Remove redundant checks for relocatable link (MIPS).
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
71
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
74
75 template<int size>
76 class Mips_symbol;
77
78 template<int size, bool big_endian>
79 class Mips_got_info;
80
81 template<int size, bool big_endian>
82 class Mips_relobj;
83
84 class Mips16_stub_section_base;
85
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
88
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry.  Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache.  The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
95
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning.  We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
102
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values.  Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
106
107 enum Global_got_area
108 {
109   GGA_NORMAL = 0,
110   GGA_RELOC_ONLY = 1,
111   GGA_NONE = 2
112 };
113
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
119 {
120   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
121   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
122   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
123
124   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125   GOT_TYPE_STANDARD_MULTIGOT = 3,
126   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
128 };
129
130 // TLS type of GOT entry.
131 enum Got_tls_type
132 {
133   GOT_TLS_NONE = 0,
134   GOT_TLS_GD = 1,
135   GOT_TLS_LDM = 2,
136   GOT_TLS_IE = 4
137 };
138
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
141 {
142   RSS_UNDEF = 0,    // None - value is zero.
143   RSS_GP = 1,       // Value of GP.
144   RSS_GP0 = 2,      // Value of GP in object being relocated.
145   RSS_LOC = 3       // Address of location being relocated.
146 };
147
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
151 {
152   elfcpp::Elf_Xword section_flags = output_section->flags();
153   elfcpp::Elf_Word section_type = output_section->type();
154
155   if (section_type == elfcpp::SHT_NOBITS)
156     return false;
157
158   if (section_flags & elfcpp::SHF_WRITE)
159     return false;
160
161   return true;
162 }
163
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub.  See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170                            unsigned int r_type, bool target_is_16_bit_code)
171 {
172   // We specifically ignore branches and jumps from EF_PIC objects,
173   // where the onus is on the compiler or programmer to perform any
174   // necessary initialization of $25.  Sometimes such initialization
175   // is unnecessary; for example, -mno-shared functions do not use
176   // the incoming value of $25, and may therefore be called directly.
177   if (object->is_pic())
178     return false;
179
180   switch (r_type)
181     {
182     case elfcpp::R_MIPS_26:
183     case elfcpp::R_MIPS_PC16:
184     case elfcpp::R_MIPS_PC21_S2:
185     case elfcpp::R_MIPS_PC26_S2:
186     case elfcpp::R_MICROMIPS_26_S1:
187     case elfcpp::R_MICROMIPS_PC7_S1:
188     case elfcpp::R_MICROMIPS_PC10_S1:
189     case elfcpp::R_MICROMIPS_PC16_S1:
190     case elfcpp::R_MICROMIPS_PC23_S2:
191       return true;
192
193     case elfcpp::R_MIPS16_26:
194       return !target_is_16_bit_code;
195
196     default:
197       return false;
198     }
199 }
200
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid.  Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
209 {
210   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211                       && !sym->object()->is_dynamic()
212                       && !sym->is_undefined());
213
214   if (sym->is_defined() && def_regular)
215     {
216       Mips_relobj<size, big_endian>* object =
217         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
218
219       if ((object->is_pic() || sym->is_pic())
220           && (!sym->is_mips16()
221               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222         return true;
223     }
224   return false;
225 }
226
227 static inline bool
228 hi16_reloc(int r_type)
229 {
230   return (r_type == elfcpp::R_MIPS_HI16
231           || r_type == elfcpp::R_MIPS16_HI16
232           || r_type == elfcpp::R_MICROMIPS_HI16
233           || r_type == elfcpp::R_MIPS_PCHI16);
234 }
235
236 static inline bool
237 lo16_reloc(int r_type)
238 {
239   return (r_type == elfcpp::R_MIPS_LO16
240           || r_type == elfcpp::R_MIPS16_LO16
241           || r_type == elfcpp::R_MICROMIPS_LO16
242           || r_type == elfcpp::R_MIPS_PCLO16);
243 }
244
245 static inline bool
246 got16_reloc(unsigned int r_type)
247 {
248   return (r_type == elfcpp::R_MIPS_GOT16
249           || r_type == elfcpp::R_MIPS16_GOT16
250           || r_type == elfcpp::R_MICROMIPS_GOT16);
251 }
252
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
255 {
256   return (r_type == elfcpp::R_MIPS_CALL_LO16
257           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 }
259
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
262 {
263   return (r_type == elfcpp::R_MIPS_GOT_LO16
264           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 }
266
267 static inline bool
268 eh_reloc(unsigned int r_type)
269 {
270   return (r_type == elfcpp::R_MIPS_EH);
271 }
272
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
275 {
276   return (r_type == elfcpp::R_MIPS_GOT_DISP
277           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 }
279
280 static inline bool
281 got_page_reloc(unsigned int r_type)
282 {
283   return (r_type == elfcpp::R_MIPS_GOT_PAGE
284           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 }
286
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
289 {
290   return (r_type == elfcpp::R_MIPS_TLS_GD
291           || r_type == elfcpp::R_MIPS16_TLS_GD
292           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 }
294
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
297 {
298   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 }
302
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
305 {
306   return (r_type == elfcpp::R_MIPS_TLS_LDM
307           || r_type == elfcpp::R_MIPS16_TLS_LDM
308           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 }
310
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
313 {
314   return (r_type == elfcpp::R_MIPS16_26
315           || r_type == elfcpp::R_MIPS16_CALL16);
316 }
317
318 static inline bool
319 jal_reloc(unsigned int r_type)
320 {
321   return (r_type == elfcpp::R_MIPS_26
322           || r_type == elfcpp::R_MIPS16_26
323           || r_type == elfcpp::R_MICROMIPS_26_S1);
324 }
325
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
328 {
329   return (r_type == elfcpp::R_MICROMIPS_26_S1
330           || r_type == elfcpp::R_MICROMIPS_PC16_S1
331           || r_type == elfcpp::R_MICROMIPS_PC10_S1
332           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
333 }
334
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
338 {
339   switch (r_type)
340     {
341     case elfcpp::R_MIPS16_26:
342     case elfcpp::R_MIPS16_GPREL:
343     case elfcpp::R_MIPS16_GOT16:
344     case elfcpp::R_MIPS16_CALL16:
345     case elfcpp::R_MIPS16_HI16:
346     case elfcpp::R_MIPS16_LO16:
347     case elfcpp::R_MIPS16_TLS_GD:
348     case elfcpp::R_MIPS16_TLS_LDM:
349     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351     case elfcpp::R_MIPS16_TLS_GOTTPREL:
352     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354       return true;
355
356     default:
357       return false;
358     }
359 }
360
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
364 {
365   switch (r_type)
366     {
367     case elfcpp::R_MICROMIPS_26_S1:
368     case elfcpp::R_MICROMIPS_HI16:
369     case elfcpp::R_MICROMIPS_LO16:
370     case elfcpp::R_MICROMIPS_GPREL16:
371     case elfcpp::R_MICROMIPS_LITERAL:
372     case elfcpp::R_MICROMIPS_GOT16:
373     case elfcpp::R_MICROMIPS_PC7_S1:
374     case elfcpp::R_MICROMIPS_PC10_S1:
375     case elfcpp::R_MICROMIPS_PC16_S1:
376     case elfcpp::R_MICROMIPS_CALL16:
377     case elfcpp::R_MICROMIPS_GOT_DISP:
378     case elfcpp::R_MICROMIPS_GOT_PAGE:
379     case elfcpp::R_MICROMIPS_GOT_OFST:
380     case elfcpp::R_MICROMIPS_GOT_HI16:
381     case elfcpp::R_MICROMIPS_GOT_LO16:
382     case elfcpp::R_MICROMIPS_SUB:
383     case elfcpp::R_MICROMIPS_HIGHER:
384     case elfcpp::R_MICROMIPS_HIGHEST:
385     case elfcpp::R_MICROMIPS_CALL_HI16:
386     case elfcpp::R_MICROMIPS_CALL_LO16:
387     case elfcpp::R_MICROMIPS_SCN_DISP:
388     case elfcpp::R_MICROMIPS_JALR:
389     case elfcpp::R_MICROMIPS_HI0_LO16:
390     case elfcpp::R_MICROMIPS_TLS_GD:
391     case elfcpp::R_MICROMIPS_TLS_LDM:
392     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397     case elfcpp::R_MICROMIPS_GPREL7_S2:
398     case elfcpp::R_MICROMIPS_PC23_S2:
399       return true;
400
401     default:
402       return false;
403     }
404 }
405
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 {
409   switch (high_reloc)
410     {
411     case elfcpp::R_MIPS_HI16:
412     case elfcpp::R_MIPS_GOT16:
413       return lo16_reloc == elfcpp::R_MIPS_LO16;
414     case elfcpp::R_MIPS_PCHI16:
415       return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416     case elfcpp::R_MIPS16_HI16:
417     case elfcpp::R_MIPS16_GOT16:
418       return lo16_reloc == elfcpp::R_MIPS16_LO16;
419     case elfcpp::R_MICROMIPS_HI16:
420     case elfcpp::R_MICROMIPS_GOT16:
421       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422     default:
423       return false;
424     }
425 }
426
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
429 //
430 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
433 //          (sym != NULL, symndx == -1)
434 //    (3) a TLS LDM slot (there's only one of these per GOT.)
435 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
436
437 template<int size, bool big_endian>
438 class Mips_got_entry
439 {
440   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
441
442  public:
443   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444                  Mips_address addend, unsigned char tls_type,
445                  unsigned int shndx, bool is_section_symbol)
446     : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447       is_section_symbol_(is_section_symbol), shndx_(shndx)
448   { this->d.object = object; }
449
450   Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451     : addend_(0), symndx_(-1U), tls_type_(tls_type),
452       is_section_symbol_(false), shndx_(-1U)
453   { this->d.sym = sym; }
454
455   // Return whether this entry is for a local symbol.
456   bool
457   is_for_local_symbol() const
458   { return this->symndx_ != -1U; }
459
460   // Return whether this entry is for a global symbol.
461   bool
462   is_for_global_symbol() const
463   { return this->symndx_ == -1U; }
464
465   // Return the hash of this entry.
466   size_t
467   hash() const
468   {
469     if (this->tls_type_ == GOT_TLS_LDM)
470       return this->symndx_ + (1 << 18);
471
472     size_t name_hash_value = gold::string_hash<char>(
473         (this->symndx_ != -1U)
474          ? this->d.object->name().c_str()
475          : this->d.sym->name());
476     size_t addend = this->addend_;
477     return name_hash_value ^ this->symndx_ ^ addend;
478   }
479
480   // Return whether this entry is equal to OTHER.
481   bool
482   equals(Mips_got_entry<size, big_endian>* other) const
483   {
484     if (this->tls_type_ == GOT_TLS_LDM)
485       return true;
486
487     return ((this->tls_type_ == other->tls_type_)
488              && (this->symndx_ == other->symndx_)
489              && ((this->symndx_ != -1U)
490                   ? (this->d.object == other->d.object)
491                   : (this->d.sym == other->d.sym))
492              && (this->addend_ == other->addend_));
493   }
494
495   // Return input object that needs this GOT entry.
496   Mips_relobj<size, big_endian>*
497   object() const
498   {
499     gold_assert(this->symndx_ != -1U);
500     return this->d.object;
501   }
502
503   // Return local symbol index for local GOT entries.
504   unsigned int
505   symndx() const
506   {
507     gold_assert(this->symndx_ != -1U);
508     return this->symndx_;
509   }
510
511   // Return the relocation addend for local GOT entries.
512   Mips_address
513   addend() const
514   { return this->addend_; }
515
516   // Return global symbol for global GOT entries.
517   Mips_symbol<size>*
518   sym() const
519   {
520     gold_assert(this->symndx_ == -1U);
521     return this->d.sym;
522   }
523
524   // Return whether this is a TLS GOT entry.
525   bool
526   is_tls_entry() const
527   { return this->tls_type_ != GOT_TLS_NONE; }
528
529   // Return TLS type of this GOT entry.
530   unsigned char
531   tls_type() const
532   { return this->tls_type_; }
533
534   // Return section index of the local symbol for local GOT entries.
535   unsigned int
536   shndx() const
537   { return this->shndx_; }
538
539   // Return whether this is a STT_SECTION symbol.
540   bool
541   is_section_symbol() const
542   { return this->is_section_symbol_; }
543
544  private:
545   // The addend.
546   Mips_address addend_;
547
548   // The index of the symbol if we have a local symbol; -1 otherwise.
549   unsigned int symndx_;
550
551   union
552   {
553     // The input object for local symbols that needs the GOT entry.
554     Mips_relobj<size, big_endian>* object;
555     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
556     // symbol's entry is in the local area if mips_sym->global_got_area is
557     // GGA_NONE, otherwise it is in the global area.
558     Mips_symbol<size>* sym;
559   } d;
560
561   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
562   // symbol entry with r_symndx == 0.
563   unsigned char tls_type_;
564
565   // Whether this is a STT_SECTION symbol.
566   bool is_section_symbol_;
567
568   // For local GOT entries, section index of the local symbol.
569   unsigned int shndx_;
570 };
571
572 // Hash for Mips_got_entry.
573
574 template<int size, bool big_endian>
575 class Mips_got_entry_hash
576 {
577  public:
578   size_t
579   operator()(Mips_got_entry<size, big_endian>* entry) const
580   { return entry->hash(); }
581 };
582
583 // Equality for Mips_got_entry.
584
585 template<int size, bool big_endian>
586 class Mips_got_entry_eq
587 {
588  public:
589   bool
590   operator()(Mips_got_entry<size, big_endian>* e1,
591              Mips_got_entry<size, big_endian>* e2) const
592   { return e1->equals(e2); }
593 };
594
595 // Hash for Mips_symbol.
596
597 template<int size>
598 class Mips_symbol_hash
599 {
600  public:
601   size_t
602   operator()(Mips_symbol<size>* sym) const
603   { return sym->hash(); }
604 };
605
606 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
607 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
608 // increasing MIN_ADDEND.
609
610 struct Got_page_range
611 {
612   Got_page_range()
613     : next(NULL), min_addend(0), max_addend(0)
614   { }
615
616   Got_page_range* next;
617   int min_addend;
618   int max_addend;
619
620   // Return the maximum number of GOT page entries required.
621   int
622   get_max_pages()
623   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
624 };
625
626 // Got_page_entry.  This class describes the range of addends that are applied
627 // to page relocations against a given symbol.
628
629 struct Got_page_entry
630 {
631   Got_page_entry()
632     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
633   { }
634
635   Got_page_entry(Object* object_, unsigned int symndx_)
636     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
637   { }
638
639   // The input object that needs the GOT page entry.
640   Object* object;
641   // The index of the symbol, as stored in the relocation r_info.
642   unsigned int symndx;
643   // The ranges for this page entry.
644   Got_page_range* ranges;
645   // The maximum number of page entries needed for RANGES.
646   unsigned int num_pages;
647 };
648
649 // Hash for Got_page_entry.
650
651 struct Got_page_entry_hash
652 {
653   size_t
654   operator()(Got_page_entry* entry) const
655   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
656 };
657
658 // Equality for Got_page_entry.
659
660 struct Got_page_entry_eq
661 {
662   bool
663   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
664   {
665     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
666   }
667 };
668
669 // This class is used to hold .got information when linking.
670
671 template<int size, bool big_endian>
672 class Mips_got_info
673 {
674   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
676     Reloc_section;
677   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
678
679   // Unordered set of GOT entries.
680   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681       Mips_got_entry_hash<size, big_endian>,
682       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
683
684   // Unordered set of GOT page entries.
685   typedef Unordered_set<Got_page_entry*,
686       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
687
688   // Unordered set of global GOT entries.
689   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690       Global_got_entry_set;
691
692  public:
693   Mips_got_info()
694     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698       offset_(0)
699   { }
700
701   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
703   void
704   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705                           unsigned int symndx, Mips_address addend,
706                           unsigned int r_type, unsigned int shndx,
707                           bool is_section_symbol);
708
709   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710   // in OBJECT.  FOR_CALL is true if the caller is only interested in
711   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
712   // relocation.
713   void
714   record_global_got_symbol(Mips_symbol<size>* mips_sym,
715                            Mips_relobj<size, big_endian>* object,
716                            unsigned int r_type, bool dyn_reloc, bool for_call);
717
718   // Add ENTRY to master GOT and to OBJECT's GOT.
719   void
720   record_got_entry(Mips_got_entry<size, big_endian>* entry,
721                    Mips_relobj<size, big_endian>* object);
722
723   // Record that OBJECT has a page relocation against symbol SYMNDX and
724   // that ADDEND is the addend for that relocation.
725   void
726   record_got_page_entry(Mips_relobj<size, big_endian>* object,
727                         unsigned int symndx, int addend);
728
729   // Create all entries that should be in the local part of the GOT.
730   void
731   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
732
733   // Create GOT page entries.
734   void
735   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
736
737   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
738   void
739   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740                      unsigned int non_reloc_only_global_gotno);
741
742   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
743   void
744   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
745
746   // Create TLS GOT entries.
747   void
748   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
749
750   // Decide whether the symbol needs an entry in the global part of the primary
751   // GOT, setting global_got_area accordingly.  Count the number of global
752   // symbols that are in the primary GOT only because they have dynamic
753   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
754   void
755   count_got_symbols(Symbol_table* symtab);
756
757   // Return the offset of GOT page entry for VALUE.
758   unsigned int
759   get_got_page_offset(Mips_address value,
760                       Mips_output_data_got<size, big_endian>* got);
761
762   // Count the number of GOT entries required.
763   void
764   count_got_entries();
765
766   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
767   void
768   count_got_entry(Mips_got_entry<size, big_endian>* entry);
769
770   // Add FROM's GOT entries.
771   void
772   add_got_entries(Mips_got_info<size, big_endian>* from);
773
774   // Add FROM's GOT page entries.
775   void
776   add_got_page_entries(Mips_got_info<size, big_endian>* from);
777
778   // Return GOT size.
779   unsigned int
780   got_size() const
781   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782              + this->tls_gotno_) * size/8);
783   }
784
785   // Return the number of local GOT entries.
786   unsigned int
787   local_gotno() const
788   { return this->local_gotno_; }
789
790   // Return the maximum number of page GOT entries needed.
791   unsigned int
792   page_gotno() const
793   { return this->page_gotno_; }
794
795   // Return the number of global GOT entries.
796   unsigned int
797   global_gotno() const
798   { return this->global_gotno_; }
799
800   // Set the number of global GOT entries.
801   void
802   set_global_gotno(unsigned int global_gotno)
803   { this->global_gotno_ = global_gotno; }
804
805   // Return the number of GGA_RELOC_ONLY global GOT entries.
806   unsigned int
807   reloc_only_gotno() const
808   { return this->reloc_only_gotno_; }
809
810   // Return the number of TLS GOT entries.
811   unsigned int
812   tls_gotno() const
813   { return this->tls_gotno_; }
814
815   // Return the GOT type for this GOT.  Used for multi-GOT links only.
816   unsigned int
817   multigot_got_type(unsigned int got_type) const
818   {
819     switch (got_type)
820       {
821       case GOT_TYPE_STANDARD:
822         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823       case GOT_TYPE_TLS_OFFSET:
824         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825       case GOT_TYPE_TLS_PAIR:
826         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
827       default:
828         gold_unreachable();
829       }
830   }
831
832   // Remove lazy-binding stubs for global symbols in this GOT.
833   void
834   remove_lazy_stubs(Target_mips<size, big_endian>* target);
835
836   // Return offset of this GOT from the start of .got section.
837   unsigned int
838   offset() const
839   { return this->offset_; }
840
841   // Set offset of this GOT from the start of .got section.
842   void
843   set_offset(unsigned int offset)
844   { this->offset_ = offset; }
845
846   // Set index of this GOT in multi-GOT links.
847   void
848   set_index(unsigned int index)
849   { this->index_ = index; }
850
851   // Return next GOT in multi-GOT links.
852   Mips_got_info<size, big_endian>*
853   next() const
854   { return this->next_; }
855
856   // Set next GOT in multi-GOT links.
857   void
858   set_next(Mips_got_info<size, big_endian>* next)
859   { this->next_ = next; }
860
861   // Return the offset of TLS LDM entry for this GOT.
862   unsigned int
863   tls_ldm_offset() const
864   { return this->tls_ldm_offset_; }
865
866   // Set the offset of TLS LDM entry for this GOT.
867   void
868   set_tls_ldm_offset(unsigned int tls_ldm_offset)
869   { this->tls_ldm_offset_ = tls_ldm_offset; }
870
871   Global_got_entry_set&
872   global_got_symbols()
873   { return this->global_got_symbols_; }
874
875   // Return the GOT_TLS_* type required by relocation type R_TYPE.
876   static int
877   mips_elf_reloc_tls_type(unsigned int r_type)
878   {
879     if (tls_gd_reloc(r_type))
880       return GOT_TLS_GD;
881
882     if (tls_ldm_reloc(r_type))
883       return GOT_TLS_LDM;
884
885     if (tls_gottprel_reloc(r_type))
886       return GOT_TLS_IE;
887
888     return GOT_TLS_NONE;
889   }
890
891   // Return the number of GOT slots needed for GOT TLS type TYPE.
892   static int
893   mips_tls_got_entries(unsigned int type)
894   {
895     switch (type)
896       {
897       case GOT_TLS_GD:
898       case GOT_TLS_LDM:
899         return 2;
900
901       case GOT_TLS_IE:
902         return 1;
903
904       case GOT_TLS_NONE:
905         return 0;
906
907       default:
908         gold_unreachable();
909       }
910   }
911
912  private:
913   // The number of local GOT entries.
914   unsigned int local_gotno_;
915   // The maximum number of page GOT entries needed.
916   unsigned int page_gotno_;
917   // The number of global GOT entries.
918   unsigned int global_gotno_;
919   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920   unsigned int reloc_only_gotno_;
921   // The number of TLS GOT entries.
922   unsigned int tls_gotno_;
923   // The offset of TLS LDM entry for this GOT.
924   unsigned int tls_ldm_offset_;
925   // All symbols that have global GOT entry.
926   Global_got_entry_set global_got_symbols_;
927   // A hash table holding GOT entries.
928   Got_entry_set got_entries_;
929   // A hash table of GOT page entries.
930   Got_page_entry_set got_page_entries_;
931   // The offset of first GOT page entry for this GOT.
932   unsigned int got_page_offset_start_;
933   // The offset of next available GOT page entry for this GOT.
934   unsigned int got_page_offset_next_;
935   // A hash table that maps GOT page entry value to the GOT offset where
936   // the entry is located.
937   Got_page_offsets got_page_offsets_;
938   // In multi-GOT links, a pointer to the next GOT.
939   Mips_got_info<size, big_endian>* next_;
940   // Index of this GOT in multi-GOT links.
941   unsigned int index_;
942   // The offset of this GOT in multi-GOT links.
943   unsigned int offset_;
944 };
945
946 // This is a helper class used during relocation scan.  It records GOT16 addend.
947
948 template<int size, bool big_endian>
949 struct got16_addend
950 {
951   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
952
953   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955                Mips_address _addend)
956     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957       addend(_addend)
958   { }
959
960   const Sized_relobj_file<size, big_endian>* object;
961   unsigned int shndx;
962   unsigned int r_type;
963   unsigned int r_sym;
964   Mips_address addend;
965 };
966
967 // .MIPS.abiflags section content
968
969 template<bool big_endian>
970 struct Mips_abiflags
971 {
972   typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
975
976   Mips_abiflags()
977     : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978       cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
979   { }
980
981   // Version of flags structure.
982   Valtype16 version;
983   // The level of the ISA: 1-5, 32, 64.
984   Valtype8 isa_level;
985   // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
986   Valtype8 isa_rev;
987   // The size of general purpose registers.
988   Valtype8 gpr_size;
989   // The size of co-processor 1 registers.
990   Valtype8 cpr1_size;
991   // The size of co-processor 2 registers.
992   Valtype8 cpr2_size;
993   // The floating-point ABI.
994   Valtype8 fp_abi;
995   // Processor-specific extension.
996   Valtype32 isa_ext;
997   // Mask of ASEs used.
998   Valtype32 ases;
999   // Mask of general flags.
1000   Valtype32 flags1;
1001   Valtype32 flags2;
1002 };
1003
1004 // Mips_symbol class.  Holds additional symbol information needed for Mips.
1005
1006 template<int size>
1007 class Mips_symbol : public Sized_symbol<size>
1008 {
1009  public:
1010   Mips_symbol()
1011     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1018   { }
1019
1020   // Return whether this is a MIPS16 symbol.
1021   bool
1022   is_mips16() const
1023   {
1024     // (st_other & STO_MIPS16) == STO_MIPS16
1025     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026             == elfcpp::STO_MIPS16 >> 2);
1027   }
1028
1029   // Return whether this is a microMIPS symbol.
1030   bool
1031   is_micromips() const
1032   {
1033     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035             == elfcpp::STO_MICROMIPS >> 2);
1036   }
1037
1038   // Return whether the symbol needs MIPS16 fn_stub.
1039   bool
1040   need_fn_stub() const
1041   { return this->need_fn_stub_; }
1042
1043   // Set that the symbol needs MIPS16 fn_stub.
1044   void
1045   set_need_fn_stub()
1046   { this->need_fn_stub_ = true; }
1047
1048   // Return whether this symbol is referenced by branch relocations from
1049   // any non-PIC input file.
1050   bool
1051   has_nonpic_branches() const
1052   { return this->has_nonpic_branches_; }
1053
1054   // Set that this symbol is referenced by branch relocations from
1055   // any non-PIC input file.
1056   void
1057   set_has_nonpic_branches()
1058   { this->has_nonpic_branches_ = true; }
1059
1060   // Return the offset of the la25 stub for this symbol from the start of the
1061   // la25 stub section.
1062   unsigned int
1063   la25_stub_offset() const
1064   { return this->la25_stub_offset_; }
1065
1066   // Set the offset of the la25 stub for this symbol from the start of the
1067   // la25 stub section.
1068   void
1069   set_la25_stub_offset(unsigned int offset)
1070   { this->la25_stub_offset_ = offset; }
1071
1072   // Return whether the symbol has la25 stub.  This is true if this symbol is
1073   // for a PIC function, and there are non-PIC branches and jumps to it.
1074   bool
1075   has_la25_stub() const
1076   { return this->la25_stub_offset_ != -1U; }
1077
1078   // Return whether there is a relocation against this symbol that must be
1079   // resolved by the static linker (that is, the relocation cannot possibly
1080   // be made dynamic).
1081   bool
1082   has_static_relocs() const
1083   { return this->has_static_relocs_; }
1084
1085   // Set that there is a relocation against this symbol that must be resolved
1086   // by the static linker (that is, the relocation cannot possibly be made
1087   // dynamic).
1088   void
1089   set_has_static_relocs()
1090   { this->has_static_relocs_ = true; }
1091
1092   // Return whether we must not create a lazy-binding stub for this symbol.
1093   bool
1094   no_lazy_stub() const
1095   { return this->no_lazy_stub_; }
1096
1097   // Set that we must not create a lazy-binding stub for this symbol.
1098   void
1099   set_no_lazy_stub()
1100   { this->no_lazy_stub_ = true; }
1101
1102   // Return the offset of the lazy-binding stub for this symbol from the start
1103   // of .MIPS.stubs section.
1104   unsigned int
1105   lazy_stub_offset() const
1106   { return this->lazy_stub_offset_; }
1107
1108   // Set the offset of the lazy-binding stub for this symbol from the start
1109   // of .MIPS.stubs section.
1110   void
1111   set_lazy_stub_offset(unsigned int offset)
1112   { this->lazy_stub_offset_ = offset; }
1113
1114   // Return whether there are any relocations for this symbol where
1115   // pointer equality matters.
1116   bool
1117   pointer_equality_needed() const
1118   { return this->pointer_equality_needed_; }
1119
1120   // Set that there are relocations for this symbol where pointer equality
1121   // matters.
1122   void
1123   set_pointer_equality_needed()
1124   { this->pointer_equality_needed_ = true; }
1125
1126   // Return global GOT area where this symbol in located.
1127   Global_got_area
1128   global_got_area() const
1129   { return this->global_got_area_; }
1130
1131   // Set global GOT area where this symbol in located.
1132   void
1133   set_global_got_area(Global_got_area global_got_area)
1134   { this->global_got_area_ = global_got_area; }
1135
1136   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1137   // returns the offset from the start of .got section to the first GOT entry
1138   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1139   // in more than one GOT.
1140   unsigned int
1141   global_gotoffset() const
1142   { return this->global_gotoffset_; }
1143
1144   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1145   // the symbol can have entry in more than one GOT.  This method will set
1146   // the offset only if it is less than current offset.
1147   void
1148   set_global_gotoffset(unsigned int offset)
1149   {
1150     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151       this->global_gotoffset_ = offset;
1152   }
1153
1154   // Return whether all GOT relocations for this symbol are for calls.
1155   bool
1156   got_only_for_calls() const
1157   { return this->got_only_for_calls_; }
1158
1159   // Set that there is a GOT relocation for this symbol that is not for call.
1160   void
1161   set_got_not_only_for_calls()
1162   { this->got_only_for_calls_ = false; }
1163
1164   // Return whether this is a PIC symbol.
1165   bool
1166   is_pic() const
1167   {
1168     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170             == (elfcpp::STO_MIPS_PIC >> 2));
1171   }
1172
1173   // Set the flag in st_other field that marks this symbol as PIC.
1174   void
1175   set_pic()
1176   {
1177     if (this->is_mips16())
1178       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179       this->set_nonvis((this->nonvis()
1180                         & ~((elfcpp::STO_MIPS16 >> 2)
1181                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182                        | (elfcpp::STO_MIPS_PIC >> 2));
1183     else
1184       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186                        | (elfcpp::STO_MIPS_PIC >> 2));
1187   }
1188
1189   // Set the flag in st_other field that marks this symbol as PLT.
1190   void
1191   set_mips_plt()
1192   {
1193     if (this->is_mips16())
1194       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195       this->set_nonvis((this->nonvis()
1196                         & ((elfcpp::STO_MIPS16 >> 2)
1197                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198                        | (elfcpp::STO_MIPS_PLT >> 2));
1199
1200     else
1201       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203                        | (elfcpp::STO_MIPS_PLT >> 2));
1204   }
1205
1206   // Downcast a base pointer to a Mips_symbol pointer.
1207   static Mips_symbol<size>*
1208   as_mips_sym(Symbol* sym)
1209   { return static_cast<Mips_symbol<size>*>(sym); }
1210
1211   // Downcast a base pointer to a Mips_symbol pointer.
1212   static const Mips_symbol<size>*
1213   as_mips_sym(const Symbol* sym)
1214   { return static_cast<const Mips_symbol<size>*>(sym); }
1215
1216   // Return whether the symbol has lazy-binding stub.
1217   bool
1218   has_lazy_stub() const
1219   { return this->has_lazy_stub_; }
1220
1221   // Set whether the symbol has lazy-binding stub.
1222   void
1223   set_has_lazy_stub(bool has_lazy_stub)
1224   { this->has_lazy_stub_ = has_lazy_stub; }
1225
1226   // Return whether the symbol needs a standard PLT entry.
1227   bool
1228   needs_mips_plt() const
1229   { return this->needs_mips_plt_; }
1230
1231   // Set whether the symbol needs a standard PLT entry.
1232   void
1233   set_needs_mips_plt(bool needs_mips_plt)
1234   { this->needs_mips_plt_ = needs_mips_plt; }
1235
1236   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1237   // entry.
1238   bool
1239   needs_comp_plt() const
1240   { return this->needs_comp_plt_; }
1241
1242   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1243   void
1244   set_needs_comp_plt(bool needs_comp_plt)
1245   { this->needs_comp_plt_ = needs_comp_plt; }
1246
1247   // Return standard PLT entry offset, or -1 if none.
1248   unsigned int
1249   mips_plt_offset() const
1250   { return this->mips_plt_offset_; }
1251
1252   // Set standard PLT entry offset.
1253   void
1254   set_mips_plt_offset(unsigned int mips_plt_offset)
1255   { this->mips_plt_offset_ = mips_plt_offset; }
1256
1257   // Return whether the symbol has standard PLT entry.
1258   bool
1259   has_mips_plt_offset() const
1260   { return this->mips_plt_offset_ != -1U; }
1261
1262   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1263   unsigned int
1264   comp_plt_offset() const
1265   { return this->comp_plt_offset_; }
1266
1267   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1268   void
1269   set_comp_plt_offset(unsigned int comp_plt_offset)
1270   { this->comp_plt_offset_ = comp_plt_offset; }
1271
1272   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1273   bool
1274   has_comp_plt_offset() const
1275   { return this->comp_plt_offset_ != -1U; }
1276
1277   // Return MIPS16 fn stub for a symbol.
1278   template<bool big_endian>
1279   Mips16_stub_section<size, big_endian>*
1280   get_mips16_fn_stub() const
1281   {
1282     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1283   }
1284
1285   // Set MIPS16 fn stub for a symbol.
1286   void
1287   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288   { this->mips16_fn_stub_ = stub; }
1289
1290   // Return whether symbol has MIPS16 fn stub.
1291   bool
1292   has_mips16_fn_stub() const
1293   { return this->mips16_fn_stub_ != NULL; }
1294
1295   // Return MIPS16 call stub for a symbol.
1296   template<bool big_endian>
1297   Mips16_stub_section<size, big_endian>*
1298   get_mips16_call_stub() const
1299   {
1300     return static_cast<Mips16_stub_section<size, big_endian>*>(
1301       mips16_call_stub_);
1302   }
1303
1304   // Set MIPS16 call stub for a symbol.
1305   void
1306   set_mips16_call_stub(Mips16_stub_section_base* stub)
1307   { this->mips16_call_stub_ = stub; }
1308
1309   // Return whether symbol has MIPS16 call stub.
1310   bool
1311   has_mips16_call_stub() const
1312   { return this->mips16_call_stub_ != NULL; }
1313
1314   // Return MIPS16 call_fp stub for a symbol.
1315   template<bool big_endian>
1316   Mips16_stub_section<size, big_endian>*
1317   get_mips16_call_fp_stub() const
1318   {
1319     return static_cast<Mips16_stub_section<size, big_endian>*>(
1320       mips16_call_fp_stub_);
1321   }
1322
1323   // Set MIPS16 call_fp stub for a symbol.
1324   void
1325   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326   { this->mips16_call_fp_stub_ = stub; }
1327
1328   // Return whether symbol has MIPS16 call_fp stub.
1329   bool
1330   has_mips16_call_fp_stub() const
1331   { return this->mips16_call_fp_stub_ != NULL; }
1332
1333   bool
1334   get_applied_secondary_got_fixup() const
1335   { return applied_secondary_got_fixup_; }
1336
1337   void
1338   set_applied_secondary_got_fixup()
1339   { this->applied_secondary_got_fixup_ = true; }
1340
1341   // Return the hash of this symbol.
1342   size_t
1343   hash() const
1344   {
1345     return gold::string_hash<char>(this->name());
1346   }
1347
1348  private:
1349   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1350   // appears in any relocs other than a 16 bit call.
1351   bool need_fn_stub_;
1352
1353   // True if this symbol is referenced by branch relocations from
1354   // any non-PIC input file.  This is used to determine whether an
1355   // la25 stub is required.
1356   bool has_nonpic_branches_;
1357
1358   // The offset of the la25 stub for this symbol from the start of the
1359   // la25 stub section.
1360   unsigned int la25_stub_offset_;
1361
1362   // True if there is a relocation against this symbol that must be
1363   // resolved by the static linker (that is, the relocation cannot
1364   // possibly be made dynamic).
1365   bool has_static_relocs_;
1366
1367   // Whether we must not create a lazy-binding stub for this symbol.
1368   // This is true if the symbol has relocations related to taking the
1369   // function's address.
1370   bool no_lazy_stub_;
1371
1372   // The offset of the lazy-binding stub for this symbol from the start of
1373   // .MIPS.stubs section.
1374   unsigned int lazy_stub_offset_;
1375
1376   // True if there are any relocations for this symbol where pointer equality
1377   // matters.
1378   bool pointer_equality_needed_;
1379
1380   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381   // in the global part of the GOT.
1382   Global_got_area global_got_area_;
1383
1384   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1385   // from the start of .got section to the first GOT entry for the symbol.
1386   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387   unsigned int global_gotoffset_;
1388
1389   // Whether all GOT relocations for this symbol are for calls.
1390   bool got_only_for_calls_;
1391   // Whether the symbol has lazy-binding stub.
1392   bool has_lazy_stub_;
1393   // Whether the symbol needs a standard PLT entry.
1394   bool needs_mips_plt_;
1395   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396   bool needs_comp_plt_;
1397   // Standard PLT entry offset, or -1 if none.
1398   unsigned int mips_plt_offset_;
1399   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400   unsigned int comp_plt_offset_;
1401   // MIPS16 fn stub for a symbol.
1402   Mips16_stub_section_base* mips16_fn_stub_;
1403   // MIPS16 call stub for a symbol.
1404   Mips16_stub_section_base* mips16_call_stub_;
1405   // MIPS16 call_fp stub for a symbol.
1406   Mips16_stub_section_base* mips16_call_fp_stub_;
1407
1408   bool applied_secondary_got_fixup_;
1409 };
1410
1411 // Mips16_stub_section class.
1412
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1415
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead.  If no 32 bit
1420 // function calls FNNAME, the stub should be discarded.  We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1424
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead.  If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1431
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs.  These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call.  (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1440
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally.  Instead, the relocation
1443 // information will indicate which symbol the section is for.
1444
1445 // We record any stubs that we find in the symbol table.
1446
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1448
1449 class Mips16_stub_section_base { };
1450
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1453 {
1454   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1455
1456  public:
1457   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459       found_r_mips_none_(false)
1460   {
1461     gold_assert(object->is_mips16_fn_stub_section(shndx)
1462                 || object->is_mips16_call_stub_section(shndx)
1463                 || object->is_mips16_call_fp_stub_section(shndx));
1464   }
1465
1466   // Return the object of this stub section.
1467   Mips_relobj<size, big_endian>*
1468   object() const
1469   { return this->object_; }
1470
1471   // Return the size of a section.
1472   uint64_t
1473   section_size() const
1474   { return this->object_->section_size(this->shndx_); }
1475
1476   // Return section index of this stub section.
1477   unsigned int
1478   shndx() const
1479   { return this->shndx_; }
1480
1481   // Return symbol index, if stub is for a local function.
1482   unsigned int
1483   r_sym() const
1484   { return this->r_sym_; }
1485
1486   // Return symbol, if stub is for a global function.
1487   Mips_symbol<size>*
1488   gsym() const
1489   { return this->gsym_; }
1490
1491   // Return whether stub is for a local function.
1492   bool
1493   is_for_local_function() const
1494   { return this->gsym_ == NULL; }
1495
1496   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497   // is found in the stub section.  Try to find stub target.
1498   void
1499   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1500   {
1501     // To find target symbol for this stub, trust the first R_MIPS_NONE
1502     // relocation, if any.  Otherwise trust the first relocation, whatever
1503     // its kind.
1504     if (this->found_r_mips_none_)
1505       return;
1506     if (r_type == elfcpp::R_MIPS_NONE)
1507       {
1508         this->r_sym_ = r_sym;
1509         this->gsym_ = NULL;
1510         this->found_r_mips_none_ = true;
1511       }
1512     else if (!is_target_found())
1513       this->r_sym_ = r_sym;
1514   }
1515
1516   // This method is called when a new relocation R_TYPE for global symbol GSYM
1517   // is found in the stub section.  Try to find stub target.
1518   void
1519   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1520   {
1521     // To find target symbol for this stub, trust the first R_MIPS_NONE
1522     // relocation, if any.  Otherwise trust the first relocation, whatever
1523     // its kind.
1524     if (this->found_r_mips_none_)
1525       return;
1526     if (r_type == elfcpp::R_MIPS_NONE)
1527       {
1528         this->gsym_ = gsym;
1529         this->r_sym_ = 0;
1530         this->found_r_mips_none_ = true;
1531       }
1532     else if (!is_target_found())
1533       this->gsym_ = gsym;
1534   }
1535
1536   // Return whether we found the stub target.
1537   bool
1538   is_target_found() const
1539   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1540
1541   // Return whether this is a fn stub.
1542   bool
1543   is_fn_stub() const
1544   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1545
1546   // Return whether this is a call stub.
1547   bool
1548   is_call_stub() const
1549   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1550
1551   // Return whether this is a call_fp stub.
1552   bool
1553   is_call_fp_stub() const
1554   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1555
1556   // Return the output address.
1557   Mips_address
1558   output_address() const
1559   {
1560     return (this->object_->output_section(this->shndx_)->address()
1561             + this->object_->output_section_offset(this->shndx_));
1562   }
1563
1564  private:
1565   // The object of this stub section.
1566   Mips_relobj<size, big_endian>* object_;
1567   // The section index of this stub section.
1568   unsigned int shndx_;
1569   // The symbol index, if stub is for a local function.
1570   unsigned int r_sym_;
1571   // The symbol, if stub is for a global function.
1572   Mips_symbol<size>* gsym_;
1573   // True if we found R_MIPS_NONE relocation in this stub.
1574   bool found_r_mips_none_;
1575 };
1576
1577 // Mips_relobj class.
1578
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1581 {
1582   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584     Mips16_stubs_int_map;
1585   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1586
1587  public:
1588   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591       processor_specific_flags_(0), local_symbol_is_mips16_(),
1592       local_symbol_is_micromips_(), mips16_stub_sections_(),
1593       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594       local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595       got_info_(NULL), section_is_mips16_fn_stub_(),
1596       section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1597       pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1598       gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1599   {
1600     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1601     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1602   }
1603
1604   ~Mips_relobj()
1605   { delete this->attributes_section_data_; }
1606
1607   // Downcast a base pointer to a Mips_relobj pointer.  This is
1608   // not type-safe but we only use Mips_relobj not the base class.
1609   static Mips_relobj<size, big_endian>*
1610   as_mips_relobj(Relobj* relobj)
1611   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1612
1613   // Downcast a base pointer to a Mips_relobj pointer.  This is
1614   // not type-safe but we only use Mips_relobj not the base class.
1615   static const Mips_relobj<size, big_endian>*
1616   as_mips_relobj(const Relobj* relobj)
1617   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1618
1619   // Processor-specific flags in ELF file header.  This is valid only after
1620   // reading symbols.
1621   elfcpp::Elf_Word
1622   processor_specific_flags() const
1623   { return this->processor_specific_flags_; }
1624
1625   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1626   // index.  This is only valid after do_count_local_symbol is called.
1627   bool
1628   local_symbol_is_mips16(unsigned int r_sym) const
1629   {
1630     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1631     return this->local_symbol_is_mips16_[r_sym];
1632   }
1633
1634   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1635   // index.  This is only valid after do_count_local_symbol is called.
1636   bool
1637   local_symbol_is_micromips(unsigned int r_sym) const
1638   {
1639     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1640     return this->local_symbol_is_micromips_[r_sym];
1641   }
1642
1643   // Get or create MIPS16 stub section.
1644   Mips16_stub_section<size, big_endian>*
1645   get_mips16_stub_section(unsigned int shndx)
1646   {
1647     typename Mips16_stubs_int_map::const_iterator it =
1648       this->mips16_stub_sections_.find(shndx);
1649     if (it != this->mips16_stub_sections_.end())
1650       return (*it).second;
1651
1652     Mips16_stub_section<size, big_endian>* stub_section =
1653       new Mips16_stub_section<size, big_endian>(this, shndx);
1654     this->mips16_stub_sections_.insert(
1655       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1656         stub_section->shndx(), stub_section));
1657     return stub_section;
1658   }
1659
1660   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1661   // object doesn't have fn stub for R_SYM.
