Correct the definition of _gp and _GLOBAL_OFFSET_TABLE_ symbols for MIPS.
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
71
72 template<int size>
73 class Mips_symbol;
74
75 template<int size, bool big_endian>
76 class Mips_got_info;
77
78 template<int size, bool big_endian>
79 class Mips_relobj;
80
81 class Mips16_stub_section_base;
82
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
85
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry.  Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache.  The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
92
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning.  We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
98 // relocations only.
99
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values.  Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
103
104 enum Global_got_area
105 {
106   GGA_NORMAL = 0,
107   GGA_RELOC_ONLY = 1,
108   GGA_NONE = 2
109 };
110
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
115 enum Got_type
116 {
117   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
118   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
119   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
120
121   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122   GOT_TYPE_STANDARD_MULTIGOT = 3,
123   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
125 };
126
127 // TLS type of GOT entry.
128 enum Got_tls_type
129 {
130   GOT_TLS_NONE = 0,
131   GOT_TLS_GD = 1,
132   GOT_TLS_LDM = 2,
133   GOT_TLS_IE = 4
134 };
135
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
138 {
139   RSS_UNDEF = 0,    // None - value is zero.
140   RSS_GP = 1,       // Value of GP.
141   RSS_GP0 = 2,      // Value of GP in object being relocated.
142   RSS_LOC = 3       // Address of location being relocated.
143 };
144
145 // Whether the section is readonly.
146 static inline bool
147 is_readonly_section(Output_section* output_section)
148 {
149   elfcpp::Elf_Xword section_flags = output_section->flags();
150   elfcpp::Elf_Word section_type = output_section->type();
151
152   if (section_type == elfcpp::SHT_NOBITS)
153     return false;
154
155   if (section_flags & elfcpp::SHF_WRITE)
156     return false;
157
158   return true;
159 }
160
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub.  See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
165 static inline bool
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167                            unsigned int r_type, bool target_is_16_bit_code)
168 {
169   // We specifically ignore branches and jumps from EF_PIC objects,
170   // where the onus is on the compiler or programmer to perform any
171   // necessary initialization of $25.  Sometimes such initialization
172   // is unnecessary; for example, -mno-shared functions do not use
173   // the incoming value of $25, and may therefore be called directly.
174   if (object->is_pic())
175     return false;
176
177   switch (r_type)
178     {
179     case elfcpp::R_MIPS_26:
180     case elfcpp::R_MIPS_PC16:
181     case elfcpp::R_MIPS_PC21_S2:
182     case elfcpp::R_MIPS_PC26_S2:
183     case elfcpp::R_MICROMIPS_26_S1:
184     case elfcpp::R_MICROMIPS_PC7_S1:
185     case elfcpp::R_MICROMIPS_PC10_S1:
186     case elfcpp::R_MICROMIPS_PC16_S1:
187     case elfcpp::R_MICROMIPS_PC23_S2:
188       return true;
189
190     case elfcpp::R_MIPS16_26:
191       return !target_is_16_bit_code;
192
193     default:
194       return false;
195     }
196 }
197
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid.  Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
204 static inline bool
205 local_pic_function(Mips_symbol<size>* sym)
206 {
207   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208                       && !sym->object()->is_dynamic()
209                       && !sym->is_undefined());
210
211   if (sym->is_defined() && def_regular)
212     {
213       Mips_relobj<size, big_endian>* object =
214         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
215
216       if ((object->is_pic() || sym->is_pic())
217           && (!sym->is_mips16()
218               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
219         return true;
220     }
221   return false;
222 }
223
224 static inline bool
225 hi16_reloc(int r_type)
226 {
227   return (r_type == elfcpp::R_MIPS_HI16
228           || r_type == elfcpp::R_MIPS16_HI16
229           || r_type == elfcpp::R_MICROMIPS_HI16
230           || r_type == elfcpp::R_MIPS_PCHI16);
231 }
232
233 static inline bool
234 lo16_reloc(int r_type)
235 {
236   return (r_type == elfcpp::R_MIPS_LO16
237           || r_type == elfcpp::R_MIPS16_LO16
238           || r_type == elfcpp::R_MICROMIPS_LO16
239           || r_type == elfcpp::R_MIPS_PCLO16);
240 }
241
242 static inline bool
243 got16_reloc(unsigned int r_type)
244 {
245   return (r_type == elfcpp::R_MIPS_GOT16
246           || r_type == elfcpp::R_MIPS16_GOT16
247           || r_type == elfcpp::R_MICROMIPS_GOT16);
248 }
249
250 static inline bool
251 call_lo16_reloc(unsigned int r_type)
252 {
253   return (r_type == elfcpp::R_MIPS_CALL_LO16
254           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
255 }
256
257 static inline bool
258 got_lo16_reloc(unsigned int r_type)
259 {
260   return (r_type == elfcpp::R_MIPS_GOT_LO16
261           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
262 }
263
264 static inline bool
265 eh_reloc(unsigned int r_type)
266 {
267   return (r_type == elfcpp::R_MIPS_EH);
268 }
269
270 static inline bool
271 got_disp_reloc(unsigned int r_type)
272 {
273   return (r_type == elfcpp::R_MIPS_GOT_DISP
274           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
275 }
276
277 static inline bool
278 got_page_reloc(unsigned int r_type)
279 {
280   return (r_type == elfcpp::R_MIPS_GOT_PAGE
281           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
282 }
283
284 static inline bool
285 tls_gd_reloc(unsigned int r_type)
286 {
287   return (r_type == elfcpp::R_MIPS_TLS_GD
288           || r_type == elfcpp::R_MIPS16_TLS_GD
289           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
290 }
291
292 static inline bool
293 tls_gottprel_reloc(unsigned int r_type)
294 {
295   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
298 }
299
300 static inline bool
301 tls_ldm_reloc(unsigned int r_type)
302 {
303   return (r_type == elfcpp::R_MIPS_TLS_LDM
304           || r_type == elfcpp::R_MIPS16_TLS_LDM
305           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
306 }
307
308 static inline bool
309 mips16_call_reloc(unsigned int r_type)
310 {
311   return (r_type == elfcpp::R_MIPS16_26
312           || r_type == elfcpp::R_MIPS16_CALL16);
313 }
314
315 static inline bool
316 jal_reloc(unsigned int r_type)
317 {
318   return (r_type == elfcpp::R_MIPS_26
319           || r_type == elfcpp::R_MIPS16_26
320           || r_type == elfcpp::R_MICROMIPS_26_S1);
321 }
322
323 static inline bool
324 micromips_branch_reloc(unsigned int r_type)
325 {
326   return (r_type == elfcpp::R_MICROMIPS_26_S1
327           || r_type == elfcpp::R_MICROMIPS_PC16_S1
328           || r_type == elfcpp::R_MICROMIPS_PC10_S1
329           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
330 }
331
332 // Check if R_TYPE is a MIPS16 reloc.
333 static inline bool
334 mips16_reloc(unsigned int r_type)
335 {
336   switch (r_type)
337     {
338     case elfcpp::R_MIPS16_26:
339     case elfcpp::R_MIPS16_GPREL:
340     case elfcpp::R_MIPS16_GOT16:
341     case elfcpp::R_MIPS16_CALL16:
342     case elfcpp::R_MIPS16_HI16:
343     case elfcpp::R_MIPS16_LO16:
344     case elfcpp::R_MIPS16_TLS_GD:
345     case elfcpp::R_MIPS16_TLS_LDM:
346     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348     case elfcpp::R_MIPS16_TLS_GOTTPREL:
349     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
351       return true;
352
353     default:
354       return false;
355     }
356 }
357
358 // Check if R_TYPE is a microMIPS reloc.
359 static inline bool
360 micromips_reloc(unsigned int r_type)
361 {
362   switch (r_type)
363     {
364     case elfcpp::R_MICROMIPS_26_S1:
365     case elfcpp::R_MICROMIPS_HI16:
366     case elfcpp::R_MICROMIPS_LO16:
367     case elfcpp::R_MICROMIPS_GPREL16:
368     case elfcpp::R_MICROMIPS_LITERAL:
369     case elfcpp::R_MICROMIPS_GOT16:
370     case elfcpp::R_MICROMIPS_PC7_S1:
371     case elfcpp::R_MICROMIPS_PC10_S1:
372     case elfcpp::R_MICROMIPS_PC16_S1:
373     case elfcpp::R_MICROMIPS_CALL16:
374     case elfcpp::R_MICROMIPS_GOT_DISP:
375     case elfcpp::R_MICROMIPS_GOT_PAGE:
376     case elfcpp::R_MICROMIPS_GOT_OFST:
377     case elfcpp::R_MICROMIPS_GOT_HI16:
378     case elfcpp::R_MICROMIPS_GOT_LO16:
379     case elfcpp::R_MICROMIPS_SUB:
380     case elfcpp::R_MICROMIPS_HIGHER:
381     case elfcpp::R_MICROMIPS_HIGHEST:
382     case elfcpp::R_MICROMIPS_CALL_HI16:
383     case elfcpp::R_MICROMIPS_CALL_LO16:
384     case elfcpp::R_MICROMIPS_SCN_DISP:
385     case elfcpp::R_MICROMIPS_JALR:
386     case elfcpp::R_MICROMIPS_HI0_LO16:
387     case elfcpp::R_MICROMIPS_TLS_GD:
388     case elfcpp::R_MICROMIPS_TLS_LDM:
389     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394     case elfcpp::R_MICROMIPS_GPREL7_S2:
395     case elfcpp::R_MICROMIPS_PC23_S2:
396       return true;
397
398     default:
399       return false;
400     }
401 }
402
403 static inline bool
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
405 {
406   switch (high_reloc)
407     {
408     case elfcpp::R_MIPS_HI16:
409     case elfcpp::R_MIPS_GOT16:
410       return lo16_reloc == elfcpp::R_MIPS_LO16;
411     case elfcpp::R_MIPS_PCHI16:
412       return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413     case elfcpp::R_MIPS16_HI16:
414     case elfcpp::R_MIPS16_GOT16:
415       return lo16_reloc == elfcpp::R_MIPS16_LO16;
416     case elfcpp::R_MICROMIPS_HI16:
417     case elfcpp::R_MICROMIPS_GOT16:
418       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
419     default:
420       return false;
421     }
422 }
423
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
426 //
427 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
430 //          (sym != NULL, symndx == -1)
431 //    (3) a TLS LDM slot (there's only one of these per GOT.)
432 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
433
434 template<int size, bool big_endian>
435 class Mips_got_entry
436 {
437   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
438
439  public:
440   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441                  Mips_address addend, unsigned char tls_type,
442                  unsigned int shndx, bool is_section_symbol)
443     : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444       is_section_symbol_(is_section_symbol), shndx_(shndx)
445   { this->d.object = object; }
446
447   Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448     : addend_(0), symndx_(-1U), tls_type_(tls_type),
449       is_section_symbol_(false), shndx_(-1U)
450   { this->d.sym = sym; }
451
452   // Return whether this entry is for a local symbol.
453   bool
454   is_for_local_symbol() const
455   { return this->symndx_ != -1U; }
456
457   // Return whether this entry is for a global symbol.
458   bool
459   is_for_global_symbol() const
460   { return this->symndx_ == -1U; }
461
462   // Return the hash of this entry.
463   size_t
464   hash() const
465   {
466     if (this->tls_type_ == GOT_TLS_LDM)
467       return this->symndx_ + (1 << 18);
468
469     size_t name_hash_value = gold::string_hash<char>(
470         (this->symndx_ != -1U)
471          ? this->d.object->name().c_str()
472          : this->d.sym->name());
473     size_t addend = this->addend_;
474     return name_hash_value ^ this->symndx_ ^ addend;
475   }
476
477   // Return whether this entry is equal to OTHER.
478   bool
479   equals(Mips_got_entry<size, big_endian>* other) const
480   {
481     if (this->tls_type_ == GOT_TLS_LDM)
482       return true;
483
484     return ((this->tls_type_ == other->tls_type_)
485              && (this->symndx_ == other->symndx_)
486              && ((this->symndx_ != -1U)
487                   ? (this->d.object == other->d.object)
488                   : (this->d.sym == other->d.sym))
489              && (this->addend_ == other->addend_));
490   }
491
492   // Return input object that needs this GOT entry.
493   Mips_relobj<size, big_endian>*
494   object() const
495   {
496     gold_assert(this->symndx_ != -1U);
497     return this->d.object;
498   }
499
500   // Return local symbol index for local GOT entries.
501   unsigned int
502   symndx() const
503   {
504     gold_assert(this->symndx_ != -1U);
505     return this->symndx_;
506   }
507
508   // Return the relocation addend for local GOT entries.
509   Mips_address
510   addend() const
511   { return this->addend_; }
512
513   // Return global symbol for global GOT entries.
514   Mips_symbol<size>*
515   sym() const
516   {
517     gold_assert(this->symndx_ == -1U);
518     return this->d.sym;
519   }
520
521   // Return whether this is a TLS GOT entry.
522   bool
523   is_tls_entry() const
524   { return this->tls_type_ != GOT_TLS_NONE; }
525
526   // Return TLS type of this GOT entry.
527   unsigned char
528   tls_type() const
529   { return this->tls_type_; }
530
531   // Return section index of the local symbol for local GOT entries.
532   unsigned int
533   shndx() const
534   { return this->shndx_; }
535
536   // Return whether this is a STT_SECTION symbol.
537   bool
538   is_section_symbol() const
539   { return this->is_section_symbol_; }
540
541  private:
542   // The addend.
543   Mips_address addend_;
544
545   // The index of the symbol if we have a local symbol; -1 otherwise.
546   unsigned int symndx_;
547
548   union
549   {
550     // The input object for local symbols that needs the GOT entry.
551     Mips_relobj<size, big_endian>* object;
552     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
553     // symbol's entry is in the local area if mips_sym->global_got_area is
554     // GGA_NONE, otherwise it is in the global area.
555     Mips_symbol<size>* sym;
556   } d;
557
558   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
559   // symbol entry with r_symndx == 0.
560   unsigned char tls_type_;
561
562   // Whether this is a STT_SECTION symbol.
563   bool is_section_symbol_;
564
565   // For local GOT entries, section index of the local symbol.
566   unsigned int shndx_;
567 };
568
569 // Hash for Mips_got_entry.
570
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
573 {
574  public:
575   size_t
576   operator()(Mips_got_entry<size, big_endian>* entry) const
577   { return entry->hash(); }
578 };
579
580 // Equality for Mips_got_entry.
581
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
584 {
585  public:
586   bool
587   operator()(Mips_got_entry<size, big_endian>* e1,
588              Mips_got_entry<size, big_endian>* e2) const
589   { return e1->equals(e2); }
590 };
591
592 // Hash for Mips_symbol.
593
594 template<int size>
595 class Mips_symbol_hash
596 {
597  public:
598   size_t
599   operator()(Mips_symbol<size>* sym) const
600   { return sym->hash(); }
601 };
602
603 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
606
607 struct Got_page_range
608 {
609   Got_page_range()
610     : next(NULL), min_addend(0), max_addend(0)
611   { }
612
613   Got_page_range* next;
614   int min_addend;
615   int max_addend;
616
617   // Return the maximum number of GOT page entries required.
618   int
619   get_max_pages()
620   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
621 };
622
623 // Got_page_entry.  This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
625
626 struct Got_page_entry
627 {
628   Got_page_entry()
629     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
630   { }
631
632   Got_page_entry(Object* object_, unsigned int symndx_)
633     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
634   { }
635
636   // The input object that needs the GOT page entry.
637   Object* object;
638   // The index of the symbol, as stored in the relocation r_info.
639   unsigned int symndx;
640   // The ranges for this page entry.
641   Got_page_range* ranges;
642   // The maximum number of page entries needed for RANGES.
643   unsigned int num_pages;
644 };
645
646 // Hash for Got_page_entry.
647
648 struct Got_page_entry_hash
649 {
650   size_t
651   operator()(Got_page_entry* entry) const
652   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
653 };
654
655 // Equality for Got_page_entry.
656
657 struct Got_page_entry_eq
658 {
659   bool
660   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
661   {
662     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
663   }
664 };
665
666 // This class is used to hold .got information when linking.
667
668 template<int size, bool big_endian>
669 class Mips_got_info
670 {
671   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
673     Reloc_section;
674   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
675
676   // Unordered set of GOT entries.
677   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678       Mips_got_entry_hash<size, big_endian>,
679       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
680
681   // Unordered set of GOT page entries.
682   typedef Unordered_set<Got_page_entry*,
683       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
684
685   // Unordered set of global GOT entries.
686   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687       Global_got_entry_set;
688
689  public:
690   Mips_got_info()
691     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
695       offset_(0)
696   { }
697
698   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
700   void
701   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702                           unsigned int symndx, Mips_address addend,
703                           unsigned int r_type, unsigned int shndx,
704                           bool is_section_symbol);
705
706   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707   // in OBJECT.  FOR_CALL is true if the caller is only interested in
708   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
709   // relocation.
710   void
711   record_global_got_symbol(Mips_symbol<size>* mips_sym,
712                            Mips_relobj<size, big_endian>* object,
713                            unsigned int r_type, bool dyn_reloc, bool for_call);
714
715   // Add ENTRY to master GOT and to OBJECT's GOT.
716   void
717   record_got_entry(Mips_got_entry<size, big_endian>* entry,
718                    Mips_relobj<size, big_endian>* object);
719
720   // Record that OBJECT has a page relocation against symbol SYMNDX and
721   // that ADDEND is the addend for that relocation.
722   void
723   record_got_page_entry(Mips_relobj<size, big_endian>* object,
724                         unsigned int symndx, int addend);
725
726   // Create all entries that should be in the local part of the GOT.
727   void
728   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
729
730   // Create GOT page entries.
731   void
732   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
733
734   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
735   void
736   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737                      unsigned int non_reloc_only_global_gotno);
738
739   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
740   void
741   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
742
743   // Create TLS GOT entries.
744   void
745   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
746
747   // Decide whether the symbol needs an entry in the global part of the primary
748   // GOT, setting global_got_area accordingly.  Count the number of global
749   // symbols that are in the primary GOT only because they have dynamic
750   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
751   void
752   count_got_symbols(Symbol_table* symtab);
753
754   // Return the offset of GOT page entry for VALUE.
755   unsigned int
756   get_got_page_offset(Mips_address value,
757                       Mips_output_data_got<size, big_endian>* got);
758
759   // Count the number of GOT entries required.
760   void
761   count_got_entries();
762
763   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
764   void
765   count_got_entry(Mips_got_entry<size, big_endian>* entry);
766
767   // Add FROM's GOT entries.
768   void
769   add_got_entries(Mips_got_info<size, big_endian>* from);
770
771   // Add FROM's GOT page entries.
772   void
773   add_got_page_entries(Mips_got_info<size, big_endian>* from);
774
775   // Return GOT size.
776   unsigned int
777   got_size() const
778   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779              + this->tls_gotno_) * size/8);
780   }
781
782   // Return the number of local GOT entries.
783   unsigned int
784   local_gotno() const
785   { return this->local_gotno_; }
786
787   // Return the maximum number of page GOT entries needed.
788   unsigned int
789   page_gotno() const
790   { return this->page_gotno_; }
791
792   // Return the number of global GOT entries.
793   unsigned int
794   global_gotno() const
795   { return this->global_gotno_; }
796
797   // Set the number of global GOT entries.
798   void
799   set_global_gotno(unsigned int global_gotno)
800   { this->global_gotno_ = global_gotno; }
801
802   // Return the number of GGA_RELOC_ONLY global GOT entries.
803   unsigned int
804   reloc_only_gotno() const
805   { return this->reloc_only_gotno_; }
806
807   // Return the number of TLS GOT entries.
808   unsigned int
809   tls_gotno() const
810   { return this->tls_gotno_; }
811
812   // Return the GOT type for this GOT.  Used for multi-GOT links only.
813   unsigned int
814   multigot_got_type(unsigned int got_type) const
815   {
816     switch (got_type)
817       {
818       case GOT_TYPE_STANDARD:
819         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820       case GOT_TYPE_TLS_OFFSET:
821         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822       case GOT_TYPE_TLS_PAIR:
823         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
824       default:
825         gold_unreachable();
826       }
827   }
828
829   // Remove lazy-binding stubs for global symbols in this GOT.
830   void
831   remove_lazy_stubs(Target_mips<size, big_endian>* target);
832
833   // Return offset of this GOT from the start of .got section.
834   unsigned int
835   offset() const
836   { return this->offset_; }
837
838   // Set offset of this GOT from the start of .got section.
839   void
840   set_offset(unsigned int offset)
841   { this->offset_ = offset; }
842
843   // Set index of this GOT in multi-GOT links.
844   void
845   set_index(unsigned int index)
846   { this->index_ = index; }
847
848   // Return next GOT in multi-GOT links.
849   Mips_got_info<size, big_endian>*
850   next() const
851   { return this->next_; }
852
853   // Set next GOT in multi-GOT links.
854   void
855   set_next(Mips_got_info<size, big_endian>* next)
856   { this->next_ = next; }
857
858   // Return the offset of TLS LDM entry for this GOT.
859   unsigned int
860   tls_ldm_offset() const
861   { return this->tls_ldm_offset_; }
862
863   // Set the offset of TLS LDM entry for this GOT.
864   void
865   set_tls_ldm_offset(unsigned int tls_ldm_offset)
866   { this->tls_ldm_offset_ = tls_ldm_offset; }
867
868   Global_got_entry_set&
869   global_got_symbols()
870   { return this->global_got_symbols_; }
871
872   // Return the GOT_TLS_* type required by relocation type R_TYPE.
873   static int
874   mips_elf_reloc_tls_type(unsigned int r_type)
875   {
876     if (tls_gd_reloc(r_type))
877       return GOT_TLS_GD;
878
879     if (tls_ldm_reloc(r_type))
880       return GOT_TLS_LDM;
881
882     if (tls_gottprel_reloc(r_type))
883       return GOT_TLS_IE;
884
885     return GOT_TLS_NONE;
886   }
887
888   // Return the number of GOT slots needed for GOT TLS type TYPE.
889   static int
890   mips_tls_got_entries(unsigned int type)
891   {
892     switch (type)
893       {
894       case GOT_TLS_GD:
895       case GOT_TLS_LDM:
896         return 2;
897
898       case GOT_TLS_IE:
899         return 1;
900
901       case GOT_TLS_NONE:
902         return 0;
903
904       default:
905         gold_unreachable();
906       }
907   }
908
909  private:
910   // The number of local GOT entries.
911   unsigned int local_gotno_;
912   // The maximum number of page GOT entries needed.
913   unsigned int page_gotno_;
914   // The number of global GOT entries.
915   unsigned int global_gotno_;
916   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917   unsigned int reloc_only_gotno_;
918   // The number of TLS GOT entries.
919   unsigned int tls_gotno_;
920   // The offset of TLS LDM entry for this GOT.
921   unsigned int tls_ldm_offset_;
922   // All symbols that have global GOT entry.
923   Global_got_entry_set global_got_symbols_;
924   // A hash table holding GOT entries.
925   Got_entry_set got_entries_;
926   // A hash table of GOT page entries.
927   Got_page_entry_set got_page_entries_;
928   // The offset of first GOT page entry for this GOT.
929   unsigned int got_page_offset_start_;
930   // The offset of next available GOT page entry for this GOT.
931   unsigned int got_page_offset_next_;
932   // A hash table that maps GOT page entry value to the GOT offset where
933   // the entry is located.
934   Got_page_offsets got_page_offsets_;
935   // In multi-GOT links, a pointer to the next GOT.
936   Mips_got_info<size, big_endian>* next_;
937   // Index of this GOT in multi-GOT links.
938   unsigned int index_;
939   // The offset of this GOT in multi-GOT links.
940   unsigned int offset_;
941 };
942
943 // This is a helper class used during relocation scan.  It records GOT16 addend.
944
945 template<int size, bool big_endian>
946 struct got16_addend
947 {
948   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
949
950   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952                Mips_address _addend)
953     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
954       addend(_addend)
955   { }
956
957   const Sized_relobj_file<size, big_endian>* object;
958   unsigned int shndx;
959   unsigned int r_type;
960   unsigned int r_sym;
961   Mips_address addend;
962 };
963
964 // .MIPS.abiflags section content
965
966 template<bool big_endian>
967 struct Mips_abiflags
968 {
969   typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
972
973   Mips_abiflags()
974     : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975       cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
976   { }
977
978   // Version of flags structure.
979   Valtype16 version;
980   // The level of the ISA: 1-5, 32, 64.
981   Valtype8 isa_level;
982   // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
983   Valtype8 isa_rev;
984   // The size of general purpose registers.
985   Valtype8 gpr_size;
986   // The size of co-processor 1 registers.
987   Valtype8 cpr1_size;
988   // The size of co-processor 2 registers.
989   Valtype8 cpr2_size;
990   // The floating-point ABI.
991   Valtype8 fp_abi;
992   // Processor-specific extension.
993   Valtype32 isa_ext;
994   // Mask of ASEs used.
995   Valtype32 ases;
996   // Mask of general flags.
997   Valtype32 flags1;
998   Valtype32 flags2;
999 };
1000
1001 // Mips_symbol class.  Holds additional symbol information needed for Mips.
1002
1003 template<int size>
1004 class Mips_symbol : public Sized_symbol<size>
1005 {
1006  public:
1007   Mips_symbol()
1008     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1015   { }
1016
1017   // Return whether this is a MIPS16 symbol.
1018   bool
1019   is_mips16() const
1020   {
1021     // (st_other & STO_MIPS16) == STO_MIPS16
1022     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023             == elfcpp::STO_MIPS16 >> 2);
1024   }
1025
1026   // Return whether this is a microMIPS symbol.
1027   bool
1028   is_micromips() const
1029   {
1030     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032             == elfcpp::STO_MICROMIPS >> 2);
1033   }
1034
1035   // Return whether the symbol needs MIPS16 fn_stub.
1036   bool
1037   need_fn_stub() const
1038   { return this->need_fn_stub_; }
1039
1040   // Set that the symbol needs MIPS16 fn_stub.
1041   void
1042   set_need_fn_stub()
1043   { this->need_fn_stub_ = true; }
1044
1045   // Return whether this symbol is referenced by branch relocations from
1046   // any non-PIC input file.
1047   bool
1048   has_nonpic_branches() const
1049   { return this->has_nonpic_branches_; }
1050
1051   // Set that this symbol is referenced by branch relocations from
1052   // any non-PIC input file.
1053   void
1054   set_has_nonpic_branches()
1055   { this->has_nonpic_branches_ = true; }
1056
1057   // Return the offset of the la25 stub for this symbol from the start of the
1058   // la25 stub section.
1059   unsigned int
1060   la25_stub_offset() const
1061   { return this->la25_stub_offset_; }
1062
1063   // Set the offset of the la25 stub for this symbol from the start of the
1064   // la25 stub section.
1065   void
1066   set_la25_stub_offset(unsigned int offset)
1067   { this->la25_stub_offset_ = offset; }
1068
1069   // Return whether the symbol has la25 stub.  This is true if this symbol is
1070   // for a PIC function, and there are non-PIC branches and jumps to it.
1071   bool
1072   has_la25_stub() const
1073   { return this->la25_stub_offset_ != -1U; }
1074
1075   // Return whether there is a relocation against this symbol that must be
1076   // resolved by the static linker (that is, the relocation cannot possibly
1077   // be made dynamic).
1078   bool
1079   has_static_relocs() const
1080   { return this->has_static_relocs_; }
1081
1082   // Set that there is a relocation against this symbol that must be resolved
1083   // by the static linker (that is, the relocation cannot possibly be made
1084   // dynamic).
1085   void
1086   set_has_static_relocs()
1087   { this->has_static_relocs_ = true; }
1088
1089   // Return whether we must not create a lazy-binding stub for this symbol.
1090   bool
1091   no_lazy_stub() const
1092   { return this->no_lazy_stub_; }
1093
1094   // Set that we must not create a lazy-binding stub for this symbol.
1095   void
1096   set_no_lazy_stub()
1097   { this->no_lazy_stub_ = true; }
1098
1099   // Return the offset of the lazy-binding stub for this symbol from the start
1100   // of .MIPS.stubs section.
1101   unsigned int
1102   lazy_stub_offset() const
1103   { return this->lazy_stub_offset_; }
1104
1105   // Set the offset of the lazy-binding stub for this symbol from the start
1106   // of .MIPS.stubs section.
1107   void
1108   set_lazy_stub_offset(unsigned int offset)
1109   { this->lazy_stub_offset_ = offset; }
1110
1111   // Return whether there are any relocations for this symbol where
1112   // pointer equality matters.
1113   bool
1114   pointer_equality_needed() const
1115   { return this->pointer_equality_needed_; }
1116
1117   // Set that there are relocations for this symbol where pointer equality
1118   // matters.
1119   void
1120   set_pointer_equality_needed()
1121   { this->pointer_equality_needed_ = true; }
1122
1123   // Return global GOT area where this symbol in located.
1124   Global_got_area
1125   global_got_area() const
1126   { return this->global_got_area_; }
1127
1128   // Set global GOT area where this symbol in located.
1129   void
1130   set_global_got_area(Global_got_area global_got_area)
1131   { this->global_got_area_ = global_got_area; }
1132
1133   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1134   // returns the offset from the start of .got section to the first GOT entry
1135   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1136   // in more than one GOT.
1137   unsigned int
1138   global_gotoffset() const
1139   { return this->global_gotoffset_; }
1140
1141   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1142   // the symbol can have entry in more than one GOT.  This method will set
1143   // the offset only if it is less than current offset.
1144   void
1145   set_global_gotoffset(unsigned int offset)
1146   {
1147     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148       this->global_gotoffset_ = offset;
1149   }
1150
1151   // Return whether all GOT relocations for this symbol are for calls.
1152   bool
1153   got_only_for_calls() const
1154   { return this->got_only_for_calls_; }
1155
1156   // Set that there is a GOT relocation for this symbol that is not for call.
1157   void
1158   set_got_not_only_for_calls()
1159   { this->got_only_for_calls_ = false; }
1160
1161   // Return whether this is a PIC symbol.
1162   bool
1163   is_pic() const
1164   {
1165     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167             == (elfcpp::STO_MIPS_PIC >> 2));
1168   }
1169
1170   // Set the flag in st_other field that marks this symbol as PIC.
1171   void
1172   set_pic()
1173   {
1174     if (this->is_mips16())
1175       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176       this->set_nonvis((this->nonvis()
1177                         & ~((elfcpp::STO_MIPS16 >> 2)
1178                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179                        | (elfcpp::STO_MIPS_PIC >> 2));
1180     else
1181       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183                        | (elfcpp::STO_MIPS_PIC >> 2));
1184   }
1185
1186   // Set the flag in st_other field that marks this symbol as PLT.
1187   void
1188   set_mips_plt()
1189   {
1190     if (this->is_mips16())
1191       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192       this->set_nonvis((this->nonvis()
1193                         & ((elfcpp::STO_MIPS16 >> 2)
1194                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195                        | (elfcpp::STO_MIPS_PLT >> 2));
1196
1197     else
1198       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200                        | (elfcpp::STO_MIPS_PLT >> 2));
1201   }
1202
1203   // Downcast a base pointer to a Mips_symbol pointer.
1204   static Mips_symbol<size>*
1205   as_mips_sym(Symbol* sym)
1206   { return static_cast<Mips_symbol<size>*>(sym); }
1207
1208   // Downcast a base pointer to a Mips_symbol pointer.
1209   static const Mips_symbol<size>*
1210   as_mips_sym(const Symbol* sym)
1211   { return static_cast<const Mips_symbol<size>*>(sym); }
1212
1213   // Return whether the symbol has lazy-binding stub.
1214   bool
1215   has_lazy_stub() const
1216   { return this->has_lazy_stub_; }
1217
1218   // Set whether the symbol has lazy-binding stub.
1219   void
1220   set_has_lazy_stub(bool has_lazy_stub)
1221   { this->has_lazy_stub_ = has_lazy_stub; }
1222
1223   // Return whether the symbol needs a standard PLT entry.
1224   bool
1225   needs_mips_plt() const
1226   { return this->needs_mips_plt_; }
1227
1228   // Set whether the symbol needs a standard PLT entry.
1229   void
1230   set_needs_mips_plt(bool needs_mips_plt)
1231   { this->needs_mips_plt_ = needs_mips_plt; }
1232
1233   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1234   // entry.
1235   bool
1236   needs_comp_plt() const
1237   { return this->needs_comp_plt_; }
1238
1239   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1240   void
1241   set_needs_comp_plt(bool needs_comp_plt)
1242   { this->needs_comp_plt_ = needs_comp_plt; }
1243
1244   // Return standard PLT entry offset, or -1 if none.
1245   unsigned int
1246   mips_plt_offset() const
1247   { return this->mips_plt_offset_; }
1248
1249   // Set standard PLT entry offset.
1250   void
1251   set_mips_plt_offset(unsigned int mips_plt_offset)
1252   { this->mips_plt_offset_ = mips_plt_offset; }
1253
1254   // Return whether the symbol has standard PLT entry.
1255   bool
1256   has_mips_plt_offset() const
1257   { return this->mips_plt_offset_ != -1U; }
1258
1259   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1260   unsigned int
1261   comp_plt_offset() const
1262   { return this->comp_plt_offset_; }
1263
1264   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1265   void
1266   set_comp_plt_offset(unsigned int comp_plt_offset)
1267   { this->comp_plt_offset_ = comp_plt_offset; }
1268
1269   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1270   bool
1271   has_comp_plt_offset() const
1272   { return this->comp_plt_offset_ != -1U; }
1273
1274   // Return MIPS16 fn stub for a symbol.
1275   template<bool big_endian>
1276   Mips16_stub_section<size, big_endian>*
1277   get_mips16_fn_stub() const
1278   {
1279     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1280   }
1281
1282   // Set MIPS16 fn stub for a symbol.
1283   void
1284   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285   { this->mips16_fn_stub_ = stub; }
1286
1287   // Return whether symbol has MIPS16 fn stub.
1288   bool
1289   has_mips16_fn_stub() const
1290   { return this->mips16_fn_stub_ != NULL; }
1291
1292   // Return MIPS16 call stub for a symbol.
1293   template<bool big_endian>
1294   Mips16_stub_section<size, big_endian>*
1295   get_mips16_call_stub() const
1296   {
1297     return static_cast<Mips16_stub_section<size, big_endian>*>(
1298       mips16_call_stub_);
1299   }
1300
1301   // Set MIPS16 call stub for a symbol.
1302   void
1303   set_mips16_call_stub(Mips16_stub_section_base* stub)
1304   { this->mips16_call_stub_ = stub; }
1305
1306   // Return whether symbol has MIPS16 call stub.
1307   bool
1308   has_mips16_call_stub() const
1309   { return this->mips16_call_stub_ != NULL; }
1310
1311   // Return MIPS16 call_fp stub for a symbol.
1312   template<bool big_endian>
1313   Mips16_stub_section<size, big_endian>*
1314   get_mips16_call_fp_stub() const
1315   {
1316     return static_cast<Mips16_stub_section<size, big_endian>*>(
1317       mips16_call_fp_stub_);
1318   }
1319
1320   // Set MIPS16 call_fp stub for a symbol.
1321   void
1322   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323   { this->mips16_call_fp_stub_ = stub; }
1324
1325   // Return whether symbol has MIPS16 call_fp stub.
1326   bool
1327   has_mips16_call_fp_stub() const
1328   { return this->mips16_call_fp_stub_ != NULL; }
1329
1330   bool
1331   get_applied_secondary_got_fixup() const
1332   { return applied_secondary_got_fixup_; }
1333
1334   void
1335   set_applied_secondary_got_fixup()
1336   { this->applied_secondary_got_fixup_ = true; }
1337
1338   // Return the hash of this symbol.
1339   size_t
1340   hash() const
1341   {
1342     return gold::string_hash<char>(this->name());
1343   }
1344
1345  private:
1346   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1347   // appears in any relocs other than a 16 bit call.
1348   bool need_fn_stub_;
1349
1350   // True if this symbol is referenced by branch relocations from
1351   // any non-PIC input file.  This is used to determine whether an
1352   // la25 stub is required.
1353   bool has_nonpic_branches_;
1354
1355   // The offset of the la25 stub for this symbol from the start of the
1356   // la25 stub section.
1357   unsigned int la25_stub_offset_;
1358
1359   // True if there is a relocation against this symbol that must be
1360   // resolved by the static linker (that is, the relocation cannot
1361   // possibly be made dynamic).
1362   bool has_static_relocs_;
1363
1364   // Whether we must not create a lazy-binding stub for this symbol.
1365   // This is true if the symbol has relocations related to taking the
1366   // function's address.
1367   bool no_lazy_stub_;
1368
1369   // The offset of the lazy-binding stub for this symbol from the start of
1370   // .MIPS.stubs section.
1371   unsigned int lazy_stub_offset_;
1372
1373   // True if there are any relocations for this symbol where pointer equality
1374   // matters.
1375   bool pointer_equality_needed_;
1376
1377   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378   // in the global part of the GOT.
1379   Global_got_area global_got_area_;
1380
1381   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1382   // from the start of .got section to the first GOT entry for the symbol.
1383   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384   unsigned int global_gotoffset_;
1385
1386   // Whether all GOT relocations for this symbol are for calls.
1387   bool got_only_for_calls_;
1388   // Whether the symbol has lazy-binding stub.
1389   bool has_lazy_stub_;
1390   // Whether the symbol needs a standard PLT entry.
1391   bool needs_mips_plt_;
1392   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393   bool needs_comp_plt_;
1394   // Standard PLT entry offset, or -1 if none.
1395   unsigned int mips_plt_offset_;
1396   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397   unsigned int comp_plt_offset_;
1398   // MIPS16 fn stub for a symbol.
1399   Mips16_stub_section_base* mips16_fn_stub_;
1400   // MIPS16 call stub for a symbol.
1401   Mips16_stub_section_base* mips16_call_stub_;
1402   // MIPS16 call_fp stub for a symbol.
1403   Mips16_stub_section_base* mips16_call_fp_stub_;
1404
1405   bool applied_secondary_got_fixup_;
1406 };
1407
1408 // Mips16_stub_section class.
1409
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1412
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead.  If no 32 bit
1417 // function calls FNNAME, the stub should be discarded.  We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1421
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead.  If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1428
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs.  These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call.  (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1437
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally.  Instead, the relocation
1440 // information will indicate which symbol the section is for.
1441
1442 // We record any stubs that we find in the symbol table.
1443
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1445
1446 class Mips16_stub_section_base { };
1447
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1450 {
1451   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1452
1453  public:
1454   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456       found_r_mips_none_(false)
1457   {
1458     gold_assert(object->is_mips16_fn_stub_section(shndx)
1459                 || object->is_mips16_call_stub_section(shndx)
1460                 || object->is_mips16_call_fp_stub_section(shndx));
1461   }
1462
1463   // Return the object of this stub section.
1464   Mips_relobj<size, big_endian>*
1465   object() const
1466   { return this->object_; }
1467
1468   // Return the size of a section.
1469   uint64_t
1470   section_size() const
1471   { return this->object_->section_size(this->shndx_); }
1472
1473   // Return section index of this stub section.
1474   unsigned int
1475   shndx() const
1476   { return this->shndx_; }
1477
1478   // Return symbol index, if stub is for a local function.
1479   unsigned int
1480   r_sym() const
1481   { return this->r_sym_; }
1482
1483   // Return symbol, if stub is for a global function.
1484   Mips_symbol<size>*
1485   gsym() const
1486   { return this->gsym_; }
1487
1488   // Return whether stub is for a local function.
1489   bool
1490   is_for_local_function() const
1491   { return this->gsym_ == NULL; }
1492
1493   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494   // is found in the stub section.  Try to find stub target.
1495   void
1496   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1497   {
1498     // To find target symbol for this stub, trust the first R_MIPS_NONE
1499     // relocation, if any.  Otherwise trust the first relocation, whatever
1500     // its kind.
1501     if (this->found_r_mips_none_)
1502       return;
1503     if (r_type == elfcpp::R_MIPS_NONE)
1504       {
1505         this->r_sym_ = r_sym;
1506         this->gsym_ = NULL;
1507         this->found_r_mips_none_ = true;
1508       }
1509     else if (!is_target_found())
1510       this->r_sym_ = r_sym;
1511   }
1512
1513   // This method is called when a new relocation R_TYPE for global symbol GSYM
1514   // is found in the stub section.  Try to find stub target.
1515   void
1516   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1517   {
1518     // To find target symbol for this stub, trust the first R_MIPS_NONE
1519     // relocation, if any.  Otherwise trust the first relocation, whatever
1520     // its kind.
1521     if (this->found_r_mips_none_)
1522       return;
1523     if (r_type == elfcpp::R_MIPS_NONE)
1524       {
1525         this->gsym_ = gsym;
1526         this->r_sym_ = 0;
1527         this->found_r_mips_none_ = true;
1528       }
1529     else if (!is_target_found())
1530       this->gsym_ = gsym;
1531   }
1532
1533   // Return whether we found the stub target.
1534   bool
1535   is_target_found() const
1536   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1537
1538   // Return whether this is a fn stub.
1539   bool
1540   is_fn_stub() const
1541   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1542
1543   // Return whether this is a call stub.
1544   bool
1545   is_call_stub() const
1546   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1547
1548   // Return whether this is a call_fp stub.
1549   bool
1550   is_call_fp_stub() const
1551   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1552
1553   // Return the output address.
1554   Mips_address
1555   output_address() const
1556   {
1557     return (this->object_->output_section(this->shndx_)->address()
1558             + this->object_->output_section_offset(this->shndx_));
1559   }
1560
1561  private:
1562   // The object of this stub section.
1563   Mips_relobj<size, big_endian>* object_;
1564   // The section index of this stub section.
1565   unsigned int shndx_;
1566   // The symbol index, if stub is for a local function.
1567   unsigned int r_sym_;
1568   // The symbol, if stub is for a global function.
1569   Mips_symbol<size>* gsym_;
1570   // True if we found R_MIPS_NONE relocation in this stub.
1571   bool found_r_mips_none_;
1572 };
1573
1574 // Mips_relobj class.
1575
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1578 {
1579   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581     Mips16_stubs_int_map;
1582   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1583
1584  public:
1585   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588       processor_specific_flags_(0), local_symbol_is_mips16_(),
1589       local_symbol_is_micromips_(), mips16_stub_sections_(),
1590       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591       local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592       got_info_(NULL), section_is_mips16_fn_stub_(),
1593       section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594       pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595       gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1596   {
1597     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1599   }
1600
1601   ~Mips_relobj()
1602   { delete this->attributes_section_data_; }
1603
1604   // Downcast a base pointer to a Mips_relobj pointer.  This is
1605   // not type-safe but we only use Mips_relobj not the base class.
1606   static Mips_relobj<size, big_endian>*
1607   as_mips_relobj(Relobj* relobj)
1608   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1609
1610   // Downcast a base pointer to a Mips_relobj pointer.  This is
1611   // not type-safe but we only use Mips_relobj not the base class.
1612   static const Mips_relobj<size, big_endian>*
1613   as_mips_relobj(const Relobj* relobj)
1614   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1615
1616   // Processor-specific flags in ELF file header.  This is valid only after
1617   // reading symbols.
1618   elfcpp::Elf_Word
1619   processor_specific_flags() const
1620   { return this->processor_specific_flags_; }
1621
1622   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1623   // index.  This is only valid after do_count_local_symbol is called.
1624   bool
1625   local_symbol_is_mips16(unsigned int r_sym) const
1626   {
1627     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628     return this->local_symbol_is_mips16_[r_sym];
1629   }
1630
1631   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1632   // index.  This is only valid after do_count_local_symbol is called.
1633   bool
1634   local_symbol_is_micromips(unsigned int r_sym) const
1635   {
1636     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637     return this->local_symbol_is_micromips_[r_sym];
1638   }
1639
1640   // Get or create MIPS16 stub section.
1641   Mips16_stub_section<size, big_endian>*
1642   get_mips16_stub_section(unsigned int shndx)
1643   {
1644     typename Mips16_stubs_int_map::const_iterator it =
1645       this->mips16_stub_sections_.find(shndx);
1646     if (it != this->mips16_stub_sections_.end())
1647       return (*it).second;
1648
1649     Mips16_stub_section<size, big_endian>* stub_section =
1650       new Mips16_stub_section<size, big_endian>(this, shndx);
1651     this->mips16_stub_sections_.insert(
1652       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653         stub_section->shndx(), stub_section));
1654     return stub_section;
1655   }
1656
1657   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658   // object doesn't have fn stub for R_SYM.
1659   Mips16_stub_section<size, big_endian>*
1660   get_local_mips16_fn_stub(unsigned int r_sym) const
1661   {
1662     typename Mips16_stubs_int_map::const_iterator it =
1663       this->local_mips16_fn_stubs_.find(r_sym);
1664     if (it != this->local_mips16_fn_stubs_.end())
1665       return (*it).second;
1666     return NULL;
1667   }
1668
1669   // Record that this object has MIPS16 fn stub for local symbol.  This method
1670   // is only called if we decided not to discard the stub.
1671   void
1672   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1673   {
1674     gold_assert(stub->is_for_local_function());
1675     unsigned int r_sym = stub->r_sym();
1676     this->local_mips16_fn_stubs_.insert(
1677       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1678         r_sym, stub));
1679   }
1680
1681   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682   // object doesn't have call stub for R_SYM.
1683   Mips16_stub_section<size, big_endian>*
1684   get_local_mips16_call_stub(unsigned int r_sym) const
1685   {
1686     typename Mips16_stubs_int_map::const_iterator it =
1687       this->local_mips16_call_stubs_.find(r_sym);
1688     if (it != this->local_mips16_call_stubs_.end())
1689       return (*it).second;
1690     return NULL;
1691   }
1692
1693   // Record that this object has MIPS16 call stub for local symbol.  This method
1694   // is only called if we decided not to discard the stub.
1695   void
1696   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1697   {
1698     gold_assert(stub->is_for_local_function());
1699     unsigned int r_sym = stub->r_sym();
1700     this->local_mips16_call_stubs_.insert(
1701       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1702         r_sym, stub));
1703   }
1704
1705   // Record that we found "non 16-bit" call relocation against local symbol
1706   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1707   // is one.
1708   void
1709   add_local_non_16bit_call(unsigned int symndx)
1710   { this->local_non_16bit_calls_.insert(symndx); }
1711
1712   // Return true if there is any "non 16-bit" call relocation against local
1713   // symbol SYMNDX in this object.
1714   bool
1715   has_local_non_16bit_call_relocs(unsigned int symndx)
1716   {
1717     return (this->local_non_16bit_calls_.find(symndx)
1718             != this->local_non_16bit_calls_.end());
1719   }
1720
1721   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1723   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1724   void
1725   add_local_16bit_call(unsigned int symndx)
1726   { this->local_16bit_calls_.insert(symndx); }
1727
1728   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729   // symbol SYMNDX in this object.
1730   bool
1731   has_local_16bit_call_relocs(unsigned int symndx)
1732   {
1733     return (this->local_16bit_calls_.find(symndx)
1734             != this->local_16bit_calls_.end());
1735   }
1736
1737   // Get gp value that was used to create this object.
1738   Mips_address
1739   gp_value() const
1740   { return this->gp_; }
1741
1742   // Return whether the object is a PIC object.
1743   bool
1744   is_pic() const
1745   { return this->is_pic_; }
1746
1747   // Return whether the object uses N32 ABI.
1748   bool
1749   is_n32() const
1750   { return this->is_n32_; }
1751
1752   // Return whether the object uses N64 ABI.
1753   bool
1754   is_n64() const
1755   { return size == 64; }
1756
1757   // Return whether the object uses NewABI conventions.
1758   bool
1759   is_newabi() const
1760   { return this->is_n32() || this->is_n64(); }
1761
1762   // Return Mips_got_info for this object.
1763   Mips_got_info<size, big_endian>*
1764   get_got_info() const
1765   { return this->got_info_; }
1766
1767   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1768   Mips_got_info<size, big_endian>*
1769   get_or_create_got_info()
1770   {
1771     if (!this->got_info_)
1772       this->got_info_ = new Mips_got_info<size, big_endian>();
1773     return this->got_info_;
1774   }
1775
1776   // Set Mips_got_info for this object.
1777   void
1778   set_got_info(Mips_got_info<size, big_endian>* got_info)
1779   { this->got_info_ = got_info; }
1780
1781   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1782   // after do_read_symbols is called.
