,
9079         layout,
9080         object,
9081         data_shndx,
9082         prelocs,
9083         reloc_count,
9084         output_section,
9085         needs_special_offset_handling,
9086         local_symbol_count,
9087         plocal_syms,
9088         rr);
9089     }
9090   else if (sh_type == elfcpp::SHT_RELA)
9091     {
9092       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9093           Classify_reloc;
9094       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9095           Emit_relocs_strategy;
9096
9097       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9098         symtab,
9099         layout,
9100         object,
9101         data_shndx,
9102         prelocs,
9103         reloc_count,
9104         output_section,
9105         needs_special_offset_handling,
9106         local_symbol_count,
9107         plocal_syms,
9108         rr);
9109     }
9110   else
9111     gold_unreachable();
9112 }
9113
9114 // Emit relocations for a section.
9115
9116 template<int size, bool big_endian>
9117 void
9118 Target_mips<size, big_endian>::relocate_relocs(
9119                         const Relocate_info<size, big_endian>* relinfo,
9120                         unsigned int sh_type,
9121                         const unsigned char* prelocs,
9122                         size_t reloc_count,
9123                         Output_section* output_section,
9124                         typename elfcpp::Elf_types<size>::Elf_Off
9125                           offset_in_output_section,
9126                         unsigned char* view,
9127                         Mips_address view_address,
9128                         section_size_type view_size,
9129                         unsigned char* reloc_view,
9130                         section_size_type reloc_view_size)
9131 {
9132   if (sh_type == elfcpp::SHT_REL)
9133     {
9134       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9135           Classify_reloc;
9136
9137       gold::relocate_relocs<size, big_endian, Classify_reloc>(
9138         relinfo,
9139         prelocs,
9140         reloc_count,
9141         output_section,
9142         offset_in_output_section,
9143         view,
9144         view_address,
9145         view_size,
9146         reloc_view,
9147         reloc_view_size);
9148     }
9149   else if (sh_type == elfcpp::SHT_RELA)
9150     {
9151       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9152           Classify_reloc;
9153
9154       gold::relocate_relocs<size, big_endian, Classify_reloc>(
9155         relinfo,
9156         prelocs,
9157         reloc_count,
9158         output_section,
9159         offset_in_output_section,
9160         view,
9161         view_address,
9162         view_size,
9163         reloc_view,
9164         reloc_view_size);
9165     }
9166   else
9167     gold_unreachable();
9168 }
9169
9170 // Perform target-specific processing in a relocatable link.  This is
9171 // only used if we use the relocation strategy RELOC_SPECIAL.
9172
9173 template<int size, bool big_endian>
9174 void
9175 Target_mips<size, big_endian>::relocate_special_relocatable(
9176     const Relocate_info<size, big_endian>* relinfo,
9177     unsigned int sh_type,
9178     const unsigned char* preloc_in,
9179     size_t relnum,
9180     Output_section* output_section,
9181     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9182     unsigned char* view,
9183     Mips_address view_address,
9184     section_size_type,
9185     unsigned char* preloc_out)
9186 {
9187   // We can only handle REL type relocation sections.
9188   gold_assert(sh_type == elfcpp::SHT_REL);
9189
9190   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
9191     Reltype;
9192   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
9193     Reltype_write;
9194
9195   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9196
9197   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
9198
9199   Mips_relobj<size, big_endian>* object =
9200     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9201   const unsigned int local_count = object->local_symbol_count();
9202
9203   Reltype reloc(preloc_in);
9204   Reltype_write reloc_write(preloc_out);
9205
9206   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9207   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9208   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9209
9210   // Get the new symbol index.
9211   // We only use RELOC_SPECIAL strategy in local relocations.
9212   gold_assert(r_sym < local_count);
9213
9214   // We are adjusting a section symbol.  We need to find
9215   // the symbol table index of the section symbol for
9216   // the output section corresponding to input section
9217   // in which this symbol is defined.
9218   bool is_ordinary;
9219   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9220   gold_assert(is_ordinary);
9221   Output_section* os = object->output_section(shndx);
9222   gold_assert(os != NULL);
9223   gold_assert(os->needs_symtab_index());
9224   unsigned int new_symndx = os->symtab_index();
9225
9226   // Get the new offset--the location in the output section where
9227   // this relocation should be applied.
9228
9229   Mips_address offset = reloc.get_r_offset();
9230   Mips_address new_offset;
9231   if (offset_in_output_section != invalid_address)
9232     new_offset = offset + offset_in_output_section;
9233   else
9234     {
9235       section_offset_type sot_offset =
9236         convert_types<section_offset_type, Mips_address>(offset);
9237       section_offset_type new_sot_offset =
9238         output_section->output_offset(object, relinfo->data_shndx,
9239                                       sot_offset);
9240       gold_assert(new_sot_offset != -1);
9241       new_offset = new_sot_offset;
9242     }
9243
9244   // In an object file, r_offset is an offset within the section.
9245   // In an executable or dynamic object, generated by
9246   // --emit-relocs, r_offset is an absolute address.
9247   if (!parameters->options().relocatable())
9248     {
9249       new_offset += view_address;
9250       if (offset_in_output_section != invalid_address)
9251         new_offset -= offset_in_output_section;
9252     }
9253
9254   reloc_write.put_r_offset(new_offset);
9255   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9256
9257   // Handle the reloc addend.
9258   // The relocation uses a section symbol in the input file.
9259   // We are adjusting it to use a section symbol in the output
9260   // file.  The input section symbol refers to some address in
9261   // the input section.  We need the relocation in the output
9262   // file to refer to that same address.  This adjustment to
9263   // the addend is the same calculation we use for a simple
9264   // absolute relocation for the input section symbol.
9265   Valtype calculated_value = 0;
9266   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
9267
9268   unsigned char* paddend = view + offset;
9269   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9270   switch (r_type)
9271     {
9272     case elfcpp::R_MIPS_26:
9273       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
9274           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
9275           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
9276           false, &calculated_value);
9277       break;
9278
9279     default:
9280       gold_unreachable();
9281     }
9282
9283   // Report any errors.
9284   switch (reloc_status)
9285     {
9286     case Reloc_funcs::STATUS_OKAY:
9287       break;
9288     case Reloc_funcs::STATUS_OVERFLOW:
9289       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9290                              _("relocation overflow"));
9291       break;
9292     case Reloc_funcs::STATUS_BAD_RELOC:
9293       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9294         _("unexpected opcode while processing relocation"));
9295       break;
9296     default:
9297       gold_unreachable();
9298     }
9299 }
9300
9301 // Optimize the TLS relocation type based on what we know about the
9302 // symbol.  IS_FINAL is true if the final address of this symbol is
9303 // known at link time.
9304
9305 template<int size, bool big_endian>
9306 tls::Tls_optimization
9307 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
9308 {
9309   // FIXME: Currently we do not do any TLS optimization.
9310   return tls::TLSOPT_NONE;
9311 }
9312
9313 // Scan a relocation for a local symbol.
9314
9315 template<int size, bool big_endian>
9316 inline void
9317 Target_mips<size, big_endian>::Scan::local(
9318                         Symbol_table* symtab,
9319                         Layout* layout,
9320                         Target_mips<size, big_endian>* target,
9321                         Sized_relobj_file<size, big_endian>* object,
9322                         unsigned int data_shndx,
9323                         Output_section* output_section,
9324                         const Relatype* rela,
9325                         const Reltype* rel,
9326                         unsigned int rel_type,
9327                         unsigned int r_type,
9328                         const elfcpp::Sym<size, big_endian>& lsym,
9329                         bool is_discarded)
9330 {
9331   if (is_discarded)
9332     return;
9333
9334   Mips_address r_offset;
9335   unsigned int r_sym;
9336   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9337
9338   if (rel_type == elfcpp::SHT_RELA)
9339     {
9340       r_offset = rela->get_r_offset();
9341       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9342           get_r_sym(rela);
9343       r_addend = rela->get_r_addend();
9344     }
9345   else
9346     {
9347       r_offset = rel->get_r_offset();
9348       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9349           get_r_sym(rel);
9350       r_addend = 0;
9351     }
9352
9353   Mips_relobj<size, big_endian>* mips_obj =
9354     Mips_relobj<size, big_endian>::as_mips_relobj(object);
9355
9356   if (mips_obj->is_mips16_stub_section(data_shndx))
9357     {
9358       mips_obj->get_mips16_stub_section(data_shndx)
9359               ->new_local_reloc_found(r_type, r_sym);
9360     }
9361
9362   if (r_type == elfcpp::R_MIPS_NONE)
9363     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9364     // mips16 stub.
9365     return;
9366
9367   if (!mips16_call_reloc(r_type)
9368       && !mips_obj->section_allows_mips16_refs(data_shndx))
9369     // This reloc would need to refer to a MIPS16 hard-float stub, if
9370     // there is one.  We ignore MIPS16 stub sections and .pdr section when
9371     // looking for relocs that would need to refer to MIPS16 stubs.
9372     mips_obj->add_local_non_16bit_call(r_sym);
9373
9374   if (r_type == elfcpp::R_MIPS16_26
9375       && !mips_obj->section_allows_mips16_refs(data_shndx))
9376     mips_obj->add_local_16bit_call(r_sym);
9377
9378   switch (r_type)
9379     {
9380     case elfcpp::R_MIPS_GOT16:
9381     case elfcpp::R_MIPS_CALL16:
9382     case elfcpp::R_MIPS_CALL_HI16:
9383     case elfcpp::R_MIPS_CALL_LO16:
9384     case elfcpp::R_MIPS_GOT_HI16:
9385     case elfcpp::R_MIPS_GOT_LO16:
9386     case elfcpp::R_MIPS_GOT_PAGE:
9387     case elfcpp::R_MIPS_GOT_OFST:
9388     case elfcpp::R_MIPS_GOT_DISP:
9389     case elfcpp::R_MIPS_TLS_GOTTPREL:
9390     case elfcpp::R_MIPS_TLS_GD:
9391     case elfcpp::R_MIPS_TLS_LDM:
9392     case elfcpp::R_MIPS16_GOT16:
9393     case elfcpp::R_MIPS16_CALL16:
9394     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9395     case elfcpp::R_MIPS16_TLS_GD:
9396     case elfcpp::R_MIPS16_TLS_LDM:
9397     case elfcpp::R_MICROMIPS_GOT16:
9398     case elfcpp::R_MICROMIPS_CALL16:
9399     case elfcpp::R_MICROMIPS_CALL_HI16:
9400     case elfcpp::R_MICROMIPS_CALL_LO16:
9401     case elfcpp::R_MICROMIPS_GOT_HI16:
9402     case elfcpp::R_MICROMIPS_GOT_LO16:
9403     case elfcpp::R_MICROMIPS_GOT_PAGE:
9404     case elfcpp::R_MICROMIPS_GOT_OFST:
9405     case elfcpp::R_MICROMIPS_GOT_DISP:
9406     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9407     case elfcpp::R_MICROMIPS_TLS_GD:
9408     case elfcpp::R_MICROMIPS_TLS_LDM:
9409     case elfcpp::R_MIPS_EH:
9410       // We need a GOT section.