1662   Mips16_stub_section<size, big_endian>*
1663   get_local_mips16_fn_stub(unsigned int r_sym) const
1664   {
1665     typename Mips16_stubs_int_map::const_iterator it =
1666       this->local_mips16_fn_stubs_.find(r_sym);
1667     if (it != this->local_mips16_fn_stubs_.end())
1668       return (*it).second;
1669     return NULL;
1670   }
1671
1672   // Record that this object has MIPS16 fn stub for local symbol.  This method
1673   // is only called if we decided not to discard the stub.
1674   void
1675   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1676   {
1677     gold_assert(stub->is_for_local_function());
1678     unsigned int r_sym = stub->r_sym();
1679     this->local_mips16_fn_stubs_.insert(
1680       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1681         r_sym, stub));
1682   }
1683
1684   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1685   // object doesn't have call stub for R_SYM.
1686   Mips16_stub_section<size, big_endian>*
1687   get_local_mips16_call_stub(unsigned int r_sym) const
1688   {
1689     typename Mips16_stubs_int_map::const_iterator it =
1690       this->local_mips16_call_stubs_.find(r_sym);
1691     if (it != this->local_mips16_call_stubs_.end())
1692       return (*it).second;
1693     return NULL;
1694   }
1695
1696   // Record that this object has MIPS16 call stub for local symbol.  This method
1697   // is only called if we decided not to discard the stub.
1698   void
1699   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1700   {
1701     gold_assert(stub->is_for_local_function());
1702     unsigned int r_sym = stub->r_sym();
1703     this->local_mips16_call_stubs_.insert(
1704       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1705         r_sym, stub));
1706   }
1707
1708   // Record that we found "non 16-bit" call relocation against local symbol
1709   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1710   // is one.
1711   void
1712   add_local_non_16bit_call(unsigned int symndx)
1713   { this->local_non_16bit_calls_.insert(symndx); }
1714
1715   // Return true if there is any "non 16-bit" call relocation against local
1716   // symbol SYMNDX in this object.
1717   bool
1718   has_local_non_16bit_call_relocs(unsigned int symndx)
1719   {
1720     return (this->local_non_16bit_calls_.find(symndx)
1721             != this->local_non_16bit_calls_.end());
1722   }
1723
1724   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1725   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1726   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1727   void
1728   add_local_16bit_call(unsigned int symndx)
1729   { this->local_16bit_calls_.insert(symndx); }
1730
1731   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1732   // symbol SYMNDX in this object.
1733   bool
1734   has_local_16bit_call_relocs(unsigned int symndx)
1735   {
1736     return (this->local_16bit_calls_.find(symndx)
1737             != this->local_16bit_calls_.end());
1738   }
1739
1740   // Get gp value that was used to create this object.
1741   Mips_address
1742   gp_value() const
1743   { return this->gp_; }
1744
1745   // Return whether the object is a PIC object.
1746   bool
1747   is_pic() const
1748   { return this->is_pic_; }
1749
1750   // Return whether the object uses N32 ABI.
1751   bool
1752   is_n32() const
1753   { return this->is_n32_; }
1754
1755   // Return whether the object uses N64 ABI.
1756   bool
1757   is_n64() const
1758   { return size == 64; }
1759
1760   // Return whether the object uses NewABI conventions.
1761   bool
1762   is_newabi() const
1763   { return this->is_n32() || this->is_n64(); }
1764
1765   // Return Mips_got_info for this object.
1766   Mips_got_info<size, big_endian>*
1767   get_got_info() const
1768   { return this->got_info_; }
1769
1770   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1771   Mips_got_info<size, big_endian>*
1772   get_or_create_got_info()
1773   {
1774     if (!this->got_info_)
1775       this->got_info_ = new Mips_got_info<size, big_endian>();
1776     return this->got_info_;
1777   }
1778
1779   // Set Mips_got_info for this object.
1780   void
1781   set_got_info(Mips_got_info<size, big_endian>* got_info)
1782   { this->got_info_ = got_info; }
1783
1784   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1785   // after do_read_symbols is called.
1786   bool
1787   is_mips16_stub_section(unsigned int shndx)
1788   {
1789     return (is_mips16_fn_stub_section(shndx)
1790             || is_mips16_call_stub_section(shndx)
1791             || is_mips16_call_fp_stub_section(shndx));
1792   }
1793
1794   // Return TRUE if relocations in section SHNDX can refer directly to a
1795   // MIPS16 function rather than to a hard-float stub.  This is only valid
1796   // after do_read_symbols is called.
1797   bool
1798   section_allows_mips16_refs(unsigned int shndx)
1799   {
1800     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1801   }
1802
1803   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1804   // after do_read_symbols is called.
1805   bool
1806   is_mips16_fn_stub_section(unsigned int shndx)
1807   {
1808     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1809     return this->section_is_mips16_fn_stub_[shndx];
1810   }
1811
1812   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1813   // after do_read_symbols is called.
1814   bool
1815   is_mips16_call_stub_section(unsigned int shndx)
1816   {
1817     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1818     return this->section_is_mips16_call_stub_[shndx];
1819   }
1820
1821   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1822   // valid after do_read_symbols is called.
1823   bool
1824   is_mips16_call_fp_stub_section(unsigned int shndx)
1825   {
1826     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1827     return this->section_is_mips16_call_fp_stub_[shndx];
1828   }
1829
1830   // Discard MIPS16 stub secions that are not needed.
1831   void
1832   discard_mips16_stub_sections(Symbol_table* symtab);
1833
1834   // Return whether there is a .reginfo section.
1835   bool
1836   has_reginfo_section() const
1837   { return this->has_reginfo_section_; }
1838
1839   // Return gprmask from the .reginfo section of this object.
1840   Valtype
1841   gprmask() const
1842   { return this->gprmask_; }
1843
1844   // Return cprmask1 from the .reginfo section of this object.
1845   Valtype
1846   cprmask1() const
1847   { return this->cprmask1_; }
1848
1849   // Return cprmask2 from the .reginfo section of this object.
1850   Valtype
1851   cprmask2() const
1852   { return this->cprmask2_; }
1853
1854   // Return cprmask3 from the .reginfo section of this object.
1855   Valtype
1856   cprmask3() const
1857   { return this->cprmask3_; }
1858
1859   // Return cprmask4 from the .reginfo section of this object.
1860   Valtype
1861   cprmask4() const
1862   { return this->cprmask4_; }
1863
1864   // This is the contents of the .MIPS.abiflags section if there is one.
1865   Mips_abiflags<big_endian>*
1866   abiflags()
1867   { return this->abiflags_; }
1868
1869   // This is the contents of the .gnu.attribute section if there is one.
1870   const Attributes_section_data*
1871   attributes_section_data() const
1872   { return this->attributes_section_data_; }
1873
1874  protected:
1875   // Count the local symbols.
1876   void
1877   do_count_local_symbols(Stringpool_template<char>*,
1878                          Stringpool_template<char>*);
1879
1880   // Read the symbol information.
1881   void
1882   do_read_symbols(Read_symbols_data* sd);
1883
1884  private:
1885   // The name of the options section.
1886   const char* mips_elf_options_section_name()
1887   { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1888
1889   // processor-specific flags in ELF file header.
1890   elfcpp::Elf_Word processor_specific_flags_;
1891
1892   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1893   // This is only valid after do_count_local_symbol is called.
1894   std::vector<bool> local_symbol_is_mips16_;
1895
1896   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1897   // This is only valid after do_count_local_symbol is called.
1898   std::vector<bool> local_symbol_is_micromips_;
1899
1900   // Map from section index to the MIPS16 stub for that section.  This contains
1901   // all stubs found in this object.
1902   Mips16_stubs_int_map mips16_stub_sections_;
1903
1904   // Local symbols that have "non 16-bit" call relocation.  This relocation
1905   // would need to refer to a MIPS16 fn stub, if there is one.
1906   std::set<unsigned int> local_non_16bit_calls_;
1907
1908   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1909   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1910   // relocation that refers to the stub symbol.
1911   std::set<unsigned int> local_16bit_calls_;
1912
1913   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1914   // This contains only the stubs that we decided not to discard.
1915   Mips16_stubs_int_map local_mips16_fn_stubs_;
1916
1917   // Map from local symbol index to the MIPS16 call stub for that symbol.
1918   // This contains only the stubs that we decided not to discard.
1919   Mips16_stubs_int_map local_mips16_call_stubs_;
1920
1921   // gp value that was used to create this object.
1922   Mips_address gp_;
1923   // Whether the object is a PIC object.
1924   bool is_pic_ : 1;
1925   // Whether the object uses N32 ABI.
1926   bool is_n32_ : 1;
1927   // Whether the object contains a .reginfo section.
1928   bool has_reginfo_section_ : 1;
1929   // The Mips_got_info for this object.
1930   Mips_got_info<size, big_endian>* got_info_;
1931
1932   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1933   // This is only valid after do_read_symbols is called.
1934   std::vector<bool> section_is_mips16_fn_stub_;
1935
1936   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1937   // This is only valid after do_read_symbols is called.
1938   std::vector<bool> section_is_mips16_call_stub_;
1939
1940   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1941   // This is only valid after do_read_symbols is called.
1942   std::vector<bool> section_is_mips16_call_fp_stub_;
1943
1944   // .pdr section index.
1945   unsigned int pdr_shndx_;
1946
1947   // Object attributes if there is a .gnu.attributes section or NULL.
1948   Attributes_section_data* attributes_section_data_;
1949
1950   // Object abiflags if there is a .MIPS.abiflags section or NULL.
1951   Mips_abiflags<big_endian>* abiflags_;
1952
1953   // gprmask from the .reginfo section of this object.
1954   Valtype gprmask_;
1955   // cprmask1 from the .reginfo section of this object.
1956   Valtype cprmask1_;
1957   // cprmask2 from the .reginfo section of this object.
1958   Valtype cprmask2_;
1959   // cprmask3 from the .reginfo section of this object.
1960   Valtype cprmask3_;
1961   // cprmask4 from the .reginfo section of this object.
1962   Valtype cprmask4_;
1963 };
1964
1965 // Mips_output_data_got class.
1966
1967 template<int size, bool big_endian>
1968 class Mips_output_data_got : public Output_data_got<size, big_endian>
1969 {
1970   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1971   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1972     Reloc_section;
1973   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1974
1975  public:
1976   Mips_output_data_got(Target_mips<size, big_endian>* target,
1977       Symbol_table* symtab, Layout* layout)
1978     : Output_data_got<size, big_endian>(), target_(target),
1979       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1980       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1981       secondary_got_relocs_()
1982   {
1983     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1984     this->set_addralign(16);
1985   }
1986
1987   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1988   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1989   void
1990   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1991                           unsigned int symndx, Mips_address addend,
1992                           unsigned int r_type, unsigned int shndx,
1993                           bool is_section_symbol)
1994   {
1995     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1996                                                     r_type, shndx,
1997                                                     is_section_symbol);
1998   }
1999
2000   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2001   // in OBJECT.  FOR_CALL is true if the caller is only interested in
2002   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
2003   // relocation.
2004   void
2005   record_global_got_symbol(Mips_symbol<size>* mips_sym,
2006                            Mips_relobj<size, big_endian>* object,
2007                            unsigned int r_type, bool dyn_reloc, bool for_call)
2008   {
2009     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2010                                                      dyn_reloc, for_call);
2011   }
2012
2013   // Record that OBJECT has a page relocation against symbol SYMNDX and
2014   // that ADDEND is the addend for that relocation.
2015   void
2016   record_got_page_entry(Mips_relobj<size, big_endian>* object,
2017                         unsigned int symndx, int addend)
2018   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2019
2020   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
2021   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2022   // applied in a static link.
2023   void
2024   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2025                    Mips_symbol<size>* gsym)
2026   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2027
2028   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
2029   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
2030   // relocation that needs to be applied in a static link.
2031   void
2032   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033                    Sized_relobj_file<size, big_endian>* relobj,
2034                    unsigned int index)
2035   {
2036     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2037                                                 index));
2038   }
2039
2040   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2041   // secondary GOT at OFFSET.
2042   void
2043   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2044                           Mips_symbol<size>* gsym)
2045   {
2046     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2047                                                        r_type, gsym));
2048   }
2049
2050   // Update GOT entry at OFFSET with VALUE.
2051   void
2052   update_got_entry(unsigned int offset, Mips_address value)
2053   {
2054     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2055   }
2056
2057   // Return the number of entries in local part of the GOT.  This includes
2058   // local entries, page entries and 2 reserved entries.
2059   unsigned int
2060   get_local_gotno() const
2061   {
2062     if (!this->multi_got())
2063       {
2064         return (2 + this->master_got_info_->local_gotno()
2065                 + this->master_got_info_->page_gotno());
2066       }
2067     else
2068       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2069   }
2070
2071   // Return dynamic symbol table index of the first symbol with global GOT
2072   // entry.
2073   unsigned int
2074   first_global_got_dynsym_index() const
2075   { return this->first_global_got_dynsym_index_; }
2076
2077   // Set dynamic symbol table index of the first symbol with global GOT entry.
2078   void
2079   set_first_global_got_dynsym_index(unsigned int index)
2080   { this->first_global_got_dynsym_index_ = index; }
2081
2082   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
2083   // larger than 64K, create multi-GOT.
2084   void
2085   lay_out_got(Layout* layout, Symbol_table* symtab,
2086               const Input_objects* input_objects);
2087
2088   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
2089   void
2090   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2091
2092   // Attempt to merge GOTs of different input objects.
2093   void
2094   merge_gots(const Input_objects* input_objects);
2095
2096   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
2097   // this would lead to overflow, true if they were merged successfully.
2098   bool
2099   merge_got_with(Mips_got_info<size, big_endian>* from,
2100                  Mips_relobj<size, big_endian>* object,
2101                  Mips_got_info<size, big_endian>* to);
2102
2103   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
2104   // use OBJECT's GOT.
2105   unsigned int
2106   get_got_page_offset(Mips_address value,
2107                       const Mips_relobj<size, big_endian>* object)
2108   {
2109     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2110                                           ? this->master_got_info_
2111                                           : object->get_got_info());
2112     gold_assert(g != NULL);
2113     return g->get_got_page_offset(value, this);
2114   }
2115
2116   // Return the GOT offset of type GOT_TYPE of the global symbol
2117   // GSYM.  For multi-GOT links, use OBJECT's GOT.
2118   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2119                           Mips_relobj<size, big_endian>* object) const
2120   {
2121     if (!this->multi_got())
2122       return gsym->got_offset(got_type);
2123     else
2124       {
2125         Mips_got_info<size, big_endian>* g = object->get_got_info();
2126         gold_assert(g != NULL);
2127         return gsym->got_offset(g->multigot_got_type(got_type));
2128       }
2129   }
2130
2131   // Return the GOT offset of type GOT_TYPE of the local symbol
2132   // SYMNDX.
2133   unsigned int
2134   got_offset(unsigned int symndx, unsigned int got_type,
2135              Sized_relobj_file<size, big_endian>* object,
2136              uint64_t addend) const
2137   { return object->local_got_offset(symndx, got_type, addend); }
2138
2139   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2140   unsigned int
2141   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2142   {
2143     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2144                                           ? this->master_got_info_
2145                                           : object->get_got_info());
2146     gold_assert(g != NULL);
2147     return g->tls_ldm_offset();
2148   }
2149
2150   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2151   void
2152   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2153                      Mips_relobj<size, big_endian>* object)
2154   {
2155     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2156                                           ? this->master_got_info_
2157                                           : object->get_got_info());
2158     gold_assert(g != NULL);
2159     g->set_tls_ldm_offset(tls_ldm_offset);
2160   }
2161
2162   // Return true for multi-GOT links.
2163   bool
2164   multi_got() const
2165   { return this->primary_got_ != NULL; }
2166
2167   // Return the offset of OBJECT's GOT from the start of .got section.
2168   unsigned int
2169   get_got_offset(const Mips_relobj<size, big_endian>* object)
2170   {
2171     if (!this->multi_got())
2172       return 0;
2173     else
2174       {
2175         Mips_got_info<size, big_endian>* g = object->get_got_info();
2176         return g != NULL ? g->offset() : 0;
2177       }
2178   }
2179
2180   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2181   void
2182   add_reloc_only_entries()
2183   { this->master_got_info_->add_reloc_only_entries(this); }
2184
2185   // Return offset of the primary GOT's entry for global symbol.
2186   unsigned int
2187   get_primary_got_offset(const Mips_symbol<size>* sym) const
2188   {
2189     gold_assert(sym->global_got_area() != GGA_NONE);
2190     return (this->get_local_gotno() + sym->dynsym_index()
2191             - this->first_global_got_dynsym_index()) * size/8;
2192   }
2193
2194   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2195   // Input argument GOT_OFFSET is always global offset from the start of
2196   // .got section, for both single and multi-GOT links.
2197   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2198   // links, the return value is object_got_offset - 0x7FF0, where
2199   // object_got_offset is offset in the OBJECT's GOT.
2200   int
2201   gp_offset(unsigned int got_offset,
2202             const Mips_relobj<size, big_endian>* object) const
2203   {
2204     return (this->address() + got_offset
2205             - this->target_->adjusted_gp_value(object));
2206   }
2207
2208  protected:
2209   // Write out the GOT table.
2210   void
2211   do_write(Output_file*);
2212
2213  private:
2214
2215   // This class represent dynamic relocations that need to be applied by
2216   // gold because we are using TLS relocations in a static link.
2217   class Static_reloc
2218   {
2219    public:
2220     Static_reloc(unsigned int got_offset, unsigned int r_type,
2221                  Mips_symbol<size>* gsym)
2222       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2223     { this->u_.global.symbol = gsym; }
2224
2225     Static_reloc(unsigned int got_offset, unsigned int r_type,
2226           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2227       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2228     {
2229       this->u_.local.relobj = relobj;
2230       this->u_.local.index = index;
2231     }
2232
2233     // Return the GOT offset.
2234     unsigned int
2235     got_offset() const
2236     { return this->got_offset_; }
2237
2238     // Relocation type.
2239     unsigned int
2240     r_type() const
2241     { return this->r_type_; }
2242
2243     // Whether the symbol is global or not.
2244     bool
2245     symbol_is_global() const
2246     { return this->symbol_is_global_; }
2247
2248     // For a relocation against a global symbol, the global symbol.
2249     Mips_symbol<size>*
2250     symbol() const
2251     {
2252       gold_assert(this->symbol_is_global_);
2253       return this->u_.global.symbol;
2254     }
2255
2256     // For a relocation against a local symbol, the defining object.
2257     Sized_relobj_file<size, big_endian>*
2258     relobj() const
2259     {
2260       gold_assert(!this->symbol_is_global_);
2261       return this->u_.local.relobj;
2262     }
2263
2264     // For a relocation against a local symbol, the local symbol index.
2265     unsigned int
2266     index() const
2267     {
2268       gold_assert(!this->symbol_is_global_);
2269       return this->u_.local.index;
2270     }
2271
2272    private:
2273     // GOT offset of the entry to which this relocation is applied.
2274     unsigned int got_offset_;
2275     // Type of relocation.
2276     unsigned int r_type_;
2277     // Whether this relocation is against a global symbol.
2278     bool symbol_is_global_;
2279     // A global or local symbol.
2280     union
2281     {
2282       struct
2283       {
2284         // For a global symbol, the symbol itself.
2285         Mips_symbol<size>* symbol;
2286       } global;
2287       struct
2288       {
2289         // For a local symbol, the object defining object.
2290         Sized_relobj_file<size, big_endian>* relobj;
2291         // For a local symbol, the symbol index.
2292         unsigned int index;
2293       } local;
2294     } u_;
2295   };
2296
2297   // The target.
2298   Target_mips<size, big_endian>* target_;
2299   // The symbol table.
2300   Symbol_table* symbol_table_;
2301   // The layout.
2302   Layout* layout_;
2303   // Static relocs to be applied to the GOT.
2304   std::vector<Static_reloc> static_relocs_;
2305   // .got section view.
2306   unsigned char* got_view_;
2307   // The dynamic symbol table index of the first symbol with global GOT entry.
2308   unsigned int first_global_got_dynsym_index_;
2309   // The master GOT information.
2310   Mips_got_info<size, big_endian>* master_got_info_;
2311   // The  primary GOT information.
2312   Mips_got_info<size, big_endian>* primary_got_;
2313   // Secondary GOT fixups.
2314   std::vector<Static_reloc> secondary_got_relocs_;
2315 };
2316
2317 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2318 // two ways of creating these interfaces.  The first is to add:
2319 //
2320 //      lui     $25,%hi(func)
2321 //      j       func
2322 //      addiu   $25,$25,%lo(func)
2323 //
2324 // to a separate trampoline section.  The second is to add:
2325 //
2326 //      lui     $25,%hi(func)
2327 //      addiu   $25,$25,%lo(func)
2328 //
2329 // immediately before a PIC function "func", but only if a function is at the
2330 // beginning of the section, and the section is not too heavily aligned (i.e we
2331 // would need to add no more than 2 nops before the stub.)
2332 //
2333 // We only create stubs of the first type.
2334
2335 template<int size, bool big_endian>
2336 class Mips_output_data_la25_stub : public Output_section_data
2337 {
2338   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2339
2340  public:
2341   Mips_output_data_la25_stub()
2342   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2343   { }
2344
2345   // Create LA25 stub for a symbol.
2346   void
2347   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2348                    Mips_symbol<size>* gsym);
2349
2350   // Return output address of a stub.
2351   Mips_address
2352   stub_address(const Mips_symbol<size>* sym) const
2353   {
2354     gold_assert(sym->has_la25_stub());
2355     return this->address() + sym->la25_stub_offset();
2356   }
2357
2358  protected:
2359   void
2360   do_adjust_output_section(Output_section* os)
2361   { os->set_entsize(0); }
2362
2363  private:
2364   // Template for standard LA25 stub.
2365   static const uint32_t la25_stub_entry[];
2366   // Template for microMIPS LA25 stub.
2367   static const uint32_t la25_stub_micromips_entry[];
2368
2369   // Set the final size.
2370   void
2371   set_final_data_size()
2372   { this->set_data_size(this->symbols_.size() * 16); }
2373
2374   // Create a symbol for SYM stub's value and size, to help make the
2375   // disassembly easier to read.
2376   void
2377   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2378                      Target_mips<size, big_endian>* target, uint64_t symsize);
2379
2380   // Write to a map file.
2381   void
2382   do_print_to_mapfile(Mapfile* mapfile) const
2383   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2384
2385   // Write out the LA25 stub section.
2386   void
2387   do_write(Output_file*);
2388
2389   // Symbols that have LA25 stubs.
2390   std::vector<Mips_symbol<size>*> symbols_;
2391 };
2392
2393 // MIPS-specific relocation writer.
2394
2395 template<int sh_type, bool dynamic, int size, bool big_endian>
2396 struct Mips_output_reloc_writer;
2397
2398 template<int sh_type, bool dynamic, bool big_endian>
2399 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2400 {
2401   typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2402   typedef std::vector<Output_reloc_type> Relocs;
2403
2404   static void
2405   write(typename Relocs::const_iterator p, unsigned char* pov)
2406   { p->write(pov); }
2407 };
2408
2409 template<int sh_type, bool dynamic, bool big_endian>
2410 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2411 {
2412   typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2413   typedef std::vector<Output_reloc_type> Relocs;
2414
2415   static void
2416   write(typename Relocs::const_iterator p, unsigned char* pov)
2417   {
2418     elfcpp::Mips64_rel_write<big_endian> orel(pov);
2419     orel.put_r_offset(p->get_address());
2420     orel.put_r_sym(p->get_symbol_index());
2421     orel.put_r_ssym(RSS_UNDEF);
2422     orel.put_r_type(p->type());
2423     if (p->type() == elfcpp::R_MIPS_REL32)
2424       orel.put_r_type2(elfcpp::R_MIPS_64);
2425     else
2426       orel.put_r_type2(elfcpp::R_MIPS_NONE);
2427     orel.put_r_type3(elfcpp::R_MIPS_NONE);
2428   }
2429 };
2430
2431 template<int sh_type, bool dynamic, int size, bool big_endian>
2432 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2433                                                         size, big_endian>
2434 {
2435  public:
2436   Mips_output_data_reloc(bool sort_relocs)
2437     : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2438   { }
2439
2440  protected:
2441   // Write out the data.
2442   void
2443   do_write(Output_file* of)
2444   {
2445     typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2446         big_endian> Writer;
2447     this->template do_write_generic<Writer>(of);
2448   }
2449 };
2450
2451
2452 // A class to handle the PLT data.
2453
2454 template<int size, bool big_endian>
2455 class Mips_output_data_plt : public Output_section_data
2456 {
2457   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2458   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2459                                  size, big_endian> Reloc_section;
2460
2461  public:
2462   // Create the PLT section.  The ordinary .got section is an argument,
2463   // since we need to refer to the start.
2464   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2465                        Target_mips<size, big_endian>* target)
2466     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2467       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2468       target_(target)
2469   {
2470     this->rel_ = new Reloc_section(false);
2471     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2472                                     elfcpp::SHF_ALLOC, this->rel_,
2473                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2474   }
2475
2476   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2477   void
2478   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2479
2480   // Return the .rel.plt section data.
2481   Reloc_section*
2482   rel_plt() const
2483   { return this->rel_; }
2484
2485   // Return the number of PLT entries.
2486   unsigned int
2487   entry_count() const
2488   { return this->symbols_.size(); }
2489
2490   // Return the offset of the first non-reserved PLT entry.
2491   unsigned int
2492   first_plt_entry_offset() const
2493   { return sizeof(plt0_entry_o32); }
2494
2495   // Return the size of a PLT entry.
2496   unsigned int
2497   plt_entry_size() const
2498   { return sizeof(plt_entry); }
2499
2500   // Set final PLT offsets.  For each symbol, determine whether standard or
2501   // compressed (MIPS16 or microMIPS) PLT entry is used.
2502   void
2503   set_plt_offsets();
2504
2505   // Return the offset of the first standard PLT entry.
2506   unsigned int
2507   first_mips_plt_offset() const
2508   { return this->plt_header_size_; }
2509
2510   // Return the offset of the first compressed PLT entry.
2511   unsigned int
2512   first_comp_plt_offset() const
2513   { return this->plt_header_size_ + this->plt_mips_offset_; }
2514
2515   // Return whether there are any standard PLT entries.
2516   bool
2517   has_standard_entries() const
2518   { return this->plt_mips_offset_ > 0; }
2519
2520   // Return the output address of standard PLT entry.
2521   Mips_address
2522   mips_entry_address(const Mips_symbol<size>* sym) const
2523   {
2524     gold_assert (sym->has_mips_plt_offset());
2525     return (this->address() + this->first_mips_plt_offset()
2526             + sym->mips_plt_offset());
2527   }
2528
2529   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2530   Mips_address
2531   comp_entry_address(const Mips_symbol<size>* sym) const
2532   {
2533     gold_assert (sym->has_comp_plt_offset());
2534     return (this->address() + this->first_comp_plt_offset()
2535             + sym->comp_plt_offset());
2536   }
2537
2538  protected:
2539   void
2540   do_adjust_output_section(Output_section* os)
2541   { os->set_entsize(0); }
2542
2543   // Write to a map file.
2544   void
2545   do_print_to_mapfile(Mapfile* mapfile) const
2546   { mapfile->print_output_data(this, _(".plt")); }
2547
2548  private:
2549   // Template for the first PLT entry.
2550   static const uint32_t plt0_entry_o32[];
2551   static const uint32_t plt0_entry_n32[];
2552   static const uint32_t plt0_entry_n64[];
2553   static const uint32_t plt0_entry_micromips_o32[];
2554   static const uint32_t plt0_entry_micromips32_o32[];
2555
2556   // Template for subsequent PLT entries.
2557   static const uint32_t plt_entry[];
2558   static const uint32_t plt_entry_r6[];
2559   static const uint32_t plt_entry_mips16_o32[];
2560   static const uint32_t plt_entry_micromips_o32[];
2561   static const uint32_t plt_entry_micromips32_o32[];
2562
2563   // Set the final size.
2564   void
2565   set_final_data_size()
2566   {
2567     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2568                         + this->plt_comp_offset_);
2569   }
2570
2571   // Write out the PLT data.
2572   void
2573   do_write(Output_file*);
2574
2575   // Return whether the plt header contains microMIPS code.  For the sake of
2576   // cache alignment always use a standard header whenever any standard entries
2577   // are present even if microMIPS entries are present as well.  This also lets
2578   // the microMIPS header rely on the value of $v0 only set by microMIPS
2579   // entries, for a small size reduction.
2580   bool
2581   is_plt_header_compressed() const
2582   {
2583     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2584     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2585   }
2586
2587   // Return the size of the PLT header.
2588   unsigned int
2589   get_plt_header_size() const
2590   {
2591     if (this->target_->is_output_n64())
2592       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2593     else if (this->target_->is_output_n32())
2594       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2595     else if (!this->is_plt_header_compressed())
2596       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2597     else if (this->target_->use_32bit_micromips_instructions())
2598       return (2 * sizeof(plt0_entry_micromips32_o32)
2599               / sizeof(plt0_entry_micromips32_o32[0]));
2600     else
2601       return (2 * sizeof(plt0_entry_micromips_o32)
2602               / sizeof(plt0_entry_micromips_o32[0]));
2603   }
2604
2605   // Return the PLT header entry.
2606   const uint32_t*
2607   get_plt_header_entry() const
2608   {
2609     if (this->target_->is_output_n64())
2610       return plt0_entry_n64;
2611     else if (this->target_->is_output_n32())
2612       return plt0_entry_n32;
2613     else if (!this->is_plt_header_compressed())
2614       return plt0_entry_o32;
2615     else if (this->target_->use_32bit_micromips_instructions())
2616       return plt0_entry_micromips32_o32;
2617     else
2618       return plt0_entry_micromips_o32;
2619   }
2620
2621   // Return the size of the standard PLT entry.
2622   unsigned int
2623   standard_plt_entry_size() const
2624   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2625
2626   // Return the size of the compressed PLT entry.
2627   unsigned int
2628   compressed_plt_entry_size() const
2629   {
2630     gold_assert(!this->target_->is_output_newabi());
2631
2632     if (!this->target_->is_output_micromips())
2633       return (2 * sizeof(plt_entry_mips16_o32)
2634               / sizeof(plt_entry_mips16_o32[0]));
2635     else if (this->target_->use_32bit_micromips_instructions())
2636       return (2 * sizeof(plt_entry_micromips32_o32)
2637               / sizeof(plt_entry_micromips32_o32[0]));
2638     else
2639       return (2 * sizeof(plt_entry_micromips_o32)
2640               / sizeof(plt_entry_micromips_o32[0]));
2641   }
2642
2643   // The reloc section.
2644   Reloc_section* rel_;
2645   // The .got.plt section.
2646   Output_data_space* got_plt_;
2647   // Symbols that have PLT entry.
2648   std::vector<Mips_symbol<size>*> symbols_;
2649   // The offset of the next standard PLT entry to create.
2650   unsigned int plt_mips_offset_;
2651   // The offset of the next compressed PLT entry to create.
2652   unsigned int plt_comp_offset_;
2653   // The size of the PLT header in bytes.
2654   unsigned int plt_header_size_;
2655   // The target.
2656   Target_mips<size, big_endian>* target_;
2657 };
2658
2659 // A class to handle the .MIPS.stubs data.
2660
2661 template<int size, bool big_endian>
2662 class Mips_output_data_mips_stubs : public Output_section_data
2663 {
2664   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2665
2666   // Unordered set of .MIPS.stubs entries.
2667   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2668       Mips_stubs_entry_set;
2669
2670  public:
2671    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2672      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2673        stub_offsets_are_set_(false), target_(target)
2674    { }
2675
2676   // Create entry for a symbol.
2677   void
2678   make_entry(Mips_symbol<size>*);
2679
2680   // Remove entry for a symbol.
2681   void
2682   remove_entry(Mips_symbol<size>* gsym);
2683
2684   // Set stub offsets for symbols.  This method expects that the number of
2685   // entries in dynamic symbol table is set.
2686   void
2687   set_lazy_stub_offsets();
2688
2689   void
2690   set_needs_dynsym_value();
2691
2692    // Set the number of entries in dynamic symbol table.
2693   void
2694   set_dynsym_count(unsigned int dynsym_count)
2695   { this->dynsym_count_ = dynsym_count; }
2696
2697   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2698   // count is greater than 0x10000.  If the dynamic symbol count is less than
2699   // 0x10000, the stub will be 4 bytes smaller.
2700   // There's no disadvantage from using microMIPS code here, so for the sake of
2701   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2702   // output produced at all.  This has a benefit of stubs being shorter by
2703   // 4 bytes each too, unless in the insn32 mode.
2704   unsigned int
2705   stub_max_size() const
2706   {
2707     if (!this->target_->is_output_micromips()
2708         || this->target_->use_32bit_micromips_instructions())
2709       return 20;
2710     else
2711       return 16;
2712   }
2713
2714   // Return the size of the stub.  This method expects that the final dynsym
2715   // count is set.
2716   unsigned int
2717   stub_size() const
2718   {
2719     gold_assert(this->dynsym_count_ != -1U);
2720     if (this->dynsym_count_ > 0x10000)
2721       return this->stub_max_size();
2722     else
2723       return this->stub_max_size() - 4;
2724   }
2725
2726   // Return output address of a stub.
2727   Mips_address
2728   stub_address(const Mips_symbol<size>* sym) const
2729   {
2730     gold_assert(sym->has_lazy_stub());
2731     return this->address() + sym->lazy_stub_offset();
2732   }
2733
2734  protected:
2735   void
2736   do_adjust_output_section(Output_section* os)
2737   { os->set_entsize(0); }
2738
2739   // Write to a map file.
2740   void
2741   do_print_to_mapfile(Mapfile* mapfile) const
2742   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2743
2744  private:
2745   static const uint32_t lazy_stub_normal_1[];
2746   static const uint32_t lazy_stub_normal_1_n64[];
2747   static const uint32_t lazy_stub_normal_2[];
2748   static const uint32_t lazy_stub_normal_2_n64[];
2749   static const uint32_t lazy_stub_big[];
2750   static const uint32_t lazy_stub_big_n64[];
2751
2752   static const uint32_t lazy_stub_micromips_normal_1[];
2753   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2754   static const uint32_t lazy_stub_micromips_normal_2[];
2755   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2756   static const uint32_t lazy_stub_micromips_big[];
2757   static const uint32_t lazy_stub_micromips_big_n64[];
2758
2759   static const uint32_t lazy_stub_micromips32_normal_1[];
2760   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2761   static const uint32_t lazy_stub_micromips32_normal_2[];
2762   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2763   static const uint32_t lazy_stub_micromips32_big[];
2764   static const uint32_t lazy_stub_micromips32_big_n64[];
2765
2766   // Set the final size.
2767   void
2768   set_final_data_size()
2769   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2770
2771   // Write out the .MIPS.stubs data.
2772   void
2773   do_write(Output_file*);
2774
2775   // .MIPS.stubs symbols
2776   Mips_stubs_entry_set symbols_;
2777   // Number of entries in dynamic symbol table.
2778   unsigned int dynsym_count_;
2779   // Whether the stub offsets are set.
2780   bool stub_offsets_are_set_;
2781   // The target.
2782   Target_mips<size, big_endian>* target_;
2783 };
2784
2785 // This class handles Mips .reginfo output section.
2786
2787 template<int size, bool big_endian>
2788 class Mips_output_section_reginfo : public Output_section_data
2789 {
2790   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2791
2792  public:
2793   Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2794                               Valtype gprmask, Valtype cprmask1,
2795                               Valtype cprmask2, Valtype cprmask3,
2796                               Valtype cprmask4)
2797     : Output_section_data(24, 4, true), target_(target),
2798       gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2799       cprmask3_(cprmask3), cprmask4_(cprmask4)
2800   { }
2801
2802  protected:
2803   // Write to a map file.
2804   void
2805   do_print_to_mapfile(Mapfile* mapfile) const
2806   { mapfile->print_output_data(this, _(".reginfo")); }
2807
2808   // Write out reginfo section.
2809   void
2810   do_write(Output_file* of);
2811
2812  private:
2813   Target_mips<size, big_endian>* target_;
2814
2815   // gprmask of the output .reginfo section.
2816   Valtype gprmask_;
2817   // cprmask1 of the output .reginfo section.
2818   Valtype cprmask1_;
2819   // cprmask2 of the output .reginfo section.
2820   Valtype cprmask2_;
2821   // cprmask3 of the output .reginfo section.
2822   Valtype cprmask3_;
2823   // cprmask4 of the output .reginfo section.
2824   Valtype cprmask4_;
2825 };
2826
2827 // This class handles .MIPS.options output section.
2828
2829 template<int size, bool big_endian>
2830 class Mips_output_section_options : public Output_section
2831 {
2832  public:
2833   Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2834                               elfcpp::Elf_Xword flags,
2835                               Target_mips<size, big_endian>* target)
2836     : Output_section(name, type, flags), target_(target)
2837   {
2838     // After the input sections are written, we only need to update
2839     // ri_gp_value field of ODK_REGINFO entries.
2840     this->set_after_input_sections();
2841   }
2842
2843  protected:
2844   // Write out option section.
2845   void
2846   do_write(Output_file* of);
2847
2848  private:
2849   Target_mips<size, big_endian>* target_;
2850 };
2851
2852 // This class handles .MIPS.abiflags output section.
2853
2854 template<int size, bool big_endian>
2855 class Mips_output_section_abiflags : public Output_section_data
2856 {
2857  public:
2858   Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2859     : Output_section_data(24, 8, true), abiflags_(abiflags)
2860   { }
2861
2862  protected:
2863   // Write to a map file.
2864   void
2865   do_print_to_mapfile(Mapfile* mapfile) const
2866   { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2867
2868   void
2869   do_write(Output_file* of);
2870
2871  private:
2872   const Mips_abiflags<big_endian>& abiflags_;
2873 };
2874
2875 // The MIPS target has relocation types which default handling of relocatable
2876 // relocation cannot process.  So we have to extend the default code.
2877
2878 template<bool big_endian, typename Classify_reloc>
2879 class Mips_scan_relocatable_relocs :
2880   public Default_scan_relocatable_relocs<Classify_reloc>
2881 {
2882  public:
2883   // Return the strategy to use for a local symbol which is a section
2884   // symbol, given the relocation type.
2885   inline Relocatable_relocs::Reloc_strategy
2886   local_section_strategy(unsigned int r_type, Relobj* object)
2887   {
2888     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2889       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2890     else
2891       {
2892         switch (r_type)
2893           {
2894           case elfcpp::R_MIPS_26:
2895             return Relocatable_relocs::RELOC_SPECIAL;
2896
2897           default:
2898             return Default_scan_relocatable_relocs<Classify_reloc>::
2899                 local_section_strategy(r_type, object);
2900           }
2901       }
2902   }
2903 };
2904
2905 // Mips_copy_relocs class.  The only difference from the base class is the
2906 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2907 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2908 // cannot be made dynamic, a COPY reloc is emitted.
2909
2910 template<int sh_type, int size, bool big_endian>
2911 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2912 {
2913  public:
2914   Mips_copy_relocs()
2915     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2916   { }
2917
2918   // Emit any saved relocations which turn out to be needed.  This is
2919   // called after all the relocs have been scanned.
2920   void
2921   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2922             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2923
2924  private:
2925   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2926     Copy_reloc_entry;
2927
2928   // Emit this reloc if appropriate.  This is called after we have
2929   // scanned all the relocations, so we know whether we emitted a
2930   // COPY relocation for SYM_.
2931   void
2932   emit_entry(Copy_reloc_entry& entry,
2933              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2934              Symbol_table* symtab, Layout* layout,
2935              Target_mips<size, big_endian>* target);
2936 };
2937
2938
2939 // Return true if the symbol SYM should be considered to resolve local
2940 // to the current module, and false otherwise.  The logic is taken from
2941 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2942 static bool
2943 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2944                   bool local_protected)
2945 {
2946   // If it's a local sym, of course we resolve locally.
2947   if (sym == NULL)
2948     return true;
2949
2950   // STV_HIDDEN or STV_INTERNAL ones must be local.
2951   if (sym->visibility() == elfcpp::STV_HIDDEN
2952       || sym->visibility() == elfcpp::STV_INTERNAL)
2953     return true;
2954
2955   // If we don't have a definition in a regular file, then we can't
2956   // resolve locally.  The sym is either undefined or dynamic.
2957   if (sym->is_from_dynobj() || sym->is_undefined())
2958     return false;
2959
2960   // Forced local symbols resolve locally.
2961   if (sym->is_forced_local())
2962     return true;
2963
2964   // As do non-dynamic symbols.
2965   if (!has_dynsym_entry)
2966     return true;
2967
2968   // At this point, we know the symbol is defined and dynamic.  In an
2969   // executable it must resolve locally, likewise when building symbolic
2970   // shared libraries.
2971   if (parameters->options().output_is_executable()
2972       || parameters->options().Bsymbolic())
2973     return true;
2974
2975   // Now deal with defined dynamic symbols in shared libraries.  Ones
2976   // with default visibility might not resolve locally.
2977   if (sym->visibility() == elfcpp::STV_DEFAULT)
2978     return false;
2979
2980   // STV_PROTECTED non-function symbols are local.
2981   if (sym->type() != elfcpp::STT_FUNC)
2982     return true;
2983
2984   // Function pointer equality tests may require that STV_PROTECTED
2985   // symbols be treated as dynamic symbols.  If the address of a
2986   // function not defined in an executable is set to that function's
2987   // plt entry in the executable, then the address of the function in
2988   // a shared library must also be the plt entry in the executable.
2989   return local_protected;
2990 }
2991
2992 // Return TRUE if references to this symbol always reference the symbol in this
2993 // object.
2994 static bool
2995 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2996 {
2997   return symbol_refs_local(sym, has_dynsym_entry, false);
2998 }
2999
3000 // Return TRUE if calls to this symbol always call the version in this object.
3001 static bool
3002 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3003 {
3004   return symbol_refs_local(sym, has_dynsym_entry, true);
3005 }
3006
3007 // Compare GOT offsets of two symbols.
3008
3009 template<int size, bool big_endian>
3010 static bool
3011 got_offset_compare(Symbol* sym1, Symbol* sym2)
3012 {
3013   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3014   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3015   unsigned int area1 = mips_sym1->global_got_area();
3016   unsigned int area2 = mips_sym2->global_got_area();
3017   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3018
3019   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3020   if (area1 != area2)
3021     return area1 < area2;
3022
3023   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3024 }
3025
3026 // This method divides dynamic symbols into symbols that have GOT entry, and
3027 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
3028 // Mips ABI requires that symbols with the GOT entry must be at the end of
3029 // dynamic symbol table, and the order in dynamic symbol table must match the
3030 // order in GOT.
3031
3032 template<int size, bool big_endian>
3033 static void
3034 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3035                     std::vector<Symbol*>* non_got_symbols,
3036                     std::vector<Symbol*>* got_symbols)
3037 {
3038   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3039        p != dyn_symbols->end();
3040        ++p)
3041     {
3042       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3043       if (mips_sym->global_got_area() == GGA_NORMAL
3044           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3045         got_symbols->push_back(mips_sym);
3046       else
3047         non_got_symbols->push_back(mips_sym);
3048     }
3049
3050   std::sort(got_symbols->begin(), got_symbols->end(),
3051             got_offset_compare<size, big_endian>);
3052 }
3053
3054 // Functor class for processing the global symbol table.
3055
3056 template<int size, bool big_endian>
3057 class Symbol_visitor_check_symbols
3058 {
3059  public:
3060   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3061     Layout* layout, Symbol_table* symtab)
3062     : target_(target), layout_(layout), symtab_(symtab)
3063   { }
3064
3065   void
3066   operator()(Sized_symbol<size>* sym)
3067   {
3068     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3069     if (local_pic_function<size, big_endian>(mips_sym))
3070       {
3071         // SYM is a function that might need $25 to be valid on entry.