1783   bool
1784   is_mips16_stub_section(unsigned int shndx)
1785   {
1786     return (is_mips16_fn_stub_section(shndx)
1787             || is_mips16_call_stub_section(shndx)
1788             || is_mips16_call_fp_stub_section(shndx));
1789   }
1790
1791   // Return TRUE if relocations in section SHNDX can refer directly to a
1792   // MIPS16 function rather than to a hard-float stub.  This is only valid
1793   // after do_read_symbols is called.
1794   bool
1795   section_allows_mips16_refs(unsigned int shndx)
1796   {
1797     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1798   }
1799
1800   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1801   // after do_read_symbols is called.
1802   bool
1803   is_mips16_fn_stub_section(unsigned int shndx)
1804   {
1805     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806     return this->section_is_mips16_fn_stub_[shndx];
1807   }
1808
1809   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1810   // after do_read_symbols is called.
1811   bool
1812   is_mips16_call_stub_section(unsigned int shndx)
1813   {
1814     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815     return this->section_is_mips16_call_stub_[shndx];
1816   }
1817
1818   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1819   // valid after do_read_symbols is called.
1820   bool
1821   is_mips16_call_fp_stub_section(unsigned int shndx)
1822   {
1823     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824     return this->section_is_mips16_call_fp_stub_[shndx];
1825   }
1826
1827   // Discard MIPS16 stub secions that are not needed.
1828   void
1829   discard_mips16_stub_sections(Symbol_table* symtab);
1830
1831   // Return whether there is a .reginfo section.
1832   bool
1833   has_reginfo_section() const
1834   { return this->has_reginfo_section_; }
1835
1836   // Return gprmask from the .reginfo section of this object.
1837   Valtype
1838   gprmask() const
1839   { return this->gprmask_; }
1840
1841   // Return cprmask1 from the .reginfo section of this object.
1842   Valtype
1843   cprmask1() const
1844   { return this->cprmask1_; }
1845
1846   // Return cprmask2 from the .reginfo section of this object.
1847   Valtype
1848   cprmask2() const
1849   { return this->cprmask2_; }
1850
1851   // Return cprmask3 from the .reginfo section of this object.
1852   Valtype
1853   cprmask3() const
1854   { return this->cprmask3_; }
1855
1856   // Return cprmask4 from the .reginfo section of this object.
1857   Valtype
1858   cprmask4() const
1859   { return this->cprmask4_; }
1860
1861   // This is the contents of the .MIPS.abiflags section if there is one.
1862   Mips_abiflags<big_endian>*
1863   abiflags()
1864   { return this->abiflags_; }
1865
1866   // This is the contents of the .gnu.attribute section if there is one.
1867   const Attributes_section_data*
1868   attributes_section_data() const
1869   { return this->attributes_section_data_; }
1870
1871  protected:
1872   // Count the local symbols.
1873   void
1874   do_count_local_symbols(Stringpool_template<char>*,
1875                          Stringpool_template<char>*);
1876
1877   // Read the symbol information.
1878   void
1879   do_read_symbols(Read_symbols_data* sd);
1880
1881  private:
1882   // The name of the options section.
1883   const char* mips_elf_options_section_name()
1884   { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1885
1886   // processor-specific flags in ELF file header.
1887   elfcpp::Elf_Word processor_specific_flags_;
1888
1889   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890   // This is only valid after do_count_local_symbol is called.
1891   std::vector<bool> local_symbol_is_mips16_;
1892
1893   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894   // This is only valid after do_count_local_symbol is called.
1895   std::vector<bool> local_symbol_is_micromips_;
1896
1897   // Map from section index to the MIPS16 stub for that section.  This contains
1898   // all stubs found in this object.
1899   Mips16_stubs_int_map mips16_stub_sections_;
1900
1901   // Local symbols that have "non 16-bit" call relocation.  This relocation
1902   // would need to refer to a MIPS16 fn stub, if there is one.
1903   std::set<unsigned int> local_non_16bit_calls_;
1904
1905   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1906   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907   // relocation that refers to the stub symbol.
1908   std::set<unsigned int> local_16bit_calls_;
1909
1910   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911   // This contains only the stubs that we decided not to discard.
1912   Mips16_stubs_int_map local_mips16_fn_stubs_;
1913
1914   // Map from local symbol index to the MIPS16 call stub for that symbol.
1915   // This contains only the stubs that we decided not to discard.
1916   Mips16_stubs_int_map local_mips16_call_stubs_;
1917
1918   // gp value that was used to create this object.
1919   Mips_address gp_;
1920   // Whether the object is a PIC object.
1921   bool is_pic_ : 1;
1922   // Whether the object uses N32 ABI.
1923   bool is_n32_ : 1;
1924   // Whether the object contains a .reginfo section.
1925   bool has_reginfo_section_ : 1;
1926   // The Mips_got_info for this object.
1927   Mips_got_info<size, big_endian>* got_info_;
1928
1929   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930   // This is only valid after do_read_symbols is called.
1931   std::vector<bool> section_is_mips16_fn_stub_;
1932
1933   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934   // This is only valid after do_read_symbols is called.
1935   std::vector<bool> section_is_mips16_call_stub_;
1936
1937   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938   // This is only valid after do_read_symbols is called.
1939   std::vector<bool> section_is_mips16_call_fp_stub_;
1940
1941   // .pdr section index.
1942   unsigned int pdr_shndx_;
1943
1944   // Object attributes if there is a .gnu.attributes section or NULL.
1945   Attributes_section_data* attributes_section_data_;
1946
1947   // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948   Mips_abiflags<big_endian>* abiflags_;
1949
1950   // gprmask from the .reginfo section of this object.
1951   Valtype gprmask_;
1952   // cprmask1 from the .reginfo section of this object.
1953   Valtype cprmask1_;
1954   // cprmask2 from the .reginfo section of this object.
1955   Valtype cprmask2_;
1956   // cprmask3 from the .reginfo section of this object.
1957   Valtype cprmask3_;
1958   // cprmask4 from the .reginfo section of this object.
1959   Valtype cprmask4_;
1960 };
1961
1962 // Mips_output_data_got class.
1963
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1966 {
1967   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1969     Reloc_section;
1970   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1971
1972  public:
1973   Mips_output_data_got(Target_mips<size, big_endian>* target,
1974       Symbol_table* symtab, Layout* layout)
1975     : Output_data_got<size, big_endian>(), target_(target),
1976       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978       secondary_got_relocs_()
1979   {
1980     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981     this->set_addralign(16);
1982   }
1983
1984   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1986   void
1987   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988                           unsigned int symndx, Mips_address addend,
1989                           unsigned int r_type, unsigned int shndx,
1990                           bool is_section_symbol)
1991   {
1992     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1993                                                     r_type, shndx,
1994                                                     is_section_symbol);
1995   }
1996
1997   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998   // in OBJECT.  FOR_CALL is true if the caller is only interested in
1999   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
2000   // relocation.
2001   void
2002   record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003                            Mips_relobj<size, big_endian>* object,
2004                            unsigned int r_type, bool dyn_reloc, bool for_call)
2005   {
2006     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007                                                      dyn_reloc, for_call);
2008   }
2009
2010   // Record that OBJECT has a page relocation against symbol SYMNDX and
2011   // that ADDEND is the addend for that relocation.
2012   void
2013   record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014                         unsigned int symndx, int addend)
2015   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2016
2017   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
2018   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019   // applied in a static link.
2020   void
2021   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022                    Mips_symbol<size>* gsym)
2023   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2024
2025   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
2026   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
2027   // relocation that needs to be applied in a static link.
2028   void
2029   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030                    Sized_relobj_file<size, big_endian>* relobj,
2031                    unsigned int index)
2032   {
2033     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2034                                                 index));
2035   }
2036
2037   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038   // secondary GOT at OFFSET.
2039   void
2040   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041                           Mips_symbol<size>* gsym)
2042   {
2043     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2044                                                        r_type, gsym));
2045   }
2046
2047   // Update GOT entry at OFFSET with VALUE.
2048   void
2049   update_got_entry(unsigned int offset, Mips_address value)
2050   {
2051     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2052   }
2053
2054   // Return the number of entries in local part of the GOT.  This includes
2055   // local entries, page entries and 2 reserved entries.
2056   unsigned int
2057   get_local_gotno() const
2058   {
2059     if (!this->multi_got())
2060       {
2061         return (2 + this->master_got_info_->local_gotno()
2062                 + this->master_got_info_->page_gotno());
2063       }
2064     else
2065       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2066   }
2067
2068   // Return dynamic symbol table index of the first symbol with global GOT
2069   // entry.
2070   unsigned int
2071   first_global_got_dynsym_index() const
2072   { return this->first_global_got_dynsym_index_; }
2073
2074   // Set dynamic symbol table index of the first symbol with global GOT entry.
2075   void
2076   set_first_global_got_dynsym_index(unsigned int index)
2077   { this->first_global_got_dynsym_index_ = index; }
2078
2079   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
2080   // larger than 64K, create multi-GOT.
2081   void
2082   lay_out_got(Layout* layout, Symbol_table* symtab,
2083               const Input_objects* input_objects);
2084
2085   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
2086   void
2087   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2088
2089   // Attempt to merge GOTs of different input objects.
2090   void
2091   merge_gots(const Input_objects* input_objects);
2092
2093   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
2094   // this would lead to overflow, true if they were merged successfully.
2095   bool
2096   merge_got_with(Mips_got_info<size, big_endian>* from,
2097                  Mips_relobj<size, big_endian>* object,
2098                  Mips_got_info<size, big_endian>* to);
2099
2100   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
2101   // use OBJECT's GOT.
2102   unsigned int
2103   get_got_page_offset(Mips_address value,
2104                       const Mips_relobj<size, big_endian>* object)
2105   {
2106     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107                                           ? this->master_got_info_
2108                                           : object->get_got_info());
2109     gold_assert(g != NULL);
2110     return g->get_got_page_offset(value, this);
2111   }
2112
2113   // Return the GOT offset of type GOT_TYPE of the global symbol
2114   // GSYM.  For multi-GOT links, use OBJECT's GOT.
2115   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116                           Mips_relobj<size, big_endian>* object) const
2117   {
2118     if (!this->multi_got())
2119       return gsym->got_offset(got_type);
2120     else
2121       {
2122         Mips_got_info<size, big_endian>* g = object->get_got_info();
2123         gold_assert(g != NULL);
2124         return gsym->got_offset(g->multigot_got_type(got_type));
2125       }
2126   }
2127
2128   // Return the GOT offset of type GOT_TYPE of the local symbol
2129   // SYMNDX.
2130   unsigned int
2131   got_offset(unsigned int symndx, unsigned int got_type,
2132              Sized_relobj_file<size, big_endian>* object,
2133              uint64_t addend) const
2134   { return object->local_got_offset(symndx, got_type, addend); }
2135
2136   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2137   unsigned int
2138   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2139   {
2140     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141                                           ? this->master_got_info_
2142                                           : object->get_got_info());
2143     gold_assert(g != NULL);
2144     return g->tls_ldm_offset();
2145   }
2146
2147   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2148   void
2149   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150                      Mips_relobj<size, big_endian>* object)
2151   {
2152     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153                                           ? this->master_got_info_
2154                                           : object->get_got_info());
2155     gold_assert(g != NULL);
2156     g->set_tls_ldm_offset(tls_ldm_offset);
2157   }
2158
2159   // Return true for multi-GOT links.
2160   bool
2161   multi_got() const
2162   { return this->primary_got_ != NULL; }
2163
2164   // Return the offset of OBJECT's GOT from the start of .got section.
2165   unsigned int
2166   get_got_offset(const Mips_relobj<size, big_endian>* object)
2167   {
2168     if (!this->multi_got())
2169       return 0;
2170     else
2171       {
2172         Mips_got_info<size, big_endian>* g = object->get_got_info();
2173         return g != NULL ? g->offset() : 0;
2174       }
2175   }
2176
2177   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2178   void
2179   add_reloc_only_entries()
2180   { this->master_got_info_->add_reloc_only_entries(this); }
2181
2182   // Return offset of the primary GOT's entry for global symbol.
2183   unsigned int
2184   get_primary_got_offset(const Mips_symbol<size>* sym) const
2185   {
2186     gold_assert(sym->global_got_area() != GGA_NONE);
2187     return (this->get_local_gotno() + sym->dynsym_index()
2188             - this->first_global_got_dynsym_index()) * size/8;
2189   }
2190
2191   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192   // Input argument GOT_OFFSET is always global offset from the start of
2193   // .got section, for both single and multi-GOT links.
2194   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2195   // links, the return value is object_got_offset - 0x7FF0, where
2196   // object_got_offset is offset in the OBJECT's GOT.
2197   int
2198   gp_offset(unsigned int got_offset,
2199             const Mips_relobj<size, big_endian>* object) const
2200   {
2201     return (this->address() + got_offset
2202             - this->target_->adjusted_gp_value(object));
2203   }
2204
2205  protected:
2206   // Write out the GOT table.
2207   void
2208   do_write(Output_file*);
2209
2210  private:
2211
2212   // This class represent dynamic relocations that need to be applied by
2213   // gold because we are using TLS relocations in a static link.
2214   class Static_reloc
2215   {
2216    public:
2217     Static_reloc(unsigned int got_offset, unsigned int r_type,
2218                  Mips_symbol<size>* gsym)
2219       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220     { this->u_.global.symbol = gsym; }
2221
2222     Static_reloc(unsigned int got_offset, unsigned int r_type,
2223           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2225     {
2226       this->u_.local.relobj = relobj;
2227       this->u_.local.index = index;
2228     }
2229
2230     // Return the GOT offset.
2231     unsigned int
2232     got_offset() const
2233     { return this->got_offset_; }
2234
2235     // Relocation type.
2236     unsigned int
2237     r_type() const
2238     { return this->r_type_; }
2239
2240     // Whether the symbol is global or not.
2241     bool
2242     symbol_is_global() const
2243     { return this->symbol_is_global_; }
2244
2245     // For a relocation against a global symbol, the global symbol.
2246     Mips_symbol<size>*
2247     symbol() const
2248     {
2249       gold_assert(this->symbol_is_global_);
2250       return this->u_.global.symbol;
2251     }
2252
2253     // For a relocation against a local symbol, the defining object.
2254     Sized_relobj_file<size, big_endian>*
2255     relobj() const
2256     {
2257       gold_assert(!this->symbol_is_global_);
2258       return this->u_.local.relobj;
2259     }
2260
2261     // For a relocation against a local symbol, the local symbol index.
2262     unsigned int
2263     index() const
2264     {
2265       gold_assert(!this->symbol_is_global_);
2266       return this->u_.local.index;
2267     }
2268
2269    private:
2270     // GOT offset of the entry to which this relocation is applied.
2271     unsigned int got_offset_;
2272     // Type of relocation.
2273     unsigned int r_type_;
2274     // Whether this relocation is against a global symbol.
2275     bool symbol_is_global_;
2276     // A global or local symbol.
2277     union
2278     {
2279       struct
2280       {
2281         // For a global symbol, the symbol itself.
2282         Mips_symbol<size>* symbol;
2283       } global;
2284       struct
2285       {
2286         // For a local symbol, the object defining object.
2287         Sized_relobj_file<size, big_endian>* relobj;
2288         // For a local symbol, the symbol index.
2289         unsigned int index;
2290       } local;
2291     } u_;
2292   };
2293
2294   // The target.
2295   Target_mips<size, big_endian>* target_;
2296   // The symbol table.
2297   Symbol_table* symbol_table_;
2298   // The layout.
2299   Layout* layout_;
2300   // Static relocs to be applied to the GOT.
2301   std::vector<Static_reloc> static_relocs_;
2302   // .got section view.
2303   unsigned char* got_view_;
2304   // The dynamic symbol table index of the first symbol with global GOT entry.
2305   unsigned int first_global_got_dynsym_index_;
2306   // The master GOT information.
2307   Mips_got_info<size, big_endian>* master_got_info_;
2308   // The  primary GOT information.
2309   Mips_got_info<size, big_endian>* primary_got_;
2310   // Secondary GOT fixups.
2311   std::vector<Static_reloc> secondary_got_relocs_;
2312 };
2313
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces.  The first is to add:
2316 //
2317 //      lui     $25,%hi(func)
2318 //      j       func
2319 //      addiu   $25,$25,%lo(func)
2320 //
2321 // to a separate trampoline section.  The second is to add:
2322 //
2323 //      lui     $25,%hi(func)
2324 //      addiu   $25,$25,%lo(func)
2325 //
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2329 //
2330 // We only create stubs of the first type.
2331
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2334 {
2335   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2336
2337  public:
2338   Mips_output_data_la25_stub()
2339   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2340   { }
2341
2342   // Create LA25 stub for a symbol.
2343   void
2344   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345                    Mips_symbol<size>* gsym);
2346
2347   // Return output address of a stub.
2348   Mips_address
2349   stub_address(const Mips_symbol<size>* sym) const
2350   {
2351     gold_assert(sym->has_la25_stub());
2352     return this->address() + sym->la25_stub_offset();
2353   }
2354
2355  protected:
2356   void
2357   do_adjust_output_section(Output_section* os)
2358   { os->set_entsize(0); }
2359
2360  private:
2361   // Template for standard LA25 stub.
2362   static const uint32_t la25_stub_entry[];
2363   // Template for microMIPS LA25 stub.
2364   static const uint32_t la25_stub_micromips_entry[];
2365
2366   // Set the final size.
2367   void
2368   set_final_data_size()
2369   { this->set_data_size(this->symbols_.size() * 16); }
2370
2371   // Create a symbol for SYM stub's value and size, to help make the
2372   // disassembly easier to read.
2373   void
2374   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375                      Target_mips<size, big_endian>* target, uint64_t symsize);
2376
2377   // Write to a map file.
2378   void
2379   do_print_to_mapfile(Mapfile* mapfile) const
2380   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2381
2382   // Write out the LA25 stub section.
2383   void
2384   do_write(Output_file*);
2385
2386   // Symbols that have LA25 stubs.
2387   std::vector<Mips_symbol<size>*> symbols_;
2388 };
2389
2390 // MIPS-specific relocation writer.
2391
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2394
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2397 {
2398   typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399   typedef std::vector<Output_reloc_type> Relocs;
2400
2401   static void
2402   write(typename Relocs::const_iterator p, unsigned char* pov)
2403   { p->write(pov); }
2404 };
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2408 {
2409   typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410   typedef std::vector<Output_reloc_type> Relocs;
2411
2412   static void
2413   write(typename Relocs::const_iterator p, unsigned char* pov)
2414   {
2415     elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416     orel.put_r_offset(p->get_address());
2417     orel.put_r_sym(p->get_symbol_index());
2418     orel.put_r_ssym(RSS_UNDEF);
2419     orel.put_r_type(p->type());
2420     if (p->type() == elfcpp::R_MIPS_REL32)
2421       orel.put_r_type2(elfcpp::R_MIPS_64);
2422     else
2423       orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424     orel.put_r_type3(elfcpp::R_MIPS_NONE);
2425   }
2426 };
2427
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2430                                                         size, big_endian>
2431 {
2432  public:
2433   Mips_output_data_reloc(bool sort_relocs)
2434     : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2435   { }
2436
2437  protected:
2438   // Write out the data.
2439   void
2440   do_write(Output_file* of)
2441   {
2442     typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2443         big_endian> Writer;
2444     this->template do_write_generic<Writer>(of);
2445   }
2446 };
2447
2448
2449 // A class to handle the PLT data.
2450
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2453 {
2454   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456                                  size, big_endian> Reloc_section;
2457
2458  public:
2459   // Create the PLT section.  The ordinary .got section is an argument,
2460   // since we need to refer to the start.
2461   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462                        Target_mips<size, big_endian>* target)
2463     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2465       target_(target)
2466   {
2467     this->rel_ = new Reloc_section(false);
2468     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469                                     elfcpp::SHF_ALLOC, this->rel_,
2470                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2471   }
2472
2473   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2474   void
2475   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2476
2477   // Return the .rel.plt section data.
2478   Reloc_section*
2479   rel_plt() const
2480   { return this->rel_; }
2481
2482   // Return the number of PLT entries.
2483   unsigned int
2484   entry_count() const
2485   { return this->symbols_.size(); }
2486
2487   // Return the offset of the first non-reserved PLT entry.
2488   unsigned int
2489   first_plt_entry_offset() const
2490   { return sizeof(plt0_entry_o32); }
2491
2492   // Return the size of a PLT entry.
2493   unsigned int
2494   plt_entry_size() const
2495   { return sizeof(plt_entry); }
2496
2497   // Set final PLT offsets.  For each symbol, determine whether standard or
2498   // compressed (MIPS16 or microMIPS) PLT entry is used.
2499   void
2500   set_plt_offsets();
2501
2502   // Return the offset of the first standard PLT entry.
2503   unsigned int
2504   first_mips_plt_offset() const
2505   { return this->plt_header_size_; }
2506
2507   // Return the offset of the first compressed PLT entry.
2508   unsigned int
2509   first_comp_plt_offset() const
2510   { return this->plt_header_size_ + this->plt_mips_offset_; }
2511
2512   // Return whether there are any standard PLT entries.
2513   bool
2514   has_standard_entries() const
2515   { return this->plt_mips_offset_ > 0; }
2516
2517   // Return the output address of standard PLT entry.
2518   Mips_address
2519   mips_entry_address(const Mips_symbol<size>* sym) const
2520   {
2521     gold_assert (sym->has_mips_plt_offset());
2522     return (this->address() + this->first_mips_plt_offset()
2523             + sym->mips_plt_offset());
2524   }
2525
2526   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2527   Mips_address
2528   comp_entry_address(const Mips_symbol<size>* sym) const
2529   {
2530     gold_assert (sym->has_comp_plt_offset());
2531     return (this->address() + this->first_comp_plt_offset()
2532             + sym->comp_plt_offset());
2533   }
2534
2535  protected:
2536   void
2537   do_adjust_output_section(Output_section* os)
2538   { os->set_entsize(0); }
2539
2540   // Write to a map file.
2541   void
2542   do_print_to_mapfile(Mapfile* mapfile) const
2543   { mapfile->print_output_data(this, _(".plt")); }
2544
2545  private:
2546   // Template for the first PLT entry.
2547   static const uint32_t plt0_entry_o32[];
2548   static const uint32_t plt0_entry_n32[];
2549   static const uint32_t plt0_entry_n64[];
2550   static const uint32_t plt0_entry_micromips_o32[];
2551   static const uint32_t plt0_entry_micromips32_o32[];
2552
2553   // Template for subsequent PLT entries.
2554   static const uint32_t plt_entry[];
2555   static const uint32_t plt_entry_r6[];
2556   static const uint32_t plt_entry_mips16_o32[];
2557   static const uint32_t plt_entry_micromips_o32[];
2558   static const uint32_t plt_entry_micromips32_o32[];
2559
2560   // Set the final size.
2561   void
2562   set_final_data_size()
2563   {
2564     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565                         + this->plt_comp_offset_);
2566   }
2567
2568   // Write out the PLT data.
2569   void
2570   do_write(Output_file*);
2571
2572   // Return whether the plt header contains microMIPS code.  For the sake of
2573   // cache alignment always use a standard header whenever any standard entries
2574   // are present even if microMIPS entries are present as well.  This also lets
2575   // the microMIPS header rely on the value of $v0 only set by microMIPS
2576   // entries, for a small size reduction.
2577   bool
2578   is_plt_header_compressed() const
2579   {
2580     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2582   }
2583
2584   // Return the size of the PLT header.
2585   unsigned int
2586   get_plt_header_size() const
2587   {
2588     if (this->target_->is_output_n64())
2589       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590     else if (this->target_->is_output_n32())
2591       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592     else if (!this->is_plt_header_compressed())
2593       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594     else if (this->target_->use_32bit_micromips_instructions())
2595       return (2 * sizeof(plt0_entry_micromips32_o32)
2596               / sizeof(plt0_entry_micromips32_o32[0]));
2597     else
2598       return (2 * sizeof(plt0_entry_micromips_o32)
2599               / sizeof(plt0_entry_micromips_o32[0]));
2600   }
2601
2602   // Return the PLT header entry.
2603   const uint32_t*
2604   get_plt_header_entry() const
2605   {
2606     if (this->target_->is_output_n64())
2607       return plt0_entry_n64;
2608     else if (this->target_->is_output_n32())
2609       return plt0_entry_n32;
2610     else if (!this->is_plt_header_compressed())
2611       return plt0_entry_o32;
2612     else if (this->target_->use_32bit_micromips_instructions())
2613       return plt0_entry_micromips32_o32;
2614     else
2615       return plt0_entry_micromips_o32;
2616   }
2617
2618   // Return the size of the standard PLT entry.
2619   unsigned int
2620   standard_plt_entry_size() const
2621   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2622
2623   // Return the size of the compressed PLT entry.
2624   unsigned int
2625   compressed_plt_entry_size() const
2626   {
2627     gold_assert(!this->target_->is_output_newabi());
2628
2629     if (!this->target_->is_output_micromips())
2630       return (2 * sizeof(plt_entry_mips16_o32)
2631               / sizeof(plt_entry_mips16_o32[0]));
2632     else if (this->target_->use_32bit_micromips_instructions())
2633       return (2 * sizeof(plt_entry_micromips32_o32)
2634               / sizeof(plt_entry_micromips32_o32[0]));
2635     else
2636       return (2 * sizeof(plt_entry_micromips_o32)
2637               / sizeof(plt_entry_micromips_o32[0]));
2638   }
2639
2640   // The reloc section.
2641   Reloc_section* rel_;
2642   // The .got.plt section.
2643   Output_data_space* got_plt_;
2644   // Symbols that have PLT entry.
2645   std::vector<Mips_symbol<size>*> symbols_;
2646   // The offset of the next standard PLT entry to create.
2647   unsigned int plt_mips_offset_;
2648   // The offset of the next compressed PLT entry to create.
2649   unsigned int plt_comp_offset_;
2650   // The size of the PLT header in bytes.
2651   unsigned int plt_header_size_;
2652   // The target.
2653   Target_mips<size, big_endian>* target_;
2654 };
2655
2656 // A class to handle the .MIPS.stubs data.
2657
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2660 {
2661   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2662
2663   // Unordered set of .MIPS.stubs entries.
2664   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665       Mips_stubs_entry_set;
2666
2667  public:
2668    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670        stub_offsets_are_set_(false), target_(target)
2671    { }
2672
2673   // Create entry for a symbol.
2674   void
2675   make_entry(Mips_symbol<size>*);
2676
2677   // Remove entry for a symbol.
2678   void
2679   remove_entry(Mips_symbol<size>* gsym);
2680
2681   // Set stub offsets for symbols.  This method expects that the number of
2682   // entries in dynamic symbol table is set.
2683   void
2684   set_lazy_stub_offsets();
2685
2686   void
2687   set_needs_dynsym_value();
2688
2689    // Set the number of entries in dynamic symbol table.
2690   void
2691   set_dynsym_count(unsigned int dynsym_count)
2692   { this->dynsym_count_ = dynsym_count; }
2693
2694   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695   // count is greater than 0x10000.  If the dynamic symbol count is less than
2696   // 0x10000, the stub will be 4 bytes smaller.
2697   // There's no disadvantage from using microMIPS code here, so for the sake of
2698   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699   // output produced at all.  This has a benefit of stubs being shorter by
2700   // 4 bytes each too, unless in the insn32 mode.
2701   unsigned int
2702   stub_max_size() const
2703   {
2704     if (!this->target_->is_output_micromips()
2705         || this->target_->use_32bit_micromips_instructions())
2706       return 20;
2707     else
2708       return 16;
2709   }
2710
2711   // Return the size of the stub.  This method expects that the final dynsym
2712   // count is set.
2713   unsigned int
2714   stub_size() const
2715   {
2716     gold_assert(this->dynsym_count_ != -1U);
2717     if (this->dynsym_count_ > 0x10000)
2718       return this->stub_max_size();
2719     else
2720       return this->stub_max_size() - 4;
2721   }
2722
2723   // Return output address of a stub.
2724   Mips_address
2725   stub_address(const Mips_symbol<size>* sym) const
2726   {
2727     gold_assert(sym->has_lazy_stub());
2728     return this->address() + sym->lazy_stub_offset();
2729   }
2730
2731  protected:
2732   void
2733   do_adjust_output_section(Output_section* os)
2734   { os->set_entsize(0); }
2735
2736   // Write to a map file.
2737   void
2738   do_print_to_mapfile(Mapfile* mapfile) const
2739   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2740
2741  private:
2742   static const uint32_t lazy_stub_normal_1[];
2743   static const uint32_t lazy_stub_normal_1_n64[];
2744   static const uint32_t lazy_stub_normal_2[];
2745   static const uint32_t lazy_stub_normal_2_n64[];
2746   static const uint32_t lazy_stub_big[];
2747   static const uint32_t lazy_stub_big_n64[];
2748
2749   static const uint32_t lazy_stub_micromips_normal_1[];
2750   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751   static const uint32_t lazy_stub_micromips_normal_2[];
2752   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753   static const uint32_t lazy_stub_micromips_big[];
2754   static const uint32_t lazy_stub_micromips_big_n64[];
2755
2756   static const uint32_t lazy_stub_micromips32_normal_1[];
2757   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758   static const uint32_t lazy_stub_micromips32_normal_2[];
2759   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760   static const uint32_t lazy_stub_micromips32_big[];
2761   static const uint32_t lazy_stub_micromips32_big_n64[];
2762
2763   // Set the final size.
2764   void
2765   set_final_data_size()
2766   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2767
2768   // Write out the .MIPS.stubs data.
2769   void
2770   do_write(Output_file*);
2771
2772   // .MIPS.stubs symbols
2773   Mips_stubs_entry_set symbols_;
2774   // Number of entries in dynamic symbol table.
2775   unsigned int dynsym_count_;
2776   // Whether the stub offsets are set.
2777   bool stub_offsets_are_set_;
2778   // The target.
2779   Target_mips<size, big_endian>* target_;
2780 };
2781
2782 // This class handles Mips .reginfo output section.
2783
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2786 {
2787   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2788
2789  public:
2790   Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791                               Valtype gprmask, Valtype cprmask1,
2792                               Valtype cprmask2, Valtype cprmask3,
2793                               Valtype cprmask4)
2794     : Output_section_data(24, 4, true), target_(target),
2795       gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796       cprmask3_(cprmask3), cprmask4_(cprmask4)
2797   { }
2798
2799  protected:
2800   // Write to a map file.
2801   void
2802   do_print_to_mapfile(Mapfile* mapfile) const
2803   { mapfile->print_output_data(this, _(".reginfo")); }
2804
2805   // Write out reginfo section.
2806   void
2807   do_write(Output_file* of);
2808
2809  private:
2810   Target_mips<size, big_endian>* target_;
2811
2812   // gprmask of the output .reginfo section.
2813   Valtype gprmask_;
2814   // cprmask1 of the output .reginfo section.
2815   Valtype cprmask1_;
2816   // cprmask2 of the output .reginfo section.
2817   Valtype cprmask2_;
2818   // cprmask3 of the output .reginfo section.
2819   Valtype cprmask3_;
2820   // cprmask4 of the output .reginfo section.
2821   Valtype cprmask4_;
2822 };
2823
2824 // This class handles .MIPS.abiflags output section.
2825
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2828 {
2829  public:
2830   Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831     : Output_section_data(24, 8, true), abiflags_(abiflags)
2832   { }
2833
2834  protected:
2835   // Write to a map file.
2836   void
2837   do_print_to_mapfile(Mapfile* mapfile) const
2838   { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2839
2840   void
2841   do_write(Output_file* of);
2842
2843  private:
2844   const Mips_abiflags<big_endian>& abiflags_;
2845 };
2846
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process.  So we have to extend the default code.
2849
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852   public Default_scan_relocatable_relocs<Classify_reloc>
2853 {
2854  public:
2855   // Return the strategy to use for a local symbol which is a section
2856   // symbol, given the relocation type.
2857   inline Relocatable_relocs::Reloc_strategy
2858   local_section_strategy(unsigned int r_type, Relobj* object)
2859   {
2860     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2862     else
2863       {
2864         switch (r_type)
2865           {
2866           case elfcpp::R_MIPS_26:
2867             return Relocatable_relocs::RELOC_SPECIAL;
2868
2869           default:
2870             return Default_scan_relocatable_relocs<Classify_reloc>::
2871                 local_section_strategy(r_type, object);
2872           }
2873       }
2874   }
2875 };
2876
2877 // Mips_copy_relocs class.  The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2881
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2884 {
2885  public:
2886   Mips_copy_relocs()
2887     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2888   { }
2889
2890   // Emit any saved relocations which turn out to be needed.  This is
2891   // called after all the relocs have been scanned.
2892   void
2893   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2895
2896  private:
2897   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2898     Copy_reloc_entry;
2899
2900   // Emit this reloc if appropriate.  This is called after we have
2901   // scanned all the relocations, so we know whether we emitted a
2902   // COPY relocation for SYM_.
2903   void
2904   emit_entry(Copy_reloc_entry& entry,
2905              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906              Symbol_table* symtab, Layout* layout,
2907              Target_mips<size, big_endian>* target);
2908 };
2909
2910
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise.  The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2914 static bool
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916                   bool local_protected)
2917 {
2918   // If it's a local sym, of course we resolve locally.
2919   if (sym == NULL)
2920     return true;
2921
2922   // STV_HIDDEN or STV_INTERNAL ones must be local.
2923   if (sym->visibility() == elfcpp::STV_HIDDEN
2924       || sym->visibility() == elfcpp::STV_INTERNAL)
2925     return true;
2926
2927   // If we don't have a definition in a regular file, then we can't
2928   // resolve locally.  The sym is either undefined or dynamic.
2929   if (sym->is_from_dynobj() || sym->is_undefined())
2930     return false;
2931
2932   // Forced local symbols resolve locally.
2933   if (sym->is_forced_local())
2934     return true;
2935
2936   // As do non-dynamic symbols.
2937   if (!has_dynsym_entry)
2938     return true;
2939
2940   // At this point, we know the symbol is defined and dynamic.  In an
2941   // executable it must resolve locally, likewise when building symbolic
2942   // shared libraries.
2943   if (parameters->options().output_is_executable()
2944       || parameters->options().Bsymbolic())
2945     return true;
2946
2947   // Now deal with defined dynamic symbols in shared libraries.  Ones
2948   // with default visibility might not resolve locally.
2949   if (sym->visibility() == elfcpp::STV_DEFAULT)
2950     return false;
2951
2952   // STV_PROTECTED non-function symbols are local.
2953   if (sym->type() != elfcpp::STT_FUNC)
2954     return true;
2955
2956   // Function pointer equality tests may require that STV_PROTECTED
2957   // symbols be treated as dynamic symbols.  If the address of a
2958   // function not defined in an executable is set to that function's
2959   // plt entry in the executable, then the address of the function in
2960   // a shared library must also be the plt entry in the executable.
2961   return local_protected;
2962 }
2963
2964 // Return TRUE if references to this symbol always reference the symbol in this
2965 // object.
2966 static bool
2967 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2968 {
2969   return symbol_refs_local(sym, has_dynsym_entry, false);
2970 }
2971
2972 // Return TRUE if calls to this symbol always call the version in this object.
2973 static bool
2974 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2975 {
2976   return symbol_refs_local(sym, has_dynsym_entry, true);
2977 }
2978
2979 // Compare GOT offsets of two symbols.
2980
2981 template<int size, bool big_endian>
2982 static bool
2983 got_offset_compare(Symbol* sym1, Symbol* sym2)
2984 {
2985   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2986   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2987   unsigned int area1 = mips_sym1->global_got_area();
2988   unsigned int area2 = mips_sym2->global_got_area();
2989   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2990
2991   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2992   if (area1 != area2)
2993     return area1 < area2;
2994
2995   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2996 }
2997
2998 // This method divides dynamic symbols into symbols that have GOT entry, and
2999 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
3000 // Mips ABI requires that symbols with the GOT entry must be at the end of
3001 // dynamic symbol table, and the order in dynamic symbol table must match the
3002 // order in GOT.
3003
3004 template<int size, bool big_endian>
3005 static void
3006 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3007                     std::vector<Symbol*>* non_got_symbols,
3008                     std::vector<Symbol*>* got_symbols)
3009 {
3010   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3011        p != dyn_symbols->end();
3012        ++p)
3013     {
3014       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3015       if (mips_sym->global_got_area() == GGA_NORMAL
3016           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3017         got_symbols->push_back(mips_sym);
3018       else
3019         non_got_symbols->push_back(mips_sym);
3020     }
3021
3022   std::sort(got_symbols->begin(), got_symbols->end(),
3023             got_offset_compare<size, big_endian>);
3024 }
3025
3026 // Functor class for processing the global symbol table.
3027
3028 template<int size, bool big_endian>
3029 class Symbol_visitor_check_symbols
3030 {
3031  public:
3032   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3033     Layout* layout, Symbol_table* symtab)
3034     : target_(target), layout_(layout), symtab_(symtab)
3035   { }
3036
3037   void
3038   operator()(Sized_symbol<size>* sym)
3039   {
3040     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3041     if (local_pic_function<size, big_endian>(mips_sym))
3042       {
3043         // SYM is a function that might need $25 to be valid on entry.
3044         // If we're creating a non-PIC relocatable object, mark SYM as
3045         // being PIC.  If we're creating a non-relocatable object with
3046         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3047         // stub.
3048         if (parameters->options().relocatable())
3049           {
3050             if (!parameters->options().output_is_position_independent())
3051               mips_sym->set_pic();
3052           }
3053         else if (mips_sym->has_nonpic_branches())
3054           {
3055             this->target_->la25_stub_section(layout_)
3056                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3057           }
3058       }
3059   }
3060
3061  private:
3062   Target_mips<size, big_endian>* target_;
3063   Layout* layout_;
3064   Symbol_table* symtab_;
3065 };
3066
3067 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3068 // and endianness. The relocation format for MIPS-64 is non-standard.
3069
3070 template<int sh_type, int size, bool big_endian>
3071 struct Mips_reloc_types;
3072
3073 template<bool big_endian>
3074 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3075 {
3076   typedef typename elfcpp::Rel<32, big_endian> Reloc;
3077   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3078
3079   static typename elfcpp::Elf_types<32>::Elf_Swxword
3080   get_r_addend(const Reloc*)
3081   { return 0; }
3082
3083   static inline void
3084   set_reloc_addend(Reloc_write*,
3085                    typename elfcpp::Elf_types<32>::Elf_Swxword)
3086   { gold_unreachable(); }
3087 };
3088
3089 template<bool big_endian>
3090 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3091 {
3092   typedef typename elfcpp::Rela<32, big_endian> Reloc;
3093   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3094
3095   static typename elfcpp::Elf_types<32>::Elf_Swxword
3096   get_r_addend(const Reloc* reloc)
3097   { return reloc->get_r_addend(); }
3098
3099   static inline void
3100   set_reloc_addend(Reloc_write* p,
3101                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
3102   { p->put_r_addend(val); }
3103 };
3104
3105 template<bool big_endian>
3106 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3107 {
3108   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3109   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3110
3111   static typename elfcpp::Elf_types<64>::Elf_Swxword
3112   get_r_addend(const Reloc*)
3113   { return 0; }
3114
3115   static inline void
3116   set_reloc_addend(Reloc_write*,
3117                    typename elfcpp::Elf_types<64>::Elf_Swxword)
3118   { gold_unreachable(); }
3119 };
3120
3121 template<bool big_endian>
3122 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3123 {
3124   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3125   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3126
3127   static typename elfcpp::Elf_types<64>::Elf_Swxword
3128   get_r_addend(const Reloc* reloc)
3129   { return reloc->get_r_addend(); }
3130
3131   static inline void
3132   set_reloc_addend(Reloc_write* p,
3133                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
3134   { p->put_r_addend(val); }
3135 };
3136
3137 // Forward declaration.
3138 static unsigned int
3139 mips_get_size_for_reloc(unsigned int, Relobj*);
3140
3141 // A class for inquiring about properties of a relocation,
3142 // used while scanning relocs during a relocatable link and
3143 // garbage collection.
3144
3145 template<int sh_type_, int size, bool big_endian>
3146 class Mips_classify_reloc;
3147
3148 template<int sh_type_, bool big_endian>
3149 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3150     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3151 {
3152  public:
3153   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3154       Reltype;
3155   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3156       Reltype_write;
3157
3158   // Return the symbol referred to by the relocation.
3159   static inline unsigned int
3160   get_r_sym(const Reltype* reloc)
3161   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3162
3163   // Return the type of the relocation.
3164   static inline unsigned int
3165   get_r_type(const Reltype* reloc)
3166   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3167
3168   static inline unsigned int
3169   get_r_type2(const Reltype*)
3170   { return 0; }
3171
3172   static inline unsigned int
3173   get_r_type3(const Reltype*)
3174   { return 0; }
3175
3176   static inline unsigned int
3177   get_r_ssym(const Reltype*)
3178   { return 0; }
3179
3180   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3181   static inline unsigned int
3182   get_r_addend(const Reltype* reloc)
3183   {
3184     if (sh_type_ == elfcpp::SHT_REL)
3185       return 0;
3186     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3187   }
3188
3189   // Write the r_info field to a new reloc, using the r_info field from
3190   // the original reloc, replacing the r_sym field with R_SYM.
3191   static inline void
3192   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3193   {
3194     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3195     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3196   }
3197
3198   // Write the r_addend field to a new reloc.
3199   static inline void
3200   put_r_addend(Reltype_write* to,
3201                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3202   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3203
3204   // Return the size of the addend of the relocation (only used for SHT_REL).
3205   static unsigned int
3206   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3207   { return mips_get_size_for_reloc(r_type, obj); }
3208 };
3209
3210 template<int sh_type_, bool big_endian>
3211 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3212     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3213 {
3214  public:
3215   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3216       Reltype;
3217   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3218       Reltype_write;
3219
3220   // Return the symbol referred to by the relocation.
3221   static inline unsigned int
3222   get_r_sym(const Reltype* reloc)
3223   { return reloc->get_r_sym(); }
3224
3225   // Return the r_type of the relocation.
3226   static inline unsigned int
3227   get_r_type(const Reltype* reloc)
3228   { return reloc->get_r_type(); }
3229
3230   // Return the r_type2 of the relocation.
3231   static inline unsigned int
3232   get_r_type2(const Reltype* reloc)
3233   { return reloc->get_r_type2(); }
3234
3235   // Return the r_type3 of the relocation.
3236   static inline unsigned int
3237   get_r_type3(const Reltype* reloc)
3238   { return reloc->get_r_type3(); }
3239
3240   // Return the special symbol of the relocation.
3241   static inline unsigned int
3242   get_r_ssym(const Reltype* reloc)
3243   { return reloc->get_r_ssym(); }
3244
3245   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3246   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3247   get_r_addend(const Reltype* reloc)
3248   {
3249     if (sh_type_ == elfcpp::SHT_REL)
3250       return 0;
3251     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3252   }
3253
3254   // Write the r_info field to a new reloc, using the r_info field from
3255   // the original reloc, replacing the r_sym field with R_SYM.
3256   static inline void
3257   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3258   {
3259     new_reloc->put_r_sym(r_sym);
3260     new_reloc->put_r_ssym(reloc->get_r_ssym());
3261     new_reloc->put_r_type3(reloc->get_r_type3());
3262     new_reloc->put_r_type2(reloc->get_r_type2());
3263     new_reloc->put_r_type(reloc->get_r_type());
3264   }
3265
3266   // Write the r_addend field to a new reloc.
3267   static inline void
3268   put_r_addend(Reltype_write* to,
3269                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3270   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3271
3272   // Return the size of the addend of the relocation (only used for SHT_REL).
3273   static unsigned int
3274   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3275   { return mips_get_size_for_reloc(r_type, obj); }
3276 };
3277
3278 template<int size, bool big_endian>
3279 class Target_mips : public Sized_target<size, big_endian>
3280 {
3281   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3282   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3283     Reloc_section;
3284   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3285   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3286   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3287       Reltype;
3288   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3289       Relatype;
3290
3291  public:
3292   Target_mips(const Target::Target_info* info = &mips_info)
3293     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3294       got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3295       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3296       mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3297       mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3298       entry_symbol_is_compressed_(false), insn32_(false)
3299   {
3300     this->add_machine_extensions();
3301   }
3302
3303   // The offset of $gp from the beginning of the .got section.
3304   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3305
3306   // The maximum size of the GOT for it to be addressable using 16-bit
3307   // offsets from $gp.
3308   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3309
3310   // Make a new symbol table entry for the Mips target.
3311   Sized_symbol<size>*
3312   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3313   { return new Mips_symbol<size>(); }
3314
3315   // Process the relocations to determine unreferenced sections for
3316   // garbage collection.
3317   void
3318   gc_process_relocs(Symbol_table* symtab,
3319                     Layout* layout,
3320                     Sized_relobj_file<size, big_endian>* object,
3321                     unsigned int data_shndx,
3322                     unsigned int sh_type,
3323                     const unsigned char* prelocs,
3324                     size_t reloc_count,
3325                     Output_section* output_section,
3326                     bool needs_special_offset_handling,
3327                     size_t local_symbol_count,
3328                     const unsigned char* plocal_symbols);
3329
3330   // Scan the relocations to look for symbol adjustments.
3331   void
3332   scan_relocs(Symbol_table* symtab,
3333               Layout* layout,
3334               Sized_relobj_file<size, big_endian>* object,
3335               unsigned int data_shndx,
3336               unsigned int sh_type,
3337               const unsigned char* prelocs,
3338               size_t reloc_count,
3339               Output_section* output_section,
3340               bool needs_special_offset_handling,
3341               size_t local_symbol_count,
3342               const unsigned char* plocal_symbols);
3343
3344   // Finalize the sections.
3345   void
3346   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3347
3348   // Relocate a section.
3349   void
3350   relocate_section(const Relocate_info<size, big_endian>*,
3351                    unsigned int sh_type,
3352                    const unsigned char* prelocs,
3353                    size_t reloc_count,
3354                    Output_section* output_section,
3355                    bool needs_special_offset_handling,
3356                    unsigned char* view,
3357                    Mips_address view_address,
3358                    section_size_type view_size,
3359                    const Reloc_symbol_changes*);
3360
3361   // Scan the relocs during a relocatable link.
3362   void
3363   scan_relocatable_relocs(Symbol_table* symtab,
3364                           Layout* layout,
3365                           Sized_relobj_file<size, big_endian>* object,
3366                           unsigned int data_shndx,
3367                           unsigned int sh_type,
3368                           const unsigned char* prelocs,
3369                           size_t reloc_count,
3370                           Output_section* output_section,
3371                           bool needs_special_offset_handling,
3372                           size_t local_symbol_count,
3373                           const unsigned char* plocal_symbols,
3374                           Relocatable_relocs*);
3375
3376   // Scan the relocs for --emit-relocs.
3377   void
3378   emit_relocs_scan(Symbol_table* symtab,
3379                    Layout* layout,
3380                    Sized_relobj_file<size, big_endian>* object,
3381                    unsigned int data_shndx,
3382                    unsigned int sh_type,
3383                    const unsigned char* prelocs,
3384                    size_t reloc_count,
3385                    Output_section* output_section,
3386                    bool needs_special_offset_handling,
3387                    size_t local_symbol_count,
3388                    const unsigned char* plocal_syms,
3389                    Relocatable_relocs* rr);
3390
3391   // Emit relocations for a section.
3392   void
3393   relocate_relocs(const Relocate_info<size, big_endian>*,
3394                   unsigned int sh_type,
3395                   const unsigned char* prelocs,
3396                   size_t reloc_count,
3397                   Output_section* output_section,
3398                   typename elfcpp::Elf_types<size>::Elf_Off
3399                     offset_in_output_section,
3400                   unsigned char* view,
3401                   Mips_address view_address,
3402                   section_size_type view_size,
3403                   unsigned char* reloc_view,
3404                   section_size_type reloc_view_size);
3405
3406   // Perform target-specific processing in a relocatable link.  This is
3407   // only used if we use the relocation strategy RELOC_SPECIAL.
3408   void
3409   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3410                                unsigned int sh_type,
3411                                const unsigned char* preloc_in,
3412                                size_t relnum,
3413                                Output_section* output_section,
3414                                typename elfcpp::Elf_types<size>::Elf_Off
3415                                  offset_in_output_section,
3416                                unsigned char* view,
3417                                Mips_address view_address,
3418                                section_size_type view_size,
3419                                unsigned char* preloc_out);
3420
3421   // Return whether SYM is defined by the ABI.