9411       target->got_section(symtab, layout);
9412       break;
9413
9414     default:
9415       break;
9416     }
9417
9418   if (call_lo16_reloc(r_type)
9419       || got_lo16_reloc(r_type)
9420       || got_disp_reloc(r_type)
9421       || eh_reloc(r_type))
9422     {
9423       // We may need a local GOT entry for this relocation.  We
9424       // don't count R_MIPS_GOT_PAGE because we can estimate the
9425       // maximum number of pages needed by looking at the size of
9426       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
9427       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
9428       // R_MIPS_CALL_HI16 because these are always followed by an
9429       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
9430       Mips_output_data_got<size, big_endian>* got =
9431         target->got_section(symtab, layout);
9432       bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
9433       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
9434                                    is_section_symbol);
9435     }
9436
9437   switch (r_type)
9438     {
9439     case elfcpp::R_MIPS_CALL16:
9440     case elfcpp::R_MIPS16_CALL16:
9441     case elfcpp::R_MICROMIPS_CALL16:
9442       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
9443                  (unsigned long)r_offset);
9444       return;
9445
9446     case elfcpp::R_MIPS_GOT_PAGE:
9447     case elfcpp::R_MICROMIPS_GOT_PAGE:
9448     case elfcpp::R_MIPS16_GOT16:
9449     case elfcpp::R_MIPS_GOT16:
9450     case elfcpp::R_MIPS_GOT_HI16:
9451     case elfcpp::R_MIPS_GOT_LO16:
9452     case elfcpp::R_MICROMIPS_GOT16:
9453     case elfcpp::R_MICROMIPS_GOT_HI16:
9454     case elfcpp::R_MICROMIPS_GOT_LO16:
9455       {
9456         // This relocation needs a page entry in the GOT.
9457         // Get the section contents.
9458         section_size_type view_size = 0;
9459         const unsigned char* view = object->section_contents(data_shndx,
9460                                                              &view_size, false);
9461         view += r_offset;
9462
9463         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9464         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9465                                                         : r_addend);
9466
9467         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
9468           target->got16_addends_.push_back(got16_addend<size, big_endian>(
9469               object, data_shndx, r_type, r_sym, addend));
9470         else
9471           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
9472         break;
9473       }
9474
9475     case elfcpp::R_MIPS_HI16:
9476     case elfcpp::R_MIPS16_HI16:
9477     case elfcpp::R_MICROMIPS_HI16:
9478       // Record the reloc so that we can check whether the corresponding LO16
9479       // part exists.
9480       if (rel_type == elfcpp::SHT_REL)
9481         target->got16_addends_.push_back(got16_addend<size, big_endian>(
9482             object, data_shndx, r_type, r_sym, 0));
9483       break;
9484
9485     case elfcpp::R_MIPS_LO16:
9486     case elfcpp::R_MIPS16_LO16:
9487     case elfcpp::R_MICROMIPS_LO16:
9488       {
9489         if (rel_type != elfcpp::SHT_REL)
9490           break;
9491
9492         // Find corresponding GOT16/HI16 relocation.
9493
9494         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
9495         // be immediately following.  However, for the IRIX6 ABI, the next
9496         // relocation may be a composed relocation consisting of several
9497         // relocations for the same address.  In that case, the R_MIPS_LO16
9498         // relocation may occur as one of these.  We permit a similar
9499         // extension in general, as that is useful for GCC.
9500
9501         // In some cases GCC dead code elimination removes the LO16 but
9502         // keeps the corresponding HI16.  This is strictly speaking a
9503         // violation of the ABI but not immediately harmful.
9504
9505         typename std::list<got16_addend<size, big_endian> >::iterator it =
9506           target->got16_addends_.begin();
9507         while (it != target->got16_addends_.end())
9508           {
9509             got16_addend<size, big_endian> _got16_addend = *it;
9510
9511             // TODO(sasa): Split got16_addends_ list into two lists - one for
9512             // GOT16 relocs and the other for HI16 relocs.
9513
9514             // Report an error if we find HI16 or GOT16 reloc from the
9515             // previous section without the matching LO16 part.
9516             if (_got16_addend.object != object
9517                 || _got16_addend.shndx != data_shndx)
9518               {
9519                 gold_error("Can't find matching LO16 reloc");
9520                 break;
9521               }
9522
9523             if (_got16_addend.r_sym != r_sym
9524                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
9525               {
9526                 ++it;
9527                 continue;
9528               }
9529
9530             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
9531             // For GOT16, we need to calculate combined addend and record GOT page
9532             // entry.
9533             if (got16_reloc(_got16_addend.r_type))
9534               {
9535
9536                 section_size_type view_size = 0;
9537                 const unsigned char* view = object->section_contents(data_shndx,
9538                                                                      &view_size,
9539                                                                      false);
9540                 view += r_offset;
9541
9542                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9543                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
9544
9545                 addend = (_got16_addend.addend << 16) + addend;
9546                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
9547                                                              addend);
9548               }
9549
9550             it = target->got16_addends_.erase(it);
9551           }
9552         break;
9553       }
9554     }
9555
9556   switch (r_type)
9557     {
9558     case elfcpp::R_MIPS_32:
9559     case elfcpp::R_MIPS_REL32:
9560     case elfcpp::R_MIPS_64:
9561       {
9562         if (parameters->options().output_is_position_independent())
9563           {
9564             // If building a shared library (or a position-independent
9565             // executable), we need to create a dynamic relocation for
9566             // this location.
9567             if (is_readonly_section(output_section))
9568               break;
9569             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9570             rel_dyn->add_symbolless_local_addend(object, r_sym,
9571                                                  elfcpp::R_MIPS_REL32,
9572                                                  output_section, data_shndx,
9573                                                  r_offset);
9574           }
9575         break;
9576       }
9577
9578     case elfcpp::R_MIPS_TLS_GOTTPREL:
9579     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9580     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9581     case elfcpp::R_MIPS_TLS_LDM:
9582     case elfcpp::R_MIPS16_TLS_LDM:
9583     case elfcpp::R_MICROMIPS_TLS_LDM:
9584     case elfcpp::R_MIPS_TLS_GD:
9585     case elfcpp::R_MIPS16_TLS_GD:
9586     case elfcpp::R_MICROMIPS_TLS_GD:
9587       {
9588         bool output_is_shared = parameters->options().shared();
9589         const tls::Tls_optimization optimized_type
9590             = Target_mips<size, big_endian>::optimize_tls_reloc(
9591                                              !output_is_shared, r_type);
9592         switch (r_type)
9593           {
9594           case elfcpp::R_MIPS_TLS_GD:
9595           case elfcpp::R_MIPS16_TLS_GD:
9596           case elfcpp::R_MICROMIPS_TLS_GD:
9597             if (optimized_type == tls::TLSOPT_NONE)
9598               {
9599                 // Create a pair of GOT entries for the module index and
9600                 // dtv-relative offset.
9601                 Mips_output_data_got<size, big_endian>* got =
9602                   target->got_section(symtab, layout);
9603                 unsigned int shndx = lsym.get_st_shndx();
9604                 bool is_ordinary;
9605                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
9606                 if (!is_ordinary)
9607                   {
9608                     object->error(_("local symbol %u has bad shndx %u"),
9609                                   r_sym, shndx);
9610                     break;
9611                   }
9612                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
9613                                              shndx, false);
9614               }
9615             else
9616               {
9617                 // FIXME: TLS optimization not supported yet.
9618                 gold_unreachable();
9619               }
9620             break;
9621
9622           case elfcpp::R_MIPS_TLS_LDM:
9623           case elfcpp::R_MIPS16_TLS_LDM:
9624           case elfcpp::R_MICROMIPS_TLS_LDM:
9625             if (optimized_type == tls::TLSOPT_NONE)
9626               {
9627                 // We always record LDM symbols as local with index 0.
9628                 target->got_section()->record_local_got_symbol(mips_obj, 0,
9629                                                                r_addend, r_type,
9630                                                                -1U, false);
9631               }
9632             else
9633               {
9634                 // FIXME: TLS optimization not supported yet.
9635                 gold_unreachable();
9636               }
9637             break;
9638           case elfcpp::R_MIPS_TLS_GOTTPREL:
9639           case elfcpp::R_MIPS16_TLS_GOTTPREL:
9640           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9641             layout->set_has_static_tls();
9642             if (optimized_type == tls::TLSOPT_NONE)
9643               {
9644                 // Create a GOT entry for the tp-relative offset.
9645                 Mips_output_data_got<size, big_endian>* got =
9646                   target->got_section(symtab, layout);
9647                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
9648                                              -1U, false);
9649               }
9650             else
9651               {
9652                 // FIXME: TLS optimization not supported yet.
9653                 gold_unreachable();
9654               }
9655             break;
9656
9657           default:
9658             gold_unreachable();
9659         }
9660       }
9661       break;
9662
9663     default:
9664       break;
9665     }
9666
9667   // Refuse some position-dependent relocations when creating a
9668   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
9669   // not PIC, but we can create dynamic relocations and the result
9670   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
9671   // combined with R_MIPS_GOT16.
9672   if (parameters->options().shared())
9673     {
9674       switch (r_type)
9675         {
9676         case elfcpp::R_MIPS16_HI16:
9677         case elfcpp::R_MIPS_HI16:
9678         case elfcpp::R_MICROMIPS_HI16:
9679           // Don't refuse a high part relocation if it's against
9680           // no symbol (e.g. part of a compound relocation).