3072         // If we're creating a non-PIC relocatable object, mark SYM as
3073         // being PIC.  If we're creating a non-relocatable object with
3074         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3075         // stub.
3076         if (parameters->options().relocatable())
3077           {
3078             if (!parameters->options().output_is_position_independent())
3079               mips_sym->set_pic();
3080           }
3081         else if (mips_sym->has_nonpic_branches())
3082           {
3083             this->target_->la25_stub_section(layout_)
3084                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3085           }
3086       }
3087   }
3088
3089  private:
3090   Target_mips<size, big_endian>* target_;
3091   Layout* layout_;
3092   Symbol_table* symtab_;
3093 };
3094
3095 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3096 // and endianness. The relocation format for MIPS-64 is non-standard.
3097
3098 template<int sh_type, int size, bool big_endian>
3099 struct Mips_reloc_types;
3100
3101 template<bool big_endian>
3102 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3103 {
3104   typedef typename elfcpp::Rel<32, big_endian> Reloc;
3105   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3106
3107   static typename elfcpp::Elf_types<32>::Elf_Swxword
3108   get_r_addend(const Reloc*)
3109   { return 0; }
3110
3111   static inline void
3112   set_reloc_addend(Reloc_write*,
3113                    typename elfcpp::Elf_types<32>::Elf_Swxword)
3114   { gold_unreachable(); }
3115 };
3116
3117 template<bool big_endian>
3118 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3119 {
3120   typedef typename elfcpp::Rela<32, big_endian> Reloc;
3121   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3122
3123   static typename elfcpp::Elf_types<32>::Elf_Swxword
3124   get_r_addend(const Reloc* reloc)
3125   { return reloc->get_r_addend(); }
3126
3127   static inline void
3128   set_reloc_addend(Reloc_write* p,
3129                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
3130   { p->put_r_addend(val); }
3131 };
3132
3133 template<bool big_endian>
3134 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3135 {
3136   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3137   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3138
3139   static typename elfcpp::Elf_types<64>::Elf_Swxword
3140   get_r_addend(const Reloc*)
3141   { return 0; }
3142
3143   static inline void
3144   set_reloc_addend(Reloc_write*,
3145                    typename elfcpp::Elf_types<64>::Elf_Swxword)
3146   { gold_unreachable(); }
3147 };
3148
3149 template<bool big_endian>
3150 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3151 {
3152   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3153   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3154
3155   static typename elfcpp::Elf_types<64>::Elf_Swxword
3156   get_r_addend(const Reloc* reloc)
3157   { return reloc->get_r_addend(); }
3158
3159   static inline void
3160   set_reloc_addend(Reloc_write* p,
3161                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
3162   { p->put_r_addend(val); }
3163 };
3164
3165 // Forward declaration.
3166 static unsigned int
3167 mips_get_size_for_reloc(unsigned int, Relobj*);
3168
3169 // A class for inquiring about properties of a relocation,
3170 // used while scanning relocs during a relocatable link and
3171 // garbage collection.
3172
3173 template<int sh_type_, int size, bool big_endian>
3174 class Mips_classify_reloc;
3175
3176 template<int sh_type_, bool big_endian>
3177 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3178     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3179 {
3180  public:
3181   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3182       Reltype;
3183   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3184       Reltype_write;
3185
3186   // Return the symbol referred to by the relocation.
3187   static inline unsigned int
3188   get_r_sym(const Reltype* reloc)
3189   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3190
3191   // Return the type of the relocation.
3192   static inline unsigned int
3193   get_r_type(const Reltype* reloc)
3194   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3195
3196   static inline unsigned int
3197   get_r_type2(const Reltype*)
3198   { return 0; }
3199
3200   static inline unsigned int
3201   get_r_type3(const Reltype*)
3202   { return 0; }
3203
3204   static inline unsigned int
3205   get_r_ssym(const Reltype*)
3206   { return 0; }
3207
3208   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3209   static inline unsigned int
3210   get_r_addend(const Reltype* reloc)
3211   {
3212     if (sh_type_ == elfcpp::SHT_REL)
3213       return 0;
3214     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3215   }
3216
3217   // Write the r_info field to a new reloc, using the r_info field from
3218   // the original reloc, replacing the r_sym field with R_SYM.
3219   static inline void
3220   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3221   {
3222     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3223     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3224   }
3225
3226   // Write the r_addend field to a new reloc.
3227   static inline void
3228   put_r_addend(Reltype_write* to,
3229                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3230   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3231
3232   // Return the size of the addend of the relocation (only used for SHT_REL).
3233   static unsigned int
3234   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3235   { return mips_get_size_for_reloc(r_type, obj); }
3236 };
3237
3238 template<int sh_type_, bool big_endian>
3239 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3240     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3241 {
3242  public:
3243   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3244       Reltype;
3245   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3246       Reltype_write;
3247
3248   // Return the symbol referred to by the relocation.
3249   static inline unsigned int
3250   get_r_sym(const Reltype* reloc)
3251   { return reloc->get_r_sym(); }
3252
3253   // Return the r_type of the relocation.
3254   static inline unsigned int
3255   get_r_type(const Reltype* reloc)
3256   { return reloc->get_r_type(); }
3257
3258   // Return the r_type2 of the relocation.
3259   static inline unsigned int
3260   get_r_type2(const Reltype* reloc)
3261   { return reloc->get_r_type2(); }
3262
3263   // Return the r_type3 of the relocation.
3264   static inline unsigned int
3265   get_r_type3(const Reltype* reloc)
3266   { return reloc->get_r_type3(); }
3267
3268   // Return the special symbol of the relocation.
3269   static inline unsigned int
3270   get_r_ssym(const Reltype* reloc)
3271   { return reloc->get_r_ssym(); }
3272
3273   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3274   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3275   get_r_addend(const Reltype* reloc)
3276   {
3277     if (sh_type_ == elfcpp::SHT_REL)
3278       return 0;
3279     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3280   }
3281
3282   // Write the r_info field to a new reloc, using the r_info field from
3283   // the original reloc, replacing the r_sym field with R_SYM.
3284   static inline void
3285   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3286   {
3287     new_reloc->put_r_sym(r_sym);
3288     new_reloc->put_r_ssym(reloc->get_r_ssym());
3289     new_reloc->put_r_type3(reloc->get_r_type3());
3290     new_reloc->put_r_type2(reloc->get_r_type2());
3291     new_reloc->put_r_type(reloc->get_r_type());
3292   }
3293
3294   // Write the r_addend field to a new reloc.
3295   static inline void
3296   put_r_addend(Reltype_write* to,
3297                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3298   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3299
3300   // Return the size of the addend of the relocation (only used for SHT_REL).
3301   static unsigned int
3302   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3303   { return mips_get_size_for_reloc(r_type, obj); }
3304 };
3305
3306 template<int size, bool big_endian>
3307 class Target_mips : public Sized_target<size, big_endian>
3308 {
3309   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3310   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3311     Reloc_section;
3312   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3313   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3314   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3315       Reltype;
3316   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3317       Relatype;
3318
3319  public:
3320   Target_mips(const Target::Target_info* info = &mips_info)
3321     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3322       got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3323       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3324       mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3325       mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3326       entry_symbol_is_compressed_(false), insn32_(false)
3327   {
3328     this->add_machine_extensions();
3329   }
3330
3331   // The offset of $gp from the beginning of the .got section.
3332   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3333
3334   // The maximum size of the GOT for it to be addressable using 16-bit
3335   // offsets from $gp.
3336   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3337
3338   // Make a new symbol table entry for the Mips target.
3339   Sized_symbol<size>*
3340   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3341   { return new Mips_symbol<size>(); }
3342
3343   // Process the relocations to determine unreferenced sections for
3344   // garbage collection.
3345   void
3346   gc_process_relocs(Symbol_table* symtab,
3347                     Layout* layout,
3348                     Sized_relobj_file<size, big_endian>* object,
3349                     unsigned int data_shndx,
3350                     unsigned int sh_type,
3351                     const unsigned char* prelocs,
3352                     size_t reloc_count,
3353                     Output_section* output_section,
3354                     bool needs_special_offset_handling,
3355                     size_t local_symbol_count,
3356                     const unsigned char* plocal_symbols);
3357
3358   // Scan the relocations to look for symbol adjustments.
3359   void
3360   scan_relocs(Symbol_table* symtab,
3361               Layout* layout,
3362               Sized_relobj_file<size, big_endian>* object,
3363               unsigned int data_shndx,
3364               unsigned int sh_type,
3365               const unsigned char* prelocs,
3366               size_t reloc_count,
3367               Output_section* output_section,
3368               bool needs_special_offset_handling,
3369               size_t local_symbol_count,
3370               const unsigned char* plocal_symbols);
3371
3372   // Finalize the sections.
3373   void
3374   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3375
3376   // Relocate a section.
3377   void
3378   relocate_section(const Relocate_info<size, big_endian>*,
3379                    unsigned int sh_type,
3380                    const unsigned char* prelocs,
3381                    size_t reloc_count,
3382                    Output_section* output_section,
3383                    bool needs_special_offset_handling,
3384                    unsigned char* view,
3385                    Mips_address view_address,
3386                    section_size_type view_size,
3387                    const Reloc_symbol_changes*);
3388
3389   // Scan the relocs during a relocatable link.
3390   void
3391   scan_relocatable_relocs(Symbol_table* symtab,
3392                           Layout* layout,
3393                           Sized_relobj_file<size, big_endian>* object,
3394                           unsigned int data_shndx,
3395                           unsigned int sh_type,
3396                           const unsigned char* prelocs,
3397                           size_t reloc_count,
3398                           Output_section* output_section,
3399                           bool needs_special_offset_handling,
3400                           size_t local_symbol_count,
3401                           const unsigned char* plocal_symbols,
3402                           Relocatable_relocs*);
3403
3404   // Scan the relocs for --emit-relocs.
3405   void
3406   emit_relocs_scan(Symbol_table* symtab,
3407                    Layout* layout,
3408                    Sized_relobj_file<size, big_endian>* object,
3409                    unsigned int data_shndx,
3410                    unsigned int sh_type,
3411                    const unsigned char* prelocs,
3412                    size_t reloc_count,
3413                    Output_section* output_section,
3414                    bool needs_special_offset_handling,
3415                    size_t local_symbol_count,
3416                    const unsigned char* plocal_syms,
3417                    Relocatable_relocs* rr);
3418
3419   // Emit relocations for a section.
3420   void
3421   relocate_relocs(const Relocate_info<size, big_endian>*,
3422                   unsigned int sh_type,
3423                   const unsigned char* prelocs,
3424                   size_t reloc_count,
3425                   Output_section* output_section,
3426                   typename elfcpp::Elf_types<size>::Elf_Off
3427                     offset_in_output_section,
3428                   unsigned char* view,
3429                   Mips_address view_address,
3430                   section_size_type view_size,
3431                   unsigned char* reloc_view,
3432                   section_size_type reloc_view_size);
3433
3434   // Perform target-specific processing in a relocatable link.  This is
3435   // only used if we use the relocation strategy RELOC_SPECIAL.
3436   void
3437   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3438                                unsigned int sh_type,
3439                                const unsigned char* preloc_in,
3440                                size_t relnum,
3441                                Output_section* output_section,
3442                                typename elfcpp::Elf_types<size>::Elf_Off
3443                                  offset_in_output_section,
3444                                unsigned char* view,
3445                                Mips_address view_address,
3446                                section_size_type view_size,
3447                                unsigned char* preloc_out);
3448
3449   // Return whether SYM is defined by the ABI.
3450   bool
3451   do_is_defined_by_abi(const Symbol* sym) const
3452   {
3453     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3454             || (strcmp(sym->name(), "_gp_disp") == 0)
3455             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3456   }
3457
3458   // Return the number of entries in the GOT.
3459   unsigned int
3460   got_entry_count() const
3461   {
3462     if (!this->has_got_section())
3463       return 0;
3464     return this->got_size() / (size/8);
3465   }
3466
3467   // Return the number of entries in the PLT.
3468   unsigned int
3469   plt_entry_count() const
3470   {
3471     if (this->plt_ == NULL)
3472       return 0;
3473     return this->plt_->entry_count();
3474   }
3475
3476   // Return the offset of the first non-reserved PLT entry.
3477   unsigned int
3478   first_plt_entry_offset() const
3479   { return this->plt_->first_plt_entry_offset(); }
3480
3481   // Return the size of each PLT entry.
3482   unsigned int
3483   plt_entry_size() const
3484   { return this->plt_->plt_entry_size(); }
3485
3486   // Get the GOT section, creating it if necessary.
3487   Mips_output_data_got<size, big_endian>*
3488   got_section(Symbol_table*, Layout*);
3489
3490   // Get the GOT section.
3491   Mips_output_data_got<size, big_endian>*
3492   got_section() const
3493   {
3494     gold_assert(this->got_ != NULL);
3495     return this->got_;
3496   }
3497
3498   // Get the .MIPS.stubs section, creating it if necessary.
3499   Mips_output_data_mips_stubs<size, big_endian>*
3500   mips_stubs_section(Layout* layout);
3501
3502   // Get the .MIPS.stubs section.
3503   Mips_output_data_mips_stubs<size, big_endian>*
3504   mips_stubs_section() const
3505   {
3506     gold_assert(this->mips_stubs_ != NULL);
3507     return this->mips_stubs_;
3508   }
3509
3510   // Get the LA25 stub section, creating it if necessary.
3511   Mips_output_data_la25_stub<size, big_endian>*
3512   la25_stub_section(Layout*);
3513
3514   // Get the LA25 stub section.
3515   Mips_output_data_la25_stub<size, big_endian>*
3516   la25_stub_section()
3517   {
3518     gold_assert(this->la25_stub_ != NULL);
3519     return this->la25_stub_;
3520   }
3521
3522   // Get gp value.  It has the value of .got + 0x7FF0.
3523   Mips_address
3524   gp_value() const
3525   {
3526     if (this->gp_ != NULL)
3527       return this->gp_->value();
3528     return 0;
3529   }
3530
3531   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3532   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3533   Mips_address
3534   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3535   {
3536     if (this->gp_ == NULL)
3537       return 0;
3538
3539     bool multi_got = false;
3540     if (this->has_got_section())
3541       multi_got = this->got_section()->multi_got();
3542     if (!multi_got)
3543       return this->gp_->value();
3544     else
3545       return this->gp_->value() + this->got_section()->get_got_offset(object);
3546   }
3547
3548   // Get the dynamic reloc section, creating it if necessary.
3549   Reloc_section*
3550   rel_dyn_section(Layout*);
3551
3552   bool
3553   do_has_custom_set_dynsym_indexes() const
3554   { return true; }
3555
3556   // Don't emit input .reginfo/.MIPS.abiflags sections to
3557   // output .reginfo/.MIPS.abiflags.
3558   bool
3559   do_should_include_section(elfcpp::Elf_Word sh_type) const
3560   {
3561     return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3562              && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3563   }
3564
3565   // Set the dynamic symbol indexes.  INDEX is the index of the first
3566   // global dynamic symbol.  Pointers to the symbols are stored into the
3567   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3568   // updated dynamic symbol index.
3569   unsigned int
3570   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3571                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3572                         Versions* versions, Symbol_table* symtab) const;
3573
3574   // Remove .MIPS.stubs entry for a symbol.
3575   void
3576   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3577   {
3578     if (this->mips_stubs_ != NULL)
3579       this->mips_stubs_->remove_entry(sym);
3580   }
3581
3582   // The value to write into got[1] for SVR4 targets, to identify it is
3583   // a GNU object.  The dynamic linker can then use got[1] to store the
3584   // module pointer.
3585   uint64_t
3586   mips_elf_gnu_got1_mask()
3587   {
3588     if (this->is_output_n64())
3589       return (uint64_t)1 << 63;
3590     else
3591       return 1 << 31;
3592   }
3593
3594   // Whether the output has microMIPS code.  This is valid only after
3595   // merge_obj_e_flags() is called.
3596   bool
3597   is_output_micromips() const
3598   {
3599     gold_assert(this->are_processor_specific_flags_set());
3600     return elfcpp::is_micromips(this->processor_specific_flags());
3601   }
3602
3603   // Whether the output uses N32 ABI.  This is valid only after
3604   // merge_obj_e_flags() is called.
3605   bool
3606   is_output_n32() const
3607   {
3608     gold_assert(this->are_processor_specific_flags_set());
3609     return elfcpp::abi_n32(this->processor_specific_flags());
3610   }
3611
3612   // Whether the output uses R6 ISA.  This is valid only after
3613   // merge_obj_e_flags() is called.
3614   bool
3615   is_output_r6() const
3616   {
3617     gold_assert(this->are_processor_specific_flags_set());
3618     return elfcpp::r6_isa(this->processor_specific_flags());
3619   }
3620
3621   // Whether the output uses N64 ABI.
3622   bool
3623   is_output_n64() const
3624   { return size == 64; }
3625
3626   // Whether the output uses NEWABI.  This is valid only after
3627   // merge_obj_e_flags() is called.
3628   bool
3629   is_output_newabi() const
3630   { return this->is_output_n32() || this->is_output_n64(); }
3631
3632   // Whether we can only use 32-bit microMIPS instructions.
3633   bool
3634   use_32bit_micromips_instructions() const
3635   { return this->insn32_; }
3636
3637   // Return the r_sym field from a relocation.
3638   unsigned int
3639   get_r_sym(const unsigned char* preloc) const
3640   {
3641     // Since REL and RELA relocs share the same structure through
3642     // the r_info field, we can just use REL here.
3643     Reltype rel(preloc);
3644     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3645         get_r_sym(&rel);
3646   }
3647
3648  protected:
3649   // Return the value to use for a dynamic symbol which requires special
3650   // treatment.  This is how we support equality comparisons of function
3651   // pointers across shared library boundaries, as described in the
3652   // processor specific ABI supplement.
3653   uint64_t
3654   do_dynsym_value(const Symbol* gsym) const;
3655
3656   // Make an ELF object.
3657   Object*
3658   do_make_elf_object(const std::string&, Input_file*, off_t,
3659                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3660
3661   Object*
3662   do_make_elf_object(const std::string&, Input_file*, off_t,
3663                      const elfcpp::Ehdr<size, !big_endian>&)
3664   { gold_unreachable(); }
3665
3666   // Make an output section.
3667   Output_section*
3668   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3669                          elfcpp::Elf_Xword flags)
3670     {
3671       if (type == elfcpp::SHT_MIPS_OPTIONS)
3672         return new Mips_output_section_options<size, big_endian>(name, type,
3673                                                                  flags, this);
3674       else
3675         return new Output_section(name, type, flags);
3676     }
3677
3678   // Adjust ELF file header.
3679   void
3680   do_adjust_elf_header(unsigned char* view, int len);
3681
3682   // Get the custom dynamic tag value.
3683   unsigned int
3684   do_dynamic_tag_custom_value(elfcpp::DT) const;
3685
3686   // Adjust the value written to the dynamic symbol table.
3687   virtual void
3688   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3689   {
3690     elfcpp::Sym<size, big_endian> isym(view);
3691     elfcpp::Sym_write<size, big_endian> osym(view);
3692     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3693
3694     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3695     // to treat compressed symbols like any other.
3696     Mips_address value = isym.get_st_value();
3697     if (mips_sym->is_mips16() && value != 0)
3698       {
3699         if (!mips_sym->has_mips16_fn_stub())
3700           value |= 1;
3701         else
3702           {
3703             // If we have a MIPS16 function with a stub, the dynamic symbol
3704             // must refer to the stub, since only the stub uses the standard
3705             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3706             // in this case.
3707
3708             // There is a code which does this in the method
3709             // Target_mips::do_dynsym_value, but that code will only be
3710             // executed if the symbol is from dynobj.
3711             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3712             // table.
3713
3714             Mips16_stub_section<size, big_endian>* fn_stub =
3715               mips_sym->template get_mips16_fn_stub<big_endian>();
3716             value = fn_stub->output_address();
3717             osym.put_st_size(fn_stub->section_size());
3718           }
3719
3720         osym.put_st_value(value);
3721         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3722                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3723       }
3724     else if ((mips_sym->is_micromips()
3725               // Stubs are always microMIPS if there is any microMIPS code in
3726               // the output.
3727               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3728              && value != 0)
3729       {
3730         osym.put_st_value(value | 1);
3731         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3732                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3733       }
3734   }
3735
3736  private:
3737   // The class which scans relocations.
3738   class Scan
3739   {
3740    public:
3741     Scan()
3742     { }
3743
3744     static inline int
3745     get_reference_flags(unsigned int r_type);
3746
3747     inline void
3748     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3749           Sized_relobj_file<size, big_endian>* object,
3750           unsigned int data_shndx,
3751           Output_section* output_section,
3752           const Reltype& reloc, unsigned int r_type,
3753           const elfcpp::Sym<size, big_endian>& lsym,
3754           bool is_discarded);
3755
3756     inline void
3757     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3758           Sized_relobj_file<size, big_endian>* object,
3759           unsigned int data_shndx,
3760           Output_section* output_section,
3761           const Relatype& reloc, unsigned int r_type,
3762           const elfcpp::Sym<size, big_endian>& lsym,
3763           bool is_discarded);
3764
3765     inline void
3766     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3767           Sized_relobj_file<size, big_endian>* object,
3768           unsigned int data_shndx,
3769           Output_section* output_section,
3770           const Relatype* rela,
3771           const Reltype* rel,
3772           unsigned int rel_type,
3773           unsigned int r_type,
3774           const elfcpp::Sym<size, big_endian>& lsym,
3775           bool is_discarded);
3776
3777     inline void
3778     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3779            Sized_relobj_file<size, big_endian>* object,
3780            unsigned int data_shndx,
3781            Output_section* output_section,
3782            const Reltype& reloc, unsigned int r_type,
3783            Symbol* gsym);
3784
3785     inline void
3786     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787            Sized_relobj_file<size, big_endian>* object,
3788            unsigned int data_shndx,
3789            Output_section* output_section,
3790            const Relatype& reloc, unsigned int r_type,
3791            Symbol* gsym);
3792
3793     inline void
3794     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795            Sized_relobj_file<size, big_endian>* object,
3796            unsigned int data_shndx,
3797            Output_section* output_section,
3798            const Relatype* rela,
3799            const Reltype* rel,
3800            unsigned int rel_type,
3801            unsigned int r_type,
3802            Symbol* gsym);
3803
3804     inline bool
3805     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3806                                         Target_mips*,
3807                                         Sized_relobj_file<size, big_endian>*,
3808                                         unsigned int,
3809                                         Output_section*,
3810                                         const Reltype&,
3811                                         unsigned int,
3812                                         const elfcpp::Sym<size, big_endian>&)
3813     { return false; }
3814
3815     inline bool
3816     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3817                                          Target_mips*,
3818                                          Sized_relobj_file<size, big_endian>*,
3819                                          unsigned int,
3820                                          Output_section*,
3821                                          const Reltype&,
3822                                          unsigned int, Symbol*)
3823     { return false; }
3824
3825     inline bool
3826     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3827                                         Target_mips*,
3828                                         Sized_relobj_file<size, big_endian>*,
3829                                         unsigned int,
3830                                         Output_section*,
3831                                         const Relatype&,
3832                                         unsigned int,
3833                                         const elfcpp::Sym<size, big_endian>&)
3834     { return false; }
3835
3836     inline bool
3837     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3838                                          Target_mips*,
3839                                          Sized_relobj_file<size, big_endian>*,
3840                                          unsigned int,
3841                                          Output_section*,
3842                                          const Relatype&,
3843                                          unsigned int, Symbol*)
3844     { return false; }
3845    private:
3846     static void
3847     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3848                             unsigned int r_type);
3849
3850     static void
3851     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3852                              unsigned int r_type, Symbol*);
3853   };
3854
3855   // The class which implements relocation.
3856   class Relocate
3857   {
3858    public:
3859     Relocate()
3860     { }
3861
3862     ~Relocate()
3863     { }
3864
3865     // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3866     inline bool
3867     should_apply_static_reloc(const Mips_symbol<size>* gsym,
3868                               unsigned int r_type,
3869                               Output_section* output_section,
3870                               Target_mips* target);
3871
3872     // Do a relocation.  Return false if the caller should not issue
3873     // any warnings about this relocation.
3874     inline bool
3875     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3876              Target_mips*, Output_section*, size_t, const unsigned char*,
3877              const Sized_symbol<size>*, const Symbol_value<size>*,
3878              unsigned char*, Mips_address, section_size_type);
3879   };
3880
3881   // This POD class holds the dynamic relocations that should be emitted instead
3882   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3883   // relocations if it turns out that the symbol does not have static
3884   // relocations.
3885   class Dyn_reloc
3886   {
3887    public:
3888     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3889               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3890               Output_section* output_section, Mips_address r_offset)
3891       : sym_(sym), r_type_(r_type), relobj_(relobj),
3892         shndx_(shndx), output_section_(output_section),
3893         r_offset_(r_offset)
3894     { }
3895
3896     // Emit this reloc if appropriate.  This is called after we have
3897     // scanned all the relocations, so we know whether the symbol has
3898     // static relocations.
3899     void
3900     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3901          Symbol_table* symtab)
3902     {
3903       if (!this->sym_->has_static_relocs())
3904         {
3905           got->record_global_got_symbol(this->sym_, this->relobj_,
3906                                         this->r_type_, true, false);
3907           if (!symbol_references_local(this->sym_,
3908                                 this->sym_->should_add_dynsym_entry(symtab)))
3909             rel_dyn->add_global(this->sym_, this->r_type_,
3910                                 this->output_section_, this->relobj_,
3911                                 this->shndx_, this->r_offset_);
3912           else
3913             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3914                                           this->output_section_, this->relobj_,
3915                                           this->shndx_, this->r_offset_);
3916         }
3917     }
3918
3919    private:
3920     Mips_symbol<size>* sym_;
3921     unsigned int r_type_;
3922     Mips_relobj<size, big_endian>* relobj_;
3923     unsigned int shndx_;
3924     Output_section* output_section_;
3925     Mips_address r_offset_;
3926   };
3927
3928   // Adjust TLS relocation type based on the options and whether this
3929   // is a local symbol.
3930   static tls::Tls_optimization
3931   optimize_tls_reloc(bool is_final, int r_type);
3932
3933   // Return whether there is a GOT section.
3934   bool
3935   has_got_section() const
3936   { return this->got_ != NULL; }
3937
3938   // Check whether the given ELF header flags describe a 32-bit binary.
3939   bool
3940   mips_32bit_flags(elfcpp::Elf_Word);
3941
3942   enum Mips_mach {
3943     mach_mips3000             = 3000,
3944     mach_mips3900             = 3900,
3945     mach_mips4000             = 4000,
3946     mach_mips4010             = 4010,
3947     mach_mips4100             = 4100,
3948     mach_mips4111             = 4111,
3949     mach_mips4120             = 4120,
3950     mach_mips4300             = 4300,
3951     mach_mips4400             = 4400,
3952     mach_mips4600             = 4600,
3953     mach_mips4650             = 4650,
3954     mach_mips5000             = 5000,
3955     mach_mips5400             = 5400,
3956     mach_mips5500             = 5500,
3957     mach_mips5900             = 5900,
3958     mach_mips6000             = 6000,
3959     mach_mips7000             = 7000,
3960     mach_mips8000             = 8000,
3961     mach_mips9000             = 9000,
3962     mach_mips10000            = 10000,
3963     mach_mips12000            = 12000,
3964     mach_mips14000            = 14000,
3965     mach_mips16000            = 16000,
3966     mach_mips16               = 16,
3967     mach_mips5                = 5,
3968     mach_mips_loongson_2e     = 3001,
3969     mach_mips_loongson_2f     = 3002,
3970     mach_mips_loongson_3a     = 3003,
3971     mach_mips_sb1             = 12310201, // octal 'SB', 01
3972     mach_mips_octeon          = 6501,
3973     mach_mips_octeonp         = 6601,
3974     mach_mips_octeon2         = 6502,
3975     mach_mips_octeon3         = 6503,
3976     mach_mips_xlr             = 887682,   // decimal 'XLR'
3977     mach_mipsisa32            = 32,
3978     mach_mipsisa32r2          = 33,
3979     mach_mipsisa32r3          = 34,
3980     mach_mipsisa32r5          = 36,
3981     mach_mipsisa32r6          = 37,
3982     mach_mipsisa64            = 64,
3983     mach_mipsisa64r2          = 65,
3984     mach_mipsisa64r3          = 66,
3985     mach_mipsisa64r5          = 68,
3986     mach_mipsisa64r6          = 69,
3987     mach_mips_micromips       = 96
3988   };
3989
3990   // Return the MACH for a MIPS e_flags value.
3991   unsigned int
3992   elf_mips_mach(elfcpp::Elf_Word);
3993
3994   // Return the MACH for each .MIPS.abiflags ISA Extension.
3995   unsigned int
3996   mips_isa_ext_mach(unsigned int);
3997
3998   // Return the .MIPS.abiflags value representing each ISA Extension.
3999   unsigned int
4000   mips_isa_ext(unsigned int);
4001
4002   // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4003   void
4004   update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4005                       Mips_abiflags<big_endian>*);
4006
4007   // Infer the content of the ABI flags based on the elf header.
4008   void
4009   infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4010
4011   // Create abiflags from elf header or from .MIPS.abiflags section.
4012   void
4013   create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4014
4015   // Return the meaning of fp_abi, or "unknown" if not known.
4016   const char*
4017   fp_abi_string(int);
4018
4019   // Select fp_abi.
4020   int
4021   select_fp_abi(const std::string&, int, int);
4022
4023   // Merge attributes from input object.
4024   void
4025   merge_obj_attributes(const std::string&, const Attributes_section_data*);
4026
4027   // Merge abiflags from input object.
4028   void
4029   merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4030
4031   // Check whether machine EXTENSION is an extension of machine BASE.
4032   bool
4033   mips_mach_extends(unsigned int, unsigned int);
4034
4035   // Merge file header flags from input object.
4036   void
4037   merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4038
4039   // Encode ISA level and revision as a single value.
4040   int
4041   level_rev(unsigned char isa_level, unsigned char isa_rev) const
4042   { return (isa_level << 3) | isa_rev; }
4043
4044   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4045   static inline bool
4046   jal_to_bal()
4047   { return false; }
4048
4049   // True if we are linking for CPUs that are faster if JALR is converted to
4050   // BAL.  This should be safe for all architectures.  We enable this predicate
4051   // for all CPUs.
4052   static inline bool
4053   jalr_to_bal()
4054   { return true; }
4055
4056   // True if we are linking for CPUs that are faster if JR is converted to B.
4057   // This should be safe for all architectures.  We enable this predicate for
4058   // all CPUs.
4059   static inline bool
4060   jr_to_b()
4061   { return true; }
4062
4063   // Return the size of the GOT section.
4064   section_size_type
4065   got_size() const
4066   {
4067     gold_assert(this->got_ != NULL);
4068     return this->got_->data_size();
4069   }
4070
4071   // Create a PLT entry for a global symbol referenced by r_type relocation.
4072   void
4073   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4074                  unsigned int r_type);
4075
4076   // Get the PLT section.
4077   Mips_output_data_plt<size, big_endian>*
4078   plt_section() const
4079   {
4080     gold_assert(this->plt_ != NULL);
4081     return this->plt_;
4082   }
4083
4084   // Get the GOT PLT section.
4085   const Mips_output_data_plt<size, big_endian>*
4086   got_plt_section() const
4087   {
4088     gold_assert(this->got_plt_ != NULL);
4089     return this->got_plt_;
4090   }
4091
4092   // Copy a relocation against a global symbol.
4093   void
4094   copy_reloc(Symbol_table* symtab, Layout* layout,
4095              Sized_relobj_file<size, big_endian>* object,
4096              unsigned int shndx, Output_section* output_section,
4097              Symbol* sym, unsigned int r_type, Mips_address r_offset)
4098   {
4099     this->copy_relocs_.copy_reloc(symtab, layout,
4100                                   symtab->get_sized_symbol<size>(sym),
4101                                   object, shndx, output_section,
4102                                   r_type, r_offset, 0,
4103                                   this->rel_dyn_section(layout));
4104   }
4105
4106   void
4107   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4108                 Mips_relobj<size, big_endian>* relobj,
4109                 unsigned int shndx, Output_section* output_section,
4110                 Mips_address r_offset)
4111   {
4112     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4113                                           output_section, r_offset));
4114   }
4115
4116   // Calculate value of _gp symbol.
4117   void
4118   set_gp(Layout*, Symbol_table*);
4119
4120   const char*
4121   elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4122   const char*
4123   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4124
4125   // Adds entries that describe how machines relate to one another.  The entries
4126   // are ordered topologically with MIPS I extensions listed last.  First
4127   // element is extension, second element is base.
4128   void
4129   add_machine_extensions()
4130   {
4131     // MIPS64r2 extensions.
4132     this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4133     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4134     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4135     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4136     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4137
4138     // MIPS64 extensions.
4139     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4140     this->add_extension(mach_mips_sb1, mach_mipsisa64);
4141     this->add_extension(mach_mips_xlr, mach_mipsisa64);
4142
4143     // MIPS V extensions.
4144     this->add_extension(mach_mipsisa64, mach_mips5);
4145
4146     // R10000 extensions.
4147     this->add_extension(mach_mips12000, mach_mips10000);
4148     this->add_extension(mach_mips14000, mach_mips10000);
4149     this->add_extension(mach_mips16000, mach_mips10000);
4150
4151     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
4152     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
4153     // better to allow vr5400 and vr5500 code to be merged anyway, since
4154     // many libraries will just use the core ISA.  Perhaps we could add
4155     // some sort of ASE flag if this ever proves a problem.
4156     this->add_extension(mach_mips5500, mach_mips5400);
4157     this->add_extension(mach_mips5400, mach_mips5000);
4158
4159     // MIPS IV extensions.
4160     this->add_extension(mach_mips5, mach_mips8000);
4161     this->add_extension(mach_mips10000, mach_mips8000);
4162     this->add_extension(mach_mips5000, mach_mips8000);
4163     this->add_extension(mach_mips7000, mach_mips8000);
4164     this->add_extension(mach_mips9000, mach_mips8000);
4165
4166     // VR4100 extensions.
4167     this->add_extension(mach_mips4120, mach_mips4100);
4168     this->add_extension(mach_mips4111, mach_mips4100);
4169
4170     // MIPS III extensions.
4171     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4172     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4173     this->add_extension(mach_mips8000, mach_mips4000);
4174     this->add_extension(mach_mips4650, mach_mips4000);
4175     this->add_extension(mach_mips4600, mach_mips4000);
4176     this->add_extension(mach_mips4400, mach_mips4000);
4177     this->add_extension(mach_mips4300, mach_mips4000);
4178     this->add_extension(mach_mips4100, mach_mips4000);
4179     this->add_extension(mach_mips4010, mach_mips4000);
4180     this->add_extension(mach_mips5900, mach_mips4000);
4181
4182     // MIPS32 extensions.
4183     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4184
4185     // MIPS II extensions.
4186     this->add_extension(mach_mips4000, mach_mips6000);
4187     this->add_extension(mach_mipsisa32, mach_mips6000);
4188
4189     // MIPS I extensions.
4190     this->add_extension(mach_mips6000, mach_mips3000);
4191     this->add_extension(mach_mips3900, mach_mips3000);
4192   }
4193
4194   // Add value to MIPS extenstions.
4195   void
4196   add_extension(unsigned int base, unsigned int extension)
4197   {
4198     std::pair<unsigned int, unsigned int> ext(base, extension);
4199     this->mips_mach_extensions_.push_back(ext);
4200   }
4201
4202   // Return the number of entries in the .dynsym section.
4203   unsigned int get_dt_mips_symtabno() const
4204   {
4205     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4206                            / elfcpp::Elf_sizes<size>::sym_size));
4207     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4208   }
4209
4210   // Information about this specific target which we pass to the
4211   // general Target structure.
4212   static const Target::Target_info mips_info;
4213   // The GOT section.
4214   Mips_output_data_got<size, big_endian>* got_;
4215   // gp symbol.  It has the value of .got + 0x7FF0.
4216   Sized_symbol<size>* gp_;
4217   // The PLT section.
4218   Mips_output_data_plt<size, big_endian>* plt_;
4219   // The GOT PLT section.
4220   Output_data_space* got_plt_;
4221   // The dynamic reloc section.
4222   Reloc_section* rel_dyn_;
4223   // The .rld_map section.
4224   Output_data_zero_fill* rld_map_;
4225   // Relocs saved to avoid a COPY reloc.
4226   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4227
4228   // A list of dyn relocs to be saved.
4229   std::vector<Dyn_reloc> dyn_relocs_;
4230
4231   // The LA25 stub section.
4232   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4233   // Architecture extensions.
4234   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4235   // .MIPS.stubs
4236   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4237
4238   // Attributes section data in output.
4239   Attributes_section_data* attributes_section_data_;
4240   // .MIPS.abiflags section data in output.
4241   Mips_abiflags<big_endian>* abiflags_;
4242
4243   unsigned int mach_;
4244   Layout* layout_;
4245
4246   typename std::list<got16_addend<size, big_endian> > got16_addends_;
4247
4248   // Whether there is an input .MIPS.abiflags section.
4249   bool has_abiflags_section_;
4250
4251   // Whether the entry symbol is mips16 or micromips.
4252   bool entry_symbol_is_compressed_;
4253
4254   // Whether we can use only 32-bit microMIPS instructions.
4255   // TODO(sasa): This should be a linker option.
4256   bool insn32_;
4257 };
4258
4259 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4260 // It records high part of the relocation pair.
4261
4262 template<int size, bool big_endian>
4263 struct reloc_high
4264 {
4265   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4266
4267   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4268              const Symbol_value<size>* _psymval, Mips_address _addend,
4269              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4270              Mips_address _address = 0, bool _gp_disp = false)
4271     : view(_view), object(_object), psymval(_psymval), addend(_addend),
4272       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4273       address(_address), gp_disp(_gp_disp)
4274   { }
4275
4276   unsigned char* view;
4277   const Mips_relobj<size, big_endian>* object;
4278   const Symbol_value<size>* psymval;
4279   Mips_address addend;
4280   unsigned int r_type;
4281   unsigned int r_sym;
4282   bool extract_addend;
4283   Mips_address address;
4284   bool gp_disp;
4285 };
4286
4287 template<int size, bool big_endian>
4288 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4289 {
4290   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4291   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4292   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4293   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4294   typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4295
4296  public:
4297   typedef enum
4298   {
4299     STATUS_OKAY,            // No error during relocation.
4300     STATUS_OVERFLOW,        // Relocation overflow.
4301     STATUS_BAD_RELOC,       // Relocation cannot be applied.
4302     STATUS_PCREL_UNALIGNED  // Unaligned PC-relative relocation.
4303   } Status;
4304
4305  private:
4306   typedef Relocate_functions<size, big_endian> Base;
4307   typedef Mips_relocate_functions<size, big_endian> This;
4308
4309   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4310   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4311   static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4312
4313   template<int valsize>
4314   static inline typename This::Status
4315   check_overflow(Valtype value)
4316   {
4317     if (size == 32)
4318       return (Bits<valsize>::has_overflow32(value)
4319               ? This::STATUS_OVERFLOW
4320               : This::STATUS_OKAY);
4321
4322     return (Bits<valsize>::has_overflow(value)
4323             ? This::STATUS_OVERFLOW
4324             : This::STATUS_OKAY);
4325   }
4326
4327   static inline bool
4328   should_shuffle_micromips_reloc(unsigned int r_type)
4329   {
4330     return (micromips_reloc(r_type)
4331             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4332             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4333   }
4334
4335  public:
4336   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4337   //   Most mips16 instructions are 16 bits, but these instructions
4338   //   are 32 bits.
4339   //
4340   //   The format of these instructions is:
4341   //
4342   //   +--------------+--------------------------------+
4343   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
4344   //   +--------------+--------------------------------+
4345   //   |                Immediate  15:0                |
4346   //   +-----------------------------------------------+
4347   //
4348   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4349   //   Note that the immediate value in the first word is swapped.
4350   //
4351   //   When producing a relocatable object file, R_MIPS16_26 is
4352   //   handled mostly like R_MIPS_26.  In particular, the addend is
4353   //   stored as a straight 26-bit value in a 32-bit instruction.
4354   //   (gas makes life simpler for itself by never adjusting a
4355   //   R_MIPS16_26 reloc to be against a section, so the addend is
4356   //   always zero).  However, the 32 bit instruction is stored as 2
4357   //   16-bit values, rather than a single 32-bit value.  In a
4358   //   big-endian file, the result is the same; in a little-endian
4359   //   file, the two 16-bit halves of the 32 bit value are swapped.
4360   //   This is so that a disassembler can recognize the jal
4361   //   instruction.
4362   //
4363   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4364   //   instruction stored as two 16-bit values.  The addend A is the
4365   //   contents of the targ26 field.  The calculation is the same as
4366   //   R_MIPS_26.  When storing the calculated value, reorder the
4367   //   immediate value as shown above, and don't forget to store the
4368   //   value as two 16-bit values.
4369   //
4370   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4371   //   defined as
4372   //
4373   //   big-endian:
4374   //   +--------+----------------------+
4375   //   |        |                      |
4376   //   |        |    targ26-16         |
4377   //   |31    26|25                   0|
4378   //   +--------+----------------------+
4379   //
4380   //   little-endian:
4381   //   +----------+------+-------------+
4382   //   |          |      |             |
4383   //   |  sub1    |      |     sub2    |
4384   //   |0        9|10  15|16         31|
4385   //   +----------+--------------------+
4386   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4387   //   ((sub1 << 16) | sub2)).
4388   //
4389   //   When producing a relocatable object file, the calculation is
4390   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4391   //   When producing a fully linked file, the calculation is
4392   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4393   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4394   //
4395   //   The table below lists the other MIPS16 instruction relocations.
4396   //   Each one is calculated in the same way as the non-MIPS16 relocation
4397   //   given on the right, but using the extended MIPS16 layout of 16-bit
4398   //   immediate fields:
4399   //
4400   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4401   //      R_MIPS16_GOT16          R_MIPS_GOT16
4402   //      R_MIPS16_CALL16         R_MIPS_CALL16
4403   //      R_MIPS16_HI16           R_MIPS_HI16
4404   //      R_MIPS16_LO16           R_MIPS_LO16
4405   //
4406   //   A typical instruction will have a format like this:
4407   //
4408   //   +--------------+--------------------------------+
4409   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4410   //   +--------------+--------------------------------+
4411   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4412   //   +--------------+--------------------------------+
4413   //
4414   //   EXTEND is the five bit value 11110.  Major is the instruction
4415   //   opcode.
4416   //
4417   //   All we need to do here is shuffle the bits appropriately.
4418   //   As above, the two 16-bit halves must be swapped on a
4419   //   little-endian system.
4420
4421   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4422   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4423   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4424
4425   static void
4426   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4427                        bool jal_shuffle)
4428   {
4429     if (!mips16_reloc(r_type)
4430         && !should_shuffle_micromips_reloc(r_type))
4431       return;
4432
4433     // Pick up the first and second halfwords of the instruction.