3422   bool
3423   do_is_defined_by_abi(const Symbol* sym) const
3424   {
3425     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3426             || (strcmp(sym->name(), "_gp_disp") == 0)
3427             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3428   }
3429
3430   // Return the number of entries in the GOT.
3431   unsigned int
3432   got_entry_count() const
3433   {
3434     if (!this->has_got_section())
3435       return 0;
3436     return this->got_size() / (size/8);
3437   }
3438
3439   // Return the number of entries in the PLT.
3440   unsigned int
3441   plt_entry_count() const
3442   {
3443     if (this->plt_ == NULL)
3444       return 0;
3445     return this->plt_->entry_count();
3446   }
3447
3448   // Return the offset of the first non-reserved PLT entry.
3449   unsigned int
3450   first_plt_entry_offset() const
3451   { return this->plt_->first_plt_entry_offset(); }
3452
3453   // Return the size of each PLT entry.
3454   unsigned int
3455   plt_entry_size() const
3456   { return this->plt_->plt_entry_size(); }
3457
3458   // Get the GOT section, creating it if necessary.
3459   Mips_output_data_got<size, big_endian>*
3460   got_section(Symbol_table*, Layout*);
3461
3462   // Get the GOT section.
3463   Mips_output_data_got<size, big_endian>*
3464   got_section() const
3465   {
3466     gold_assert(this->got_ != NULL);
3467     return this->got_;
3468   }
3469
3470   // Get the .MIPS.stubs section, creating it if necessary.
3471   Mips_output_data_mips_stubs<size, big_endian>*
3472   mips_stubs_section(Layout* layout);
3473
3474   // Get the .MIPS.stubs section.
3475   Mips_output_data_mips_stubs<size, big_endian>*
3476   mips_stubs_section() const
3477   {
3478     gold_assert(this->mips_stubs_ != NULL);
3479     return this->mips_stubs_;
3480   }
3481
3482   // Get the LA25 stub section, creating it if necessary.
3483   Mips_output_data_la25_stub<size, big_endian>*
3484   la25_stub_section(Layout*);
3485
3486   // Get the LA25 stub section.
3487   Mips_output_data_la25_stub<size, big_endian>*
3488   la25_stub_section()
3489   {
3490     gold_assert(this->la25_stub_ != NULL);
3491     return this->la25_stub_;
3492   }
3493
3494   // Get gp value.  It has the value of .got + 0x7FF0.
3495   Mips_address
3496   gp_value() const
3497   {
3498     if (this->gp_ != NULL)
3499       return this->gp_->value();
3500     return 0;
3501   }
3502
3503   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3504   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3505   Mips_address
3506   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3507   {
3508     if (this->gp_ == NULL)
3509       return 0;
3510
3511     bool multi_got = false;
3512     if (this->has_got_section())
3513       multi_got = this->got_section()->multi_got();
3514     if (!multi_got)
3515       return this->gp_->value();
3516     else
3517       return this->gp_->value() + this->got_section()->get_got_offset(object);
3518   }
3519
3520   // Get the dynamic reloc section, creating it if necessary.
3521   Reloc_section*
3522   rel_dyn_section(Layout*);
3523
3524   bool
3525   do_has_custom_set_dynsym_indexes() const
3526   { return true; }
3527
3528   // Don't emit input .reginfo/.MIPS.abiflags sections to
3529   // output .reginfo/.MIPS.abiflags.
3530   bool
3531   do_should_include_section(elfcpp::Elf_Word sh_type) const
3532   {
3533     return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3534              && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3535   }
3536
3537   // Set the dynamic symbol indexes.  INDEX is the index of the first
3538   // global dynamic symbol.  Pointers to the symbols are stored into the
3539   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3540   // updated dynamic symbol index.
3541   unsigned int
3542   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3543                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3544                         Versions* versions, Symbol_table* symtab) const;
3545
3546   // Remove .MIPS.stubs entry for a symbol.
3547   void
3548   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3549   {
3550     if (this->mips_stubs_ != NULL)
3551       this->mips_stubs_->remove_entry(sym);
3552   }
3553
3554   // The value to write into got[1] for SVR4 targets, to identify it is
3555   // a GNU object.  The dynamic linker can then use got[1] to store the
3556   // module pointer.
3557   uint64_t
3558   mips_elf_gnu_got1_mask()
3559   {
3560     if (this->is_output_n64())
3561       return (uint64_t)1 << 63;
3562     else
3563       return 1 << 31;
3564   }
3565
3566   // Whether the output has microMIPS code.  This is valid only after
3567   // merge_obj_e_flags() is called.
3568   bool
3569   is_output_micromips() const
3570   {
3571     gold_assert(this->are_processor_specific_flags_set());
3572     return elfcpp::is_micromips(this->processor_specific_flags());
3573   }
3574
3575   // Whether the output uses N32 ABI.  This is valid only after
3576   // merge_obj_e_flags() is called.
3577   bool
3578   is_output_n32() const
3579   {
3580     gold_assert(this->are_processor_specific_flags_set());
3581     return elfcpp::abi_n32(this->processor_specific_flags());
3582   }
3583
3584   // Whether the output uses R6 ISA.  This is valid only after
3585   // merge_obj_e_flags() is called.
3586   bool
3587   is_output_r6() const
3588   {
3589     gold_assert(this->are_processor_specific_flags_set());
3590     return elfcpp::r6_isa(this->processor_specific_flags());
3591   }
3592
3593   // Whether the output uses N64 ABI.
3594   bool
3595   is_output_n64() const
3596   { return size == 64; }
3597
3598   // Whether the output uses NEWABI.  This is valid only after
3599   // merge_obj_e_flags() is called.
3600   bool
3601   is_output_newabi() const
3602   { return this->is_output_n32() || this->is_output_n64(); }
3603
3604   // Whether we can only use 32-bit microMIPS instructions.
3605   bool
3606   use_32bit_micromips_instructions() const
3607   { return this->insn32_; }
3608
3609   // Return the r_sym field from a relocation.
3610   unsigned int
3611   get_r_sym(const unsigned char* preloc) const
3612   {
3613     // Since REL and RELA relocs share the same structure through
3614     // the r_info field, we can just use REL here.
3615     Reltype rel(preloc);
3616     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3617         get_r_sym(&rel);
3618   }
3619
3620  protected:
3621   // Return the value to use for a dynamic symbol which requires special
3622   // treatment.  This is how we support equality comparisons of function
3623   // pointers across shared library boundaries, as described in the
3624   // processor specific ABI supplement.
3625   uint64_t
3626   do_dynsym_value(const Symbol* gsym) const;
3627
3628   // Make an ELF object.
3629   Object*
3630   do_make_elf_object(const std::string&, Input_file*, off_t,
3631                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3632
3633   Object*
3634   do_make_elf_object(const std::string&, Input_file*, off_t,
3635                      const elfcpp::Ehdr<size, !big_endian>&)
3636   { gold_unreachable(); }
3637
3638   // Adjust ELF file header.
3639   void
3640   do_adjust_elf_header(unsigned char* view, int len);
3641
3642   // Get the custom dynamic tag value.
3643   unsigned int
3644   do_dynamic_tag_custom_value(elfcpp::DT) const;
3645
3646   // Adjust the value written to the dynamic symbol table.
3647   virtual void
3648   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3649   {
3650     elfcpp::Sym<size, big_endian> isym(view);
3651     elfcpp::Sym_write<size, big_endian> osym(view);
3652     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3653
3654     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3655     // to treat compressed symbols like any other.
3656     Mips_address value = isym.get_st_value();
3657     if (mips_sym->is_mips16() && value != 0)
3658       {
3659         if (!mips_sym->has_mips16_fn_stub())
3660           value |= 1;
3661         else
3662           {
3663             // If we have a MIPS16 function with a stub, the dynamic symbol
3664             // must refer to the stub, since only the stub uses the standard
3665             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3666             // in this case.
3667
3668             // There is a code which does this in the method
3669             // Target_mips::do_dynsym_value, but that code will only be
3670             // executed if the symbol is from dynobj.
3671             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3672             // table.
3673
3674             Mips16_stub_section<size, big_endian>* fn_stub =
3675               mips_sym->template get_mips16_fn_stub<big_endian>();
3676             value = fn_stub->output_address();
3677             osym.put_st_size(fn_stub->section_size());
3678           }
3679
3680         osym.put_st_value(value);
3681         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3682                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3683       }
3684     else if ((mips_sym->is_micromips()
3685               // Stubs are always microMIPS if there is any microMIPS code in
3686               // the output.
3687               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3688              && value != 0)
3689       {
3690         osym.put_st_value(value | 1);
3691         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3692                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3693       }
3694   }
3695
3696  private:
3697   // The class which scans relocations.
3698   class Scan
3699   {
3700    public:
3701     Scan()
3702     { }
3703
3704     static inline int
3705     get_reference_flags(unsigned int r_type);
3706
3707     inline void
3708     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3709           Sized_relobj_file<size, big_endian>* object,
3710           unsigned int data_shndx,
3711           Output_section* output_section,
3712           const Reltype& reloc, unsigned int r_type,
3713           const elfcpp::Sym<size, big_endian>& lsym,
3714           bool is_discarded);
3715
3716     inline void
3717     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3718           Sized_relobj_file<size, big_endian>* object,
3719           unsigned int data_shndx,
3720           Output_section* output_section,
3721           const Relatype& reloc, unsigned int r_type,
3722           const elfcpp::Sym<size, big_endian>& lsym,
3723           bool is_discarded);
3724
3725     inline void
3726     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3727           Sized_relobj_file<size, big_endian>* object,
3728           unsigned int data_shndx,
3729           Output_section* output_section,
3730           const Relatype* rela,
3731           const Reltype* rel,
3732           unsigned int rel_type,
3733           unsigned int r_type,
3734           const elfcpp::Sym<size, big_endian>& lsym,
3735           bool is_discarded);
3736
3737     inline void
3738     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3739            Sized_relobj_file<size, big_endian>* object,
3740            unsigned int data_shndx,
3741            Output_section* output_section,
3742            const Reltype& reloc, unsigned int r_type,
3743            Symbol* gsym);
3744
3745     inline void
3746     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3747            Sized_relobj_file<size, big_endian>* object,
3748            unsigned int data_shndx,
3749            Output_section* output_section,
3750            const Relatype& reloc, unsigned int r_type,
3751            Symbol* gsym);
3752
3753     inline void
3754     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3755            Sized_relobj_file<size, big_endian>* object,
3756            unsigned int data_shndx,
3757            Output_section* output_section,
3758            const Relatype* rela,
3759            const Reltype* rel,
3760            unsigned int rel_type,
3761            unsigned int r_type,
3762            Symbol* gsym);
3763
3764     inline bool
3765     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3766                                         Target_mips*,
3767                                         Sized_relobj_file<size, big_endian>*,
3768                                         unsigned int,
3769                                         Output_section*,
3770                                         const Reltype&,
3771                                         unsigned int,
3772                                         const elfcpp::Sym<size, big_endian>&)
3773     { return false; }
3774
3775     inline bool
3776     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3777                                          Target_mips*,
3778                                          Sized_relobj_file<size, big_endian>*,
3779                                          unsigned int,
3780                                          Output_section*,
3781                                          const Reltype&,
3782                                          unsigned int, Symbol*)
3783     { return false; }
3784
3785     inline bool
3786     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3787                                         Target_mips*,
3788                                         Sized_relobj_file<size, big_endian>*,
3789                                         unsigned int,
3790                                         Output_section*,
3791                                         const Relatype&,
3792                                         unsigned int,
3793                                         const elfcpp::Sym<size, big_endian>&)
3794     { return false; }
3795
3796     inline bool
3797     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3798                                          Target_mips*,
3799                                          Sized_relobj_file<size, big_endian>*,
3800                                          unsigned int,
3801                                          Output_section*,
3802                                          const Relatype&,
3803                                          unsigned int, Symbol*)
3804     { return false; }
3805    private:
3806     static void
3807     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3808                             unsigned int r_type);
3809
3810     static void
3811     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3812                              unsigned int r_type, Symbol*);
3813   };
3814
3815   // The class which implements relocation.
3816   class Relocate
3817   {
3818    public:
3819     Relocate()
3820     { }
3821
3822     ~Relocate()
3823     { }
3824
3825     // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3826     inline bool
3827     should_apply_static_reloc(const Mips_symbol<size>* gsym,
3828                               unsigned int r_type,
3829                               Output_section* output_section,
3830                               Target_mips* target);
3831
3832     // Do a relocation.  Return false if the caller should not issue
3833     // any warnings about this relocation.
3834     inline bool
3835     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3836              Target_mips*, Output_section*, size_t, const unsigned char*,
3837              const Sized_symbol<size>*, const Symbol_value<size>*,
3838              unsigned char*, Mips_address, section_size_type);
3839   };
3840
3841   // This POD class holds the dynamic relocations that should be emitted instead
3842   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3843   // relocations if it turns out that the symbol does not have static
3844   // relocations.
3845   class Dyn_reloc
3846   {
3847    public:
3848     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3849               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3850               Output_section* output_section, Mips_address r_offset)
3851       : sym_(sym), r_type_(r_type), relobj_(relobj),
3852         shndx_(shndx), output_section_(output_section),
3853         r_offset_(r_offset)
3854     { }
3855
3856     // Emit this reloc if appropriate.  This is called after we have
3857     // scanned all the relocations, so we know whether the symbol has
3858     // static relocations.
3859     void
3860     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3861          Symbol_table* symtab)
3862     {
3863       if (!this->sym_->has_static_relocs())
3864         {
3865           got->record_global_got_symbol(this->sym_, this->relobj_,
3866                                         this->r_type_, true, false);
3867           if (!symbol_references_local(this->sym_,
3868                                 this->sym_->should_add_dynsym_entry(symtab)))
3869             rel_dyn->add_global(this->sym_, this->r_type_,
3870                                 this->output_section_, this->relobj_,
3871                                 this->shndx_, this->r_offset_);
3872           else
3873             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3874                                           this->output_section_, this->relobj_,
3875                                           this->shndx_, this->r_offset_);
3876         }
3877     }
3878
3879    private:
3880     Mips_symbol<size>* sym_;
3881     unsigned int r_type_;
3882     Mips_relobj<size, big_endian>* relobj_;
3883     unsigned int shndx_;
3884     Output_section* output_section_;
3885     Mips_address r_offset_;
3886   };
3887
3888   // Adjust TLS relocation type based on the options and whether this
3889   // is a local symbol.
3890   static tls::Tls_optimization
3891   optimize_tls_reloc(bool is_final, int r_type);
3892
3893   // Return whether there is a GOT section.
3894   bool
3895   has_got_section() const
3896   { return this->got_ != NULL; }
3897
3898   // Check whether the given ELF header flags describe a 32-bit binary.
3899   bool
3900   mips_32bit_flags(elfcpp::Elf_Word);
3901
3902   enum Mips_mach {
3903     mach_mips3000             = 3000,
3904     mach_mips3900             = 3900,
3905     mach_mips4000             = 4000,
3906     mach_mips4010             = 4010,
3907     mach_mips4100             = 4100,
3908     mach_mips4111             = 4111,
3909     mach_mips4120             = 4120,
3910     mach_mips4300             = 4300,
3911     mach_mips4400             = 4400,
3912     mach_mips4600             = 4600,
3913     mach_mips4650             = 4650,
3914     mach_mips5000             = 5000,
3915     mach_mips5400             = 5400,
3916     mach_mips5500             = 5500,
3917     mach_mips5900             = 5900,
3918     mach_mips6000             = 6000,
3919     mach_mips7000             = 7000,
3920     mach_mips8000             = 8000,
3921     mach_mips9000             = 9000,
3922     mach_mips10000            = 10000,
3923     mach_mips12000            = 12000,
3924     mach_mips14000            = 14000,
3925     mach_mips16000            = 16000,
3926     mach_mips16               = 16,
3927     mach_mips5                = 5,
3928     mach_mips_loongson_2e     = 3001,
3929     mach_mips_loongson_2f     = 3002,
3930     mach_mips_loongson_3a     = 3003,
3931     mach_mips_sb1             = 12310201, // octal 'SB', 01
3932     mach_mips_octeon          = 6501,
3933     mach_mips_octeonp         = 6601,
3934     mach_mips_octeon2         = 6502,
3935     mach_mips_octeon3         = 6503,
3936     mach_mips_xlr             = 887682,   // decimal 'XLR'
3937     mach_mipsisa32            = 32,
3938     mach_mipsisa32r2          = 33,
3939     mach_mipsisa32r3          = 34,
3940     mach_mipsisa32r5          = 36,
3941     mach_mipsisa32r6          = 37,
3942     mach_mipsisa64            = 64,
3943     mach_mipsisa64r2          = 65,
3944     mach_mipsisa64r3          = 66,
3945     mach_mipsisa64r5          = 68,
3946     mach_mipsisa64r6          = 69,
3947     mach_mips_micromips       = 96
3948   };
3949
3950   // Return the MACH for a MIPS e_flags value.
3951   unsigned int
3952   elf_mips_mach(elfcpp::Elf_Word);
3953
3954   // Return the MACH for each .MIPS.abiflags ISA Extension.
3955   unsigned int
3956   mips_isa_ext_mach(unsigned int);
3957
3958   // Return the .MIPS.abiflags value representing each ISA Extension.
3959   unsigned int
3960   mips_isa_ext(unsigned int);
3961
3962   // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3963   void
3964   update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3965                       Mips_abiflags<big_endian>*);
3966
3967   // Infer the content of the ABI flags based on the elf header.
3968   void
3969   infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3970
3971   // Create abiflags from elf header or from .MIPS.abiflags section.
3972   void
3973   create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3974
3975   // Return the meaning of fp_abi, or "unknown" if not known.
3976   const char*
3977   fp_abi_string(int);
3978
3979   // Select fp_abi.
3980   int
3981   select_fp_abi(const std::string&, int, int);
3982
3983   // Merge attributes from input object.
3984   void
3985   merge_obj_attributes(const std::string&, const Attributes_section_data*);
3986
3987   // Merge abiflags from input object.
3988   void
3989   merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3990
3991   // Check whether machine EXTENSION is an extension of machine BASE.
3992   bool
3993   mips_mach_extends(unsigned int, unsigned int);
3994
3995   // Merge file header flags from input object.
3996   void
3997   merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
3998
3999   // Encode ISA level and revision as a single value.
4000   int
4001   level_rev(unsigned char isa_level, unsigned char isa_rev) const
4002   { return (isa_level << 3) | isa_rev; }
4003
4004   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4005   static inline bool
4006   jal_to_bal()
4007   { return false; }
4008
4009   // True if we are linking for CPUs that are faster if JALR is converted to
4010   // BAL.  This should be safe for all architectures.  We enable this predicate
4011   // for all CPUs.
4012   static inline bool
4013   jalr_to_bal()
4014   { return true; }
4015
4016   // True if we are linking for CPUs that are faster if JR is converted to B.
4017   // This should be safe for all architectures.  We enable this predicate for
4018   // all CPUs.
4019   static inline bool
4020   jr_to_b()
4021   { return true; }
4022
4023   // Return the size of the GOT section.
4024   section_size_type
4025   got_size() const
4026   {
4027     gold_assert(this->got_ != NULL);
4028     return this->got_->data_size();
4029   }
4030
4031   // Create a PLT entry for a global symbol referenced by r_type relocation.
4032   void
4033   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4034                  unsigned int r_type);
4035
4036   // Get the PLT section.
4037   Mips_output_data_plt<size, big_endian>*
4038   plt_section() const
4039   {
4040     gold_assert(this->plt_ != NULL);
4041     return this->plt_;
4042   }
4043
4044   // Get the GOT PLT section.
4045   const Mips_output_data_plt<size, big_endian>*
4046   got_plt_section() const
4047   {
4048     gold_assert(this->got_plt_ != NULL);
4049     return this->got_plt_;
4050   }
4051
4052   // Copy a relocation against a global symbol.
4053   void
4054   copy_reloc(Symbol_table* symtab, Layout* layout,
4055              Sized_relobj_file<size, big_endian>* object,
4056              unsigned int shndx, Output_section* output_section,
4057              Symbol* sym, unsigned int r_type, Mips_address r_offset)
4058   {
4059     this->copy_relocs_.copy_reloc(symtab, layout,
4060                                   symtab->get_sized_symbol<size>(sym),
4061                                   object, shndx, output_section,
4062                                   r_type, r_offset, 0,
4063                                   this->rel_dyn_section(layout));
4064   }
4065
4066   void
4067   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4068                 Mips_relobj<size, big_endian>* relobj,
4069                 unsigned int shndx, Output_section* output_section,
4070                 Mips_address r_offset)
4071   {
4072     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4073                                           output_section, r_offset));
4074   }
4075
4076   // Calculate value of _gp symbol.
4077   void
4078   set_gp(Layout*, Symbol_table*);
4079
4080   const char*
4081   elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4082   const char*
4083   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4084
4085   // Adds entries that describe how machines relate to one another.  The entries
4086   // are ordered topologically with MIPS I extensions listed last.  First
4087   // element is extension, second element is base.
4088   void
4089   add_machine_extensions()
4090   {
4091     // MIPS64r2 extensions.
4092     this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4093     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4094     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4095     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4096     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4097
4098     // MIPS64 extensions.
4099     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4100     this->add_extension(mach_mips_sb1, mach_mipsisa64);
4101     this->add_extension(mach_mips_xlr, mach_mipsisa64);
4102
4103     // MIPS V extensions.
4104     this->add_extension(mach_mipsisa64, mach_mips5);
4105
4106     // R10000 extensions.
4107     this->add_extension(mach_mips12000, mach_mips10000);
4108     this->add_extension(mach_mips14000, mach_mips10000);
4109     this->add_extension(mach_mips16000, mach_mips10000);
4110
4111     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
4112     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
4113     // better to allow vr5400 and vr5500 code to be merged anyway, since
4114     // many libraries will just use the core ISA.  Perhaps we could add
4115     // some sort of ASE flag if this ever proves a problem.
4116     this->add_extension(mach_mips5500, mach_mips5400);
4117     this->add_extension(mach_mips5400, mach_mips5000);
4118
4119     // MIPS IV extensions.
4120     this->add_extension(mach_mips5, mach_mips8000);
4121     this->add_extension(mach_mips10000, mach_mips8000);
4122     this->add_extension(mach_mips5000, mach_mips8000);
4123     this->add_extension(mach_mips7000, mach_mips8000);
4124     this->add_extension(mach_mips9000, mach_mips8000);
4125
4126     // VR4100 extensions.
4127     this->add_extension(mach_mips4120, mach_mips4100);
4128     this->add_extension(mach_mips4111, mach_mips4100);
4129
4130     // MIPS III extensions.
4131     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4132     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4133     this->add_extension(mach_mips8000, mach_mips4000);
4134     this->add_extension(mach_mips4650, mach_mips4000);
4135     this->add_extension(mach_mips4600, mach_mips4000);
4136     this->add_extension(mach_mips4400, mach_mips4000);
4137     this->add_extension(mach_mips4300, mach_mips4000);
4138     this->add_extension(mach_mips4100, mach_mips4000);
4139     this->add_extension(mach_mips4010, mach_mips4000);
4140     this->add_extension(mach_mips5900, mach_mips4000);
4141
4142     // MIPS32 extensions.
4143     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4144
4145     // MIPS II extensions.
4146     this->add_extension(mach_mips4000, mach_mips6000);
4147     this->add_extension(mach_mipsisa32, mach_mips6000);
4148
4149     // MIPS I extensions.
4150     this->add_extension(mach_mips6000, mach_mips3000);
4151     this->add_extension(mach_mips3900, mach_mips3000);
4152   }
4153
4154   // Add value to MIPS extenstions.
4155   void
4156   add_extension(unsigned int base, unsigned int extension)
4157   {
4158     std::pair<unsigned int, unsigned int> ext(base, extension);
4159     this->mips_mach_extensions_.push_back(ext);
4160   }
4161
4162   // Return the number of entries in the .dynsym section.
4163   unsigned int get_dt_mips_symtabno() const
4164   {
4165     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4166                            / elfcpp::Elf_sizes<size>::sym_size));
4167     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4168   }
4169
4170   // Information about this specific target which we pass to the
4171   // general Target structure.
4172   static const Target::Target_info mips_info;
4173   // The GOT section.
4174   Mips_output_data_got<size, big_endian>* got_;
4175   // gp symbol.  It has the value of .got + 0x7FF0.
4176   Sized_symbol<size>* gp_;
4177   // The PLT section.
4178   Mips_output_data_plt<size, big_endian>* plt_;
4179   // The GOT PLT section.
4180   Output_data_space* got_plt_;
4181   // The dynamic reloc section.
4182   Reloc_section* rel_dyn_;
4183   // The .rld_map section.
4184   Output_data_zero_fill* rld_map_;
4185   // Relocs saved to avoid a COPY reloc.
4186   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4187
4188   // A list of dyn relocs to be saved.
4189   std::vector<Dyn_reloc> dyn_relocs_;
4190
4191   // The LA25 stub section.
4192   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4193   // Architecture extensions.
4194   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4195   // .MIPS.stubs
4196   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4197
4198   // Attributes section data in output.
4199   Attributes_section_data* attributes_section_data_;
4200   // .MIPS.abiflags section data in output.
4201   Mips_abiflags<big_endian>* abiflags_;
4202
4203   unsigned int mach_;
4204   Layout* layout_;
4205
4206   typename std::list<got16_addend<size, big_endian> > got16_addends_;
4207
4208   // Whether there is an input .MIPS.abiflags section.
4209   bool has_abiflags_section_;
4210
4211   // Whether the entry symbol is mips16 or micromips.
4212   bool entry_symbol_is_compressed_;
4213
4214   // Whether we can use only 32-bit microMIPS instructions.
4215   // TODO(sasa): This should be a linker option.
4216   bool insn32_;
4217 };
4218
4219 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4220 // It records high part of the relocation pair.
4221
4222 template<int size, bool big_endian>
4223 struct reloc_high
4224 {
4225   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4226
4227   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4228              const Symbol_value<size>* _psymval, Mips_address _addend,
4229              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4230              Mips_address _address = 0, bool _gp_disp = false)
4231     : view(_view), object(_object), psymval(_psymval), addend(_addend),
4232       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4233       address(_address), gp_disp(_gp_disp)
4234   { }
4235
4236   unsigned char* view;
4237   const Mips_relobj<size, big_endian>* object;
4238   const Symbol_value<size>* psymval;
4239   Mips_address addend;
4240   unsigned int r_type;
4241   unsigned int r_sym;
4242   bool extract_addend;
4243   Mips_address address;
4244   bool gp_disp;
4245 };
4246
4247 template<int size, bool big_endian>
4248 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4249 {
4250   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4251   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4252   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4253   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4254   typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4255
4256  public:
4257   typedef enum
4258   {
4259     STATUS_OKAY,            // No error during relocation.
4260     STATUS_OVERFLOW,        // Relocation overflow.
4261     STATUS_BAD_RELOC,       // Relocation cannot be applied.
4262     STATUS_PCREL_UNALIGNED  // Unaligned PC-relative relocation.
4263   } Status;
4264
4265  private:
4266   typedef Relocate_functions<size, big_endian> Base;
4267   typedef Mips_relocate_functions<size, big_endian> This;
4268
4269   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4270   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4271   static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4272
4273   template<int valsize>
4274   static inline typename This::Status
4275   check_overflow(Valtype value)
4276   {
4277     if (size == 32)
4278       return (Bits<valsize>::has_overflow32(value)
4279               ? This::STATUS_OVERFLOW
4280               : This::STATUS_OKAY);
4281
4282     return (Bits<valsize>::has_overflow(value)
4283             ? This::STATUS_OVERFLOW
4284             : This::STATUS_OKAY);
4285   }
4286
4287   static inline bool
4288   should_shuffle_micromips_reloc(unsigned int r_type)
4289   {
4290     return (micromips_reloc(r_type)
4291             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4292             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4293   }
4294
4295  public:
4296   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4297   //   Most mips16 instructions are 16 bits, but these instructions
4298   //   are 32 bits.
4299   //
4300   //   The format of these instructions is:
4301   //
4302   //   +--------------+--------------------------------+
4303   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
4304   //   +--------------+--------------------------------+
4305   //   |                Immediate  15:0                |
4306   //   +-----------------------------------------------+
4307   //
4308   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4309   //   Note that the immediate value in the first word is swapped.
4310   //
4311   //   When producing a relocatable object file, R_MIPS16_26 is
4312   //   handled mostly like R_MIPS_26.  In particular, the addend is
4313   //   stored as a straight 26-bit value in a 32-bit instruction.
4314   //   (gas makes life simpler for itself by never adjusting a
4315   //   R_MIPS16_26 reloc to be against a section, so the addend is
4316   //   always zero).  However, the 32 bit instruction is stored as 2
4317   //   16-bit values, rather than a single 32-bit value.  In a
4318   //   big-endian file, the result is the same; in a little-endian
4319   //   file, the two 16-bit halves of the 32 bit value are swapped.
4320   //   This is so that a disassembler can recognize the jal
4321   //   instruction.
4322   //
4323   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4324   //   instruction stored as two 16-bit values.  The addend A is the
4325   //   contents of the targ26 field.  The calculation is the same as
4326   //   R_MIPS_26.  When storing the calculated value, reorder the
4327   //   immediate value as shown above, and don't forget to store the
4328   //   value as two 16-bit values.
4329   //
4330   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4331   //   defined as
4332   //
4333   //   big-endian:
4334   //   +--------+----------------------+
4335   //   |        |                      |
4336   //   |        |    targ26-16         |
4337   //   |31    26|25                   0|
4338   //   +--------+----------------------+
4339   //
4340   //   little-endian:
4341   //   +----------+------+-------------+
4342   //   |          |      |             |
4343   //   |  sub1    |      |     sub2    |
4344   //   |0        9|10  15|16         31|
4345   //   +----------+--------------------+
4346   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4347   //   ((sub1 << 16) | sub2)).
4348   //
4349   //   When producing a relocatable object file, the calculation is
4350   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4351   //   When producing a fully linked file, the calculation is
4352   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4353   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4354   //
4355   //   The table below lists the other MIPS16 instruction relocations.
4356   //   Each one is calculated in the same way as the non-MIPS16 relocation
4357   //   given on the right, but using the extended MIPS16 layout of 16-bit
4358   //   immediate fields:
4359   //
4360   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4361   //      R_MIPS16_GOT16          R_MIPS_GOT16
4362   //      R_MIPS16_CALL16         R_MIPS_CALL16
4363   //      R_MIPS16_HI16           R_MIPS_HI16
4364   //      R_MIPS16_LO16           R_MIPS_LO16
4365   //
4366   //   A typical instruction will have a format like this:
4367   //
4368   //   +--------------+--------------------------------+
4369   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4370   //   +--------------+--------------------------------+
4371   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4372   //   +--------------+--------------------------------+
4373   //
4374   //   EXTEND is the five bit value 11110.  Major is the instruction
4375   //   opcode.
4376   //
4377   //   All we need to do here is shuffle the bits appropriately.
4378   //   As above, the two 16-bit halves must be swapped on a
4379   //   little-endian system.
4380
4381   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4382   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4383   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4384
4385   static void
4386   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4387                        bool jal_shuffle)
4388   {
4389     if (!mips16_reloc(r_type)
4390         && !should_shuffle_micromips_reloc(r_type))
4391       return;
4392
4393     // Pick up the first and second halfwords of the instruction.
4394     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4395     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4396     Valtype32 val;
4397
4398     if (micromips_reloc(r_type)
4399         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4400       val = first << 16 | second;
4401     else if (r_type != elfcpp::R_MIPS16_26)
4402       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4403              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4404     else
4405       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4406              | ((first & 0x1f) << 21) | second);
4407
4408     elfcpp::Swap<32, big_endian>::writeval(view, val);
4409   }
4410
4411   static void
4412   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4413   {
4414     if (!mips16_reloc(r_type)
4415         && !should_shuffle_micromips_reloc(r_type))
4416       return;
4417
4418     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4419     Valtype16 first, second;
4420
4421     if (micromips_reloc(r_type)
4422         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4423       {
4424         second = val & 0xffff;
4425         first = val >> 16;
4426       }
4427     else if (r_type != elfcpp::R_MIPS16_26)
4428       {
4429         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4430         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4431       }
4432     else
4433       {
4434         second = val & 0xffff;
4435         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4436                  | ((val >> 21) & 0x1f);
4437       }
4438
4439     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4440     elfcpp::Swap<16, big_endian>::writeval(view, first);
4441   }
4442
4443   // R_MIPS_16: S + sign-extend(A)
4444   static inline typename This::Status
4445   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4446         const Symbol_value<size>* psymval, Mips_address addend_a,
4447         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4448   {
4449     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4450     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4451
4452     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4453                                      : addend_a);
4454
4455     Valtype x = psymval->value(object, addend);
4456     val = Bits<16>::bit_select32(val, x, 0xffffU);
4457
4458     if (calculate_only)
4459       {
4460         *calculated_value = x;
4461         return This::STATUS_OKAY;
4462       }
4463     else
4464       elfcpp::Swap<16, big_endian>::writeval(wv, val);
4465
4466     return check_overflow<16>(x);
4467   }
4468
4469   // R_MIPS_32: S + A
4470   static inline typename This::Status
4471   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4472         const Symbol_value<size>* psymval, Mips_address addend_a,
4473         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4474   {
4475     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4476     Valtype addend = (extract_addend
4477                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4478                         : addend_a);
4479     Valtype x = psymval->value(object, addend);
4480
4481     if (calculate_only)
4482       *calculated_value = x;
4483     else
4484       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4485
4486     return This::STATUS_OKAY;
4487   }
4488
4489   // R_MIPS_JALR, R_MICROMIPS_JALR
4490   static inline typename This::Status
4491   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4492           const Symbol_value<size>* psymval, Mips_address address,
4493           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4494           unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4495           bool calculate_only, Valtype* calculated_value)
4496   {
4497     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4498     Valtype addend = extract_addend ? 0 : addend_a;
4499     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4500
4501     // Try converting J(AL)R to B(AL), if the target is in range.
4502     if (!parameters->options().relocatable()
4503         && r_type == elfcpp::R_MIPS_JALR
4504         && !cross_mode_jump
4505         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4506             || (jr_to_b && val == 0x03200008)))   // jr t9
4507       {
4508         int offset = psymval->value(object, addend) - (address + 4);
4509         if (!Bits<18>::has_overflow32(offset))
4510           {
4511             if (val == 0x03200008)   // jr t9
4512               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4513             else
4514               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4515           }
4516       }
4517
4518     if (calculate_only)
4519       *calculated_value = val;
4520     else
4521       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4522
4523     return This::STATUS_OKAY;
4524   }
4525
4526   // R_MIPS_PC32: S + A - P
4527   static inline typename This::Status
4528   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4529           const Symbol_value<size>* psymval, Mips_address address,
4530           Mips_address addend_a, bool extract_addend, bool calculate_only,
4531           Valtype* calculated_value)
4532   {
4533     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4534     Valtype addend = (extract_addend
4535                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4536                         : addend_a);
4537     Valtype x = psymval->value(object, addend) - address;
4538
4539     if (calculate_only)
4540        *calculated_value = x;
4541     else
4542       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4543
4544     return This::STATUS_OKAY;
4545   }
4546
4547   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4548   static inline typename This::Status
4549   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4550         const Symbol_value<size>* psymval, Mips_address address,
4551         bool local, Mips_address addend_a, bool extract_addend,
4552         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4553         bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4554   {
4555     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4556     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4557
4558     Valtype addend;
4559     if (extract_addend)
4560       {
4561         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4562           addend = (val & 0x03ffffff) << 1;
4563         else
4564           addend = (val & 0x03ffffff) << 2;
4565       }
4566     else
4567       addend = addend_a;
4568
4569     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4570     // the correct ISA mode selector and bit 1 must be 0.
4571     if (!calculate_only && cross_mode_jump
4572         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4573       {
4574         gold_warning(_("JALX to a non-word-aligned address"));
4575         return This::STATUS_BAD_RELOC;
4576       }
4577
4578     // Shift is 2, unusually, for microMIPS JALX.
4579     unsigned int shift =
4580         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4581
4582     Valtype x;
4583     if (local)
4584       x = addend | ((address + 4) & (0xfc000000 << shift));
4585     else
4586       {
4587         if (shift == 1)
4588           x = Bits<27>::sign_extend32(addend);
4589         else
4590           x = Bits<28>::sign_extend32(addend);
4591       }
4592     x = psymval->value(object, x) >> shift;
4593
4594     if (!calculate_only && !local && !gsym->is_weak_undefined())
4595       {
4596         if ((x >> 26) != ((address + 4) >> (26 + shift)))
4597           {
4598             gold_error(_("relocation truncated to fit: %u against '%s'"),
4599                        r_type, gsym->name());
4600             return This::STATUS_OVERFLOW;
4601           }
4602       }
4603
4604     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4605
4606     // If required, turn JAL into JALX.
4607     if (cross_mode_jump)
4608       {
4609         bool ok;
4610         Valtype32 opcode = val >> 26;
4611         Valtype32 jalx_opcode;
4612
4613         // Check to see if the opcode is already JAL or JALX.
4614         if (r_type == elfcpp::R_MIPS16_26)
4615           {
4616             ok = (opcode == 0x6) || (opcode == 0x7);
4617             jalx_opcode = 0x7;
4618           }
4619         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4620           {
4621             ok = (opcode == 0x3d) || (opcode == 0x3c);
4622             jalx_opcode = 0x3c;
4623           }
4624         else
4625           {
4626             ok = (opcode == 0x3) || (opcode == 0x1d);
4627             jalx_opcode = 0x1d;
4628           }
4629
4630         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4631         // convert J or JALS to JALX.
4632         if (!calculate_only && !ok)
4633           {
4634             gold_error(_("Unsupported jump between ISA modes; consider "
4635                          "recompiling with interlinking enabled."));
4636             return This::STATUS_BAD_RELOC;
4637           }
4638
4639         // Make this the JALX opcode.
4640         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4641       }
4642
4643     // Try converting JAL to BAL, if the target is in range.
4644     if (!parameters->options().relocatable()
4645         && !cross_mode_jump
4646         && ((jal_to_bal
4647             && r_type == elfcpp::R_MIPS_26
4648             && (val >> 26) == 0x3)))    // jal addr
4649       {
4650         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4651         int offset = dest - (address + 4);
4652         if (!Bits<18>::has_overflow32(offset))
4653           {
4654             if (val == 0x03200008)   // jr t9
4655               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4656             else
4657               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4658           }
4659       }
4660
4661     if (calculate_only)
4662       *calculated_value = val;
4663     else
4664       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4665
4666     return This::STATUS_OKAY;
4667   }
4668
4669   // R_MIPS_PC16
4670   static inline typename This::Status
4671   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4672           const Symbol_value<size>* psymval, Mips_address address,
4673           Mips_address addend_a, bool extract_addend, bool calculate_only,
4674           Valtype* calculated_value)
4675   {
4676     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4677     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4678
4679     Valtype addend = (extract_addend
4680                       ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4681                       : addend_a);
4682
4683     Valtype x = psymval->value(object, addend) - address;
4684     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4685
4686     if (calculate_only)
4687       {
4688         *calculated_value = x >> 2;
4689         return This::STATUS_OKAY;
4690       }
4691     else
4692       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4693
4694     if (psymval->value(object, addend) & 3)
4695       return This::STATUS_PCREL_UNALIGNED;
4696
4697     return check_overflow<18>(x);
4698   }
4699
4700   // R_MIPS_PC21_S2
4701   static inline typename This::Status
4702   relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4703           const Symbol_value<size>* psymval, Mips_address address,
4704           Mips_address addend_a, bool extract_addend, bool calculate_only,
4705           Valtype* calculated_value)
4706   {
4707     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4708     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4709
4710     Valtype addend = (extract_addend
4711                       ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4712                       : addend_a);
4713
4714     Valtype x = psymval->value(object, addend) - address;
4715     val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4716
4717     if (calculate_only)
4718       {
4719         *calculated_value = x >> 2;
4720         return This::STATUS_OKAY;
4721       }
4722     else
4723       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4724
4725     if (psymval->value(object, addend) & 3)
4726       return This::STATUS_PCREL_UNALIGNED;
4727
4728     return check_overflow<23>(x);
4729   }
4730
4731   // R_MIPS_PC26_S2
4732   static inline typename This::Status
4733   relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4734           const Symbol_value<size>* psymval, Mips_address address,
4735           Mips_address addend_a, bool extract_addend, bool calculate_only,
4736           Valtype* calculated_value)
4737   {
4738     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4739     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4740
4741     Valtype addend = (extract_addend
4742                       ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4743                       : addend_a);
4744
4745     Valtype x = psymval->value(object, addend) - address;
4746     val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4747
4748     if (calculate_only)
4749       {
4750         *calculated_value = x >> 2;
4751         return This::STATUS_OKAY;
4752       }
4753     else
4754       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4755
4756     if (psymval->value(object, addend) & 3)
4757       return This::STATUS_PCREL_UNALIGNED;
4758
4759     return check_overflow<28>(x);
4760   }
4761
4762   // R_MIPS_PC18_S3
4763   static inline typename This::Status
4764   relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4765           const Symbol_value<size>* psymval, Mips_address address,
4766           Mips_address addend_a, bool extract_addend, bool calculate_only,
4767           Valtype* calculated_value)
4768   {
4769     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4770     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4771
4772     Valtype addend = (extract_addend
4773                       ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4774                       : addend_a);
4775
4776     Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4777     val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4778
4779     if (calculate_only)
4780       {
4781         *calculated_value = x >> 3;
4782         return This::STATUS_OKAY;
4783       }
4784     else
4785       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4786
4787     if (psymval->value(object, addend) & 7)
4788       return This::STATUS_PCREL_UNALIGNED;
4789
4790     return check_overflow<21>(x);
4791   }
4792
4793   // R_MIPS_PC19_S2
4794   static inline typename This::Status
4795   relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4796           const Symbol_value<size>* psymval, Mips_address address,
4797           Mips_address addend_a, bool extract_addend, bool calculate_only,
4798           Valtype* calculated_value)
4799   {
4800     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4801     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4802
4803     Valtype addend = (extract_addend
4804                       ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4805                       : addend_a);
4806
4807     Valtype x = psymval->value(object, addend) - address;
4808     val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4809
4810     if (calculate_only)
4811       {
4812         *calculated_value = x >> 2;
4813         return This::STATUS_OKAY;
4814       }
4815     else
4816       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4817
4818     if (psymval->value(object, addend) & 3)
4819       return This::STATUS_PCREL_UNALIGNED;
4820
4821     return check_overflow<21>(x);
4822   }
4823
4824   // R_MIPS_PCHI16
4825   static inline typename This::Status
4826   relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4827             const Symbol_value<size>* psymval, Mips_address addend,
4828             Mips_address address, unsigned int r_sym, bool extract_addend)
4829   {
4830     // Record the relocation.  It will be resolved when we find pclo16 part.
4831     pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4832                             addend, 0, r_sym, extract_addend, address));
4833     return This::STATUS_OKAY;
4834   }
4835
4836   // R_MIPS_PCHI16
4837   static inline typename This::Status
4838   do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4839              const Symbol_value<size>* psymval, Mips_address addend_hi,
4840              Mips_address address, bool extract_addend, Valtype32 addend_lo,
4841              bool calculate_only, Valtype* calculated_value)
4842   {
4843     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4844     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4845
4846     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4847                                        : addend_hi);
4848
4849     Valtype value = psymval->value(object, addend) - address;
4850     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4851     val = Bits<32>::bit_select32(val, x, 0xffff);
4852
4853     if (calculate_only)
4854       *calculated_value = x;
4855     else
4856       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4857
4858     return This::STATUS_OKAY;
4859   }
4860
4861   // R_MIPS_PCLO16
4862   static inline typename This::Status
4863   relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4864             const Symbol_value<size>* psymval, Mips_address addend_a,
4865             bool extract_addend, Mips_address address, unsigned int r_sym,
4866             unsigned int rel_type, bool calculate_only,
4867             Valtype* calculated_value)
4868   {
4869     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4870     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4871
4872     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4873                                      : addend_a);
4874
4875     if (rel_type == elfcpp::SHT_REL)
4876       {
4877         // Resolve pending R_MIPS_PCHI16 relocations.
4878         typename std::list<reloc_high<size, big_endian> >::iterator it =
4879             pchi16_relocs.begin();
4880         while (it != pchi16_relocs.end())
4881           {
4882             reloc_high<size, big_endian> pchi16 = *it;
4883             if (pchi16.r_sym == r_sym)
4884               {
4885                 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4886                              pchi16.addend, pchi16.address,
4887                              pchi16.extract_addend, addend, calculate_only,
4888                              calculated_value);
4889                 it = pchi16_relocs.erase(it);
4890               }
4891             else
4892               ++it;
4893           }
4894       }
4895
4896     // Resolve R_MIPS_PCLO16 relocation.
4897     Valtype x = psymval->value(object, addend) - address;
4898     val = Bits<32>::bit_select32(val, x, 0xffff);
4899
4900     if (calculate_only)
4901       *calculated_value = x;
4902     else
4903       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4904
4905     return This::STATUS_OKAY;
4906   }
4907
4908   // R_MICROMIPS_PC7_S1
4909   static inline typename This::Status
4910   relmicromips_pc7_s1(unsigned char* view,
4911                       const Mips_relobj<size, big_endian>* object,
4912                       const Symbol_value<size>* psymval, Mips_address address,
4913                       Mips_address addend_a, bool extract_addend,
4914                       bool calculate_only, Valtype* calculated_value)
4915   {
4916     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4917     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4918
4919     Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4920                                     : addend_a;
4921
4922     Valtype x = psymval->value(object, addend) - address;
4923     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4924
4925     if (calculate_only)
4926       {
4927         *calculated_value = x >> 1;
4928         return This::STATUS_OKAY;
4929       }
4930     else
4931       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4932
4933     return check_overflow<8>(x);
4934   }
4935
4936   // R_MICROMIPS_PC10_S1
4937   static inline typename This::Status
4938   relmicromips_pc10_s1(unsigned char* view,
4939                        const Mips_relobj<size, big_endian>* object,
4940                        const Symbol_value<size>* psymval, Mips_address address,
4941                        Mips_address addend_a, bool extract_addend,
4942                        bool calculate_only, Valtype* calculated_value)
4943   {
4944     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4945     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4946
4947     Valtype addend = (extract_addend
4948                       ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4949                       : addend_a);
4950
4951     Valtype x = psymval->value(object, addend) - address;
4952     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4953
4954     if (calculate_only)
4955       {
4956         *calculated_value = x >> 1;
4957         return This::STATUS_OKAY;
4958       }
4959     else
4960       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4961
4962     return check_overflow<11>(x);
4963   }
4964
4965   // R_MICROMIPS_PC16_S1
4966   static inline typename This::Status
4967   relmicromips_pc16_s1(unsigned char* view,
4968                        const Mips_relobj<size, big_endian>* object,
4969                        const Symbol_value<size>* psymval, Mips_address address,
4970                        Mips_address addend_a, bool extract_addend,
4971                        bool calculate_only, Valtype* calculated_value)
4972   {
4973     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4974     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4975
4976     Valtype addend = (extract_addend
4977                       ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4978                       : addend_a);
4979
4980     Valtype x = psymval->value(object, addend) - address;
4981     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4982
4983     if (calculate_only)
4984       {
4985         *calculated_value = x >> 1;
4986         return This::STATUS_OKAY;
4987       }
4988     else
4989       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4990
4991     return check_overflow<17>(x);
4992   }
4993
4994   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4995   static inline typename This::Status
4996   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4997           const Symbol_value<size>* psymval, Mips_address addend,
4998           Mips_address address, bool gp_disp, unsigned int r_type,
4999           unsigned int r_sym, bool extract_addend)
5000   {
5001     // Record the relocation.  It will be resolved when we find lo16 part.