9681           if (r_sym == 0)
9682             break;
9683
9684           // FALLTHROUGH
9685
9686         case elfcpp::R_MIPS16_26:
9687         case elfcpp::R_MIPS_26:
9688         case elfcpp::R_MICROMIPS_26_S1:
9689           gold_error(_("%s: relocation %u against `%s' can not be used when "
9690                        "making a shared object; recompile with -fPIC"),
9691                      object->name().c_str(), r_type, "a local symbol");
9692         default:
9693           break;
9694         }
9695     }
9696 }
9697
9698 template<int size, bool big_endian>
9699 inline void
9700 Target_mips<size, big_endian>::Scan::local(
9701                         Symbol_table* symtab,
9702                         Layout* layout,
9703                         Target_mips<size, big_endian>* target,
9704                         Sized_relobj_file<size, big_endian>* object,
9705                         unsigned int data_shndx,
9706                         Output_section* output_section,
9707                         const Reltype& reloc,
9708                         unsigned int r_type,
9709                         const elfcpp::Sym<size, big_endian>& lsym,
9710                         bool is_discarded)
9711 {
9712   if (is_discarded)
9713     return;
9714
9715   local(
9716     symtab,
9717     layout,
9718     target,
9719     object,
9720     data_shndx,
9721     output_section,
9722     (const Relatype*) NULL,
9723     &reloc,
9724     elfcpp::SHT_REL,
9725     r_type,
9726     lsym, is_discarded);
9727 }
9728
9729
9730 template<int size, bool big_endian>
9731 inline void
9732 Target_mips<size, big_endian>::Scan::local(
9733                         Symbol_table* symtab,
9734                         Layout* layout,
9735                         Target_mips<size, big_endian>* target,
9736                         Sized_relobj_file<size, big_endian>* object,
9737                         unsigned int data_shndx,
9738                         Output_section* output_section,
9739                         const Relatype& reloc,
9740                         unsigned int r_type,
9741                         const elfcpp::Sym<size, big_endian>& lsym,
9742                         bool is_discarded)
9743 {
9744   if (is_discarded)
9745     return;
9746
9747   local(
9748     symtab,
9749     layout,
9750     target,
9751     object,
9752     data_shndx,
9753     output_section,
9754     &reloc,
9755     (const Reltype*) NULL,
9756     elfcpp::SHT_RELA,
9757     r_type,
9758     lsym, is_discarded);
9759 }
9760
9761 // Scan a relocation for a global symbol.
9762
9763 template<int size, bool big_endian>
9764 inline void
9765 Target_mips<size, big_endian>::Scan::global(
9766                                 Symbol_table* symtab,
9767                                 Layout* layout,
9768                                 Target_mips<size, big_endian>* target,
9769                                 Sized_relobj_file<size, big_endian>* object,
9770                                 unsigned int data_shndx,
9771                                 Output_section* output_section,
9772                                 const Relatype* rela,
9773                                 const Reltype* rel,
9774                                 unsigned int rel_type,
9775                                 unsigned int r_type,
9776                                 Symbol* gsym)
9777 {
9778   Mips_address r_offset;
9779   unsigned int r_sym;
9780   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9781
9782   if (rel_type == elfcpp::SHT_RELA)
9783     {
9784       r_offset = rela->get_r_offset();
9785       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9786           get_r_sym(rela);
9787       r_addend = rela->get_r_addend();
9788     }
9789   else
9790     {
9791       r_offset = rel->get_r_offset();
9792       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9793           get_r_sym(rel);
9794       r_addend = 0;
9795     }
9796
9797   Mips_relobj<size, big_endian>* mips_obj =
9798     Mips_relobj<size, big_endian>::as_mips_relobj(object);
9799   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9800
9801   if (mips_obj->is_mips16_stub_section(data_shndx))
9802     {
9803       mips_obj->get_mips16_stub_section(data_shndx)
9804               ->new_global_reloc_found(r_type, mips_sym);
9805     }
9806
9807   if (r_type == elfcpp::R_MIPS_NONE)
9808     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9809     // mips16 stub.
9810     return;
9811
9812   if (!mips16_call_reloc(r_type)
9813       && !mips_obj->section_allows_mips16_refs(data_shndx))
9814     // This reloc would need to refer to a MIPS16 hard-float stub, if
9815     // there is one.  We ignore MIPS16 stub sections and .pdr section when
9816     // looking for relocs that would need to refer to MIPS16 stubs.
9817     mips_sym->set_need_fn_stub();
9818
9819   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9820   // section.  We check here to avoid creating a dynamic reloc against
9821   // _GLOBAL_OFFSET_TABLE_.
9822   if (!target->has_got_section()
9823       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9824     target->got_section(symtab, layout);
9825
9826   // We need PLT entries if there are static-only relocations against
9827   // an externally-defined function.  This can technically occur for
9828   // shared libraries if there are branches to the symbol, although it
9829   // is unlikely that this will be used in practice due to the short
9830   // ranges involved.  It can occur for any relative or absolute relocation
9831   // in executables; in that case, the PLT entry becomes the function's
9832   // canonical address.
9833   bool static_reloc = false;
9834
9835   // Set CAN_MAKE_DYNAMIC to true if we can convert this
9836   // relocation into a dynamic one.
9837   bool can_make_dynamic = false;
9838   switch (r_type)
9839     {
9840     case elfcpp::R_MIPS_GOT16:
9841     case elfcpp::R_MIPS_CALL16:
9842     case elfcpp::R_MIPS_CALL_HI16:
9843     case elfcpp::R_MIPS_CALL_LO16:
9844     case elfcpp::R_MIPS_GOT_HI16:
9845     case elfcpp::R_MIPS_GOT_LO16:
9846     case elfcpp::R_MIPS_GOT_PAGE:
9847     case elfcpp::R_MIPS_GOT_OFST:
9848     case elfcpp::R_MIPS_GOT_DISP:
9849     case elfcpp::R_MIPS_TLS_GOTTPREL:
9850     case elfcpp::R_MIPS_TLS_GD:
9851     case elfcpp::R_MIPS_TLS_LDM:
9852     case elfcpp::R_MIPS16_GOT16:
9853     case elfcpp::R_MIPS16_CALL16:
9854     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9855     case elfcpp::R_MIPS16_TLS_GD:
9856     case elfcpp::R_MIPS16_TLS_LDM:
9857     case elfcpp::R_MICROMIPS_GOT16:
9858     case elfcpp::R_MICROMIPS_CALL16:
9859     case elfcpp::R_MICROMIPS_CALL_HI16:
9860     case elfcpp::R_MICROMIPS_CALL_LO16:
9861     case elfcpp::R_MICROMIPS_GOT_HI16:
9862     case elfcpp::R_MICROMIPS_GOT_LO16:
9863     case elfcpp::R_MICROMIPS_GOT_PAGE:
9864     case elfcpp::R_MICROMIPS_GOT_OFST:
9865     case elfcpp::R_MICROMIPS_GOT_DISP:
9866     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9867     case elfcpp::R_MICROMIPS_TLS_GD:
9868     case elfcpp::R_MICROMIPS_TLS_LDM:
9869     case elfcpp::R_MIPS_EH:
9870       // We need a GOT section.
9871       target->got_section(symtab, layout);
9872       break;
9873
9874     // This is just a hint; it can safely be ignored.  Don't set
9875     // has_static_relocs for the corresponding symbol.
9876     case elfcpp::R_MIPS_JALR:
9877     case elfcpp::R_MICROMIPS_JALR:
9878       break;
9879
9880     case elfcpp::R_MIPS_GPREL16:
9881     case elfcpp::R_MIPS_GPREL32:
9882     case elfcpp::R_MIPS16_GPREL:
9883     case elfcpp::R_MICROMIPS_GPREL16:
9884       // TODO(sasa)
9885       // GP-relative relocations always resolve to a definition in a
9886       // regular input file, ignoring the one-definition rule.  This is
9887       // important for the GP setup sequence in NewABI code, which
9888       // always resolves to a local function even if other relocations
9889       // against the symbol wouldn't.
9890       //constrain_symbol_p = FALSE;
9891       break;
9892
9893     case elfcpp::R_MIPS_32:
9894     case elfcpp::R_MIPS_REL32:
9895     case elfcpp::R_MIPS_64:
9896       if ((parameters->options().shared()
9897           || (strcmp(gsym->name(), "__gnu_local_gp") != 0
9898           && (!is_readonly_section(output_section)
9899           || mips_obj->is_pic())))
9900           && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
9901         {
9902           if (r_type != elfcpp::R_MIPS_REL32)
9903             mips_sym->set_pointer_equality_needed();
9904           can_make_dynamic = true;
9905           break;
9906         }
9907       // Fall through.
9908
9909     default:
9910       // Most static relocations require pointer equality, except
9911       // for branches.
9912       mips_sym->set_pointer_equality_needed();
9913
9914       // Fall through.
9915
9916     case elfcpp::R_MIPS_26:
9917     case elfcpp::R_MIPS_PC16:
9918     case elfcpp::R_MIPS16_26:
9919     case elfcpp::R_MICROMIPS_26_S1:
9920     case elfcpp::R_MICROMIPS_PC7_S1:
9921     case elfcpp::R_MICROMIPS_PC10_S1:
9922     case elfcpp::R_MICROMIPS_PC16_S1:
9923     case elfcpp::R_MICROMIPS_PC23_S2:
9924       static_reloc = true;
9925       mips_sym->set_has_static_relocs();
9926       break;
9927     }
9928
9929   // If there are call relocations against an externally-defined symbol,
9930   // see whether we can create a MIPS lazy-binding stub for it.  We can
9931   // only do this if all references to the function are through call
9932   // relocations, and in that case, the traditional lazy-binding stubs
9933   // are much more efficient than PLT entries.
9934   switch (r_type)
9935     {
9936     case elfcpp::R_MIPS16_CALL16:
9937     case elfcpp::R_MIPS_CALL16:
9938     case elfcpp::R_MIPS_CALL_HI16:
9939     case elfcpp::R_MIPS_CALL_LO16:
9940     case elfcpp::R_MIPS_JALR:
9941     case elfcpp::R_MICROMIPS_CALL16:
9942     case elfcpp::R_MICROMIPS_CALL_HI16:
9943     case elfcpp::R_MICROMIPS_CALL_LO16:
9944     case elfcpp::R_MICROMIPS_JALR:
9945       if (!mips_sym->no_lazy_stub())
9946         {
9947           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9948               // Calls from shared objects to undefined symbols of type
9949               // STT_NOTYPE need lazy-binding stub.
9950               || (mips_sym->is_undefined() && parameters->options().shared()))
9951             target->mips_stubs_section(layout)->make_entry(mips_sym);
9952         }
9953       break;
9954     default:
9955       {
9956         // We must not create a stub for a symbol that has relocations
9957         // related to taking the function's address.
9958         mips_sym->set_no_lazy_stub();
9959         target->remove_lazy_stub_entry(mips_sym);
9960         break;
9961       }
9962   }
9963
9964   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9965                                                    mips_sym->is_mips16()))
9966     mips_sym->set_has_nonpic_branches();
9967
9968   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9969   // and has a special meaning.
9970   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9971                                && strcmp(gsym->name(), "_gp_disp") == 0
9972                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9973   if (static_reloc && gsym->needs_plt_entry())
9974     {
9975       target->make_plt_entry(symtab, layout, mips_sym, r_type);
9976
9977       // Since this is not a PC-relative relocation, we may be
9978       // taking the address of a function.  In that case we need to
9979       // set the entry in the dynamic symbol table to the address of
9980       // the PLT entry.