4434     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4435     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4436     Valtype32 val;
4437
4438     if (micromips_reloc(r_type)
4439         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4440       val = first << 16 | second;
4441     else if (r_type != elfcpp::R_MIPS16_26)
4442       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4443              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4444     else
4445       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4446              | ((first & 0x1f) << 21) | second);
4447
4448     elfcpp::Swap<32, big_endian>::writeval(view, val);
4449   }
4450
4451   static void
4452   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4453   {
4454     if (!mips16_reloc(r_type)
4455         && !should_shuffle_micromips_reloc(r_type))
4456       return;
4457
4458     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4459     Valtype16 first, second;
4460
4461     if (micromips_reloc(r_type)
4462         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4463       {
4464         second = val & 0xffff;
4465         first = val >> 16;
4466       }
4467     else if (r_type != elfcpp::R_MIPS16_26)
4468       {
4469         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4470         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4471       }
4472     else
4473       {
4474         second = val & 0xffff;
4475         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4476                  | ((val >> 21) & 0x1f);
4477       }
4478
4479     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4480     elfcpp::Swap<16, big_endian>::writeval(view, first);
4481   }
4482
4483   // R_MIPS_16: S + sign-extend(A)
4484   static inline typename This::Status
4485   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4486         const Symbol_value<size>* psymval, Mips_address addend_a,
4487         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4488   {
4489     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4490     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4491
4492     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4493                                      : addend_a);
4494
4495     Valtype x = psymval->value(object, addend);
4496     val = Bits<16>::bit_select32(val, x, 0xffffU);
4497
4498     if (calculate_only)
4499       {
4500         *calculated_value = x;
4501         return This::STATUS_OKAY;
4502       }
4503     else
4504       elfcpp::Swap<16, big_endian>::writeval(wv, val);
4505
4506     return check_overflow<16>(x);
4507   }
4508
4509   // R_MIPS_32: S + A
4510   static inline typename This::Status
4511   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4512         const Symbol_value<size>* psymval, Mips_address addend_a,
4513         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4514   {
4515     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4516     Valtype addend = (extract_addend
4517                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4518                         : addend_a);
4519     Valtype x = psymval->value(object, addend);
4520
4521     if (calculate_only)
4522       *calculated_value = x;
4523     else
4524       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4525
4526     return This::STATUS_OKAY;
4527   }
4528
4529   // R_MIPS_JALR, R_MICROMIPS_JALR
4530   static inline typename This::Status
4531   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4532           const Symbol_value<size>* psymval, Mips_address address,
4533           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4534           unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4535           bool calculate_only, Valtype* calculated_value)
4536   {
4537     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4538     Valtype addend = extract_addend ? 0 : addend_a;
4539     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4540
4541     // Try converting J(AL)R to B(AL), if the target is in range.
4542     if (r_type == elfcpp::R_MIPS_JALR
4543         && !cross_mode_jump
4544         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4545             || (jr_to_b && val == 0x03200008)))   // jr t9
4546       {
4547         int offset = psymval->value(object, addend) - (address + 4);
4548         if (!Bits<18>::has_overflow32(offset))
4549           {
4550             if (val == 0x03200008)   // jr t9
4551               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4552             else
4553               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4554           }
4555       }
4556
4557     if (calculate_only)
4558       *calculated_value = val;
4559     else
4560       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4561
4562     return This::STATUS_OKAY;
4563   }
4564
4565   // R_MIPS_PC32: S + A - P
4566   static inline typename This::Status
4567   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4568           const Symbol_value<size>* psymval, Mips_address address,
4569           Mips_address addend_a, bool extract_addend, bool calculate_only,
4570           Valtype* calculated_value)
4571   {
4572     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4573     Valtype addend = (extract_addend
4574                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4575                         : addend_a);
4576     Valtype x = psymval->value(object, addend) - address;
4577
4578     if (calculate_only)
4579        *calculated_value = x;
4580     else
4581       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4582
4583     return This::STATUS_OKAY;
4584   }
4585
4586   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4587   static inline typename This::Status
4588   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4589         const Symbol_value<size>* psymval, Mips_address address,
4590         bool local, Mips_address addend_a, bool extract_addend,
4591         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4592         bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4593   {
4594     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4595     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4596
4597     Valtype addend;
4598     if (extract_addend)
4599       {
4600         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4601           addend = (val & 0x03ffffff) << 1;
4602         else
4603           addend = (val & 0x03ffffff) << 2;
4604       }
4605     else
4606       addend = addend_a;
4607
4608     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4609     // the correct ISA mode selector and bit 1 must be 0.
4610     if (!calculate_only && cross_mode_jump
4611         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4612       {
4613         gold_warning(_("JALX to a non-word-aligned address"));
4614         return This::STATUS_BAD_RELOC;
4615       }
4616
4617     // Shift is 2, unusually, for microMIPS JALX.
4618     unsigned int shift =
4619         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4620
4621     Valtype x;
4622     if (local)
4623       x = addend | ((address + 4) & (0xfc000000 << shift));
4624     else
4625       {
4626         if (shift == 1)
4627           x = Bits<27>::sign_extend32(addend);
4628         else
4629           x = Bits<28>::sign_extend32(addend);
4630       }
4631     x = psymval->value(object, x) >> shift;
4632
4633     if (!calculate_only && !local && !gsym->is_weak_undefined()
4634         && ((x >> 26) != ((address + 4) >> (26 + shift))))
4635       return This::STATUS_OVERFLOW;
4636
4637     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4638
4639     // If required, turn JAL into JALX.
4640     if (cross_mode_jump)
4641       {
4642         bool ok;
4643         Valtype32 opcode = val >> 26;
4644         Valtype32 jalx_opcode;
4645
4646         // Check to see if the opcode is already JAL or JALX.
4647         if (r_type == elfcpp::R_MIPS16_26)
4648           {
4649             ok = (opcode == 0x6) || (opcode == 0x7);
4650             jalx_opcode = 0x7;
4651           }
4652         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4653           {
4654             ok = (opcode == 0x3d) || (opcode == 0x3c);
4655             jalx_opcode = 0x3c;
4656           }
4657         else
4658           {
4659             ok = (opcode == 0x3) || (opcode == 0x1d);
4660             jalx_opcode = 0x1d;
4661           }
4662
4663         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4664         // convert J or JALS to JALX.
4665         if (!calculate_only && !ok)
4666           {
4667             gold_error(_("Unsupported jump between ISA modes; consider "
4668                          "recompiling with interlinking enabled."));
4669             return This::STATUS_BAD_RELOC;
4670           }
4671
4672         // Make this the JALX opcode.
4673         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4674       }
4675
4676     // Try converting JAL to BAL, if the target is in range.
4677     if (!parameters->options().relocatable()
4678         && !cross_mode_jump
4679         && ((jal_to_bal
4680             && r_type == elfcpp::R_MIPS_26
4681             && (val >> 26) == 0x3)))    // jal addr
4682       {
4683         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4684         int offset = dest - (address + 4);
4685         if (!Bits<18>::has_overflow32(offset))
4686           {
4687             if (val == 0x03200008)   // jr t9
4688               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4689             else
4690               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4691           }
4692       }
4693
4694     if (calculate_only)
4695       *calculated_value = val;
4696     else
4697       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4698
4699     return This::STATUS_OKAY;
4700   }
4701
4702   // R_MIPS_PC16
4703   static inline typename This::Status
4704   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4705           const Symbol_value<size>* psymval, Mips_address address,
4706           Mips_address addend_a, bool extract_addend, bool calculate_only,
4707           Valtype* calculated_value)
4708   {
4709     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4710     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4711
4712     Valtype addend = (extract_addend
4713                       ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4714                       : addend_a);
4715
4716     Valtype x = psymval->value(object, addend) - address;
4717     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4718
4719     if (calculate_only)
4720       {
4721         *calculated_value = x >> 2;
4722         return This::STATUS_OKAY;
4723       }
4724     else
4725       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4726
4727     if (psymval->value(object, addend) & 3)
4728       return This::STATUS_PCREL_UNALIGNED;
4729
4730     return check_overflow<18>(x);
4731   }
4732
4733   // R_MIPS_PC21_S2
4734   static inline typename This::Status
4735   relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4736           const Symbol_value<size>* psymval, Mips_address address,
4737           Mips_address addend_a, bool extract_addend, bool calculate_only,
4738           Valtype* calculated_value)
4739   {
4740     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4741     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4742
4743     Valtype addend = (extract_addend
4744                       ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4745                       : addend_a);
4746
4747     Valtype x = psymval->value(object, addend) - address;
4748     val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4749
4750     if (calculate_only)
4751       {
4752         *calculated_value = x >> 2;
4753         return This::STATUS_OKAY;
4754       }
4755     else
4756       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4757
4758     if (psymval->value(object, addend) & 3)
4759       return This::STATUS_PCREL_UNALIGNED;
4760
4761     return check_overflow<23>(x);
4762   }
4763
4764   // R_MIPS_PC26_S2
4765   static inline typename This::Status
4766   relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4767           const Symbol_value<size>* psymval, Mips_address address,
4768           Mips_address addend_a, bool extract_addend, bool calculate_only,
4769           Valtype* calculated_value)
4770   {
4771     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4772     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4773
4774     Valtype addend = (extract_addend
4775                       ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4776                       : addend_a);
4777
4778     Valtype x = psymval->value(object, addend) - address;
4779     val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4780
4781     if (calculate_only)
4782       {
4783         *calculated_value = x >> 2;
4784         return This::STATUS_OKAY;
4785       }
4786     else
4787       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4788
4789     if (psymval->value(object, addend) & 3)
4790       return This::STATUS_PCREL_UNALIGNED;
4791
4792     return check_overflow<28>(x);
4793   }
4794
4795   // R_MIPS_PC18_S3
4796   static inline typename This::Status
4797   relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4798           const Symbol_value<size>* psymval, Mips_address address,
4799           Mips_address addend_a, bool extract_addend, bool calculate_only,
4800           Valtype* calculated_value)
4801   {
4802     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4803     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4804
4805     Valtype addend = (extract_addend
4806                       ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4807                       : addend_a);
4808
4809     Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4810     val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4811
4812     if (calculate_only)
4813       {
4814         *calculated_value = x >> 3;
4815         return This::STATUS_OKAY;
4816       }
4817     else
4818       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4819
4820     if (psymval->value(object, addend) & 7)
4821       return This::STATUS_PCREL_UNALIGNED;
4822
4823     return check_overflow<21>(x);
4824   }
4825
4826   // R_MIPS_PC19_S2
4827   static inline typename This::Status
4828   relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4829           const Symbol_value<size>* psymval, Mips_address address,
4830           Mips_address addend_a, bool extract_addend, bool calculate_only,
4831           Valtype* calculated_value)
4832   {
4833     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4834     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4835
4836     Valtype addend = (extract_addend
4837                       ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4838                       : addend_a);
4839
4840     Valtype x = psymval->value(object, addend) - address;
4841     val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4842
4843     if (calculate_only)
4844       {
4845         *calculated_value = x >> 2;
4846         return This::STATUS_OKAY;
4847       }
4848     else
4849       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4850
4851     if (psymval->value(object, addend) & 3)
4852       return This::STATUS_PCREL_UNALIGNED;
4853
4854     return check_overflow<21>(x);
4855   }
4856
4857   // R_MIPS_PCHI16
4858   static inline typename This::Status
4859   relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4860             const Symbol_value<size>* psymval, Mips_address addend,
4861             Mips_address address, unsigned int r_sym, bool extract_addend)
4862   {
4863     // Record the relocation.  It will be resolved when we find pclo16 part.
4864     pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4865                             addend, 0, r_sym, extract_addend, address));
4866     return This::STATUS_OKAY;
4867   }
4868
4869   // R_MIPS_PCHI16
4870   static inline typename This::Status
4871   do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4872              const Symbol_value<size>* psymval, Mips_address addend_hi,
4873              Mips_address address, bool extract_addend, Valtype32 addend_lo,
4874              bool calculate_only, Valtype* calculated_value)
4875   {
4876     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4877     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4878
4879     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4880                                        : addend_hi);
4881
4882     Valtype value = psymval->value(object, addend) - address;
4883     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4884     val = Bits<32>::bit_select32(val, x, 0xffff);
4885
4886     if (calculate_only)
4887       *calculated_value = x;
4888     else
4889       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4890
4891     return This::STATUS_OKAY;
4892   }
4893
4894   // R_MIPS_PCLO16
4895   static inline typename This::Status
4896   relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4897             const Symbol_value<size>* psymval, Mips_address addend_a,
4898             bool extract_addend, Mips_address address, unsigned int r_sym,
4899             unsigned int rel_type, bool calculate_only,
4900             Valtype* calculated_value)
4901   {
4902     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4903     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4904
4905     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4906                                      : addend_a);
4907
4908     if (rel_type == elfcpp::SHT_REL)
4909       {
4910         // Resolve pending R_MIPS_PCHI16 relocations.
4911         typename std::list<reloc_high<size, big_endian> >::iterator it =
4912             pchi16_relocs.begin();
4913         while (it != pchi16_relocs.end())
4914           {
4915             reloc_high<size, big_endian> pchi16 = *it;
4916             if (pchi16.r_sym == r_sym)
4917               {
4918                 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4919                              pchi16.addend, pchi16.address,
4920                              pchi16.extract_addend, addend, calculate_only,
4921                              calculated_value);
4922                 it = pchi16_relocs.erase(it);
4923               }
4924             else
4925               ++it;
4926           }
4927       }
4928
4929     // Resolve R_MIPS_PCLO16 relocation.
4930     Valtype x = psymval->value(object, addend) - address;
4931     val = Bits<32>::bit_select32(val, x, 0xffff);
4932
4933     if (calculate_only)
4934       *calculated_value = x;
4935     else
4936       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4937
4938     return This::STATUS_OKAY;
4939   }
4940
4941   // R_MICROMIPS_PC7_S1
4942   static inline typename This::Status
4943   relmicromips_pc7_s1(unsigned char* view,
4944                       const Mips_relobj<size, big_endian>* object,
4945                       const Symbol_value<size>* psymval, Mips_address address,
4946                       Mips_address addend_a, bool extract_addend,
4947                       bool calculate_only, Valtype* calculated_value)
4948   {
4949     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4950     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4951
4952     Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4953                                     : addend_a;
4954
4955     Valtype x = psymval->value(object, addend) - address;
4956     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4957
4958     if (calculate_only)
4959       {
4960         *calculated_value = x >> 1;
4961         return This::STATUS_OKAY;
4962       }
4963     else
4964       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4965
4966     return check_overflow<8>(x);
4967   }
4968
4969   // R_MICROMIPS_PC10_S1
4970   static inline typename This::Status
4971   relmicromips_pc10_s1(unsigned char* view,
4972                        const Mips_relobj<size, big_endian>* object,
4973                        const Symbol_value<size>* psymval, Mips_address address,
4974                        Mips_address addend_a, bool extract_addend,
4975                        bool calculate_only, Valtype* calculated_value)
4976   {
4977     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4978     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4979
4980     Valtype addend = (extract_addend
4981                       ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4982                       : addend_a);
4983
4984     Valtype x = psymval->value(object, addend) - address;
4985     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4986
4987     if (calculate_only)
4988       {
4989         *calculated_value = x >> 1;
4990         return This::STATUS_OKAY;
4991       }
4992     else
4993       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4994
4995     return check_overflow<11>(x);
4996   }
4997
4998   // R_MICROMIPS_PC16_S1
4999   static inline typename This::Status
5000   relmicromips_pc16_s1(unsigned char* view,
5001                        const Mips_relobj<size, big_endian>* object,
5002                        const Symbol_value<size>* psymval, Mips_address address,
5003                        Mips_address addend_a, bool extract_addend,
5004                        bool calculate_only, Valtype* calculated_value)
5005   {
5006     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5007     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5008
5009     Valtype addend = (extract_addend
5010                       ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5011                       : addend_a);
5012
5013     Valtype x = psymval->value(object, addend) - address;
5014     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5015
5016     if (calculate_only)
5017       {
5018         *calculated_value = x >> 1;
5019         return This::STATUS_OKAY;
5020       }
5021     else
5022       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5023
5024     return check_overflow<17>(x);
5025   }
5026
5027   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5028   static inline typename This::Status
5029   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5030           const Symbol_value<size>* psymval, Mips_address addend,
5031           Mips_address address, bool gp_disp, unsigned int r_type,
5032           unsigned int r_sym, bool extract_addend)
5033   {
5034     // Record the relocation.  It will be resolved when we find lo16 part.
5035     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5036                           addend, r_type, r_sym, extract_addend, address,
5037                           gp_disp));
5038     return This::STATUS_OKAY;
5039   }
5040
5041   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5042   static inline typename This::Status
5043   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5044              const Symbol_value<size>* psymval, Mips_address addend_hi,
5045              Mips_address address, bool is_gp_disp, unsigned int r_type,
5046              bool extract_addend, Valtype32 addend_lo,
5047              Target_mips<size, big_endian>* target, bool calculate_only,
5048              Valtype* calculated_value)
5049   {
5050     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5051     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5052
5053     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5054                                        : addend_hi);
5055
5056     Valtype32 value;
5057     if (!is_gp_disp)
5058       value = psymval->value(object, addend);
5059     else
5060       {
5061         // For MIPS16 ABI code we generate this sequence
5062         //    0: li      $v0,%hi(_gp_disp)
5063         //    4: addiupc $v1,%lo(_gp_disp)
5064         //    8: sll     $v0,16
5065         //   12: addu    $v0,$v1
5066         //   14: move    $gp,$v0
5067         // So the offsets of hi and lo relocs are the same, but the
5068         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5069         // ADDIUPC clears the low two bits of the instruction address,
5070         // so the base is ($t9 + 4) & ~3.
5071         Valtype32 gp_disp;
5072         if (r_type == elfcpp::R_MIPS16_HI16)
5073           gp_disp = (target->adjusted_gp_value(object)
5074                      - ((address + 4) & ~0x3));
5075         // The microMIPS .cpload sequence uses the same assembly
5076         // instructions as the traditional psABI version, but the
5077         // incoming $t9 has the low bit set.
5078         else if (r_type == elfcpp::R_MICROMIPS_HI16)
5079           gp_disp = target->adjusted_gp_value(object) - address - 1;
5080         else
5081           gp_disp = target->adjusted_gp_value(object) - address;
5082         value = gp_disp + addend;
5083       }
5084     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5085     val = Bits<32>::bit_select32(val, x, 0xffff);
5086
5087     if (calculate_only)
5088       {
5089         *calculated_value = x;
5090         return This::STATUS_OKAY;
5091       }
5092     else
5093       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5094
5095     return (is_gp_disp ? check_overflow<16>(x)
5096                        : This::STATUS_OKAY);
5097   }
5098
5099   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5100   static inline typename This::Status
5101   relgot16_local(unsigned char* view,
5102                  const Mips_relobj<size, big_endian>* object,
5103                  const Symbol_value<size>* psymval, Mips_address addend_a,
5104                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
5105   {
5106     // Record the relocation.  It will be resolved when we find lo16 part.
5107     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5108                            addend_a, r_type, r_sym, extract_addend));
5109     return This::STATUS_OKAY;
5110   }
5111
5112   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5113   static inline typename This::Status
5114   do_relgot16_local(unsigned char* view,
5115                     const Mips_relobj<size, big_endian>* object,
5116                     const Symbol_value<size>* psymval, Mips_address addend_hi,
5117                     bool extract_addend, Valtype32 addend_lo,
5118                     Target_mips<size, big_endian>* target, bool calculate_only,
5119                     Valtype* calculated_value)
5120   {
5121     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5122     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5123
5124     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5125                                        : addend_hi);
5126
5127     // Find GOT page entry.
5128     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5129                           & 0xffff;
5130     value <<= 16;
5131     unsigned int got_offset =
5132       target->got_section()->get_got_page_offset(value, object);
5133
5134     // Resolve the relocation.
5135     Valtype x = target->got_section()->gp_offset(got_offset, object);
5136     val = Bits<32>::bit_select32(val, x, 0xffff);
5137
5138     if (calculate_only)
5139       {
5140         *calculated_value = x;
5141         return This::STATUS_OKAY;
5142       }
5143     else
5144       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5145
5146     return check_overflow<16>(x);
5147   }
5148
5149   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5150   static inline typename This::Status
5151   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5152           const Mips_relobj<size, big_endian>* object,
5153           const Symbol_value<size>* psymval, Mips_address addend_a,
5154           bool extract_addend, Mips_address address, bool is_gp_disp,
5155           unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5156           bool calculate_only, Valtype* calculated_value)
5157   {
5158     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5159     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5160
5161     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5162                                      : addend_a);
5163
5164     if (rel_type == elfcpp::SHT_REL)
5165       {
5166         typename This::Status reloc_status = This::STATUS_OKAY;
5167         // Resolve pending R_MIPS_HI16 relocations.
5168         typename std::list<reloc_high<size, big_endian> >::iterator it =
5169           hi16_relocs.begin();
5170         while (it != hi16_relocs.end())
5171           {
5172             reloc_high<size, big_endian> hi16 = *it;
5173             if (hi16.r_sym == r_sym
5174                 && is_matching_lo16_reloc(hi16.r_type, r_type))
5175               {
5176                 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5177                 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5178                                        hi16.addend, hi16.address, hi16.gp_disp,
5179                                        hi16.r_type, hi16.extract_addend, addend,
5180                                        target, calculate_only, calculated_value);
5181                 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5182                 if (reloc_status == This::STATUS_OVERFLOW)
5183                   return This::STATUS_OVERFLOW;
5184                 it = hi16_relocs.erase(it);
5185               }
5186             else
5187               ++it;
5188           }
5189
5190         // Resolve pending local R_MIPS_GOT16 relocations.
5191         typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5192           got16_relocs.begin();
5193         while (it2 != got16_relocs.end())
5194           {
5195             reloc_high<size, big_endian> got16 = *it2;
5196             if (got16.r_sym == r_sym
5197                 && is_matching_lo16_reloc(got16.r_type, r_type))
5198               {
5199                 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5200
5201                 reloc_status = do_relgot16_local(got16.view, got16.object,
5202                                      got16.psymval, got16.addend,
5203                                      got16.extract_addend, addend, target,
5204                                      calculate_only, calculated_value);
5205
5206                 mips_reloc_shuffle(got16.view, got16.r_type, false);
5207                 if (reloc_status == This::STATUS_OVERFLOW)
5208                   return This::STATUS_OVERFLOW;
5209                 it2 = got16_relocs.erase(it2);
5210               }
5211             else
5212               ++it2;
5213           }
5214       }
5215
5216     // Resolve R_MIPS_LO16 relocation.
5217     Valtype x;
5218     if (!is_gp_disp)
5219       x = psymval->value(object, addend);
5220     else
5221       {
5222         // See the comment for R_MIPS16_HI16 above for the reason
5223         // for this conditional.
5224         Valtype32 gp_disp;
5225         if (r_type == elfcpp::R_MIPS16_LO16)
5226           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5227         else if (r_type == elfcpp::R_MICROMIPS_LO16
5228                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5229           gp_disp = target->adjusted_gp_value(object) - address + 3;
5230         else
5231           gp_disp = target->adjusted_gp_value(object) - address + 4;
5232         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5233         // for overflow.  Relocations against _gp_disp are normally
5234         // generated from the .cpload pseudo-op.  It generates code
5235         // that normally looks like this:
5236
5237         //   lui    $gp,%hi(_gp_disp)
5238         //   addiu  $gp,$gp,%lo(_gp_disp)
5239         //   addu   $gp,$gp,$t9
5240
5241         // Here $t9 holds the address of the function being called,
5242         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
5243         // relocation can easily overflow in this situation, but the
5244         // R_MIPS_HI16 relocation will handle the overflow.
5245         // Therefore, we consider this a bug in the MIPS ABI, and do
5246         // not check for overflow here.
5247         x = gp_disp + addend;
5248       }
5249     val = Bits<32>::bit_select32(val, x, 0xffff);
5250
5251     if (calculate_only)
5252       *calculated_value = x;
5253     else
5254       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5255
5256     return This::STATUS_OKAY;
5257   }
5258
5259   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5260   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5261   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5262   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5263   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5264   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5265   static inline typename This::Status
5266   relgot(unsigned char* view, int gp_offset, bool calculate_only,
5267          Valtype* calculated_value)
5268   {
5269     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5270     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5271     Valtype x = gp_offset;
5272     val = Bits<32>::bit_select32(val, x, 0xffff);
5273
5274     if (calculate_only)
5275       {
5276         *calculated_value = x;
5277         return This::STATUS_OKAY;
5278       }
5279     else
5280       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5281
5282     return check_overflow<16>(x);
5283   }
5284
5285   // R_MIPS_EH
5286   static inline typename This::Status
5287   releh(unsigned char* view, int gp_offset, bool calculate_only,
5288         Valtype* calculated_value)
5289   {
5290     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5291     Valtype x = gp_offset;
5292
5293     if (calculate_only)
5294       {
5295         *calculated_value = x;
5296         return This::STATUS_OKAY;
5297       }
5298     else
5299       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5300
5301     return check_overflow<32>(x);
5302   }
5303
5304   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5305   static inline typename This::Status
5306   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5307              const Mips_relobj<size, big_endian>* object,
5308              const Symbol_value<size>* psymval, Mips_address addend_a,
5309              bool extract_addend, bool calculate_only,
5310              Valtype* calculated_value)
5311   {
5312     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5313     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5314     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5315
5316     // Find a GOT page entry that points to within 32KB of symbol + addend.
5317     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5318     unsigned int  got_offset =
5319       target->got_section()->get_got_page_offset(value, object);
5320
5321     Valtype x = target->got_section()->gp_offset(got_offset, object);
5322     val = Bits<32>::bit_select32(val, x, 0xffff);
5323
5324     if (calculate_only)
5325       {
5326         *calculated_value = x;
5327         return This::STATUS_OKAY;
5328       }
5329     else
5330       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5331
5332     return check_overflow<16>(x);
5333   }
5334
5335   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5336   static inline typename This::Status
5337   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5338              const Mips_relobj<size, big_endian>* object,
5339              const Symbol_value<size>* psymval, Mips_address addend_a,
5340              bool extract_addend, bool local, bool calculate_only,
5341              Valtype* calculated_value)
5342   {
5343     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5344     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5345     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5346
5347     // For a local symbol, find a GOT page entry that points to within 32KB of
5348     // symbol + addend.  Relocation value is the offset of the GOT page entry's
5349     // value from symbol + addend.
5350     // For a global symbol, relocation value is addend.
5351     Valtype x;
5352     if (local)
5353       {
5354         // Find GOT page entry.
5355         Mips_address value = ((psymval->value(object, addend) + 0x8000)
5356                               & ~0xffff);
5357         target->got_section()->get_got_page_offset(value, object);
5358
5359         x = psymval->value(object, addend) - value;
5360       }
5361     else
5362       x = addend;
5363     val = Bits<32>::bit_select32(val, x, 0xffff);
5364
5365     if (calculate_only)
5366       {
5367         *calculated_value = x;
5368         return This::STATUS_OKAY;
5369       }
5370     else
5371       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5372
5373     return check_overflow<16>(x);
5374   }
5375
5376   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5377   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5378   static inline typename This::Status
5379   relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5380               Valtype* calculated_value)
5381   {
5382     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5383     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5384     Valtype x = gp_offset;
5385     x = ((x + 0x8000) >> 16) & 0xffff;
5386     val = Bits<32>::bit_select32(val, x, 0xffff);
5387
5388     if (calculate_only)
5389       *calculated_value = x;
5390     else
5391       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5392
5393     return This::STATUS_OKAY;
5394   }
5395
5396   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5397   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5398   static inline typename This::Status
5399   relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5400               Valtype* calculated_value)
5401   {
5402     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5403     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5404     Valtype x = gp_offset;
5405     val = Bits<32>::bit_select32(val, x, 0xffff);
5406
5407     if (calculate_only)
5408       *calculated_value = x;
5409     else
5410       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5411
5412     return This::STATUS_OKAY;
5413   }
5414
5415   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5416   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5417   static inline typename This::Status
5418   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5419            const Symbol_value<size>* psymval, Mips_address gp,
5420            Mips_address addend_a, bool extract_addend, bool local,
5421            unsigned int r_type, bool calculate_only,
5422            Valtype* calculated_value)
5423   {
5424     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5425     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5426
5427     Valtype addend;
5428     if (extract_addend)
5429       {
5430         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5431           addend = (val & 0x7f) << 2;
5432         else
5433           addend = val & 0xffff;
5434         // Only sign-extend the addend if it was extracted from the
5435         // instruction.  If the addend was separate, leave it alone,
5436         // otherwise we may lose significant bits.
5437         addend = Bits<16>::sign_extend32(addend);
5438       }
5439     else
5440       addend = addend_a;
5441
5442     Valtype x = psymval->value(object, addend) - gp;
5443
5444     // If the symbol was local, any earlier relocatable links will
5445     // have adjusted its addend with the gp offset, so compensate
5446     // for that now.  Don't do it for symbols forced local in this
5447     // link, though, since they won't have had the gp offset applied
5448     // to them before.
5449     if (local)
5450       x += object->gp_value();
5451
5452     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5453       val = Bits<32>::bit_select32(val, x, 0x7f);
5454     else
5455       val = Bits<32>::bit_select32(val, x, 0xffff);
5456
5457     if (calculate_only)
5458       {
5459         *calculated_value = x;
5460         return This::STATUS_OKAY;
5461       }
5462     else
5463       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5464
5465     if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5466       {
5467         gold_error(_("small-data section exceeds 64KB; lower small-data size "
5468                      "limit (see option -G)"));
5469         return This::STATUS_OVERFLOW;
5470       }
5471     return This::STATUS_OKAY;
5472   }
5473
5474   // R_MIPS_GPREL32
5475   static inline typename This::Status
5476   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5477              const Symbol_value<size>* psymval, Mips_address gp,
5478              Mips_address addend_a, bool extract_addend, bool calculate_only,
5479              Valtype* calculated_value)
5480   {
5481     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5482     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5483     Valtype addend = extract_addend ? val : addend_a;
5484
5485     // R_MIPS_GPREL32 relocations are defined for local symbols only.
5486     Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5487
5488     if (calculate_only)
5489       *calculated_value = x;
5490     else
5491       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5492
5493     return This::STATUS_OKAY;
5494  }
5495
5496   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5497   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5498   // R_MICROMIPS_TLS_DTPREL_HI16
5499   static inline typename This::Status
5500   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5501              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5502              Mips_address addend_a, bool extract_addend, bool calculate_only,
5503              Valtype* calculated_value)
5504   {
5505     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5506     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5507     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5508
5509     // tls symbol values are relative to tls_segment()->vaddr()
5510     Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5511     val = Bits<32>::bit_select32(val, x, 0xffff);
5512
5513     if (calculate_only)
5514       *calculated_value = x;
5515     else
5516       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5517
5518     return This::STATUS_OKAY;
5519   }
5520
5521   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5522   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5523   // R_MICROMIPS_TLS_DTPREL_LO16,
5524   static inline typename This::Status
5525   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5526              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5527              Mips_address addend_a, bool extract_addend, bool calculate_only,
5528              Valtype* calculated_value)
5529   {
5530     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5531     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5532     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5533
5534     // tls symbol values are relative to tls_segment()->vaddr()
5535     Valtype x = psymval->value(object, addend) - tp_offset;
5536     val = Bits<32>::bit_select32(val, x, 0xffff);
5537
5538     if (calculate_only)
5539       *calculated_value = x;
5540     else
5541       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5542
5543     return This::STATUS_OKAY;
5544   }
5545
5546   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5547   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5548   static inline typename This::Status
5549   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5550            const Symbol_value<size>* psymval, Valtype32 tp_offset,
5551            Mips_address addend_a, bool extract_addend, bool calculate_only,
5552            Valtype* calculated_value)
5553   {
5554     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5555     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5556     Valtype addend = extract_addend ? val : addend_a;
5557
5558     // tls symbol values are relative to tls_segment()->vaddr()
5559     Valtype x = psymval->value(object, addend) - tp_offset;
5560
5561     if (calculate_only)
5562       *calculated_value = x;
5563     else
5564       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5565
5566     return This::STATUS_OKAY;
5567   }
5568
5569   // R_MIPS_SUB, R_MICROMIPS_SUB
5570   static inline typename This::Status
5571   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5572          const Symbol_value<size>* psymval, Mips_address addend_a,
5573          bool extract_addend, bool calculate_only, Valtype* calculated_value)
5574   {
5575     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5576     Valtype64 addend = (extract_addend
5577                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5578                         : addend_a);
5579
5580     Valtype64 x = psymval->value(object, -addend);
5581     if (calculate_only)
5582       *calculated_value = x;
5583     else
5584       elfcpp::Swap<64, big_endian>::writeval(wv, x);
5585
5586     return This::STATUS_OKAY;
5587   }
5588
5589   // R_MIPS_64: S + A
5590   static inline typename This::Status
5591   rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5592         const Symbol_value<size>* psymval, Mips_address addend_a,
5593         bool extract_addend, bool calculate_only, Valtype* calculated_value,
5594         bool apply_addend_only)
5595   {
5596     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5597     Valtype64 addend = (extract_addend
5598                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5599                         : addend_a);
5600
5601     Valtype64 x = psymval->value(object, addend);
5602     if (calculate_only)
5603       *calculated_value = x;
5604     else
5605       {
5606         if (apply_addend_only)
5607           x = addend;
5608         elfcpp::Swap<64, big_endian>::writeval(wv, x);
5609       }
5610
5611     return This::STATUS_OKAY;
5612   }
5613
5614   // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5615   static inline typename This::Status
5616   relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5617             const Symbol_value<size>* psymval, Mips_address addend_a,
5618             bool extract_addend, bool calculate_only, Valtype* calculated_value)
5619   {
5620     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5621     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5622     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5623                                      : addend_a);
5624
5625     Valtype x = psymval->value(object, addend);
5626     x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5627     val = Bits<32>::bit_select32(val, x, 0xffff);
5628
5629     if (calculate_only)
5630       *calculated_value = x;
5631     else
5632       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5633
5634     return This::STATUS_OKAY;
5635   }
5636
5637   // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5638   static inline typename This::Status
5639   relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5640              const Symbol_value<size>* psymval, Mips_address addend_a,
5641              bool extract_addend, bool calculate_only,
5642              Valtype* calculated_value)
5643   {
5644     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5645     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5646     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5647                                      : addend_a);
5648
5649     Valtype x = psymval->value(object, addend);
5650     x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5651     val = Bits<32>::bit_select32(val, x, 0xffff);
5652
5653     if (calculate_only)
5654       *calculated_value = x;
5655     else
5656       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5657
5658     return This::STATUS_OKAY;
5659   }
5660 };
5661
5662 template<int size, bool big_endian>
5663 typename std::list<reloc_high<size, big_endian> >
5664     Mips_relocate_functions<size, big_endian>::hi16_relocs;
5665
5666 template<int size, bool big_endian>
5667 typename std::list<reloc_high<size, big_endian> >
5668     Mips_relocate_functions<size, big_endian>::got16_relocs;
5669
5670 template<int size, bool big_endian>
5671 typename std::list<reloc_high<size, big_endian> >
5672     Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5673
5674 // Mips_got_info methods.
5675
5676 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5677 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5678
5679 template<int size, bool big_endian>
5680 void
5681 Mips_got_info<size, big_endian>::record_local_got_symbol(
5682     Mips_relobj<size, big_endian>* object, unsigned int symndx,
5683     Mips_address addend, unsigned int r_type, unsigned int shndx,
5684     bool is_section_symbol)
5685 {
5686   Mips_got_entry<size, big_endian>* entry =
5687     new Mips_got_entry<size, big_endian>(object, symndx, addend,
5688                                          mips_elf_reloc_tls_type(r_type),
5689                                          shndx, is_section_symbol);
5690   this->record_got_entry(entry, object);
5691 }
5692
5693 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5694 // in OBJECT.  FOR_CALL is true if the caller is only interested in
5695 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
5696 // relocation.
5697
5698 template<int size, bool big_endian>
5699 void
5700 Mips_got_info<size, big_endian>::record_global_got_symbol(
5701     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5702     unsigned int r_type, bool dyn_reloc, bool for_call)
5703 {
5704   if (!for_call)
5705     mips_sym->set_got_not_only_for_calls();
5706
5707   // A global symbol in the GOT must also be in the dynamic symbol table.
5708   if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5709     {
5710       switch (mips_sym->visibility())
5711         {
5712         case elfcpp::STV_INTERNAL:
5713         case elfcpp::STV_HIDDEN:
5714           mips_sym->set_is_forced_local();
5715           break;
5716         default:
5717           mips_sym->set_needs_dynsym_entry();
5718           break;
5719         }
5720     }
5721
5722   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5723   if (tls_type == GOT_TLS_NONE)
5724     this->global_got_symbols_.insert(mips_sym);
5725
5726   if (dyn_reloc)
5727     {
5728       if (mips_sym->global_got_area() == GGA_NONE)
5729         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5730       return;
5731     }
5732
5733   Mips_got_entry<size, big_endian>* entry =
5734     new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5735
5736   this->record_got_entry(entry, object);
5737 }
5738
5739 // Add ENTRY to master GOT and to OBJECT's GOT.
5740
5741 template<int size, bool big_endian>
5742 void
5743 Mips_got_info<size, big_endian>::record_got_entry(
5744     Mips_got_entry<size, big_endian>* entry,
5745     Mips_relobj<size, big_endian>* object)
5746 {
5747   this->got_entries_.insert(entry);
5748
5749   // Create the GOT entry for the OBJECT's GOT.
5750   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5751   Mips_got_entry<size, big_endian>* entry2 =
5752     new Mips_got_entry<size, big_endian>(*entry);
5753
5754   g->got_entries_.insert(entry2);
5755 }
5756
5757 // Record that OBJECT has a page relocation against symbol SYMNDX and
5758 // that ADDEND is the addend for that relocation.
5759 // This function creates an upper bound on the number of GOT slots
5760 // required; no attempt is made to combine references to non-overridable
5761 // global symbols across multiple input files.
5762
5763 template<int size, bool big_endian>
5764 void
5765 Mips_got_info<size, big_endian>::record_got_page_entry(
5766     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5767 {
5768   struct Got_page_range **range_ptr, *range;
5769   int old_pages, new_pages;
5770
5771   // Find the Got_page_entry for this symbol.
5772   Got_page_entry* entry = new Got_page_entry(object, symndx);
5773   typename Got_page_entry_set::iterator it =
5774     this->got_page_entries_.find(entry);
5775   if (it != this->got_page_entries_.end())
5776     entry = *it;
5777   else
5778     this->got_page_entries_.insert(entry);
5779
5780   // Add the same entry to the OBJECT's GOT.
5781   Got_page_entry* entry2 = NULL;
5782   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5783   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5784     {
5785       entry2 = new Got_page_entry(*entry);
5786       g2->got_page_entries_.insert(entry2);
5787     }
5788
5789   // Skip over ranges whose maximum extent cannot share a page entry
5790   // with ADDEND.
5791   range_ptr = &entry->ranges;
5792   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5793     range_ptr = &(*range_ptr)->next;
5794
5795   // If we scanned to the end of the list, or found a range whose
5796   // minimum extent cannot share a page entry with ADDEND, create
5797   // a new singleton range.
5798   range = *range_ptr;
5799   if (!range || addend < range->min_addend - 0xffff)
5800     {
5801       range = new Got_page_range();
5802       range->next = *range_ptr;
5803       range->min_addend = addend;
5804       range->max_addend = addend;
5805
5806       *range_ptr = range;
5807       ++entry->num_pages;
5808       if (entry2 != NULL)
5809         ++entry2->num_pages;
5810       ++this->page_gotno_;
5811       ++g2->page_gotno_;
5812       return;
5813     }
5814
5815   // Remember how many pages the old range contributed.
5816   old_pages = range->get_max_pages();
5817
5818   // Update the ranges.
5819   if (addend < range->min_addend)
5820     range->min_addend = addend;
5821   else if (addend > range->max_addend)
5822     {
5823       if (range->next && addend >= range->next->min_addend - 0xffff)
5824         {
5825           old_pages += range->next->get_max_pages();
5826           range->max_addend = range->next->max_addend;
5827           range->next = range->next->next;
5828         }
5829       else
5830         range->max_addend = addend;
5831     }
5832
5833   // Record any change in the total estimate.
5834   new_pages = range->get_max_pages();
5835   if (old_pages != new_pages)
5836     {
5837       entry->num_pages += new_pages - old_pages;
5838       if (entry2 != NULL)
5839         entry2->num_pages += new_pages - old_pages;
5840       this->page_gotno_ += new_pages - old_pages;
5841       g2->page_gotno_ += new_pages - old_pages;
5842     }
5843 }
5844
5845 // Create all entries that should be in the local part of the GOT.
5846
5847 template<int size, bool big_endian>
5848 void
5849 Mips_got_info<size, big_endian>::add_local_entries(
5850     Target_mips<size, big_endian>* target, Layout* layout)
5851 {
5852   Mips_output_data_got<size, big_endian>* got = target->got_section();
5853   // First two GOT entries are reserved.  The first entry will be filled at
5854   // runtime.  The second entry will be used by some runtime loaders.
5855   got->add_constant(0);
5856   got->add_constant(target->mips_elf_gnu_got1_mask());
5857
5858   for (typename Got_entry_set::iterator
5859        p = this->got_entries_.begin();
5860        p != this->got_entries_.end();
5861        ++p)
5862     {
5863       Mips_got_entry<size, big_endian>* entry = *p;
5864       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5865         {
5866           got->add_local(entry->object(), entry->symndx(),
5867                          GOT_TYPE_STANDARD, entry->addend());
5868           unsigned int got_offset = entry->object()->local_got_offset(
5869               entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5870           if (got->multi_got() && this->index_ > 0
5871               && parameters->options().output_is_position_independent())
5872           {
5873             if (!entry->is_section_symbol())
5874               target->rel_dyn_section(layout)->add_local(entry->object(),
5875                   entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5876             else
5877               target->rel_dyn_section(layout)->add_symbolless_local_addend(
5878                   entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5879                   got, got_offset);
5880           }
5881         }
5882     }
5883
5884   this->add_page_entries(target, layout);
5885
5886   // Add global entries that should be in the local area.
5887   for (typename Got_entry_set::iterator
5888        p = this->got_entries_.begin();
5889        p != this->got_entries_.end();
5890        ++p)
5891     {
5892       Mips_got_entry<size, big_endian>* entry = *p;
5893       if (!entry->is_for_global_symbol())
5894         continue;
5895
5896       Mips_symbol<size>* mips_sym = entry->sym();
5897       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5898         {
5899           unsigned int got_type;
5900           if (!got->multi_got())
5901             got_type = GOT_TYPE_STANDARD;
5902           else
5903             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5904           if (got->add_global(mips_sym, got_type))
5905             {
5906               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5907               if (got->multi_got() && this->index_ > 0
5908                   && parameters->options().output_is_position_independent())
5909                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5910                     mips_sym, elfcpp::R_MIPS_REL32, got,
5911                     mips_sym->got_offset(got_type));
5912             }
5913         }
5914     }
5915 }
5916
5917 // Create GOT page entries.
5918
5919 template<int size, bool big_endian>
5920 void
5921 Mips_got_info<size, big_endian>::add_page_entries(
5922     Target_mips<size, big_endian>* target, Layout* layout)
5923 {
5924   if (this->page_gotno_ == 0)
5925     return;
5926
5927   Mips_output_data_got<size, big_endian>* got = target->got_section();
5928   this->got_page_offset_start_ = got->add_constant(0);
5929   if (got->multi_got() && this->index_ > 0
5930       && parameters->options().output_is_position_independent())
5931     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5932                                                   this->got_page_offset_start_);
5933   int num_entries = this->page_gotno_;
5934   unsigned int prev_offset = this->got_page_offset_start_;
5935   while (--num_entries > 0)
5936     {
5937       unsigned int next_offset = got->add_constant(0);
5938       if (got->multi_got() && this->index_ > 0
5939           && parameters->options().output_is_position_independent())
5940         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5941                                                       next_offset);
5942       gold_assert(next_offset == prev_offset + size/8);
5943       prev_offset = next_offset;
5944     }
5945   this->got_page_offset_next_ = this->got_page_offset_start_;
5946 }
5947
5948 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5949
5950 template<int size, bool big_endian>
5951 void
5952 Mips_got_info<size, big_endian>::add_global_entries(
5953     Target_mips<size, big_endian>* target, Layout* layout,
5954     unsigned int non_reloc_only_global_gotno)
5955 {
5956   Mips_output_data_got<size, big_endian>* got = target->got_section();
5957   // Add GGA_NORMAL entries.