5002     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5003                           addend, r_type, r_sym, extract_addend, address,
5004                           gp_disp));
5005     return This::STATUS_OKAY;
5006   }
5007
5008   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5009   static inline typename This::Status
5010   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5011              const Symbol_value<size>* psymval, Mips_address addend_hi,
5012              Mips_address address, bool is_gp_disp, unsigned int r_type,
5013              bool extract_addend, Valtype32 addend_lo,
5014              Target_mips<size, big_endian>* target, bool calculate_only,
5015              Valtype* calculated_value)
5016   {
5017     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5018     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5019
5020     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5021                                        : addend_hi);
5022
5023     Valtype32 value;
5024     if (!is_gp_disp)
5025       value = psymval->value(object, addend);
5026     else
5027       {
5028         // For MIPS16 ABI code we generate this sequence
5029         //    0: li      $v0,%hi(_gp_disp)
5030         //    4: addiupc $v1,%lo(_gp_disp)
5031         //    8: sll     $v0,16
5032         //   12: addu    $v0,$v1
5033         //   14: move    $gp,$v0
5034         // So the offsets of hi and lo relocs are the same, but the
5035         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5036         // ADDIUPC clears the low two bits of the instruction address,
5037         // so the base is ($t9 + 4) & ~3.
5038         Valtype32 gp_disp;
5039         if (r_type == elfcpp::R_MIPS16_HI16)
5040           gp_disp = (target->adjusted_gp_value(object)
5041                      - ((address + 4) & ~0x3));
5042         // The microMIPS .cpload sequence uses the same assembly
5043         // instructions as the traditional psABI version, but the
5044         // incoming $t9 has the low bit set.
5045         else if (r_type == elfcpp::R_MICROMIPS_HI16)
5046           gp_disp = target->adjusted_gp_value(object) - address - 1;
5047         else
5048           gp_disp = target->adjusted_gp_value(object) - address;
5049         value = gp_disp + addend;
5050       }
5051     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5052     val = Bits<32>::bit_select32(val, x, 0xffff);
5053
5054     if (calculate_only)
5055       {
5056         *calculated_value = x;
5057         return This::STATUS_OKAY;
5058       }
5059     else
5060       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5061
5062     return (is_gp_disp ? check_overflow<16>(x)
5063                        : This::STATUS_OKAY);
5064   }
5065
5066   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5067   static inline typename This::Status
5068   relgot16_local(unsigned char* view,
5069                  const Mips_relobj<size, big_endian>* object,
5070                  const Symbol_value<size>* psymval, Mips_address addend_a,
5071                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
5072   {
5073     // Record the relocation.  It will be resolved when we find lo16 part.
5074     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5075                            addend_a, r_type, r_sym, extract_addend));
5076     return This::STATUS_OKAY;
5077   }
5078
5079   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5080   static inline typename This::Status
5081   do_relgot16_local(unsigned char* view,
5082                     const Mips_relobj<size, big_endian>* object,
5083                     const Symbol_value<size>* psymval, Mips_address addend_hi,
5084                     bool extract_addend, Valtype32 addend_lo,
5085                     Target_mips<size, big_endian>* target, bool calculate_only,
5086                     Valtype* calculated_value)
5087   {
5088     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5089     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5090
5091     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5092                                        : addend_hi);
5093
5094     // Find GOT page entry.
5095     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5096                           & 0xffff;
5097     value <<= 16;
5098     unsigned int got_offset =
5099       target->got_section()->get_got_page_offset(value, object);
5100
5101     // Resolve the relocation.
5102     Valtype x = target->got_section()->gp_offset(got_offset, object);
5103     val = Bits<32>::bit_select32(val, x, 0xffff);
5104
5105     if (calculate_only)
5106       {
5107         *calculated_value = x;
5108         return This::STATUS_OKAY;
5109       }
5110     else
5111       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5112
5113     return check_overflow<16>(x);
5114   }
5115
5116   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5117   static inline typename This::Status
5118   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5119           const Mips_relobj<size, big_endian>* object,
5120           const Symbol_value<size>* psymval, Mips_address addend_a,
5121           bool extract_addend, Mips_address address, bool is_gp_disp,
5122           unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5123           bool calculate_only, Valtype* calculated_value)
5124   {
5125     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5126     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5127
5128     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5129                                      : addend_a);
5130
5131     if (rel_type == elfcpp::SHT_REL)
5132       {
5133         typename This::Status reloc_status = This::STATUS_OKAY;
5134         // Resolve pending R_MIPS_HI16 relocations.
5135         typename std::list<reloc_high<size, big_endian> >::iterator it =
5136           hi16_relocs.begin();
5137         while (it != hi16_relocs.end())
5138           {
5139             reloc_high<size, big_endian> hi16 = *it;
5140             if (hi16.r_sym == r_sym
5141                 && is_matching_lo16_reloc(hi16.r_type, r_type))
5142               {
5143                 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5144                 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5145                                        hi16.addend, hi16.address, hi16.gp_disp,
5146                                        hi16.r_type, hi16.extract_addend, addend,
5147                                        target, calculate_only, calculated_value);
5148                 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5149                 if (reloc_status == This::STATUS_OVERFLOW)
5150                   return This::STATUS_OVERFLOW;
5151                 it = hi16_relocs.erase(it);
5152               }
5153             else
5154               ++it;
5155           }
5156
5157         // Resolve pending local R_MIPS_GOT16 relocations.
5158         typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5159           got16_relocs.begin();
5160         while (it2 != got16_relocs.end())
5161           {
5162             reloc_high<size, big_endian> got16 = *it2;
5163             if (got16.r_sym == r_sym
5164                 && is_matching_lo16_reloc(got16.r_type, r_type))
5165               {
5166                 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5167
5168                 reloc_status = do_relgot16_local(got16.view, got16.object,
5169                                      got16.psymval, got16.addend,
5170                                      got16.extract_addend, addend, target,
5171                                      calculate_only, calculated_value);
5172
5173                 mips_reloc_shuffle(got16.view, got16.r_type, false);
5174                 if (reloc_status == This::STATUS_OVERFLOW)
5175                   return This::STATUS_OVERFLOW;
5176                 it2 = got16_relocs.erase(it2);
5177               }
5178             else
5179               ++it2;
5180           }
5181       }
5182
5183     // Resolve R_MIPS_LO16 relocation.
5184     Valtype x;
5185     if (!is_gp_disp)
5186       x = psymval->value(object, addend);
5187     else
5188       {
5189         // See the comment for R_MIPS16_HI16 above for the reason
5190         // for this conditional.
5191         Valtype32 gp_disp;
5192         if (r_type == elfcpp::R_MIPS16_LO16)
5193           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5194         else if (r_type == elfcpp::R_MICROMIPS_LO16
5195                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5196           gp_disp = target->adjusted_gp_value(object) - address + 3;
5197         else
5198           gp_disp = target->adjusted_gp_value(object) - address + 4;
5199         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5200         // for overflow.  Relocations against _gp_disp are normally
5201         // generated from the .cpload pseudo-op.  It generates code
5202         // that normally looks like this:
5203
5204         //   lui    $gp,%hi(_gp_disp)
5205         //   addiu  $gp,$gp,%lo(_gp_disp)
5206         //   addu   $gp,$gp,$t9
5207
5208         // Here $t9 holds the address of the function being called,
5209         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
5210         // relocation can easily overflow in this situation, but the
5211         // R_MIPS_HI16 relocation will handle the overflow.
5212         // Therefore, we consider this a bug in the MIPS ABI, and do
5213         // not check for overflow here.
5214         x = gp_disp + addend;
5215       }
5216     val = Bits<32>::bit_select32(val, x, 0xffff);
5217
5218     if (calculate_only)
5219       *calculated_value = x;
5220     else
5221       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5222
5223     return This::STATUS_OKAY;
5224   }
5225
5226   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5227   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5228   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5229   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5230   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5231   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5232   static inline typename This::Status
5233   relgot(unsigned char* view, int gp_offset, bool calculate_only,
5234          Valtype* calculated_value)
5235   {
5236     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5237     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5238     Valtype x = gp_offset;
5239     val = Bits<32>::bit_select32(val, x, 0xffff);
5240
5241     if (calculate_only)
5242       {
5243         *calculated_value = x;
5244         return This::STATUS_OKAY;
5245       }
5246     else
5247       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5248
5249     return check_overflow<16>(x);
5250   }
5251
5252   // R_MIPS_EH
5253   static inline typename This::Status
5254   releh(unsigned char* view, int gp_offset, bool calculate_only,
5255         Valtype* calculated_value)
5256   {
5257     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5258     Valtype x = gp_offset;
5259
5260     if (calculate_only)
5261       {
5262         *calculated_value = x;
5263         return This::STATUS_OKAY;
5264       }
5265     else
5266       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5267
5268     return check_overflow<32>(x);
5269   }
5270
5271   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5272   static inline typename This::Status
5273   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5274              const Mips_relobj<size, big_endian>* object,
5275              const Symbol_value<size>* psymval, Mips_address addend_a,
5276              bool extract_addend, bool calculate_only,
5277              Valtype* calculated_value)
5278   {
5279     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5280     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5281     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5282
5283     // Find a GOT page entry that points to within 32KB of symbol + addend.
5284     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5285     unsigned int  got_offset =
5286       target->got_section()->get_got_page_offset(value, object);
5287
5288     Valtype x = target->got_section()->gp_offset(got_offset, object);
5289     val = Bits<32>::bit_select32(val, x, 0xffff);
5290
5291     if (calculate_only)
5292       {
5293         *calculated_value = x;
5294         return This::STATUS_OKAY;
5295       }
5296     else
5297       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5298
5299     return check_overflow<16>(x);
5300   }
5301
5302   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5303   static inline typename This::Status
5304   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5305              const Mips_relobj<size, big_endian>* object,
5306              const Symbol_value<size>* psymval, Mips_address addend_a,
5307              bool extract_addend, bool local, bool calculate_only,
5308              Valtype* calculated_value)
5309   {
5310     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5311     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5312     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5313
5314     // For a local symbol, find a GOT page entry that points to within 32KB of
5315     // symbol + addend.  Relocation value is the offset of the GOT page entry's
5316     // value from symbol + addend.
5317     // For a global symbol, relocation value is addend.
5318     Valtype x;
5319     if (local)
5320       {
5321         // Find GOT page entry.
5322         Mips_address value = ((psymval->value(object, addend) + 0x8000)
5323                               & ~0xffff);
5324         target->got_section()->get_got_page_offset(value, object);
5325
5326         x = psymval->value(object, addend) - value;
5327       }
5328     else
5329       x = addend;
5330     val = Bits<32>::bit_select32(val, x, 0xffff);
5331
5332     if (calculate_only)
5333       {
5334         *calculated_value = x;
5335         return This::STATUS_OKAY;
5336       }
5337     else
5338       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5339
5340     return check_overflow<16>(x);
5341   }
5342
5343   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5344   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5345   static inline typename This::Status
5346   relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5347               Valtype* calculated_value)
5348   {
5349     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5350     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5351     Valtype x = gp_offset;
5352     x = ((x + 0x8000) >> 16) & 0xffff;
5353     val = Bits<32>::bit_select32(val, x, 0xffff);
5354
5355     if (calculate_only)
5356       *calculated_value = x;
5357     else
5358       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5359
5360     return This::STATUS_OKAY;
5361   }
5362
5363   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5364   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5365   static inline typename This::Status
5366   relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5367               Valtype* calculated_value)
5368   {
5369     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5370     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5371     Valtype x = gp_offset;
5372     val = Bits<32>::bit_select32(val, x, 0xffff);
5373
5374     if (calculate_only)
5375       *calculated_value = x;
5376     else
5377       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5378
5379     return This::STATUS_OKAY;
5380   }
5381
5382   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5383   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5384   static inline typename This::Status
5385   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5386            const Symbol_value<size>* psymval, Mips_address gp,
5387            Mips_address addend_a, bool extract_addend, bool local,
5388            unsigned int r_type, bool calculate_only,
5389            Valtype* calculated_value)
5390   {
5391     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5392     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5393
5394     Valtype addend;
5395     if (extract_addend)
5396       {
5397         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5398           addend = (val & 0x7f) << 2;
5399         else
5400           addend = val & 0xffff;
5401         // Only sign-extend the addend if it was extracted from the
5402         // instruction.  If the addend was separate, leave it alone,
5403         // otherwise we may lose significant bits.
5404         addend = Bits<16>::sign_extend32(addend);
5405       }
5406     else
5407       addend = addend_a;
5408
5409     Valtype x = psymval->value(object, addend) - gp;
5410
5411     // If the symbol was local, any earlier relocatable links will
5412     // have adjusted its addend with the gp offset, so compensate
5413     // for that now.  Don't do it for symbols forced local in this
5414     // link, though, since they won't have had the gp offset applied
5415     // to them before.
5416     if (local)
5417       x += object->gp_value();
5418
5419     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5420       val = Bits<32>::bit_select32(val, x, 0x7f);
5421     else
5422       val = Bits<32>::bit_select32(val, x, 0xffff);
5423
5424     if (calculate_only)
5425       {
5426         *calculated_value = x;
5427         return This::STATUS_OKAY;
5428       }
5429     else
5430       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5431
5432     if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5433       {
5434         gold_error(_("small-data section exceeds 64KB; lower small-data size "
5435                      "limit (see option -G)"));
5436         return This::STATUS_OVERFLOW;
5437       }
5438     return This::STATUS_OKAY;
5439   }
5440
5441   // R_MIPS_GPREL32
5442   static inline typename This::Status
5443   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5444              const Symbol_value<size>* psymval, Mips_address gp,
5445              Mips_address addend_a, bool extract_addend, bool calculate_only,
5446              Valtype* calculated_value)
5447   {
5448     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5449     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5450     Valtype addend = extract_addend ? val : addend_a;
5451
5452     // R_MIPS_GPREL32 relocations are defined for local symbols only.
5453     Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5454
5455     if (calculate_only)
5456       *calculated_value = x;
5457     else
5458       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5459
5460     return This::STATUS_OKAY;
5461  }
5462
5463   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5464   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5465   // R_MICROMIPS_TLS_DTPREL_HI16
5466   static inline typename This::Status
5467   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5468              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5469              Mips_address addend_a, bool extract_addend, bool calculate_only,
5470              Valtype* calculated_value)
5471   {
5472     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5473     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5474     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5475
5476     // tls symbol values are relative to tls_segment()->vaddr()
5477     Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5478     val = Bits<32>::bit_select32(val, x, 0xffff);
5479
5480     if (calculate_only)
5481       *calculated_value = x;
5482     else
5483       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5484
5485     return This::STATUS_OKAY;
5486   }
5487
5488   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5489   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5490   // R_MICROMIPS_TLS_DTPREL_LO16,
5491   static inline typename This::Status
5492   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5493              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5494              Mips_address addend_a, bool extract_addend, bool calculate_only,
5495              Valtype* calculated_value)
5496   {
5497     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5498     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5499     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5500
5501     // tls symbol values are relative to tls_segment()->vaddr()
5502     Valtype x = psymval->value(object, addend) - tp_offset;
5503     val = Bits<32>::bit_select32(val, x, 0xffff);
5504
5505     if (calculate_only)
5506       *calculated_value = x;
5507     else
5508       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5509
5510     return This::STATUS_OKAY;
5511   }
5512
5513   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5514   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5515   static inline typename This::Status
5516   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5517            const Symbol_value<size>* psymval, Valtype32 tp_offset,
5518            Mips_address addend_a, bool extract_addend, bool calculate_only,
5519            Valtype* calculated_value)
5520   {
5521     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5522     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5523     Valtype addend = extract_addend ? val : addend_a;
5524
5525     // tls symbol values are relative to tls_segment()->vaddr()
5526     Valtype x = psymval->value(object, addend) - tp_offset;
5527
5528     if (calculate_only)
5529       *calculated_value = x;
5530     else
5531       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5532
5533     return This::STATUS_OKAY;
5534   }
5535
5536   // R_MIPS_SUB, R_MICROMIPS_SUB
5537   static inline typename This::Status
5538   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5539          const Symbol_value<size>* psymval, Mips_address addend_a,
5540          bool extract_addend, bool calculate_only, Valtype* calculated_value)
5541   {
5542     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5543     Valtype64 addend = (extract_addend
5544                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5545                         : addend_a);
5546
5547     Valtype64 x = psymval->value(object, -addend);
5548     if (calculate_only)
5549       *calculated_value = x;
5550     else
5551       elfcpp::Swap<64, big_endian>::writeval(wv, x);
5552
5553     return This::STATUS_OKAY;
5554   }
5555
5556   // R_MIPS_64: S + A
5557   static inline typename This::Status
5558   rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5559         const Symbol_value<size>* psymval, Mips_address addend_a,
5560         bool extract_addend, bool calculate_only, Valtype* calculated_value,
5561         bool apply_addend_only)
5562   {
5563     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5564     Valtype64 addend = (extract_addend
5565                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5566                         : addend_a);
5567
5568     Valtype64 x = psymval->value(object, addend);
5569     if (calculate_only)
5570       *calculated_value = x;
5571     else
5572       {
5573         if (apply_addend_only)
5574           x = addend;
5575         elfcpp::Swap<64, big_endian>::writeval(wv, x);
5576       }
5577
5578     return This::STATUS_OKAY;
5579   }
5580
5581   // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5582   static inline typename This::Status
5583   relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5584             const Symbol_value<size>* psymval, Mips_address addend_a,
5585             bool extract_addend, bool calculate_only, Valtype* calculated_value)
5586   {
5587     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5588     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5589     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5590                                      : addend_a);
5591
5592     Valtype x = psymval->value(object, addend);
5593     x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5594     val = Bits<32>::bit_select32(val, x, 0xffff);
5595
5596     if (calculate_only)
5597       *calculated_value = x;
5598     else
5599       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5600
5601     return This::STATUS_OKAY;
5602   }
5603
5604   // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5605   static inline typename This::Status
5606   relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5607              const Symbol_value<size>* psymval, Mips_address addend_a,
5608              bool extract_addend, bool calculate_only,
5609              Valtype* calculated_value)
5610   {
5611     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5612     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5613     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5614                                      : addend_a);
5615
5616     Valtype x = psymval->value(object, addend);
5617     x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5618     val = Bits<32>::bit_select32(val, x, 0xffff);
5619
5620     if (calculate_only)
5621       *calculated_value = x;
5622     else
5623       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5624
5625     return This::STATUS_OKAY;
5626   }
5627 };
5628
5629 template<int size, bool big_endian>
5630 typename std::list<reloc_high<size, big_endian> >
5631     Mips_relocate_functions<size, big_endian>::hi16_relocs;
5632
5633 template<int size, bool big_endian>
5634 typename std::list<reloc_high<size, big_endian> >
5635     Mips_relocate_functions<size, big_endian>::got16_relocs;
5636
5637 template<int size, bool big_endian>
5638 typename std::list<reloc_high<size, big_endian> >
5639     Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5640
5641 // Mips_got_info methods.
5642
5643 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5644 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5645
5646 template<int size, bool big_endian>
5647 void
5648 Mips_got_info<size, big_endian>::record_local_got_symbol(
5649     Mips_relobj<size, big_endian>* object, unsigned int symndx,
5650     Mips_address addend, unsigned int r_type, unsigned int shndx,
5651     bool is_section_symbol)
5652 {
5653   Mips_got_entry<size, big_endian>* entry =
5654     new Mips_got_entry<size, big_endian>(object, symndx, addend,
5655                                          mips_elf_reloc_tls_type(r_type),
5656                                          shndx, is_section_symbol);
5657   this->record_got_entry(entry, object);
5658 }
5659
5660 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5661 // in OBJECT.  FOR_CALL is true if the caller is only interested in
5662 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
5663 // relocation.
5664
5665 template<int size, bool big_endian>
5666 void
5667 Mips_got_info<size, big_endian>::record_global_got_symbol(
5668     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5669     unsigned int r_type, bool dyn_reloc, bool for_call)
5670 {
5671   if (!for_call)
5672     mips_sym->set_got_not_only_for_calls();
5673
5674   // A global symbol in the GOT must also be in the dynamic symbol table.
5675   if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5676     {
5677       switch (mips_sym->visibility())
5678         {
5679         case elfcpp::STV_INTERNAL:
5680         case elfcpp::STV_HIDDEN:
5681           mips_sym->set_is_forced_local();
5682           break;
5683         default:
5684           mips_sym->set_needs_dynsym_entry();
5685           break;
5686         }
5687     }
5688
5689   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5690   if (tls_type == GOT_TLS_NONE)
5691     this->global_got_symbols_.insert(mips_sym);
5692
5693   if (dyn_reloc)
5694     {
5695       if (mips_sym->global_got_area() == GGA_NONE)
5696         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5697       return;
5698     }
5699
5700   Mips_got_entry<size, big_endian>* entry =
5701     new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5702
5703   this->record_got_entry(entry, object);
5704 }
5705
5706 // Add ENTRY to master GOT and to OBJECT's GOT.
5707
5708 template<int size, bool big_endian>
5709 void
5710 Mips_got_info<size, big_endian>::record_got_entry(
5711     Mips_got_entry<size, big_endian>* entry,
5712     Mips_relobj<size, big_endian>* object)
5713 {
5714   this->got_entries_.insert(entry);
5715
5716   // Create the GOT entry for the OBJECT's GOT.
5717   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5718   Mips_got_entry<size, big_endian>* entry2 =
5719     new Mips_got_entry<size, big_endian>(*entry);
5720
5721   g->got_entries_.insert(entry2);
5722 }
5723
5724 // Record that OBJECT has a page relocation against symbol SYMNDX and
5725 // that ADDEND is the addend for that relocation.
5726 // This function creates an upper bound on the number of GOT slots
5727 // required; no attempt is made to combine references to non-overridable
5728 // global symbols across multiple input files.
5729
5730 template<int size, bool big_endian>
5731 void
5732 Mips_got_info<size, big_endian>::record_got_page_entry(
5733     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5734 {
5735   struct Got_page_range **range_ptr, *range;
5736   int old_pages, new_pages;
5737
5738   // Find the Got_page_entry for this symbol.
5739   Got_page_entry* entry = new Got_page_entry(object, symndx);
5740   typename Got_page_entry_set::iterator it =
5741     this->got_page_entries_.find(entry);
5742   if (it != this->got_page_entries_.end())
5743     entry = *it;
5744   else
5745     this->got_page_entries_.insert(entry);
5746
5747   // Add the same entry to the OBJECT's GOT.
5748   Got_page_entry* entry2 = NULL;
5749   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5750   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5751     {
5752       entry2 = new Got_page_entry(*entry);
5753       g2->got_page_entries_.insert(entry2);
5754     }
5755
5756   // Skip over ranges whose maximum extent cannot share a page entry
5757   // with ADDEND.
5758   range_ptr = &entry->ranges;
5759   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5760     range_ptr = &(*range_ptr)->next;
5761
5762   // If we scanned to the end of the list, or found a range whose
5763   // minimum extent cannot share a page entry with ADDEND, create
5764   // a new singleton range.
5765   range = *range_ptr;
5766   if (!range || addend < range->min_addend - 0xffff)
5767     {
5768       range = new Got_page_range();
5769       range->next = *range_ptr;
5770       range->min_addend = addend;
5771       range->max_addend = addend;
5772
5773       *range_ptr = range;
5774       ++entry->num_pages;
5775       if (entry2 != NULL)
5776         ++entry2->num_pages;
5777       ++this->page_gotno_;
5778       ++g2->page_gotno_;
5779       return;
5780     }
5781
5782   // Remember how many pages the old range contributed.
5783   old_pages = range->get_max_pages();
5784
5785   // Update the ranges.
5786   if (addend < range->min_addend)
5787     range->min_addend = addend;
5788   else if (addend > range->max_addend)
5789     {
5790       if (range->next && addend >= range->next->min_addend - 0xffff)
5791         {
5792           old_pages += range->next->get_max_pages();
5793           range->max_addend = range->next->max_addend;
5794           range->next = range->next->next;
5795         }
5796       else
5797         range->max_addend = addend;
5798     }
5799
5800   // Record any change in the total estimate.
5801   new_pages = range->get_max_pages();
5802   if (old_pages != new_pages)
5803     {
5804       entry->num_pages += new_pages - old_pages;
5805       if (entry2 != NULL)
5806         entry2->num_pages += new_pages - old_pages;
5807       this->page_gotno_ += new_pages - old_pages;
5808       g2->page_gotno_ += new_pages - old_pages;
5809     }
5810 }
5811
5812 // Create all entries that should be in the local part of the GOT.
5813
5814 template<int size, bool big_endian>
5815 void
5816 Mips_got_info<size, big_endian>::add_local_entries(
5817     Target_mips<size, big_endian>* target, Layout* layout)
5818 {
5819   Mips_output_data_got<size, big_endian>* got = target->got_section();
5820   // First two GOT entries are reserved.  The first entry will be filled at
5821   // runtime.  The second entry will be used by some runtime loaders.
5822   got->add_constant(0);
5823   got->add_constant(target->mips_elf_gnu_got1_mask());
5824
5825   for (typename Got_entry_set::iterator
5826        p = this->got_entries_.begin();
5827        p != this->got_entries_.end();
5828        ++p)
5829     {
5830       Mips_got_entry<size, big_endian>* entry = *p;
5831       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5832         {
5833           got->add_local(entry->object(), entry->symndx(),
5834                          GOT_TYPE_STANDARD, entry->addend());
5835           unsigned int got_offset = entry->object()->local_got_offset(
5836               entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5837           if (got->multi_got() && this->index_ > 0
5838               && parameters->options().output_is_position_independent())
5839           {
5840             if (!entry->is_section_symbol())
5841               target->rel_dyn_section(layout)->add_local(entry->object(),
5842                   entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5843             else
5844               target->rel_dyn_section(layout)->add_symbolless_local_addend(
5845                   entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5846                   got, got_offset);
5847           }
5848         }
5849     }
5850
5851   this->add_page_entries(target, layout);
5852
5853   // Add global entries that should be in the local area.
5854   for (typename Got_entry_set::iterator
5855        p = this->got_entries_.begin();
5856        p != this->got_entries_.end();
5857        ++p)
5858     {
5859       Mips_got_entry<size, big_endian>* entry = *p;
5860       if (!entry->is_for_global_symbol())
5861         continue;
5862
5863       Mips_symbol<size>* mips_sym = entry->sym();
5864       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5865         {
5866           unsigned int got_type;
5867           if (!got->multi_got())
5868             got_type = GOT_TYPE_STANDARD;
5869           else
5870             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5871           if (got->add_global(mips_sym, got_type))
5872             {
5873               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5874               if (got->multi_got() && this->index_ > 0
5875                   && parameters->options().output_is_position_independent())
5876                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5877                     mips_sym, elfcpp::R_MIPS_REL32, got,
5878                     mips_sym->got_offset(got_type));
5879             }
5880         }
5881     }
5882 }
5883
5884 // Create GOT page entries.
5885
5886 template<int size, bool big_endian>
5887 void
5888 Mips_got_info<size, big_endian>::add_page_entries(
5889     Target_mips<size, big_endian>* target, Layout* layout)
5890 {
5891   if (this->page_gotno_ == 0)
5892     return;
5893
5894   Mips_output_data_got<size, big_endian>* got = target->got_section();
5895   this->got_page_offset_start_ = got->add_constant(0);
5896   if (got->multi_got() && this->index_ > 0
5897       && parameters->options().output_is_position_independent())
5898     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5899                                                   this->got_page_offset_start_);
5900   int num_entries = this->page_gotno_;
5901   unsigned int prev_offset = this->got_page_offset_start_;
5902   while (--num_entries > 0)
5903     {
5904       unsigned int next_offset = got->add_constant(0);
5905       if (got->multi_got() && this->index_ > 0
5906           && parameters->options().output_is_position_independent())
5907         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5908                                                       next_offset);
5909       gold_assert(next_offset == prev_offset + size/8);
5910       prev_offset = next_offset;
5911     }
5912   this->got_page_offset_next_ = this->got_page_offset_start_;
5913 }
5914
5915 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5916
5917 template<int size, bool big_endian>
5918 void
5919 Mips_got_info<size, big_endian>::add_global_entries(
5920     Target_mips<size, big_endian>* target, Layout* layout,
5921     unsigned int non_reloc_only_global_gotno)
5922 {
5923   Mips_output_data_got<size, big_endian>* got = target->got_section();
5924   // Add GGA_NORMAL entries.
5925   unsigned int count = 0;
5926   for (typename Got_entry_set::iterator
5927        p = this->got_entries_.begin();
5928        p != this->got_entries_.end();
5929        ++p)
5930     {
5931       Mips_got_entry<size, big_endian>* entry = *p;
5932       if (!entry->is_for_global_symbol())
5933         continue;
5934
5935       Mips_symbol<size>* mips_sym = entry->sym();
5936       if (mips_sym->global_got_area() != GGA_NORMAL)
5937         continue;
5938
5939       unsigned int got_type;
5940       if (!got->multi_got())
5941         got_type = GOT_TYPE_STANDARD;
5942       else
5943         // In multi-GOT links, global symbol can be in both primary and
5944         // secondary GOT(s).  By creating custom GOT type
5945         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5946         // is added to secondary GOT(s).
5947         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5948       if (!got->add_global(mips_sym, got_type))
5949         continue;
5950
5951       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5952       if (got->multi_got() && this->index_ == 0)
5953         count++;
5954       if (got->multi_got() && this->index_ > 0)
5955         {
5956           if (parameters->options().output_is_position_independent()
5957               || (!parameters->doing_static_link()
5958                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5959             {
5960               target->rel_dyn_section(layout)->add_global(
5961                   mips_sym, elfcpp::R_MIPS_REL32, got,
5962                   mips_sym->got_offset(got_type));
5963               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5964                                            elfcpp::R_MIPS_REL32, mips_sym);
5965             }
5966         }
5967     }
5968
5969   if (!got->multi_got() || this->index_ == 0)
5970     {
5971       if (got->multi_got())
5972         {
5973           // We need to allocate space in the primary GOT for GGA_NORMAL entries
5974           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5975           // entries correspond to dynamic symbol indexes.
5976           while (count < non_reloc_only_global_gotno)
5977             {
5978               got->add_constant(0);
5979               ++count;
5980             }
5981         }
5982
5983       // Add GGA_RELOC_ONLY entries.
5984       got->add_reloc_only_entries();
5985     }
5986 }
5987
5988 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5989
5990 template<int size, bool big_endian>
5991 void
5992 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5993     Mips_output_data_got<size, big_endian>* got)
5994 {
5995   for (typename Global_got_entry_set::iterator
5996        p = this->global_got_symbols_.begin();
5997        p != this->global_got_symbols_.end();
5998        ++p)
5999     {
6000       Mips_symbol<size>* mips_sym = *p;
6001       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6002         {
6003           unsigned int got_type;
6004           if (!got->multi_got())
6005             got_type = GOT_TYPE_STANDARD;
6006           else
6007             got_type = GOT_TYPE_STANDARD_MULTIGOT;
6008           if (got->add_global(mips_sym, got_type))
6009             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6010         }
6011     }
6012 }
6013
6014 // Create TLS GOT entries.
6015
6016 template<int size, bool big_endian>
6017 void
6018 Mips_got_info<size, big_endian>::add_tls_entries(
6019     Target_mips<size, big_endian>* target, Layout* layout)
6020 {
6021   Mips_output_data_got<size, big_endian>* got = target->got_section();
6022   // Add local tls entries.
6023   for (typename Got_entry_set::iterator
6024        p = this->got_entries_.begin();
6025        p != this->got_entries_.end();
6026        ++p)
6027     {
6028       Mips_got_entry<size, big_endian>* entry = *p;
6029       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6030         continue;
6031
6032       if (entry->tls_type() == GOT_TLS_GD)
6033         {
6034           unsigned int got_type = GOT_TYPE_TLS_PAIR;
6035           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6036                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6037           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6038                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6039
6040           if (!parameters->doing_static_link())
6041             {
6042               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6043                                            entry->shndx(), got_type,
6044                                            target->rel_dyn_section(layout),
6045                                            r_type1, entry->addend());
6046               unsigned int got_offset =
6047                 entry->object()->local_got_offset(entry->symndx(), got_type,
6048                                                   entry->addend());
6049               got->add_static_reloc(got_offset + size/8, r_type2,
6050                                     entry->object(), entry->symndx());
6051             }
6052           else
6053             {
6054               // We are doing a static link.  Mark it as belong to module 1,
6055               // the executable.
6056               unsigned int got_offset = got->add_constant(1);
6057               entry->object()->set_local_got_offset(entry->symndx(), got_type,
6058                                                     got_offset,
6059                                                     entry->addend());
6060               got->add_constant(0);
6061               got->add_static_reloc(got_offset + size/8, r_type2,
6062                                     entry->object(), entry->symndx());
6063             }
6064         }
6065       else if (entry->tls_type() == GOT_TLS_IE)
6066         {
6067           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6068           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6069                                             : elfcpp::R_MIPS_TLS_TPREL64);
6070           if (!parameters->doing_static_link())
6071             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6072                                     target->rel_dyn_section(layout), r_type,
6073                                     entry->addend());
6074           else
6075             {
6076               got->add_local(entry->object(), entry->symndx(), got_type,
6077                              entry->addend());
6078               unsigned int got_offset =
6079                   entry->object()->local_got_offset(entry->symndx(), got_type,
6080                                                     entry->addend());
6081               got->add_static_reloc(got_offset, r_type, entry->object(),
6082                                     entry->symndx());
6083             }
6084         }
6085       else if (entry->tls_type() == GOT_TLS_LDM)
6086         {
6087           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6088                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
6089           unsigned int got_offset;
6090           if (!parameters->doing_static_link())
6091             {
6092               got_offset = got->add_constant(0);
6093               target->rel_dyn_section(layout)->add_local(
6094                   entry->object(), 0, r_type, got, got_offset);
6095             }
6096           else
6097             // We are doing a static link.  Just mark it as belong to module 1,
6098             // the executable.
6099             got_offset = got->add_constant(1);
6100
6101           got->add_constant(0);
6102           got->set_tls_ldm_offset(got_offset, entry->object());
6103         }
6104       else
6105         gold_unreachable();
6106     }
6107
6108   // Add global tls entries.
6109   for (typename Got_entry_set::iterator
6110        p = this->got_entries_.begin();
6111        p != this->got_entries_.end();
6112        ++p)
6113     {
6114       Mips_got_entry<size, big_endian>* entry = *p;
6115       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6116         continue;
6117
6118       Mips_symbol<size>* mips_sym = entry->sym();
6119       if (entry->tls_type() == GOT_TLS_GD)
6120         {
6121           unsigned int got_type;
6122           if (!got->multi_got())
6123             got_type = GOT_TYPE_TLS_PAIR;
6124           else
6125             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6126           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6127                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6128           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6129                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6130           if (!parameters->doing_static_link())
6131             got->add_global_pair_with_rel(mips_sym, got_type,
6132                              target->rel_dyn_section(layout), r_type1, r_type2);
6133           else
6134             {
6135               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
6136               // GOT entries.  The first one is initialized to be 1, which is the
6137               // module index for the main executable and the second one 0.  A
6138               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6139               // the second GOT entry and will be applied by gold.
6140               unsigned int got_offset = got->add_constant(1);
6141               mips_sym->set_got_offset(got_type, got_offset);
6142               got->add_constant(0);
6143               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6144             }
6145         }
6146       else if (entry->tls_type() == GOT_TLS_IE)
6147         {
6148           unsigned int got_type;
6149           if (!got->multi_got())
6150             got_type = GOT_TYPE_TLS_OFFSET;
6151           else
6152             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6153           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6154                                             : elfcpp::R_MIPS_TLS_TPREL64);
6155           if (!parameters->doing_static_link())
6156             got->add_global_with_rel(mips_sym, got_type,
6157                                      target->rel_dyn_section(layout), r_type);
6158           else
6159             {
6160               got->add_global(mips_sym, got_type);
6161               unsigned int got_offset = mips_sym->got_offset(got_type);
6162               got->add_static_reloc(got_offset, r_type, mips_sym);
6163             }
6164         }
6165       else
6166         gold_unreachable();
6167     }
6168 }
6169
6170 // Decide whether the symbol needs an entry in the global part of the primary
6171 // GOT, setting global_got_area accordingly.  Count the number of global
6172 // symbols that are in the primary GOT only because they have dynamic
6173 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6174
6175 template<int size, bool big_endian>
6176 void
6177 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6178 {
6179   for (typename Global_got_entry_set::iterator
6180        p = this->global_got_symbols_.begin();
6181        p != this->global_got_symbols_.end();
6182        ++p)
6183     {
6184       Mips_symbol<size>* sym = *p;
6185       // Make a final decision about whether the symbol belongs in the
6186       // local or global GOT.  Symbols that bind locally can (and in the
6187       // case of forced-local symbols, must) live in the local GOT.
6188       // Those that are aren't in the dynamic symbol table must also
6189       // live in the local GOT.
6190
6191       if (!sym->should_add_dynsym_entry(symtab)
6192           || (sym->got_only_for_calls()
6193               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6194               : symbol_references_local(sym,
6195                                         sym->should_add_dynsym_entry(symtab))))
6196         // The symbol belongs in the local GOT.  We no longer need this
6197         // entry if it was only used for relocations; those relocations
6198         // will be against the null or section symbol instead.
6199         sym->set_global_got_area(GGA_NONE);
6200       else if (sym->global_got_area() == GGA_RELOC_ONLY)
6201         {
6202           ++this->reloc_only_gotno_;
6203           ++this->global_gotno_ ;
6204         }
6205     }
6206 }
6207
6208 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
6209 // VALUE if it is not initialized.
6210
6211 template<int size, bool big_endian>
6212 unsigned int
6213 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6214     Mips_output_data_got<size, big_endian>* got)
6215 {
6216   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6217   if (it != this->got_page_offsets_.end())
6218     return it->second;
6219
6220   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6221               + (size/8) * this->page_gotno_);
6222
6223   unsigned int got_offset = this->got_page_offset_next_;
6224   this->got_page_offsets_[value] = got_offset;
6225   this->got_page_offset_next_ += size/8;
6226   got->update_got_entry(got_offset, value);
6227   return got_offset;
6228 }
6229
6230 // Remove lazy-binding stubs for global symbols in this GOT.
6231
6232 template<int size, bool big_endian>
6233 void
6234 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6235     Target_mips<size, big_endian>* target)
6236 {
6237   for (typename Got_entry_set::iterator
6238        p = this->got_entries_.begin();
6239        p != this->got_entries_.end();
6240        ++p)
6241     {
6242       Mips_got_entry<size, big_endian>* entry = *p;
6243       if (entry->is_for_global_symbol())
6244         target->remove_lazy_stub_entry(entry->sym());
6245     }
6246 }
6247
6248 // Count the number of GOT entries required.
6249
6250 template<int size, bool big_endian>
6251 void
6252 Mips_got_info<size, big_endian>::count_got_entries()
6253 {
6254   for (typename Got_entry_set::iterator
6255        p = this->got_entries_.begin();
6256        p != this->got_entries_.end();
6257        ++p)
6258     {
6259       this->count_got_entry(*p);
6260     }
6261 }
6262
6263 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
6264
6265 template<int size, bool big_endian>
6266 void
6267 Mips_got_info<size, big_endian>::count_got_entry(
6268     Mips_got_entry<size, big_endian>* entry)
6269 {
6270   if (entry->is_tls_entry())
6271     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6272   else if (entry->is_for_local_symbol()
6273            || entry->sym()->global_got_area() == GGA_NONE)
6274     ++this->local_gotno_;
6275   else
6276     ++this->global_gotno_;
6277 }
6278
6279 // Add FROM's GOT entries.
6280
6281 template<int size, bool big_endian>
6282 void
6283 Mips_got_info<size, big_endian>::add_got_entries(
6284     Mips_got_info<size, big_endian>* from)
6285 {
6286   for (typename Got_entry_set::iterator
6287        p = from->got_entries_.begin();
6288        p != from->got_entries_.end();
6289        ++p)
6290     {
6291       Mips_got_entry<size, big_endian>* entry = *p;
6292       if (this->got_entries_.find(entry) == this->got_entries_.end())
6293         {
6294           Mips_got_entry<size, big_endian>* entry2 =
6295             new Mips_got_entry<size, big_endian>(*entry);
6296           this->got_entries_.insert(entry2);
6297           this->count_got_entry(entry);
6298         }
6299     }
6300 }
6301
6302 // Add FROM's GOT page entries.
6303
6304 template<int size, bool big_endian>
6305 void
6306 Mips_got_info<size, big_endian>::add_got_page_entries(
6307     Mips_got_info<size, big_endian>* from)
6308 {
6309   for (typename Got_page_entry_set::iterator
6310        p = from->got_page_entries_.begin();
6311        p != from->got_page_entries_.end();
6312        ++p)
6313     {
6314       Got_page_entry* entry = *p;
6315       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6316         {
6317           Got_page_entry* entry2 = new Got_page_entry(*entry);
6318           this->got_page_entries_.insert(entry2);
6319           this->page_gotno_ += entry->num_pages;
6320         }
6321     }
6322 }
6323
6324 // Mips_output_data_got methods.
6325
6326 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
6327 // larger than 64K, create multi-GOT.
6328
6329 template<int size, bool big_endian>
6330 void
6331 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6332     Symbol_table* symtab, const Input_objects* input_objects)
6333 {
6334   // Decide which symbols need to go in the global part of the GOT and
6335   // count the number of reloc-only GOT symbols.
6336   this->master_got_info_->count_got_symbols(symtab);
6337
6338   // Count the number of GOT entries.
6339   this->master_got_info_->count_got_entries();
6340
6341   unsigned int got_size = this->master_got_info_->got_size();
6342   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6343     this->lay_out_multi_got(layout, input_objects);
6344   else
6345     {
6346       // Record that all objects use single GOT.
6347       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6348            p != input_objects->relobj_end();
6349            ++p)
6350         {
6351           Mips_relobj<size, big_endian>* object =
6352             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6353           if (object->get_got_info() != NULL)
6354             object->set_got_info(this->master_got_info_);
6355         }
6356
6357       this->master_got_info_->add_local_entries(this->target_, layout);
6358       this->master_got_info_->add_global_entries(this->target_, layout,
6359                                                  /*not used*/-1U);
6360       this->master_got_info_->add_tls_entries(this->target_, layout);
6361     }
6362 }
6363
6364 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
6365
6366 template<int size, bool big_endian>
6367 void
6368 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6369     const Input_objects* input_objects)
6370 {
6371   // Try to merge the GOTs of input objects together, as long as they
6372   // don't seem to exceed the maximum GOT size, choosing one of them
6373   // to be the primary GOT.
6374   this->merge_gots(input_objects);
6375
6376   // Every symbol that is referenced in a dynamic relocation must be
6377   // present in the primary GOT.
6378   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6379
6380   // Add GOT entries.
6381   unsigned int i = 0;
6382   unsigned int offset = 0;
6383   Mips_got_info<size, big_endian>* g = this->primary_got_;
6384   do
6385     {
6386       g->set_index(i);
6387       g->set_offset(offset);
6388
6389       g->add_local_entries(this->target_, layout);
6390       if (i == 0)
6391         g->add_global_entries(this->target_, layout,
6392                               (this->master_got_info_->global_gotno()
6393                                - this->master_got_info_->reloc_only_gotno()));
6394       else
6395         g->add_global_entries(this->target_, layout, /*not used*/-1U);
6396       g->add_tls_entries(this->target_, layout);
6397
6398       // Forbid global symbols in every non-primary GOT from having
6399       // lazy-binding stubs.
6400       if (i > 0)
6401         g->remove_lazy_stubs(this->target_);
6402
6403       ++i;
6404       offset += g->got_size();
6405       g = g->next();
6406     }
6407   while (g);
6408 }
6409
6410 // Attempt to merge GOTs of different input objects.  Try to use as much as
6411 // possible of the primary GOT, since it doesn't require explicit dynamic
6412 // relocations, but don't use objects that would reference global symbols
6413 // out of the addressable range.  Failing the primary GOT, attempt to merge
6414 // with the current GOT, or finish the current GOT and then make make the new
6415 // GOT current.
6416
6417 template<int size, bool big_endian>
6418 void
6419 Mips_output_data_got<size, big_endian>::merge_gots(
6420     const Input_objects* input_objects)
6421 {
6422   gold_assert(this->primary_got_ == NULL);
6423   Mips_got_info<size, big_endian>* current = NULL;
6424
6425   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6426        p != input_objects->relobj_end();
6427        ++p)
6428     {
6429       Mips_relobj<size, big_endian>* object =
6430         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6431
6432       Mips_got_info<size, big_endian>* g = object->get_got_info();
6433       if (g == NULL)
6434         continue;
6435
6436       g->count_got_entries();
6437
6438       // Work out the number of page, local and TLS entries.
6439       unsigned int estimate = this->master_got_info_->page_gotno();
6440       if (estimate > g->page_gotno())
6441         estimate = g->page_gotno();
6442       estimate += g->local_gotno() + g->tls_gotno();
6443
6444       // We place TLS GOT entries after both locals and globals.  The globals
6445       // for the primary GOT may overflow the normal GOT size limit, so be
6446       // sure not to merge a GOT which requires TLS with the primary GOT in that
6447       // case.  This doesn't affect non-primary GOTs.
6448       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6449                                       : g->global_gotno());
6450
6451       unsigned int max_count =
6452         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6453       if (estimate <= max_count)
6454         {
6455           // If we don't have a primary GOT, use it as
6456           // a starting point for the primary GOT.
6457           if (!this->primary_got_)
6458             {
6459               this->primary_got_ = g;
6460               continue;
6461             }
6462
6463           // Try merging with the primary GOT.
6464           if (this->merge_got_with(g, object, this->primary_got_))
6465             continue;
6466         }
6467
6468       // If we can merge with the last-created GOT, do it.
6469       if (current && this->merge_got_with(g, object, current))
6470         continue;
6471
6472       // Well, we couldn't merge, so create a new GOT.  Don't check if it
6473       // fits; if it turns out that it doesn't, we'll get relocation
6474       // overflows anyway.
6475       g->set_next(current);
6476       current = g;
6477     }
6478
6479   // If we do not find any suitable primary GOT, create an empty one.
6480   if (this->primary_got_ == NULL)
6481     this->primary_got_ = new Mips_got_info<size, big_endian>();
6482
6483   // Link primary GOT with secondary GOTs.
6484   this->primary_got_->set_next(current);
6485 }
6486
6487 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
6488 // this would lead to overflow, true if they were merged successfully.
6489
6490 template<int size, bool big_endian>
6491 bool
6492 Mips_output_data_got<size, big_endian>::merge_got_with(
6493     Mips_got_info<size, big_endian>* from,
6494     Mips_relobj<size, big_endian>* object,
6495     Mips_got_info<size, big_endian>* to)
6496 {
6497   // Work out how many page entries we would need for the combined GOT.
6498   unsigned int estimate = this->master_got_info_->page_gotno();
6499   if (estimate >= from->page_gotno() + to->page_gotno())
6500     estimate = from->page_gotno() + to->page_gotno();
6501
6502   // Conservatively estimate how many local and TLS entries would be needed.
6503   estimate += from->local_gotno() + to->local_gotno();
6504   estimate += from->tls_gotno() + to->tls_gotno();
6505
6506   // If we're merging with the primary got, any TLS relocations will
6507   // come after the full set of global entries.  Otherwise estimate those
6508   // conservatively as well.
6509   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6510     estimate += this->master_got_info_->global_gotno();
6511   else
6512     estimate += from->global_gotno() + to->global_gotno();
6513
6514   // Bail out if the combined GOT might be too big.
6515   unsigned int max_count =
6516     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6517   if (estimate > max_count)
6518     return false;
6519
6520   // Transfer the object's GOT information from FROM to TO.
6521   to->add_got_entries(from);
6522   to->add_got_page_entries(from);
6523
6524   // Record that OBJECT should use output GOT TO.
6525   object->set_got_info(to);
6526
6527   return true;
6528 }
6529
6530 // Write out the GOT.
6531
6532 template<int size, bool big_endian>
6533 void
6534 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6535 {
6536   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6537       Mips_stubs_entry_set;
6538
6539   // Call parent to write out GOT.
6540   Output_data_got<size, big_endian>::do_write(of);
6541
6542   const off_t offset = this->offset();
6543   const section_size_type oview_size =
6544     convert_to_section_size_type(this->data_size());
6545   unsigned char* const oview = of->get_output_view(offset, oview_size);
6546
6547   // Needed for fixing values of .got section.
6548   this->got_view_ = oview;
6549
6550   // Write lazy stub addresses.