9981       if (gsym->is_from_dynobj() && !parameters->options().shared())
9982         {
9983           gsym->set_needs_dynsym_value();
9984           // We distinguish between PLT entries and lazy-binding stubs by
9985           // giving the former an st_other value of STO_MIPS_PLT.  Set the
9986           // flag if there are any relocations in the binary where pointer
9987           // equality matters.
9988           if (mips_sym->pointer_equality_needed())
9989             mips_sym->set_mips_plt();
9990         }
9991     }
9992   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9993     {
9994       // Absolute addressing relocations.
9995       // Make a dynamic relocation if necessary.
9996       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9997         {
9998           if (gsym->may_need_copy_reloc())
9999             {
10000               target->copy_reloc(symtab, layout, object, data_shndx,
10001                                  output_section, gsym, r_type, r_offset);
10002             }
10003           else if (can_make_dynamic)
10004             {
10005               // Create .rel.dyn section.
10006               target->rel_dyn_section(layout);
10007               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
10008                                     data_shndx, output_section, r_offset);
10009             }
10010           else
10011             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
10012                        gsym->name());
10013         }
10014     }
10015
10016   bool for_call = false;
10017   switch (r_type)
10018     {
10019     case elfcpp::R_MIPS_CALL16:
10020     case elfcpp::R_MIPS16_CALL16:
10021     case elfcpp::R_MICROMIPS_CALL16:
10022     case elfcpp::R_MIPS_CALL_HI16:
10023     case elfcpp::R_MIPS_CALL_LO16:
10024     case elfcpp::R_MICROMIPS_CALL_HI16:
10025     case elfcpp::R_MICROMIPS_CALL_LO16:
10026       for_call = true;
10027       // Fall through.
10028
10029     case elfcpp::R_MIPS16_GOT16:
10030     case elfcpp::R_MIPS_GOT16:
10031     case elfcpp::R_MIPS_GOT_HI16:
10032     case elfcpp::R_MIPS_GOT_LO16:
10033     case elfcpp::R_MICROMIPS_GOT16:
10034     case elfcpp::R_MICROMIPS_GOT_HI16:
10035     case elfcpp::R_MICROMIPS_GOT_LO16:
10036     case elfcpp::R_MIPS_GOT_DISP:
10037     case elfcpp::R_MICROMIPS_GOT_DISP:
10038     case elfcpp::R_MIPS_EH:
10039       {
10040         // The symbol requires a GOT entry.
10041         Mips_output_data_got<size, big_endian>* got =
10042           target->got_section(symtab, layout);
10043         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
10044                                       for_call);
10045         mips_sym->set_global_got_area(GGA_NORMAL);
10046       }
10047       break;
10048
10049     case elfcpp::R_MIPS_GOT_PAGE:
10050     case elfcpp::R_MICROMIPS_GOT_PAGE:
10051       {
10052         // This relocation needs a page entry in the GOT.
10053         // Get the section contents.
10054         section_size_type view_size = 0;
10055         const unsigned char* view =
10056           object->section_contents(data_shndx, &view_size, false);
10057         view += r_offset;
10058
10059         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10060         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10061                                                         : r_addend);
10062         Mips_output_data_got<size, big_endian>* got =
10063           target->got_section(symtab, layout);
10064         got->record_got_page_entry(mips_obj, r_sym, addend);
10065
10066         // If this is a global, overridable symbol, GOT_PAGE will
10067         // decay to GOT_DISP, so we'll need a GOT entry for it.
10068         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
10069                             && !mips_sym->object()->is_dynamic()
10070                             && !mips_sym->is_undefined());
10071         if (!def_regular
10072             || (parameters->options().output_is_position_independent()
10073                 && !parameters->options().Bsymbolic()
10074                 && !mips_sym->is_forced_local()))
10075           {
10076             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
10077                                           for_call);
10078             mips_sym->set_global_got_area(GGA_NORMAL);
10079           }
10080       }
10081       break;
10082
10083     case elfcpp::R_MIPS_TLS_GOTTPREL:
10084     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10085     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10086     case elfcpp::R_MIPS_TLS_LDM:
10087     case elfcpp::R_MIPS16_TLS_LDM:
10088     case elfcpp::R_MICROMIPS_TLS_LDM:
10089     case elfcpp::R_MIPS_TLS_GD:
10090     case elfcpp::R_MIPS16_TLS_GD:
10091     case elfcpp::R_MICROMIPS_TLS_GD:
10092       {
10093         const bool is_final = gsym->final_value_is_known();
10094         const tls::Tls_optimization optimized_type =
10095           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
10096
10097         switch (r_type)
10098           {
10099           case elfcpp::R_MIPS_TLS_GD:
10100           case elfcpp::R_MIPS16_TLS_GD:
10101           case elfcpp::R_MICROMIPS_TLS_GD:
10102             if (optimized_type == tls::TLSOPT_NONE)
10103               {
10104                 // Create a pair of GOT entries for the module index and
10105                 // dtv-relative offset.
10106                 Mips_output_data_got<size, big_endian>* got =
10107                   target->got_section(symtab, layout);
10108                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
10109                                               false);
10110               }
10111             else
10112               {
10113                 // FIXME: TLS optimization not supported yet.
10114                 gold_unreachable();
10115               }
10116             break;
10117
10118           case elfcpp::R_MIPS_TLS_LDM:
10119           case elfcpp::R_MIPS16_TLS_LDM:
10120           case elfcpp::R_MICROMIPS_TLS_LDM:
10121             if (optimized_type == tls::TLSOPT_NONE)
10122               {
10123                 // We always record LDM symbols as local with index 0.
10124                 target->got_section()->record_local_got_symbol(mips_obj, 0,
10125                                                                r_addend, r_type,
10126                                                                -1U, false);
10127               }
10128             else
10129               {
10130                 // FIXME: TLS optimization not supported yet.
10131                 gold_unreachable();
10132               }
10133             break;
10134           case elfcpp::R_MIPS_TLS_GOTTPREL:
10135           case elfcpp::R_MIPS16_TLS_GOTTPREL:
10136           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10137             layout->set_has_static_tls();
10138             if (optimized_type == tls::TLSOPT_NONE)
10139               {
10140                 // Create a GOT entry for the tp-relative offset.
10141                 Mips_output_data_got<size, big_endian>* got =
10142                   target->got_section(symtab, layout);
10143                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
10144                                               false);
10145               }
10146             else
10147               {
10148                 // FIXME: TLS optimization not supported yet.
10149                 gold_unreachable();
10150               }
10151             break;
10152
10153           default:
10154             gold_unreachable();
10155         }
10156       }
10157       break;
10158     case elfcpp::R_MIPS_COPY:
10159     case elfcpp::R_MIPS_JUMP_SLOT:
10160       // These are relocations which should only be seen by the
10161       // dynamic linker, and should never be seen here.
10162       gold_error(_("%s: unexpected reloc %u in object file"),
10163                  object->name().c_str(), r_type);
10164       break;
10165
10166     default:
10167       break;
10168     }
10169
10170   // Refuse some position-dependent relocations when creating a
10171   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
10172   // not PIC, but we can create dynamic relocations and the result
10173   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
10174   // combined with R_MIPS_GOT16.
10175   if (parameters->options().shared())
10176     {
10177       switch (r_type)
10178         {
10179         case elfcpp::R_MIPS16_HI16:
10180         case elfcpp::R_MIPS_HI16:
10181         case elfcpp::R_MICROMIPS_HI16:
10182           // Don't refuse a high part relocation if it's against
10183           // no symbol (e.g. part of a compound relocation).
10184           if (r_sym == 0)
10185             break;
10186
10187           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10188           // and has a special meaning.
10189           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
10190             break;
10191
10192           // FALLTHROUGH
10193
10194         case elfcpp::R_MIPS16_26:
10195         case elfcpp::R_MIPS_26:
10196         case elfcpp::R_MICROMIPS_26_S1:
10197           gold_error(_("%s: relocation %u against `%s' can not be used when "
10198                        "making a shared object; recompile with -fPIC"),
10199                      object->name().c_str(), r_type, gsym->name());
10200         default:
10201           break;
10202         }
10203     }
10204 }
10205
10206 template<int size, bool big_endian>
10207 inline void
10208 Target_mips<size, big_endian>::Scan::global(
10209                                 Symbol_table* symtab,
10210                                 Layout* layout,
10211                                 Target_mips<size, big_endian>* target,
10212                                 Sized_relobj_file<size, big_endian>* object,
10213                                 unsigned int data_shndx,
10214                                 Output_section* output_section,
10215                                 const Relatype& reloc,
10216                                 unsigned int r_type,
10217                                 Symbol* gsym)
10218 {
10219   global(
10220     symtab,
10221     layout,
10222     target,
10223     object,
10224     data_shndx,
10225     output_section,
10226     &reloc,
10227     (const Reltype*) NULL,
10228     elfcpp::SHT_RELA,
10229     r_type,
10230     gsym);
10231 }
10232
10233 template<int size, bool big_endian>
10234 inline void
10235 Target_mips<size, big_endian>::Scan::global(
10236                                 Symbol_table* symtab,
10237                                 Layout* layout,
10238                                 Target_mips<size, big_endian>* target,
10239                                 Sized_relobj_file<size, big_endian>* object,
10240                                 unsigned int data_shndx,
10241                                 Output_section* output_section,
10242                                 const Reltype& reloc,
10243                                 unsigned int r_type,
10244                                 Symbol* gsym)
10245 {
10246   global(
10247     symtab,
10248     layout,
10249     target,
10250     object,
10251     data_shndx,
10252     output_section,
10253     (const Relatype*) NULL,
10254     &reloc,
10255     elfcpp::SHT_REL,
10256     r_type,
10257     gsym);
10258 }
10259
10260 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
10261 // In cases where Scan::local() or Scan::global() has created
10262 // a dynamic relocation, the addend of the relocation is carried
10263 // in the data, and we must not apply the static relocation.
10264
10265 template<int size, bool big_endian>
10266 inline bool
10267 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
10268     const Mips_symbol<size>* gsym,
10269     unsigned int r_type,
10270     Output_section* output_section,
10271     Target_mips* target)
10272 {
10273   // If the output section is not allocated, then we didn't call
10274   // scan_relocs, we didn't create a dynamic reloc, and we must apply
10275   // the reloc here.
10276   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
10277       return true;
10278
10279   if (gsym == NULL)
10280     return true;
10281   else
10282     {
10283       // For global symbols, we use the same helper routines used in the
10284       // scan pass.
10285       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
10286           && !gsym->may_need_copy_reloc())
10287         {
10288           // We have generated dynamic reloc (R_MIPS_REL32).