5958   unsigned int count = 0;
5959   for (typename Got_entry_set::iterator
5960        p = this->got_entries_.begin();
5961        p != this->got_entries_.end();
5962        ++p)
5963     {
5964       Mips_got_entry<size, big_endian>* entry = *p;
5965       if (!entry->is_for_global_symbol())
5966         continue;
5967
5968       Mips_symbol<size>* mips_sym = entry->sym();
5969       if (mips_sym->global_got_area() != GGA_NORMAL)
5970         continue;
5971
5972       unsigned int got_type;
5973       if (!got->multi_got())
5974         got_type = GOT_TYPE_STANDARD;
5975       else
5976         // In multi-GOT links, global symbol can be in both primary and
5977         // secondary GOT(s).  By creating custom GOT type
5978         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5979         // is added to secondary GOT(s).
5980         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5981       if (!got->add_global(mips_sym, got_type))
5982         continue;
5983
5984       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5985       if (got->multi_got() && this->index_ == 0)
5986         count++;
5987       if (got->multi_got() && this->index_ > 0)
5988         {
5989           if (parameters->options().output_is_position_independent()
5990               || (!parameters->doing_static_link()
5991                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5992             {
5993               target->rel_dyn_section(layout)->add_global(
5994                   mips_sym, elfcpp::R_MIPS_REL32, got,
5995                   mips_sym->got_offset(got_type));
5996               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5997                                            elfcpp::R_MIPS_REL32, mips_sym);
5998             }
5999         }
6000     }
6001
6002   if (!got->multi_got() || this->index_ == 0)
6003     {
6004       if (got->multi_got())
6005         {
6006           // We need to allocate space in the primary GOT for GGA_NORMAL entries
6007           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6008           // entries correspond to dynamic symbol indexes.
6009           while (count < non_reloc_only_global_gotno)
6010             {
6011               got->add_constant(0);
6012               ++count;
6013             }
6014         }
6015
6016       // Add GGA_RELOC_ONLY entries.
6017       got->add_reloc_only_entries();
6018     }
6019 }
6020
6021 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6022
6023 template<int size, bool big_endian>
6024 void
6025 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6026     Mips_output_data_got<size, big_endian>* got)
6027 {
6028   for (typename Global_got_entry_set::iterator
6029        p = this->global_got_symbols_.begin();
6030        p != this->global_got_symbols_.end();
6031        ++p)
6032     {
6033       Mips_symbol<size>* mips_sym = *p;
6034       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6035         {
6036           unsigned int got_type;
6037           if (!got->multi_got())
6038             got_type = GOT_TYPE_STANDARD;
6039           else
6040             got_type = GOT_TYPE_STANDARD_MULTIGOT;
6041           if (got->add_global(mips_sym, got_type))
6042             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6043         }
6044     }
6045 }
6046
6047 // Create TLS GOT entries.
6048
6049 template<int size, bool big_endian>
6050 void
6051 Mips_got_info<size, big_endian>::add_tls_entries(
6052     Target_mips<size, big_endian>* target, Layout* layout)
6053 {
6054   Mips_output_data_got<size, big_endian>* got = target->got_section();
6055   // Add local tls entries.
6056   for (typename Got_entry_set::iterator
6057        p = this->got_entries_.begin();
6058        p != this->got_entries_.end();
6059        ++p)
6060     {
6061       Mips_got_entry<size, big_endian>* entry = *p;
6062       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6063         continue;
6064
6065       if (entry->tls_type() == GOT_TLS_GD)
6066         {
6067           unsigned int got_type = GOT_TYPE_TLS_PAIR;
6068           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6069                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6070           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6071                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6072
6073           if (!parameters->doing_static_link())
6074             {
6075               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6076                                            entry->shndx(), got_type,
6077                                            target->rel_dyn_section(layout),
6078                                            r_type1, entry->addend());
6079               unsigned int got_offset =
6080                 entry->object()->local_got_offset(entry->symndx(), got_type,
6081                                                   entry->addend());
6082               got->add_static_reloc(got_offset + size/8, r_type2,
6083                                     entry->object(), entry->symndx());
6084             }
6085           else
6086             {
6087               // We are doing a static link.  Mark it as belong to module 1,
6088               // the executable.
6089               unsigned int got_offset = got->add_constant(1);
6090               entry->object()->set_local_got_offset(entry->symndx(), got_type,
6091                                                     got_offset,
6092                                                     entry->addend());
6093               got->add_constant(0);
6094               got->add_static_reloc(got_offset + size/8, r_type2,
6095                                     entry->object(), entry->symndx());
6096             }
6097         }
6098       else if (entry->tls_type() == GOT_TLS_IE)
6099         {
6100           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6101           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6102                                             : elfcpp::R_MIPS_TLS_TPREL64);
6103           if (!parameters->doing_static_link())
6104             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6105                                     target->rel_dyn_section(layout), r_type,
6106                                     entry->addend());
6107           else
6108             {
6109               got->add_local(entry->object(), entry->symndx(), got_type,
6110                              entry->addend());
6111               unsigned int got_offset =
6112                   entry->object()->local_got_offset(entry->symndx(), got_type,
6113                                                     entry->addend());
6114               got->add_static_reloc(got_offset, r_type, entry->object(),
6115                                     entry->symndx());
6116             }
6117         }
6118       else if (entry->tls_type() == GOT_TLS_LDM)
6119         {
6120           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6121                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
6122           unsigned int got_offset;
6123           if (!parameters->doing_static_link())
6124             {
6125               got_offset = got->add_constant(0);
6126               target->rel_dyn_section(layout)->add_local(
6127                   entry->object(), 0, r_type, got, got_offset);
6128             }
6129           else
6130             // We are doing a static link.  Just mark it as belong to module 1,
6131             // the executable.
6132             got_offset = got->add_constant(1);
6133
6134           got->add_constant(0);
6135           got->set_tls_ldm_offset(got_offset, entry->object());
6136         }
6137       else
6138         gold_unreachable();
6139     }
6140
6141   // Add global tls entries.
6142   for (typename Got_entry_set::iterator
6143        p = this->got_entries_.begin();
6144        p != this->got_entries_.end();
6145        ++p)
6146     {
6147       Mips_got_entry<size, big_endian>* entry = *p;
6148       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6149         continue;
6150
6151       Mips_symbol<size>* mips_sym = entry->sym();
6152       if (entry->tls_type() == GOT_TLS_GD)
6153         {
6154           unsigned int got_type;
6155           if (!got->multi_got())
6156             got_type = GOT_TYPE_TLS_PAIR;
6157           else
6158             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6159           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6160                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6161           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6162                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6163           if (!parameters->doing_static_link())
6164             got->add_global_pair_with_rel(mips_sym, got_type,
6165                              target->rel_dyn_section(layout), r_type1, r_type2);
6166           else
6167             {
6168               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
6169               // GOT entries.  The first one is initialized to be 1, which is the
6170               // module index for the main executable and the second one 0.  A
6171               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6172               // the second GOT entry and will be applied by gold.
6173               unsigned int got_offset = got->add_constant(1);
6174               mips_sym->set_got_offset(got_type, got_offset);
6175               got->add_constant(0);
6176               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6177             }
6178         }
6179       else if (entry->tls_type() == GOT_TLS_IE)
6180         {
6181           unsigned int got_type;
6182           if (!got->multi_got())
6183             got_type = GOT_TYPE_TLS_OFFSET;
6184           else
6185             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6186           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6187                                             : elfcpp::R_MIPS_TLS_TPREL64);
6188           if (!parameters->doing_static_link())
6189             got->add_global_with_rel(mips_sym, got_type,
6190                                      target->rel_dyn_section(layout), r_type);
6191           else
6192             {
6193               got->add_global(mips_sym, got_type);
6194               unsigned int got_offset = mips_sym->got_offset(got_type);
6195               got->add_static_reloc(got_offset, r_type, mips_sym);
6196             }
6197         }
6198       else
6199         gold_unreachable();
6200     }
6201 }
6202
6203 // Decide whether the symbol needs an entry in the global part of the primary
6204 // GOT, setting global_got_area accordingly.  Count the number of global
6205 // symbols that are in the primary GOT only because they have dynamic
6206 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6207
6208 template<int size, bool big_endian>
6209 void
6210 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6211 {
6212   for (typename Global_got_entry_set::iterator
6213        p = this->global_got_symbols_.begin();
6214        p != this->global_got_symbols_.end();
6215        ++p)
6216     {
6217       Mips_symbol<size>* sym = *p;
6218       // Make a final decision about whether the symbol belongs in the
6219       // local or global GOT.  Symbols that bind locally can (and in the
6220       // case of forced-local symbols, must) live in the local GOT.
6221       // Those that are aren't in the dynamic symbol table must also
6222       // live in the local GOT.
6223
6224       if (!sym->should_add_dynsym_entry(symtab)
6225           || (sym->got_only_for_calls()
6226               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6227               : symbol_references_local(sym,
6228                                         sym->should_add_dynsym_entry(symtab))))
6229         // The symbol belongs in the local GOT.  We no longer need this
6230         // entry if it was only used for relocations; those relocations
6231         // will be against the null or section symbol instead.
6232         sym->set_global_got_area(GGA_NONE);
6233       else if (sym->global_got_area() == GGA_RELOC_ONLY)
6234         {
6235           ++this->reloc_only_gotno_;
6236           ++this->global_gotno_ ;
6237         }
6238     }
6239 }
6240
6241 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
6242 // VALUE if it is not initialized.
6243
6244 template<int size, bool big_endian>
6245 unsigned int
6246 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6247     Mips_output_data_got<size, big_endian>* got)
6248 {
6249   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6250   if (it != this->got_page_offsets_.end())
6251     return it->second;
6252
6253   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6254               + (size/8) * this->page_gotno_);
6255
6256   unsigned int got_offset = this->got_page_offset_next_;
6257   this->got_page_offsets_[value] = got_offset;
6258   this->got_page_offset_next_ += size/8;
6259   got->update_got_entry(got_offset, value);
6260   return got_offset;
6261 }
6262
6263 // Remove lazy-binding stubs for global symbols in this GOT.
6264
6265 template<int size, bool big_endian>
6266 void
6267 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6268     Target_mips<size, big_endian>* target)
6269 {
6270   for (typename Got_entry_set::iterator
6271        p = this->got_entries_.begin();
6272        p != this->got_entries_.end();
6273        ++p)
6274     {
6275       Mips_got_entry<size, big_endian>* entry = *p;
6276       if (entry->is_for_global_symbol())
6277         target->remove_lazy_stub_entry(entry->sym());
6278     }
6279 }
6280
6281 // Count the number of GOT entries required.
6282
6283 template<int size, bool big_endian>
6284 void
6285 Mips_got_info<size, big_endian>::count_got_entries()
6286 {
6287   for (typename Got_entry_set::iterator
6288        p = this->got_entries_.begin();
6289        p != this->got_entries_.end();
6290        ++p)
6291     {
6292       this->count_got_entry(*p);
6293     }
6294 }
6295
6296 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
6297
6298 template<int size, bool big_endian>
6299 void
6300 Mips_got_info<size, big_endian>::count_got_entry(
6301     Mips_got_entry<size, big_endian>* entry)
6302 {
6303   if (entry->is_tls_entry())
6304     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6305   else if (entry->is_for_local_symbol()
6306            || entry->sym()->global_got_area() == GGA_NONE)
6307     ++this->local_gotno_;
6308   else
6309     ++this->global_gotno_;
6310 }
6311
6312 // Add FROM's GOT entries.
6313
6314 template<int size, bool big_endian>
6315 void
6316 Mips_got_info<size, big_endian>::add_got_entries(
6317     Mips_got_info<size, big_endian>* from)
6318 {
6319   for (typename Got_entry_set::iterator
6320        p = from->got_entries_.begin();
6321        p != from->got_entries_.end();
6322        ++p)
6323     {
6324       Mips_got_entry<size, big_endian>* entry = *p;
6325       if (this->got_entries_.find(entry) == this->got_entries_.end())
6326         {
6327           Mips_got_entry<size, big_endian>* entry2 =
6328             new Mips_got_entry<size, big_endian>(*entry);
6329           this->got_entries_.insert(entry2);
6330           this->count_got_entry(entry);
6331         }
6332     }
6333 }
6334
6335 // Add FROM's GOT page entries.
6336
6337 template<int size, bool big_endian>
6338 void
6339 Mips_got_info<size, big_endian>::add_got_page_entries(
6340     Mips_got_info<size, big_endian>* from)
6341 {
6342   for (typename Got_page_entry_set::iterator
6343        p = from->got_page_entries_.begin();
6344        p != from->got_page_entries_.end();
6345        ++p)
6346     {
6347       Got_page_entry* entry = *p;
6348       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6349         {
6350           Got_page_entry* entry2 = new Got_page_entry(*entry);
6351           this->got_page_entries_.insert(entry2);
6352           this->page_gotno_ += entry->num_pages;
6353         }
6354     }
6355 }
6356
6357 // Mips_output_data_got methods.
6358
6359 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
6360 // larger than 64K, create multi-GOT.
6361
6362 template<int size, bool big_endian>
6363 void
6364 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6365     Symbol_table* symtab, const Input_objects* input_objects)
6366 {
6367   // Decide which symbols need to go in the global part of the GOT and
6368   // count the number of reloc-only GOT symbols.
6369   this->master_got_info_->count_got_symbols(symtab);
6370
6371   // Count the number of GOT entries.
6372   this->master_got_info_->count_got_entries();
6373
6374   unsigned int got_size = this->master_got_info_->got_size();
6375   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6376     this->lay_out_multi_got(layout, input_objects);
6377   else
6378     {
6379       // Record that all objects use single GOT.
6380       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6381            p != input_objects->relobj_end();
6382            ++p)
6383         {
6384           Mips_relobj<size, big_endian>* object =
6385             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6386           if (object->get_got_info() != NULL)
6387             object->set_got_info(this->master_got_info_);
6388         }
6389
6390       this->master_got_info_->add_local_entries(this->target_, layout);
6391       this->master_got_info_->add_global_entries(this->target_, layout,
6392                                                  /*not used*/-1U);
6393       this->master_got_info_->add_tls_entries(this->target_, layout);
6394     }
6395 }
6396
6397 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
6398
6399 template<int size, bool big_endian>
6400 void
6401 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6402     const Input_objects* input_objects)
6403 {
6404   // Try to merge the GOTs of input objects together, as long as they
6405   // don't seem to exceed the maximum GOT size, choosing one of them
6406   // to be the primary GOT.
6407   this->merge_gots(input_objects);
6408
6409   // Every symbol that is referenced in a dynamic relocation must be
6410   // present in the primary GOT.
6411   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6412
6413   // Add GOT entries.
6414   unsigned int i = 0;
6415   unsigned int offset = 0;
6416   Mips_got_info<size, big_endian>* g = this->primary_got_;
6417   do
6418     {
6419       g->set_index(i);
6420       g->set_offset(offset);
6421
6422       g->add_local_entries(this->target_, layout);
6423       if (i == 0)
6424         g->add_global_entries(this->target_, layout,
6425                               (this->master_got_info_->global_gotno()
6426                                - this->master_got_info_->reloc_only_gotno()));
6427       else
6428         g->add_global_entries(this->target_, layout, /*not used*/-1U);
6429       g->add_tls_entries(this->target_, layout);
6430
6431       // Forbid global symbols in every non-primary GOT from having
6432       // lazy-binding stubs.
6433       if (i > 0)
6434         g->remove_lazy_stubs(this->target_);
6435
6436       ++i;
6437       offset += g->got_size();
6438       g = g->next();
6439     }
6440   while (g);
6441 }
6442
6443 // Attempt to merge GOTs of different input objects.  Try to use as much as
6444 // possible of the primary GOT, since it doesn't require explicit dynamic
6445 // relocations, but don't use objects that would reference global symbols
6446 // out of the addressable range.  Failing the primary GOT, attempt to merge
6447 // with the current GOT, or finish the current GOT and then make make the new
6448 // GOT current.
6449
6450 template<int size, bool big_endian>
6451 void
6452 Mips_output_data_got<size, big_endian>::merge_gots(
6453     const Input_objects* input_objects)
6454 {
6455   gold_assert(this->primary_got_ == NULL);
6456   Mips_got_info<size, big_endian>* current = NULL;
6457
6458   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6459        p != input_objects->relobj_end();
6460        ++p)
6461     {
6462       Mips_relobj<size, big_endian>* object =
6463         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6464
6465       Mips_got_info<size, big_endian>* g = object->get_got_info();
6466       if (g == NULL)
6467         continue;
6468
6469       g->count_got_entries();
6470
6471       // Work out the number of page, local and TLS entries.
6472       unsigned int estimate = this->master_got_info_->page_gotno();
6473       if (estimate > g->page_gotno())
6474         estimate = g->page_gotno();
6475       estimate += g->local_gotno() + g->tls_gotno();
6476
6477       // We place TLS GOT entries after both locals and globals.  The globals
6478       // for the primary GOT may overflow the normal GOT size limit, so be
6479       // sure not to merge a GOT which requires TLS with the primary GOT in that
6480       // case.  This doesn't affect non-primary GOTs.
6481       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6482                                       : g->global_gotno());
6483
6484       unsigned int max_count =
6485         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6486       if (estimate <= max_count)
6487         {
6488           // If we don't have a primary GOT, use it as
6489           // a starting point for the primary GOT.
6490           if (!this->primary_got_)
6491             {
6492               this->primary_got_ = g;
6493               continue;
6494             }
6495
6496           // Try merging with the primary GOT.
6497           if (this->merge_got_with(g, object, this->primary_got_))
6498             continue;
6499         }
6500
6501       // If we can merge with the last-created GOT, do it.
6502       if (current && this->merge_got_with(g, object, current))
6503         continue;
6504
6505       // Well, we couldn't merge, so create a new GOT.  Don't check if it
6506       // fits; if it turns out that it doesn't, we'll get relocation
6507       // overflows anyway.
6508       g->set_next(current);
6509       current = g;
6510     }
6511
6512   // If we do not find any suitable primary GOT, create an empty one.
6513   if (this->primary_got_ == NULL)
6514     this->primary_got_ = new Mips_got_info<size, big_endian>();
6515
6516   // Link primary GOT with secondary GOTs.
6517   this->primary_got_->set_next(current);
6518 }
6519
6520 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
6521 // this would lead to overflow, true if they were merged successfully.
6522
6523 template<int size, bool big_endian>
6524 bool
6525 Mips_output_data_got<size, big_endian>::merge_got_with(
6526     Mips_got_info<size, big_endian>* from,
6527     Mips_relobj<size, big_endian>* object,
6528     Mips_got_info<size, big_endian>* to)
6529 {
6530   // Work out how many page entries we would need for the combined GOT.
6531   unsigned int estimate = this->master_got_info_->page_gotno();
6532   if (estimate >= from->page_gotno() + to->page_gotno())
6533     estimate = from->page_gotno() + to->page_gotno();
6534
6535   // Conservatively estimate how many local and TLS entries would be needed.
6536   estimate += from->local_gotno() + to->local_gotno();
6537   estimate += from->tls_gotno() + to->tls_gotno();
6538
6539   // If we're merging with the primary got, any TLS relocations will
6540   // come after the full set of global entries.  Otherwise estimate those
6541   // conservatively as well.
6542   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6543     estimate += this->master_got_info_->global_gotno();
6544   else
6545     estimate += from->global_gotno() + to->global_gotno();
6546
6547   // Bail out if the combined GOT might be too big.
6548   unsigned int max_count =
6549     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6550   if (estimate > max_count)
6551     return false;
6552
6553   // Transfer the object's GOT information from FROM to TO.
6554   to->add_got_entries(from);
6555   to->add_got_page_entries(from);
6556
6557   // Record that OBJECT should use output GOT TO.
6558   object->set_got_info(to);
6559
6560   return true;
6561 }
6562
6563 // Write out the GOT.
6564
6565 template<int size, bool big_endian>
6566 void
6567 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6568 {
6569   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6570       Mips_stubs_entry_set;
6571
6572   // Call parent to write out GOT.
6573   Output_data_got<size, big_endian>::do_write(of);
6574
6575   const off_t offset = this->offset();
6576   const section_size_type oview_size =
6577     convert_to_section_size_type(this->data_size());
6578   unsigned char* const oview = of->get_output_view(offset, oview_size);
6579
6580   // Needed for fixing values of .got section.
6581   this->got_view_ = oview;
6582
6583   // Write lazy stub addresses.
6584   for (typename Mips_stubs_entry_set::iterator
6585        p = this->master_got_info_->global_got_symbols().begin();
6586        p != this->master_got_info_->global_got_symbols().end();
6587        ++p)
6588     {
6589       Mips_symbol<size>* mips_sym = *p;
6590       if (mips_sym->has_lazy_stub())
6591         {
6592           Valtype* wv = reinterpret_cast<Valtype*>(
6593             oview + this->get_primary_got_offset(mips_sym));
6594           Valtype value =
6595             this->target_->mips_stubs_section()->stub_address(mips_sym);
6596           elfcpp::Swap<size, big_endian>::writeval(wv, value);
6597         }
6598     }
6599
6600   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6601   for (typename Mips_stubs_entry_set::iterator
6602        p = this->master_got_info_->global_got_symbols().begin();
6603        p != this->master_got_info_->global_got_symbols().end();
6604        ++p)
6605     {
6606       Mips_symbol<size>* mips_sym = *p;
6607       if (!this->multi_got()
6608           && (mips_sym->is_mips16() || mips_sym->is_micromips())
6609           && mips_sym->global_got_area() == GGA_NONE
6610           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6611         {
6612           Valtype* wv = reinterpret_cast<Valtype*>(
6613             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6614           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6615           if (value != 0)
6616             {
6617               value |= 1;
6618               elfcpp::Swap<size, big_endian>::writeval(wv, value);
6619             }
6620         }
6621     }
6622
6623   if (!this->secondary_got_relocs_.empty())
6624     {
6625       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
6626       // secondary GOT entries with non-zero initial value copy the value
6627       // to the corresponding primary GOT entry, and set the secondary GOT
6628       // entry to zero.
6629       // TODO(sasa): This is workaround.  It needs to be investigated further.
6630
6631       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6632         {
6633           Static_reloc& reloc(this->secondary_got_relocs_[i]);
6634           if (reloc.symbol_is_global())
6635             {
6636               Mips_symbol<size>* gsym = reloc.symbol();
6637               gold_assert(gsym != NULL);
6638
6639               unsigned got_offset = reloc.got_offset();
6640               gold_assert(got_offset < oview_size);
6641
6642               // Find primary GOT entry.
6643               Valtype* wv_prim = reinterpret_cast<Valtype*>(
6644                 oview + this->get_primary_got_offset(gsym));
6645
6646               // Find secondary GOT entry.
6647               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6648
6649               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6650               if (value != 0)
6651                 {
6652                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6653                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6654                   gsym->set_applied_secondary_got_fixup();
6655                 }
6656             }
6657         }
6658
6659       of->write_output_view(offset, oview_size, oview);
6660     }
6661
6662   // We are done if there is no fix up.
6663   if (this->static_relocs_.empty())
6664     return;
6665
6666   Output_segment* tls_segment = this->layout_->tls_segment();
6667   gold_assert(tls_segment != NULL);
6668
6669   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6670     {
6671       Static_reloc& reloc(this->static_relocs_[i]);
6672
6673       Mips_address value;
6674       if (!reloc.symbol_is_global())
6675         {
6676           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6677           const Symbol_value<size>* psymval =
6678             object->local_symbol(reloc.index());
6679
6680           // We are doing static linking.  Issue an error and skip this
6681           // relocation if the symbol is undefined or in a discarded_section.
6682           bool is_ordinary;
6683           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6684           if ((shndx == elfcpp::SHN_UNDEF)
6685               || (is_ordinary
6686                   && shndx != elfcpp::SHN_UNDEF
6687                   && !object->is_section_included(shndx)
6688                   && !this->symbol_table_->is_section_folded(object, shndx)))
6689             {
6690               gold_error(_("undefined or discarded local symbol %u from "
6691                            " object %s in GOT"),
6692                          reloc.index(), reloc.relobj()->name().c_str());
6693               continue;
6694             }
6695
6696           value = psymval->value(object, 0);
6697         }
6698       else
6699         {
6700           const Mips_symbol<size>* gsym = reloc.symbol();
6701           gold_assert(gsym != NULL);
6702
6703           // We are doing static linking.  Issue an error and skip this
6704           // relocation if the symbol is undefined or in a discarded_section
6705           // unless it is a weakly_undefined symbol.
6706           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6707               && !gsym->is_weak_undefined())
6708             {
6709               gold_error(_("undefined or discarded symbol %s in GOT"),
6710                          gsym->name());
6711               continue;
6712             }
6713
6714           if (!gsym->is_weak_undefined())
6715             value = gsym->value();
6716           else
6717             value = 0;
6718         }
6719
6720       unsigned got_offset = reloc.got_offset();
6721       gold_assert(got_offset < oview_size);
6722
6723       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6724       Valtype x;
6725
6726       switch (reloc.r_type())
6727         {
6728         case elfcpp::R_MIPS_TLS_DTPMOD32:
6729         case elfcpp::R_MIPS_TLS_DTPMOD64:
6730           x = value;
6731           break;
6732         case elfcpp::R_MIPS_TLS_DTPREL32:
6733         case elfcpp::R_MIPS_TLS_DTPREL64:
6734           x = value - elfcpp::DTP_OFFSET;
6735           break;
6736         case elfcpp::R_MIPS_TLS_TPREL32:
6737         case elfcpp::R_MIPS_TLS_TPREL64:
6738           x = value - elfcpp::TP_OFFSET;
6739           break;
6740         default:
6741           gold_unreachable();
6742           break;
6743         }
6744
6745       elfcpp::Swap<size, big_endian>::writeval(wv, x);
6746     }
6747
6748   of->write_output_view(offset, oview_size, oview);
6749 }
6750
6751 // Mips_relobj methods.
6752
6753 // Count the local symbols.  The Mips backend needs to know if a symbol
6754 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
6755 // because the Symbol object keeps the ELF symbol type and st_other field.
6756 // For local symbol it is harder because we cannot access this information.
6757 // So we override the do_count_local_symbol in parent and scan local symbols to
6758 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
6759 // I do not want to slow down other ports by calling a per symbol target hook
6760 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6761
6762 template<int size, bool big_endian>
6763 void
6764 Mips_relobj<size, big_endian>::do_count_local_symbols(
6765     Stringpool_template<char>* pool,
6766     Stringpool_template<char>* dynpool)
6767 {
6768   // Ask parent to count the local symbols.
6769   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6770   const unsigned int loccount = this->local_symbol_count();
6771   if (loccount == 0)
6772     return;
6773
6774   // Initialize the mips16 and micromips function bit-vector.
6775   this->local_symbol_is_mips16_.resize(loccount, false);
6776   this->local_symbol_is_micromips_.resize(loccount, false);
6777
6778   // Read the symbol table section header.
6779   const unsigned int symtab_shndx = this->symtab_shndx();
6780   elfcpp::Shdr<size, big_endian>
6781     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6782   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6783
6784   // Read the local symbols.
6785   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6786   gold_assert(loccount == symtabshdr.get_sh_info());
6787   off_t locsize = loccount * sym_size;
6788   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6789                                               locsize, true, true);
6790
6791   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6792
6793   // Skip the first dummy symbol.
6794   psyms += sym_size;
6795   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6796     {
6797       elfcpp::Sym<size, big_endian> sym(psyms);
6798       unsigned char st_other = sym.get_st_other();
6799       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6800       this->local_symbol_is_micromips_[i] =
6801         elfcpp::elf_st_is_micromips(st_other);
6802     }
6803 }
6804
6805 // Read the symbol information.
6806
6807 template<int size, bool big_endian>
6808 void
6809 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6810 {
6811   // Call parent class to read symbol information.
6812   this->base_read_symbols(sd);
6813
6814   // Read processor-specific flags in ELF file header.
6815   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6816                                             elfcpp::Elf_sizes<size>::ehdr_size,
6817                                             true, false);
6818   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6819   this->processor_specific_flags_ = ehdr.get_e_flags();
6820
6821   // Get the section names.
6822   const unsigned char* pnamesu = sd->section_names->data();
6823   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6824
6825   // Initialize the mips16 stub section bit-vectors.
6826   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6827   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6828   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6829
6830   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6831   const unsigned char* pshdrs = sd->section_headers->data();
6832   const unsigned char* ps = pshdrs + shdr_size;
6833   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6834     {
6835       elfcpp::Shdr<size, big_endian> shdr(ps);
6836
6837       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6838         {
6839           this->has_reginfo_section_ = true;
6840           // Read the gp value that was used to create this object.  We need the
6841           // gp value while processing relocs.  The .reginfo section is not used
6842           // in the 64-bit MIPS ELF ABI.
6843           section_offset_type section_offset = shdr.get_sh_offset();
6844           section_size_type section_size =
6845             convert_to_section_size_type(shdr.get_sh_size());
6846           const unsigned char* view =
6847              this->get_view(section_offset, section_size, true, false);
6848
6849           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6850
6851           // Read the rest of .reginfo.
6852           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6853           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6854           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6855           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6856           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6857         }
6858
6859       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6860         {
6861           gold_assert(this->attributes_section_data_ == NULL);
6862           section_offset_type section_offset = shdr.get_sh_offset();
6863           section_size_type section_size =
6864             convert_to_section_size_type(shdr.get_sh_size());
6865           const unsigned char* view =
6866             this->get_view(section_offset, section_size, true, false);
6867           this->attributes_section_data_ =
6868             new Attributes_section_data(view, section_size);
6869         }
6870
6871       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6872         {
6873           gold_assert(this->abiflags_ == NULL);
6874           section_offset_type section_offset = shdr.get_sh_offset();
6875           section_size_type section_size =
6876             convert_to_section_size_type(shdr.get_sh_size());
6877           const unsigned char* view =
6878             this->get_view(section_offset, section_size, true, false);
6879           this->abiflags_ = new Mips_abiflags<big_endian>();
6880
6881           this->abiflags_->version =
6882             elfcpp::Swap<16, big_endian>::readval(view);
6883           if (this->abiflags_->version != 0)
6884             {
6885               gold_error(_("%s: .MIPS.abiflags section has "
6886                            "unsupported version %u"),
6887                          this->name().c_str(),
6888                          this->abiflags_->version);
6889               break;
6890             }
6891           this->abiflags_->isa_level =
6892             elfcpp::Swap<8, big_endian>::readval(view + 2);
6893           this->abiflags_->isa_rev =
6894             elfcpp::Swap<8, big_endian>::readval(view + 3);
6895           this->abiflags_->gpr_size =
6896             elfcpp::Swap<8, big_endian>::readval(view + 4);
6897           this->abiflags_->cpr1_size =
6898             elfcpp::Swap<8, big_endian>::readval(view + 5);
6899           this->abiflags_->cpr2_size =
6900             elfcpp::Swap<8, big_endian>::readval(view + 6);
6901           this->abiflags_->fp_abi =
6902             elfcpp::Swap<8, big_endian>::readval(view + 7);
6903           this->abiflags_->isa_ext =
6904             elfcpp::Swap<32, big_endian>::readval(view + 8);
6905           this->abiflags_->ases =
6906             elfcpp::Swap<32, big_endian>::readval(view + 12);
6907           this->abiflags_->flags1 =
6908             elfcpp::Swap<32, big_endian>::readval(view + 16);
6909           this->abiflags_->flags2 =
6910             elfcpp::Swap<32, big_endian>::readval(view + 20);
6911         }
6912
6913       // In the 64-bit ABI, .MIPS.options section holds register information.
6914       // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6915       // starts with this header:
6916       //
6917       // typedef struct
6918       // {
6919       //   // Type of option.
6920       //   unsigned char kind[1];
6921       //   // Size of option descriptor, including header.
6922       //   unsigned char size[1];
6923       //   // Section index of affected section, or 0 for global option.
6924       //   unsigned char section[2];
6925       //   // Information specific to this kind of option.
6926       //   unsigned char info[4];
6927       // };
6928       //
6929       // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6930       // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
6931       // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6932
6933       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6934         {
6935           section_offset_type section_offset = shdr.get_sh_offset();
6936           section_size_type section_size =
6937             convert_to_section_size_type(shdr.get_sh_size());
6938           const unsigned char* view =
6939              this->get_view(section_offset, section_size, true, false);
6940           const unsigned char* end = view + section_size;
6941
6942           while (view + 8 <= end)
6943             {
6944               unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6945               unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6946               if (sz < 8)
6947                 {
6948                   gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6949                                "than its header"),
6950                              this->name().c_str(),
6951                              this->mips_elf_options_section_name(), sz);
6952                   break;
6953                 }
6954
6955               if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6956                 {
6957                   // In the 64 bit ABI, an ODK_REGINFO option is the following
6958                   // structure.  The info field of the options header is not
6959                   // used.
6960                   //
6961                   // typedef struct
6962                   // {
6963                   //   // Mask of general purpose registers used.
6964                   //   unsigned char ri_gprmask[4];
6965                   //   // Padding.
6966                   //   unsigned char ri_pad[4];
6967                   //   // Mask of co-processor registers used.
6968                   //   unsigned char ri_cprmask[4][4];
6969                   //   // GP register value for this object file.
6970                   //   unsigned char ri_gp_value[8];
6971                   // };
6972
6973                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6974                                                                       + 32);
6975                 }
6976               else if (kind == elfcpp::ODK_REGINFO)
6977                 {
6978                   // In the 32 bit ABI, an ODK_REGINFO option is the following
6979                   // structure.  The info field of the options header is not
6980                   // used.  The same structure is used in .reginfo section.
6981                   //
6982                   // typedef struct
6983                   // {
6984                   //   unsigned char ri_gprmask[4];
6985                   //   unsigned char ri_cprmask[4][4];
6986                   //   unsigned char ri_gp_value[4];
6987                   // };
6988
6989                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6990                                                                       + 28);
6991                 }
6992               view += sz;
6993             }
6994         }
6995
6996       const char* name = pnames + shdr.get_sh_name();
6997       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6998       this->section_is_mips16_call_stub_[i] =
6999         is_prefix_of(".mips16.call.", name);
7000       this->section_is_mips16_call_fp_stub_[i] =
7001         is_prefix_of(".mips16.call.fp.", name);
7002
7003       if (strcmp(name, ".pdr") == 0)
7004         {
7005           gold_assert(this->pdr_shndx_ == -1U);
7006           this->pdr_shndx_ = i;
7007         }
7008     }
7009 }
7010
7011 // Discard MIPS16 stub secions that are not needed.
7012
7013 template<int size, bool big_endian>
7014 void
7015 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7016 {
7017   for (typename Mips16_stubs_int_map::const_iterator
7018        it = this->mips16_stub_sections_.begin();
7019        it != this->mips16_stub_sections_.end(); ++it)
7020     {
7021       Mips16_stub_section<size, big_endian>* stub_section = it->second;
7022       if (!stub_section->is_target_found())
7023         {
7024           gold_error(_("no relocation found in mips16 stub section '%s'"),
7025                      stub_section->object()
7026                        ->section_name(stub_section->shndx()).c_str());
7027         }
7028
7029       bool discard = false;
7030       if (stub_section->is_for_local_function())
7031         {
7032           if (stub_section->is_fn_stub())
7033             {
7034               // This stub is for a local symbol.  This stub will only
7035               // be needed if there is some relocation in this object,
7036               // other than a 16 bit function call, which refers to this
7037               // symbol.
7038               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7039                 discard = true;
7040               else
7041                 this->add_local_mips16_fn_stub(stub_section);
7042             }
7043           else
7044             {
7045               // This stub is for a local symbol.  This stub will only
7046               // be needed if there is some relocation (R_MIPS16_26) in
7047               // this object that refers to this symbol.
7048               gold_assert(stub_section->is_call_stub()
7049                           || stub_section->is_call_fp_stub());
7050               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7051                 discard = true;
7052               else
7053                 this->add_local_mips16_call_stub(stub_section);
7054             }
7055         }
7056       else
7057         {
7058           Mips_symbol<size>* gsym = stub_section->gsym();
7059           if (stub_section->is_fn_stub())
7060             {
7061               if (gsym->has_mips16_fn_stub())
7062                 // We already have a stub for this function.
7063                 discard = true;
7064               else
7065                 {
7066                   gsym->set_mips16_fn_stub(stub_section);
7067                   if (gsym->should_add_dynsym_entry(symtab))
7068                     {
7069                       // If we have a MIPS16 function with a stub, the
7070                       // dynamic symbol must refer to the stub, since only
7071                       // the stub uses the standard calling conventions.
7072                       gsym->set_need_fn_stub();
7073                       if (gsym->is_from_dynobj())
7074                         gsym->set_needs_dynsym_value();
7075                     }
7076                 }
7077               if (!gsym->need_fn_stub())
7078                 discard = true;
7079             }
7080           else if (stub_section->is_call_stub())
7081             {
7082               if (gsym->is_mips16())
7083                 // We don't need the call_stub; this is a 16 bit
7084                 // function, so calls from other 16 bit functions are
7085                 // OK.
7086                 discard = true;
7087               else if (gsym->has_mips16_call_stub())
7088                 // We already have a stub for this function.
7089                 discard = true;
7090               else
7091                 gsym->set_mips16_call_stub(stub_section);
7092             }
7093           else
7094             {
7095               gold_assert(stub_section->is_call_fp_stub());
7096               if (gsym->is_mips16())
7097                 // We don't need the call_stub; this is a 16 bit
7098                 // function, so calls from other 16 bit functions are
7099                 // OK.
7100                 discard = true;
7101               else if (gsym->has_mips16_call_fp_stub())
7102                 // We already have a stub for this function.
7103                 discard = true;
7104               else
7105                 gsym->set_mips16_call_fp_stub(stub_section);
7106             }
7107         }
7108       if (discard)
7109         this->set_output_section(stub_section->shndx(), NULL);
7110    }
7111 }
7112
7113 // Mips_output_data_la25_stub methods.
7114
7115 // Template for standard LA25 stub.
7116 template<int size, bool big_endian>
7117 const uint32_t
7118 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7119 {
7120   0x3c190000,           // lui $25,%hi(func)
7121   0x08000000,           // j func
7122   0x27390000,           // add $25,$25,%lo(func)
7123   0x00000000            // nop
7124 };
7125
7126 // Template for microMIPS LA25 stub.
7127 template<int size, bool big_endian>
7128 const uint32_t
7129 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7130 {
7131   0x41b9, 0x0000,       // lui t9,%hi(func)
7132   0xd400, 0x0000,       // j func
7133   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
7134   0x0000, 0x0000        // nop
7135 };
7136
7137 // Create la25 stub for a symbol.
7138
7139 template<int size, bool big_endian>
7140 void
7141 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7142     Symbol_table* symtab, Target_mips<size, big_endian>* target,
7143     Mips_symbol<size>* gsym)
7144 {
7145   if (!gsym->has_la25_stub())
7146     {
7147       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7148       this->symbols_.push_back(gsym);
7149       this->create_stub_symbol(gsym, symtab, target, 16);
7150     }
7151 }
7152
7153 // Create a symbol for SYM stub's value and size, to help make the disassembly
7154 // easier to read.
7155
7156 template<int size, bool big_endian>
7157 void
7158 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7159     Mips_symbol<size>* sym, Symbol_table* symtab,
7160     Target_mips<size, big_endian>* target, uint64_t symsize)
7161 {
7162   std::string name(".pic.");
7163   name += sym->name();
7164
7165   unsigned int offset = sym->la25_stub_offset();
7166   if (sym->is_micromips())
7167     offset |= 1;
7168
7169   // Make it a local function.
7170   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7171                                       Symbol_table::PREDEFINED,
7172                                       target->la25_stub_section(),
7173                                       offset, symsize, elfcpp::STT_FUNC,
7174                                       elfcpp::STB_LOCAL,
7175                                       elfcpp::STV_DEFAULT, 0,
7176                                       false, false);
7177   new_sym->set_is_forced_local();
7178 }
7179
7180 // Write out la25 stubs.  This uses the hand-coded instructions above,
7181 // and adjusts them as needed.
7182
7183 template<int size, bool big_endian>
7184 void
7185 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7186 {
7187   const off_t offset = this->offset();
7188   const section_size_type oview_size =
7189     convert_to_section_size_type(this->data_size());
7190   unsigned char* const oview = of->get_output_view(offset, oview_size);
7191
7192   for (typename std::vector<Mips_symbol<size>*>::iterator
7193        p = this->symbols_.begin();
7194        p != this->symbols_.end();
7195        ++p)
7196     {
7197       Mips_symbol<size>* sym = *p;
7198       unsigned char* pov = oview + sym->la25_stub_offset();
7199
7200       Mips_address target = sym->value();
7201       if (!sym->is_micromips())
7202         {
7203           elfcpp::Swap<32, big_endian>::writeval(pov,
7204               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7205           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7206               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7207           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7208               la25_stub_entry[2] | (target & 0xffff));
7209           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7210         }
7211       else
7212         {
7213           target |= 1;
7214           // First stub instruction.  Paste high 16-bits of the target.
7215           elfcpp::Swap<16, big_endian>::writeval(pov,
7216                                                  la25_stub_micromips_entry[0]);
7217           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7218               ((target + 0x8000) >> 16) & 0xffff);
7219           // Second stub instruction.  Paste low 26-bits of the target, shifted
7220           // right by 1.
7221           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7222               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7223           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7224               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7225           // Third stub instruction.  Paste low 16-bits of the target.
7226           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7227                                                  la25_stub_micromips_entry[4]);
7228           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7229           // Fourth stub instruction.
7230           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7231                                                  la25_stub_micromips_entry[6]);
7232           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7233                                                  la25_stub_micromips_entry[7]);
7234         }
7235     }
7236
7237   of->write_output_view(offset, oview_size, oview);
7238 }
7239
7240 // Mips_output_data_plt methods.
7241
7242 // The format of the first PLT entry in an O32 executable.
7243 template<int size, bool big_endian>
7244 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7245 {
7246   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
7247   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
7248   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
7249   0x031cc023,         // subu $24, $24, $28
7250   0x03e07825,         // or $15, $31, zero
7251   0x0018c082,         // srl $24, $24, 2
7252   0x0320f809,         // jalr $25
7253   0x2718fffe          // subu $24, $24, 2
7254 };
7255
7256 // The format of the first PLT entry in an N32 executable.  Different
7257 // because gp ($28) is not available; we use t2 ($14) instead.
7258 template<int size, bool big_endian>
7259 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7260 {
7261   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7262   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
7263   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7264   0x030ec023,         // subu $24, $24, $14
7265   0x03e07825,         // or $15, $31, zero
7266   0x0018c082,         // srl $24, $24, 2
7267   0x0320f809,         // jalr $25
7268   0x2718fffe          // subu $24, $24, 2
7269 };
7270
7271 // The format of the first PLT entry in an N64 executable.  Different
7272 // from N32 because of the increased size of GOT entries.
7273 template<int size, bool big_endian>
7274 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7275 {
7276   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7277   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
7278   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7279   0x030ec023,         // subu $24, $24, $14
7280   0x03e07825,         // or $15, $31, zero
7281   0x0018c0c2,         // srl $24, $24, 3
7282   0x0320f809,         // jalr $25
7283   0x2718fffe          // subu $24, $24, 2
7284 };
7285
7286 // The format of the microMIPS first PLT entry in an O32 executable.