6551   for (typename Mips_stubs_entry_set::iterator
6552        p = this->master_got_info_->global_got_symbols().begin();
6553        p != this->master_got_info_->global_got_symbols().end();
6554        ++p)
6555     {
6556       Mips_symbol<size>* mips_sym = *p;
6557       if (mips_sym->has_lazy_stub())
6558         {
6559           Valtype* wv = reinterpret_cast<Valtype*>(
6560             oview + this->get_primary_got_offset(mips_sym));
6561           Valtype value =
6562             this->target_->mips_stubs_section()->stub_address(mips_sym);
6563           elfcpp::Swap<size, big_endian>::writeval(wv, value);
6564         }
6565     }
6566
6567   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6568   for (typename Mips_stubs_entry_set::iterator
6569        p = this->master_got_info_->global_got_symbols().begin();
6570        p != this->master_got_info_->global_got_symbols().end();
6571        ++p)
6572     {
6573       Mips_symbol<size>* mips_sym = *p;
6574       if (!this->multi_got()
6575           && (mips_sym->is_mips16() || mips_sym->is_micromips())
6576           && mips_sym->global_got_area() == GGA_NONE
6577           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6578         {
6579           Valtype* wv = reinterpret_cast<Valtype*>(
6580             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6581           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6582           if (value != 0)
6583             {
6584               value |= 1;
6585               elfcpp::Swap<size, big_endian>::writeval(wv, value);
6586             }
6587         }
6588     }
6589
6590   if (!this->secondary_got_relocs_.empty())
6591     {
6592       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
6593       // secondary GOT entries with non-zero initial value copy the value
6594       // to the corresponding primary GOT entry, and set the secondary GOT
6595       // entry to zero.
6596       // TODO(sasa): This is workaround.  It needs to be investigated further.
6597
6598       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6599         {
6600           Static_reloc& reloc(this->secondary_got_relocs_[i]);
6601           if (reloc.symbol_is_global())
6602             {
6603               Mips_symbol<size>* gsym = reloc.symbol();
6604               gold_assert(gsym != NULL);
6605
6606               unsigned got_offset = reloc.got_offset();
6607               gold_assert(got_offset < oview_size);
6608
6609               // Find primary GOT entry.
6610               Valtype* wv_prim = reinterpret_cast<Valtype*>(
6611                 oview + this->get_primary_got_offset(gsym));
6612
6613               // Find secondary GOT entry.
6614               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6615
6616               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6617               if (value != 0)
6618                 {
6619                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6620                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6621                   gsym->set_applied_secondary_got_fixup();
6622                 }
6623             }
6624         }
6625
6626       of->write_output_view(offset, oview_size, oview);
6627     }
6628
6629   // We are done if there is no fix up.
6630   if (this->static_relocs_.empty())
6631     return;
6632
6633   Output_segment* tls_segment = this->layout_->tls_segment();
6634   gold_assert(tls_segment != NULL);
6635
6636   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6637     {
6638       Static_reloc& reloc(this->static_relocs_[i]);
6639
6640       Mips_address value;
6641       if (!reloc.symbol_is_global())
6642         {
6643           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6644           const Symbol_value<size>* psymval =
6645             object->local_symbol(reloc.index());
6646
6647           // We are doing static linking.  Issue an error and skip this
6648           // relocation if the symbol is undefined or in a discarded_section.
6649           bool is_ordinary;
6650           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6651           if ((shndx == elfcpp::SHN_UNDEF)
6652               || (is_ordinary
6653                   && shndx != elfcpp::SHN_UNDEF
6654                   && !object->is_section_included(shndx)
6655                   && !this->symbol_table_->is_section_folded(object, shndx)))
6656             {
6657               gold_error(_("undefined or discarded local symbol %u from "
6658                            " object %s in GOT"),
6659                          reloc.index(), reloc.relobj()->name().c_str());
6660               continue;
6661             }
6662
6663           value = psymval->value(object, 0);
6664         }
6665       else
6666         {
6667           const Mips_symbol<size>* gsym = reloc.symbol();
6668           gold_assert(gsym != NULL);
6669
6670           // We are doing static linking.  Issue an error and skip this
6671           // relocation if the symbol is undefined or in a discarded_section
6672           // unless it is a weakly_undefined symbol.
6673           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6674               && !gsym->is_weak_undefined())
6675             {
6676               gold_error(_("undefined or discarded symbol %s in GOT"),
6677                          gsym->name());
6678               continue;
6679             }
6680
6681           if (!gsym->is_weak_undefined())
6682             value = gsym->value();
6683           else
6684             value = 0;
6685         }
6686
6687       unsigned got_offset = reloc.got_offset();
6688       gold_assert(got_offset < oview_size);
6689
6690       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6691       Valtype x;
6692
6693       switch (reloc.r_type())
6694         {
6695         case elfcpp::R_MIPS_TLS_DTPMOD32:
6696         case elfcpp::R_MIPS_TLS_DTPMOD64:
6697           x = value;
6698           break;
6699         case elfcpp::R_MIPS_TLS_DTPREL32:
6700         case elfcpp::R_MIPS_TLS_DTPREL64:
6701           x = value - elfcpp::DTP_OFFSET;
6702           break;
6703         case elfcpp::R_MIPS_TLS_TPREL32:
6704         case elfcpp::R_MIPS_TLS_TPREL64:
6705           x = value - elfcpp::TP_OFFSET;
6706           break;
6707         default:
6708           gold_unreachable();
6709           break;
6710         }
6711
6712       elfcpp::Swap<size, big_endian>::writeval(wv, x);
6713     }
6714
6715   of->write_output_view(offset, oview_size, oview);
6716 }
6717
6718 // Mips_relobj methods.
6719
6720 // Count the local symbols.  The Mips backend needs to know if a symbol
6721 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
6722 // because the Symbol object keeps the ELF symbol type and st_other field.
6723 // For local symbol it is harder because we cannot access this information.
6724 // So we override the do_count_local_symbol in parent and scan local symbols to
6725 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
6726 // I do not want to slow down other ports by calling a per symbol target hook
6727 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6728
6729 template<int size, bool big_endian>
6730 void
6731 Mips_relobj<size, big_endian>::do_count_local_symbols(
6732     Stringpool_template<char>* pool,
6733     Stringpool_template<char>* dynpool)
6734 {
6735   // Ask parent to count the local symbols.
6736   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6737   const unsigned int loccount = this->local_symbol_count();
6738   if (loccount == 0)
6739     return;
6740
6741   // Initialize the mips16 and micromips function bit-vector.
6742   this->local_symbol_is_mips16_.resize(loccount, false);
6743   this->local_symbol_is_micromips_.resize(loccount, false);
6744
6745   // Read the symbol table section header.
6746   const unsigned int symtab_shndx = this->symtab_shndx();
6747   elfcpp::Shdr<size, big_endian>
6748     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6749   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6750
6751   // Read the local symbols.
6752   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6753   gold_assert(loccount == symtabshdr.get_sh_info());
6754   off_t locsize = loccount * sym_size;
6755   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6756                                               locsize, true, true);
6757
6758   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6759
6760   // Skip the first dummy symbol.
6761   psyms += sym_size;
6762   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6763     {
6764       elfcpp::Sym<size, big_endian> sym(psyms);
6765       unsigned char st_other = sym.get_st_other();
6766       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6767       this->local_symbol_is_micromips_[i] =
6768         elfcpp::elf_st_is_micromips(st_other);
6769     }
6770 }
6771
6772 // Read the symbol information.
6773
6774 template<int size, bool big_endian>
6775 void
6776 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6777 {
6778   // Call parent class to read symbol information.
6779   this->base_read_symbols(sd);
6780
6781   // Read processor-specific flags in ELF file header.
6782   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6783                                             elfcpp::Elf_sizes<size>::ehdr_size,
6784                                             true, false);
6785   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6786   this->processor_specific_flags_ = ehdr.get_e_flags();
6787
6788   // Get the section names.
6789   const unsigned char* pnamesu = sd->section_names->data();
6790   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6791
6792   // Initialize the mips16 stub section bit-vectors.
6793   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6794   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6795   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6796
6797   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6798   const unsigned char* pshdrs = sd->section_headers->data();
6799   const unsigned char* ps = pshdrs + shdr_size;
6800   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6801     {
6802       elfcpp::Shdr<size, big_endian> shdr(ps);
6803
6804       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6805         {
6806           this->has_reginfo_section_ = true;
6807           // Read the gp value that was used to create this object.  We need the
6808           // gp value while processing relocs.  The .reginfo section is not used
6809           // in the 64-bit MIPS ELF ABI.
6810           section_offset_type section_offset = shdr.get_sh_offset();
6811           section_size_type section_size =
6812             convert_to_section_size_type(shdr.get_sh_size());
6813           const unsigned char* view =
6814              this->get_view(section_offset, section_size, true, false);
6815
6816           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6817
6818           // Read the rest of .reginfo.
6819           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6820           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6821           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6822           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6823           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6824         }
6825
6826       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6827         {
6828           gold_assert(this->attributes_section_data_ == NULL);
6829           section_offset_type section_offset = shdr.get_sh_offset();
6830           section_size_type section_size =
6831             convert_to_section_size_type(shdr.get_sh_size());
6832           const unsigned char* view =
6833             this->get_view(section_offset, section_size, true, false);
6834           this->attributes_section_data_ =
6835             new Attributes_section_data(view, section_size);
6836         }
6837
6838       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6839         {
6840           gold_assert(this->abiflags_ == NULL);
6841           section_offset_type section_offset = shdr.get_sh_offset();
6842           section_size_type section_size =
6843             convert_to_section_size_type(shdr.get_sh_size());
6844           const unsigned char* view =
6845             this->get_view(section_offset, section_size, true, false);
6846           this->abiflags_ = new Mips_abiflags<big_endian>();
6847
6848           this->abiflags_->version =
6849             elfcpp::Swap<16, big_endian>::readval(view);
6850           if (this->abiflags_->version != 0)
6851             {
6852               gold_error(_("%s: .MIPS.abiflags section has "
6853                            "unsupported version %u"),
6854                          this->name().c_str(),
6855                          this->abiflags_->version);
6856               break;
6857             }
6858           this->abiflags_->isa_level =
6859             elfcpp::Swap<8, big_endian>::readval(view + 2);
6860           this->abiflags_->isa_rev =
6861             elfcpp::Swap<8, big_endian>::readval(view + 3);
6862           this->abiflags_->gpr_size =
6863             elfcpp::Swap<8, big_endian>::readval(view + 4);
6864           this->abiflags_->cpr1_size =
6865             elfcpp::Swap<8, big_endian>::readval(view + 5);
6866           this->abiflags_->cpr2_size =
6867             elfcpp::Swap<8, big_endian>::readval(view + 6);
6868           this->abiflags_->fp_abi =
6869             elfcpp::Swap<8, big_endian>::readval(view + 7);
6870           this->abiflags_->isa_ext =
6871             elfcpp::Swap<32, big_endian>::readval(view + 8);
6872           this->abiflags_->ases =
6873             elfcpp::Swap<32, big_endian>::readval(view + 12);
6874           this->abiflags_->flags1 =
6875             elfcpp::Swap<32, big_endian>::readval(view + 16);
6876           this->abiflags_->flags2 =
6877             elfcpp::Swap<32, big_endian>::readval(view + 20);
6878         }
6879
6880       // In the 64-bit ABI, .MIPS.options section holds register information.
6881       // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6882       // starts with this header:
6883       //
6884       // typedef struct
6885       // {
6886       //   // Type of option.
6887       //   unsigned char kind[1];
6888       //   // Size of option descriptor, including header.
6889       //   unsigned char size[1];
6890       //   // Section index of affected section, or 0 for global option.
6891       //   unsigned char section[2];
6892       //   // Information specific to this kind of option.
6893       //   unsigned char info[4];
6894       // };
6895       //
6896       // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6897       // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
6898       // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6899
6900       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6901         {
6902           section_offset_type section_offset = shdr.get_sh_offset();
6903           section_size_type section_size =
6904             convert_to_section_size_type(shdr.get_sh_size());
6905           const unsigned char* view =
6906              this->get_view(section_offset, section_size, true, false);
6907           const unsigned char* end = view + section_size;
6908
6909           while (view + 8 <= end)
6910             {
6911               unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6912               unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6913               if (sz < 8)
6914                 {
6915                   gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6916                                "than its header"),
6917                              this->name().c_str(),
6918                              this->mips_elf_options_section_name(), sz);
6919                   break;
6920                 }
6921
6922               if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6923                 {
6924                   // In the 64 bit ABI, an ODK_REGINFO option is the following
6925                   // structure.  The info field of the options header is not
6926                   // used.
6927                   //
6928                   // typedef struct
6929                   // {
6930                   //   // Mask of general purpose registers used.
6931                   //   unsigned char ri_gprmask[4];
6932                   //   // Padding.
6933                   //   unsigned char ri_pad[4];
6934                   //   // Mask of co-processor registers used.
6935                   //   unsigned char ri_cprmask[4][4];
6936                   //   // GP register value for this object file.
6937                   //   unsigned char ri_gp_value[8];
6938                   // };
6939
6940                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6941                                                                       + 32);
6942                 }
6943               else if (kind == elfcpp::ODK_REGINFO)
6944                 {
6945                   // In the 32 bit ABI, an ODK_REGINFO option is the following
6946                   // structure.  The info field of the options header is not
6947                   // used.  The same structure is used in .reginfo section.
6948                   //
6949                   // typedef struct
6950                   // {
6951                   //   unsigned char ri_gprmask[4];
6952                   //   unsigned char ri_cprmask[4][4];
6953                   //   unsigned char ri_gp_value[4];
6954                   // };
6955
6956                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6957                                                                       + 28);
6958                 }
6959               view += sz;
6960             }
6961         }
6962
6963       const char* name = pnames + shdr.get_sh_name();
6964       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6965       this->section_is_mips16_call_stub_[i] =
6966         is_prefix_of(".mips16.call.", name);
6967       this->section_is_mips16_call_fp_stub_[i] =
6968         is_prefix_of(".mips16.call.fp.", name);
6969
6970       if (strcmp(name, ".pdr") == 0)
6971         {
6972           gold_assert(this->pdr_shndx_ == -1U);
6973           this->pdr_shndx_ = i;
6974         }
6975     }
6976 }
6977
6978 // Discard MIPS16 stub secions that are not needed.
6979
6980 template<int size, bool big_endian>
6981 void
6982 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6983 {
6984   for (typename Mips16_stubs_int_map::const_iterator
6985        it = this->mips16_stub_sections_.begin();
6986        it != this->mips16_stub_sections_.end(); ++it)
6987     {
6988       Mips16_stub_section<size, big_endian>* stub_section = it->second;
6989       if (!stub_section->is_target_found())
6990         {
6991           gold_error(_("no relocation found in mips16 stub section '%s'"),
6992                      stub_section->object()
6993                        ->section_name(stub_section->shndx()).c_str());
6994         }
6995
6996       bool discard = false;
6997       if (stub_section->is_for_local_function())
6998         {
6999           if (stub_section->is_fn_stub())
7000             {
7001               // This stub is for a local symbol.  This stub will only
7002               // be needed if there is some relocation in this object,
7003               // other than a 16 bit function call, which refers to this
7004               // symbol.
7005               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7006                 discard = true;
7007               else
7008                 this->add_local_mips16_fn_stub(stub_section);
7009             }
7010           else
7011             {
7012               // This stub is for a local symbol.  This stub will only
7013               // be needed if there is some relocation (R_MIPS16_26) in
7014               // this object that refers to this symbol.
7015               gold_assert(stub_section->is_call_stub()
7016                           || stub_section->is_call_fp_stub());
7017               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7018                 discard = true;
7019               else
7020                 this->add_local_mips16_call_stub(stub_section);
7021             }
7022         }
7023       else
7024         {
7025           Mips_symbol<size>* gsym = stub_section->gsym();
7026           if (stub_section->is_fn_stub())
7027             {
7028               if (gsym->has_mips16_fn_stub())
7029                 // We already have a stub for this function.
7030                 discard = true;
7031               else
7032                 {
7033                   gsym->set_mips16_fn_stub(stub_section);
7034                   if (gsym->should_add_dynsym_entry(symtab))
7035                     {
7036                       // If we have a MIPS16 function with a stub, the
7037                       // dynamic symbol must refer to the stub, since only
7038                       // the stub uses the standard calling conventions.
7039                       gsym->set_need_fn_stub();
7040                       if (gsym->is_from_dynobj())
7041                         gsym->set_needs_dynsym_value();
7042                     }
7043                 }
7044               if (!gsym->need_fn_stub())
7045                 discard = true;
7046             }
7047           else if (stub_section->is_call_stub())
7048             {
7049               if (gsym->is_mips16())
7050                 // We don't need the call_stub; this is a 16 bit
7051                 // function, so calls from other 16 bit functions are
7052                 // OK.
7053                 discard = true;
7054               else if (gsym->has_mips16_call_stub())
7055                 // We already have a stub for this function.
7056                 discard = true;
7057               else
7058                 gsym->set_mips16_call_stub(stub_section);
7059             }
7060           else
7061             {
7062               gold_assert(stub_section->is_call_fp_stub());
7063               if (gsym->is_mips16())
7064                 // We don't need the call_stub; this is a 16 bit
7065                 // function, so calls from other 16 bit functions are
7066                 // OK.
7067                 discard = true;
7068               else if (gsym->has_mips16_call_fp_stub())
7069                 // We already have a stub for this function.
7070                 discard = true;
7071               else
7072                 gsym->set_mips16_call_fp_stub(stub_section);
7073             }
7074         }
7075       if (discard)
7076         this->set_output_section(stub_section->shndx(), NULL);
7077    }
7078 }
7079
7080 // Mips_output_data_la25_stub methods.
7081
7082 // Template for standard LA25 stub.
7083 template<int size, bool big_endian>
7084 const uint32_t
7085 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7086 {
7087   0x3c190000,           // lui $25,%hi(func)
7088   0x08000000,           // j func
7089   0x27390000,           // add $25,$25,%lo(func)
7090   0x00000000            // nop
7091 };
7092
7093 // Template for microMIPS LA25 stub.
7094 template<int size, bool big_endian>
7095 const uint32_t
7096 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7097 {
7098   0x41b9, 0x0000,       // lui t9,%hi(func)
7099   0xd400, 0x0000,       // j func
7100   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
7101   0x0000, 0x0000        // nop
7102 };
7103
7104 // Create la25 stub for a symbol.
7105
7106 template<int size, bool big_endian>
7107 void
7108 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7109     Symbol_table* symtab, Target_mips<size, big_endian>* target,
7110     Mips_symbol<size>* gsym)
7111 {
7112   if (!gsym->has_la25_stub())
7113     {
7114       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7115       this->symbols_.push_back(gsym);
7116       this->create_stub_symbol(gsym, symtab, target, 16);
7117     }
7118 }
7119
7120 // Create a symbol for SYM stub's value and size, to help make the disassembly
7121 // easier to read.
7122
7123 template<int size, bool big_endian>
7124 void
7125 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7126     Mips_symbol<size>* sym, Symbol_table* symtab,
7127     Target_mips<size, big_endian>* target, uint64_t symsize)
7128 {
7129   std::string name(".pic.");
7130   name += sym->name();
7131
7132   unsigned int offset = sym->la25_stub_offset();
7133   if (sym->is_micromips())
7134     offset |= 1;
7135
7136   // Make it a local function.
7137   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7138                                       Symbol_table::PREDEFINED,
7139                                       target->la25_stub_section(),
7140                                       offset, symsize, elfcpp::STT_FUNC,
7141                                       elfcpp::STB_LOCAL,
7142                                       elfcpp::STV_DEFAULT, 0,
7143                                       false, false);
7144   new_sym->set_is_forced_local();
7145 }
7146
7147 // Write out la25 stubs.  This uses the hand-coded instructions above,
7148 // and adjusts them as needed.
7149
7150 template<int size, bool big_endian>
7151 void
7152 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7153 {
7154   const off_t offset = this->offset();
7155   const section_size_type oview_size =
7156     convert_to_section_size_type(this->data_size());
7157   unsigned char* const oview = of->get_output_view(offset, oview_size);
7158
7159   for (typename std::vector<Mips_symbol<size>*>::iterator
7160        p = this->symbols_.begin();
7161        p != this->symbols_.end();
7162        ++p)
7163     {
7164       Mips_symbol<size>* sym = *p;
7165       unsigned char* pov = oview + sym->la25_stub_offset();
7166
7167       Mips_address target = sym->value();
7168       if (!sym->is_micromips())
7169         {
7170           elfcpp::Swap<32, big_endian>::writeval(pov,
7171               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7172           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7173               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7174           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7175               la25_stub_entry[2] | (target & 0xffff));
7176           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7177         }
7178       else
7179         {
7180           target |= 1;
7181           // First stub instruction.  Paste high 16-bits of the target.
7182           elfcpp::Swap<16, big_endian>::writeval(pov,
7183                                                  la25_stub_micromips_entry[0]);
7184           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7185               ((target + 0x8000) >> 16) & 0xffff);
7186           // Second stub instruction.  Paste low 26-bits of the target, shifted
7187           // right by 1.
7188           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7189               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7190           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7191               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7192           // Third stub instruction.  Paste low 16-bits of the target.
7193           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7194                                                  la25_stub_micromips_entry[4]);
7195           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7196           // Fourth stub instruction.
7197           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7198                                                  la25_stub_micromips_entry[6]);
7199           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7200                                                  la25_stub_micromips_entry[7]);
7201         }
7202     }
7203
7204   of->write_output_view(offset, oview_size, oview);
7205 }
7206
7207 // Mips_output_data_plt methods.
7208
7209 // The format of the first PLT entry in an O32 executable.
7210 template<int size, bool big_endian>
7211 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7212 {
7213   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
7214   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
7215   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
7216   0x031cc023,         // subu $24, $24, $28
7217   0x03e07825,         // or $15, $31, zero
7218   0x0018c082,         // srl $24, $24, 2
7219   0x0320f809,         // jalr $25
7220   0x2718fffe          // subu $24, $24, 2
7221 };
7222
7223 // The format of the first PLT entry in an N32 executable.  Different
7224 // because gp ($28) is not available; we use t2 ($14) instead.
7225 template<int size, bool big_endian>
7226 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7227 {
7228   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7229   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
7230   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7231   0x030ec023,         // subu $24, $24, $14
7232   0x03e07825,         // or $15, $31, zero
7233   0x0018c082,         // srl $24, $24, 2
7234   0x0320f809,         // jalr $25
7235   0x2718fffe          // subu $24, $24, 2
7236 };
7237
7238 // The format of the first PLT entry in an N64 executable.  Different
7239 // from N32 because of the increased size of GOT entries.
7240 template<int size, bool big_endian>
7241 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7242 {
7243   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7244   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
7245   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7246   0x030ec023,         // subu $24, $24, $14
7247   0x03e07825,         // or $15, $31, zero
7248   0x0018c0c2,         // srl $24, $24, 3
7249   0x0320f809,         // jalr $25
7250   0x2718fffe          // subu $24, $24, 2
7251 };
7252
7253 // The format of the microMIPS first PLT entry in an O32 executable.
7254 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7255 // of the GOTPLT entry handled, so this stub may only be used when
7256 // all the subsequent PLT entries are microMIPS code too.
7257 //
7258 // The trailing NOP is for alignment and correct disassembly only.
7259 template<int size, bool big_endian>
7260 const uint32_t Mips_output_data_plt<size, big_endian>::
7261 plt0_entry_micromips_o32[] =
7262 {
7263   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
7264   0xff23, 0x0000,      // lw $25, 0($3)
7265   0x0535,              // subu $2, $2, $3
7266   0x2525,              // srl $2, $2, 2
7267   0x3302, 0xfffe,      // subu $24, $2, 2
7268   0x0dff,              // move $15, $31
7269   0x45f9,              // jalrs $25
7270   0x0f83,              // move $28, $3
7271   0x0c00               // nop
7272 };
7273
7274 // The format of the microMIPS first PLT entry in an O32 executable
7275 // in the insn32 mode.
7276 template<int size, bool big_endian>
7277 const uint32_t Mips_output_data_plt<size, big_endian>::
7278 plt0_entry_micromips32_o32[] =
7279 {
7280   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
7281   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
7282   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
7283   0x0398, 0xc1d0,      // subu $24, $24, $28
7284   0x001f, 0x7a90,      // or $15, $31, zero
7285   0x0318, 0x1040,      // srl $24, $24, 2
7286   0x03f9, 0x0f3c,      // jalr $25
7287   0x3318, 0xfffe       // subu $24, $24, 2
7288 };
7289
7290 // The format of subsequent standard entries in the PLT.
7291 template<int size, bool big_endian>
7292 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7293 {
7294   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7295   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7296   0x03200008,           // jr $25
7297   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7298 };
7299
7300 // The format of subsequent R6 PLT entries.
7301 template<int size, bool big_endian>
7302 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7303 {
7304   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7305   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7306   0x03200009,           // jr $25
7307   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7308 };
7309
7310 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
7311 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7312 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7313 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7314 // target function address in register v0.
7315 template<int size, bool big_endian>
7316 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7317 {
7318   0xb303,              // lw $3, 12($pc)
7319   0x651b,              // move $24, $3
7320   0x9b60,              // lw $3, 0($3)
7321   0xeb00,              // jr $3
7322   0x653b,              // move $25, $3
7323   0x6500,              // nop
7324   0x0000, 0x0000       // .word (.got.plt entry)
7325 };
7326
7327 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
7328 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7329 template<int size, bool big_endian>
7330 const uint32_t Mips_output_data_plt<size, big_endian>::
7331 plt_entry_micromips_o32[] =
7332 {
7333   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
7334   0xff22, 0x0000,      // lw $25, 0($2)
7335   0x4599,              // jr $25
7336   0x0f02               // move $24, $2
7337 };
7338
7339 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7340 template<int size, bool big_endian>
7341 const uint32_t Mips_output_data_plt<size, big_endian>::
7342 plt_entry_micromips32_o32[] =
7343 {
7344   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
7345   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
7346   0x0019, 0x0f3c,      // jr $25
7347   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
7348 };
7349
7350 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7351
7352 template<int size, bool big_endian>
7353 void
7354 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7355                                                   unsigned int r_type)
7356 {
7357   gold_assert(!gsym->has_plt_offset());
7358
7359   // Final PLT offset for a symbol will be set in method set_plt_offsets().
7360   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7361                        + sizeof(plt0_entry_o32));
7362   this->symbols_.push_back(gsym);
7363
7364   // Record whether the relocation requires a standard MIPS
7365   // or a compressed code entry.
7366   if (jal_reloc(r_type))
7367    {
7368      if (r_type == elfcpp::R_MIPS_26)
7369        gsym->set_needs_mips_plt(true);
7370      else
7371        gsym->set_needs_comp_plt(true);
7372    }
7373
7374   section_offset_type got_offset = this->got_plt_->current_data_size();
7375
7376   // Every PLT entry needs a GOT entry which points back to the PLT
7377   // entry (this will be changed by the dynamic linker, normally
7378   // lazily when the function is called).
7379   this->got_plt_->set_current_data_size(got_offset + size/8);
7380
7381   gsym->set_needs_dynsym_entry();
7382   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7383                          got_offset);
7384 }
7385
7386 // Set final PLT offsets.  For each symbol, determine whether standard or
7387 // compressed (MIPS16 or microMIPS) PLT entry is used.
7388
7389 template<int size, bool big_endian>
7390 void
7391 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7392 {
7393   // The sizes of individual PLT entries.
7394   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7395   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7396                                       ? this->compressed_plt_entry_size() : 0);
7397
7398   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7399        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7400     {
7401       Mips_symbol<size>* mips_sym = *p;
7402
7403       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7404       // so always use a standard entry there.
7405       //
7406       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7407       // all MIPS16 calls will go via that stub, and there is no benefit
7408       // to having a MIPS16 entry.  And in the case of call_stub a
7409       // standard entry actually has to be used as the stub ends with a J
7410       // instruction.
7411       if (this->target_->is_output_newabi()
7412           || mips_sym->has_mips16_call_stub()
7413           || mips_sym->has_mips16_call_fp_stub())
7414         {
7415           mips_sym->set_needs_mips_plt(true);
7416           mips_sym->set_needs_comp_plt(false);
7417         }
7418
7419       // Otherwise, if there are no direct calls to the function, we
7420       // have a free choice of whether to use standard or compressed
7421       // entries.  Prefer microMIPS entries if the object is known to
7422       // contain microMIPS code, so that it becomes possible to create
7423       // pure microMIPS binaries.  Prefer standard entries otherwise,
7424       // because MIPS16 ones are no smaller and are usually slower.
7425       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7426         {
7427           if (this->target_->is_output_micromips())
7428             mips_sym->set_needs_comp_plt(true);
7429           else
7430             mips_sym->set_needs_mips_plt(true);
7431         }
7432
7433       if (mips_sym->needs_mips_plt())
7434         {
7435           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7436           this->plt_mips_offset_ += plt_mips_entry_size;
7437         }
7438       if (mips_sym->needs_comp_plt())
7439         {
7440           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7441           this->plt_comp_offset_ += plt_comp_entry_size;
7442         }
7443     }
7444
7445     // Figure out the size of the PLT header if we know that we are using it.
7446     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7447       this->plt_header_size_ = this->get_plt_header_size();
7448 }
7449
7450 // Write out the PLT.  This uses the hand-coded instructions above,
7451 // and adjusts them as needed.
7452
7453 template<int size, bool big_endian>
7454 void
7455 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7456 {
7457   const off_t offset = this->offset();
7458   const section_size_type oview_size =
7459     convert_to_section_size_type(this->data_size());
7460   unsigned char* const oview = of->get_output_view(offset, oview_size);
7461
7462   const off_t gotplt_file_offset = this->got_plt_->offset();
7463   const section_size_type gotplt_size =
7464     convert_to_section_size_type(this->got_plt_->data_size());
7465   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7466                                                          gotplt_size);
7467   unsigned char* pov = oview;
7468
7469   Mips_address plt_address = this->address();
7470
7471   // Calculate the address of .got.plt.
7472   Mips_address gotplt_addr = this->got_plt_->address();
7473   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7474   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7475
7476   // The PLT sequence is not safe for N64 if .got.plt's address can
7477   // not be loaded in two instructions.
7478   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7479               || ~(gotplt_addr | 0x7fffffff) == 0);
7480
7481   // Write the PLT header.
7482   const uint32_t* plt0_entry = this->get_plt_header_entry();
7483   if (plt0_entry == plt0_entry_micromips_o32)
7484     {
7485       // Write microMIPS PLT header.
7486       gold_assert(gotplt_addr % 4 == 0);
7487
7488       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7489
7490       // ADDIUPC has a span of +/-16MB, check we're in range.
7491       if (gotpc_offset + 0x1000000 >= 0x2000000)
7492        {
7493          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7494                     "ADDIUPC"), (long)gotpc_offset);
7495          return;
7496        }
7497
7498       elfcpp::Swap<16, big_endian>::writeval(pov,
7499                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7500       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7501                                              (gotpc_offset >> 2) & 0xffff);
7502       pov += 4;
7503       for (unsigned int i = 2;
7504            i < (sizeof(plt0_entry_micromips_o32)
7505                 / sizeof(plt0_entry_micromips_o32[0]));
7506            i++)
7507         {
7508           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7509           pov += 2;
7510         }
7511     }
7512   else if (plt0_entry == plt0_entry_micromips32_o32)
7513     {
7514       // Write microMIPS PLT header in insn32 mode.
7515       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7516       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7517       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7518       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7519       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7520       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7521       pov += 12;
7522       for (unsigned int i = 6;
7523            i < (sizeof(plt0_entry_micromips32_o32)
7524                 / sizeof(plt0_entry_micromips32_o32[0]));
7525            i++)
7526         {
7527           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7528           pov += 2;
7529         }
7530     }
7531   else
7532     {
7533       // Write standard PLT header.
7534       elfcpp::Swap<32, big_endian>::writeval(pov,
7535                                              plt0_entry[0] | gotplt_addr_high);
7536       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7537                                              plt0_entry[1] | gotplt_addr_low);
7538       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7539                                              plt0_entry[2] | gotplt_addr_low);
7540       pov += 12;
7541       for (int i = 3; i < 8; i++)
7542         {
7543           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7544           pov += 4;
7545         }
7546     }
7547
7548
7549   unsigned char* gotplt_pov = gotplt_view;
7550   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7551
7552   // The first two entries in .got.plt are reserved.
7553   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7554   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7555
7556   unsigned int gotplt_offset = 2 * got_entry_size;
7557   gotplt_pov += 2 * got_entry_size;
7558
7559   // Calculate the address of the PLT header.
7560   Mips_address header_address = (plt_address
7561                                  + (this->is_plt_header_compressed() ? 1 : 0));
7562
7563   // Initialize compressed PLT area view.
7564   unsigned char* pov2 = pov + this->plt_mips_offset_;
7565
7566   // Write the PLT entries.
7567   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7568        p = this->symbols_.begin();
7569        p != this->symbols_.end();
7570        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7571     {
7572       Mips_symbol<size>* mips_sym = *p;
7573
7574       // Calculate the address of the .got.plt entry.
7575       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7576       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7577                                        & 0xffff);
7578       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7579
7580       // Initially point the .got.plt entry at the PLT header.
7581       if (this->target_->is_output_n64())
7582         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7583       else
7584         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7585
7586       // Now handle the PLT itself.  First the standard entry.
7587       if (mips_sym->has_mips_plt_offset())
7588         {
7589           // Pick the load opcode (LW or LD).
7590           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7591                                                          : 0x8c000000;
7592
7593           const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7594                                                                 : plt_entry;
7595
7596           // Fill in the PLT entry itself.
7597           elfcpp::Swap<32, big_endian>::writeval(pov,
7598               entry[0] | gotplt_entry_addr_hi);
7599           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7600               entry[1] | gotplt_entry_addr_lo | load);
7601           elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7602           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7603               entry[3] | gotplt_entry_addr_lo);
7604           pov += 16;
7605         }
7606
7607       // Now the compressed entry.  They come after any standard ones.
7608       if (mips_sym->has_comp_plt_offset())
7609         {
7610           if (!this->target_->is_output_micromips())
7611             {
7612               // Write MIPS16 PLT entry.
7613               const uint32_t* plt_entry = plt_entry_mips16_o32;
7614
7615               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7616               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7617               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7618               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7619               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7620               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7621               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7622                                                      gotplt_entry_addr);
7623               pov2 += 16;
7624             }
7625           else if (this->target_->use_32bit_micromips_instructions())
7626             {
7627               // Write microMIPS PLT entry in insn32 mode.
7628               const uint32_t* plt_entry = plt_entry_micromips32_o32;
7629
7630               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7631               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7632                                                      gotplt_entry_addr_hi);
7633               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7634               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7635                                                      gotplt_entry_addr_lo);
7636               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7637               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7638               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7639               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7640                                                      gotplt_entry_addr_lo);
7641               pov2 += 16;
7642             }
7643           else
7644             {
7645               // Write microMIPS PLT entry.
7646               const uint32_t* plt_entry = plt_entry_micromips_o32;
7647
7648               gold_assert(gotplt_entry_addr % 4 == 0);
7649
7650               Mips_address loc_address = plt_address + pov2 - oview;
7651               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7652
7653               // ADDIUPC has a span of +/-16MB, check we're in range.
7654               if (gotpc_offset + 0x1000000 >= 0x2000000)
7655                 {
7656                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
7657                              "range of ADDIUPC"), (long)gotpc_offset);
7658                   return;
7659                 }
7660
7661               elfcpp::Swap<16, big_endian>::writeval(pov2,
7662                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7663               elfcpp::Swap<16, big_endian>::writeval(
7664                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7665               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7666               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7667               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7668               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7669               pov2 += 12;
7670             }
7671         }
7672     }
7673
7674   // Check the number of bytes written for standard entries.
7675   gold_assert(static_cast<section_size_type>(
7676       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7677   // Check the number of bytes written for compressed entries.
7678   gold_assert((static_cast<section_size_type>(pov2 - pov)
7679                == this->plt_comp_offset_));
7680   // Check the total number of bytes written.
7681   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7682
7683   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7684               == gotplt_size);
7685
7686   of->write_output_view(offset, oview_size, oview);
7687   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7688 }
7689
7690 // Mips_output_data_mips_stubs methods.
7691
7692 // The format of the lazy binding stub when dynamic symbol count is less than
7693 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7694 template<int size, bool big_endian>
7695 const uint32_t
7696 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7697 {
7698   0x8f998010,         // lw t9,0x8010(gp)
7699   0x03e07825,         // or t7,ra,zero
7700   0x0320f809,         // jalr t9,ra
7701   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
7702 };
7703
7704 // The format of the lazy binding stub when dynamic symbol count is less than
7705 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7706 template<int size, bool big_endian>
7707 const uint32_t
7708 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7709 {
7710   0xdf998010,         // ld t9,0x8010(gp)
7711   0x03e07825,         // or t7,ra,zero
7712   0x0320f809,         // jalr t9,ra
7713   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
7714 };
7715
7716 // The format of the lazy binding stub when dynamic symbol count is less than
7717 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7718 template<int size, bool big_endian>
7719 const uint32_t
7720 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7721 {
7722   0x8f998010,         // lw t9,0x8010(gp)
7723   0x03e07825,         // or t7,ra,zero
7724   0x0320f809,         // jalr t9,ra
7725   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7726 };
7727
7728 // The format of the lazy binding stub when dynamic symbol count is less than
7729 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7730 template<int size, bool big_endian>
7731 const uint32_t
7732 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7733 {
7734   0xdf998010,         // ld t9,0x8010(gp)
7735   0x03e07825,         // or t7,ra,zero
7736   0x0320f809,         // jalr t9,ra
7737   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7738 };
7739
7740 // The format of the lazy binding stub when dynamic symbol count is greater than
7741 // 64K, and ABI is not N64.
7742 template<int size, bool big_endian>
7743 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7744 {
7745   0x8f998010,         // lw t9,0x8010(gp)
7746   0x03e07825,         // or t7,ra,zero
7747   0x3c180000,         // lui t8,DYN_INDEX
7748   0x0320f809,         // jalr t9,ra
7749   0x37180000          // ori t8,t8,DYN_INDEX
7750 };
7751
7752 // The format of the lazy binding stub when dynamic symbol count is greater than
7753 // 64K, and ABI is N64.
7754 template<int size, bool big_endian>
7755 const uint32_t
7756 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7757 {
7758   0xdf998010,         // ld t9,0x8010(gp)
7759   0x03e07825,         // or t7,ra,zero
7760   0x3c180000,         // lui t8,DYN_INDEX
7761   0x0320f809,         // jalr t9,ra
7762   0x37180000          // ori t8,t8,DYN_INDEX
7763 };
7764
7765 // microMIPS stubs.
7766
7767 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7768 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7769 template<int size, bool big_endian>
7770 const uint32_t
7771 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7772 {
7773   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7774   0x0dff,             // move t7,ra
7775   0x45d9,             // jalr t9
7776   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7777 };
7778
7779 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7780 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7781 template<int size, bool big_endian>
7782 const uint32_t
7783 Mips_output_data_mips_stubs<size, big_endian>::
7784 lazy_stub_micromips_normal_1_n64[] =
7785 {
7786   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7787   0x0dff,             // move t7,ra
7788   0x45d9,             // jalr t9
7789   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7790 };
7791
7792 // The format of the microMIPS lazy binding stub when dynamic symbol
7793 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7794 // and ABI is not N64.
7795 template<int size, bool big_endian>
7796 const uint32_t
7797 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7798 {
7799   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7800   0x0dff,             // move t7,ra
7801   0x45d9,             // jalr t9
7802   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7803 };
7804
7805 // The format of the microMIPS lazy binding stub when dynamic symbol
7806 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7807 // and ABI is N64.
7808 template<int size, bool big_endian>
7809 const uint32_t
7810 Mips_output_data_mips_stubs<size, big_endian>::
7811 lazy_stub_micromips_normal_2_n64[] =
7812 {
7813   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7814   0x0dff,             // move t7,ra
7815   0x45d9,             // jalr t9
7816   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7817 };
7818
7819 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7820 // greater than 64K, and ABI is not N64.
7821 template<int size, bool big_endian>
7822 const uint32_t
7823 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7824 {
7825   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7826   0x0dff,             // move t7,ra
7827   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7828   0x45d9,             // jalr t9
7829   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7830 };
7831
7832 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7833 // greater than 64K, and ABI is N64.
7834 template<int size, bool big_endian>
7835 const uint32_t
7836 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7837 {
7838   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7839   0x0dff,             // move t7,ra
7840   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7841   0x45d9,             // jalr t9
7842   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7843 };
7844
7845 // 32-bit microMIPS stubs.
7846
7847 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7848 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7849 // can use only 32-bit instructions.
7850 template<int size, bool big_endian>
7851 const uint32_t
7852 Mips_output_data_mips_stubs<size, big_endian>::
7853 lazy_stub_micromips32_normal_1[] =
7854 {
7855   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7856   0x001f, 0x7a90,     // or t7,ra,zero
7857   0x03f9, 0x0f3c,     // jalr ra,t9
7858   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7859 };
7860
7861 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7862 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7863 // use only 32-bit instructions.
7864 template<int size, bool big_endian>
7865 const uint32_t
7866 Mips_output_data_mips_stubs<size, big_endian>::
7867 lazy_stub_micromips32_normal_1_n64[] =
7868 {
7869   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7870   0x001f, 0x7a90,     // or t7,ra,zero
7871   0x03f9, 0x0f3c,     // jalr ra,t9
7872   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7873 };
7874
7875 // The format of the microMIPS lazy binding stub when dynamic symbol
7876 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7877 // ABI is not N64, and we can use only 32-bit instructions.
7878 template<int size, bool big_endian>
7879 const uint32_t
7880 Mips_output_data_mips_stubs<size, big_endian>::
7881 lazy_stub_micromips32_normal_2[] =
7882 {
7883   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7884   0x001f, 0x7a90,     // or t7,ra,zero
7885   0x03f9, 0x0f3c,     // jalr ra,t9
7886   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7887 };
7888
7889 // The format of the microMIPS lazy binding stub when dynamic symbol
7890 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7891 // ABI is N64, and we can use only 32-bit instructions.
7892 template<int size, bool big_endian>
7893 const uint32_t
7894 Mips_output_data_mips_stubs<size, big_endian>::
7895 lazy_stub_micromips32_normal_2_n64[] =
7896 {
7897   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7898   0x001f, 0x7a90,     // or t7,ra,zero
7899   0x03f9, 0x0f3c,     // jalr ra,t9
7900   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7901 };
7902
7903 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7904 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7905 template<int size, bool big_endian>
7906 const uint32_t
7907 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7908 {
7909   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7910   0x001f, 0x7a90,     // or t7,ra,zero
7911   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7912   0x03f9, 0x0f3c,     // jalr ra,t9
7913   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7914 };
7915
7916 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7917 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7918 template<int size, bool big_endian>
7919 const uint32_t
7920 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7921 {
7922   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7923   0x001f, 0x7a90,     // or t7,ra,zero
7924   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7925   0x03f9, 0x0f3c,     // jalr ra,t9
7926   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7927 };
7928
7929 // Create entry for a symbol.
7930
7931 template<int size, bool big_endian>
7932 void
7933 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7934     Mips_symbol<size>* gsym)
7935 {
7936   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7937     {
7938       this->symbols_.insert(gsym);
7939       gsym->set_has_lazy_stub(true);
7940     }
7941 }
7942
7943 // Remove entry for a symbol.
7944
7945 template<int size, bool big_endian>
7946 void
7947 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7948     Mips_symbol<size>* gsym)
7949 {
7950   if (gsym->has_lazy_stub())
7951     {
7952       this->symbols_.erase(gsym);
7953       gsym->set_has_lazy_stub(false);
7954     }
7955 }
7956
7957 // Set stub offsets for symbols.  This method expects that the number of
7958 // entries in dynamic symbol table is set.
7959
7960 template<int size, bool big_endian>
7961 void
7962 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7963 {
7964   gold_assert(this->dynsym_count_ != -1U);
7965
7966   if (this->stub_offsets_are_set_)
7967     return;
7968
7969   unsigned int stub_size = this->stub_size();
7970   unsigned int offset = 0;
7971   for (typename Mips_stubs_entry_set::const_iterator
7972        p = this->symbols_.begin();
7973        p != this->symbols_.end();
7974        ++p, offset += stub_size)
7975     {
7976       Mips_symbol<size>* mips_sym = *p;
7977       mips_sym->set_lazy_stub_offset(offset);
7978     }
7979   this->stub_offsets_are_set_ = true;
7980 }
7981
7982 template<int size, bool big_endian>
7983 void
7984 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7985 {
7986   for (typename Mips_stubs_entry_set::const_iterator
7987        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7988     {
7989       Mips_symbol<size>* sym = *p;
7990       if (sym->is_from_dynobj())
7991         sym->set_needs_dynsym_value();
7992     }
7993 }
7994
7995 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
7996 // adjusts them as needed.
7997
7998 template<int size, bool big_endian>
7999 void
8000 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8001 {
8002   const off_t offset = this->offset();
8003   const section_size_type oview_size =
8004     convert_to_section_size_type(this->data_size());
8005   unsigned char* const oview = of->get_output_view(offset, oview_size);
8006
8007   bool big_stub = this->dynsym_count_ > 0x10000;
8008
8009   unsigned char* pov = oview;
8010   for (typename Mips_stubs_entry_set::const_iterator
8011        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8012     {
8013       Mips_symbol<size>* sym = *p;
8014       const uint32_t* lazy_stub;
8015       bool n64 = this->target_->is_output_n64();
8016
8017       if (!this->target_->is_output_micromips())
8018         {
8019           // Write standard (non-microMIPS) stub.
8020           if (!big_stub)
8021             {
8022               if (sym->dynsym_index() & ~0x7fff)
8023                 // Dynsym index is between 32K and 64K.
8024                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8025               else
8026                 // Dynsym index is less than 32K.
8027                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8028             }
8029           else
8030             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8031
8032           unsigned int i = 0;
8033           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8034           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8035           pov += 8;
8036
8037           i += 2;
8038           if (big_stub)
8039             {
8040               // LUI instruction of the big stub.  Paste high 16 bits of the
8041               // dynsym index.
8042               elfcpp::Swap<32, big_endian>::writeval(pov,
8043                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8044               pov += 4;
8045               i += 1;
8046             }
8047           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8048           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8049           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8050               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8051           pov += 8;
8052         }
8053       else if (this->target_->use_32bit_micromips_instructions())
8054         {
8055           // Write microMIPS stub in insn32 mode.
8056           if (!big_stub)
8057             {
8058               if (sym->dynsym_index() & ~0x7fff)
8059                 // Dynsym index is between 32K and 64K.
8060                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8061                                 : lazy_stub_micromips32_normal_2;
8062               else
8063                 // Dynsym index is less than 32K.
8064                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8065                                 : lazy_stub_micromips32_normal_1;
8066             }
8067           else
8068             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8069                             : lazy_stub_micromips32_big;
8070
8071           unsigned int i = 0;
8072           // First stub instruction.  We emit 32-bit microMIPS instructions by
8073           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8074           // the instruction where the opcode is must always come first, for
8075           // both little and big endian.
8076           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8077           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8078           // Second stub instruction.
8079           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8080           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8081           pov += 8;
8082           i += 4;
8083           if (big_stub)
8084             {
8085               // LUI instruction of the big stub.  Paste high 16 bits of the
8086               // dynsym index.
8087               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8088               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8089                   (sym->dynsym_index() >> 16) & 0x7fff);
8090               pov += 4;
8091               i += 2;
8092             }
8093           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8094           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8095           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8096           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8097           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8098               sym->dynsym_index() & 0xffff);
8099           pov += 8;
8100         }
8101       else
8102         {
8103           // Write microMIPS stub.
8104           if (!big_stub)
8105             {
8106               if (sym->dynsym_index() & ~0x7fff)
8107                 // Dynsym index is between 32K and 64K.
8108                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8109                                 : lazy_stub_micromips_normal_2;
8110               else
8111                 // Dynsym index is less than 32K.
8112                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8113                                 : lazy_stub_micromips_normal_1;
8114             }
8115           else
8116             lazy_stub = n64 ? lazy_stub_micromips_big_n64
8117                             : lazy_stub_micromips_big;
8118
8119           unsigned int i = 0;
8120           // First stub instruction.  We emit 32-bit microMIPS instructions by
8121           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8122           // the instruction where the opcode is must always come first, for
8123           // both little and big endian.
8124           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8125           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8126           // Second stub instruction.
8127           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8128           pov += 6;
8129           i += 3;
8130           if (big_stub)
8131             {
8132               // LUI instruction of the big stub.  Paste high 16 bits of the
8133               // dynsym index.