10289
10290           bool multi_got = false;
10291           if (target->has_got_section())
10292             multi_got = target->got_section()->multi_got();
10293           bool has_got_offset;
10294           if (!multi_got)
10295             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
10296           else
10297             has_got_offset = gsym->global_gotoffset() != -1U;
10298           if (!has_got_offset)
10299             return true;
10300           else
10301             // Apply the relocation only if the symbol is in the local got.
10302             // Do not apply the relocation if the symbol is in the global
10303             // got.
10304             return symbol_references_local(gsym, gsym->has_dynsym_index());
10305         }
10306       else
10307         // We have not generated dynamic reloc.
10308         return true;
10309     }
10310 }
10311
10312 // Perform a relocation.
10313
10314 template<int size, bool big_endian>
10315 inline bool
10316 Target_mips<size, big_endian>::Relocate::relocate(
10317                         const Relocate_info<size, big_endian>* relinfo,
10318                         unsigned int rel_type,
10319                         Target_mips* target,
10320                         Output_section* output_section,
10321                         size_t relnum,
10322                         const unsigned char* preloc,
10323                         const Sized_symbol<size>* gsym,
10324                         const Symbol_value<size>* psymval,
10325                         unsigned char* view,
10326                         Mips_address address,
10327                         section_size_type)
10328 {
10329   Mips_address r_offset;
10330   unsigned int r_sym;
10331   unsigned int r_type;
10332   unsigned int r_type2;
10333   unsigned int r_type3;
10334   unsigned char r_ssym;
10335   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10336
10337   if (rel_type == elfcpp::SHT_RELA)
10338     {
10339       const Relatype rela(preloc);
10340       r_offset = rela.get_r_offset();
10341       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10342           get_r_sym(&rela);
10343       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10344           get_r_type(&rela);
10345       r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10346           get_r_type2(&rela);
10347       r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10348           get_r_type3(&rela);
10349       r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10350           get_r_ssym(&rela);
10351       r_addend = rela.get_r_addend();
10352     }
10353   else
10354     {
10355       const Reltype rel(preloc);
10356       r_offset = rel.get_r_offset();
10357       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10358           get_r_sym(&rel);
10359       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10360           get_r_type(&rel);
10361       r_ssym = 0;
10362       r_type2 = 0;
10363       r_type3 = 0;
10364       r_addend = 0;
10365     }
10366
10367   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10368   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10369
10370   Mips_relobj<size, big_endian>* object =
10371       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10372
10373   bool target_is_16_bit_code = false;
10374   bool target_is_micromips_code = false;
10375   bool cross_mode_jump;
10376
10377   Symbol_value<size> symval;
10378
10379   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10380
10381   bool changed_symbol_value = false;
10382   if (gsym == NULL)
10383     {
10384       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
10385       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
10386       if (target_is_16_bit_code || target_is_micromips_code)
10387         {
10388           // MIPS16/microMIPS text labels should be treated as odd.
10389           symval.set_output_value(psymval->value(object, 1));
10390           psymval = &symval;
10391           changed_symbol_value = true;
10392         }
10393     }
10394   else
10395     {
10396       target_is_16_bit_code = mips_sym->is_mips16();
10397       target_is_micromips_code = mips_sym->is_micromips();
10398
10399       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
10400       // it odd.  This will cause something like .word SYM to come up with
10401       // the right value when it is loaded into the PC.
10402
10403       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
10404           && psymval->value(object, 0) != 0)
10405         {
10406           symval.set_output_value(psymval->value(object, 0) | 1);
10407           psymval = &symval;
10408           changed_symbol_value = true;
10409         }
10410
10411       // Pick the value to use for symbols defined in shared objects.
10412       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
10413           || mips_sym->has_lazy_stub())
10414         {
10415           Mips_address value;
10416           if (!mips_sym->has_lazy_stub())
10417             {
10418               // Prefer a standard MIPS PLT entry.
10419               if (mips_sym->has_mips_plt_offset())
10420                 {
10421                   value = target->plt_section()->mips_entry_address(mips_sym);
10422                   target_is_micromips_code = false;
10423                   target_is_16_bit_code = false;
10424                 }
10425               else
10426                 {
10427                   value = (target->plt_section()->comp_entry_address(mips_sym)
10428                            + 1);
10429                   if (target->is_output_micromips())
10430                     target_is_micromips_code = true;
10431                   else
10432                     target_is_16_bit_code = true;
10433                 }
10434             }
10435           else
10436             value = target->mips_stubs_section()->stub_address(mips_sym);
10437
10438           symval.set_output_value(value);
10439           psymval = &symval;
10440         }
10441     }
10442
10443   // TRUE if the symbol referred to by this relocation is "_gp_disp".
10444   // Note that such a symbol must always be a global symbol.
10445   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
10446                   && !object->is_newabi());
10447
10448   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
10449   // Note that such a symbol must always be a global symbol.
10450   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
10451
10452
10453   if (gp_disp)
10454     {
10455       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
10456         gold_error_at_location(relinfo, relnum, r_offset,
10457           _("relocations against _gp_disp are permitted only"
10458             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
10459     }
10460   else if (gnu_local_gp)
10461     {
10462       // __gnu_local_gp is _gp symbol.
10463       symval.set_output_value(target->adjusted_gp_value(object));
10464       psymval = &symval;
10465     }
10466
10467   // If this is a reference to a 16-bit function with a stub, we need
10468   // to redirect the relocation to the stub unless:
10469   //
10470   // (a) the relocation is for a MIPS16 JAL;
10471   //
10472   // (b) the relocation is for a MIPS16 PIC call, and there are no
10473   //     non-MIPS16 uses of the GOT slot; or
10474   //
10475   // (c) the section allows direct references to MIPS16 functions.
10476   if (r_type != elfcpp::R_MIPS16_26
10477       && !parameters->options().relocatable()
10478       && ((mips_sym != NULL
10479            && mips_sym->has_mips16_fn_stub()
10480            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
10481           || (mips_sym == NULL
10482               && object->get_local_mips16_fn_stub(r_sym) != NULL))
10483       && !object->section_allows_mips16_refs(relinfo->data_shndx))
10484     {
10485       // This is a 32- or 64-bit call to a 16-bit function.  We should
10486       // have already noticed that we were going to need the
10487       // stub.
10488       Mips_address value;
10489       if (mips_sym == NULL)
10490         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
10491       else
10492         {
10493           gold_assert(mips_sym->need_fn_stub());
10494           if (mips_sym->has_la25_stub())
10495             value = target->la25_stub_section()->stub_address(mips_sym);
10496           else
10497             {
10498               value = mips_sym->template
10499                       get_mips16_fn_stub<big_endian>()->output_address();
10500             }
10501           }
10502       symval.set_output_value(value);
10503       psymval = &symval;
10504       changed_symbol_value = true;
10505
10506       // The target is 16-bit, but the stub isn't.
10507       target_is_16_bit_code = false;
10508     }
10509   // If this is a MIPS16 call with a stub, that is made through the PLT or
10510   // to a standard MIPS function, we need to redirect the call to the stub.
10511   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
10512   // indirect calls should use an indirect stub instead.
10513   else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
10514            && ((mips_sym != NULL
10515                 && (mips_sym->has_mips16_call_stub()
10516                     || mips_sym->has_mips16_call_fp_stub()))
10517                || (mips_sym == NULL
10518                    && object->get_local_mips16_call_stub(r_sym) != NULL))
10519            && ((mips_sym != NULL && mips_sym->has_plt_offset())
10520                || !target_is_16_bit_code))
10521     {
10522       Mips16_stub_section<size, big_endian>* call_stub;
10523       if (mips_sym == NULL)
10524         call_stub = object->get_local_mips16_call_stub(r_sym);
10525       else
10526         {
10527           // If both call_stub and call_fp_stub are defined, we can figure
10528           // out which one to use by checking which one appears in the input
10529           // file.
10530           if (mips_sym->has_mips16_call_stub()
10531               && mips_sym->has_mips16_call_fp_stub())
10532             {
10533               call_stub = NULL;
10534               for (unsigned int i = 1; i < object->shnum(); ++i)
10535                 {
10536                   if (object->is_mips16_call_fp_stub_section(i))
10537                     {
10538                       call_stub = mips_sym->template
10539                                   get_mips16_call_fp_stub<big_endian>();
10540                       break;
10541                     }
10542
10543                 }
10544               if (call_stub == NULL)
10545                 call_stub =
10546                   mips_sym->template get_mips16_call_stub<big_endian>();
10547             }
10548           else if (mips_sym->has_mips16_call_stub())
10549             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
10550           else
10551             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
10552         }
10553
10554       symval.set_output_value(call_stub->output_address());
10555       psymval = &symval;
10556       changed_symbol_value = true;
10557     }
10558   // If this is a direct call to a PIC function, redirect to the
10559   // non-PIC stub.
10560   else if (mips_sym != NULL
10561            && mips_sym->has_la25_stub()
10562            && relocation_needs_la25_stub<size, big_endian>(
10563                                        object, r_type, target_is_16_bit_code))
10564     {
10565       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
10566       if (mips_sym->is_micromips())
10567         value += 1;
10568       symval.set_output_value(value);
10569       psymval = &symval;
10570     }
10571   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
10572   // entry is used if a standard PLT entry has also been made.
10573   else if ((r_type == elfcpp::R_MIPS16_26
10574             || r_type == elfcpp::R_MICROMIPS_26_S1)
10575           && !parameters->options().relocatable()
10576           && mips_sym != NULL
10577           && mips_sym->has_plt_offset()
10578           && mips_sym->has_comp_plt_offset()
10579           && mips_sym->has_mips_plt_offset())
10580     {
10581       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
10582                             + 1);
10583       symval.set_output_value(value);
10584       psymval = &symval;
10585
10586       target_is_16_bit_code = !target->is_output_micromips();
10587       target_is_micromips_code = target->is_output_micromips();
10588     }
10589
10590   // Make sure MIPS16 and microMIPS are not used together.
10591   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
10592       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
10593    {
10594       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
10595    }
10596
10597   // Calls from 16-bit code to 32-bit code and vice versa require the
10598   // mode change.  However, we can ignore calls to undefined weak symbols,
10599   // which should never be executed at runtime.  This exception is important
10600   // because the assembly writer may have "known" that any definition of the
10601   // symbol would be 16-bit code, and that direct jumps were therefore
10602   // acceptable.