7287 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7288 // of the GOTPLT entry handled, so this stub may only be used when
7289 // all the subsequent PLT entries are microMIPS code too.
7290 //
7291 // The trailing NOP is for alignment and correct disassembly only.
7292 template<int size, bool big_endian>
7293 const uint32_t Mips_output_data_plt<size, big_endian>::
7294 plt0_entry_micromips_o32[] =
7295 {
7296   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
7297   0xff23, 0x0000,      // lw $25, 0($3)
7298   0x0535,              // subu $2, $2, $3
7299   0x2525,              // srl $2, $2, 2
7300   0x3302, 0xfffe,      // subu $24, $2, 2
7301   0x0dff,              // move $15, $31
7302   0x45f9,              // jalrs $25
7303   0x0f83,              // move $28, $3
7304   0x0c00               // nop
7305 };
7306
7307 // The format of the microMIPS first PLT entry in an O32 executable
7308 // in the insn32 mode.
7309 template<int size, bool big_endian>
7310 const uint32_t Mips_output_data_plt<size, big_endian>::
7311 plt0_entry_micromips32_o32[] =
7312 {
7313   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
7314   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
7315   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
7316   0x0398, 0xc1d0,      // subu $24, $24, $28
7317   0x001f, 0x7a90,      // or $15, $31, zero
7318   0x0318, 0x1040,      // srl $24, $24, 2
7319   0x03f9, 0x0f3c,      // jalr $25
7320   0x3318, 0xfffe       // subu $24, $24, 2
7321 };
7322
7323 // The format of subsequent standard entries in the PLT.
7324 template<int size, bool big_endian>
7325 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7326 {
7327   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7328   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7329   0x03200008,           // jr $25
7330   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7331 };
7332
7333 // The format of subsequent R6 PLT entries.
7334 template<int size, bool big_endian>
7335 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7336 {
7337   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7338   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7339   0x03200009,           // jr $25
7340   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7341 };
7342
7343 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
7344 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7345 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7346 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7347 // target function address in register v0.
7348 template<int size, bool big_endian>
7349 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7350 {
7351   0xb303,              // lw $3, 12($pc)
7352   0x651b,              // move $24, $3
7353   0x9b60,              // lw $3, 0($3)
7354   0xeb00,              // jr $3
7355   0x653b,              // move $25, $3
7356   0x6500,              // nop
7357   0x0000, 0x0000       // .word (.got.plt entry)
7358 };
7359
7360 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
7361 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7362 template<int size, bool big_endian>
7363 const uint32_t Mips_output_data_plt<size, big_endian>::
7364 plt_entry_micromips_o32[] =
7365 {
7366   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
7367   0xff22, 0x0000,      // lw $25, 0($2)
7368   0x4599,              // jr $25
7369   0x0f02               // move $24, $2
7370 };
7371
7372 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7373 template<int size, bool big_endian>
7374 const uint32_t Mips_output_data_plt<size, big_endian>::
7375 plt_entry_micromips32_o32[] =
7376 {
7377   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
7378   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
7379   0x0019, 0x0f3c,      // jr $25
7380   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
7381 };
7382
7383 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7384
7385 template<int size, bool big_endian>
7386 void
7387 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7388                                                   unsigned int r_type)
7389 {
7390   gold_assert(!gsym->has_plt_offset());
7391
7392   // Final PLT offset for a symbol will be set in method set_plt_offsets().
7393   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7394                        + sizeof(plt0_entry_o32));
7395   this->symbols_.push_back(gsym);
7396
7397   // Record whether the relocation requires a standard MIPS
7398   // or a compressed code entry.
7399   if (jal_reloc(r_type))
7400    {
7401      if (r_type == elfcpp::R_MIPS_26)
7402        gsym->set_needs_mips_plt(true);
7403      else
7404        gsym->set_needs_comp_plt(true);
7405    }
7406
7407   section_offset_type got_offset = this->got_plt_->current_data_size();
7408
7409   // Every PLT entry needs a GOT entry which points back to the PLT
7410   // entry (this will be changed by the dynamic linker, normally
7411   // lazily when the function is called).
7412   this->got_plt_->set_current_data_size(got_offset + size/8);
7413
7414   gsym->set_needs_dynsym_entry();
7415   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7416                          got_offset);
7417 }
7418
7419 // Set final PLT offsets.  For each symbol, determine whether standard or
7420 // compressed (MIPS16 or microMIPS) PLT entry is used.
7421
7422 template<int size, bool big_endian>
7423 void
7424 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7425 {
7426   // The sizes of individual PLT entries.
7427   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7428   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7429                                       ? this->compressed_plt_entry_size() : 0);
7430
7431   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7432        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7433     {
7434       Mips_symbol<size>* mips_sym = *p;
7435
7436       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7437       // so always use a standard entry there.
7438       //
7439       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7440       // all MIPS16 calls will go via that stub, and there is no benefit
7441       // to having a MIPS16 entry.  And in the case of call_stub a
7442       // standard entry actually has to be used as the stub ends with a J
7443       // instruction.
7444       if (this->target_->is_output_newabi()
7445           || mips_sym->has_mips16_call_stub()
7446           || mips_sym->has_mips16_call_fp_stub())
7447         {
7448           mips_sym->set_needs_mips_plt(true);
7449           mips_sym->set_needs_comp_plt(false);
7450         }
7451
7452       // Otherwise, if there are no direct calls to the function, we
7453       // have a free choice of whether to use standard or compressed
7454       // entries.  Prefer microMIPS entries if the object is known to
7455       // contain microMIPS code, so that it becomes possible to create
7456       // pure microMIPS binaries.  Prefer standard entries otherwise,
7457       // because MIPS16 ones are no smaller and are usually slower.
7458       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7459         {
7460           if (this->target_->is_output_micromips())
7461             mips_sym->set_needs_comp_plt(true);
7462           else
7463             mips_sym->set_needs_mips_plt(true);
7464         }
7465
7466       if (mips_sym->needs_mips_plt())
7467         {
7468           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7469           this->plt_mips_offset_ += plt_mips_entry_size;
7470         }
7471       if (mips_sym->needs_comp_plt())
7472         {
7473           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7474           this->plt_comp_offset_ += plt_comp_entry_size;
7475         }
7476     }
7477
7478     // Figure out the size of the PLT header if we know that we are using it.
7479     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7480       this->plt_header_size_ = this->get_plt_header_size();
7481 }
7482
7483 // Write out the PLT.  This uses the hand-coded instructions above,
7484 // and adjusts them as needed.
7485
7486 template<int size, bool big_endian>
7487 void
7488 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7489 {
7490   const off_t offset = this->offset();
7491   const section_size_type oview_size =
7492     convert_to_section_size_type(this->data_size());
7493   unsigned char* const oview = of->get_output_view(offset, oview_size);
7494
7495   const off_t gotplt_file_offset = this->got_plt_->offset();
7496   const section_size_type gotplt_size =
7497     convert_to_section_size_type(this->got_plt_->data_size());
7498   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7499                                                          gotplt_size);
7500   unsigned char* pov = oview;
7501
7502   Mips_address plt_address = this->address();
7503
7504   // Calculate the address of .got.plt.
7505   Mips_address gotplt_addr = this->got_plt_->address();
7506   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7507   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7508
7509   // The PLT sequence is not safe for N64 if .got.plt's address can
7510   // not be loaded in two instructions.
7511   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7512               || ~(gotplt_addr | 0x7fffffff) == 0);
7513
7514   // Write the PLT header.
7515   const uint32_t* plt0_entry = this->get_plt_header_entry();
7516   if (plt0_entry == plt0_entry_micromips_o32)
7517     {
7518       // Write microMIPS PLT header.
7519       gold_assert(gotplt_addr % 4 == 0);
7520
7521       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7522
7523       // ADDIUPC has a span of +/-16MB, check we're in range.
7524       if (gotpc_offset + 0x1000000 >= 0x2000000)
7525        {
7526          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7527                     "ADDIUPC"), (long)gotpc_offset);
7528          return;
7529        }
7530
7531       elfcpp::Swap<16, big_endian>::writeval(pov,
7532                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7533       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7534                                              (gotpc_offset >> 2) & 0xffff);
7535       pov += 4;
7536       for (unsigned int i = 2;
7537            i < (sizeof(plt0_entry_micromips_o32)
7538                 / sizeof(plt0_entry_micromips_o32[0]));
7539            i++)
7540         {
7541           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7542           pov += 2;
7543         }
7544     }
7545   else if (plt0_entry == plt0_entry_micromips32_o32)
7546     {
7547       // Write microMIPS PLT header in insn32 mode.
7548       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7549       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7550       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7551       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7552       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7553       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7554       pov += 12;
7555       for (unsigned int i = 6;
7556            i < (sizeof(plt0_entry_micromips32_o32)
7557                 / sizeof(plt0_entry_micromips32_o32[0]));
7558            i++)
7559         {
7560           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7561           pov += 2;
7562         }
7563     }
7564   else
7565     {
7566       // Write standard PLT header.
7567       elfcpp::Swap<32, big_endian>::writeval(pov,
7568                                              plt0_entry[0] | gotplt_addr_high);
7569       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7570                                              plt0_entry[1] | gotplt_addr_low);
7571       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7572                                              plt0_entry[2] | gotplt_addr_low);
7573       pov += 12;
7574       for (int i = 3; i < 8; i++)
7575         {
7576           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7577           pov += 4;
7578         }
7579     }
7580
7581
7582   unsigned char* gotplt_pov = gotplt_view;
7583   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7584
7585   // The first two entries in .got.plt are reserved.
7586   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7587   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7588
7589   unsigned int gotplt_offset = 2 * got_entry_size;
7590   gotplt_pov += 2 * got_entry_size;
7591
7592   // Calculate the address of the PLT header.
7593   Mips_address header_address = (plt_address
7594                                  + (this->is_plt_header_compressed() ? 1 : 0));
7595
7596   // Initialize compressed PLT area view.
7597   unsigned char* pov2 = pov + this->plt_mips_offset_;
7598
7599   // Write the PLT entries.
7600   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7601        p = this->symbols_.begin();
7602        p != this->symbols_.end();
7603        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7604     {
7605       Mips_symbol<size>* mips_sym = *p;
7606
7607       // Calculate the address of the .got.plt entry.
7608       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7609       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7610                                        & 0xffff);
7611       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7612
7613       // Initially point the .got.plt entry at the PLT header.
7614       if (this->target_->is_output_n64())
7615         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7616       else
7617         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7618
7619       // Now handle the PLT itself.  First the standard entry.
7620       if (mips_sym->has_mips_plt_offset())
7621         {
7622           // Pick the load opcode (LW or LD).
7623           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7624                                                          : 0x8c000000;
7625
7626           const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7627                                                                 : plt_entry;
7628
7629           // Fill in the PLT entry itself.
7630           elfcpp::Swap<32, big_endian>::writeval(pov,
7631               entry[0] | gotplt_entry_addr_hi);
7632           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7633               entry[1] | gotplt_entry_addr_lo | load);
7634           elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7635           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7636               entry[3] | gotplt_entry_addr_lo);
7637           pov += 16;
7638         }
7639
7640       // Now the compressed entry.  They come after any standard ones.
7641       if (mips_sym->has_comp_plt_offset())
7642         {
7643           if (!this->target_->is_output_micromips())
7644             {
7645               // Write MIPS16 PLT entry.
7646               const uint32_t* plt_entry = plt_entry_mips16_o32;
7647
7648               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7649               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7650               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7651               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7652               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7653               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7654               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7655                                                      gotplt_entry_addr);
7656               pov2 += 16;
7657             }
7658           else if (this->target_->use_32bit_micromips_instructions())
7659             {
7660               // Write microMIPS PLT entry in insn32 mode.
7661               const uint32_t* plt_entry = plt_entry_micromips32_o32;
7662
7663               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7664               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7665                                                      gotplt_entry_addr_hi);
7666               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7667               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7668                                                      gotplt_entry_addr_lo);
7669               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7670               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7671               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7672               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7673                                                      gotplt_entry_addr_lo);
7674               pov2 += 16;
7675             }
7676           else
7677             {
7678               // Write microMIPS PLT entry.
7679               const uint32_t* plt_entry = plt_entry_micromips_o32;
7680
7681               gold_assert(gotplt_entry_addr % 4 == 0);
7682
7683               Mips_address loc_address = plt_address + pov2 - oview;
7684               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7685
7686               // ADDIUPC has a span of +/-16MB, check we're in range.
7687               if (gotpc_offset + 0x1000000 >= 0x2000000)
7688                 {
7689                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
7690                              "range of ADDIUPC"), (long)gotpc_offset);
7691                   return;
7692                 }
7693
7694               elfcpp::Swap<16, big_endian>::writeval(pov2,
7695                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7696               elfcpp::Swap<16, big_endian>::writeval(
7697                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7698               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7699               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7700               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7701               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7702               pov2 += 12;
7703             }
7704         }
7705     }
7706
7707   // Check the number of bytes written for standard entries.
7708   gold_assert(static_cast<section_size_type>(
7709       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7710   // Check the number of bytes written for compressed entries.
7711   gold_assert((static_cast<section_size_type>(pov2 - pov)
7712                == this->plt_comp_offset_));
7713   // Check the total number of bytes written.
7714   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7715
7716   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7717               == gotplt_size);
7718
7719   of->write_output_view(offset, oview_size, oview);
7720   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7721 }
7722
7723 // Mips_output_data_mips_stubs methods.
7724
7725 // The format of the lazy binding stub when dynamic symbol count is less than
7726 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7727 template<int size, bool big_endian>
7728 const uint32_t
7729 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7730 {
7731   0x8f998010,         // lw t9,0x8010(gp)
7732   0x03e07825,         // or t7,ra,zero
7733   0x0320f809,         // jalr t9,ra
7734   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
7735 };
7736
7737 // The format of the lazy binding stub when dynamic symbol count is less than
7738 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7739 template<int size, bool big_endian>
7740 const uint32_t
7741 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7742 {
7743   0xdf998010,         // ld t9,0x8010(gp)
7744   0x03e07825,         // or t7,ra,zero
7745   0x0320f809,         // jalr t9,ra
7746   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
7747 };
7748
7749 // The format of the lazy binding stub when dynamic symbol count is less than
7750 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7751 template<int size, bool big_endian>
7752 const uint32_t
7753 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7754 {
7755   0x8f998010,         // lw t9,0x8010(gp)
7756   0x03e07825,         // or t7,ra,zero
7757   0x0320f809,         // jalr t9,ra
7758   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7759 };
7760
7761 // The format of the lazy binding stub when dynamic symbol count is less than
7762 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7763 template<int size, bool big_endian>
7764 const uint32_t
7765 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7766 {
7767   0xdf998010,         // ld t9,0x8010(gp)
7768   0x03e07825,         // or t7,ra,zero
7769   0x0320f809,         // jalr t9,ra
7770   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7771 };
7772
7773 // The format of the lazy binding stub when dynamic symbol count is greater than
7774 // 64K, and ABI is not N64.
7775 template<int size, bool big_endian>
7776 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7777 {
7778   0x8f998010,         // lw t9,0x8010(gp)
7779   0x03e07825,         // or t7,ra,zero
7780   0x3c180000,         // lui t8,DYN_INDEX
7781   0x0320f809,         // jalr t9,ra
7782   0x37180000          // ori t8,t8,DYN_INDEX
7783 };
7784
7785 // The format of the lazy binding stub when dynamic symbol count is greater than
7786 // 64K, and ABI is N64.
7787 template<int size, bool big_endian>
7788 const uint32_t
7789 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7790 {
7791   0xdf998010,         // ld t9,0x8010(gp)
7792   0x03e07825,         // or t7,ra,zero
7793   0x3c180000,         // lui t8,DYN_INDEX
7794   0x0320f809,         // jalr t9,ra
7795   0x37180000          // ori t8,t8,DYN_INDEX
7796 };
7797
7798 // microMIPS stubs.
7799
7800 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7801 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7802 template<int size, bool big_endian>
7803 const uint32_t
7804 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7805 {
7806   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7807   0x0dff,             // move t7,ra
7808   0x45d9,             // jalr t9
7809   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7810 };
7811
7812 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7813 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7814 template<int size, bool big_endian>
7815 const uint32_t
7816 Mips_output_data_mips_stubs<size, big_endian>::
7817 lazy_stub_micromips_normal_1_n64[] =
7818 {
7819   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7820   0x0dff,             // move t7,ra
7821   0x45d9,             // jalr t9
7822   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7823 };
7824
7825 // The format of the microMIPS lazy binding stub when dynamic symbol
7826 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7827 // and ABI is not N64.
7828 template<int size, bool big_endian>
7829 const uint32_t
7830 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7831 {
7832   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7833   0x0dff,             // move t7,ra
7834   0x45d9,             // jalr t9
7835   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7836 };
7837
7838 // The format of the microMIPS lazy binding stub when dynamic symbol
7839 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7840 // and ABI is N64.
7841 template<int size, bool big_endian>
7842 const uint32_t
7843 Mips_output_data_mips_stubs<size, big_endian>::
7844 lazy_stub_micromips_normal_2_n64[] =
7845 {
7846   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7847   0x0dff,             // move t7,ra
7848   0x45d9,             // jalr t9
7849   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7850 };
7851
7852 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7853 // greater than 64K, and ABI is not N64.
7854 template<int size, bool big_endian>
7855 const uint32_t
7856 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7857 {
7858   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7859   0x0dff,             // move t7,ra
7860   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7861   0x45d9,             // jalr t9
7862   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7863 };
7864
7865 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7866 // greater than 64K, and ABI is N64.
7867 template<int size, bool big_endian>
7868 const uint32_t
7869 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7870 {
7871   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7872   0x0dff,             // move t7,ra
7873   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7874   0x45d9,             // jalr t9
7875   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7876 };
7877
7878 // 32-bit microMIPS stubs.
7879
7880 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7881 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7882 // can use only 32-bit instructions.
7883 template<int size, bool big_endian>
7884 const uint32_t
7885 Mips_output_data_mips_stubs<size, big_endian>::
7886 lazy_stub_micromips32_normal_1[] =
7887 {
7888   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7889   0x001f, 0x7a90,     // or t7,ra,zero
7890   0x03f9, 0x0f3c,     // jalr ra,t9
7891   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7892 };
7893
7894 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7895 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7896 // use only 32-bit instructions.
7897 template<int size, bool big_endian>
7898 const uint32_t
7899 Mips_output_data_mips_stubs<size, big_endian>::
7900 lazy_stub_micromips32_normal_1_n64[] =
7901 {
7902   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7903   0x001f, 0x7a90,     // or t7,ra,zero
7904   0x03f9, 0x0f3c,     // jalr ra,t9
7905   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7906 };
7907
7908 // The format of the microMIPS lazy binding stub when dynamic symbol
7909 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7910 // ABI is not N64, and we can use only 32-bit instructions.
7911 template<int size, bool big_endian>
7912 const uint32_t
7913 Mips_output_data_mips_stubs<size, big_endian>::
7914 lazy_stub_micromips32_normal_2[] =
7915 {
7916   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7917   0x001f, 0x7a90,     // or t7,ra,zero
7918   0x03f9, 0x0f3c,     // jalr ra,t9
7919   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7920 };
7921
7922 // The format of the microMIPS lazy binding stub when dynamic symbol
7923 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7924 // ABI is N64, and we can use only 32-bit instructions.
7925 template<int size, bool big_endian>
7926 const uint32_t
7927 Mips_output_data_mips_stubs<size, big_endian>::
7928 lazy_stub_micromips32_normal_2_n64[] =
7929 {
7930   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7931   0x001f, 0x7a90,     // or t7,ra,zero
7932   0x03f9, 0x0f3c,     // jalr ra,t9
7933   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7934 };
7935
7936 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7937 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7938 template<int size, bool big_endian>
7939 const uint32_t
7940 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7941 {
7942   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7943   0x001f, 0x7a90,     // or t7,ra,zero
7944   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7945   0x03f9, 0x0f3c,     // jalr ra,t9
7946   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7947 };
7948
7949 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7950 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7951 template<int size, bool big_endian>
7952 const uint32_t
7953 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7954 {
7955   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7956   0x001f, 0x7a90,     // or t7,ra,zero
7957   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7958   0x03f9, 0x0f3c,     // jalr ra,t9
7959   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7960 };
7961
7962 // Create entry for a symbol.
7963
7964 template<int size, bool big_endian>
7965 void
7966 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7967     Mips_symbol<size>* gsym)
7968 {
7969   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7970     {
7971       this->symbols_.insert(gsym);
7972       gsym->set_has_lazy_stub(true);
7973     }
7974 }
7975
7976 // Remove entry for a symbol.
7977
7978 template<int size, bool big_endian>
7979 void
7980 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7981     Mips_symbol<size>* gsym)
7982 {
7983   if (gsym->has_lazy_stub())
7984     {
7985       this->symbols_.erase(gsym);
7986       gsym->set_has_lazy_stub(false);
7987     }
7988 }
7989
7990 // Set stub offsets for symbols.  This method expects that the number of
7991 // entries in dynamic symbol table is set.
7992
7993 template<int size, bool big_endian>
7994 void
7995 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7996 {
7997   gold_assert(this->dynsym_count_ != -1U);
7998
7999   if (this->stub_offsets_are_set_)
8000     return;
8001
8002   unsigned int stub_size = this->stub_size();
8003   unsigned int offset = 0;
8004   for (typename Mips_stubs_entry_set::const_iterator
8005        p = this->symbols_.begin();
8006        p != this->symbols_.end();
8007        ++p, offset += stub_size)
8008     {
8009       Mips_symbol<size>* mips_sym = *p;
8010       mips_sym->set_lazy_stub_offset(offset);
8011     }
8012   this->stub_offsets_are_set_ = true;
8013 }
8014
8015 template<int size, bool big_endian>
8016 void
8017 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8018 {
8019   for (typename Mips_stubs_entry_set::const_iterator
8020        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8021     {
8022       Mips_symbol<size>* sym = *p;
8023       if (sym->is_from_dynobj())
8024         sym->set_needs_dynsym_value();
8025     }
8026 }
8027
8028 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
8029 // adjusts them as needed.
8030
8031 template<int size, bool big_endian>
8032 void
8033 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8034 {
8035   const off_t offset = this->offset();
8036   const section_size_type oview_size =
8037     convert_to_section_size_type(this->data_size());
8038   unsigned char* const oview = of->get_output_view(offset, oview_size);
8039
8040   bool big_stub = this->dynsym_count_ > 0x10000;
8041
8042   unsigned char* pov = oview;
8043   for (typename Mips_stubs_entry_set::const_iterator
8044        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8045     {
8046       Mips_symbol<size>* sym = *p;
8047       const uint32_t* lazy_stub;
8048       bool n64 = this->target_->is_output_n64();
8049
8050       if (!this->target_->is_output_micromips())
8051         {
8052           // Write standard (non-microMIPS) stub.
8053           if (!big_stub)
8054             {
8055               if (sym->dynsym_index() & ~0x7fff)
8056                 // Dynsym index is between 32K and 64K.
8057                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8058               else
8059                 // Dynsym index is less than 32K.
8060                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8061             }
8062           else
8063             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8064
8065           unsigned int i = 0;
8066           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8067           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8068           pov += 8;
8069
8070           i += 2;
8071           if (big_stub)
8072             {
8073               // LUI instruction of the big stub.  Paste high 16 bits of the
8074               // dynsym index.
8075               elfcpp::Swap<32, big_endian>::writeval(pov,
8076                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8077               pov += 4;
8078               i += 1;
8079             }
8080           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8081           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8082           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8083               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8084           pov += 8;
8085         }
8086       else if (this->target_->use_32bit_micromips_instructions())
8087         {
8088           // Write microMIPS stub in insn32 mode.
8089           if (!big_stub)
8090             {
8091               if (sym->dynsym_index() & ~0x7fff)
8092                 // Dynsym index is between 32K and 64K.
8093                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8094                                 : lazy_stub_micromips32_normal_2;
8095               else
8096                 // Dynsym index is less than 32K.
8097                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8098                                 : lazy_stub_micromips32_normal_1;
8099             }
8100           else
8101             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8102                             : lazy_stub_micromips32_big;
8103
8104           unsigned int i = 0;
8105           // First stub instruction.  We emit 32-bit microMIPS instructions by
8106           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8107           // the instruction where the opcode is must always come first, for
8108           // both little and big endian.
8109           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8110           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8111           // Second stub instruction.
8112           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8113           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8114           pov += 8;
8115           i += 4;
8116           if (big_stub)
8117             {
8118               // LUI instruction of the big stub.  Paste high 16 bits of the
8119               // dynsym index.
8120               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8121               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8122                   (sym->dynsym_index() >> 16) & 0x7fff);
8123               pov += 4;
8124               i += 2;
8125             }
8126           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8127           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8128           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8129           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8130           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8131               sym->dynsym_index() & 0xffff);
8132           pov += 8;
8133         }
8134       else
8135         {
8136           // Write microMIPS stub.
8137           if (!big_stub)
8138             {
8139               if (sym->dynsym_index() & ~0x7fff)
8140                 // Dynsym index is between 32K and 64K.
8141                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8142                                 : lazy_stub_micromips_normal_2;
8143               else
8144                 // Dynsym index is less than 32K.
8145                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8146                                 : lazy_stub_micromips_normal_1;
8147             }
8148           else
8149             lazy_stub = n64 ? lazy_stub_micromips_big_n64
8150                             : lazy_stub_micromips_big;
8151
8152           unsigned int i = 0;
8153           // First stub instruction.  We emit 32-bit microMIPS instructions by
8154           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8155           // the instruction where the opcode is must always come first, for
8156           // both little and big endian.
8157           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8158           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8159           // Second stub instruction.
8160           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8161           pov += 6;
8162           i += 3;
8163           if (big_stub)
8164             {
8165               // LUI instruction of the big stub.  Paste high 16 bits of the
8166               // dynsym index.
8167               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8168               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8169                   (sym->dynsym_index() >> 16) & 0x7fff);
8170               pov += 4;
8171               i += 2;
8172             }
8173           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8174           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8175           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8176           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8177               sym->dynsym_index() & 0xffff);
8178           pov += 6;
8179         }
8180     }
8181
8182   // We always allocate 20 bytes for every stub, because final dynsym count is
8183   // not known in method do_finalize_sections.  There are 4 unused bytes per
8184   // stub if final dynsym count is less than 0x10000.
8185   unsigned int used = pov - oview;
8186   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8187   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8188
8189   // Fill the unused space with zeroes.
8190   // TODO(sasa): Can we strip unused bytes during the relaxation?
8191   if (unused > 0)
8192     memset(pov, 0, unused);
8193
8194   of->write_output_view(offset, oview_size, oview);
8195 }
8196
8197 // Mips_output_section_reginfo methods.
8198
8199 template<int size, bool big_endian>
8200 void
8201 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8202 {
8203   off_t offset = this->offset();
8204   off_t data_size = this->data_size();
8205
8206   unsigned char* view = of->get_output_view(offset, data_size);
8207   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8208   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8209   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8210   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8211   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8212   // Write the gp value.
8213   elfcpp::Swap<size, big_endian>::writeval(view + 20,
8214                                            this->target_->gp_value());
8215
8216   of->write_output_view(offset, data_size, view);
8217 }
8218
8219 // Mips_output_section_options methods.
8220
8221 template<int size, bool big_endian>
8222 void
8223 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8224 {
8225   off_t offset = this->offset();
8226   const section_size_type oview_size =
8227     convert_to_section_size_type(this->data_size());
8228   unsigned char* view = of->get_output_view(offset, oview_size);
8229   const unsigned char* end = view + oview_size;
8230
8231   while (view + 8 <= end)
8232     {
8233       unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8234       unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8235       if (sz < 8)
8236         {
8237           gold_error(_("Warning: bad `%s' option size %u smaller "
8238                        "than its header in output section"),
8239                      this->name(), sz);
8240           break;
8241         }
8242
8243       // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8244       if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8245         elfcpp::Swap<size, big_endian>::writeval(view + 32,
8246                                                  this->target_->gp_value());
8247       else if (kind == elfcpp::ODK_REGINFO)
8248         elfcpp::Swap<size, big_endian>::writeval(view + 28,
8249                                                  this->target_->gp_value());
8250
8251       view += sz;
8252     }
8253
8254   of->write_output_view(offset, oview_size, view);
8255 }
8256
8257 // Mips_output_section_abiflags methods.
8258
8259 template<int size, bool big_endian>
8260 void
8261 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8262 {
8263   off_t offset = this->offset();
8264   off_t data_size = this->data_size();
8265
8266   unsigned char* view = of->get_output_view(offset, data_size);
8267   elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8268   elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8269   elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8270   elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8271   elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8272   elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8273   elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8274   elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8275   elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8276   elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8277   elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8278
8279   of->write_output_view(offset, data_size, view);
8280 }
8281
8282 // Mips_copy_relocs methods.
8283
8284 // Emit any saved relocs.
8285
8286 template<int sh_type, int size, bool big_endian>
8287 void
8288 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8289     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8290     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8291 {
8292   for (typename Copy_relocs<sh_type, size, big_endian>::
8293        Copy_reloc_entries::iterator p = this->entries_.begin();
8294        p != this->entries_.end();
8295        ++p)
8296     emit_entry(*p, reloc_section, symtab, layout, target);
8297
8298   // We no longer need the saved information.
8299   this->entries_.clear();
8300 }
8301
8302 // Emit the reloc if appropriate.
8303
8304 template<int sh_type, int size, bool big_endian>
8305 void
8306 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8307     Copy_reloc_entry& entry,
8308     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8309     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8310 {
8311   // If the symbol is no longer defined in a dynamic object, then we
8312   // emitted a COPY relocation, and we do not want to emit this
8313   // dynamic relocation.
8314   if (!entry.sym_->is_from_dynobj())
8315     return;
8316
8317   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8318                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8319                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
8320
8321   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8322   if (can_make_dynamic && !sym->has_static_relocs())
8323     {
8324       Mips_relobj<size, big_endian>* object =
8325         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8326       target->got_section(symtab, layout)->record_global_got_symbol(
8327                           sym, object, entry.reloc_type_, true, false);
8328       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8329         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8330             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8331       else
8332         target->rel_dyn_section(layout)->add_symbolless_global_addend(
8333             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8334             entry.shndx_, entry.address_);
8335     }
8336   else
8337     this->make_copy_reloc(symtab, layout,
8338                           static_cast<Sized_symbol<size>*>(entry.sym_),
8339                           entry.relobj_,
8340                           reloc_section);
8341 }
8342
8343 // Target_mips methods.
8344
8345 // Return the value to use for a dynamic symbol which requires special
8346 // treatment.  This is how we support equality comparisons of function
8347 // pointers across shared library boundaries, as described in the
8348 // processor specific ABI supplement.
8349
8350 template<int size, bool big_endian>
8351 uint64_t
8352 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8353 {
8354   uint64_t value = 0;
8355   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8356
8357   if (!mips_sym->has_lazy_stub())
8358     {
8359       if (mips_sym->has_plt_offset())
8360         {
8361           // We distinguish between PLT entries and lazy-binding stubs by
8362           // giving the former an st_other value of STO_MIPS_PLT.  Set the
8363           // value to the stub address if there are any relocations in the
8364           // binary where pointer equality matters.
8365           if (mips_sym->pointer_equality_needed())
8366             {
8367               // Prefer a standard MIPS PLT entry.
8368               if (mips_sym->has_mips_plt_offset())
8369                 value = this->plt_section()->mips_entry_address(mips_sym);
8370               else
8371                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8372             }
8373           else
8374             value = 0;
8375         }
8376     }
8377   else
8378     {
8379       // First, set stub offsets for symbols.  This method expects that the
8380       // number of entries in dynamic symbol table is set.
8381       this->mips_stubs_section()->set_lazy_stub_offsets();
8382
8383       // The run-time linker uses the st_value field of the symbol
8384       // to reset the global offset table entry for this external
8385       // to its stub address when unlinking a shared object.
8386       value = this->mips_stubs_section()->stub_address(mips_sym);
8387     }
8388
8389   if (mips_sym->has_mips16_fn_stub())
8390     {
8391       // If we have a MIPS16 function with a stub, the dynamic symbol must
8392       // refer to the stub, since only the stub uses the standard calling
8393       // conventions.
8394       value = mips_sym->template
8395               get_mips16_fn_stub<big_endian>()->output_address();
8396     }
8397
8398   return value;
8399 }
8400
8401 // Get the dynamic reloc section, creating it if necessary.  It's always
8402 // .rel.dyn, even for MIPS64.
8403
8404 template<int size, bool big_endian>
8405 typename Target_mips<size, big_endian>::Reloc_section*
8406 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8407 {
8408   if (this->rel_dyn_ == NULL)
8409     {
8410       gold_assert(layout != NULL);
8411       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8412       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8413                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
8414                                       ORDER_DYNAMIC_RELOCS, false);
8415
8416       // First entry in .rel.dyn has to be null.
8417       // This is hack - we define dummy output data and set its address to 0,
8418       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8419       // This ensures that the entry is null.
8420       Output_data* od = new Output_data_zero_fill(0, 0);
8421       od->set_address(0);
8422       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8423     }
8424   return this->rel_dyn_;
8425 }
8426
8427 // Get the GOT section, creating it if necessary.
8428
8429 template<int size, bool big_endian>
8430 Mips_output_data_got<size, big_endian>*
8431 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8432                                            Layout* layout)
8433 {
8434   if (this->got_ == NULL)
8435     {
8436       gold_assert(symtab != NULL && layout != NULL);
8437
8438       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8439                                                               layout);
8440       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8441                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8442                                       elfcpp::SHF_MIPS_GPREL),
8443                                       this->got_, ORDER_DATA, false);
8444
8445       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8446       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8447                                     Symbol_table::PREDEFINED,
8448                                     this->got_,
8449                                     0, 0, elfcpp::STT_OBJECT,
8450                                     elfcpp::STB_GLOBAL,
8451                                     elfcpp::STV_HIDDEN, 0,
8452                                     false, false);
8453     }
8454
8455   return this->got_;
8456 }
8457
8458 // Calculate value of _gp symbol.
8459
8460 template<int size, bool big_endian>
8461 void
8462 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8463 {
8464   gold_assert(this->gp_ == NULL);
8465
8466   Sized_symbol<size>* gp =
8467     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8468
8469   // Set _gp symbol if the linker script hasn't created it.
8470   if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8471     {
8472       // If there is no .got section, gp should be based on .sdata.
8473       Output_data* gp_section = (this->got_ != NULL
8474                                  ? this->got_->output_section()
8475                                  : layout->find_output_section(".sdata"));
8476
8477       if (gp_section != NULL)
8478         gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8479                                           "_gp", NULL, Symbol_table::PREDEFINED,
8480                                           gp_section, MIPS_GP_OFFSET, 0,
8481                                           elfcpp::STT_NOTYPE,
8482                                           elfcpp::STB_LOCAL,
8483                                           elfcpp::STV_DEFAULT,
8484                                           0, false, false));
8485     }
8486
8487   this->gp_ = gp;
8488 }
8489
8490 // Set the dynamic symbol indexes.  INDEX is the index of the first
8491 // global dynamic symbol.  Pointers to the symbols are stored into the
8492 // vector SYMS.  The names are added to DYNPOOL.  This returns an
8493 // updated dynamic symbol index.
8494
8495 template<int size, bool big_endian>
8496 unsigned int
8497 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8498     std::vector<Symbol*>* dyn_symbols, unsigned int index,
8499     std::vector<Symbol*>* syms, Stringpool* dynpool,
8500     Versions* versions, Symbol_table* symtab) const
8501 {
8502   std::vector<Symbol*> non_got_symbols;
8503   std::vector<Symbol*> got_symbols;
8504
8505   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8506                                         &got_symbols);
8507
8508   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8509        p != non_got_symbols.end();
8510        ++p)
8511     {
8512       Symbol* sym = *p;
8513
8514       // Note that SYM may already have a dynamic symbol index, since
8515       // some symbols appear more than once in the symbol table, with
8516       // and without a version.
8517
8518       if (!sym->has_dynsym_index())
8519         {
8520           sym->set_dynsym_index(index);
8521           ++index;
8522           syms->push_back(sym);
8523           dynpool->add(sym->name(), false, NULL);
8524
8525           // Record any version information.
8526           if (sym->version() != NULL)
8527             versions->record_version(symtab, dynpool, sym);
8528
8529           // If the symbol is defined in a dynamic object and is
8530           // referenced in a regular object, then mark the dynamic
8531           // object as needed.  This is used to implement --as-needed.
8532           if (sym->is_from_dynobj() && sym->in_reg())
8533             sym->object()->set_is_needed();
8534         }
8535     }
8536
8537   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8538        p != got_symbols.end();
8539        ++p)
8540     {
8541       Symbol* sym = *p;
8542       if (!sym->has_dynsym_index())
8543         {
8544           // Record any version information.
8545           if (sym->version() != NULL)
8546             versions->record_version(symtab, dynpool, sym);
8547         }
8548     }
8549
8550   index = versions->finalize(symtab, index, syms);
8551
8552   int got_sym_count = 0;
8553   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8554        p != got_symbols.end();
8555        ++p)
8556     {
8557       Symbol* sym = *p;
8558
8559       if (!sym->has_dynsym_index())
8560         {
8561           ++got_sym_count;
8562           sym->set_dynsym_index(index);
8563           ++index;
8564           syms->push_back(sym);
8565           dynpool->add(sym->name(), false, NULL);
8566
8567           // If the symbol is defined in a dynamic object and is
8568           // referenced in a regular object, then mark the dynamic
8569           // object as needed.  This is used to implement --as-needed.
8570           if (sym->is_from_dynobj() && sym->in_reg())
8571             sym->object()->set_is_needed();
8572         }
8573     }
8574
8575   // Set index of the first symbol that has .got entry.
8576   this->got_->set_first_global_got_dynsym_index(
8577     got_sym_count > 0 ? index - got_sym_count : -1U);
8578
8579   if (this->mips_stubs_ != NULL)
8580     this->mips_stubs_->set_dynsym_count(index);
8581
8582   return index;
8583 }
8584
8585 // Create a PLT entry for a global symbol referenced by r_type relocation.
8586
8587 template<int size, bool big_endian>
8588 void
8589 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8590                                               Layout* layout,
8591                                               Mips_symbol<size>* gsym,
8592                                               unsigned int r_type)
8593 {
8594   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8595     return;
8596
8597   if (this->plt_ == NULL)
8598     {
8599       // Create the GOT section first.
8600       this->got_section(symtab, layout);
8601
8602       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8603       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8604                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8605                                       this->got_plt_, ORDER_DATA, false);
8606
8607       // The first two entries are reserved.
8608       this->got_plt_->set_current_data_size(2 * size/8);
8609
8610       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8611                                                               this->got_plt_,
8612                                                               this);
8613       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8614                                       (elfcpp::SHF_ALLOC
8615                                        | elfcpp::SHF_EXECINSTR),
8616                                       this->plt_, ORDER_PLT, false);
8617
8618       // Make the sh_info field of .rel.plt point to .plt.
8619       Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8620       rel_plt_os->set_info_section(this->plt_->output_section());
8621     }
8622
8623   this->plt_->add_entry(gsym, r_type);
8624 }
8625
8626
8627 // Get the .MIPS.stubs section, creating it if necessary.
8628
8629 template<int size, bool big_endian>
8630 Mips_output_data_mips_stubs<size, big_endian>*
8631 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8632 {
8633   if (this->mips_stubs_ == NULL)
8634     {
8635       this->mips_stubs_ =
8636         new Mips_output_data_mips_stubs<size, big_endian>(this);
8637       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8638                                       (elfcpp::SHF_ALLOC
8639                                        | elfcpp::SHF_EXECINSTR),
8640                                       this->mips_stubs_, ORDER_PLT, false);
8641     }
8642   return this->mips_stubs_;
8643 }
8644
8645 // Get the LA25 stub section, creating it if necessary.
8646
8647 template<int size, bool big_endian>
8648 Mips_output_data_la25_stub<size, big_endian>*
8649 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8650 {
8651   if (this->la25_stub_ == NULL)
8652     {
8653       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8654       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8655                                       (elfcpp::SHF_ALLOC
8656                                        | elfcpp::SHF_EXECINSTR),
8657                                       this->la25_stub_, ORDER_TEXT, false);
8658     }
8659   return this->la25_stub_;
8660 }
8661
8662 // Process the relocations to determine unreferenced sections for
8663 // garbage collection.
8664
8665 template<int size, bool big_endian>
8666 void
8667 Target_mips<size, big_endian>::gc_process_relocs(
8668                         Symbol_table* symtab,
8669                         Layout* layout,
8670                         Sized_relobj_file<size, big_endian>* object,
8671                         unsigned int data_shndx,
8672                         unsigned int sh_type,
8673                         const unsigned char* prelocs,
8674                         size_t reloc_count,
8675                         Output_section* output_section,
8676                         bool needs_special_offset_handling,
8677                         size_t local_symbol_count,
8678                         const unsigned char* plocal_symbols)
8679 {
8680   typedef Target_mips<size, big_endian> Mips;
8681
8682   if (sh_type == elfcpp::SHT_REL)
8683     {
8684       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8685           Classify_reloc;
8686
8687       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8688         symtab,
8689         layout,
8690         this,
8691         object,
8692         data_shndx,
8693         prelocs,
8694         reloc_count,
8695         output_section,
8696         needs_special_offset_handling,
8697         local_symbol_count,
8698         plocal_symbols);
8699     }
8700   else if (sh_type == elfcpp::SHT_RELA)
8701     {
8702       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8703           Classify_reloc;
8704
8705       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8706         symtab,
8707         layout,
8708         this,
8709         object,
8710         data_shndx,
8711         prelocs,
8712         reloc_count,
8713         output_section,
8714         needs_special_offset_handling,
8715         local_symbol_count,
8716         plocal_symbols);
8717     }
8718   else
8719     gold_unreachable();
8720 }
8721
8722 // Scan relocations for a section.
8723
8724 template<int size, bool big_endian>
8725 void
8726 Target_mips<size, big_endian>::scan_relocs(
8727                         Symbol_table* symtab,
8728                         Layout* layout,
8729                         Sized_relobj_file<size, big_endian>* object,
8730                         unsigned int data_shndx,
8731                         unsigned int sh_type,
8732                         const unsigned char* prelocs,
8733                         size_t reloc_count,
8734                         Output_section* output_section,
8735                         bool needs_special_offset_handling,
8736                         size_t local_symbol_count,
8737                         const unsigned char* plocal_symbols)
8738 {
8739   typedef Target_mips<size, big_endian> Mips;
8740
8741   if (sh_type == elfcpp::SHT_REL)
8742     {
8743       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8744           Classify_reloc;
8745
8746       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8747         symtab,
8748         layout,
8749         this,
8750         object,
8751         data_shndx,
8752         prelocs,
8753         reloc_count,
8754         output_section,
8755         needs_special_offset_handling,
8756         local_symbol_count,
8757         plocal_symbols);
8758     }
8759   else if (sh_type == elfcpp::SHT_RELA)
8760     {
8761       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8762           Classify_reloc;
8763
8764       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8765         symtab,
8766         layout,
8767         this,
8768         object,
8769         data_shndx,
8770         prelocs,
8771         reloc_count,
8772         output_section,
8773         needs_special_offset_handling,
8774         local_symbol_count,
8775         plocal_symbols);
8776     }
8777 }
8778
8779 template<int size, bool big_endian>
8780 bool
8781 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8782 {
8783   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8784           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8785           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8786           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8787           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8788           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8789           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8790           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8791 }
8792
8793 // Return the MACH for a MIPS e_flags value.