8134               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8135               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8136                   (sym->dynsym_index() >> 16) & 0x7fff);
8137               pov += 4;
8138               i += 2;
8139             }
8140           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8141           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8142           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8143           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8144               sym->dynsym_index() & 0xffff);
8145           pov += 6;
8146         }
8147     }
8148
8149   // We always allocate 20 bytes for every stub, because final dynsym count is
8150   // not known in method do_finalize_sections.  There are 4 unused bytes per
8151   // stub if final dynsym count is less than 0x10000.
8152   unsigned int used = pov - oview;
8153   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8154   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8155
8156   // Fill the unused space with zeroes.
8157   // TODO(sasa): Can we strip unused bytes during the relaxation?
8158   if (unused > 0)
8159     memset(pov, 0, unused);
8160
8161   of->write_output_view(offset, oview_size, oview);
8162 }
8163
8164 // Mips_output_section_reginfo methods.
8165
8166 template<int size, bool big_endian>
8167 void
8168 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8169 {
8170   off_t offset = this->offset();
8171   off_t data_size = this->data_size();
8172
8173   unsigned char* view = of->get_output_view(offset, data_size);
8174   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8175   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8176   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8177   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8178   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8179   // Write the gp value.
8180   elfcpp::Swap<size, big_endian>::writeval(view + 20,
8181                                            this->target_->gp_value());
8182
8183   of->write_output_view(offset, data_size, view);
8184 }
8185
8186 // Mips_output_section_abiflags methods.
8187
8188 template<int size, bool big_endian>
8189 void
8190 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8191 {
8192   off_t offset = this->offset();
8193   off_t data_size = this->data_size();
8194
8195   unsigned char* view = of->get_output_view(offset, data_size);
8196   elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8197   elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8198   elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8199   elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8200   elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8201   elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8202   elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8203   elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8204   elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8205   elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8206   elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8207
8208   of->write_output_view(offset, data_size, view);
8209 }
8210
8211 // Mips_copy_relocs methods.
8212
8213 // Emit any saved relocs.
8214
8215 template<int sh_type, int size, bool big_endian>
8216 void
8217 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8218     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8219     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8220 {
8221   for (typename Copy_relocs<sh_type, size, big_endian>::
8222        Copy_reloc_entries::iterator p = this->entries_.begin();
8223        p != this->entries_.end();
8224        ++p)
8225     emit_entry(*p, reloc_section, symtab, layout, target);
8226
8227   // We no longer need the saved information.
8228   this->entries_.clear();
8229 }
8230
8231 // Emit the reloc if appropriate.
8232
8233 template<int sh_type, int size, bool big_endian>
8234 void
8235 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8236     Copy_reloc_entry& entry,
8237     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8238     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8239 {
8240   // If the symbol is no longer defined in a dynamic object, then we
8241   // emitted a COPY relocation, and we do not want to emit this
8242   // dynamic relocation.
8243   if (!entry.sym_->is_from_dynobj())
8244     return;
8245
8246   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8247                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8248                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
8249
8250   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8251   if (can_make_dynamic && !sym->has_static_relocs())
8252     {
8253       Mips_relobj<size, big_endian>* object =
8254         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8255       target->got_section(symtab, layout)->record_global_got_symbol(
8256                           sym, object, entry.reloc_type_, true, false);
8257       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8258         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8259             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8260       else
8261         target->rel_dyn_section(layout)->add_symbolless_global_addend(
8262             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8263             entry.shndx_, entry.address_);
8264     }
8265   else
8266     this->make_copy_reloc(symtab, layout,
8267                           static_cast<Sized_symbol<size>*>(entry.sym_),
8268                           entry.relobj_,
8269                           reloc_section);
8270 }
8271
8272 // Target_mips methods.
8273
8274 // Return the value to use for a dynamic symbol which requires special
8275 // treatment.  This is how we support equality comparisons of function
8276 // pointers across shared library boundaries, as described in the
8277 // processor specific ABI supplement.
8278
8279 template<int size, bool big_endian>
8280 uint64_t
8281 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8282 {
8283   uint64_t value = 0;
8284   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8285
8286   if (!mips_sym->has_lazy_stub())
8287     {
8288       if (mips_sym->has_plt_offset())
8289         {
8290           // We distinguish between PLT entries and lazy-binding stubs by
8291           // giving the former an st_other value of STO_MIPS_PLT.  Set the
8292           // value to the stub address if there are any relocations in the
8293           // binary where pointer equality matters.
8294           if (mips_sym->pointer_equality_needed())
8295             {
8296               // Prefer a standard MIPS PLT entry.
8297               if (mips_sym->has_mips_plt_offset())
8298                 value = this->plt_section()->mips_entry_address(mips_sym);
8299               else
8300                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8301             }
8302           else
8303             value = 0;
8304         }
8305     }
8306   else
8307     {
8308       // First, set stub offsets for symbols.  This method expects that the
8309       // number of entries in dynamic symbol table is set.
8310       this->mips_stubs_section()->set_lazy_stub_offsets();
8311
8312       // The run-time linker uses the st_value field of the symbol
8313       // to reset the global offset table entry for this external
8314       // to its stub address when unlinking a shared object.
8315       value = this->mips_stubs_section()->stub_address(mips_sym);
8316     }
8317
8318   if (mips_sym->has_mips16_fn_stub())
8319     {
8320       // If we have a MIPS16 function with a stub, the dynamic symbol must
8321       // refer to the stub, since only the stub uses the standard calling
8322       // conventions.
8323       value = mips_sym->template
8324               get_mips16_fn_stub<big_endian>()->output_address();
8325     }
8326
8327   return value;
8328 }
8329
8330 // Get the dynamic reloc section, creating it if necessary.  It's always
8331 // .rel.dyn, even for MIPS64.
8332
8333 template<int size, bool big_endian>
8334 typename Target_mips<size, big_endian>::Reloc_section*
8335 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8336 {
8337   if (this->rel_dyn_ == NULL)
8338     {
8339       gold_assert(layout != NULL);
8340       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8341       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8342                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
8343                                       ORDER_DYNAMIC_RELOCS, false);
8344
8345       // First entry in .rel.dyn has to be null.
8346       // This is hack - we define dummy output data and set its address to 0,
8347       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8348       // This ensures that the entry is null.
8349       Output_data* od = new Output_data_zero_fill(0, 0);
8350       od->set_address(0);
8351       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8352     }
8353   return this->rel_dyn_;
8354 }
8355
8356 // Get the GOT section, creating it if necessary.
8357
8358 template<int size, bool big_endian>
8359 Mips_output_data_got<size, big_endian>*
8360 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8361                                            Layout* layout)
8362 {
8363   if (this->got_ == NULL)
8364     {
8365       gold_assert(symtab != NULL && layout != NULL);
8366
8367       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8368                                                               layout);
8369       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8370                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8371                                       elfcpp::SHF_MIPS_GPREL),
8372                                       this->got_, ORDER_DATA, false);
8373
8374       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8375       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8376                                     Symbol_table::PREDEFINED,
8377                                     this->got_,
8378                                     0, 0, elfcpp::STT_OBJECT,
8379                                     elfcpp::STB_GLOBAL,
8380                                     elfcpp::STV_HIDDEN, 0,
8381                                     false, false);
8382     }
8383
8384   return this->got_;
8385 }
8386
8387 // Calculate value of _gp symbol.
8388
8389 template<int size, bool big_endian>
8390 void
8391 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8392 {
8393   gold_assert(this->gp_ == NULL);
8394
8395   Sized_symbol<size>* gp =
8396     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8397
8398   // Set _gp symbol if the linker script hasn't created it.
8399   if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8400     {
8401       // If there is no .got section, gp should be based on .sdata.
8402       Output_data* gp_section = (this->got_ != NULL
8403                                  ? this->got_->output_section()
8404                                  : layout->find_output_section(".sdata"));
8405
8406       if (gp_section != NULL)
8407         gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8408                                           "_gp", NULL, Symbol_table::PREDEFINED,
8409                                           gp_section, MIPS_GP_OFFSET, 0,
8410                                           elfcpp::STT_NOTYPE,
8411                                           elfcpp::STB_LOCAL,
8412                                           elfcpp::STV_DEFAULT,
8413                                           0, false, false));
8414     }
8415
8416   this->gp_ = gp;
8417 }
8418
8419 // Set the dynamic symbol indexes.  INDEX is the index of the first
8420 // global dynamic symbol.  Pointers to the symbols are stored into the
8421 // vector SYMS.  The names are added to DYNPOOL.  This returns an
8422 // updated dynamic symbol index.
8423
8424 template<int size, bool big_endian>
8425 unsigned int
8426 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8427     std::vector<Symbol*>* dyn_symbols, unsigned int index,
8428     std::vector<Symbol*>* syms, Stringpool* dynpool,
8429     Versions* versions, Symbol_table* symtab) const
8430 {
8431   std::vector<Symbol*> non_got_symbols;
8432   std::vector<Symbol*> got_symbols;
8433
8434   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8435                                         &got_symbols);
8436
8437   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8438        p != non_got_symbols.end();
8439        ++p)
8440     {
8441       Symbol* sym = *p;
8442
8443       // Note that SYM may already have a dynamic symbol index, since
8444       // some symbols appear more than once in the symbol table, with
8445       // and without a version.
8446
8447       if (!sym->has_dynsym_index())
8448         {
8449           sym->set_dynsym_index(index);
8450           ++index;
8451           syms->push_back(sym);
8452           dynpool->add(sym->name(), false, NULL);
8453
8454           // Record any version information.
8455           if (sym->version() != NULL)
8456             versions->record_version(symtab, dynpool, sym);
8457
8458           // If the symbol is defined in a dynamic object and is
8459           // referenced in a regular object, then mark the dynamic
8460           // object as needed.  This is used to implement --as-needed.
8461           if (sym->is_from_dynobj() && sym->in_reg())
8462             sym->object()->set_is_needed();
8463         }
8464     }
8465
8466   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8467        p != got_symbols.end();
8468        ++p)
8469     {
8470       Symbol* sym = *p;
8471       if (!sym->has_dynsym_index())
8472         {
8473           // Record any version information.
8474           if (sym->version() != NULL)
8475             versions->record_version(symtab, dynpool, sym);
8476         }
8477     }
8478
8479   index = versions->finalize(symtab, index, syms);
8480
8481   int got_sym_count = 0;
8482   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8483        p != got_symbols.end();
8484        ++p)
8485     {
8486       Symbol* sym = *p;
8487
8488       if (!sym->has_dynsym_index())
8489         {
8490           ++got_sym_count;
8491           sym->set_dynsym_index(index);
8492           ++index;
8493           syms->push_back(sym);
8494           dynpool->add(sym->name(), false, NULL);
8495
8496           // If the symbol is defined in a dynamic object and is
8497           // referenced in a regular object, then mark the dynamic
8498           // object as needed.  This is used to implement --as-needed.
8499           if (sym->is_from_dynobj() && sym->in_reg())
8500             sym->object()->set_is_needed();
8501         }
8502     }
8503
8504   // Set index of the first symbol that has .got entry.
8505   this->got_->set_first_global_got_dynsym_index(
8506     got_sym_count > 0 ? index - got_sym_count : -1U);
8507
8508   if (this->mips_stubs_ != NULL)
8509     this->mips_stubs_->set_dynsym_count(index);
8510
8511   return index;
8512 }
8513
8514 // Create a PLT entry for a global symbol referenced by r_type relocation.
8515
8516 template<int size, bool big_endian>
8517 void
8518 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8519                                               Layout* layout,
8520                                               Mips_symbol<size>* gsym,
8521                                               unsigned int r_type)
8522 {
8523   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8524     return;
8525
8526   if (this->plt_ == NULL)
8527     {
8528       // Create the GOT section first.
8529       this->got_section(symtab, layout);
8530
8531       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8532       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8533                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8534                                       this->got_plt_, ORDER_DATA, false);
8535
8536       // The first two entries are reserved.
8537       this->got_plt_->set_current_data_size(2 * size/8);
8538
8539       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8540                                                               this->got_plt_,
8541                                                               this);
8542       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8543                                       (elfcpp::SHF_ALLOC
8544                                        | elfcpp::SHF_EXECINSTR),
8545                                       this->plt_, ORDER_PLT, false);
8546
8547       // Make the sh_info field of .rel.plt point to .plt.
8548       Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8549       rel_plt_os->set_info_section(this->plt_->output_section());
8550     }
8551
8552   this->plt_->add_entry(gsym, r_type);
8553 }
8554
8555
8556 // Get the .MIPS.stubs section, creating it if necessary.
8557
8558 template<int size, bool big_endian>
8559 Mips_output_data_mips_stubs<size, big_endian>*
8560 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8561 {
8562   if (this->mips_stubs_ == NULL)
8563     {
8564       this->mips_stubs_ =
8565         new Mips_output_data_mips_stubs<size, big_endian>(this);
8566       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8567                                       (elfcpp::SHF_ALLOC
8568                                        | elfcpp::SHF_EXECINSTR),
8569                                       this->mips_stubs_, ORDER_PLT, false);
8570     }
8571   return this->mips_stubs_;
8572 }
8573
8574 // Get the LA25 stub section, creating it if necessary.
8575
8576 template<int size, bool big_endian>
8577 Mips_output_data_la25_stub<size, big_endian>*
8578 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8579 {
8580   if (this->la25_stub_ == NULL)
8581     {
8582       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8583       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8584                                       (elfcpp::SHF_ALLOC
8585                                        | elfcpp::SHF_EXECINSTR),
8586                                       this->la25_stub_, ORDER_TEXT, false);
8587     }
8588   return this->la25_stub_;
8589 }
8590
8591 // Process the relocations to determine unreferenced sections for
8592 // garbage collection.
8593
8594 template<int size, bool big_endian>
8595 void
8596 Target_mips<size, big_endian>::gc_process_relocs(
8597                         Symbol_table* symtab,
8598                         Layout* layout,
8599                         Sized_relobj_file<size, big_endian>* object,
8600                         unsigned int data_shndx,
8601                         unsigned int sh_type,
8602                         const unsigned char* prelocs,
8603                         size_t reloc_count,
8604                         Output_section* output_section,
8605                         bool needs_special_offset_handling,
8606                         size_t local_symbol_count,
8607                         const unsigned char* plocal_symbols)
8608 {
8609   typedef Target_mips<size, big_endian> Mips;
8610
8611   if (sh_type == elfcpp::SHT_REL)
8612     {
8613       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8614           Classify_reloc;
8615
8616       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8617         symtab,
8618         layout,
8619         this,
8620         object,
8621         data_shndx,
8622         prelocs,
8623         reloc_count,
8624         output_section,
8625         needs_special_offset_handling,
8626         local_symbol_count,
8627         plocal_symbols);
8628     }
8629   else if (sh_type == elfcpp::SHT_RELA)
8630     {
8631       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8632           Classify_reloc;
8633
8634       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8635         symtab,
8636         layout,
8637         this,
8638         object,
8639         data_shndx,
8640         prelocs,
8641         reloc_count,
8642         output_section,
8643         needs_special_offset_handling,
8644         local_symbol_count,
8645         plocal_symbols);
8646     }
8647   else
8648     gold_unreachable();
8649 }
8650
8651 // Scan relocations for a section.
8652
8653 template<int size, bool big_endian>
8654 void
8655 Target_mips<size, big_endian>::scan_relocs(
8656                         Symbol_table* symtab,
8657                         Layout* layout,
8658                         Sized_relobj_file<size, big_endian>* object,
8659                         unsigned int data_shndx,
8660                         unsigned int sh_type,
8661                         const unsigned char* prelocs,
8662                         size_t reloc_count,
8663                         Output_section* output_section,
8664                         bool needs_special_offset_handling,
8665                         size_t local_symbol_count,
8666                         const unsigned char* plocal_symbols)
8667 {
8668   typedef Target_mips<size, big_endian> Mips;
8669
8670   if (sh_type == elfcpp::SHT_REL)
8671     {
8672       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8673           Classify_reloc;
8674
8675       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8676         symtab,
8677         layout,
8678         this,
8679         object,
8680         data_shndx,
8681         prelocs,
8682         reloc_count,
8683         output_section,
8684         needs_special_offset_handling,
8685         local_symbol_count,
8686         plocal_symbols);
8687     }
8688   else if (sh_type == elfcpp::SHT_RELA)
8689     {
8690       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8691           Classify_reloc;
8692
8693       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8694         symtab,
8695         layout,
8696         this,
8697         object,
8698         data_shndx,
8699         prelocs,
8700         reloc_count,
8701         output_section,
8702         needs_special_offset_handling,
8703         local_symbol_count,
8704         plocal_symbols);
8705     }
8706 }
8707
8708 template<int size, bool big_endian>
8709 bool
8710 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8711 {
8712   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8713           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8714           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8715           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8716           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8717           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8718           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8719           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8720 }
8721
8722 // Return the MACH for a MIPS e_flags value.
8723 template<int size, bool big_endian>
8724 unsigned int
8725 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8726 {
8727   switch (flags & elfcpp::EF_MIPS_MACH)
8728     {
8729     case elfcpp::E_MIPS_MACH_3900:
8730       return mach_mips3900;
8731
8732     case elfcpp::E_MIPS_MACH_4010:
8733       return mach_mips4010;
8734
8735     case elfcpp::E_MIPS_MACH_4100:
8736       return mach_mips4100;
8737
8738     case elfcpp::E_MIPS_MACH_4111:
8739       return mach_mips4111;
8740
8741     case elfcpp::E_MIPS_MACH_4120:
8742       return mach_mips4120;
8743
8744     case elfcpp::E_MIPS_MACH_4650:
8745       return mach_mips4650;
8746
8747     case elfcpp::E_MIPS_MACH_5400:
8748       return mach_mips5400;
8749
8750     case elfcpp::E_MIPS_MACH_5500:
8751       return mach_mips5500;
8752
8753     case elfcpp::E_MIPS_MACH_5900:
8754       return mach_mips5900;
8755
8756     case elfcpp::E_MIPS_MACH_9000:
8757       return mach_mips9000;
8758
8759     case elfcpp::E_MIPS_MACH_SB1:
8760       return mach_mips_sb1;
8761
8762     case elfcpp::E_MIPS_MACH_LS2E:
8763       return mach_mips_loongson_2e;
8764
8765     case elfcpp::E_MIPS_MACH_LS2F:
8766       return mach_mips_loongson_2f;
8767
8768     case elfcpp::E_MIPS_MACH_LS3A:
8769       return mach_mips_loongson_3a;
8770
8771     case elfcpp::E_MIPS_MACH_OCTEON3:
8772       return mach_mips_octeon3;
8773
8774     case elfcpp::E_MIPS_MACH_OCTEON2:
8775       return mach_mips_octeon2;
8776
8777     case elfcpp::E_MIPS_MACH_OCTEON:
8778       return mach_mips_octeon;
8779
8780     case elfcpp::E_MIPS_MACH_XLR:
8781       return mach_mips_xlr;
8782
8783     default:
8784       switch (flags & elfcpp::EF_MIPS_ARCH)
8785         {
8786         default:
8787         case elfcpp::E_MIPS_ARCH_1:
8788           return mach_mips3000;
8789
8790         case elfcpp::E_MIPS_ARCH_2:
8791           return mach_mips6000;
8792
8793         case elfcpp::E_MIPS_ARCH_3:
8794           return mach_mips4000;
8795
8796         case elfcpp::E_MIPS_ARCH_4:
8797           return mach_mips8000;
8798
8799         case elfcpp::E_MIPS_ARCH_5:
8800           return mach_mips5;
8801
8802         case elfcpp::E_MIPS_ARCH_32:
8803           return mach_mipsisa32;
8804
8805         case elfcpp::E_MIPS_ARCH_64:
8806           return mach_mipsisa64;
8807
8808         case elfcpp::E_MIPS_ARCH_32R2:
8809           return mach_mipsisa32r2;
8810
8811         case elfcpp::E_MIPS_ARCH_32R6:
8812           return mach_mipsisa32r6;
8813
8814         case elfcpp::E_MIPS_ARCH_64R2:
8815           return mach_mipsisa64r2;
8816
8817         case elfcpp::E_MIPS_ARCH_64R6:
8818           return mach_mipsisa64r6;
8819         }
8820     }
8821
8822   return 0;
8823 }
8824
8825 // Return the MACH for each .MIPS.abiflags ISA Extension.
8826
8827 template<int size, bool big_endian>
8828 unsigned int
8829 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8830 {
8831   switch (isa_ext)
8832     {
8833     case elfcpp::AFL_EXT_3900:
8834       return mach_mips3900;
8835
8836     case elfcpp::AFL_EXT_4010:
8837       return mach_mips4010;
8838
8839     case elfcpp::AFL_EXT_4100:
8840       return mach_mips4100;
8841
8842     case elfcpp::AFL_EXT_4111:
8843       return mach_mips4111;
8844
8845     case elfcpp::AFL_EXT_4120:
8846       return mach_mips4120;
8847
8848     case elfcpp::AFL_EXT_4650:
8849       return mach_mips4650;
8850
8851     case elfcpp::AFL_EXT_5400:
8852       return mach_mips5400;
8853
8854     case elfcpp::AFL_EXT_5500:
8855       return mach_mips5500;
8856
8857     case elfcpp::AFL_EXT_5900:
8858       return mach_mips5900;
8859
8860     case elfcpp::AFL_EXT_10000:
8861       return mach_mips10000;
8862
8863     case elfcpp::AFL_EXT_LOONGSON_2E:
8864       return mach_mips_loongson_2e;
8865
8866     case elfcpp::AFL_EXT_LOONGSON_2F:
8867       return mach_mips_loongson_2f;
8868
8869     case elfcpp::AFL_EXT_LOONGSON_3A:
8870       return mach_mips_loongson_3a;
8871
8872     case elfcpp::AFL_EXT_SB1:
8873       return mach_mips_sb1;
8874
8875     case elfcpp::AFL_EXT_OCTEON:
8876       return mach_mips_octeon;
8877
8878     case elfcpp::AFL_EXT_OCTEONP:
8879       return mach_mips_octeonp;
8880
8881     case elfcpp::AFL_EXT_OCTEON2:
8882       return mach_mips_octeon2;
8883
8884     case elfcpp::AFL_EXT_XLR:
8885       return mach_mips_xlr;
8886
8887     default:
8888       return mach_mips3000;
8889     }
8890 }
8891
8892 // Return the .MIPS.abiflags value representing each ISA Extension.
8893
8894 template<int size, bool big_endian>
8895 unsigned int
8896 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8897 {
8898   switch (mips_mach)
8899     {
8900     case mach_mips3900:
8901       return elfcpp::AFL_EXT_3900;
8902
8903     case mach_mips4010:
8904       return elfcpp::AFL_EXT_4010;
8905
8906     case mach_mips4100:
8907       return elfcpp::AFL_EXT_4100;
8908
8909     case mach_mips4111:
8910       return elfcpp::AFL_EXT_4111;
8911
8912     case mach_mips4120:
8913       return elfcpp::AFL_EXT_4120;
8914
8915     case mach_mips4650:
8916       return elfcpp::AFL_EXT_4650;
8917
8918     case mach_mips5400:
8919       return elfcpp::AFL_EXT_5400;
8920
8921     case mach_mips5500:
8922       return elfcpp::AFL_EXT_5500;
8923
8924     case mach_mips5900:
8925       return elfcpp::AFL_EXT_5900;
8926
8927     case mach_mips10000:
8928       return elfcpp::AFL_EXT_10000;
8929
8930     case mach_mips_loongson_2e:
8931       return elfcpp::AFL_EXT_LOONGSON_2E;
8932
8933     case mach_mips_loongson_2f:
8934       return elfcpp::AFL_EXT_LOONGSON_2F;
8935
8936     case mach_mips_loongson_3a:
8937       return elfcpp::AFL_EXT_LOONGSON_3A;
8938
8939     case mach_mips_sb1:
8940       return elfcpp::AFL_EXT_SB1;
8941
8942     case mach_mips_octeon:
8943       return elfcpp::AFL_EXT_OCTEON;
8944
8945     case mach_mips_octeonp:
8946       return elfcpp::AFL_EXT_OCTEONP;
8947
8948     case mach_mips_octeon3:
8949       return elfcpp::AFL_EXT_OCTEON3;
8950
8951     case mach_mips_octeon2:
8952       return elfcpp::AFL_EXT_OCTEON2;
8953
8954     case mach_mips_xlr:
8955       return elfcpp::AFL_EXT_XLR;
8956
8957     default:
8958       return 0;
8959     }
8960 }
8961
8962 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8963
8964 template<int size, bool big_endian>
8965 void
8966 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8967     elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8968 {
8969   int new_isa = 0;
8970   switch (e_flags & elfcpp::EF_MIPS_ARCH)
8971     {
8972     case elfcpp::E_MIPS_ARCH_1:
8973       new_isa = this->level_rev(1, 0);
8974       break;
8975     case elfcpp::E_MIPS_ARCH_2:
8976       new_isa = this->level_rev(2, 0);
8977       break;
8978     case elfcpp::E_MIPS_ARCH_3:
8979       new_isa = this->level_rev(3, 0);
8980       break;
8981     case elfcpp::E_MIPS_ARCH_4:
8982       new_isa = this->level_rev(4, 0);
8983       break;
8984     case elfcpp::E_MIPS_ARCH_5:
8985       new_isa = this->level_rev(5, 0);
8986       break;
8987     case elfcpp::E_MIPS_ARCH_32:
8988       new_isa = this->level_rev(32, 1);
8989       break;
8990     case elfcpp::E_MIPS_ARCH_32R2:
8991       new_isa = this->level_rev(32, 2);
8992       break;
8993     case elfcpp::E_MIPS_ARCH_32R6:
8994       new_isa = this->level_rev(32, 6);
8995       break;
8996     case elfcpp::E_MIPS_ARCH_64:
8997       new_isa = this->level_rev(64, 1);
8998       break;
8999     case elfcpp::E_MIPS_ARCH_64R2:
9000       new_isa = this->level_rev(64, 2);
9001       break;
9002     case elfcpp::E_MIPS_ARCH_64R6:
9003       new_isa = this->level_rev(64, 6);
9004       break;
9005     default:
9006       gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9007                  this->elf_mips_mach_name(e_flags));
9008     }
9009
9010   if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9011     {
9012       // Decode a single value into level and revision.
9013       abiflags->isa_level = new_isa >> 3;
9014       abiflags->isa_rev = new_isa & 0x7;
9015     }
9016
9017   // Update the isa_ext if needed.
9018   if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9019       this->elf_mips_mach(e_flags)))
9020     abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9021 }
9022
9023 // Infer the content of the ABI flags based on the elf header.
9024
9025 template<int size, bool big_endian>
9026 void
9027 Target_mips<size, big_endian>::infer_abiflags(
9028     Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9029 {
9030   const Attributes_section_data* pasd = relobj->attributes_section_data();
9031   int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9032   elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9033
9034   this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9035   if (pasd != NULL)
9036     {
9037       // Read fp_abi from the .gnu.attribute section.
9038       const Object_attribute* attr =
9039         pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9040       attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9041     }
9042
9043   abiflags->fp_abi = attr_fp_abi;
9044   abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9045   abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9046   abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9047                                                        : elfcpp::AFL_REG_64;
9048
9049   if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9050       || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9051       || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9052       && abiflags->gpr_size == elfcpp::AFL_REG_32))
9053     abiflags->cpr1_size = elfcpp::AFL_REG_32;
9054   else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9055            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9056            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9057     abiflags->cpr1_size = elfcpp::AFL_REG_64;
9058
9059   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9060     abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9061   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9062     abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9063   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9064     abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9065
9066   if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9067       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9068       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9069       && abiflags->isa_level >= 32
9070       && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9071     abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9072 }
9073
9074 // Create abiflags from elf header or from .MIPS.abiflags section.
9075
9076 template<int size, bool big_endian>
9077 void
9078 Target_mips<size, big_endian>::create_abiflags(
9079     Mips_relobj<size, big_endian>* relobj,
9080     Mips_abiflags<big_endian>* abiflags)
9081 {
9082   Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9083   Mips_abiflags<big_endian> header_abiflags;
9084
9085   this->infer_abiflags(relobj, &header_abiflags);
9086
9087   if (sec_abiflags == NULL)
9088     {
9089       // If there is no input .MIPS.abiflags section, use abiflags created
9090       // from elf header.
9091       *abiflags = header_abiflags;
9092       return;
9093     }
9094
9095   this->has_abiflags_section_ = true;
9096
9097   // It is not possible to infer the correct ISA revision for R3 or R5
9098   // so drop down to R2 for the checks.
9099   unsigned char isa_rev = sec_abiflags->isa_rev;
9100   if (isa_rev == 3 || isa_rev == 5)
9101     isa_rev = 2;
9102
9103   // Check compatibility between abiflags created from elf header
9104   // and abiflags from .MIPS.abiflags section in this object file.
9105   if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9106       < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9107     gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9108                  relobj->name().c_str());
9109   if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9110       && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9111     gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9112                    ".MIPS.abiflags"), relobj->name().c_str());
9113   if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9114     gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9115                  relobj->name().c_str());
9116   // The isa_ext is allowed to be an extension of what can be inferred
9117   // from e_flags.
9118   if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9119                                this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9120     gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9121                    ".MIPS.abiflags"), relobj->name().c_str());
9122   if (sec_abiflags->flags2 != 0)
9123     gold_warning(_("%s: Unexpected flag in the flags2 field of "
9124                    ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9125                                              sec_abiflags->flags2);
9126   // Use abiflags from .MIPS.abiflags section.
9127   *abiflags = *sec_abiflags;
9128 }
9129
9130 // Return the meaning of fp_abi, or "unknown" if not known.
9131
9132 template<int size, bool big_endian>
9133 const char*
9134 Target_mips<size, big_endian>::fp_abi_string(int fp)
9135 {
9136   switch (fp)
9137     {
9138     case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9139       return "-mdouble-float";
9140     case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9141       return "-msingle-float";
9142     case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9143       return "-msoft-float";
9144     case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9145       return _("-mips32r2 -mfp64 (12 callee-saved)");
9146     case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9147       return "-mfpxx";
9148     case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9149       return "-mgp32 -mfp64";
9150     case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9151       return "-mgp32 -mfp64 -mno-odd-spreg";
9152     default:
9153       return "unknown";
9154     }
9155 }
9156
9157 // Select fp_abi.
9158
9159 template<int size, bool big_endian>
9160 int
9161 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9162                                              int out_fp)
9163 {
9164   if (in_fp == out_fp)
9165     return out_fp;
9166
9167   if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9168     return in_fp;
9169   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9170            && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9171                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9172                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9173     return in_fp;
9174   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9175            && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9176                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9177                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9178     return out_fp; // Keep the current setting.
9179   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9180            && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9181     return in_fp;
9182   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9183            && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9184     return out_fp; // Keep the current setting.
9185   else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9186     gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9187                  fp_abi_string(in_fp), fp_abi_string(out_fp));
9188   return out_fp;
9189 }
9190
9191 // Merge attributes from input object.
9192
9193 template<int size, bool big_endian>
9194 void
9195 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9196     const Attributes_section_data* pasd)
9197 {
9198   // Return if there is no attributes section data.
9199   if (pasd == NULL)
9200     return;
9201
9202   // If output has no object attributes, just copy.
9203   if (this->attributes_section_data_ == NULL)
9204     {
9205       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9206       return;
9207     }
9208
9209   Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9210       Object_attribute::OBJ_ATTR_GNU);
9211
9212   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9213   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9214
9215   // Merge Tag_compatibility attributes and any common GNU ones.
9216   this->attributes_section_data_->merge(name.c_str(), pasd);
9217 }
9218
9219 // Merge abiflags from input object.
9220
9221 template<int size, bool big_endian>
9222 void
9223 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9224     Mips_abiflags<big_endian>* in_abiflags)
9225 {
9226   // If output has no abiflags, just copy.
9227   if (this->abiflags_ == NULL)
9228   {
9229     this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9230     return;
9231   }
9232
9233   this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9234                                                 this->abiflags_->fp_abi);
9235
9236   // Merge abiflags.
9237   this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9238                                         in_abiflags->isa_level);
9239   this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9240                                       in_abiflags->isa_rev);
9241   this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9242                                        in_abiflags->gpr_size);
9243   this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9244                                         in_abiflags->cpr1_size);
9245   this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9246                                         in_abiflags->cpr2_size);
9247   this->abiflags_->ases |= in_abiflags->ases;
9248   this->abiflags_->flags1 |= in_abiflags->flags1;
9249 }
9250
9251 // Check whether machine EXTENSION is an extension of machine BASE.
9252 template<int size, bool big_endian>
9253 bool
9254 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9255                                                  unsigned int extension)
9256 {
9257   if (extension == base)
9258     return true;
9259
9260   if ((base == mach_mipsisa32)
9261       && this->mips_mach_extends(mach_mipsisa64, extension))
9262     return true;
9263
9264   if ((base == mach_mipsisa32r2)
9265       && this->mips_mach_extends(mach_mipsisa64r2, extension))
9266     return true;
9267
9268   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9269     if (extension == this->mips_mach_extensions_[i].first)
9270       {
9271         extension = this->mips_mach_extensions_[i].second;
9272         if (extension == base)
9273           return true;
9274       }
9275
9276   return false;
9277 }
9278
9279 // Merge file header flags from input object.
9280
9281 template<int size, bool big_endian>
9282 void
9283 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9284                                                  elfcpp::Elf_Word in_flags)
9285 {
9286   // If flags are not set yet, just copy them.
9287   if (!this->are_processor_specific_flags_set())
9288     {
9289       this->set_processor_specific_flags(in_flags);
9290       this->mach_ = this->elf_mips_mach(in_flags);
9291       return;
9292     }
9293
9294   elfcpp::Elf_Word new_flags = in_flags;
9295   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9296   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9297   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9298
9299   // Check flag compatibility.
9300   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9301   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9302
9303   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
9304   // doesn't seem to matter.
9305   new_flags &= ~elfcpp::EF_MIPS_XGOT;
9306   old_flags &= ~elfcpp::EF_MIPS_XGOT;
9307
9308   // MIPSpro generates ucode info in n64 objects.  Again, we should
9309   // just be able to ignore this.
9310   new_flags &= ~elfcpp::EF_MIPS_UCODE;
9311   old_flags &= ~elfcpp::EF_MIPS_UCODE;
9312
9313   if (new_flags == old_flags)
9314     {
9315       this->set_processor_specific_flags(merged_flags);
9316       return;
9317     }
9318
9319   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9320       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9321     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9322                  name.c_str());
9323
9324   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9325     merged_flags |= elfcpp::EF_MIPS_CPIC;
9326   if (!(new_flags & elfcpp::EF_MIPS_PIC))
9327     merged_flags &= ~elfcpp::EF_MIPS_PIC;
9328
9329   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9330   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9331
9332   // Compare the ISAs.
9333   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9334     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9335   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9336     {
9337       // Output ISA isn't the same as, or an extension of, input ISA.
9338       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9339         {
9340           // Copy the architecture info from input object to output.  Also copy
9341           // the 32-bit flag (if set) so that we continue to recognise
9342           // output as a 32-bit binary.
9343           this->mach_ = this->elf_mips_mach(in_flags);
9344           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9345           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9346                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9347
9348           // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9349           this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9350
9351           // Copy across the ABI flags if output doesn't use them
9352           // and if that was what caused us to treat input object as 32-bit.
9353           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9354               && this->mips_32bit_flags(new_flags)
9355               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9356             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9357         }
9358       else
9359         // The ISAs aren't compatible.
9360         gold_error(_("%s: linking %s module with previous %s modules"),
9361                    name.c_str(), this->elf_mips_mach_name(in_flags),
9362                    this->elf_mips_mach_name(merged_flags));
9363     }
9364
9365   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9366                 | elfcpp::EF_MIPS_32BITMODE));
9367   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9368                 | elfcpp::EF_MIPS_32BITMODE));
9369
9370   // Compare ABIs.
9371   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9372     {
9373       // Only error if both are set (to different values).
9374       if ((new_flags & elfcpp::EF_MIPS_ABI)
9375            && (old_flags & elfcpp::EF_MIPS_ABI))
9376         gold_error(_("%s: ABI mismatch: linking %s module with "
9377                      "previous %s modules"), name.c_str(),
9378                    this->elf_mips_abi_name(in_flags),
9379                    this->elf_mips_abi_name(merged_flags));
9380
9381       new_flags &= ~elfcpp::EF_MIPS_ABI;
9382       old_flags &= ~elfcpp::EF_MIPS_ABI;
9383     }
9384
9385   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
9386   // and allow arbitrary mixing of the remaining ASEs (retain the union).
9387   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9388       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9389     {
9390       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9391       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9392       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9393       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9394       int micro_mis = old_m16 && new_micro;
9395       int m16_mis = old_micro && new_m16;
9396
9397       if (m16_mis || micro_mis)
9398         gold_error(_("%s: ASE mismatch: linking %s module with "
9399                      "previous %s modules"), name.c_str(),
9400                    m16_mis ? "MIPS16" : "microMIPS",
9401                    m16_mis ? "microMIPS" : "MIPS16");
9402
9403       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9404
9405       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9406       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9407     }
9408
9409   // Compare NaN encodings.
9410   if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9411     {
9412       gold_error(_("%s: linking %s module with previous %s modules"),
9413                  name.c_str(),
9414                  (new_flags & elfcpp::EF_MIPS_NAN2008
9415                   ? "-mnan=2008" : "-mnan=legacy"),
9416                  (old_flags & elfcpp::EF_MIPS_NAN2008
9417                   ? "-mnan=2008" : "-mnan=legacy"));
9418
9419       new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9420       old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9421     }
9422
9423   // Compare FP64 state.
9424   if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9425     {
9426       gold_error(_("%s: linking %s module with previous %s modules"),
9427                  name.c_str(),
9428                  (new_flags & elfcpp::EF_MIPS_FP64
9429                   ? "-mfp64" : "-mfp32"),
9430                  (old_flags & elfcpp::EF_MIPS_FP64
9431                   ? "-mfp64" : "-mfp32"));
9432
9433       new_flags &= ~elfcpp::EF_MIPS_FP64;
9434       old_flags &= ~elfcpp::EF_MIPS_FP64;
9435     }
9436
9437   // Warn about any other mismatches.
9438   if (new_flags != old_flags)
9439     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9440                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9441
9442   this->set_processor_specific_flags(merged_flags);
9443 }
9444
9445 // Adjust ELF file header.
9446
9447 template<int size, bool big_endian>
9448 void
9449 Target_mips<size, big_endian>::do_adjust_elf_header(
9450     unsigned char* view,
9451     int len)
9452 {
9453   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9454
9455   elfcpp::Ehdr<size, big_endian> ehdr(view);
9456   unsigned char e_ident[elfcpp::EI_NIDENT];
9457   elfcpp::Elf_Word flags = this->processor_specific_flags();
9458   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9459
9460   unsigned char ei_abiversion = 0;
9461   elfcpp::Elf_Half type = ehdr.get_e_type();
9462   if (type == elfcpp::ET_EXEC
9463       && parameters->options().copyreloc()
9464       && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9465           == elfcpp::EF_MIPS_CPIC)
9466     ei_abiversion = 1;
9467
9468   if (this->abiflags_ != NULL
9469       && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9470           || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9471     ei_abiversion = 3;
9472
9473   e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9474   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9475   oehdr.put_e_ident(e_ident);
9476
9477   if (this->entry_symbol_is_compressed_)
9478     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9479 }
9480
9481 // do_make_elf_object to override the same function in the base class.
9482 // We need to use a target-specific sub-class of
9483 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9484 // Hence we need to have our own ELF object creation.
9485
9486 template<int size, bool big_endian>
9487 Object*
9488 Target_mips<size, big_endian>::do_make_elf_object(
9489     const std::string& name,
9490     Input_file* input_file,
9491     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9492 {
9493   int et = ehdr.get_e_type();
9494   // ET_EXEC files are valid input for --just-symbols/-R,
9495   // and we treat them as relocatable objects.
9496   if (et == elfcpp::ET_REL
9497       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9498     {
9499       Mips_relobj<size, big_endian>* obj =
9500         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9501       obj->setup();
9502       return obj;
9503     }
9504   else if (et == elfcpp::ET_DYN)
9505     {
9506       // TODO(sasa): Should we create Mips_dynobj?
9507       return Target::do_make_elf_object(name, input_file, offset, ehdr);
9508     }
9509   else
9510     {
9511       gold_error(_("%s: unsupported ELF file type %d"),
9512                  name.c_str(), et);
9513       return NULL;
9514     }
9515 }
9516
9517 // Finalize the sections.
9518
9519 template <int size, bool big_endian>
9520 void
9521 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9522                                         const Input_objects* input_objects,
9523                                         Symbol_table* symtab)
9524 {
9525   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9526   // DT_FINI have correct values.
9527   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9528       symtab->lookup(parameters->options().init()));
9529   if (init != NULL && (init->is_mips16() || init->is_micromips()))
9530     init->set_value(init->value() | 1);
9531   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9532       symtab->lookup(parameters->options().fini()));
9533   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9534     fini->set_value(fini->value() | 1);
9535
9536   // Check whether the entry symbol is mips16 or micromips.  This is needed to
9537   // adjust entry address in ELF header.
9538   Mips_symbol<size>* entry =
9539     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9540   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9541                                        || entry->is_micromips()));
9542
9543   if (!parameters->doing_static_link()
9544       && (strcmp(parameters->options().hash_style(), "gnu") == 0
9545           || strcmp(parameters->options().hash_style(), "both") == 0))
9546     {
9547       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9548       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
9549       // MIPS ABI requires a mapping between the GOT and the symbol table.
9550       gold_error(".gnu.hash is incompatible with the MIPS ABI");
9551     }
9552
9553   // Check whether the final section that was scanned has HI16 or GOT16
9554   // relocations without the corresponding LO16 part.
9555   if (this->got16_addends_.size() > 0)
9556       gold_error("Can't find matching LO16 reloc");
9557
9558   // Check for any mips16 stub sections that we can discard.
9559   if (!parameters->options().relocatable())
9560     {
9561       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9562           p != input_objects->relobj_end();
9563           ++p)
9564         {
9565           Mips_relobj<size, big_endian>* object =
9566             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9567           object->discard_mips16_stub_sections(symtab);
9568         }
9569     }
9570
9571   Valtype gprmask = 0;
9572   Valtype cprmask1 = 0;
9573   Valtype cprmask2 = 0;
9574   Valtype cprmask3 = 0;
9575   Valtype cprmask4 = 0;
9576   bool has_reginfo_section = false;
9577
9578   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9579        p != input_objects->relobj_end();
9580        ++p)
9581     {
9582       Mips_relobj<size, big_endian>* relobj =
9583         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9584
9585       // Merge .reginfo contents of input objects.
9586       if (relobj->has_reginfo_section())
9587         {
9588           has_reginfo_section = true;
9589           gprmask |= relobj->gprmask();
9590           cprmask1 |= relobj->cprmask1();
9591           cprmask2 |= relobj->cprmask2();
9592           cprmask3 |= relobj->cprmask3();
9593           cprmask4 |= relobj->cprmask4();
9594         }
9595
9596       Input_file::Format format = relobj->input_file()->format();
9597       if (format != Input_file::FORMAT_ELF)
9598         continue;
9599
9600       // If all input sections will be discarded, don't use this object
9601       // file for merging processor specific flags.
9602       bool should_merge_processor_specific_flags = false;
9603
9604       for (unsigned int i = 1; i < relobj->shnum(); ++i)
9605         if (relobj->output_section(i) != NULL)
9606           {
9607             should_merge_processor_specific_flags = true;
9608             break;
9609           }
9610
9611       if (!should_merge_processor_specific_flags)
9612         continue;
9613
9614       // Merge processor specific flags.
9615       Mips_abiflags<big_endian> in_abiflags;
9616
9617       this->create_abiflags(relobj, &in_abiflags);
9618       this->merge_obj_e_flags(relobj->name(),
9619                               relobj->processor_specific_flags());
9620       this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9621       this->merge_obj_attributes(relobj->name(),
9622                                  relobj->attributes_section_data());
9623     }
9624
9625   // Create a .gnu.attributes section if we have merged any attributes
9626   // from inputs.
9627   if (this->attributes_section_data_ != NULL)
9628     {
9629       Output_attributes_section_data* attributes_section =
9630         new Output_attributes_section_data(*this->attributes_section_data_);
9631       layout->add_output_section_data(".gnu.attributes",
9632                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
9633                                       attributes_section, ORDER_INVALID, false);
9634     }
9635
9636   // Create .MIPS.abiflags output section if there is an input section.
9637   if (this->has_abiflags_section_)
9638     {
9639       Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9640         new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9641
9642       Output_section* os =
9643         layout->add_output_section_data(".MIPS.abiflags",
9644                                         elfcpp::SHT_MIPS_ABIFLAGS,
9645                                         elfcpp::SHF_ALLOC,
9646                                         abiflags_section, ORDER_INVALID, false);
9647
9648       if (!parameters->options().relocatable() && os != NULL)
9649         {
9650           Output_segment* abiflags_segment =
9651             layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9652           abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9653         }
9654     }
9655
9656   if (has_reginfo_section && !parameters->options().gc_sections())
9657     {
9658       // Create .reginfo output section.
9659       Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9660         new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9661                                                           cprmask1, cprmask2,
9662                                                           cprmask3, cprmask4);
9663
9664       Output_section* os =
9665         layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9666                                         elfcpp::SHF_ALLOC, reginfo_section,
9667                                         ORDER_INVALID, false);
9668
9669       if (!parameters->options().relocatable() && os != NULL)
9670         {
9671           Output_segment* reginfo_segment =
9672             layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9673                                         elfcpp::PF_R);
9674           reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9675         }
9676     }
9677
9678   if (this->plt_ != NULL)
9679     {
9680       // Set final PLT offsets for symbols.
9681       this->plt_section()->set_plt_offsets();
9682
9683       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9684       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9685       // there are no standard PLT entries present.
9686       unsigned char nonvis = 0;
9687       if (this->is_output_micromips()
9688           && !this->plt_section()->has_standard_entries())
9689         nonvis = elfcpp::STO_MICROMIPS >> 2;
9690       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9691                                     Symbol_table::PREDEFINED,
9692                                     this->plt_,
9693                                     0, 0, elfcpp::STT_FUNC,
9694                                     elfcpp::STB_LOCAL,
9695                                     elfcpp::STV_DEFAULT, nonvis,
9696                                     false, false);
9697     }
9698
9699   if (this->mips_stubs_ != NULL)
9700     {
9701       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9702       unsigned char nonvis = 0;
9703       if (this->is_output_micromips())
9704         nonvis = elfcpp::STO_MICROMIPS >> 2;
9705       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9706                                     Symbol_table::PREDEFINED,
9707                                     this->mips_stubs_,
9708                                     0, 0, elfcpp::STT_FUNC,
9709                                     elfcpp::STB_LOCAL,
9710                                     elfcpp::STV_DEFAULT, nonvis,
9711                                     false, false);
9712     }
9713
9714   if (!parameters->options().relocatable() && !parameters->doing_static_link())
9715     // In case there is no .got section, create one.
9716     this->got_section(symtab, layout);
9717
9718   // Emit any relocs we saved in an attempt to avoid generating COPY
9719   // relocs.
9720   if (this->copy_relocs_.any_saved_relocs())
9721     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9722                                  this);
9723
9724   // Set _gp value.
9725   this->set_gp(layout, symtab);
9726
9727   // Emit dynamic relocs.
9728   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9729        p != this->dyn_relocs_.end();
9730        ++p)
9731     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9732
9733   if (this->has_got_section())
9734     this->got_section()->lay_out_got(layout, symtab, input_objects);
9735
9736   if (this->mips_stubs_ != NULL)
9737     this->mips_stubs_->set_needs_dynsym_value();
9738
9739   // Check for functions that might need $25 to be valid on entry.
9740   // TODO(sasa): Can we do this without iterating over all symbols?
9741   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9742   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9743                                                                symtab));
9744
9745   // Add NULL segment.
9746   if (!parameters->options().relocatable())
9747     layout->make_output_segment(elfcpp::PT_NULL, 0);
9748
9749   // Fill in some more dynamic tags.
9750   // TODO(sasa): Add more dynamic tags.
9751   const Reloc_section* rel_plt = (this->plt_ == NULL
9752                                   ? NULL : this->plt_->rel_plt());
9753   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9754                                   this->rel_dyn_, true, false);
9755
9756   Output_data_dynamic* const odyn = layout->dynamic_data();
9757   if (odyn != NULL
9758       && !parameters->options().relocatable()
9759       && !parameters->doing_static_link())
9760   {
9761     unsigned int d_val;
9762     // This element holds a 32-bit version id for the Runtime
9763     // Linker Interface.  This will start at integer value 1.