10603   cross_mode_jump =
10604     (!parameters->options().relocatable()
10605      && !(gsym != NULL && gsym->is_weak_undefined())
10606      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
10607          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
10608          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
10609              && (target_is_16_bit_code || target_is_micromips_code))));
10610
10611   bool local = (mips_sym == NULL
10612                 || (mips_sym->got_only_for_calls()
10613                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
10614                     : symbol_references_local(mips_sym,
10615                                               mips_sym->has_dynsym_index())));
10616
10617   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
10618   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
10619   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
10620   if (got_page_reloc(r_type) && !local)
10621     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
10622                                       : elfcpp::R_MIPS_GOT_DISP);
10623
10624   unsigned int got_offset = 0;
10625   int gp_offset = 0;
10626
10627   bool calculate_only = false;
10628   Valtype calculated_value = 0;
10629   bool extract_addend = rel_type == elfcpp::SHT_REL;
10630   unsigned int r_types[3] = { r_type, r_type2, r_type3 };
10631
10632   Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
10633
10634   // For Mips64 N64 ABI, there may be up to three operations specified per
10635   // record, by the fields r_type, r_type2, and r_type3. The first operation
10636   // takes its addend from the relocation record. Each subsequent operation
10637   // takes as its addend the result of the previous operation.
10638   // The first operation in a record which references a symbol uses the symbol
10639   // implied by r_sym. The next operation in a record which references a symbol
10640   // uses the special symbol value given by the r_ssym field. A third operation
10641   // in a record which references a symbol will assume a NULL symbol,
10642   // i.e. value zero.
10643
10644   // TODO(Vladimir)
10645   // Check if a record references to a symbol.
10646   for (unsigned int i = 0; i < 3; ++i)
10647     {
10648       if (r_types[i] == elfcpp::R_MIPS_NONE)
10649         break;
10650
10651       // TODO(Vladimir)
10652       // Check if the next relocation is for the same instruction.
10653       calculate_only = i == 2 ? false
10654                               : r_types[i+1] != elfcpp::R_MIPS_NONE;
10655
10656       if (object->is_n64())
10657         {
10658           if (i == 1)
10659             {
10660               // Handle special symbol for r_type2 relocation type.
10661               switch (r_ssym)
10662                 {
10663                 case RSS_UNDEF:
10664                   symval.set_output_value(0);
10665                   break;
10666                 case RSS_GP:
10667                   symval.set_output_value(target->gp_value());
10668                   break;
10669                 case RSS_GP0:
10670                   symval.set_output_value(object->gp_value());
10671                   break;
10672                 case RSS_LOC:
10673                   symval.set_output_value(address);
10674                   break;
10675                 default:
10676                   gold_unreachable();
10677                 }
10678               psymval = &symval;
10679             }
10680           else if (i == 2)
10681            {
10682             // For r_type3 symbol value is 0.
10683             symval.set_output_value(0);
10684            }
10685         }
10686
10687       bool update_got_entry = false;
10688       switch (r_types[i])
10689         {
10690         case elfcpp::R_MIPS_NONE:
10691           break;
10692         case elfcpp::R_MIPS_16:
10693           reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
10694                                             extract_addend, calculate_only,
10695                                             &calculated_value);
10696           break;
10697
10698         case elfcpp::R_MIPS_32:
10699           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
10700                                         target))
10701             reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
10702                                               extract_addend, calculate_only,
10703                                               &calculated_value);
10704           if (mips_sym != NULL
10705               && (mips_sym->is_mips16() || mips_sym->is_micromips())
10706               && mips_sym->global_got_area() == GGA_RELOC_ONLY)
10707             {
10708               // If mips_sym->has_mips16_fn_stub() is false, symbol value is
10709               // already updated by adding +1.
10710               if (mips_sym->has_mips16_fn_stub())
10711                 {
10712                   gold_assert(mips_sym->need_fn_stub());
10713                   Mips16_stub_section<size, big_endian>* fn_stub =
10714                     mips_sym->template get_mips16_fn_stub<big_endian>();
10715
10716                   symval.set_output_value(fn_stub->output_address());
10717                   psymval = &symval;
10718                 }
10719               got_offset = mips_sym->global_gotoffset();
10720               update_got_entry = true;
10721             }
10722           break;
10723
10724         case elfcpp::R_MIPS_64:
10725           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
10726                                         target))
10727             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
10728                                               extract_addend, calculate_only,
10729                                               &calculated_value, false);
10730           else if (target->is_output_n64() && r_addend != 0)
10731             // Only apply the addend.  The static relocation was RELA, but the
10732             // dynamic relocation is REL, so we need to apply the addend.
10733             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
10734                                               extract_addend, calculate_only,
10735                                               &calculated_value, true);
10736           break;
10737         case elfcpp::R_MIPS_REL32:
10738           gold_unreachable();
10739
10740         case elfcpp::R_MIPS_PC32:
10741           reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
10742                                               r_addend, extract_addend,
10743                                               calculate_only,
10744                                               &calculated_value);
10745           break;
10746
10747         case elfcpp::R_MIPS16_26:
10748           // The calculation for R_MIPS16_26 is just the same as for an
10749           // R_MIPS_26.  It's only the storage of the relocated field into
10750           // the output file that's different.  So, we just fall through to the
10751           // R_MIPS_26 case here.
10752         case elfcpp::R_MIPS_26:
10753         case elfcpp::R_MICROMIPS_26_S1:
10754           reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
10755               gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
10756               r_types[i], target->jal_to_bal(), calculate_only,
10757               &calculated_value);
10758           break;
10759
10760         case elfcpp::R_MIPS_HI16:
10761         case elfcpp::R_MIPS16_HI16:
10762         case elfcpp::R_MICROMIPS_HI16:
10763           if (rel_type == elfcpp::SHT_RELA)
10764             reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
10765                                                    r_addend, address,
10766                                                    gp_disp, r_types[i],
10767                                                    extract_addend, 0,
10768                                                    target, calculate_only,
10769                                                    &calculated_value);
10770           else if (rel_type == elfcpp::SHT_REL)
10771             reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
10772                                                 address, gp_disp, r_types[i],
10773                                                 r_sym, extract_addend);
10774           else
10775             gold_unreachable();
10776           break;
10777
10778         case elfcpp::R_MIPS_LO16:
10779         case elfcpp::R_MIPS16_LO16:
10780         case elfcpp::R_MICROMIPS_LO16:
10781         case elfcpp::R_MICROMIPS_HI0_LO16:
10782           reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
10783                                               r_addend, extract_addend, address,
10784                                               gp_disp, r_types[i], r_sym,
10785                                               rel_type, calculate_only,
10786                                               &calculated_value);
10787           break;
10788
10789         case elfcpp::R_MIPS_LITERAL:
10790         case elfcpp::R_MICROMIPS_LITERAL:
10791           // Because we don't merge literal sections, we can handle this
10792           // just like R_MIPS_GPREL16.  In the long run, we should merge
10793           // shared literals, and then we will need to additional work
10794           // here.
10795
10796           // Fall through.
10797
10798         case elfcpp::R_MIPS_GPREL16:
10799         case elfcpp::R_MIPS16_GPREL:
10800         case elfcpp::R_MICROMIPS_GPREL7_S2:
10801         case elfcpp::R_MICROMIPS_GPREL16:
10802           reloc_status = Reloc_funcs::relgprel(view, object, psymval,
10803                                              target->adjusted_gp_value(object),
10804                                              r_addend, extract_addend,
10805                                              gsym == NULL, r_types[i],
10806                                              calculate_only, &calculated_value);
10807           break;
10808
10809         case elfcpp::R_MIPS_PC16:
10810           reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
10811                                               r_addend, extract_addend,
10812                                               calculate_only,
10813                                               &calculated_value);
10814           break;
10815         case elfcpp::R_MICROMIPS_PC7_S1:
10816           reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
10817                                                         address, r_addend,
10818                                                         extract_addend,
10819                                                         calculate_only,
10820                                                         &calculated_value);
10821           break;
10822         case elfcpp::R_MICROMIPS_PC10_S1:
10823           reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
10824                                                        psymval, address,
10825                                                        r_addend, extract_addend,
10826                                                        calculate_only,
10827                                                        &calculated_value);
10828           break;
10829         case elfcpp::R_MICROMIPS_PC16_S1:
10830           reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
10831                                                        psymval, address,
10832                                                        r_addend, extract_addend,
10833                                                        calculate_only,
10834                                                        &calculated_value);
10835           break;
10836         case elfcpp::R_MIPS_GPREL32:
10837           reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
10838                                               target->adjusted_gp_value(object),
10839                                               r_addend, extract_addend,
10840                                               calculate_only,
10841                                               &calculated_value);
10842           break;
10843         case elfcpp::R_MIPS_GOT_HI16:
10844         case elfcpp::R_MIPS_CALL_HI16:
10845         case elfcpp::R_MICROMIPS_GOT_HI16:
10846         case elfcpp::R_MICROMIPS_CALL_HI16:
10847           if (gsym != NULL)
10848             got_offset = target->got_section()->got_offset(gsym,
10849                                                            GOT_TYPE_STANDARD,
10850                                                            object);
10851           else
10852             got_offset = target->got_section()->got_offset(r_sym,
10853                                                            GOT_TYPE_STANDARD,
10854                                                            object, r_addend);
10855           gp_offset = target->got_section()->gp_offset(got_offset, object);
10856           reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
10857                                                   calculate_only,
10858                                                   &calculated_value);
10859           update_got_entry = changed_symbol_value;
10860           break;
10861
10862         case elfcpp::R_MIPS_GOT_LO16:
10863         case elfcpp::R_MIPS_CALL_LO16:
10864         case elfcpp::R_MICROMIPS_GOT_LO16:
10865         case elfcpp::R_MICROMIPS_CALL_LO16:
10866           if (gsym != NULL)
10867             got_offset = target->got_section()->got_offset(gsym,
10868                                                            GOT_TYPE_STANDARD,
10869                                                            object);
10870           else
10871             got_offset = target->got_section()->got_offset(r_sym,
10872                                                            GOT_TYPE_STANDARD,
10873                                                            object, r_addend);
10874           gp_offset = target->got_section()->gp_offset(got_offset, object);
10875           reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
10876                                                   calculate_only,
10877                                                   &calculated_value);
10878           update_got_entry = changed_symbol_value;
10879           break;
10880
10881         case elfcpp::R_MIPS_GOT_DISP:
10882         case elfcpp::R_MICROMIPS_GOT_DISP:
10883         case elfcpp::R_MIPS_EH:
10884           if (gsym != NULL)
10885             got_offset = target->got_section()->got_offset(gsym,
10886                                                            GOT_TYPE_STANDARD,
10887                                                            object);
10888           else
10889             got_offset = target->got_section()->got_offset(r_sym,
10890                                                            GOT_TYPE_STANDARD,
10891                                                            object, r_addend);
10892           gp_offset = target->got_section()->gp_offset(got_offset, object);
10893           if (eh_reloc(r_types[i]))
10894             reloc_status = Reloc_funcs::releh(view, gp_offset,
10895                                               calculate_only,
10896                                               &calculated_value);
10897           else
10898             reloc_status = Reloc_funcs::relgot(view, gp_offset,
10899                                                calculate_only,
10900                                                &calculated_value);
10901           break;
10902         case elfcpp::R_MIPS_CALL16:
10903         case elfcpp::R_MIPS16_CALL16:
10904         case elfcpp::R_MICROMIPS_CALL16:
10905           gold_assert(gsym != NULL);
10906           got_offset = target->got_section()->got_offset(gsym,
10907                                                          GOT_TYPE_STANDARD,
10908                                                          object);
10909           gp_offset = target->got_section()->gp_offset(got_offset, object);
10910           reloc_status = Reloc_funcs::relgot(view, gp_offset,
10911                                              calculate_only, &calculated_value);
10912           // TODO(sasa): We should also initialize update_got_entry
10913           // in other place swhere relgot is called.