8794 template<int size, bool big_endian>
8795 unsigned int
8796 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8797 {
8798   switch (flags & elfcpp::EF_MIPS_MACH)
8799     {
8800     case elfcpp::E_MIPS_MACH_3900:
8801       return mach_mips3900;
8802
8803     case elfcpp::E_MIPS_MACH_4010:
8804       return mach_mips4010;
8805
8806     case elfcpp::E_MIPS_MACH_4100:
8807       return mach_mips4100;
8808
8809     case elfcpp::E_MIPS_MACH_4111:
8810       return mach_mips4111;
8811
8812     case elfcpp::E_MIPS_MACH_4120:
8813       return mach_mips4120;
8814
8815     case elfcpp::E_MIPS_MACH_4650:
8816       return mach_mips4650;
8817
8818     case elfcpp::E_MIPS_MACH_5400:
8819       return mach_mips5400;
8820
8821     case elfcpp::E_MIPS_MACH_5500:
8822       return mach_mips5500;
8823
8824     case elfcpp::E_MIPS_MACH_5900:
8825       return mach_mips5900;
8826
8827     case elfcpp::E_MIPS_MACH_9000:
8828       return mach_mips9000;
8829
8830     case elfcpp::E_MIPS_MACH_SB1:
8831       return mach_mips_sb1;
8832
8833     case elfcpp::E_MIPS_MACH_LS2E:
8834       return mach_mips_loongson_2e;
8835
8836     case elfcpp::E_MIPS_MACH_LS2F:
8837       return mach_mips_loongson_2f;
8838
8839     case elfcpp::E_MIPS_MACH_LS3A:
8840       return mach_mips_loongson_3a;
8841
8842     case elfcpp::E_MIPS_MACH_OCTEON3:
8843       return mach_mips_octeon3;
8844
8845     case elfcpp::E_MIPS_MACH_OCTEON2:
8846       return mach_mips_octeon2;
8847
8848     case elfcpp::E_MIPS_MACH_OCTEON:
8849       return mach_mips_octeon;
8850
8851     case elfcpp::E_MIPS_MACH_XLR:
8852       return mach_mips_xlr;
8853
8854     default:
8855       switch (flags & elfcpp::EF_MIPS_ARCH)
8856         {
8857         default:
8858         case elfcpp::E_MIPS_ARCH_1:
8859           return mach_mips3000;
8860
8861         case elfcpp::E_MIPS_ARCH_2:
8862           return mach_mips6000;
8863
8864         case elfcpp::E_MIPS_ARCH_3:
8865           return mach_mips4000;
8866
8867         case elfcpp::E_MIPS_ARCH_4:
8868           return mach_mips8000;
8869
8870         case elfcpp::E_MIPS_ARCH_5:
8871           return mach_mips5;
8872
8873         case elfcpp::E_MIPS_ARCH_32:
8874           return mach_mipsisa32;
8875
8876         case elfcpp::E_MIPS_ARCH_64:
8877           return mach_mipsisa64;
8878
8879         case elfcpp::E_MIPS_ARCH_32R2:
8880           return mach_mipsisa32r2;
8881
8882         case elfcpp::E_MIPS_ARCH_32R6:
8883           return mach_mipsisa32r6;
8884
8885         case elfcpp::E_MIPS_ARCH_64R2:
8886           return mach_mipsisa64r2;
8887
8888         case elfcpp::E_MIPS_ARCH_64R6:
8889           return mach_mipsisa64r6;
8890         }
8891     }
8892
8893   return 0;
8894 }
8895
8896 // Return the MACH for each .MIPS.abiflags ISA Extension.
8897
8898 template<int size, bool big_endian>
8899 unsigned int
8900 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8901 {
8902   switch (isa_ext)
8903     {
8904     case elfcpp::AFL_EXT_3900:
8905       return mach_mips3900;
8906
8907     case elfcpp::AFL_EXT_4010:
8908       return mach_mips4010;
8909
8910     case elfcpp::AFL_EXT_4100:
8911       return mach_mips4100;
8912
8913     case elfcpp::AFL_EXT_4111:
8914       return mach_mips4111;
8915
8916     case elfcpp::AFL_EXT_4120:
8917       return mach_mips4120;
8918
8919     case elfcpp::AFL_EXT_4650:
8920       return mach_mips4650;
8921
8922     case elfcpp::AFL_EXT_5400:
8923       return mach_mips5400;
8924
8925     case elfcpp::AFL_EXT_5500:
8926       return mach_mips5500;
8927
8928     case elfcpp::AFL_EXT_5900:
8929       return mach_mips5900;
8930
8931     case elfcpp::AFL_EXT_10000:
8932       return mach_mips10000;
8933
8934     case elfcpp::AFL_EXT_LOONGSON_2E:
8935       return mach_mips_loongson_2e;
8936
8937     case elfcpp::AFL_EXT_LOONGSON_2F:
8938       return mach_mips_loongson_2f;
8939
8940     case elfcpp::AFL_EXT_LOONGSON_3A:
8941       return mach_mips_loongson_3a;
8942
8943     case elfcpp::AFL_EXT_SB1:
8944       return mach_mips_sb1;
8945
8946     case elfcpp::AFL_EXT_OCTEON:
8947       return mach_mips_octeon;
8948
8949     case elfcpp::AFL_EXT_OCTEONP:
8950       return mach_mips_octeonp;
8951
8952     case elfcpp::AFL_EXT_OCTEON2:
8953       return mach_mips_octeon2;
8954
8955     case elfcpp::AFL_EXT_XLR:
8956       return mach_mips_xlr;
8957
8958     default:
8959       return mach_mips3000;
8960     }
8961 }
8962
8963 // Return the .MIPS.abiflags value representing each ISA Extension.
8964
8965 template<int size, bool big_endian>
8966 unsigned int
8967 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8968 {
8969   switch (mips_mach)
8970     {
8971     case mach_mips3900:
8972       return elfcpp::AFL_EXT_3900;
8973
8974     case mach_mips4010:
8975       return elfcpp::AFL_EXT_4010;
8976
8977     case mach_mips4100:
8978       return elfcpp::AFL_EXT_4100;
8979
8980     case mach_mips4111:
8981       return elfcpp::AFL_EXT_4111;
8982
8983     case mach_mips4120:
8984       return elfcpp::AFL_EXT_4120;
8985
8986     case mach_mips4650:
8987       return elfcpp::AFL_EXT_4650;
8988
8989     case mach_mips5400:
8990       return elfcpp::AFL_EXT_5400;
8991
8992     case mach_mips5500:
8993       return elfcpp::AFL_EXT_5500;
8994
8995     case mach_mips5900:
8996       return elfcpp::AFL_EXT_5900;
8997
8998     case mach_mips10000:
8999       return elfcpp::AFL_EXT_10000;
9000
9001     case mach_mips_loongson_2e:
9002       return elfcpp::AFL_EXT_LOONGSON_2E;
9003
9004     case mach_mips_loongson_2f:
9005       return elfcpp::AFL_EXT_LOONGSON_2F;
9006
9007     case mach_mips_loongson_3a:
9008       return elfcpp::AFL_EXT_LOONGSON_3A;
9009
9010     case mach_mips_sb1:
9011       return elfcpp::AFL_EXT_SB1;
9012
9013     case mach_mips_octeon:
9014       return elfcpp::AFL_EXT_OCTEON;
9015
9016     case mach_mips_octeonp:
9017       return elfcpp::AFL_EXT_OCTEONP;
9018
9019     case mach_mips_octeon3:
9020       return elfcpp::AFL_EXT_OCTEON3;
9021
9022     case mach_mips_octeon2:
9023       return elfcpp::AFL_EXT_OCTEON2;
9024
9025     case mach_mips_xlr:
9026       return elfcpp::AFL_EXT_XLR;
9027
9028     default:
9029       return 0;
9030     }
9031 }
9032
9033 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9034
9035 template<int size, bool big_endian>
9036 void
9037 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9038     elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9039 {
9040   int new_isa = 0;
9041   switch (e_flags & elfcpp::EF_MIPS_ARCH)
9042     {
9043     case elfcpp::E_MIPS_ARCH_1:
9044       new_isa = this->level_rev(1, 0);
9045       break;
9046     case elfcpp::E_MIPS_ARCH_2:
9047       new_isa = this->level_rev(2, 0);
9048       break;
9049     case elfcpp::E_MIPS_ARCH_3:
9050       new_isa = this->level_rev(3, 0);
9051       break;
9052     case elfcpp::E_MIPS_ARCH_4:
9053       new_isa = this->level_rev(4, 0);
9054       break;
9055     case elfcpp::E_MIPS_ARCH_5:
9056       new_isa = this->level_rev(5, 0);
9057       break;
9058     case elfcpp::E_MIPS_ARCH_32:
9059       new_isa = this->level_rev(32, 1);
9060       break;
9061     case elfcpp::E_MIPS_ARCH_32R2:
9062       new_isa = this->level_rev(32, 2);
9063       break;
9064     case elfcpp::E_MIPS_ARCH_32R6:
9065       new_isa = this->level_rev(32, 6);
9066       break;
9067     case elfcpp::E_MIPS_ARCH_64:
9068       new_isa = this->level_rev(64, 1);
9069       break;
9070     case elfcpp::E_MIPS_ARCH_64R2:
9071       new_isa = this->level_rev(64, 2);
9072       break;
9073     case elfcpp::E_MIPS_ARCH_64R6:
9074       new_isa = this->level_rev(64, 6);
9075       break;
9076     default:
9077       gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9078                  this->elf_mips_mach_name(e_flags));
9079     }
9080
9081   if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9082     {
9083       // Decode a single value into level and revision.
9084       abiflags->isa_level = new_isa >> 3;
9085       abiflags->isa_rev = new_isa & 0x7;
9086     }
9087
9088   // Update the isa_ext if needed.
9089   if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9090       this->elf_mips_mach(e_flags)))
9091     abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9092 }
9093
9094 // Infer the content of the ABI flags based on the elf header.
9095
9096 template<int size, bool big_endian>
9097 void
9098 Target_mips<size, big_endian>::infer_abiflags(
9099     Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9100 {
9101   const Attributes_section_data* pasd = relobj->attributes_section_data();
9102   int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9103   elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9104
9105   this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9106   if (pasd != NULL)
9107     {
9108       // Read fp_abi from the .gnu.attribute section.
9109       const Object_attribute* attr =
9110         pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9111       attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9112     }
9113
9114   abiflags->fp_abi = attr_fp_abi;
9115   abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9116   abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9117   abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9118                                                        : elfcpp::AFL_REG_64;
9119
9120   if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9121       || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9122       || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9123       && abiflags->gpr_size == elfcpp::AFL_REG_32))
9124     abiflags->cpr1_size = elfcpp::AFL_REG_32;
9125   else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9126            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9127            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9128     abiflags->cpr1_size = elfcpp::AFL_REG_64;
9129
9130   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9131     abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9132   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9133     abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9134   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9135     abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9136
9137   if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9138       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9139       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9140       && abiflags->isa_level >= 32
9141       && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9142     abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9143 }
9144
9145 // Create abiflags from elf header or from .MIPS.abiflags section.
9146
9147 template<int size, bool big_endian>
9148 void
9149 Target_mips<size, big_endian>::create_abiflags(
9150     Mips_relobj<size, big_endian>* relobj,
9151     Mips_abiflags<big_endian>* abiflags)
9152 {
9153   Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9154   Mips_abiflags<big_endian> header_abiflags;
9155
9156   this->infer_abiflags(relobj, &header_abiflags);
9157
9158   if (sec_abiflags == NULL)
9159     {
9160       // If there is no input .MIPS.abiflags section, use abiflags created
9161       // from elf header.
9162       *abiflags = header_abiflags;
9163       return;
9164     }
9165
9166   this->has_abiflags_section_ = true;
9167
9168   // It is not possible to infer the correct ISA revision for R3 or R5
9169   // so drop down to R2 for the checks.
9170   unsigned char isa_rev = sec_abiflags->isa_rev;
9171   if (isa_rev == 3 || isa_rev == 5)
9172     isa_rev = 2;
9173
9174   // Check compatibility between abiflags created from elf header
9175   // and abiflags from .MIPS.abiflags section in this object file.
9176   if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9177       < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9178     gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9179                  relobj->name().c_str());
9180   if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9181       && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9182     gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9183                    ".MIPS.abiflags"), relobj->name().c_str());
9184   if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9185     gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9186                  relobj->name().c_str());
9187   // The isa_ext is allowed to be an extension of what can be inferred
9188   // from e_flags.
9189   if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9190                                this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9191     gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9192                    ".MIPS.abiflags"), relobj->name().c_str());
9193   if (sec_abiflags->flags2 != 0)
9194     gold_warning(_("%s: Unexpected flag in the flags2 field of "
9195                    ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9196                                              sec_abiflags->flags2);
9197   // Use abiflags from .MIPS.abiflags section.
9198   *abiflags = *sec_abiflags;
9199 }
9200
9201 // Return the meaning of fp_abi, or "unknown" if not known.
9202
9203 template<int size, bool big_endian>
9204 const char*
9205 Target_mips<size, big_endian>::fp_abi_string(int fp)
9206 {
9207   switch (fp)
9208     {
9209     case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9210       return "-mdouble-float";
9211     case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9212       return "-msingle-float";
9213     case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9214       return "-msoft-float";
9215     case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9216       return _("-mips32r2 -mfp64 (12 callee-saved)");
9217     case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9218       return "-mfpxx";
9219     case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9220       return "-mgp32 -mfp64";
9221     case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9222       return "-mgp32 -mfp64 -mno-odd-spreg";
9223     default:
9224       return "unknown";
9225     }
9226 }
9227
9228 // Select fp_abi.
9229
9230 template<int size, bool big_endian>
9231 int
9232 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9233                                              int out_fp)
9234 {
9235   if (in_fp == out_fp)
9236     return out_fp;
9237
9238   if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9239     return in_fp;
9240   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9241            && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9242                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9243                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9244     return in_fp;
9245   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9246            && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9247                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9248                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9249     return out_fp; // Keep the current setting.
9250   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9251            && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9252     return in_fp;
9253   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9254            && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9255     return out_fp; // Keep the current setting.
9256   else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9257     gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9258                  fp_abi_string(in_fp), fp_abi_string(out_fp));
9259   return out_fp;
9260 }
9261
9262 // Merge attributes from input object.
9263
9264 template<int size, bool big_endian>
9265 void
9266 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9267     const Attributes_section_data* pasd)
9268 {
9269   // Return if there is no attributes section data.
9270   if (pasd == NULL)
9271     return;
9272
9273   // If output has no object attributes, just copy.
9274   if (this->attributes_section_data_ == NULL)
9275     {
9276       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9277       return;
9278     }
9279
9280   Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9281       Object_attribute::OBJ_ATTR_GNU);
9282
9283   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9284   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9285
9286   // Merge Tag_compatibility attributes and any common GNU ones.
9287   this->attributes_section_data_->merge(name.c_str(), pasd);
9288 }
9289
9290 // Merge abiflags from input object.
9291
9292 template<int size, bool big_endian>
9293 void
9294 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9295     Mips_abiflags<big_endian>* in_abiflags)
9296 {
9297   // If output has no abiflags, just copy.
9298   if (this->abiflags_ == NULL)
9299   {
9300     this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9301     return;
9302   }
9303
9304   this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9305                                                 this->abiflags_->fp_abi);
9306
9307   // Merge abiflags.
9308   this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9309                                         in_abiflags->isa_level);
9310   this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9311                                       in_abiflags->isa_rev);
9312   this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9313                                        in_abiflags->gpr_size);
9314   this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9315                                         in_abiflags->cpr1_size);
9316   this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9317                                         in_abiflags->cpr2_size);
9318   this->abiflags_->ases |= in_abiflags->ases;
9319   this->abiflags_->flags1 |= in_abiflags->flags1;
9320 }
9321
9322 // Check whether machine EXTENSION is an extension of machine BASE.
9323 template<int size, bool big_endian>
9324 bool
9325 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9326                                                  unsigned int extension)
9327 {
9328   if (extension == base)
9329     return true;
9330
9331   if ((base == mach_mipsisa32)
9332       && this->mips_mach_extends(mach_mipsisa64, extension))
9333     return true;
9334
9335   if ((base == mach_mipsisa32r2)
9336       && this->mips_mach_extends(mach_mipsisa64r2, extension))
9337     return true;
9338
9339   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9340     if (extension == this->mips_mach_extensions_[i].first)
9341       {
9342         extension = this->mips_mach_extensions_[i].second;
9343         if (extension == base)
9344           return true;
9345       }
9346
9347   return false;
9348 }
9349
9350 // Merge file header flags from input object.
9351
9352 template<int size, bool big_endian>
9353 void
9354 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9355                                                  elfcpp::Elf_Word in_flags)
9356 {
9357   // If flags are not set yet, just copy them.
9358   if (!this->are_processor_specific_flags_set())
9359     {
9360       this->set_processor_specific_flags(in_flags);
9361       this->mach_ = this->elf_mips_mach(in_flags);
9362       return;
9363     }
9364
9365   elfcpp::Elf_Word new_flags = in_flags;
9366   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9367   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9368   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9369
9370   // Check flag compatibility.
9371   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9372   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9373
9374   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
9375   // doesn't seem to matter.
9376   new_flags &= ~elfcpp::EF_MIPS_XGOT;
9377   old_flags &= ~elfcpp::EF_MIPS_XGOT;
9378
9379   // MIPSpro generates ucode info in n64 objects.  Again, we should
9380   // just be able to ignore this.
9381   new_flags &= ~elfcpp::EF_MIPS_UCODE;
9382   old_flags &= ~elfcpp::EF_MIPS_UCODE;
9383
9384   if (new_flags == old_flags)
9385     {
9386       this->set_processor_specific_flags(merged_flags);
9387       return;
9388     }
9389
9390   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9391       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9392     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9393                  name.c_str());
9394
9395   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9396     merged_flags |= elfcpp::EF_MIPS_CPIC;
9397   if (!(new_flags & elfcpp::EF_MIPS_PIC))
9398     merged_flags &= ~elfcpp::EF_MIPS_PIC;
9399
9400   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9401   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9402
9403   // Compare the ISAs.
9404   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9405     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9406   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9407     {
9408       // Output ISA isn't the same as, or an extension of, input ISA.
9409       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9410         {
9411           // Copy the architecture info from input object to output.  Also copy
9412           // the 32-bit flag (if set) so that we continue to recognise
9413           // output as a 32-bit binary.
9414           this->mach_ = this->elf_mips_mach(in_flags);
9415           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9416           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9417                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9418
9419           // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9420           this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9421
9422           // Copy across the ABI flags if output doesn't use them
9423           // and if that was what caused us to treat input object as 32-bit.
9424           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9425               && this->mips_32bit_flags(new_flags)
9426               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9427             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9428         }
9429       else
9430         // The ISAs aren't compatible.
9431         gold_error(_("%s: linking %s module with previous %s modules"),
9432                    name.c_str(), this->elf_mips_mach_name(in_flags),
9433                    this->elf_mips_mach_name(merged_flags));
9434     }
9435
9436   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9437                 | elfcpp::EF_MIPS_32BITMODE));
9438   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9439                 | elfcpp::EF_MIPS_32BITMODE));
9440
9441   // Compare ABIs.
9442   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9443     {
9444       // Only error if both are set (to different values).
9445       if ((new_flags & elfcpp::EF_MIPS_ABI)
9446            && (old_flags & elfcpp::EF_MIPS_ABI))
9447         gold_error(_("%s: ABI mismatch: linking %s module with "
9448                      "previous %s modules"), name.c_str(),
9449                    this->elf_mips_abi_name(in_flags),
9450                    this->elf_mips_abi_name(merged_flags));
9451
9452       new_flags &= ~elfcpp::EF_MIPS_ABI;
9453       old_flags &= ~elfcpp::EF_MIPS_ABI;
9454     }
9455
9456   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
9457   // and allow arbitrary mixing of the remaining ASEs (retain the union).
9458   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9459       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9460     {
9461       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9462       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9463       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9464       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9465       int micro_mis = old_m16 && new_micro;
9466       int m16_mis = old_micro && new_m16;
9467
9468       if (m16_mis || micro_mis)
9469         gold_error(_("%s: ASE mismatch: linking %s module with "
9470                      "previous %s modules"), name.c_str(),
9471                    m16_mis ? "MIPS16" : "microMIPS",
9472                    m16_mis ? "microMIPS" : "MIPS16");
9473
9474       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9475
9476       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9477       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9478     }
9479
9480   // Compare NaN encodings.
9481   if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9482     {
9483       gold_error(_("%s: linking %s module with previous %s modules"),
9484                  name.c_str(),
9485                  (new_flags & elfcpp::EF_MIPS_NAN2008
9486                   ? "-mnan=2008" : "-mnan=legacy"),
9487                  (old_flags & elfcpp::EF_MIPS_NAN2008
9488                   ? "-mnan=2008" : "-mnan=legacy"));
9489
9490       new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9491       old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9492     }
9493
9494   // Compare FP64 state.
9495   if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9496     {
9497       gold_error(_("%s: linking %s module with previous %s modules"),
9498                  name.c_str(),
9499                  (new_flags & elfcpp::EF_MIPS_FP64
9500                   ? "-mfp64" : "-mfp32"),
9501                  (old_flags & elfcpp::EF_MIPS_FP64
9502                   ? "-mfp64" : "-mfp32"));
9503
9504       new_flags &= ~elfcpp::EF_MIPS_FP64;
9505       old_flags &= ~elfcpp::EF_MIPS_FP64;
9506     }
9507
9508   // Warn about any other mismatches.
9509   if (new_flags != old_flags)
9510     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9511                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9512
9513   this->set_processor_specific_flags(merged_flags);
9514 }
9515
9516 // Adjust ELF file header.
9517
9518 template<int size, bool big_endian>
9519 void
9520 Target_mips<size, big_endian>::do_adjust_elf_header(
9521     unsigned char* view,
9522     int len)
9523 {
9524   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9525
9526   elfcpp::Ehdr<size, big_endian> ehdr(view);
9527   unsigned char e_ident[elfcpp::EI_NIDENT];
9528   elfcpp::Elf_Word flags = this->processor_specific_flags();
9529   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9530
9531   unsigned char ei_abiversion = 0;
9532   elfcpp::Elf_Half type = ehdr.get_e_type();
9533   if (type == elfcpp::ET_EXEC
9534       && parameters->options().copyreloc()
9535       && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9536           == elfcpp::EF_MIPS_CPIC)
9537     ei_abiversion = 1;
9538
9539   if (this->abiflags_ != NULL
9540       && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9541           || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9542     ei_abiversion = 3;
9543
9544   e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9545   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9546   oehdr.put_e_ident(e_ident);
9547
9548   if (this->entry_symbol_is_compressed_)
9549     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9550 }
9551
9552 // do_make_elf_object to override the same function in the base class.
9553 // We need to use a target-specific sub-class of
9554 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9555 // Hence we need to have our own ELF object creation.
9556
9557 template<int size, bool big_endian>
9558 Object*
9559 Target_mips<size, big_endian>::do_make_elf_object(
9560     const std::string& name,
9561     Input_file* input_file,
9562     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9563 {
9564   int et = ehdr.get_e_type();
9565   // ET_EXEC files are valid input for --just-symbols/-R,
9566   // and we treat them as relocatable objects.
9567   if (et == elfcpp::ET_REL
9568       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9569     {
9570       Mips_relobj<size, big_endian>* obj =
9571         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9572       obj->setup();
9573       return obj;
9574     }
9575   else if (et == elfcpp::ET_DYN)
9576     {
9577       // TODO(sasa): Should we create Mips_dynobj?
9578       return Target::do_make_elf_object(name, input_file, offset, ehdr);
9579     }
9580   else
9581     {
9582       gold_error(_("%s: unsupported ELF file type %d"),
9583                  name.c_str(), et);
9584       return NULL;
9585     }
9586 }
9587
9588 // Finalize the sections.
9589
9590 template <int size, bool big_endian>
9591 void
9592 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9593                                         const Input_objects* input_objects,
9594                                         Symbol_table* symtab)
9595 {
9596   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9597   // DT_FINI have correct values.
9598   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9599       symtab->lookup(parameters->options().init()));
9600   if (init != NULL && (init->is_mips16() || init->is_micromips()))
9601     init->set_value(init->value() | 1);
9602   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9603       symtab->lookup(parameters->options().fini()));
9604   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9605     fini->set_value(fini->value() | 1);
9606
9607   // Check whether the entry symbol is mips16 or micromips.  This is needed to
9608   // adjust entry address in ELF header.
9609   Mips_symbol<size>* entry =
9610     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9611   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9612                                        || entry->is_micromips()));
9613
9614   if (!parameters->doing_static_link()
9615       && (strcmp(parameters->options().hash_style(), "gnu") == 0
9616           || strcmp(parameters->options().hash_style(), "both") == 0))
9617     {
9618       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9619       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
9620       // MIPS ABI requires a mapping between the GOT and the symbol table.
9621       gold_error(".gnu.hash is incompatible with the MIPS ABI");
9622     }
9623
9624   // Check whether the final section that was scanned has HI16 or GOT16
9625   // relocations without the corresponding LO16 part.
9626   if (this->got16_addends_.size() > 0)
9627       gold_error("Can't find matching LO16 reloc");
9628
9629   // Check for any mips16 stub sections that we can discard.
9630   if (!parameters->options().relocatable())
9631     {
9632       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9633           p != input_objects->relobj_end();
9634           ++p)
9635         {
9636           Mips_relobj<size, big_endian>* object =
9637             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9638           object->discard_mips16_stub_sections(symtab);
9639         }
9640     }
9641
9642   Valtype gprmask = 0;
9643   Valtype cprmask1 = 0;
9644   Valtype cprmask2 = 0;
9645   Valtype cprmask3 = 0;
9646   Valtype cprmask4 = 0;
9647   bool has_reginfo_section = false;
9648
9649   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9650        p != input_objects->relobj_end();
9651        ++p)
9652     {
9653       Mips_relobj<size, big_endian>* relobj =
9654         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9655
9656       // Merge .reginfo contents of input objects.
9657       if (relobj->has_reginfo_section())
9658         {
9659           has_reginfo_section = true;
9660           gprmask |= relobj->gprmask();
9661           cprmask1 |= relobj->cprmask1();
9662           cprmask2 |= relobj->cprmask2();
9663           cprmask3 |= relobj->cprmask3();
9664           cprmask4 |= relobj->cprmask4();
9665         }
9666
9667       Input_file::Format format = relobj->input_file()->format();
9668       if (format != Input_file::FORMAT_ELF)
9669         continue;
9670
9671       // If all input sections will be discarded, don't use this object
9672       // file for merging processor specific flags.
9673       bool should_merge_processor_specific_flags = false;
9674
9675       for (unsigned int i = 1; i < relobj->shnum(); ++i)
9676         if (relobj->output_section(i) != NULL)
9677           {
9678             should_merge_processor_specific_flags = true;
9679             break;
9680           }
9681
9682       if (!should_merge_processor_specific_flags)
9683         continue;
9684
9685       // Merge processor specific flags.
9686       Mips_abiflags<big_endian> in_abiflags;
9687
9688       this->create_abiflags(relobj, &in_abiflags);
9689       this->merge_obj_e_flags(relobj->name(),
9690                               relobj->processor_specific_flags());
9691       this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9692       this->merge_obj_attributes(relobj->name(),
9693                                  relobj->attributes_section_data());
9694     }
9695
9696   // Create a .gnu.attributes section if we have merged any attributes
9697   // from inputs.
9698   if (this->attributes_section_data_ != NULL)
9699     {
9700       Output_attributes_section_data* attributes_section =
9701         new Output_attributes_section_data(*this->attributes_section_data_);
9702       layout->add_output_section_data(".gnu.attributes",
9703                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
9704                                       attributes_section, ORDER_INVALID, false);
9705     }
9706
9707   // Create .MIPS.abiflags output section if there is an input section.
9708   if (this->has_abiflags_section_)
9709     {
9710       Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9711         new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9712
9713       Output_section* os =
9714         layout->add_output_section_data(".MIPS.abiflags",
9715                                         elfcpp::SHT_MIPS_ABIFLAGS,
9716                                         elfcpp::SHF_ALLOC,
9717                                         abiflags_section, ORDER_INVALID, false);
9718
9719       if (!parameters->options().relocatable() && os != NULL)
9720         {
9721           Output_segment* abiflags_segment =
9722             layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9723           abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9724         }
9725     }
9726
9727   if (has_reginfo_section && !parameters->options().gc_sections())
9728     {
9729       // Create .reginfo output section.
9730       Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9731         new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9732                                                           cprmask1, cprmask2,
9733                                                           cprmask3, cprmask4);
9734
9735       Output_section* os =
9736         layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9737                                         elfcpp::SHF_ALLOC, reginfo_section,
9738                                         ORDER_INVALID, false);
9739
9740       if (!parameters->options().relocatable() && os != NULL)
9741         {
9742           Output_segment* reginfo_segment =
9743             layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9744                                         elfcpp::PF_R);
9745           reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9746         }
9747     }
9748
9749   if (this->plt_ != NULL)
9750     {
9751       // Set final PLT offsets for symbols.
9752       this->plt_section()->set_plt_offsets();
9753
9754       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9755       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9756       // there are no standard PLT entries present.
9757       unsigned char nonvis = 0;
9758       if (this->is_output_micromips()
9759           && !this->plt_section()->has_standard_entries())
9760         nonvis = elfcpp::STO_MICROMIPS >> 2;
9761       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9762                                     Symbol_table::PREDEFINED,
9763                                     this->plt_,
9764                                     0, 0, elfcpp::STT_FUNC,
9765                                     elfcpp::STB_LOCAL,
9766                                     elfcpp::STV_DEFAULT, nonvis,
9767                                     false, false);
9768     }
9769
9770   if (this->mips_stubs_ != NULL)
9771     {
9772       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9773       unsigned char nonvis = 0;
9774       if (this->is_output_micromips())
9775         nonvis = elfcpp::STO_MICROMIPS >> 2;
9776       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9777                                     Symbol_table::PREDEFINED,
9778                                     this->mips_stubs_,
9779                                     0, 0, elfcpp::STT_FUNC,
9780                                     elfcpp::STB_LOCAL,
9781                                     elfcpp::STV_DEFAULT, nonvis,
9782                                     false, false);
9783     }
9784
9785   if (!parameters->options().relocatable() && !parameters->doing_static_link())
9786     // In case there is no .got section, create one.
9787     this->got_section(symtab, layout);
9788
9789   // Emit any relocs we saved in an attempt to avoid generating COPY
9790   // relocs.
9791   if (this->copy_relocs_.any_saved_relocs())
9792     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9793                                  this);
9794
9795   // Set _gp value.
9796   this->set_gp(layout, symtab);
9797
9798   // Emit dynamic relocs.
9799   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9800        p != this->dyn_relocs_.end();
9801        ++p)
9802     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9803
9804   if (this->has_got_section())
9805     this->got_section()->lay_out_got(layout, symtab, input_objects);
9806
9807   if (this->mips_stubs_ != NULL)
9808     this->mips_stubs_->set_needs_dynsym_value();
9809
9810   // Check for functions that might need $25 to be valid on entry.
9811   // TODO(sasa): Can we do this without iterating over all symbols?
9812   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9813   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9814                                                                symtab));
9815
9816   // Add NULL segment.
9817   if (!parameters->options().relocatable())
9818     layout->make_output_segment(elfcpp::PT_NULL, 0);
9819
9820   // Fill in some more dynamic tags.
9821   // TODO(sasa): Add more dynamic tags.
9822   const Reloc_section* rel_plt = (this->plt_ == NULL
9823                                   ? NULL : this->plt_->rel_plt());
9824   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9825                                   this->rel_dyn_, true, false);
9826
9827   Output_data_dynamic* const odyn = layout->dynamic_data();
9828   if (odyn != NULL
9829       && !parameters->options().relocatable()
9830       && !parameters->doing_static_link())
9831   {
9832     unsigned int d_val;
9833     // This element holds a 32-bit version id for the Runtime
9834     // Linker Interface.  This will start at integer value 1.
9835     d_val = 0x01;
9836     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9837
9838     // Dynamic flags
9839     d_val = elfcpp::RHF_NOTPOT;
9840     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9841
9842     // Save layout for using when emitting custom dynamic tags.
9843     this->layout_ = layout;
9844
9845     // This member holds the base address of the segment.
9846     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9847
9848     // This member holds the number of entries in the .dynsym section.
9849     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9850
9851     // This member holds the index of the first dynamic symbol
9852     // table entry that corresponds to an entry in the global offset table.
9853     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9854
9855     // This member holds the number of local GOT entries.
9856     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9857                        this->got_->get_local_gotno());
9858
9859     if (this->plt_ != NULL)
9860       // DT_MIPS_PLTGOT dynamic tag
9861       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9862
9863     if (!parameters->options().shared())
9864       {
9865         this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9866
9867         layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9868                                         (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9869                                         this->rld_map_, ORDER_INVALID, false);
9870
9871         // __RLD_MAP will be filled in by the runtime loader to contain
9872         // a pointer to the _r_debug structure.
9873         Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9874                                             Symbol_table::PREDEFINED,
9875                                             this->rld_map_,
9876                                             0, 0, elfcpp::STT_OBJECT,
9877                                             elfcpp::STB_GLOBAL,
9878                                             elfcpp::STV_DEFAULT, 0,
9879                                             false, false);
9880
9881         if (!rld_map->is_forced_local())
9882           rld_map->set_needs_dynsym_entry();
9883
9884         if (!parameters->options().pie())
9885           // This member holds the absolute address of the debug pointer.
9886           odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9887         else
9888           // This member holds the offset to the debug pointer,
9889           // relative to the address of the tag.
9890           odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9891       }
9892   }
9893 }
9894
9895 // Get the custom dynamic tag value.
9896 template<int size, bool big_endian>
9897 unsigned int
9898 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9899 {
9900   switch (tag)
9901     {
9902     case elfcpp::DT_MIPS_BASE_ADDRESS:
9903       {
9904         // The base address of the segment.
9905         // At this point, the segment list has been sorted into final order,
9906         // so just return vaddr of the first readable PT_LOAD segment.
9907         Output_segment* seg =
9908           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9909         gold_assert(seg != NULL);
9910         return seg->vaddr();
9911       }
9912
9913     case elfcpp::DT_MIPS_SYMTABNO:
9914       // The number of entries in the .dynsym section.
9915       return this->get_dt_mips_symtabno();
9916
9917     case elfcpp::DT_MIPS_GOTSYM:
9918       {
9919         // The index of the first dynamic symbol table entry that corresponds
9920         // to an entry in the GOT.
9921         if (this->got_->first_global_got_dynsym_index() != -1U)
9922           return this->got_->first_global_got_dynsym_index();
9923         else
9924           // In case if we don't have global GOT symbols we default to setting
9925           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9926           return this->get_dt_mips_symtabno();
9927       }
9928
9929     case elfcpp::DT_MIPS_RLD_MAP_REL:
9930       {
9931         // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9932         // relative to the address of the tag.
9933         Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9934         unsigned int entry_offset =
9935           odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9936         gold_assert(entry_offset != -1U);
9937         return this->rld_map_->address() - (odyn->address() + entry_offset);
9938       }
9939     default:
9940       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9941     }
9942
9943   return (unsigned int)-1;
9944 }
9945
9946 // Relocate section data.
9947
9948 template<int size, bool big_endian>
9949 void
9950 Target_mips<size, big_endian>::relocate_section(
9951                         const Relocate_info<size, big_endian>* relinfo,
9952                         unsigned int sh_type,
9953                         const unsigned char* prelocs,
9954                         size_t reloc_count,
9955                         Output_section* output_section,
9956                         bool needs_special_offset_handling,
9957                         unsigned char* view,
9958                         Mips_address address,
9959                         section_size_type view_size,
9960                         const Reloc_symbol_changes* reloc_symbol_changes)
9961 {
9962   typedef Target_mips<size, big_endian> Mips;
9963   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9964
9965   if (sh_type == elfcpp::SHT_REL)
9966     {
9967       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9968           Classify_reloc;
9969
9970       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9971                              gold::Default_comdat_behavior, Classify_reloc>(
9972         relinfo,
9973         this,
9974         prelocs,
9975         reloc_count,
9976         output_section,
9977         needs_special_offset_handling,
9978         view,
9979         address,
9980         view_size,
9981         reloc_symbol_changes);
9982     }
9983   else if (sh_type == elfcpp::SHT_RELA)
9984     {
9985       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9986           Classify_reloc;
9987
9988       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9989                              gold::Default_comdat_behavior, Classify_reloc>(
9990         relinfo,
9991         this,
9992         prelocs,
9993         reloc_count,
9994         output_section,
9995         needs_special_offset_handling,
9996         view,
9997         address,
9998         view_size,
9999         reloc_symbol_changes);
10000     }
10001 }
10002
10003 // Return the size of a relocation while scanning during a relocatable
10004 // link.
10005
10006 unsigned int
10007 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10008 {
10009   switch (r_type)
10010     {
10011     case elfcpp::R_MIPS_NONE:
10012     case elfcpp::R_MIPS_TLS_DTPMOD64:
10013     case elfcpp::R_MIPS_TLS_DTPREL64:
10014     case elfcpp::R_MIPS_TLS_TPREL64:
10015       return 0;
10016
10017     case elfcpp::R_MIPS_32:
10018     case elfcpp::R_MIPS_TLS_DTPMOD32:
10019     case elfcpp::R_MIPS_TLS_DTPREL32:
10020     case elfcpp::R_MIPS_TLS_TPREL32:
10021     case elfcpp::R_MIPS_REL32:
10022     case elfcpp::R_MIPS_PC32:
10023     case elfcpp::R_MIPS_GPREL32:
10024     case elfcpp::R_MIPS_JALR:
10025     case elfcpp::R_MIPS_EH:
10026       return 4;
10027
10028     case elfcpp::R_MIPS_16:
10029     case elfcpp::R_MIPS_HI16:
10030     case elfcpp::R_MIPS_LO16:
10031     case elfcpp::R_MIPS_HIGHER:
10032     case elfcpp::R_MIPS_HIGHEST:
10033     case elfcpp::R_MIPS_GPREL16:
10034     case elfcpp::R_MIPS16_HI16:
10035     case elfcpp::R_MIPS16_LO16:
10036     case elfcpp::R_MIPS_PC16:
10037     case elfcpp::R_MIPS_PCHI16:
10038     case elfcpp::R_MIPS_PCLO16:
10039     case elfcpp::R_MIPS_GOT16:
10040     case elfcpp::R_MIPS16_GOT16:
10041     case elfcpp::R_MIPS_CALL16:
10042     case elfcpp::R_MIPS16_CALL16:
10043     case elfcpp::R_MIPS_GOT_HI16:
10044     case elfcpp::R_MIPS_CALL_HI16:
10045     case elfcpp::R_MIPS_GOT_LO16:
10046     case elfcpp::R_MIPS_CALL_LO16:
10047     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10048     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10049     case elfcpp::R_MIPS_TLS_TPREL_HI16:
10050     case elfcpp::R_MIPS_TLS_TPREL_LO16:
10051     case elfcpp::R_MIPS16_GPREL:
10052     case elfcpp::R_MIPS_GOT_DISP:
10053     case elfcpp::R_MIPS_LITERAL:
10054     case elfcpp::R_MIPS_GOT_PAGE:
10055     case elfcpp::R_MIPS_GOT_OFST:
10056     case elfcpp::R_MIPS_TLS_GD:
10057     case elfcpp::R_MIPS_TLS_LDM:
10058     case elfcpp::R_MIPS_TLS_GOTTPREL:
10059       return 2;
10060
10061     // These relocations are not byte sized
10062     case elfcpp::R_MIPS_26:
10063     case elfcpp::R_MIPS16_26:
10064     case elfcpp::R_MIPS_PC21_S2:
10065     case elfcpp::R_MIPS_PC26_S2:
10066     case elfcpp::R_MIPS_PC18_S3:
10067     case elfcpp::R_MIPS_PC19_S2:
10068       return 4;
10069
10070     case elfcpp::R_MIPS_COPY:
10071     case elfcpp::R_MIPS_JUMP_SLOT:
10072       object->error(_("unexpected reloc %u in object file"), r_type);
10073       return 0;
10074
10075     default:
10076       object->error(_("unsupported reloc %u in object file"), r_type);
10077       return 0;
10078   }
10079 }
10080
10081 // Scan the relocs during a relocatable link.
10082
10083 template<int size, bool big_endian>
10084 void
10085 Target_mips<size, big_endian>::scan_relocatable_relocs(
10086                         Symbol_table* symtab,
10087                         Layout* layout,
10088                         Sized_relobj_file<size, big_endian>* object,
10089                         unsigned int data_shndx,
10090                         unsigned int sh_type,
10091                         const unsigned char* prelocs,
10092                         size_t reloc_count,
10093                         Output_section* output_section,
10094                         bool needs_special_offset_handling,
10095                         size_t local_symbol_count,
10096                         const unsigned char* plocal_symbols,
10097                         Relocatable_relocs* rr)
10098 {
10099   if (sh_type == elfcpp::SHT_REL)
10100     {
10101       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10102           Classify_reloc;
10103       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10104           Scan_relocatable_relocs;
10105
10106       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10107         symtab,
10108         layout,
10109         object,
10110         data_shndx,
10111         prelocs,
10112         reloc_count,
10113         output_section,
10114         needs_special_offset_handling,
10115         local_symbol_count,
10116         plocal_symbols,
10117         rr);
10118     }
10119   else if (sh_type == elfcpp::SHT_RELA)
10120     {
10121       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10122           Classify_reloc;
10123       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10124           Scan_relocatable_relocs;
10125
10126       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10127         symtab,
10128         layout,
10129         object,
10130         data_shndx,
10131         prelocs,
10132         reloc_count,
10133         output_section,
10134         needs_special_offset_handling,
10135         local_symbol_count,
10136         plocal_symbols,
10137         rr);
10138     }
10139   else
10140     gold_unreachable();
10141 }
10142
10143 // Scan the relocs for --emit-relocs.
10144
10145 template<int size, bool big_endian>
10146 void
10147 Target_mips<size, big_endian>::emit_relocs_scan(
10148     Symbol_table* symtab,
10149     Layout* layout,
10150     Sized_relobj_file<size, big_endian>* object,
10151     unsigned int data_shndx,
10152     unsigned int sh_type,
10153     const unsigned char* prelocs,
10154     size_t reloc_count,
10155     Output_section* output_section,
10156     bool needs_special_offset_handling,
10157     size_t local_symbol_count,
10158     const unsigned char* plocal_syms,
10159     Relocatable_relocs* rr)
10160 {
10161   if (sh_type == elfcpp::SHT_REL)
10162     {
10163       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10164           Classify_reloc;
10165       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10166           Emit_relocs_strategy;
10167
10168       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10169         symtab,
10170         layout,
10171         object,
10172         data_shndx,
10173         prelocs,
10174         reloc_count,
10175         output_section,
10176         needs_special_offset_handling,
10177         local_symbol_count,
10178         plocal_syms,
10179         rr);
10180     }
10181   else if (sh_type == elfcpp::SHT_RELA)
10182     {
10183       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10184           Classify_reloc;
10185       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10186           Emit_relocs_strategy;
10187
10188       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10189         symtab,
10190         layout,
10191         object,
10192         data_shndx,
10193         prelocs,
10194         reloc_count,
10195         output_section,
10196         needs_special_offset_handling,
10197         local_symbol_count,
10198         plocal_syms,
10199         rr);
10200     }
10201   else
10202     gold_unreachable();
10203 }
10204
10205 // Emit relocations for a section.