9764     d_val = 0x01;
9765     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9766
9767     // Dynamic flags
9768     d_val = elfcpp::RHF_NOTPOT;
9769     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9770
9771     // Save layout for using when emitting custom dynamic tags.
9772     this->layout_ = layout;
9773
9774     // This member holds the base address of the segment.
9775     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9776
9777     // This member holds the number of entries in the .dynsym section.
9778     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9779
9780     // This member holds the index of the first dynamic symbol
9781     // table entry that corresponds to an entry in the global offset table.
9782     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9783
9784     // This member holds the number of local GOT entries.
9785     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9786                        this->got_->get_local_gotno());
9787
9788     if (this->plt_ != NULL)
9789       // DT_MIPS_PLTGOT dynamic tag
9790       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9791
9792     if (!parameters->options().shared())
9793       {
9794         this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9795
9796         layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9797                                         (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9798                                         this->rld_map_, ORDER_INVALID, false);
9799
9800         // __RLD_MAP will be filled in by the runtime loader to contain
9801         // a pointer to the _r_debug structure.
9802         Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9803                                             Symbol_table::PREDEFINED,
9804                                             this->rld_map_,
9805                                             0, 0, elfcpp::STT_OBJECT,
9806                                             elfcpp::STB_GLOBAL,
9807                                             elfcpp::STV_DEFAULT, 0,
9808                                             false, false);
9809
9810         if (!rld_map->is_forced_local())
9811           rld_map->set_needs_dynsym_entry();
9812
9813         if (!parameters->options().pie())
9814           // This member holds the absolute address of the debug pointer.
9815           odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9816         else
9817           // This member holds the offset to the debug pointer,
9818           // relative to the address of the tag.
9819           odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9820       }
9821   }
9822 }
9823
9824 // Get the custom dynamic tag value.
9825 template<int size, bool big_endian>
9826 unsigned int
9827 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9828 {
9829   switch (tag)
9830     {
9831     case elfcpp::DT_MIPS_BASE_ADDRESS:
9832       {
9833         // The base address of the segment.
9834         // At this point, the segment list has been sorted into final order,
9835         // so just return vaddr of the first readable PT_LOAD segment.
9836         Output_segment* seg =
9837           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9838         gold_assert(seg != NULL);
9839         return seg->vaddr();
9840       }
9841
9842     case elfcpp::DT_MIPS_SYMTABNO:
9843       // The number of entries in the .dynsym section.
9844       return this->get_dt_mips_symtabno();
9845
9846     case elfcpp::DT_MIPS_GOTSYM:
9847       {
9848         // The index of the first dynamic symbol table entry that corresponds
9849         // to an entry in the GOT.
9850         if (this->got_->first_global_got_dynsym_index() != -1U)
9851           return this->got_->first_global_got_dynsym_index();
9852         else
9853           // In case if we don't have global GOT symbols we default to setting
9854           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9855           return this->get_dt_mips_symtabno();
9856       }
9857
9858     case elfcpp::DT_MIPS_RLD_MAP_REL:
9859       {
9860         // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9861         // relative to the address of the tag.
9862         Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9863         unsigned int entry_offset =
9864           odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9865         gold_assert(entry_offset != -1U);
9866         return this->rld_map_->address() - (odyn->address() + entry_offset);
9867       }
9868     default:
9869       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9870     }
9871
9872   return (unsigned int)-1;
9873 }
9874
9875 // Relocate section data.
9876
9877 template<int size, bool big_endian>
9878 void
9879 Target_mips<size, big_endian>::relocate_section(
9880                         const Relocate_info<size, big_endian>* relinfo,
9881                         unsigned int sh_type,
9882                         const unsigned char* prelocs,
9883                         size_t reloc_count,
9884                         Output_section* output_section,
9885                         bool needs_special_offset_handling,
9886                         unsigned char* view,
9887                         Mips_address address,
9888                         section_size_type view_size,
9889                         const Reloc_symbol_changes* reloc_symbol_changes)
9890 {
9891   typedef Target_mips<size, big_endian> Mips;
9892   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9893
9894   if (sh_type == elfcpp::SHT_REL)
9895     {
9896       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9897           Classify_reloc;
9898
9899       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9900                              gold::Default_comdat_behavior, Classify_reloc>(
9901         relinfo,
9902         this,
9903         prelocs,
9904         reloc_count,
9905         output_section,
9906         needs_special_offset_handling,
9907         view,
9908         address,
9909         view_size,
9910         reloc_symbol_changes);
9911     }
9912   else if (sh_type == elfcpp::SHT_RELA)
9913     {
9914       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9915           Classify_reloc;
9916
9917       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9918                              gold::Default_comdat_behavior, Classify_reloc>(
9919         relinfo,
9920         this,
9921         prelocs,
9922         reloc_count,
9923         output_section,
9924         needs_special_offset_handling,
9925         view,
9926         address,
9927         view_size,
9928         reloc_symbol_changes);
9929     }
9930 }
9931
9932 // Return the size of a relocation while scanning during a relocatable
9933 // link.
9934
9935 unsigned int
9936 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9937 {
9938   switch (r_type)
9939     {
9940     case elfcpp::R_MIPS_NONE:
9941     case elfcpp::R_MIPS_TLS_DTPMOD64:
9942     case elfcpp::R_MIPS_TLS_DTPREL64:
9943     case elfcpp::R_MIPS_TLS_TPREL64:
9944       return 0;
9945
9946     case elfcpp::R_MIPS_32:
9947     case elfcpp::R_MIPS_TLS_DTPMOD32:
9948     case elfcpp::R_MIPS_TLS_DTPREL32:
9949     case elfcpp::R_MIPS_TLS_TPREL32:
9950     case elfcpp::R_MIPS_REL32:
9951     case elfcpp::R_MIPS_PC32:
9952     case elfcpp::R_MIPS_GPREL32:
9953     case elfcpp::R_MIPS_JALR:
9954     case elfcpp::R_MIPS_EH:
9955       return 4;
9956
9957     case elfcpp::R_MIPS_16:
9958     case elfcpp::R_MIPS_HI16:
9959     case elfcpp::R_MIPS_LO16:
9960     case elfcpp::R_MIPS_HIGHER:
9961     case elfcpp::R_MIPS_HIGHEST:
9962     case elfcpp::R_MIPS_GPREL16:
9963     case elfcpp::R_MIPS16_HI16:
9964     case elfcpp::R_MIPS16_LO16:
9965     case elfcpp::R_MIPS_PC16:
9966     case elfcpp::R_MIPS_PCHI16:
9967     case elfcpp::R_MIPS_PCLO16:
9968     case elfcpp::R_MIPS_GOT16:
9969     case elfcpp::R_MIPS16_GOT16:
9970     case elfcpp::R_MIPS_CALL16:
9971     case elfcpp::R_MIPS16_CALL16:
9972     case elfcpp::R_MIPS_GOT_HI16:
9973     case elfcpp::R_MIPS_CALL_HI16:
9974     case elfcpp::R_MIPS_GOT_LO16:
9975     case elfcpp::R_MIPS_CALL_LO16:
9976     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
9977     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
9978     case elfcpp::R_MIPS_TLS_TPREL_HI16:
9979     case elfcpp::R_MIPS_TLS_TPREL_LO16:
9980     case elfcpp::R_MIPS16_GPREL:
9981     case elfcpp::R_MIPS_GOT_DISP:
9982     case elfcpp::R_MIPS_LITERAL:
9983     case elfcpp::R_MIPS_GOT_PAGE:
9984     case elfcpp::R_MIPS_GOT_OFST:
9985     case elfcpp::R_MIPS_TLS_GD:
9986     case elfcpp::R_MIPS_TLS_LDM:
9987     case elfcpp::R_MIPS_TLS_GOTTPREL:
9988       return 2;
9989
9990     // These relocations are not byte sized
9991     case elfcpp::R_MIPS_26:
9992     case elfcpp::R_MIPS16_26:
9993     case elfcpp::R_MIPS_PC21_S2:
9994     case elfcpp::R_MIPS_PC26_S2:
9995     case elfcpp::R_MIPS_PC18_S3:
9996     case elfcpp::R_MIPS_PC19_S2:
9997       return 4;
9998
9999     case elfcpp::R_MIPS_COPY:
10000     case elfcpp::R_MIPS_JUMP_SLOT:
10001       object->error(_("unexpected reloc %u in object file"), r_type);
10002       return 0;
10003
10004     default:
10005       object->error(_("unsupported reloc %u in object file"), r_type);
10006       return 0;
10007   }
10008 }
10009
10010 // Scan the relocs during a relocatable link.
10011
10012 template<int size, bool big_endian>
10013 void
10014 Target_mips<size, big_endian>::scan_relocatable_relocs(
10015                         Symbol_table* symtab,
10016                         Layout* layout,
10017                         Sized_relobj_file<size, big_endian>* object,
10018                         unsigned int data_shndx,
10019                         unsigned int sh_type,
10020                         const unsigned char* prelocs,
10021                         size_t reloc_count,
10022                         Output_section* output_section,
10023                         bool needs_special_offset_handling,
10024                         size_t local_symbol_count,
10025                         const unsigned char* plocal_symbols,
10026                         Relocatable_relocs* rr)
10027 {
10028   if (sh_type == elfcpp::SHT_REL)
10029     {
10030       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10031           Classify_reloc;
10032       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10033           Scan_relocatable_relocs;
10034
10035       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10036         symtab,
10037         layout,
10038         object,
10039         data_shndx,
10040         prelocs,
10041         reloc_count,
10042         output_section,
10043         needs_special_offset_handling,
10044         local_symbol_count,
10045         plocal_symbols,
10046         rr);
10047     }
10048   else if (sh_type == elfcpp::SHT_RELA)
10049     {
10050       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10051           Classify_reloc;
10052       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10053           Scan_relocatable_relocs;
10054
10055       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10056         symtab,
10057         layout,
10058         object,
10059         data_shndx,
10060         prelocs,
10061         reloc_count,
10062         output_section,
10063         needs_special_offset_handling,
10064         local_symbol_count,
10065         plocal_symbols,
10066         rr);
10067     }
10068   else
10069     gold_unreachable();
10070 }
10071
10072 // Scan the relocs for --emit-relocs.
10073
10074 template<int size, bool big_endian>
10075 void
10076 Target_mips<size, big_endian>::emit_relocs_scan(
10077     Symbol_table* symtab,
10078     Layout* layout,
10079     Sized_relobj_file<size, big_endian>* object,
10080     unsigned int data_shndx,
10081     unsigned int sh_type,
10082     const unsigned char* prelocs,
10083     size_t reloc_count,
10084     Output_section* output_section,
10085     bool needs_special_offset_handling,
10086     size_t local_symbol_count,
10087     const unsigned char* plocal_syms,
10088     Relocatable_relocs* rr)
10089 {
10090   if (sh_type == elfcpp::SHT_REL)
10091     {
10092       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10093           Classify_reloc;
10094       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10095           Emit_relocs_strategy;
10096
10097       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10098         symtab,
10099         layout,
10100         object,
10101         data_shndx,
10102         prelocs,
10103         reloc_count,
10104         output_section,
10105         needs_special_offset_handling,
10106         local_symbol_count,
10107         plocal_syms,
10108         rr);
10109     }
10110   else if (sh_type == elfcpp::SHT_RELA)
10111     {
10112       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10113           Classify_reloc;
10114       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10115           Emit_relocs_strategy;
10116
10117       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10118         symtab,
10119         layout,
10120         object,
10121         data_shndx,
10122         prelocs,
10123         reloc_count,
10124         output_section,
10125         needs_special_offset_handling,
10126         local_symbol_count,
10127         plocal_syms,
10128         rr);
10129     }
10130   else
10131     gold_unreachable();
10132 }
10133
10134 // Emit relocations for a section.
10135
10136 template<int size, bool big_endian>
10137 void
10138 Target_mips<size, big_endian>::relocate_relocs(
10139                         const Relocate_info<size, big_endian>* relinfo,
10140                         unsigned int sh_type,
10141                         const unsigned char* prelocs,
10142                         size_t reloc_count,
10143                         Output_section* output_section,
10144                         typename elfcpp::Elf_types<size>::Elf_Off
10145                           offset_in_output_section,
10146                         unsigned char* view,
10147                         Mips_address view_address,
10148                         section_size_type view_size,
10149                         unsigned char* reloc_view,
10150                         section_size_type reloc_view_size)
10151 {
10152   if (sh_type == elfcpp::SHT_REL)
10153     {
10154       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10155           Classify_reloc;
10156
10157       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10158         relinfo,
10159         prelocs,
10160         reloc_count,
10161         output_section,
10162         offset_in_output_section,
10163         view,
10164         view_address,
10165         view_size,
10166         reloc_view,
10167         reloc_view_size);
10168     }
10169   else if (sh_type == elfcpp::SHT_RELA)
10170     {
10171       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10172           Classify_reloc;
10173
10174       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10175         relinfo,
10176         prelocs,
10177         reloc_count,
10178         output_section,
10179         offset_in_output_section,
10180         view,
10181         view_address,
10182         view_size,
10183         reloc_view,
10184         reloc_view_size);
10185     }
10186   else
10187     gold_unreachable();
10188 }
10189
10190 // Perform target-specific processing in a relocatable link.  This is
10191 // only used if we use the relocation strategy RELOC_SPECIAL.
10192
10193 template<int size, bool big_endian>
10194 void
10195 Target_mips<size, big_endian>::relocate_special_relocatable(
10196     const Relocate_info<size, big_endian>* relinfo,
10197     unsigned int sh_type,
10198     const unsigned char* preloc_in,
10199     size_t relnum,
10200     Output_section* output_section,
10201     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10202     unsigned char* view,
10203     Mips_address view_address,
10204     section_size_type,
10205     unsigned char* preloc_out)
10206 {
10207   // We can only handle REL type relocation sections.
10208   gold_assert(sh_type == elfcpp::SHT_REL);
10209
10210   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10211     Reltype;
10212   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10213     Reltype_write;
10214
10215   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10216
10217   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10218
10219   Mips_relobj<size, big_endian>* object =
10220     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10221   const unsigned int local_count = object->local_symbol_count();
10222
10223   Reltype reloc(preloc_in);
10224   Reltype_write reloc_write(preloc_out);
10225
10226   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10227   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10228   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10229
10230   // Get the new symbol index.
10231   // We only use RELOC_SPECIAL strategy in local relocations.
10232   gold_assert(r_sym < local_count);
10233
10234   // We are adjusting a section symbol.  We need to find
10235   // the symbol table index of the section symbol for
10236   // the output section corresponding to input section
10237   // in which this symbol is defined.
10238   bool is_ordinary;
10239   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10240   gold_assert(is_ordinary);
10241   Output_section* os = object->output_section(shndx);
10242   gold_assert(os != NULL);
10243   gold_assert(os->needs_symtab_index());
10244   unsigned int new_symndx = os->symtab_index();
10245
10246   // Get the new offset--the location in the output section where
10247   // this relocation should be applied.
10248
10249   Mips_address offset = reloc.get_r_offset();
10250   Mips_address new_offset;
10251   if (offset_in_output_section != invalid_address)
10252     new_offset = offset + offset_in_output_section;
10253   else
10254     {
10255       section_offset_type sot_offset =
10256         convert_types<section_offset_type, Mips_address>(offset);
10257       section_offset_type new_sot_offset =
10258         output_section->output_offset(object, relinfo->data_shndx,
10259                                       sot_offset);
10260       gold_assert(new_sot_offset != -1);
10261       new_offset = new_sot_offset;
10262     }
10263
10264   // In an object file, r_offset is an offset within the section.
10265   // In an executable or dynamic object, generated by
10266   // --emit-relocs, r_offset is an absolute address.
10267   if (!parameters->options().relocatable())
10268     {
10269       new_offset += view_address;
10270       if (offset_in_output_section != invalid_address)
10271         new_offset -= offset_in_output_section;
10272     }
10273
10274   reloc_write.put_r_offset(new_offset);
10275   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10276
10277   // Handle the reloc addend.
10278   // The relocation uses a section symbol in the input file.
10279   // We are adjusting it to use a section symbol in the output
10280   // file.  The input section symbol refers to some address in
10281   // the input section.  We need the relocation in the output
10282   // file to refer to that same address.  This adjustment to
10283   // the addend is the same calculation we use for a simple
10284   // absolute relocation for the input section symbol.
10285   Valtype calculated_value = 0;
10286   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10287
10288   unsigned char* paddend = view + offset;
10289   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10290   switch (r_type)
10291     {
10292     case elfcpp::R_MIPS_26:
10293       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10294           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10295           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10296           false, &calculated_value);
10297       break;
10298
10299     default:
10300       gold_unreachable();
10301     }
10302
10303   // Report any errors.
10304   switch (reloc_status)
10305     {
10306     case Reloc_funcs::STATUS_OKAY:
10307       break;
10308     case Reloc_funcs::STATUS_OVERFLOW:
10309       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10310                              _("relocation overflow"));
10311       break;
10312     case Reloc_funcs::STATUS_BAD_RELOC:
10313       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10314         _("unexpected opcode while processing relocation"));
10315       break;
10316     default:
10317       gold_unreachable();
10318     }
10319 }
10320
10321 // Optimize the TLS relocation type based on what we know about the
10322 // symbol.  IS_FINAL is true if the final address of this symbol is
10323 // known at link time.
10324
10325 template<int size, bool big_endian>
10326 tls::Tls_optimization
10327 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10328 {
10329   // FIXME: Currently we do not do any TLS optimization.
10330   return tls::TLSOPT_NONE;
10331 }
10332
10333 // Scan a relocation for a local symbol.
10334
10335 template<int size, bool big_endian>
10336 inline void
10337 Target_mips<size, big_endian>::Scan::local(
10338                         Symbol_table* symtab,
10339                         Layout* layout,
10340                         Target_mips<size, big_endian>* target,
10341                         Sized_relobj_file<size, big_endian>* object,
10342                         unsigned int data_shndx,
10343                         Output_section* output_section,
10344                         const Relatype* rela,
10345                         const Reltype* rel,
10346                         unsigned int rel_type,
10347                         unsigned int r_type,
10348                         const elfcpp::Sym<size, big_endian>& lsym,
10349                         bool is_discarded)
10350 {
10351   if (is_discarded)
10352     return;
10353
10354   Mips_address r_offset;
10355   unsigned int r_sym;
10356   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10357
10358   if (rel_type == elfcpp::SHT_RELA)
10359     {
10360       r_offset = rela->get_r_offset();
10361       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10362           get_r_sym(rela);
10363       r_addend = rela->get_r_addend();
10364     }
10365   else
10366     {
10367       r_offset = rel->get_r_offset();
10368       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10369           get_r_sym(rel);
10370       r_addend = 0;
10371     }
10372
10373   Mips_relobj<size, big_endian>* mips_obj =
10374     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10375
10376   if (mips_obj->is_mips16_stub_section(data_shndx))
10377     {
10378       mips_obj->get_mips16_stub_section(data_shndx)
10379               ->new_local_reloc_found(r_type, r_sym);
10380     }
10381
10382   if (r_type == elfcpp::R_MIPS_NONE)
10383     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10384     // mips16 stub.
10385     return;
10386
10387   if (!mips16_call_reloc(r_type)
10388       && !mips_obj->section_allows_mips16_refs(data_shndx))
10389     // This reloc would need to refer to a MIPS16 hard-float stub, if
10390     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10391     // looking for relocs that would need to refer to MIPS16 stubs.
10392     mips_obj->add_local_non_16bit_call(r_sym);
10393
10394   if (r_type == elfcpp::R_MIPS16_26
10395       && !mips_obj->section_allows_mips16_refs(data_shndx))
10396     mips_obj->add_local_16bit_call(r_sym);
10397
10398   switch (r_type)
10399     {
10400     case elfcpp::R_MIPS_GOT16:
10401     case elfcpp::R_MIPS_CALL16:
10402     case elfcpp::R_MIPS_CALL_HI16:
10403     case elfcpp::R_MIPS_CALL_LO16:
10404     case elfcpp::R_MIPS_GOT_HI16:
10405     case elfcpp::R_MIPS_GOT_LO16:
10406     case elfcpp::R_MIPS_GOT_PAGE:
10407     case elfcpp::R_MIPS_GOT_OFST:
10408     case elfcpp::R_MIPS_GOT_DISP:
10409     case elfcpp::R_MIPS_TLS_GOTTPREL:
10410     case elfcpp::R_MIPS_TLS_GD:
10411     case elfcpp::R_MIPS_TLS_LDM:
10412     case elfcpp::R_MIPS16_GOT16:
10413     case elfcpp::R_MIPS16_CALL16:
10414     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10415     case elfcpp::R_MIPS16_TLS_GD:
10416     case elfcpp::R_MIPS16_TLS_LDM:
10417     case elfcpp::R_MICROMIPS_GOT16:
10418     case elfcpp::R_MICROMIPS_CALL16:
10419     case elfcpp::R_MICROMIPS_CALL_HI16:
10420     case elfcpp::R_MICROMIPS_CALL_LO16:
10421     case elfcpp::R_MICROMIPS_GOT_HI16:
10422     case elfcpp::R_MICROMIPS_GOT_LO16:
10423     case elfcpp::R_MICROMIPS_GOT_PAGE:
10424     case elfcpp::R_MICROMIPS_GOT_OFST:
10425     case elfcpp::R_MICROMIPS_GOT_DISP:
10426     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10427     case elfcpp::R_MICROMIPS_TLS_GD:
10428     case elfcpp::R_MICROMIPS_TLS_LDM:
10429     case elfcpp::R_MIPS_EH:
10430       // We need a GOT section.
10431       target->got_section(symtab, layout);
10432       break;
10433
10434     default:
10435       break;
10436     }
10437
10438   if (call_lo16_reloc(r_type)
10439       || got_lo16_reloc(r_type)
10440       || got_disp_reloc(r_type)
10441       || eh_reloc(r_type))
10442     {
10443       // We may need a local GOT entry for this relocation.  We
10444       // don't count R_MIPS_GOT_PAGE because we can estimate the
10445       // maximum number of pages needed by looking at the size of
10446       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
10447       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
10448       // R_MIPS_CALL_HI16 because these are always followed by an
10449       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10450       Mips_output_data_got<size, big_endian>* got =
10451         target->got_section(symtab, layout);
10452       bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10453       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10454                                    is_section_symbol);
10455     }
10456
10457   switch (r_type)
10458     {
10459     case elfcpp::R_MIPS_CALL16:
10460     case elfcpp::R_MIPS16_CALL16:
10461     case elfcpp::R_MICROMIPS_CALL16:
10462       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10463                  (unsigned long)r_offset);
10464       return;
10465
10466     case elfcpp::R_MIPS_GOT_PAGE:
10467     case elfcpp::R_MICROMIPS_GOT_PAGE:
10468     case elfcpp::R_MIPS16_GOT16:
10469     case elfcpp::R_MIPS_GOT16:
10470     case elfcpp::R_MIPS_GOT_HI16:
10471     case elfcpp::R_MIPS_GOT_LO16:
10472     case elfcpp::R_MICROMIPS_GOT16:
10473     case elfcpp::R_MICROMIPS_GOT_HI16:
10474     case elfcpp::R_MICROMIPS_GOT_LO16:
10475       {
10476         // This relocation needs a page entry in the GOT.
10477         // Get the section contents.
10478         section_size_type view_size = 0;
10479         const unsigned char* view = object->section_contents(data_shndx,
10480                                                              &view_size, false);
10481         view += r_offset;
10482
10483         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10484         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10485                                                         : r_addend);
10486
10487         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10488           target->got16_addends_.push_back(got16_addend<size, big_endian>(
10489               object, data_shndx, r_type, r_sym, addend));
10490         else
10491           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10492         break;
10493       }
10494
10495     case elfcpp::R_MIPS_HI16:
10496     case elfcpp::R_MIPS_PCHI16:
10497     case elfcpp::R_MIPS16_HI16:
10498     case elfcpp::R_MICROMIPS_HI16:
10499       // Record the reloc so that we can check whether the corresponding LO16
10500       // part exists.
10501       if (rel_type == elfcpp::SHT_REL)
10502         target->got16_addends_.push_back(got16_addend<size, big_endian>(
10503             object, data_shndx, r_type, r_sym, 0));
10504       break;
10505
10506     case elfcpp::R_MIPS_LO16:
10507     case elfcpp::R_MIPS_PCLO16:
10508     case elfcpp::R_MIPS16_LO16:
10509     case elfcpp::R_MICROMIPS_LO16:
10510       {
10511         if (rel_type != elfcpp::SHT_REL)
10512           break;
10513
10514         // Find corresponding GOT16/HI16 relocation.
10515
10516         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10517         // be immediately following.  However, for the IRIX6 ABI, the next
10518         // relocation may be a composed relocation consisting of several
10519         // relocations for the same address.  In that case, the R_MIPS_LO16
10520         // relocation may occur as one of these.  We permit a similar
10521         // extension in general, as that is useful for GCC.
10522
10523         // In some cases GCC dead code elimination removes the LO16 but
10524         // keeps the corresponding HI16.  This is strictly speaking a
10525         // violation of the ABI but not immediately harmful.
10526
10527         typename std::list<got16_addend<size, big_endian> >::iterator it =
10528           target->got16_addends_.begin();
10529         while (it != target->got16_addends_.end())
10530           {
10531             got16_addend<size, big_endian> _got16_addend = *it;
10532
10533             // TODO(sasa): Split got16_addends_ list into two lists - one for
10534             // GOT16 relocs and the other for HI16 relocs.
10535
10536             // Report an error if we find HI16 or GOT16 reloc from the
10537             // previous section without the matching LO16 part.
10538             if (_got16_addend.object != object
10539                 || _got16_addend.shndx != data_shndx)
10540               {
10541                 gold_error("Can't find matching LO16 reloc");
10542                 break;
10543               }
10544
10545             if (_got16_addend.r_sym != r_sym
10546                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10547               {
10548                 ++it;
10549                 continue;
10550               }
10551
10552             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10553             // For GOT16, we need to calculate combined addend and record GOT page
10554             // entry.
10555             if (got16_reloc(_got16_addend.r_type))
10556               {
10557
10558                 section_size_type view_size = 0;
10559                 const unsigned char* view = object->section_contents(data_shndx,
10560                                                                      &view_size,
10561                                                                      false);
10562                 view += r_offset;
10563
10564                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10565                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10566
10567                 addend = (_got16_addend.addend << 16) + addend;
10568                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10569                                                              addend);
10570               }
10571
10572             it = target->got16_addends_.erase(it);
10573           }
10574         break;
10575       }
10576     }
10577
10578   switch (r_type)
10579     {
10580     case elfcpp::R_MIPS_32:
10581     case elfcpp::R_MIPS_REL32:
10582     case elfcpp::R_MIPS_64:
10583       {
10584         if (parameters->options().output_is_position_independent())
10585           {
10586             // If building a shared library (or a position-independent
10587             // executable), we need to create a dynamic relocation for
10588             // this location.
10589             if (is_readonly_section(output_section))
10590               break;
10591             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10592             rel_dyn->add_symbolless_local_addend(object, r_sym,
10593                                                  elfcpp::R_MIPS_REL32,
10594                                                  output_section, data_shndx,
10595                                                  r_offset);
10596           }
10597         break;
10598       }
10599
10600     case elfcpp::R_MIPS_TLS_GOTTPREL:
10601     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10602     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10603     case elfcpp::R_MIPS_TLS_LDM:
10604     case elfcpp::R_MIPS16_TLS_LDM:
10605     case elfcpp::R_MICROMIPS_TLS_LDM:
10606     case elfcpp::R_MIPS_TLS_GD:
10607     case elfcpp::R_MIPS16_TLS_GD:
10608     case elfcpp::R_MICROMIPS_TLS_GD:
10609       {
10610         bool output_is_shared = parameters->options().shared();
10611         const tls::Tls_optimization optimized_type
10612             = Target_mips<size, big_endian>::optimize_tls_reloc(
10613                                              !output_is_shared, r_type);
10614         switch (r_type)
10615           {
10616           case elfcpp::R_MIPS_TLS_GD:
10617           case elfcpp::R_MIPS16_TLS_GD:
10618           case elfcpp::R_MICROMIPS_TLS_GD:
10619             if (optimized_type == tls::TLSOPT_NONE)
10620               {
10621                 // Create a pair of GOT entries for the module index and
10622                 // dtv-relative offset.
10623                 Mips_output_data_got<size, big_endian>* got =
10624                   target->got_section(symtab, layout);
10625                 unsigned int shndx = lsym.get_st_shndx();
10626                 bool is_ordinary;
10627                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10628                 if (!is_ordinary)
10629                   {
10630                     object->error(_("local symbol %u has bad shndx %u"),
10631                                   r_sym, shndx);
10632                     break;
10633                   }
10634                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10635                                              shndx, false);
10636               }
10637             else
10638               {
10639                 // FIXME: TLS optimization not supported yet.
10640                 gold_unreachable();
10641               }
10642             break;
10643
10644           case elfcpp::R_MIPS_TLS_LDM:
10645           case elfcpp::R_MIPS16_TLS_LDM:
10646           case elfcpp::R_MICROMIPS_TLS_LDM:
10647             if (optimized_type == tls::TLSOPT_NONE)
10648               {
10649                 // We always record LDM symbols as local with index 0.
10650                 target->got_section()->record_local_got_symbol(mips_obj, 0,
10651                                                                r_addend, r_type,
10652                                                                -1U, false);
10653               }
10654             else
10655               {
10656                 // FIXME: TLS optimization not supported yet.
10657                 gold_unreachable();
10658               }
10659             break;
10660           case elfcpp::R_MIPS_TLS_GOTTPREL:
10661           case elfcpp::R_MIPS16_TLS_GOTTPREL:
10662           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10663             layout->set_has_static_tls();
10664             if (optimized_type == tls::TLSOPT_NONE)
10665               {
10666                 // Create a GOT entry for the tp-relative offset.
10667                 Mips_output_data_got<size, big_endian>* got =
10668                   target->got_section(symtab, layout);
10669                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10670                                              -1U, false);
10671               }
10672             else
10673               {
10674                 // FIXME: TLS optimization not supported yet.
10675                 gold_unreachable();
10676               }
10677             break;
10678
10679           default:
10680             gold_unreachable();
10681         }
10682       }
10683       break;
10684
10685     default:
10686       break;
10687     }
10688
10689   // Refuse some position-dependent relocations when creating a
10690   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
10691   // not PIC, but we can create dynamic relocations and the result
10692   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
10693   // combined with R_MIPS_GOT16.
10694   if (parameters->options().shared())
10695     {
10696       switch (r_type)
10697         {
10698         case elfcpp::R_MIPS16_HI16:
10699         case elfcpp::R_MIPS_HI16:
10700         case elfcpp::R_MIPS_HIGHER:
10701         case elfcpp::R_MIPS_HIGHEST:
10702         case elfcpp::R_MICROMIPS_HI16:
10703         case elfcpp::R_MICROMIPS_HIGHER:
10704         case elfcpp::R_MICROMIPS_HIGHEST:
10705           // Don't refuse a high part relocation if it's against
10706           // no symbol (e.g. part of a compound relocation).
10707           if (r_sym == 0)
10708             break;
10709           // Fall through.
10710
10711         case elfcpp::R_MIPS16_26:
10712         case elfcpp::R_MIPS_26:
10713         case elfcpp::R_MICROMIPS_26_S1:
10714           gold_error(_("%s: relocation %u against `%s' can not be used when "
10715                        "making a shared object; recompile with -fPIC"),
10716                      object->name().c_str(), r_type, "a local symbol");
10717         default:
10718           break;
10719         }
10720     }
10721 }
10722
10723 template<int size, bool big_endian>
10724 inline void
10725 Target_mips<size, big_endian>::Scan::local(
10726                         Symbol_table* symtab,
10727                         Layout* layout,
10728                         Target_mips<size, big_endian>* target,
10729                         Sized_relobj_file<size, big_endian>* object,
10730                         unsigned int data_shndx,
10731                         Output_section* output_section,
10732                         const Reltype& reloc,
10733                         unsigned int r_type,
10734                         const elfcpp::Sym<size, big_endian>& lsym,
10735                         bool is_discarded)
10736 {
10737   if (is_discarded)
10738     return;
10739
10740   local(
10741     symtab,
10742     layout,
10743     target,
10744     object,
10745     data_shndx,
10746     output_section,
10747     (const Relatype*) NULL,
10748     &reloc,
10749     elfcpp::SHT_REL,
10750     r_type,
10751     lsym, is_discarded);
10752 }
10753
10754
10755 template<int size, bool big_endian>
10756 inline void
10757 Target_mips<size, big_endian>::Scan::local(
10758                         Symbol_table* symtab,
10759                         Layout* layout,
10760                         Target_mips<size, big_endian>* target,
10761                         Sized_relobj_file<size, big_endian>* object,
10762                         unsigned int data_shndx,
10763                         Output_section* output_section,
10764                         const Relatype& reloc,
10765                         unsigned int r_type,
10766                         const elfcpp::Sym<size, big_endian>& lsym,
10767                         bool is_discarded)
10768 {
10769   if (is_discarded)
10770     return;
10771
10772   local(
10773     symtab,
10774     layout,
10775     target,
10776     object,
10777     data_shndx,
10778     output_section,
10779     &reloc,
10780     (const Reltype*) NULL,
10781     elfcpp::SHT_RELA,
10782     r_type,
10783     lsym, is_discarded);
10784 }
10785
10786 // Scan a relocation for a global symbol.
10787
10788 template<int size, bool big_endian>
10789 inline void
10790 Target_mips<size, big_endian>::Scan::global(
10791                                 Symbol_table* symtab,
10792                                 Layout* layout,
10793                                 Target_mips<size, big_endian>* target,
10794                                 Sized_relobj_file<size, big_endian>* object,
10795                                 unsigned int data_shndx,
10796                                 Output_section* output_section,
10797                                 const Relatype* rela,
10798                                 const Reltype* rel,
10799                                 unsigned int rel_type,
10800                                 unsigned int r_type,
10801                                 Symbol* gsym)
10802 {
10803   Mips_address r_offset;
10804   unsigned int r_sym;
10805   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10806
10807   if (rel_type == elfcpp::SHT_RELA)
10808     {
10809       r_offset = rela->get_r_offset();
10810       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10811           get_r_sym(rela);
10812       r_addend = rela->get_r_addend();
10813     }
10814   else
10815     {
10816       r_offset = rel->get_r_offset();
10817       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10818           get_r_sym(rel);
10819       r_addend = 0;
10820     }
10821
10822   Mips_relobj<size, big_endian>* mips_obj =
10823     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10824   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10825
10826   if (mips_obj->is_mips16_stub_section(data_shndx))
10827     {
10828       mips_obj->get_mips16_stub_section(data_shndx)
10829               ->new_global_reloc_found(r_type, mips_sym);
10830     }
10831
10832   if (r_type == elfcpp::R_MIPS_NONE)
10833     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10834     // mips16 stub.
10835     return;
10836
10837   if (!mips16_call_reloc(r_type)
10838       && !mips_obj->section_allows_mips16_refs(data_shndx))
10839     // This reloc would need to refer to a MIPS16 hard-float stub, if
10840     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10841     // looking for relocs that would need to refer to MIPS16 stubs.
10842     mips_sym->set_need_fn_stub();
10843
10844   // We need PLT entries if there are static-only relocations against
10845   // an externally-defined function.  This can technically occur for
10846   // shared libraries if there are branches to the symbol, although it
10847   // is unlikely that this will be used in practice due to the short
10848   // ranges involved.  It can occur for any relative or absolute relocation
10849   // in executables; in that case, the PLT entry becomes the function's
10850   // canonical address.
10851   bool static_reloc = false;
10852
10853   // Set CAN_MAKE_DYNAMIC to true if we can convert this
10854   // relocation into a dynamic one.
10855   bool can_make_dynamic = false;
10856   switch (r_type)
10857     {
10858     case elfcpp::R_MIPS_GOT16:
10859     case elfcpp::R_MIPS_CALL16:
10860     case elfcpp::R_MIPS_CALL_HI16:
10861     case elfcpp::R_MIPS_CALL_LO16:
10862     case elfcpp::R_MIPS_GOT_HI16:
10863     case elfcpp::R_MIPS_GOT_LO16:
10864     case elfcpp::R_MIPS_GOT_PAGE:
10865     case elfcpp::R_MIPS_GOT_OFST:
10866     case elfcpp::R_MIPS_GOT_DISP:
10867     case elfcpp::R_MIPS_TLS_GOTTPREL:
10868     case elfcpp::R_MIPS_TLS_GD:
10869     case elfcpp::R_MIPS_TLS_LDM:
10870     case elfcpp::R_MIPS16_GOT16:
10871     case elfcpp::R_MIPS16_CALL16:
10872     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10873     case elfcpp::R_MIPS16_TLS_GD:
10874     case elfcpp::R_MIPS16_TLS_LDM:
10875     case elfcpp::R_MICROMIPS_GOT16:
10876     case elfcpp::R_MICROMIPS_CALL16:
10877     case elfcpp::R_MICROMIPS_CALL_HI16:
10878     case elfcpp::R_MICROMIPS_CALL_LO16:
10879     case elfcpp::R_MICROMIPS_GOT_HI16:
10880     case elfcpp::R_MICROMIPS_GOT_LO16:
10881     case elfcpp::R_MICROMIPS_GOT_PAGE:
10882     case elfcpp::R_MICROMIPS_GOT_OFST:
10883     case elfcpp::R_MICROMIPS_GOT_DISP:
10884     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10885     case elfcpp::R_MICROMIPS_TLS_GD:
10886     case elfcpp::R_MICROMIPS_TLS_LDM:
10887     case elfcpp::R_MIPS_EH:
10888       // We need a GOT section.
10889       target->got_section(symtab, layout);
10890       break;
10891
10892     // This is just a hint; it can safely be ignored.  Don't set
10893     // has_static_relocs for the corresponding symbol.
10894     case elfcpp::R_MIPS_JALR:
10895     case elfcpp::R_MICROMIPS_JALR:
10896       break;
10897
10898     case elfcpp::R_MIPS_GPREL16:
10899     case elfcpp::R_MIPS_GPREL32:
10900     case elfcpp::R_MIPS16_GPREL:
10901     case elfcpp::R_MICROMIPS_GPREL16:
10902       // TODO(sasa)
10903       // GP-relative relocations always resolve to a definition in a
10904       // regular input file, ignoring the one-definition rule.  This is
10905       // important for the GP setup sequence in NewABI code, which
10906       // always resolves to a local function even if other relocations
10907       // against the symbol wouldn't.
10908       //constrain_symbol_p = FALSE;
10909       break;
10910
10911     case elfcpp::R_MIPS_32:
10912     case elfcpp::R_MIPS_REL32:
10913     case elfcpp::R_MIPS_64:
10914       if ((parameters->options().shared()
10915           || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10916           && (!is_readonly_section(output_section)
10917           || mips_obj->is_pic())))
10918           && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10919         {
10920           if (r_type != elfcpp::R_MIPS_REL32)
10921             mips_sym->set_pointer_equality_needed();
10922           can_make_dynamic = true;
10923           break;
10924         }
10925       // Fall through.
10926
10927     default:
10928       // Most static relocations require pointer equality, except
10929       // for branches.
10930       mips_sym->set_pointer_equality_needed();
10931       // Fall through.
10932
10933     case elfcpp::R_MIPS_26:
10934     case elfcpp::R_MIPS_PC16:
10935     case elfcpp::R_MIPS_PC21_S2:
10936     case elfcpp::R_MIPS_PC26_S2:
10937     case elfcpp::R_MIPS16_26:
10938     case elfcpp::R_MICROMIPS_26_S1:
10939     case elfcpp::R_MICROMIPS_PC7_S1:
10940     case elfcpp::R_MICROMIPS_PC10_S1:
10941     case elfcpp::R_MICROMIPS_PC16_S1:
10942     case elfcpp::R_MICROMIPS_PC23_S2:
10943       static_reloc = true;
10944       mips_sym->set_has_static_relocs();
10945       break;
10946     }
10947
10948   // If there are call relocations against an externally-defined symbol,
10949   // see whether we can create a MIPS lazy-binding stub for it.  We can
10950   // only do this if all references to the function are through call
10951   // relocations, and in that case, the traditional lazy-binding stubs
10952   // are much more efficient than PLT entries.
10953   switch (r_type)
10954     {
10955     case elfcpp::R_MIPS16_CALL16:
10956     case elfcpp::R_MIPS_CALL16:
10957     case elfcpp::R_MIPS_CALL_HI16:
10958     case elfcpp::R_MIPS_CALL_LO16:
10959     case elfcpp::R_MIPS_JALR:
10960     case elfcpp::R_MICROMIPS_CALL16:
10961     case elfcpp::R_MICROMIPS_CALL_HI16:
10962     case elfcpp::R_MICROMIPS_CALL_LO16:
10963     case elfcpp::R_MICROMIPS_JALR:
10964       if (!mips_sym->no_lazy_stub())
10965         {
10966           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10967               // Calls from shared objects to undefined symbols of type
10968               // STT_NOTYPE need lazy-binding stub.
10969               || (mips_sym->is_undefined() && parameters->options().shared()))
10970             target->mips_stubs_section(layout)->make_entry(mips_sym);
10971         }
10972       break;
10973     default:
10974       {
10975         // We must not create a stub for a symbol that has relocations
10976         // related to taking the function's address.
10977         mips_sym->set_no_lazy_stub();
10978         target->remove_lazy_stub_entry(mips_sym);
10979         break;
10980       }
10981   }
10982
10983   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
10984                                                    mips_sym->is_mips16()))
10985     mips_sym->set_has_nonpic_branches();
10986
10987   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10988   // and has a special meaning.
10989   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
10990                                && strcmp(gsym->name(), "_gp_disp") == 0
10991                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
10992   if (static_reloc && gsym->needs_plt_entry())
10993     {
10994       target->make_plt_entry(symtab, layout, mips_sym, r_type);
10995
10996       // Since this is not a PC-relative relocation, we may be
10997       // taking the address of a function.  In that case we need to
10998       // set the entry in the dynamic symbol table to the address of
10999       // the PLT entry.
11000       if (gsym->is_from_dynobj() && !parameters->options().shared())
11001         {
11002           gsym->set_needs_dynsym_value();
11003           // We distinguish between PLT entries and lazy-binding stubs by
11004           // giving the former an st_other value of STO_MIPS_PLT.  Set the
11005           // flag if there are any relocations in the binary where pointer
11006           // equality matters.
11007           if (mips_sym->pointer_equality_needed())
11008             mips_sym->set_mips_plt();
11009         }
11010     }
11011   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11012     {
11013       // Absolute addressing relocations.
11014       // Make a dynamic relocation if necessary.
11015       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11016         {
11017           if (gsym->may_need_copy_reloc())
11018             {
11019               target->copy_reloc(symtab, layout, object, data_shndx,
11020                                  output_section, gsym, r_type, r_offset);
11021             }
11022           else if (can_make_dynamic)
11023             {
11024               // Create .rel.dyn section.
11025               target->rel_dyn_section(layout);
11026               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11027                                     data_shndx, output_section, r_offset);
11028             }
11029           else
11030             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11031                        gsym->name());
11032         }
11033     }
11034
11035   bool for_call = false;
11036   switch (r_type)
11037     {
11038     case elfcpp::R_MIPS_CALL16:
11039     case elfcpp::R_MIPS16_CALL16:
11040     case elfcpp::R_MICROMIPS_CALL16:
11041     case elfcpp::R_MIPS_CALL_HI16:
11042     case elfcpp::R_MIPS_CALL_LO16:
11043     case elfcpp::R_MICROMIPS_CALL_HI16:
11044     case elfcpp::R_MICROMIPS_CALL_LO16:
11045       for_call = true;
11046       // Fall through.
11047
11048     case elfcpp::R_MIPS16_GOT16:
11049     case elfcpp::R_MIPS_GOT16:
11050     case elfcpp::R_MIPS_GOT_HI16:
11051     case elfcpp::R_MIPS_GOT_LO16:
11052     case elfcpp::R_MICROMIPS_GOT16:
11053     case elfcpp::R_MICROMIPS_GOT_HI16:
11054     case elfcpp::R_MICROMIPS_GOT_LO16:
11055     case elfcpp::R_MIPS_GOT_DISP:
11056     case elfcpp::R_MICROMIPS_GOT_DISP:
11057     case elfcpp::R_MIPS_EH:
11058       {
11059         // The symbol requires a GOT entry.
11060         Mips_output_data_got<size, big_endian>* got =
11061           target->got_section(symtab, layout);
11062         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11063                                       for_call);
11064         mips_sym->set_global_got_area(GGA_NORMAL);
11065       }
11066       break;
11067
11068     case elfcpp::R_MIPS_GOT_PAGE:
11069     case elfcpp::R_MICROMIPS_GOT_PAGE:
11070       {
11071         // This relocation needs a page entry in the GOT.
11072         // Get the section contents.
11073         section_size_type view_size = 0;
11074         const unsigned char* view =
11075           object->section_contents(data_shndx, &view_size, false);
11076         view += r_offset;
11077
11078         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11079         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11080                                                         : r_addend);
11081         Mips_output_data_got<size, big_endian>* got =
11082           target->got_section(symtab, layout);
11083         got->record_got_page_entry(mips_obj, r_sym, addend);
11084
11085         // If this is a global, overridable symbol, GOT_PAGE will
11086         // decay to GOT_DISP, so we'll need a GOT entry for it.
11087         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11088                             && !mips_sym->object()->is_dynamic()
11089                             && !mips_sym->is_undefined());
11090         if (!def_regular
11091             || (parameters->options().output_is_position_independent()
11092                 && !parameters->options().Bsymbolic()
11093                 && !mips_sym->is_forced_local()))
11094           {
11095             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11096                                           for_call);
11097             mips_sym->set_global_got_area(GGA_NORMAL);
11098           }
11099       }
11100       break;
11101
11102     case elfcpp::R_MIPS_TLS_GOTTPREL:
11103     case elfcpp::R_MIPS16_TLS_GOTTPREL:
11104     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11105     case elfcpp::R_MIPS_TLS_LDM:
11106     case elfcpp::R_MIPS16_TLS_LDM:
11107     case elfcpp::R_MICROMIPS_TLS_LDM:
11108     case elfcpp::R_MIPS_TLS_GD:
11109     case elfcpp::R_MIPS16_TLS_GD:
11110     case elfcpp::R_MICROMIPS_TLS_GD:
11111       {
11112         const bool is_final = gsym->final_value_is_known();
11113         const tls::Tls_optimization optimized_type =
11114           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11115
11116         switch (r_type)
11117           {
11118           case elfcpp::R_MIPS_TLS_GD:
11119           case elfcpp::R_MIPS16_TLS_GD:
11120           case elfcpp::R_MICROMIPS_TLS_GD:
11121             if (optimized_type == tls::TLSOPT_NONE)
11122               {
11123                 // Create a pair of GOT entries for the module index and
11124                 // dtv-relative offset.
11125                 Mips_output_data_got<size, big_endian>* got =
11126                   target->got_section(symtab, layout);
11127                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11128                                               false);
11129               }
11130             else
11131               {
11132                 // FIXME: TLS optimization not supported yet.
11133                 gold_unreachable();
11134               }
11135             break;
11136
11137           case elfcpp::R_MIPS_TLS_LDM:
11138           case elfcpp::R_MIPS16_TLS_LDM:
11139           case elfcpp::R_MICROMIPS_TLS_LDM:
11140             if (optimized_type == tls::TLSOPT_NONE)
11141               {
11142                 // We always record LDM symbols as local with index 0.
11143                 target->got_section()->record_local_got_symbol(mips_obj, 0,
11144                                                                r_addend, r_type,
11145                                                                -1U, false);
11146               }
11147             else
11148               {
11149                 // FIXME: TLS optimization not supported yet.
11150                 gold_unreachable();
11151               }
11152             break;
11153           case elfcpp::R_MIPS_TLS_GOTTPREL:
11154           case elfcpp::R_MIPS16_TLS_GOTTPREL:
11155           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11156             layout->set_has_static_tls();
11157             if (optimized_type == tls::TLSOPT_NONE)
11158               {
11159                 // Create a GOT entry for the tp-relative offset.