10914           update_got_entry = changed_symbol_value;
10915           break;
10916
10917         case elfcpp::R_MIPS_GOT16:
10918         case elfcpp::R_MIPS16_GOT16:
10919         case elfcpp::R_MICROMIPS_GOT16:
10920           if (gsym != NULL)
10921             {
10922               got_offset = target->got_section()->got_offset(gsym,
10923                                                              GOT_TYPE_STANDARD,
10924                                                              object);
10925               gp_offset = target->got_section()->gp_offset(got_offset, object);
10926               reloc_status = Reloc_funcs::relgot(view, gp_offset,
10927                                                  calculate_only,
10928                                                  &calculated_value);
10929             }
10930           else
10931             {
10932               if (rel_type == elfcpp::SHT_RELA)
10933                 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
10934                                                          psymval, r_addend,
10935                                                          extract_addend, 0,
10936                                                          target,
10937                                                          calculate_only,
10938                                                          &calculated_value);
10939               else if (rel_type == elfcpp::SHT_REL)
10940                 reloc_status = Reloc_funcs::relgot16_local(view, object,
10941                                                            psymval, r_addend,
10942                                                            extract_addend,
10943                                                            r_types[i], r_sym);
10944               else
10945                 gold_unreachable();
10946             }
10947           update_got_entry = changed_symbol_value;
10948           break;
10949
10950         case elfcpp::R_MIPS_TLS_GD:
10951         case elfcpp::R_MIPS16_TLS_GD:
10952         case elfcpp::R_MICROMIPS_TLS_GD:
10953           if (gsym != NULL)
10954             got_offset = target->got_section()->got_offset(gsym,
10955                                                            GOT_TYPE_TLS_PAIR,
10956                                                            object);
10957           else
10958             got_offset = target->got_section()->got_offset(r_sym,
10959                                                            GOT_TYPE_TLS_PAIR,
10960                                                            object, r_addend);
10961           gp_offset = target->got_section()->gp_offset(got_offset, object);
10962           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
10963                                              &calculated_value);
10964           break;
10965
10966         case elfcpp::R_MIPS_TLS_GOTTPREL:
10967         case elfcpp::R_MIPS16_TLS_GOTTPREL:
10968         case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10969           if (gsym != NULL)
10970             got_offset = target->got_section()->got_offset(gsym,
10971                                                            GOT_TYPE_TLS_OFFSET,
10972                                                            object);
10973           else
10974             got_offset = target->got_section()->got_offset(r_sym,
10975                                                            GOT_TYPE_TLS_OFFSET,
10976                                                            object, r_addend);
10977           gp_offset = target->got_section()->gp_offset(got_offset, object);
10978           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
10979                                              &calculated_value);
10980           break;
10981
10982         case elfcpp::R_MIPS_TLS_LDM:
10983         case elfcpp::R_MIPS16_TLS_LDM:
10984         case elfcpp::R_MICROMIPS_TLS_LDM:
10985           // Relocate the field with the offset of the GOT entry for
10986           // the module index.
10987           got_offset = target->got_section()->tls_ldm_offset(object);
10988           gp_offset = target->got_section()->gp_offset(got_offset, object);
10989           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
10990                                              &calculated_value);
10991           break;
10992
10993         case elfcpp::R_MIPS_GOT_PAGE:
10994         case elfcpp::R_MICROMIPS_GOT_PAGE:
10995           reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10996                                                  r_addend, extract_addend,
10997                                                  calculate_only,
10998                                                  &calculated_value);
10999           break;
11000
11001         case elfcpp::R_MIPS_GOT_OFST:
11002         case elfcpp::R_MICROMIPS_GOT_OFST:
11003           reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
11004                                                  r_addend, extract_addend,
11005                                                  local, calculate_only,
11006                                                  &calculated_value);
11007           break;
11008
11009         case elfcpp::R_MIPS_JALR:
11010         case elfcpp::R_MICROMIPS_JALR:
11011           // This relocation is only a hint.  In some cases, we optimize
11012           // it into a bal instruction.  But we don't try to optimize
11013           // when the symbol does not resolve locally.
11014           if (gsym == NULL
11015               || symbol_calls_local(gsym, gsym->has_dynsym_index()))
11016             reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
11017                                                 r_addend, extract_addend,
11018                                                 cross_mode_jump, r_types[i],
11019                                                 target->jalr_to_bal(),
11020                                                 target->jr_to_b(),
11021                                                 calculate_only,
11022                                                 &calculated_value);
11023           break;
11024
11025         case elfcpp::R_MIPS_TLS_DTPREL_HI16:
11026         case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
11027         case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
11028           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
11029                                                  elfcpp::DTP_OFFSET, r_addend,
11030                                                  extract_addend, calculate_only,
11031                                                  &calculated_value);
11032           break;
11033         case elfcpp::R_MIPS_TLS_DTPREL_LO16:
11034         case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
11035         case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
11036           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
11037                                                  elfcpp::DTP_OFFSET, r_addend,
11038                                                  extract_addend, calculate_only,
11039                                                  &calculated_value);
11040           break;
11041         case elfcpp::R_MIPS_TLS_DTPREL32:
11042         case elfcpp::R_MIPS_TLS_DTPREL64:
11043           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
11044                                                elfcpp::DTP_OFFSET, r_addend,
11045                                                extract_addend, calculate_only,
11046                                                &calculated_value);
11047           break;
11048         case elfcpp::R_MIPS_TLS_TPREL_HI16:
11049         case elfcpp::R_MIPS16_TLS_TPREL_HI16:
11050         case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
11051           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
11052                                                  elfcpp::TP_OFFSET, r_addend,
11053                                                  extract_addend, calculate_only,
11054                                                  &calculated_value);
11055           break;
11056         case elfcpp::R_MIPS_TLS_TPREL_LO16:
11057         case elfcpp::R_MIPS16_TLS_TPREL_LO16:
11058         case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
11059           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
11060                                                  elfcpp::TP_OFFSET, r_addend,
11061                                                  extract_addend, calculate_only,
11062                                                  &calculated_value);
11063           break;
11064         case elfcpp::R_MIPS_TLS_TPREL32:
11065         case elfcpp::R_MIPS_TLS_TPREL64:
11066           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
11067                                                elfcpp::TP_OFFSET, r_addend,
11068                                                extract_addend, calculate_only,
11069                                                &calculated_value);
11070           break;
11071         case elfcpp::R_MIPS_SUB:
11072         case elfcpp::R_MICROMIPS_SUB:
11073           reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
11074                                              extract_addend,
11075                                              calculate_only, &calculated_value);
11076           break;
11077         default:
11078           gold_error_at_location(relinfo, relnum, r_offset,
11079                                  _("unsupported reloc %u"), r_types[i]);
11080           break;
11081         }
11082
11083       if (update_got_entry)
11084         {
11085           Mips_output_data_got<size, big_endian>* got = target->got_section();
11086           if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
11087             got->update_got_entry(got->get_primary_got_offset(mips_sym),
11088                                   psymval->value(object, 0));
11089           else
11090             got->update_got_entry(got_offset, psymval->value(object, 0));
11091         }
11092
11093       r_addend = calculated_value;
11094     }
11095
11096   bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
11097                                        : false;
11098   Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
11099
11100   // Report any errors.
11101   switch (reloc_status)
11102     {
11103     case Reloc_funcs::STATUS_OKAY:
11104       break;
11105     case Reloc_funcs::STATUS_OVERFLOW:
11106       gold_error_at_location(relinfo, relnum, r_offset,
11107                              _("relocation overflow"));
11108       break;
11109     case Reloc_funcs::STATUS_BAD_RELOC:
11110       gold_error_at_location(relinfo, relnum, r_offset,
11111         _("unexpected opcode while processing relocation"));
11112       break;
11113     default:
11114       gold_unreachable();
11115     }
11116
11117   return true;
11118 }
11119
11120 // Get the Reference_flags for a particular relocation.
11121
11122 template<int size, bool big_endian>
11123 int
11124 Target_mips<size, big_endian>::Scan::get_reference_flags(
11125                        unsigned int r_type)
11126 {
11127   switch (r_type)
11128     {
11129     case elfcpp::R_MIPS_NONE:
11130       // No symbol reference.
11131       return 0;
11132
11133     case elfcpp::R_MIPS_16:
11134     case elfcpp::R_MIPS_32:
11135     case elfcpp::R_MIPS_64:
11136     case elfcpp::R_MIPS_HI16:
11137     case elfcpp::R_MIPS_LO16:
11138     case elfcpp::R_MIPS16_HI16:
11139     case elfcpp::R_MIPS16_LO16:
11140     case elfcpp::R_MICROMIPS_HI16:
11141     case elfcpp::R_MICROMIPS_LO16:
11142       return Symbol::ABSOLUTE_REF;
11143
11144     case elfcpp::R_MIPS_26:
11145     case elfcpp::R_MIPS16_26:
11146     case elfcpp::R_MICROMIPS_26_S1:
11147       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
11148
11149     case elfcpp::R_MIPS_GPREL32:
11150     case elfcpp::R_MIPS_GPREL16:
11151     case elfcpp::R_MIPS_REL32:
11152     case elfcpp::R_MIPS16_GPREL:
11153       return Symbol::RELATIVE_REF;
11154
11155     case elfcpp::R_MIPS_PC16:
11156     case elfcpp::R_MIPS_PC32:
11157     case elfcpp::R_MIPS_JALR:
11158     case elfcpp::R_MICROMIPS_JALR:
11159       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
11160
11161     case elfcpp::R_MIPS_GOT16:
11162     case elfcpp::R_MIPS_CALL16:
11163     case elfcpp::R_MIPS_GOT_DISP:
11164     case elfcpp::R_MIPS_GOT_HI16:
11165     case elfcpp::R_MIPS_GOT_LO16:
11166     case elfcpp::R_MIPS_CALL_HI16:
11167     case elfcpp::R_MIPS_CALL_LO16:
11168     case elfcpp::R_MIPS_LITERAL:
11169     case elfcpp::R_MIPS_GOT_PAGE:
11170     case elfcpp::R_MIPS_GOT_OFST:
11171     case elfcpp::R_MIPS16_GOT16:
11172     case elfcpp::R_MIPS16_CALL16:
11173     case elfcpp::R_MICROMIPS_GOT16:
11174     case elfcpp::R_MICROMIPS_CALL16:
11175     case elfcpp::R_MICROMIPS_GOT_HI16:
11176     case elfcpp::R_MICROMIPS_GOT_LO16:
11177     case elfcpp::R_MICROMIPS_CALL_HI16:
11178     case elfcpp::R_MICROMIPS_CALL_LO16:
11179     case elfcpp::R_MIPS_EH:
11180       // Absolute in GOT.