11160                 Mips_output_data_got<size, big_endian>* got =
11161                   target->got_section(symtab, layout);
11162                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11163                                               false);
11164               }
11165             else
11166               {
11167                 // FIXME: TLS optimization not supported yet.
11168                 gold_unreachable();
11169               }
11170             break;
11171
11172           default:
11173             gold_unreachable();
11174         }
11175       }
11176       break;
11177     case elfcpp::R_MIPS_COPY:
11178     case elfcpp::R_MIPS_JUMP_SLOT:
11179       // These are relocations which should only be seen by the
11180       // dynamic linker, and should never be seen here.
11181       gold_error(_("%s: unexpected reloc %u in object file"),
11182                  object->name().c_str(), r_type);
11183       break;
11184
11185     default:
11186       break;
11187     }
11188
11189   // Refuse some position-dependent relocations when creating a
11190   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
11191   // not PIC, but we can create dynamic relocations and the result
11192   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
11193   // combined with R_MIPS_GOT16.
11194   if (parameters->options().shared())
11195     {
11196       switch (r_type)
11197         {
11198         case elfcpp::R_MIPS16_HI16:
11199         case elfcpp::R_MIPS_HI16:
11200         case elfcpp::R_MIPS_HIGHER:
11201         case elfcpp::R_MIPS_HIGHEST:
11202         case elfcpp::R_MICROMIPS_HI16:
11203         case elfcpp::R_MICROMIPS_HIGHER:
11204         case elfcpp::R_MICROMIPS_HIGHEST:
11205           // Don't refuse a high part relocation if it's against
11206           // no symbol (e.g. part of a compound relocation).
11207           if (r_sym == 0)
11208             break;
11209
11210           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11211           // and has a special meaning.
11212           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11213             break;
11214           // Fall through.
11215
11216         case elfcpp::R_MIPS16_26:
11217         case elfcpp::R_MIPS_26:
11218         case elfcpp::R_MICROMIPS_26_S1:
11219           gold_error(_("%s: relocation %u against `%s' can not be used when "
11220                        "making a shared object; recompile with -fPIC"),
11221                      object->name().c_str(), r_type, gsym->name());
11222         default:
11223           break;
11224         }
11225     }
11226 }
11227
11228 template<int size, bool big_endian>
11229 inline void
11230 Target_mips<size, big_endian>::Scan::global(
11231                                 Symbol_table* symtab,
11232                                 Layout* layout,
11233                                 Target_mips<size, big_endian>* target,
11234                                 Sized_relobj_file<size, big_endian>* object,
11235                                 unsigned int data_shndx,
11236                                 Output_section* output_section,
11237                                 const Relatype& reloc,
11238                                 unsigned int r_type,
11239                                 Symbol* gsym)
11240 {
11241   global(
11242     symtab,
11243     layout,
11244     target,
11245     object,
11246     data_shndx,
11247     output_section,
11248     &reloc,
11249     (const Reltype*) NULL,
11250     elfcpp::SHT_RELA,
11251     r_type,
11252     gsym);
11253 }
11254
11255 template<int size, bool big_endian>
11256 inline void
11257 Target_mips<size, big_endian>::Scan::global(
11258                                 Symbol_table* symtab,
11259                                 Layout* layout,
11260                                 Target_mips<size, big_endian>* target,
11261                                 Sized_relobj_file<size, big_endian>* object,
11262                                 unsigned int data_shndx,
11263                                 Output_section* output_section,
11264                                 const Reltype& reloc,
11265                                 unsigned int r_type,
11266                                 Symbol* gsym)
11267 {
11268   global(
11269     symtab,
11270     layout,
11271     target,
11272     object,
11273     data_shndx,
11274     output_section,
11275     (const Relatype*) NULL,
11276     &reloc,
11277     elfcpp::SHT_REL,
11278     r_type,
11279     gsym);
11280 }
11281
11282 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11283 // In cases where Scan::local() or Scan::global() has created
11284 // a dynamic relocation, the addend of the relocation is carried
11285 // in the data, and we must not apply the static relocation.
11286
11287 template<int size, bool big_endian>
11288 inline bool
11289 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11290     const Mips_symbol<size>* gsym,
11291     unsigned int r_type,
11292     Output_section* output_section,
11293     Target_mips* target)
11294 {
11295   // If the output section is not allocated, then we didn't call
11296   // scan_relocs, we didn't create a dynamic reloc, and we must apply
11297   // the reloc here.
11298   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11299       return true;
11300
11301   if (gsym == NULL)
11302     return true;
11303   else
11304     {
11305       // For global symbols, we use the same helper routines used in the
11306       // scan pass.
11307       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11308           && !gsym->may_need_copy_reloc())
11309         {
11310           // We have generated dynamic reloc (R_MIPS_REL32).
11311
11312           bool multi_got = false;
11313           if (target->has_got_section())
11314             multi_got = target->got_section()->multi_got();
11315           bool has_got_offset;
11316           if (!multi_got)
11317             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11318           else
11319             has_got_offset = gsym->global_gotoffset() != -1U;
11320           if (!has_got_offset)
11321             return true;
11322           else
11323             // Apply the relocation only if the symbol is in the local got.
11324             // Do not apply the relocation if the symbol is in the global
11325             // got.
11326             return symbol_references_local(gsym, gsym->has_dynsym_index());
11327         }
11328       else
11329         // We have not generated dynamic reloc.
11330         return true;
11331     }
11332 }
11333
11334 // Perform a relocation.
11335
11336 template<int size, bool big_endian>
11337 inline bool
11338 Target_mips<size, big_endian>::Relocate::relocate(
11339                         const Relocate_info<size, big_endian>* relinfo,
11340                         unsigned int rel_type,
11341                         Target_mips* target,
11342                         Output_section* output_section,
11343                         size_t relnum,
11344                         const unsigned char* preloc,
11345                         const Sized_symbol<size>* gsym,
11346                         const Symbol_value<size>* psymval,
11347                         unsigned char* view,
11348                         Mips_address address,
11349                         section_size_type)
11350 {
11351   Mips_address r_offset;
11352   unsigned int r_sym;
11353   unsigned int r_type;
11354   unsigned int r_type2;
11355   unsigned int r_type3;
11356   unsigned char r_ssym;
11357   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11358
11359   if (rel_type == elfcpp::SHT_RELA)
11360     {
11361       const Relatype rela(preloc);
11362       r_offset = rela.get_r_offset();
11363       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11364           get_r_sym(&rela);
11365       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11366           get_r_type(&rela);
11367       r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11368           get_r_type2(&rela);
11369       r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11370           get_r_type3(&rela);
11371       r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11372           get_r_ssym(&rela);
11373       r_addend = rela.get_r_addend();
11374     }
11375   else
11376     {
11377       const Reltype rel(preloc);
11378       r_offset = rel.get_r_offset();
11379       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11380           get_r_sym(&rel);
11381       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11382           get_r_type(&rel);
11383       r_ssym = 0;
11384       r_type2 = 0;
11385       r_type3 = 0;
11386       r_addend = 0;
11387     }
11388
11389   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11390   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11391
11392   Mips_relobj<size, big_endian>* object =
11393       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11394
11395   bool target_is_16_bit_code = false;
11396   bool target_is_micromips_code = false;
11397   bool cross_mode_jump;
11398
11399   Symbol_value<size> symval;
11400
11401   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11402
11403   bool changed_symbol_value = false;
11404   if (gsym == NULL)
11405     {
11406       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11407       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11408       if (target_is_16_bit_code || target_is_micromips_code)
11409         {
11410           // MIPS16/microMIPS text labels should be treated as odd.
11411           symval.set_output_value(psymval->value(object, 1));
11412           psymval = &symval;
11413           changed_symbol_value = true;
11414         }
11415     }
11416   else
11417     {
11418       target_is_16_bit_code = mips_sym->is_mips16();
11419       target_is_micromips_code = mips_sym->is_micromips();
11420
11421       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11422       // it odd.  This will cause something like .word SYM to come up with
11423       // the right value when it is loaded into the PC.
11424
11425       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11426           && psymval->value(object, 0) != 0)
11427         {
11428           symval.set_output_value(psymval->value(object, 0) | 1);
11429           psymval = &symval;
11430           changed_symbol_value = true;
11431         }
11432
11433       // Pick the value to use for symbols defined in shared objects.
11434       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11435           || mips_sym->has_lazy_stub())
11436         {
11437           Mips_address value;
11438           if (!mips_sym->has_lazy_stub())
11439             {
11440               // Prefer a standard MIPS PLT entry.
11441               if (mips_sym->has_mips_plt_offset())
11442                 {
11443                   value = target->plt_section()->mips_entry_address(mips_sym);
11444                   target_is_micromips_code = false;
11445                   target_is_16_bit_code = false;
11446                 }
11447               else
11448                 {
11449                   value = (target->plt_section()->comp_entry_address(mips_sym)
11450                            + 1);
11451                   if (target->is_output_micromips())
11452                     target_is_micromips_code = true;
11453                   else
11454                     target_is_16_bit_code = true;
11455                 }
11456             }
11457           else
11458             value = target->mips_stubs_section()->stub_address(mips_sym);
11459
11460           symval.set_output_value(value);
11461           psymval = &symval;
11462         }
11463     }
11464
11465   // TRUE if the symbol referred to by this relocation is "_gp_disp".
11466   // Note that such a symbol must always be a global symbol.
11467   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11468                   && !object->is_newabi());
11469
11470   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11471   // Note that such a symbol must always be a global symbol.
11472   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11473
11474
11475   if (gp_disp)
11476     {
11477       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11478         gold_error_at_location(relinfo, relnum, r_offset,
11479           _("relocations against _gp_disp are permitted only"
11480             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11481     }
11482   else if (gnu_local_gp)
11483     {
11484       // __gnu_local_gp is _gp symbol.
11485       symval.set_output_value(target->adjusted_gp_value(object));
11486       psymval = &symval;
11487     }
11488
11489   // If this is a reference to a 16-bit function with a stub, we need
11490   // to redirect the relocation to the stub unless:
11491   //
11492   // (a) the relocation is for a MIPS16 JAL;
11493   //
11494   // (b) the relocation is for a MIPS16 PIC call, and there are no
11495   //     non-MIPS16 uses of the GOT slot; or
11496   //
11497   // (c) the section allows direct references to MIPS16 functions.
11498   if (r_type != elfcpp::R_MIPS16_26
11499       && !parameters->options().relocatable()
11500       && ((mips_sym != NULL
11501            && mips_sym->has_mips16_fn_stub()
11502            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11503           || (mips_sym == NULL
11504               && object->get_local_mips16_fn_stub(r_sym) != NULL))
11505       && !object->section_allows_mips16_refs(relinfo->data_shndx))
11506     {
11507       // This is a 32- or 64-bit call to a 16-bit function.  We should
11508       // have already noticed that we were going to need the
11509       // stub.
11510       Mips_address value;
11511       if (mips_sym == NULL)
11512         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11513       else
11514         {
11515           gold_assert(mips_sym->need_fn_stub());
11516           if (mips_sym->has_la25_stub())
11517             value = target->la25_stub_section()->stub_address(mips_sym);
11518           else
11519             {
11520               value = mips_sym->template
11521                       get_mips16_fn_stub<big_endian>()->output_address();
11522             }
11523           }
11524       symval.set_output_value(value);
11525       psymval = &symval;
11526       changed_symbol_value = true;
11527
11528       // The target is 16-bit, but the stub isn't.
11529       target_is_16_bit_code = false;
11530     }
11531   // If this is a MIPS16 call with a stub, that is made through the PLT or
11532   // to a standard MIPS function, we need to redirect the call to the stub.
11533   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11534   // indirect calls should use an indirect stub instead.
11535   else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11536            && ((mips_sym != NULL
11537                 && (mips_sym->has_mips16_call_stub()
11538                     || mips_sym->has_mips16_call_fp_stub()))
11539                || (mips_sym == NULL
11540                    && object->get_local_mips16_call_stub(r_sym) != NULL))
11541            && ((mips_sym != NULL && mips_sym->has_plt_offset())
11542                || !target_is_16_bit_code))
11543     {
11544       Mips16_stub_section<size, big_endian>* call_stub;
11545       if (mips_sym == NULL)
11546         call_stub = object->get_local_mips16_call_stub(r_sym);
11547       else
11548         {
11549           // If both call_stub and call_fp_stub are defined, we can figure
11550           // out which one to use by checking which one appears in the input
11551           // file.
11552           if (mips_sym->has_mips16_call_stub()
11553               && mips_sym->has_mips16_call_fp_stub())
11554             {
11555               call_stub = NULL;
11556               for (unsigned int i = 1; i < object->shnum(); ++i)
11557                 {
11558                   if (object->is_mips16_call_fp_stub_section(i))
11559                     {
11560                       call_stub = mips_sym->template
11561                                   get_mips16_call_fp_stub<big_endian>();
11562                       break;
11563                     }
11564
11565                 }
11566               if (call_stub == NULL)
11567                 call_stub =
11568                   mips_sym->template get_mips16_call_stub<big_endian>();
11569             }
11570           else if (mips_sym->has_mips16_call_stub())
11571             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11572           else
11573             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11574         }
11575
11576       symval.set_output_value(call_stub->output_address());
11577       psymval = &symval;
11578       changed_symbol_value = true;
11579     }
11580   // If this is a direct call to a PIC function, redirect to the
11581   // non-PIC stub.
11582   else if (mips_sym != NULL
11583            && mips_sym->has_la25_stub()
11584            && relocation_needs_la25_stub<size, big_endian>(
11585                                        object, r_type, target_is_16_bit_code))
11586     {
11587       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11588       if (mips_sym->is_micromips())
11589         value += 1;
11590       symval.set_output_value(value);
11591       psymval = &symval;
11592     }
11593   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11594   // entry is used if a standard PLT entry has also been made.
11595   else if ((r_type == elfcpp::R_MIPS16_26
11596             || r_type == elfcpp::R_MICROMIPS_26_S1)
11597           && !parameters->options().relocatable()
11598           && mips_sym != NULL
11599           && mips_sym->has_plt_offset()
11600           && mips_sym->has_comp_plt_offset()
11601           && mips_sym->has_mips_plt_offset())
11602     {
11603       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11604                             + 1);
11605       symval.set_output_value(value);
11606       psymval = &symval;
11607
11608       target_is_16_bit_code = !target->is_output_micromips();
11609       target_is_micromips_code = target->is_output_micromips();
11610     }
11611
11612   // Make sure MIPS16 and microMIPS are not used together.
11613   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11614       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11615    {
11616       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11617    }
11618
11619   // Calls from 16-bit code to 32-bit code and vice versa require the
11620   // mode change.  However, we can ignore calls to undefined weak symbols,
11621   // which should never be executed at runtime.  This exception is important
11622   // because the assembly writer may have "known" that any definition of the
11623   // symbol would be 16-bit code, and that direct jumps were therefore
11624   // acceptable.
11625   cross_mode_jump =
11626     (!parameters->options().relocatable()
11627      && !(gsym != NULL && gsym->is_weak_undefined())
11628      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11629          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11630          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11631              && (target_is_16_bit_code || target_is_micromips_code))));
11632
11633   bool local = (mips_sym == NULL
11634                 || (mips_sym->got_only_for_calls()
11635                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11636                     : symbol_references_local(mips_sym,
11637                                               mips_sym->has_dynsym_index())));
11638
11639   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11640   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
11641   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11642   if (got_page_reloc(r_type) && !local)
11643     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11644                                       : elfcpp::R_MIPS_GOT_DISP);
11645
11646   unsigned int got_offset = 0;
11647   int gp_offset = 0;
11648
11649   bool calculate_only = false;
11650   Valtype calculated_value = 0;
11651   bool extract_addend = rel_type == elfcpp::SHT_REL;
11652   unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11653
11654   Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11655
11656   // For Mips64 N64 ABI, there may be up to three operations specified per
11657   // record, by the fields r_type, r_type2, and r_type3. The first operation
11658   // takes its addend from the relocation record. Each subsequent operation
11659   // takes as its addend the result of the previous operation.
11660   // The first operation in a record which references a symbol uses the symbol
11661   // implied by r_sym. The next operation in a record which references a symbol
11662   // uses the special symbol value given by the r_ssym field. A third operation
11663   // in a record which references a symbol will assume a NULL symbol,
11664   // i.e. value zero.
11665
11666   // TODO(Vladimir)
11667   // Check if a record references to a symbol.
11668   for (unsigned int i = 0; i < 3; ++i)
11669     {
11670       if (r_types[i] == elfcpp::R_MIPS_NONE)
11671         break;
11672
11673       // TODO(Vladimir)
11674       // Check if the next relocation is for the same instruction.
11675       calculate_only = i == 2 ? false
11676                               : r_types[i+1] != elfcpp::R_MIPS_NONE;
11677
11678       if (object->is_n64())
11679         {
11680           if (i == 1)
11681             {
11682               // Handle special symbol for r_type2 relocation type.
11683               switch (r_ssym)
11684                 {
11685                 case RSS_UNDEF:
11686                   symval.set_output_value(0);
11687                   break;
11688                 case RSS_GP:
11689                   symval.set_output_value(target->gp_value());
11690                   break;
11691                 case RSS_GP0:
11692                   symval.set_output_value(object->gp_value());
11693                   break;
11694                 case RSS_LOC:
11695                   symval.set_output_value(address);
11696                   break;
11697                 default:
11698                   gold_unreachable();
11699                 }
11700               psymval = &symval;
11701             }
11702           else if (i == 2)
11703            {
11704             // For r_type3 symbol value is 0.
11705             symval.set_output_value(0);
11706            }
11707         }
11708
11709       bool update_got_entry = false;
11710       switch (r_types[i])
11711         {
11712         case elfcpp::R_MIPS_NONE:
11713           break;
11714         case elfcpp::R_MIPS_16:
11715           reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11716                                             extract_addend, calculate_only,
11717                                             &calculated_value);
11718           break;
11719
11720         case elfcpp::R_MIPS_32:
11721           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11722                                         target))
11723             reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11724                                               extract_addend, calculate_only,
11725                                               &calculated_value);
11726           if (mips_sym != NULL
11727               && (mips_sym->is_mips16() || mips_sym->is_micromips())
11728               && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11729             {
11730               // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11731               // already updated by adding +1.
11732               if (mips_sym->has_mips16_fn_stub())
11733                 {
11734                   gold_assert(mips_sym->need_fn_stub());
11735                   Mips16_stub_section<size, big_endian>* fn_stub =
11736                     mips_sym->template get_mips16_fn_stub<big_endian>();
11737
11738                   symval.set_output_value(fn_stub->output_address());
11739                   psymval = &symval;
11740                 }
11741               got_offset = mips_sym->global_gotoffset();
11742               update_got_entry = true;
11743             }
11744           break;
11745
11746         case elfcpp::R_MIPS_64:
11747           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11748                                         target))
11749             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11750                                               extract_addend, calculate_only,
11751                                               &calculated_value, false);
11752           else if (target->is_output_n64() && r_addend != 0)
11753             // Only apply the addend.  The static relocation was RELA, but the
11754             // dynamic relocation is REL, so we need to apply the addend.
11755             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11756                                               extract_addend, calculate_only,
11757                                               &calculated_value, true);
11758           break;
11759         case elfcpp::R_MIPS_REL32:
11760           gold_unreachable();
11761
11762         case elfcpp::R_MIPS_PC32:
11763           reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11764                                               r_addend, extract_addend,
11765                                               calculate_only,
11766                                               &calculated_value);
11767           break;
11768
11769         case elfcpp::R_MIPS16_26:
11770           // The calculation for R_MIPS16_26 is just the same as for an
11771           // R_MIPS_26.  It's only the storage of the relocated field into
11772           // the output file that's different.  So, we just fall through to the
11773           // R_MIPS_26 case here.
11774         case elfcpp::R_MIPS_26:
11775         case elfcpp::R_MICROMIPS_26_S1:
11776           reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11777               gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11778               r_types[i], target->jal_to_bal(), calculate_only,
11779               &calculated_value);
11780           break;
11781
11782         case elfcpp::R_MIPS_HI16:
11783         case elfcpp::R_MIPS16_HI16:
11784         case elfcpp::R_MICROMIPS_HI16:
11785           if (rel_type == elfcpp::SHT_RELA)
11786             reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11787                                                    r_addend, address,
11788                                                    gp_disp, r_types[i],
11789                                                    extract_addend, 0,
11790                                                    target, calculate_only,
11791                                                    &calculated_value);
11792           else if (rel_type == elfcpp::SHT_REL)
11793             reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11794                                                 address, gp_disp, r_types[i],
11795                                                 r_sym, extract_addend);
11796           else
11797             gold_unreachable();
11798           break;
11799
11800         case elfcpp::R_MIPS_LO16:
11801         case elfcpp::R_MIPS16_LO16:
11802         case elfcpp::R_MICROMIPS_LO16:
11803         case elfcpp::R_MICROMIPS_HI0_LO16:
11804           reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11805                                               r_addend, extract_addend, address,
11806                                               gp_disp, r_types[i], r_sym,
11807                                               rel_type, calculate_only,
11808                                               &calculated_value);
11809           break;
11810
11811         case elfcpp::R_MIPS_LITERAL:
11812         case elfcpp::R_MICROMIPS_LITERAL:
11813           // Because we don't merge literal sections, we can handle this
11814           // just like R_MIPS_GPREL16.  In the long run, we should merge
11815           // shared literals, and then we will need to additional work
11816           // here.
11817
11818           // Fall through.
11819
11820         case elfcpp::R_MIPS_GPREL16:
11821         case elfcpp::R_MIPS16_GPREL:
11822         case elfcpp::R_MICROMIPS_GPREL7_S2:
11823         case elfcpp::R_MICROMIPS_GPREL16:
11824           reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11825                                              target->adjusted_gp_value(object),
11826                                              r_addend, extract_addend,
11827                                              gsym == NULL, r_types[i],
11828                                              calculate_only, &calculated_value);
11829           break;
11830
11831         case elfcpp::R_MIPS_PC16:
11832           reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11833                                               r_addend, extract_addend,
11834                                               calculate_only,
11835                                               &calculated_value);
11836           break;
11837
11838         case elfcpp::R_MIPS_PC21_S2:
11839           reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11840                                               r_addend, extract_addend,
11841                                               calculate_only,
11842                                               &calculated_value);
11843           break;
11844
11845         case elfcpp::R_MIPS_PC26_S2:
11846           reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11847                                               r_addend, extract_addend,
11848                                               calculate_only,
11849                                               &calculated_value);
11850           break;
11851
11852         case elfcpp::R_MIPS_PC18_S3:
11853           reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11854                                               r_addend, extract_addend,
11855                                               calculate_only,
11856                                               &calculated_value);
11857           break;
11858
11859         case elfcpp::R_MIPS_PC19_S2:
11860           reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11861                                               r_addend, extract_addend,
11862                                               calculate_only,
11863                                               &calculated_value);
11864           break;
11865
11866         case elfcpp::R_MIPS_PCHI16:
11867           if (rel_type == elfcpp::SHT_RELA)
11868             reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11869                                                      r_addend, address,
11870                                                      extract_addend, 0,
11871                                                      calculate_only,
11872                                                      &calculated_value);
11873           else if (rel_type == elfcpp::SHT_REL)
11874             reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11875                                                   r_addend, address, r_sym,
11876                                                   extract_addend);
11877           else
11878             gold_unreachable();
11879           break;
11880
11881         case elfcpp::R_MIPS_PCLO16:
11882           reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11883                                                 extract_addend, address, r_sym,
11884                                                 rel_type, calculate_only,
11885                                                 &calculated_value);
11886           break;
11887         case elfcpp::R_MICROMIPS_PC7_S1:
11888           reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11889                                                         address, r_addend,
11890                                                         extract_addend,
11891                                                         calculate_only,
11892                                                         &calculated_value);
11893           break;
11894         case elfcpp::R_MICROMIPS_PC10_S1:
11895           reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11896                                                        psymval, address,
11897                                                        r_addend, extract_addend,
11898                                                        calculate_only,
11899                                                        &calculated_value);
11900           break;
11901         case elfcpp::R_MICROMIPS_PC16_S1:
11902           reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11903                                                        psymval, address,
11904                                                        r_addend, extract_addend,
11905                                                        calculate_only,
11906                                                        &calculated_value);
11907           break;
11908         case elfcpp::R_MIPS_GPREL32:
11909           reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11910                                               target->adjusted_gp_value(object),
11911                                               r_addend, extract_addend,
11912                                               calculate_only,
11913                                               &calculated_value);
11914           break;
11915         case elfcpp::R_MIPS_GOT_HI16:
11916         case elfcpp::R_MIPS_CALL_HI16:
11917         case elfcpp::R_MICROMIPS_GOT_HI16:
11918         case elfcpp::R_MICROMIPS_CALL_HI16:
11919           if (gsym != NULL)
11920             got_offset = target->got_section()->got_offset(gsym,
11921                                                            GOT_TYPE_STANDARD,
11922                                                            object);
11923           else
11924             got_offset = target->got_section()->got_offset(r_sym,
11925                                                            GOT_TYPE_STANDARD,
11926                                                            object, r_addend);
11927           gp_offset = target->got_section()->gp_offset(got_offset, object);
11928           reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11929                                                   calculate_only,
11930                                                   &calculated_value);
11931           update_got_entry = changed_symbol_value;
11932           break;
11933
11934         case elfcpp::R_MIPS_GOT_LO16:
11935         case elfcpp::R_MIPS_CALL_LO16:
11936         case elfcpp::R_MICROMIPS_GOT_LO16:
11937         case elfcpp::R_MICROMIPS_CALL_LO16:
11938           if (gsym != NULL)
11939             got_offset = target->got_section()->got_offset(gsym,
11940                                                            GOT_TYPE_STANDARD,
11941                                                            object);
11942           else
11943             got_offset = target->got_section()->got_offset(r_sym,
11944                                                            GOT_TYPE_STANDARD,
11945                                                            object, r_addend);
11946           gp_offset = target->got_section()->gp_offset(got_offset, object);
11947           reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11948                                                   calculate_only,
11949                                                   &calculated_value);
11950           update_got_entry = changed_symbol_value;
11951           break;
11952
11953         case elfcpp::R_MIPS_GOT_DISP:
11954         case elfcpp::R_MICROMIPS_GOT_DISP:
11955         case elfcpp::R_MIPS_EH:
11956           if (gsym != NULL)
11957             got_offset = target->got_section()->got_offset(gsym,
11958                                                            GOT_TYPE_STANDARD,
11959                                                            object);
11960           else
11961             got_offset = target->got_section()->got_offset(r_sym,
11962                                                            GOT_TYPE_STANDARD,
11963                                                            object, r_addend);
11964           gp_offset = target->got_section()->gp_offset(got_offset, object);
11965           if (eh_reloc(r_types[i]))
11966             reloc_status = Reloc_funcs::releh(view, gp_offset,
11967                                               calculate_only,
11968                                               &calculated_value);
11969           else
11970             reloc_status = Reloc_funcs::relgot(view, gp_offset,
11971                                                calculate_only,
11972                                                &calculated_value);
11973           break;
11974         case elfcpp::R_MIPS_CALL16:
11975         case elfcpp::R_MIPS16_CALL16:
11976         case elfcpp::R_MICROMIPS_CALL16:
11977           gold_assert(gsym != NULL);
11978           got_offset = target->got_section()->got_offset(gsym,
11979                                                          GOT_TYPE_STANDARD,
11980                                                          object);
11981           gp_offset = target->got_section()->gp_offset(got_offset, object);
11982           reloc_status = Reloc_funcs::relgot(view, gp_offset,
11983                                              calculate_only, &calculated_value);
11984           // TODO(sasa): We should also initialize update_got_entry
11985           // in other place swhere relgot is called.
11986           update_got_entry = changed_symbol_value;
11987           break;
11988
11989         case elfcpp::R_MIPS_GOT16:
11990         case elfcpp::R_MIPS16_GOT16:
11991         case elfcpp::R_MICROMIPS_GOT16:
11992           if (gsym != NULL)
11993             {
11994               got_offset = target->got_section()->got_offset(gsym,
11995                                                              GOT_TYPE_STANDARD,
11996                                                              object);
11997               gp_offset = target->got_section()->gp_offset(got_offset, object);
11998               reloc_status = Reloc_funcs::relgot(view, gp_offset,
11999                                                  calculate_only,
12000                                                  &calculated_value);
12001             }
12002           else
12003             {
12004               if (rel_type == elfcpp::SHT_RELA)
12005                 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12006                                                          psymval, r_addend,
12007                                                          extract_addend, 0,
12008                                                          target,
12009                                                          calculate_only,
12010                                                          &calculated_value);
12011               else if (rel_type == elfcpp::SHT_REL)
12012                 reloc_status = Reloc_funcs::relgot16_local(view, object,
12013                                                            psymval, r_addend,
12014                                                            extract_addend,
12015                                                            r_types[i], r_sym);
12016               else
12017                 gold_unreachable();
12018             }
12019           update_got_entry = changed_symbol_value;
12020           break;
12021
12022         case elfcpp::R_MIPS_TLS_GD:
12023         case elfcpp::R_MIPS16_TLS_GD:
12024         case elfcpp::R_MICROMIPS_TLS_GD:
12025           if (gsym != NULL)
12026             got_offset = target->got_section()->got_offset(gsym,
12027                                                            GOT_TYPE_TLS_PAIR,
12028                                                            object);
12029           else
12030             got_offset = target->got_section()->got_offset(r_sym,
12031                                                            GOT_TYPE_TLS_PAIR,
12032                                                            object, r_addend);
12033           gp_offset = target->got_section()->gp_offset(got_offset, object);
12034           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12035                                              &calculated_value);
12036           break;
12037
12038         case elfcpp::R_MIPS_TLS_GOTTPREL:
12039         case elfcpp::R_MIPS16_TLS_GOTTPREL:
12040         case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12041           if (gsym != NULL)
12042             got_offset = target->got_section()->got_offset(gsym,
12043                                                            GOT_TYPE_TLS_OFFSET,
12044                                                            object);
12045           else
12046             got_offset = target->got_section()->got_offset(r_sym,
12047                                                            GOT_TYPE_TLS_OFFSET,
12048                                                            object, r_addend);
12049           gp_offset = target->got_section()->gp_offset(got_offset, object);
12050           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12051                                              &calculated_value);
12052           break;
12053
12054         case elfcpp::R_MIPS_TLS_LDM:
12055         case elfcpp::R_MIPS16_TLS_LDM:
12056         case elfcpp::R_MICROMIPS_TLS_LDM:
12057           // Relocate the field with the offset of the GOT entry for
12058           // the module index.
12059           got_offset = target->got_section()->tls_ldm_offset(object);
12060           gp_offset = target->got_section()->gp_offset(got_offset, object);
12061           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12062                                              &calculated_value);
12063           break;
12064
12065         case elfcpp::R_MIPS_GOT_PAGE:
12066         case elfcpp::R_MICROMIPS_GOT_PAGE:
12067           reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12068                                                  r_addend, extract_addend,
12069                                                  calculate_only,
12070                                                  &calculated_value);
12071           break;
12072
12073         case elfcpp::R_MIPS_GOT_OFST:
12074         case elfcpp::R_MICROMIPS_GOT_OFST:
12075           reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12076                                                  r_addend, extract_addend,
12077                                                  local, calculate_only,
12078                                                  &calculated_value);
12079           break;
12080
12081         case elfcpp::R_MIPS_JALR:
12082         case elfcpp::R_MICROMIPS_JALR:
12083           // This relocation is only a hint.  In some cases, we optimize
12084           // it into a bal instruction.  But we don't try to optimize
12085           // when the symbol does not resolve locally.
12086           if (gsym == NULL
12087               || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12088             reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12089                                                 r_addend, extract_addend,
12090                                                 cross_mode_jump, r_types[i],
12091                                                 target->jalr_to_bal(),
12092                                                 target->jr_to_b(),
12093                                                 calculate_only,
12094                                                 &calculated_value);
12095           break;
12096
12097         case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12098         case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12099         case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12100           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12101                                                  elfcpp::DTP_OFFSET, r_addend,
12102                                                  extract_addend, calculate_only,
12103                                                  &calculated_value);
12104           break;
12105         case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12106         case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12107         case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12108           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12109                                                  elfcpp::DTP_OFFSET, r_addend,
12110                                                  extract_addend, calculate_only,
12111                                                  &calculated_value);
12112           break;
12113         case elfcpp::R_MIPS_TLS_DTPREL32:
12114         case elfcpp::R_MIPS_TLS_DTPREL64:
12115           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12116                                                elfcpp::DTP_OFFSET, r_addend,
12117                                                extract_addend, calculate_only,
12118                                                &calculated_value);
12119           break;
12120         case elfcpp::R_MIPS_TLS_TPREL_HI16:
12121         case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12122         case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12123           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12124                                                  elfcpp::TP_OFFSET, r_addend,
12125                                                  extract_addend, calculate_only,
12126                                                  &calculated_value);
12127           break;
12128         case elfcpp::R_MIPS_TLS_TPREL_LO16:
12129         case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12130         case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12131           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12132                                                  elfcpp::TP_OFFSET, r_addend,
12133                                                  extract_addend, calculate_only,
12134                                                  &calculated_value);
12135           break;
12136         case elfcpp::R_MIPS_TLS_TPREL32:
12137         case elfcpp::R_MIPS_TLS_TPREL64:
12138           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12139                                                elfcpp::TP_OFFSET, r_addend,
12140                                                extract_addend, calculate_only,
12141                                                &calculated_value);
12142           break;
12143         case elfcpp::R_MIPS_SUB:
12144         case elfcpp::R_MICROMIPS_SUB:
12145           reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12146                                              extract_addend,
12147                                              calculate_only, &calculated_value);
12148           break;
12149         case elfcpp::R_MIPS_HIGHER:
12150         case elfcpp::R_MICROMIPS_HIGHER:
12151           reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12152                                                 extract_addend, calculate_only,
12153                                                 &calculated_value);
12154           break;
12155         case elfcpp::R_MIPS_HIGHEST:
12156         case elfcpp::R_MICROMIPS_HIGHEST:
12157           reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12158                                                  r_addend, extract_addend,
12159                                                  calculate_only,
12160                                                  &calculated_value);
12161           break;
12162         default:
12163           gold_error_at_location(relinfo, relnum, r_offset,
12164                                  _("unsupported reloc %u"), r_types[i]);
12165           break;
12166         }
12167
12168       if (update_got_entry)
12169         {
12170           Mips_output_data_got<size, big_endian>* got = target->got_section();
12171           if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12172             got->update_got_entry(got->get_primary_got_offset(mips_sym),
12173                                   psymval->value(object, 0));
12174           else
12175             got->update_got_entry(got_offset, psymval->value(object, 0));
12176         }
12177
12178       r_addend = calculated_value;
12179     }
12180
12181   bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12182                                        : false;
12183   Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12184
12185   // Report any errors.
12186   switch (reloc_status)
12187     {
12188     case Reloc_funcs::STATUS_OKAY:
12189       break;
12190     case Reloc_funcs::STATUS_OVERFLOW:
12191       gold_error_at_location(relinfo, relnum, r_offset,
12192                              _("relocation overflow"));
12193       break;
12194     case Reloc_funcs::STATUS_BAD_RELOC:
12195       gold_error_at_location(relinfo, relnum, r_offset,
12196         _("unexpected opcode while processing relocation"));
12197       break;
12198     case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12199       gold_error_at_location(relinfo, relnum, r_offset,
12200         _("unaligned PC-relative relocation"));
12201       break;
12202     default:
12203       gold_unreachable();
12204     }
12205
12206   return true;
12207 }
12208
12209 // Get the Reference_flags for a particular relocation.
12210
12211 template<int size, bool big_endian>
12212 int
12213 Target_mips<size, big_endian>::Scan::get_reference_flags(
12214                        unsigned int r_type)
12215 {
12216   switch (r_type)
12217     {
12218     case elfcpp::R_MIPS_NONE:
12219       // No symbol reference.
12220       return 0;
12221
12222     case elfcpp::R_MIPS_16:
12223     case elfcpp::R_MIPS_32:
12224     case elfcpp::R_MIPS_64:
12225     case elfcpp::R_MIPS_HI16:
12226     case elfcpp::R_MIPS_LO16:
12227     case elfcpp::R_MIPS_HIGHER:
12228     case elfcpp::R_MIPS_HIGHEST:
12229     case elfcpp::R_MIPS16_HI16:
12230     case elfcpp::R_MIPS16_LO16:
12231     case elfcpp::R_MICROMIPS_HI16:
12232     case elfcpp::R_MICROMIPS_LO16:
12233     case elfcpp::R_MICROMIPS_HIGHER:
12234     case elfcpp::R_MICROMIPS_HIGHEST:
12235       return Symbol::ABSOLUTE_REF;
12236
12237     case elfcpp::R_MIPS_26:
12238     case elfcpp::R_MIPS16_26:
12239     case elfcpp::R_MICROMIPS_26_S1:
12240       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12241
12242     case elfcpp::R_MIPS_PC18_S3:
12243     case elfcpp::R_MIPS_PC19_S2:
12244     case elfcpp::R_MIPS_PCHI16:
12245     case elfcpp::R_MIPS_PCLO16:
12246     case elfcpp::R_MIPS_GPREL32:
12247     case elfcpp::R_MIPS_GPREL16:
12248     case elfcpp::R_MIPS_REL32:
12249     case elfcpp::R_MIPS16_GPREL:
12250       return Symbol::RELATIVE_REF;
12251
12252     case elfcpp::R_MIPS_PC16:
12253     case elfcpp::R_MIPS_PC32:
12254     case elfcpp::R_MIPS_PC21_S2:
12255     case elfcpp::R_MIPS_PC26_S2:
12256     case elfcpp::R_MIPS_JALR:
12257     case elfcpp::R_MICROMIPS_JALR:
12258       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12259
12260     case elfcpp::R_MIPS_GOT16:
12261     case elfcpp::R_MIPS_CALL16:
12262     case elfcpp::R_MIPS_GOT_DISP:
12263     case elfcpp::R_MIPS_GOT_HI16:
12264     case elfcpp::R_MIPS_GOT_LO16:
12265     case elfcpp::R_MIPS_CALL_HI16:
12266     case elfcpp::R_MIPS_CALL_LO16:
12267     case elfcpp::R_MIPS_LITERAL:
12268     case elfcpp::R_MIPS_GOT_PAGE:
12269     case elfcpp::R_MIPS_GOT_OFST:
12270     case elfcpp::R_MIPS16_GOT16:
12271     case elfcpp::R_MIPS16_CALL16:
12272     case elfcpp::R_MICROMIPS_GOT16:
12273     case elfcpp::R_MICROMIPS_CALL16:
12274     case elfcpp::R_MICROMIPS_GOT_HI16:
12275     case elfcpp::R_MICROMIPS_GOT_LO16:
12276     case elfcpp::R_MICROMIPS_CALL_HI16:
12277     case elfcpp::R_MICROMIPS_CALL_LO16:
12278     case elfcpp::R_MIPS_EH:
12279       // Absolute in GOT.
12280       return Symbol::RELATIVE_REF;
12281
12282     case elfcpp::R_MIPS_TLS_DTPMOD32:
12283     case elfcpp::R_MIPS_TLS_DTPREL32:
12284     case elfcpp::R_MIPS_TLS_DTPMOD64:
12285     case elfcpp::R_MIPS_TLS_DTPREL64:
12286     case elfcpp::R_MIPS_TLS_GD:
12287     case elfcpp::R_MIPS_TLS_LDM:
12288     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12289     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12290     case elfcpp::R_MIPS_TLS_GOTTPREL:
12291     case elfcpp::R_MIPS_TLS_TPREL32:
12292     case elfcpp::R_MIPS_TLS_TPREL64:
12293     case elfcpp::R_MIPS_TLS_TPREL_HI16:
12294     case elfcpp::R_MIPS_TLS_TPREL_LO16:
12295     case elfcpp::R_MIPS16_TLS_GD:
12296     case elfcpp::R_MIPS16_TLS_GOTTPREL:
12297     case elfcpp::R_MICROMIPS_TLS_GD:
12298     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12299     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12300     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12301       return Symbol::TLS_REF;
12302
12303     case elfcpp::R_MIPS_COPY:
12304     case elfcpp::R_MIPS_JUMP_SLOT:
12305     default:
12306       // Not expected.  We will give an error later.
12307       return 0;
12308     }
12309 }
12310
12311 // Report an unsupported relocation against a local symbol.
12312
12313 template<int size, bool big_endian>
12314 void
12315 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12316                         Sized_relobj_file<size, big_endian>* object,
12317                         unsigned int r_type)
12318 {
12319   gold_error(_("%s: unsupported reloc %u against local symbol"),
12320              object->name().c_str(), r_type);
12321 }
12322
12323 // Report an unsupported relocation against a global symbol.
12324
12325 template<int size, bool big_endian>
12326 void
12327 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12328                         Sized_relobj_file<size, big_endian>* object,
12329                         unsigned int r_type,
12330                         Symbol* gsym)
12331 {
12332   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12333              object->name().c_str(), r_type, gsym->demangled_name().c_str());
12334 }
12335
12336 // Return printable name for ABI.
12337 template<int size, bool big_endian>
12338 const char*
12339 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12340 {
12341   switch (e_flags & elfcpp::EF_MIPS_ABI)
12342     {
12343     case 0:
12344       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12345         return "N32";
12346       else if (size == 64)
12347         return "64";
12348       else
12349         return "none";
12350     case elfcpp::E_MIPS_ABI_O32:
12351       return "O32";
12352     case elfcpp::E_MIPS_ABI_O64:
12353       return "O64";
12354     case elfcpp::E_MIPS_ABI_EABI32:
12355       return "EABI32";
12356     case elfcpp::E_MIPS_ABI_EABI64:
12357       return "EABI64";
12358     default:
12359       return "unknown abi";
12360     }
12361 }
12362
12363 template<int size, bool big_endian>
12364 const char*
12365 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12366 {
12367   switch (e_flags & elfcpp::EF_MIPS_MACH)
12368     {
12369     case elfcpp::E_MIPS_MACH_3900:
12370       return "mips:3900";
12371     case elfcpp::E_MIPS_MACH_4010:
12372       return "mips:4010";
12373     case elfcpp::E_MIPS_MACH_4100:
12374       return "mips:4100";
12375     case elfcpp::E_MIPS_MACH_4111:
12376       return "mips:4111";
12377     case elfcpp::E_MIPS_MACH_4120:
12378       return "mips:4120";
12379     case elfcpp::E_MIPS_MACH_4650:
12380       return "mips:4650";
12381     case elfcpp::E_MIPS_MACH_5400:
12382       return "mips:5400";
12383     case elfcpp::E_MIPS_MACH_5500:
12384       return "mips:5500";
12385     case elfcpp::E_MIPS_MACH_5900:
12386       return "mips:5900";
12387     case elfcpp::E_MIPS_MACH_SB1:
12388       return "mips:sb1";
12389     case elfcpp::E_MIPS_MACH_9000:
12390       return "mips:9000";
12391     case elfcpp::E_MIPS_MACH_LS2E:
12392       return "mips:loongson_2e";
12393     case elfcpp::E_MIPS_MACH_LS2F:
12394       return "mips:loongson_2f";
12395     case elfcpp::E_MIPS_MACH_LS3A:
12396       return "mips:loongson_3a";
12397     case elfcpp::E_MIPS_MACH_OCTEON:
12398       return "mips:octeon";
12399     case elfcpp::E_MIPS_MACH_OCTEON2:
12400       return "mips:octeon2";
12401     case elfcpp::E_MIPS_MACH_OCTEON3:
12402       return "mips:octeon3";
12403     case elfcpp::E_MIPS_MACH_XLR:
12404       return "mips:xlr";
12405     default:
12406       switch (e_flags & elfcpp::EF_MIPS_ARCH)
12407         {
12408         default:
12409         case elfcpp::E_MIPS_ARCH_1:
12410           return "mips:3000";
12411
12412         case elfcpp::E_MIPS_ARCH_2:
12413           return "mips:6000";
12414
12415         case elfcpp::E_MIPS_ARCH_3:
12416           return "mips:4000";
12417
12418         case elfcpp::E_MIPS_ARCH_4:
12419           return "mips:8000";
12420
12421         case elfcpp::E_MIPS_ARCH_5:
12422           return "mips:mips5";
12423
12424         case elfcpp::E_MIPS_ARCH_32:
12425           return "mips:isa32";
12426
12427         case elfcpp::E_MIPS_ARCH_64:
12428           return "mips:isa64";
12429
12430         case elfcpp::E_MIPS_ARCH_32R2:
12431           return "mips:isa32r2";
12432
12433         case elfcpp::E_MIPS_ARCH_32R6:
12434           return "mips:isa32r6";
12435
12436         case elfcpp::E_MIPS_ARCH_64R2:
12437           return "mips:isa64r2";
12438
12439         case elfcpp::E_MIPS_ARCH_64R6:
12440           return "mips:isa64r6";
12441         }
12442     }
12443     return "unknown CPU";
12444 }
12445
12446 template<int size, bool big_endian>
12447 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12448 {
12449   size,                 // size
12450   big_endian,           // is_big_endian
12451   elfcpp::EM_MIPS,      // machine_code
12452   true,                 // has_make_symbol
12453   false,                // has_resolve
12454   false,                // has_code_fill
12455   true,                 // is_default_stack_executable
12456   false,                // can_icf_inline_merge_sections
12457   '\0',                 // wrap_char
12458   size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
12459   0x400000,             // default_text_segment_address
12460   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
12461   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
12462   false,                // isolate_execinstr
12463   0,                    // rosegment_gap
12464   elfcpp::SHN_UNDEF,    // small_common_shndx
12465   elfcpp::SHN_UNDEF,    // large_common_shndx
12466   0,                    // small_common_section_flags
12467   0,                    // large_common_section_flags
12468   NULL,                 // attributes_section
12469   NULL,                 // attributes_vendor
12470   "__start",            // entry_symbol_name
12471   32,                   // hash_entry_size
12472 };
12473
12474 template<int size, bool big_endian>
12475 class Target_mips_nacl : public Target_mips<size, big_endian>
12476 {
12477  public:
12478   Target_mips_nacl()
12479     : Target_mips<size, big_endian>(&mips_nacl_info)
12480   { }
12481
12482  private:
12483   static const Target::Target_info mips_nacl_info;
12484 };
12485
12486 template<int size, bool big_endian>
12487 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12488 {
12489   size,                 // size
12490   big_endian,           // is_big_endian
12491   elfcpp::EM_MIPS,      // machine_code
12492   true,                 // has_make_symbol
12493   false,                // has_resolve
12494   false,                // has_code_fill
12495   true,                 // is_default_stack_executable
12496   false,                // can_icf_inline_merge_sections
12497   '\0',                 // wrap_char
12498   "/lib/ld.so.1",       // dynamic_linker
12499   0x20000,              // default_text_segment_address
12500   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12501   0x10000,              // common_pagesize (overridable by -z common-page-size)
12502   true,                 // isolate_execinstr
12503   0x10000000,           // rosegment_gap
12504   elfcpp::SHN_UNDEF,    // small_common_shndx
12505   elfcpp::SHN_UNDEF,    // large_common_shndx
12506   0,                    // small_common_section_flags
12507   0,                    // large_common_section_flags
12508   NULL,                 // attributes_section
12509   NULL,                 // attributes_vendor
12510   "_start",             // entry_symbol_name
12511   32,                   // hash_entry_size
12512 };
12513
12514 // Target selector for Mips.  Note this is never instantiated directly.
12515 // It's only used in Target_selector_mips_nacl, below.
12516
12517 template<int size, bool big_endian>
12518 class Target_selector_mips : public Target_selector
12519 {
12520 public:
12521   Target_selector_mips()
12522     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12523                 (size == 64 ?
12524                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12525                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12526                 (size == 64 ?
12527                   (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12528                   (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12529   { }
12530
12531   Target* do_instantiate_target()
12532   { return new Target_mips<size, big_endian>(); }
12533 };
12534
12535 template<int size, bool big_endian>
12536 class Target_selector_mips_nacl
12537   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12538                                 Target_mips_nacl<size, big_endian> >
12539 {
12540  public:
12541   Target_selector_mips_nacl()
12542     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12543                            Target_mips_nacl<size, big_endian> >(
12544         // NaCl currently supports only MIPS32 little-endian.
12545         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12546   { }
12547 };
12548
12549 Target_selector_mips_nacl<32, true> target_selector_mips32;
12550 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12551 Target_selector_mips_nacl<64, true> target_selector_mips64;
12552 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12553
12554 } // End anonymous namespace.