11181       return Symbol::RELATIVE_REF;
11182
11183     case elfcpp::R_MIPS_TLS_DTPMOD32:
11184     case elfcpp::R_MIPS_TLS_DTPREL32:
11185     case elfcpp::R_MIPS_TLS_DTPMOD64:
11186     case elfcpp::R_MIPS_TLS_DTPREL64:
11187     case elfcpp::R_MIPS_TLS_GD:
11188     case elfcpp::R_MIPS_TLS_LDM:
11189     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
11190     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
11191     case elfcpp::R_MIPS_TLS_GOTTPREL:
11192     case elfcpp::R_MIPS_TLS_TPREL32:
11193     case elfcpp::R_MIPS_TLS_TPREL64:
11194     case elfcpp::R_MIPS_TLS_TPREL_HI16:
11195     case elfcpp::R_MIPS_TLS_TPREL_LO16:
11196     case elfcpp::R_MIPS16_TLS_GD:
11197     case elfcpp::R_MIPS16_TLS_GOTTPREL:
11198     case elfcpp::R_MICROMIPS_TLS_GD:
11199     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11200     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
11201     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
11202       return Symbol::TLS_REF;
11203
11204     case elfcpp::R_MIPS_COPY:
11205     case elfcpp::R_MIPS_JUMP_SLOT:
11206     default:
11207       gold_unreachable();
11208       // Not expected.  We will give an error later.
11209       return 0;
11210     }
11211 }
11212
11213 // Report an unsupported relocation against a local symbol.
11214
11215 template<int size, bool big_endian>
11216 void
11217 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
11218                         Sized_relobj_file<size, big_endian>* object,
11219                         unsigned int r_type)
11220 {
11221   gold_error(_("%s: unsupported reloc %u against local symbol"),
11222              object->name().c_str(), r_type);
11223 }
11224
11225 // Report an unsupported relocation against a global symbol.
11226
11227 template<int size, bool big_endian>
11228 void
11229 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
11230                         Sized_relobj_file<size, big_endian>* object,
11231                         unsigned int r_type,
11232                         Symbol* gsym)
11233 {
11234   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
11235              object->name().c_str(), r_type, gsym->demangled_name().c_str());
11236 }
11237
11238 // Return printable name for ABI.
11239 template<int size, bool big_endian>
11240 const char*
11241 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
11242                                                  unsigned char ei_class)
11243 {
11244   switch (e_flags & elfcpp::EF_MIPS_ABI)
11245     {
11246     case 0:
11247       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
11248         return "N32";
11249       else if (elfcpp::abi_64(ei_class))
11250         return "64";
11251       else
11252         return "none";
11253     case elfcpp::E_MIPS_ABI_O32:
11254       return "O32";
11255     case elfcpp::E_MIPS_ABI_O64:
11256       return "O64";
11257     case elfcpp::E_MIPS_ABI_EABI32:
11258       return "EABI32";
11259     case elfcpp::E_MIPS_ABI_EABI64:
11260       return "EABI64";
11261     default:
11262       return "unknown abi";
11263     }
11264 }
11265
11266 template<int size, bool big_endian>
11267 const char*
11268 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
11269 {
11270   switch (e_flags & elfcpp::EF_MIPS_MACH)
11271     {
11272     case elfcpp::E_MIPS_MACH_3900:
11273       return "mips:3900";
11274     case elfcpp::E_MIPS_MACH_4010:
11275       return "mips:4010";
11276     case elfcpp::E_MIPS_MACH_4100:
11277       return "mips:4100";
11278     case elfcpp::E_MIPS_MACH_4111:
11279       return "mips:4111";
11280     case elfcpp::E_MIPS_MACH_4120:
11281       return "mips:4120";
11282     case elfcpp::E_MIPS_MACH_4650:
11283       return "mips:4650";
11284     case elfcpp::E_MIPS_MACH_5400:
11285       return "mips:5400";
11286     case elfcpp::E_MIPS_MACH_5500:
11287       return "mips:5500";
11288     case elfcpp::E_MIPS_MACH_SB1:
11289       return "mips:sb1";
11290     case elfcpp::E_MIPS_MACH_9000:
11291       return "mips:9000";
11292     case elfcpp::E_MIPS_MACH_LS2E:
11293       return "mips:loongson-2e";
11294     case elfcpp::E_MIPS_MACH_LS2F:
11295       return "mips:loongson-2f";
11296     case elfcpp::E_MIPS_MACH_LS3A:
11297       return "mips:loongson-3a";
11298     case elfcpp::E_MIPS_MACH_OCTEON:
11299       return "mips:octeon";
11300     case elfcpp::E_MIPS_MACH_OCTEON2:
11301       return "mips:octeon2";
11302     case elfcpp::E_MIPS_MACH_XLR:
11303       return "mips:xlr";
11304     default:
11305       switch (e_flags & elfcpp::EF_MIPS_ARCH)
11306         {
11307         default:
11308         case elfcpp::E_MIPS_ARCH_1:
11309           return "mips:3000";
11310
11311         case elfcpp::E_MIPS_ARCH_2:
11312           return "mips:6000";
11313
11314         case elfcpp::E_MIPS_ARCH_3:
11315           return "mips:4000";
11316
11317         case elfcpp::E_MIPS_ARCH_4:
11318           return "mips:8000";
11319
11320         case elfcpp::E_MIPS_ARCH_5:
11321           return "mips:mips5";
11322
11323         case elfcpp::E_MIPS_ARCH_32:
11324           return "mips:isa32";
11325
11326         case elfcpp::E_MIPS_ARCH_64:
11327           return "mips:isa64";
11328
11329         case elfcpp::E_MIPS_ARCH_32R2:
11330           return "mips:isa32r2";
11331
11332         case elfcpp::E_MIPS_ARCH_64R2:
11333           return "mips:isa64r2";
11334         }
11335     }
11336     return "unknown CPU";
11337 }
11338
11339 template<int size, bool big_endian>
11340 const Target::Target_info Target_mips<size, big_endian>::mips_info =
11341 {
11342   size,                 // size
11343   big_endian,           // is_big_endian
11344   elfcpp::EM_MIPS,      // machine_code
11345   true,                 // has_make_symbol
11346   false,                // has_resolve
11347   false,                // has_code_fill
11348   true,                 // is_default_stack_executable
11349   false,                // can_icf_inline_merge_sections
11350   '\0',                 // wrap_char
11351   size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
11352   0x400000,             // default_text_segment_address
11353   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
11354   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
11355   false,                // isolate_execinstr
11356   0,                    // rosegment_gap
11357   elfcpp::SHN_UNDEF,    // small_common_shndx
11358   elfcpp::SHN_UNDEF,    // large_common_shndx
11359   0,                    // small_common_section_flags
11360   0,                    // large_common_section_flags
11361   NULL,                 // attributes_section
11362   NULL,                 // attributes_vendor
11363   "__start",            // entry_symbol_name
11364   32,                   // hash_entry_size
11365 };
11366
11367 template<int size, bool big_endian>
11368 class Target_mips_nacl : public Target_mips<size, big_endian>
11369 {
11370  public:
11371   Target_mips_nacl()
11372     : Target_mips<size, big_endian>(&mips_nacl_info)
11373   { }
11374
11375  private:
11376   static const Target::Target_info mips_nacl_info;
11377 };
11378
11379 template<int size, bool big_endian>
11380 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
11381 {
11382   size,                 // size
11383   big_endian,           // is_big_endian
11384   elfcpp::EM_MIPS,      // machine_code
11385   true,                 // has_make_symbol
11386   false,                // has_resolve
11387   false,                // has_code_fill
11388   true,                 // is_default_stack_executable
11389   false,                // can_icf_inline_merge_sections
11390   '\0',                 // wrap_char
11391   "/lib/ld.so.1",       // dynamic_linker
11392   0x20000,              // default_text_segment_address
11393   0x10000,              // abi_pagesize (overridable by -z max-page-size)
11394   0x10000,              // common_pagesize (overridable by -z common-page-size)
11395   true,                 // isolate_execinstr
11396   0x10000000,           // rosegment_gap
11397   elfcpp::SHN_UNDEF,    // small_common_shndx
11398   elfcpp::SHN_UNDEF,    // large_common_shndx
11399   0,                    // small_common_section_flags
11400   0,                    // large_common_section_flags
11401   NULL,                 // attributes_section
11402   NULL,                 // attributes_vendor
11403   "_start",             // entry_symbol_name
11404   32,                   // hash_entry_size
11405 };
11406
11407 // Target selector for Mips.  Note this is never instantiated directly.
11408 // It's only used in Target_selector_mips_nacl, below.
11409
11410 template<int size, bool big_endian>
11411 class Target_selector_mips : public Target_selector
11412 {
11413 public:
11414   Target_selector_mips()
11415     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
11416                 (size == 64 ?
11417                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
11418                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
11419                 (size == 64 ?
11420                   (big_endian ? "elf64btsmip" : "elf64ltsmip") :
11421                   (big_endian ? "elf32btsmip" : "elf32ltsmip")))
11422   { }
11423
11424   Target* do_instantiate_target()
11425   { return new Target_mips<size, big_endian>(); }
11426 };
11427
11428 template<int size, bool big_endian>
11429 class Target_selector_mips_nacl
11430   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
11431                                 Target_mips_nacl<size, big_endian> >
11432 {
11433  public:
11434   Target_selector_mips_nacl()
11435     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
11436                            Target_mips_nacl<size, big_endian> >(
11437         // NaCl currently supports only MIPS32 little-endian.
11438         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
11439   { }
11440 };
11441
11442 Target_selector_mips_nacl<32, true> target_selector_mips32;
11443 Target_selector_mips_nacl<32, false> target_selector_mips32el;
11444 Target_selector_mips_nacl<64, true> target_selector_mips64;
11445 Target_selector_mips_nacl<64, false> target_selector_mips64el;
11446
11447 } // End anonymous namespace.