10206
10207 template<int size, bool big_endian>
10208 void
10209 Target_mips<size, big_endian>::relocate_relocs(
10210                         const Relocate_info<size, big_endian>* relinfo,
10211                         unsigned int sh_type,
10212                         const unsigned char* prelocs,
10213                         size_t reloc_count,
10214                         Output_section* output_section,
10215                         typename elfcpp::Elf_types<size>::Elf_Off
10216                           offset_in_output_section,
10217                         unsigned char* view,
10218                         Mips_address view_address,
10219                         section_size_type view_size,
10220                         unsigned char* reloc_view,
10221                         section_size_type reloc_view_size)
10222 {
10223   if (sh_type == elfcpp::SHT_REL)
10224     {
10225       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10226           Classify_reloc;
10227
10228       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10229         relinfo,
10230         prelocs,
10231         reloc_count,
10232         output_section,
10233         offset_in_output_section,
10234         view,
10235         view_address,
10236         view_size,
10237         reloc_view,
10238         reloc_view_size);
10239     }
10240   else if (sh_type == elfcpp::SHT_RELA)
10241     {
10242       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10243           Classify_reloc;
10244
10245       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10246         relinfo,
10247         prelocs,
10248         reloc_count,
10249         output_section,
10250         offset_in_output_section,
10251         view,
10252         view_address,
10253         view_size,
10254         reloc_view,
10255         reloc_view_size);
10256     }
10257   else
10258     gold_unreachable();
10259 }
10260
10261 // Perform target-specific processing in a relocatable link.  This is
10262 // only used if we use the relocation strategy RELOC_SPECIAL.
10263
10264 template<int size, bool big_endian>
10265 void
10266 Target_mips<size, big_endian>::relocate_special_relocatable(
10267     const Relocate_info<size, big_endian>* relinfo,
10268     unsigned int sh_type,
10269     const unsigned char* preloc_in,
10270     size_t relnum,
10271     Output_section* output_section,
10272     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10273     unsigned char* view,
10274     Mips_address view_address,
10275     section_size_type,
10276     unsigned char* preloc_out)
10277 {
10278   // We can only handle REL type relocation sections.
10279   gold_assert(sh_type == elfcpp::SHT_REL);
10280
10281   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10282     Reltype;
10283   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10284     Reltype_write;
10285
10286   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10287
10288   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10289
10290   Mips_relobj<size, big_endian>* object =
10291     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10292   const unsigned int local_count = object->local_symbol_count();
10293
10294   Reltype reloc(preloc_in);
10295   Reltype_write reloc_write(preloc_out);
10296
10297   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10298   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10299   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10300
10301   // Get the new symbol index.
10302   // We only use RELOC_SPECIAL strategy in local relocations.
10303   gold_assert(r_sym < local_count);
10304
10305   // We are adjusting a section symbol.  We need to find
10306   // the symbol table index of the section symbol for
10307   // the output section corresponding to input section
10308   // in which this symbol is defined.
10309   bool is_ordinary;
10310   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10311   gold_assert(is_ordinary);
10312   Output_section* os = object->output_section(shndx);
10313   gold_assert(os != NULL);
10314   gold_assert(os->needs_symtab_index());
10315   unsigned int new_symndx = os->symtab_index();
10316
10317   // Get the new offset--the location in the output section where
10318   // this relocation should be applied.
10319
10320   Mips_address offset = reloc.get_r_offset();
10321   Mips_address new_offset;
10322   if (offset_in_output_section != invalid_address)
10323     new_offset = offset + offset_in_output_section;
10324   else
10325     {
10326       section_offset_type sot_offset =
10327         convert_types<section_offset_type, Mips_address>(offset);
10328       section_offset_type new_sot_offset =
10329         output_section->output_offset(object, relinfo->data_shndx,
10330                                       sot_offset);
10331       gold_assert(new_sot_offset != -1);
10332       new_offset = new_sot_offset;
10333     }
10334
10335   // In an object file, r_offset is an offset within the section.
10336   // In an executable or dynamic object, generated by
10337   // --emit-relocs, r_offset is an absolute address.
10338   if (!parameters->options().relocatable())
10339     {
10340       new_offset += view_address;
10341       if (offset_in_output_section != invalid_address)
10342         new_offset -= offset_in_output_section;
10343     }
10344
10345   reloc_write.put_r_offset(new_offset);
10346   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10347
10348   // Handle the reloc addend.
10349   // The relocation uses a section symbol in the input file.
10350   // We are adjusting it to use a section symbol in the output
10351   // file.  The input section symbol refers to some address in
10352   // the input section.  We need the relocation in the output
10353   // file to refer to that same address.  This adjustment to
10354   // the addend is the same calculation we use for a simple
10355   // absolute relocation for the input section symbol.
10356   Valtype calculated_value = 0;
10357   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10358
10359   unsigned char* paddend = view + offset;
10360   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10361   switch (r_type)
10362     {
10363     case elfcpp::R_MIPS_26:
10364       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10365           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10366           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10367           false, &calculated_value);
10368       break;
10369
10370     default:
10371       gold_unreachable();
10372     }
10373
10374   // Report any errors.
10375   switch (reloc_status)
10376     {
10377     case Reloc_funcs::STATUS_OKAY:
10378       break;
10379     case Reloc_funcs::STATUS_OVERFLOW:
10380       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10381                              _("relocation overflow: "
10382                                "%u against local symbol %u in %s"),
10383                              r_type, r_sym, object->name().c_str());
10384       break;
10385     case Reloc_funcs::STATUS_BAD_RELOC:
10386       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10387         _("unexpected opcode while processing relocation"));
10388       break;
10389     default:
10390       gold_unreachable();
10391     }
10392 }
10393
10394 // Optimize the TLS relocation type based on what we know about the
10395 // symbol.  IS_FINAL is true if the final address of this symbol is
10396 // known at link time.
10397
10398 template<int size, bool big_endian>
10399 tls::Tls_optimization
10400 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10401 {
10402   // FIXME: Currently we do not do any TLS optimization.
10403   return tls::TLSOPT_NONE;
10404 }
10405
10406 // Scan a relocation for a local symbol.
10407
10408 template<int size, bool big_endian>
10409 inline void
10410 Target_mips<size, big_endian>::Scan::local(
10411                         Symbol_table* symtab,
10412                         Layout* layout,
10413                         Target_mips<size, big_endian>* target,
10414                         Sized_relobj_file<size, big_endian>* object,
10415                         unsigned int data_shndx,
10416                         Output_section* output_section,
10417                         const Relatype* rela,
10418                         const Reltype* rel,
10419                         unsigned int rel_type,
10420                         unsigned int r_type,
10421                         const elfcpp::Sym<size, big_endian>& lsym,
10422                         bool is_discarded)
10423 {
10424   if (is_discarded)
10425     return;
10426
10427   Mips_address r_offset;
10428   unsigned int r_sym;
10429   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10430
10431   if (rel_type == elfcpp::SHT_RELA)
10432     {
10433       r_offset = rela->get_r_offset();
10434       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10435           get_r_sym(rela);
10436       r_addend = rela->get_r_addend();
10437     }
10438   else
10439     {
10440       r_offset = rel->get_r_offset();
10441       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10442           get_r_sym(rel);
10443       r_addend = 0;
10444     }
10445
10446   Mips_relobj<size, big_endian>* mips_obj =
10447     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10448
10449   if (mips_obj->is_mips16_stub_section(data_shndx))
10450     {
10451       mips_obj->get_mips16_stub_section(data_shndx)
10452               ->new_local_reloc_found(r_type, r_sym);
10453     }
10454
10455   if (r_type == elfcpp::R_MIPS_NONE)
10456     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10457     // mips16 stub.
10458     return;
10459
10460   if (!mips16_call_reloc(r_type)
10461       && !mips_obj->section_allows_mips16_refs(data_shndx))
10462     // This reloc would need to refer to a MIPS16 hard-float stub, if
10463     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10464     // looking for relocs that would need to refer to MIPS16 stubs.
10465     mips_obj->add_local_non_16bit_call(r_sym);
10466
10467   if (r_type == elfcpp::R_MIPS16_26
10468       && !mips_obj->section_allows_mips16_refs(data_shndx))
10469     mips_obj->add_local_16bit_call(r_sym);
10470
10471   switch (r_type)
10472     {
10473     case elfcpp::R_MIPS_GOT16:
10474     case elfcpp::R_MIPS_CALL16:
10475     case elfcpp::R_MIPS_CALL_HI16:
10476     case elfcpp::R_MIPS_CALL_LO16:
10477     case elfcpp::R_MIPS_GOT_HI16:
10478     case elfcpp::R_MIPS_GOT_LO16:
10479     case elfcpp::R_MIPS_GOT_PAGE:
10480     case elfcpp::R_MIPS_GOT_OFST:
10481     case elfcpp::R_MIPS_GOT_DISP:
10482     case elfcpp::R_MIPS_TLS_GOTTPREL:
10483     case elfcpp::R_MIPS_TLS_GD:
10484     case elfcpp::R_MIPS_TLS_LDM:
10485     case elfcpp::R_MIPS16_GOT16:
10486     case elfcpp::R_MIPS16_CALL16:
10487     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10488     case elfcpp::R_MIPS16_TLS_GD:
10489     case elfcpp::R_MIPS16_TLS_LDM:
10490     case elfcpp::R_MICROMIPS_GOT16:
10491     case elfcpp::R_MICROMIPS_CALL16:
10492     case elfcpp::R_MICROMIPS_CALL_HI16:
10493     case elfcpp::R_MICROMIPS_CALL_LO16:
10494     case elfcpp::R_MICROMIPS_GOT_HI16:
10495     case elfcpp::R_MICROMIPS_GOT_LO16:
10496     case elfcpp::R_MICROMIPS_GOT_PAGE:
10497     case elfcpp::R_MICROMIPS_GOT_OFST:
10498     case elfcpp::R_MICROMIPS_GOT_DISP:
10499     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10500     case elfcpp::R_MICROMIPS_TLS_GD:
10501     case elfcpp::R_MICROMIPS_TLS_LDM:
10502     case elfcpp::R_MIPS_EH:
10503       // We need a GOT section.
10504       target->got_section(symtab, layout);
10505       break;
10506
10507     default:
10508       break;
10509     }
10510
10511   if (call_lo16_reloc(r_type)
10512       || got_lo16_reloc(r_type)
10513       || got_disp_reloc(r_type)
10514       || eh_reloc(r_type))
10515     {
10516       // We may need a local GOT entry for this relocation.  We
10517       // don't count R_MIPS_GOT_PAGE because we can estimate the
10518       // maximum number of pages needed by looking at the size of
10519       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
10520       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
10521       // R_MIPS_CALL_HI16 because these are always followed by an
10522       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10523       Mips_output_data_got<size, big_endian>* got =
10524         target->got_section(symtab, layout);
10525       bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10526       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10527                                    is_section_symbol);
10528     }
10529
10530   switch (r_type)
10531     {
10532     case elfcpp::R_MIPS_CALL16:
10533     case elfcpp::R_MIPS16_CALL16:
10534     case elfcpp::R_MICROMIPS_CALL16:
10535       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10536                  (unsigned long)r_offset);
10537       return;
10538
10539     case elfcpp::R_MIPS_GOT_PAGE:
10540     case elfcpp::R_MICROMIPS_GOT_PAGE:
10541     case elfcpp::R_MIPS16_GOT16:
10542     case elfcpp::R_MIPS_GOT16:
10543     case elfcpp::R_MIPS_GOT_HI16:
10544     case elfcpp::R_MIPS_GOT_LO16:
10545     case elfcpp::R_MICROMIPS_GOT16:
10546     case elfcpp::R_MICROMIPS_GOT_HI16:
10547     case elfcpp::R_MICROMIPS_GOT_LO16:
10548       {
10549         // This relocation needs a page entry in the GOT.
10550         // Get the section contents.
10551         section_size_type view_size = 0;
10552         const unsigned char* view = object->section_contents(data_shndx,
10553                                                              &view_size, false);
10554         view += r_offset;
10555
10556         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10557         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10558                                                         : r_addend);
10559
10560         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10561           target->got16_addends_.push_back(got16_addend<size, big_endian>(
10562               object, data_shndx, r_type, r_sym, addend));
10563         else
10564           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10565         break;
10566       }
10567
10568     case elfcpp::R_MIPS_HI16:
10569     case elfcpp::R_MIPS_PCHI16:
10570     case elfcpp::R_MIPS16_HI16:
10571     case elfcpp::R_MICROMIPS_HI16:
10572       // Record the reloc so that we can check whether the corresponding LO16
10573       // part exists.
10574       if (rel_type == elfcpp::SHT_REL)
10575         target->got16_addends_.push_back(got16_addend<size, big_endian>(
10576             object, data_shndx, r_type, r_sym, 0));
10577       break;
10578
10579     case elfcpp::R_MIPS_LO16:
10580     case elfcpp::R_MIPS_PCLO16:
10581     case elfcpp::R_MIPS16_LO16:
10582     case elfcpp::R_MICROMIPS_LO16:
10583       {
10584         if (rel_type != elfcpp::SHT_REL)
10585           break;
10586
10587         // Find corresponding GOT16/HI16 relocation.
10588
10589         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10590         // be immediately following.  However, for the IRIX6 ABI, the next
10591         // relocation may be a composed relocation consisting of several
10592         // relocations for the same address.  In that case, the R_MIPS_LO16
10593         // relocation may occur as one of these.  We permit a similar
10594         // extension in general, as that is useful for GCC.
10595
10596         // In some cases GCC dead code elimination removes the LO16 but
10597         // keeps the corresponding HI16.  This is strictly speaking a
10598         // violation of the ABI but not immediately harmful.
10599
10600         typename std::list<got16_addend<size, big_endian> >::iterator it =
10601           target->got16_addends_.begin();
10602         while (it != target->got16_addends_.end())
10603           {
10604             got16_addend<size, big_endian> _got16_addend = *it;
10605
10606             // TODO(sasa): Split got16_addends_ list into two lists - one for
10607             // GOT16 relocs and the other for HI16 relocs.
10608
10609             // Report an error if we find HI16 or GOT16 reloc from the
10610             // previous section without the matching LO16 part.
10611             if (_got16_addend.object != object
10612                 || _got16_addend.shndx != data_shndx)
10613               {
10614                 gold_error("Can't find matching LO16 reloc");
10615                 break;
10616               }
10617
10618             if (_got16_addend.r_sym != r_sym
10619                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10620               {
10621                 ++it;
10622                 continue;
10623               }
10624
10625             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10626             // For GOT16, we need to calculate combined addend and record GOT page
10627             // entry.
10628             if (got16_reloc(_got16_addend.r_type))
10629               {
10630
10631                 section_size_type view_size = 0;
10632                 const unsigned char* view = object->section_contents(data_shndx,
10633                                                                      &view_size,
10634                                                                      false);
10635                 view += r_offset;
10636
10637                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10638                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10639
10640                 addend = (_got16_addend.addend << 16) + addend;
10641                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10642                                                              addend);
10643               }
10644
10645             it = target->got16_addends_.erase(it);
10646           }
10647         break;
10648       }
10649     }
10650
10651   switch (r_type)
10652     {
10653     case elfcpp::R_MIPS_32:
10654     case elfcpp::R_MIPS_REL32:
10655     case elfcpp::R_MIPS_64:
10656       {
10657         if (parameters->options().output_is_position_independent())
10658           {
10659             // If building a shared library (or a position-independent
10660             // executable), we need to create a dynamic relocation for
10661             // this location.
10662             if (is_readonly_section(output_section))
10663               break;
10664             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10665             rel_dyn->add_symbolless_local_addend(object, r_sym,
10666                                                  elfcpp::R_MIPS_REL32,
10667                                                  output_section, data_shndx,
10668                                                  r_offset);
10669           }
10670         break;
10671       }
10672
10673     case elfcpp::R_MIPS_TLS_GOTTPREL:
10674     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10675     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10676     case elfcpp::R_MIPS_TLS_LDM:
10677     case elfcpp::R_MIPS16_TLS_LDM:
10678     case elfcpp::R_MICROMIPS_TLS_LDM:
10679     case elfcpp::R_MIPS_TLS_GD:
10680     case elfcpp::R_MIPS16_TLS_GD:
10681     case elfcpp::R_MICROMIPS_TLS_GD:
10682       {
10683         bool output_is_shared = parameters->options().shared();
10684         const tls::Tls_optimization optimized_type
10685             = Target_mips<size, big_endian>::optimize_tls_reloc(
10686                                              !output_is_shared, r_type);
10687         switch (r_type)
10688           {
10689           case elfcpp::R_MIPS_TLS_GD:
10690           case elfcpp::R_MIPS16_TLS_GD:
10691           case elfcpp::R_MICROMIPS_TLS_GD:
10692             if (optimized_type == tls::TLSOPT_NONE)
10693               {
10694                 // Create a pair of GOT entries for the module index and
10695                 // dtv-relative offset.
10696                 Mips_output_data_got<size, big_endian>* got =
10697                   target->got_section(symtab, layout);
10698                 unsigned int shndx = lsym.get_st_shndx();
10699                 bool is_ordinary;
10700                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10701                 if (!is_ordinary)
10702                   {
10703                     object->error(_("local symbol %u has bad shndx %u"),
10704                                   r_sym, shndx);
10705                     break;
10706                   }
10707                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10708                                              shndx, false);
10709               }
10710             else
10711               {
10712                 // FIXME: TLS optimization not supported yet.
10713                 gold_unreachable();
10714               }
10715             break;
10716
10717           case elfcpp::R_MIPS_TLS_LDM:
10718           case elfcpp::R_MIPS16_TLS_LDM:
10719           case elfcpp::R_MICROMIPS_TLS_LDM:
10720             if (optimized_type == tls::TLSOPT_NONE)
10721               {
10722                 // We always record LDM symbols as local with index 0.
10723                 target->got_section()->record_local_got_symbol(mips_obj, 0,
10724                                                                r_addend, r_type,
10725                                                                -1U, false);
10726               }
10727             else
10728               {
10729                 // FIXME: TLS optimization not supported yet.
10730                 gold_unreachable();
10731               }
10732             break;
10733           case elfcpp::R_MIPS_TLS_GOTTPREL:
10734           case elfcpp::R_MIPS16_TLS_GOTTPREL:
10735           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10736             layout->set_has_static_tls();
10737             if (optimized_type == tls::TLSOPT_NONE)
10738               {
10739                 // Create a GOT entry for the tp-relative offset.
10740                 Mips_output_data_got<size, big_endian>* got =
10741                   target->got_section(symtab, layout);
10742                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10743                                              -1U, false);
10744               }
10745             else
10746               {
10747                 // FIXME: TLS optimization not supported yet.
10748                 gold_unreachable();
10749               }
10750             break;
10751
10752           default:
10753             gold_unreachable();
10754         }
10755       }
10756       break;
10757
10758     default:
10759       break;
10760     }
10761
10762   // Refuse some position-dependent relocations when creating a
10763   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
10764   // not PIC, but we can create dynamic relocations and the result
10765   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
10766   // combined with R_MIPS_GOT16.
10767   if (parameters->options().shared())
10768     {
10769       switch (r_type)
10770         {
10771         case elfcpp::R_MIPS16_HI16:
10772         case elfcpp::R_MIPS_HI16:
10773         case elfcpp::R_MIPS_HIGHER:
10774         case elfcpp::R_MIPS_HIGHEST:
10775         case elfcpp::R_MICROMIPS_HI16:
10776         case elfcpp::R_MICROMIPS_HIGHER:
10777         case elfcpp::R_MICROMIPS_HIGHEST:
10778           // Don't refuse a high part relocation if it's against
10779           // no symbol (e.g. part of a compound relocation).
10780           if (r_sym == 0)
10781             break;
10782           // Fall through.
10783
10784         case elfcpp::R_MIPS16_26:
10785         case elfcpp::R_MIPS_26:
10786         case elfcpp::R_MICROMIPS_26_S1:
10787           gold_error(_("%s: relocation %u against `%s' can not be used when "
10788                        "making a shared object; recompile with -fPIC"),
10789                      object->name().c_str(), r_type, "a local symbol");
10790         default:
10791           break;
10792         }
10793     }
10794 }
10795
10796 template<int size, bool big_endian>
10797 inline void
10798 Target_mips<size, big_endian>::Scan::local(
10799                         Symbol_table* symtab,
10800                         Layout* layout,
10801                         Target_mips<size, big_endian>* target,
10802                         Sized_relobj_file<size, big_endian>* object,
10803                         unsigned int data_shndx,
10804                         Output_section* output_section,
10805                         const Reltype& reloc,
10806                         unsigned int r_type,
10807                         const elfcpp::Sym<size, big_endian>& lsym,
10808                         bool is_discarded)
10809 {
10810   if (is_discarded)
10811     return;
10812
10813   local(
10814     symtab,
10815     layout,
10816     target,
10817     object,
10818     data_shndx,
10819     output_section,
10820     (const Relatype*) NULL,
10821     &reloc,
10822     elfcpp::SHT_REL,
10823     r_type,
10824     lsym, is_discarded);
10825 }
10826
10827
10828 template<int size, bool big_endian>
10829 inline void
10830 Target_mips<size, big_endian>::Scan::local(
10831                         Symbol_table* symtab,
10832                         Layout* layout,
10833                         Target_mips<size, big_endian>* target,
10834                         Sized_relobj_file<size, big_endian>* object,
10835                         unsigned int data_shndx,
10836                         Output_section* output_section,
10837                         const Relatype& reloc,
10838                         unsigned int r_type,
10839                         const elfcpp::Sym<size, big_endian>& lsym,
10840                         bool is_discarded)
10841 {
10842   if (is_discarded)
10843     return;
10844
10845   local(
10846     symtab,
10847     layout,
10848     target,
10849     object,
10850     data_shndx,
10851     output_section,
10852     &reloc,
10853     (const Reltype*) NULL,
10854     elfcpp::SHT_RELA,
10855     r_type,
10856     lsym, is_discarded);
10857 }
10858
10859 // Scan a relocation for a global symbol.
10860
10861 template<int size, bool big_endian>
10862 inline void
10863 Target_mips<size, big_endian>::Scan::global(
10864                                 Symbol_table* symtab,
10865                                 Layout* layout,
10866                                 Target_mips<size, big_endian>* target,
10867                                 Sized_relobj_file<size, big_endian>* object,
10868                                 unsigned int data_shndx,
10869                                 Output_section* output_section,
10870                                 const Relatype* rela,
10871                                 const Reltype* rel,
10872                                 unsigned int rel_type,
10873                                 unsigned int r_type,
10874                                 Symbol* gsym)
10875 {
10876   Mips_address r_offset;
10877   unsigned int r_sym;
10878   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10879
10880   if (rel_type == elfcpp::SHT_RELA)
10881     {
10882       r_offset = rela->get_r_offset();
10883       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10884           get_r_sym(rela);
10885       r_addend = rela->get_r_addend();
10886     }
10887   else
10888     {
10889       r_offset = rel->get_r_offset();
10890       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10891           get_r_sym(rel);
10892       r_addend = 0;
10893     }
10894
10895   Mips_relobj<size, big_endian>* mips_obj =
10896     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10897   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10898
10899   if (mips_obj->is_mips16_stub_section(data_shndx))
10900     {
10901       mips_obj->get_mips16_stub_section(data_shndx)
10902               ->new_global_reloc_found(r_type, mips_sym);
10903     }
10904
10905   if (r_type == elfcpp::R_MIPS_NONE)
10906     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10907     // mips16 stub.
10908     return;
10909
10910   if (!mips16_call_reloc(r_type)
10911       && !mips_obj->section_allows_mips16_refs(data_shndx))
10912     // This reloc would need to refer to a MIPS16 hard-float stub, if
10913     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10914     // looking for relocs that would need to refer to MIPS16 stubs.
10915     mips_sym->set_need_fn_stub();
10916
10917   // We need PLT entries if there are static-only relocations against
10918   // an externally-defined function.  This can technically occur for
10919   // shared libraries if there are branches to the symbol, although it
10920   // is unlikely that this will be used in practice due to the short
10921   // ranges involved.  It can occur for any relative or absolute relocation
10922   // in executables; in that case, the PLT entry becomes the function's
10923   // canonical address.
10924   bool static_reloc = false;
10925
10926   // Set CAN_MAKE_DYNAMIC to true if we can convert this
10927   // relocation into a dynamic one.
10928   bool can_make_dynamic = false;
10929   switch (r_type)
10930     {
10931     case elfcpp::R_MIPS_GOT16:
10932     case elfcpp::R_MIPS_CALL16:
10933     case elfcpp::R_MIPS_CALL_HI16:
10934     case elfcpp::R_MIPS_CALL_LO16:
10935     case elfcpp::R_MIPS_GOT_HI16:
10936     case elfcpp::R_MIPS_GOT_LO16:
10937     case elfcpp::R_MIPS_GOT_PAGE:
10938     case elfcpp::R_MIPS_GOT_OFST:
10939     case elfcpp::R_MIPS_GOT_DISP:
10940     case elfcpp::R_MIPS_TLS_GOTTPREL:
10941     case elfcpp::R_MIPS_TLS_GD:
10942     case elfcpp::R_MIPS_TLS_LDM:
10943     case elfcpp::R_MIPS16_GOT16:
10944     case elfcpp::R_MIPS16_CALL16:
10945     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10946     case elfcpp::R_MIPS16_TLS_GD:
10947     case elfcpp::R_MIPS16_TLS_LDM:
10948     case elfcpp::R_MICROMIPS_GOT16:
10949     case elfcpp::R_MICROMIPS_CALL16:
10950     case elfcpp::R_MICROMIPS_CALL_HI16:
10951     case elfcpp::R_MICROMIPS_CALL_LO16:
10952     case elfcpp::R_MICROMIPS_GOT_HI16:
10953     case elfcpp::R_MICROMIPS_GOT_LO16:
10954     case elfcpp::R_MICROMIPS_GOT_PAGE:
10955     case elfcpp::R_MICROMIPS_GOT_OFST:
10956     case elfcpp::R_MICROMIPS_GOT_DISP:
10957     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10958     case elfcpp::R_MICROMIPS_TLS_GD:
10959     case elfcpp::R_MICROMIPS_TLS_LDM:
10960     case elfcpp::R_MIPS_EH:
10961       // We need a GOT section.
10962       target->got_section(symtab, layout);
10963       break;
10964
10965     // This is just a hint; it can safely be ignored.  Don't set
10966     // has_static_relocs for the corresponding symbol.
10967     case elfcpp::R_MIPS_JALR:
10968     case elfcpp::R_MICROMIPS_JALR:
10969       break;
10970
10971     case elfcpp::R_MIPS_GPREL16:
10972     case elfcpp::R_MIPS_GPREL32:
10973     case elfcpp::R_MIPS16_GPREL:
10974     case elfcpp::R_MICROMIPS_GPREL16:
10975       // TODO(sasa)
10976       // GP-relative relocations always resolve to a definition in a
10977       // regular input file, ignoring the one-definition rule.  This is
10978       // important for the GP setup sequence in NewABI code, which
10979       // always resolves to a local function even if other relocations
10980       // against the symbol wouldn't.
10981       //constrain_symbol_p = FALSE;
10982       break;
10983
10984     case elfcpp::R_MIPS_32:
10985     case elfcpp::R_MIPS_REL32:
10986     case elfcpp::R_MIPS_64:
10987       if ((parameters->options().shared()
10988           || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10989           && (!is_readonly_section(output_section)
10990           || mips_obj->is_pic())))
10991           && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10992         {
10993           if (r_type != elfcpp::R_MIPS_REL32)
10994             mips_sym->set_pointer_equality_needed();
10995           can_make_dynamic = true;
10996           break;
10997         }
10998       // Fall through.
10999
11000     default:
11001       // Most static relocations require pointer equality, except
11002       // for branches.
11003       mips_sym->set_pointer_equality_needed();
11004       // Fall through.
11005
11006     case elfcpp::R_MIPS_26:
11007     case elfcpp::R_MIPS_PC16:
11008     case elfcpp::R_MIPS_PC21_S2:
11009     case elfcpp::R_MIPS_PC26_S2:
11010     case elfcpp::R_MIPS16_26:
11011     case elfcpp::R_MICROMIPS_26_S1:
11012     case elfcpp::R_MICROMIPS_PC7_S1:
11013     case elfcpp::R_MICROMIPS_PC10_S1:
11014     case elfcpp::R_MICROMIPS_PC16_S1:
11015     case elfcpp::R_MICROMIPS_PC23_S2:
11016       static_reloc = true;
11017       mips_sym->set_has_static_relocs();
11018       break;
11019     }
11020
11021   // If there are call relocations against an externally-defined symbol,
11022   // see whether we can create a MIPS lazy-binding stub for it.  We can
11023   // only do this if all references to the function are through call
11024   // relocations, and in that case, the traditional lazy-binding stubs
11025   // are much more efficient than PLT entries.
11026   switch (r_type)
11027     {
11028     case elfcpp::R_MIPS16_CALL16:
11029     case elfcpp::R_MIPS_CALL16:
11030     case elfcpp::R_MIPS_CALL_HI16:
11031     case elfcpp::R_MIPS_CALL_LO16:
11032     case elfcpp::R_MIPS_JALR:
11033     case elfcpp::R_MICROMIPS_CALL16:
11034     case elfcpp::R_MICROMIPS_CALL_HI16:
11035     case elfcpp::R_MICROMIPS_CALL_LO16:
11036     case elfcpp::R_MICROMIPS_JALR:
11037       if (!mips_sym->no_lazy_stub())
11038         {
11039           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11040               // Calls from shared objects to undefined symbols of type
11041               // STT_NOTYPE need lazy-binding stub.
11042               || (mips_sym->is_undefined() && parameters->options().shared()))
11043             target->mips_stubs_section(layout)->make_entry(mips_sym);
11044         }
11045       break;
11046     default:
11047       {
11048         // We must not create a stub for a symbol that has relocations
11049         // related to taking the function's address.
11050         mips_sym->set_no_lazy_stub();
11051         target->remove_lazy_stub_entry(mips_sym);
11052         break;
11053       }
11054   }
11055
11056   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11057                                                    mips_sym->is_mips16()))
11058     mips_sym->set_has_nonpic_branches();
11059
11060   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11061   // and has a special meaning.
11062   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11063                                && strcmp(gsym->name(), "_gp_disp") == 0
11064                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11065   if (static_reloc && gsym->needs_plt_entry())
11066     {
11067       target->make_plt_entry(symtab, layout, mips_sym, r_type);
11068
11069       // Since this is not a PC-relative relocation, we may be
11070       // taking the address of a function.  In that case we need to
11071       // set the entry in the dynamic symbol table to the address of
11072       // the PLT entry.
11073       if (gsym->is_from_dynobj() && !parameters->options().shared())
11074         {
11075           gsym->set_needs_dynsym_value();
11076           // We distinguish between PLT entries and lazy-binding stubs by
11077           // giving the former an st_other value of STO_MIPS_PLT.  Set the
11078           // flag if there are any relocations in the binary where pointer
11079           // equality matters.
11080           if (mips_sym->pointer_equality_needed())
11081             mips_sym->set_mips_plt();
11082         }
11083     }
11084   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11085     {
11086       // Absolute addressing relocations.
11087       // Make a dynamic relocation if necessary.
11088       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11089         {
11090           if (gsym->may_need_copy_reloc())
11091             {
11092               target->copy_reloc(symtab, layout, object, data_shndx,
11093                                  output_section, gsym, r_type, r_offset);
11094             }
11095           else if (can_make_dynamic)
11096             {
11097               // Create .rel.dyn section.
11098               target->rel_dyn_section(layout);
11099               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11100                                     data_shndx, output_section, r_offset);
11101             }
11102           else
11103             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11104                        gsym->name());
11105         }
11106     }
11107
11108   bool for_call = false;
11109   switch (r_type)
11110     {
11111     case elfcpp::R_MIPS_CALL16:
11112     case elfcpp::R_MIPS16_CALL16:
11113     case elfcpp::R_MICROMIPS_CALL16:
11114     case elfcpp::R_MIPS_CALL_HI16:
11115     case elfcpp::R_MIPS_CALL_LO16:
11116     case elfcpp::R_MICROMIPS_CALL_HI16:
11117     case elfcpp::R_MICROMIPS_CALL_LO16:
11118       for_call = true;
11119       // Fall through.
11120
11121     case elfcpp::R_MIPS16_GOT16:
11122     case elfcpp::R_MIPS_GOT16:
11123     case elfcpp::R_MIPS_GOT_HI16:
11124     case elfcpp::R_MIPS_GOT_LO16:
11125     case elfcpp::R_MICROMIPS_GOT16:
11126     case elfcpp::R_MICROMIPS_GOT_HI16:
11127     case elfcpp::R_MICROMIPS_GOT_LO16:
11128     case elfcpp::R_MIPS_GOT_DISP:
11129     case elfcpp::R_MICROMIPS_GOT_DISP:
11130     case elfcpp::R_MIPS_EH:
11131       {
11132         // The symbol requires a GOT entry.
11133         Mips_output_data_got<size, big_endian>* got =
11134           target->got_section(symtab, layout);
11135         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11136                                       for_call);
11137         mips_sym->set_global_got_area(GGA_NORMAL);
11138       }
11139       break;
11140
11141     case elfcpp::R_MIPS_GOT_PAGE:
11142     case elfcpp::R_MICROMIPS_GOT_PAGE:
11143       {
11144         // This relocation needs a page entry in the GOT.
11145         // Get the section contents.
11146         section_size_type view_size = 0;
11147         const unsigned char* view =
11148           object->section_contents(data_shndx, &view_size, false);
11149         view += r_offset;
11150
11151         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11152         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11153                                                         : r_addend);
11154         Mips_output_data_got<size, big_endian>* got =
11155           target->got_section(symtab, layout);
11156         got->record_got_page_entry(mips_obj, r_sym, addend);
11157
11158         // If this is a global, overridable symbol, GOT_PAGE will
11159         // decay to GOT_DISP, so we'll need a GOT entry for it.
11160         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11161                             && !mips_sym->object()->is_dynamic()
11162                             && !mips_sym->is_undefined());
11163         if (!def_regular
11164             || (parameters->options().output_is_position_independent()
11165                 && !parameters->options().Bsymbolic()
11166                 && !mips_sym->is_forced_local()))
11167           {
11168             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11169                                           for_call);
11170             mips_sym->set_global_got_area(GGA_NORMAL);
11171           }
11172       }
11173       break;
11174
11175     case elfcpp::R_MIPS_TLS_GOTTPREL:
11176     case elfcpp::R_MIPS16_TLS_GOTTPREL:
11177     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11178     case elfcpp::R_MIPS_TLS_LDM:
11179     case elfcpp::R_MIPS16_TLS_LDM:
11180     case elfcpp::R_MICROMIPS_TLS_LDM:
11181     case elfcpp::R_MIPS_TLS_GD:
11182     case elfcpp::R_MIPS16_TLS_GD:
11183     case elfcpp::R_MICROMIPS_TLS_GD:
11184       {
11185         const bool is_final = gsym->final_value_is_known();
11186         const tls::Tls_optimization optimized_type =
11187           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11188
11189         switch (r_type)
11190           {
11191           case elfcpp::R_MIPS_TLS_GD:
11192           case elfcpp::R_MIPS16_TLS_GD:
11193           case elfcpp::R_MICROMIPS_TLS_GD:
11194             if (optimized_type == tls::TLSOPT_NONE)
11195               {
11196                 // Create a pair of GOT entries for the module index and
11197                 // dtv-relative offset.
11198                 Mips_output_data_got<size, big_endian>* got =
11199                   target->got_section(symtab, layout);
11200                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11201                                               false);
11202               }
11203             else
11204               {
11205                 // FIXME: TLS optimization not supported yet.
11206                 gold_unreachable();
11207               }
11208             break;
11209
11210           case elfcpp::R_MIPS_TLS_LDM:
11211           case elfcpp::R_MIPS16_TLS_LDM:
11212           case elfcpp::R_MICROMIPS_TLS_LDM:
11213             if (optimized_type == tls::TLSOPT_NONE)
11214               {
11215                 // We always record LDM symbols as local with index 0.
11216                 target->got_section()->record_local_got_symbol(mips_obj, 0,
11217                                                                r_addend, r_type,
11218                                                                -1U, false);
11219               }
11220             else
11221               {
11222                 // FIXME: TLS optimization not supported yet.
11223                 gold_unreachable();
11224               }
11225             break;
11226           case elfcpp::R_MIPS_TLS_GOTTPREL:
11227           case elfcpp::R_MIPS16_TLS_GOTTPREL:
11228           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11229             layout->set_has_static_tls();
11230             if (optimized_type == tls::TLSOPT_NONE)
11231               {
11232                 // Create a GOT entry for the tp-relative offset.
11233                 Mips_output_data_got<size, big_endian>* got =
11234                   target->got_section(symtab, layout);
11235                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11236                                               false);
11237               }
11238             else
11239               {
11240                 // FIXME: TLS optimization not supported yet.
11241                 gold_unreachable();
11242               }
11243             break;
11244
11245           default:
11246             gold_unreachable();
11247         }
11248       }
11249       break;
11250     case elfcpp::R_MIPS_COPY:
11251     case elfcpp::R_MIPS_JUMP_SLOT:
11252       // These are relocations which should only be seen by the
11253       // dynamic linker, and should never be seen here.
11254       gold_error(_("%s: unexpected reloc %u in object file"),
11255                  object->name().c_str(), r_type);
11256       break;
11257
11258     default:
11259       break;
11260     }
11261
11262   // Refuse some position-dependent relocations when creating a
11263   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
11264   // not PIC, but we can create dynamic relocations and the result
11265   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
11266   // combined with R_MIPS_GOT16.
11267   if (parameters->options().shared())
11268     {
11269       switch (r_type)
11270         {
11271         case elfcpp::R_MIPS16_HI16:
11272         case elfcpp::R_MIPS_HI16:
11273         case elfcpp::R_MIPS_HIGHER:
11274         case elfcpp::R_MIPS_HIGHEST:
11275         case elfcpp::R_MICROMIPS_HI16:
11276         case elfcpp::R_MICROMIPS_HIGHER:
11277         case elfcpp::R_MICROMIPS_HIGHEST:
11278           // Don't refuse a high part relocation if it's against
11279           // no symbol (e.g. part of a compound relocation).
11280           if (r_sym == 0)
11281             break;
11282
11283           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11284           // and has a special meaning.
11285           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11286             break;
11287           // Fall through.
11288
11289         case elfcpp::R_MIPS16_26:
11290         case elfcpp::R_MIPS_26:
11291         case elfcpp::R_MICROMIPS_26_S1:
11292           gold_error(_("%s: relocation %u against `%s' can not be used when "
11293                        "making a shared object; recompile with -fPIC"),
11294                      object->name().c_str(), r_type, gsym->name());
11295         default:
11296           break;
11297         }
11298     }
11299 }
11300
11301 template<int size, bool big_endian>
11302 inline void
11303 Target_mips<size, big_endian>::Scan::global(
11304                                 Symbol_table* symtab,
11305                                 Layout* layout,
11306                                 Target_mips<size, big_endian>* target,
11307                                 Sized_relobj_file<size, big_endian>* object,
11308                                 unsigned int data_shndx,
11309                                 Output_section* output_section,
11310                                 const Relatype& reloc,
11311                                 unsigned int r_type,
11312                                 Symbol* gsym)
11313 {
11314   global(
11315     symtab,
11316     layout,
11317     target,
11318     object,
11319     data_shndx,
11320     output_section,
11321     &reloc,
11322     (const Reltype*) NULL,
11323     elfcpp::SHT_RELA,
11324     r_type,
11325     gsym);
11326 }
11327
11328 template<int size, bool big_endian>
11329 inline void
11330 Target_mips<size, big_endian>::Scan::global(
11331                                 Symbol_table* symtab,
11332                                 Layout* layout,
11333                                 Target_mips<size, big_endian>* target,
11334                                 Sized_relobj_file<size, big_endian>* object,
11335                                 unsigned int data_shndx,
11336                                 Output_section* output_section,
11337                                 const Reltype& reloc,
11338                                 unsigned int r_type,
11339                                 Symbol* gsym)
11340 {
11341   global(
11342     symtab,
11343     layout,
11344     target,
11345     object,
11346     data_shndx,
11347     output_section,
11348     (const Relatype*) NULL,
11349     &reloc,
11350     elfcpp::SHT_REL,
11351     r_type,
11352     gsym);
11353 }
11354
11355 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11356 // In cases where Scan::local() or Scan::global() has created
11357 // a dynamic relocation, the addend of the relocation is carried
11358 // in the data, and we must not apply the static relocation.
11359
11360 template<int size, bool big_endian>
11361 inline bool
11362 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11363     const Mips_symbol<size>* gsym,
11364     unsigned int r_type,
11365     Output_section* output_section,
11366     Target_mips* target)
11367 {
11368   // If the output section is not allocated, then we didn't call
11369   // scan_relocs, we didn't create a dynamic reloc, and we must apply
11370   // the reloc here.
11371   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11372       return true;
11373
11374   if (gsym == NULL)
11375     return true;
11376   else
11377     {
11378       // For global symbols, we use the same helper routines used in the
11379       // scan pass.
11380       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11381           && !gsym->may_need_copy_reloc())
11382         {
11383           // We have generated dynamic reloc (R_MIPS_REL32).
11384
11385           bool multi_got = false;
11386           if (target->has_got_section())
11387             multi_got = target->got_section()->multi_got();
11388           bool has_got_offset;
11389           if (!multi_got)
11390             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11391           else
11392             has_got_offset = gsym->global_gotoffset() != -1U;
11393           if (!has_got_offset)
11394             return true;
11395           else
11396             // Apply the relocation only if the symbol is in the local got.
11397             // Do not apply the relocation if the symbol is in the global
11398             // got.
11399             return symbol_references_local(gsym, gsym->has_dynsym_index());
11400         }
11401       else
11402         // We have not generated dynamic reloc.
11403         return true;
11404     }
11405 }
11406
11407 // Perform a relocation.
11408
11409 template<int size, bool big_endian>
11410 inline bool
11411 Target_mips<size, big_endian>::Relocate::relocate(
11412                         const Relocate_info<size, big_endian>* relinfo,
11413                         unsigned int rel_type,
11414                         Target_mips* target,
11415                         Output_section* output_section,
11416                         size_t relnum,
11417                         const unsigned char* preloc,
11418                         const Sized_symbol<size>* gsym,
11419                         const Symbol_value<size>* psymval,
11420                         unsigned char* view,
11421                         Mips_address address,
11422                         section_size_type)
11423 {
11424   Mips_address r_offset;
11425   unsigned int r_sym;
11426   unsigned int r_type;
11427   unsigned int r_type2;
11428   unsigned int r_type3;
11429   unsigned char r_ssym;
11430   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11431
11432   if (rel_type == elfcpp::SHT_RELA)
11433     {
11434       const Relatype rela(preloc);
11435       r_offset = rela.get_r_offset();
11436       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11437           get_r_sym(&rela);
11438       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11439           get_r_type(&rela);
11440       r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11441           get_r_type2(&rela);
11442       r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11443           get_r_type3(&rela);
11444       r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11445           get_r_ssym(&rela);
11446       r_addend = rela.get_r_addend();
11447     }
11448   else
11449     {
11450       const Reltype rel(preloc);
11451       r_offset = rel.get_r_offset();
11452       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11453           get_r_sym(&rel);
11454       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11455           get_r_type(&rel);
11456       r_ssym = 0;
11457       r_type2 = 0;
11458       r_type3 = 0;
11459       r_addend = 0;
11460     }
11461
11462   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11463   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11464
11465   Mips_relobj<size, big_endian>* object =
11466       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11467
11468   bool target_is_16_bit_code = false;
11469   bool target_is_micromips_code = false;
11470   bool cross_mode_jump;
11471
11472   Symbol_value<size> symval;
11473
11474   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11475
11476   bool changed_symbol_value = false;
11477   if (gsym == NULL)
11478     {
11479       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11480       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11481       if (target_is_16_bit_code || target_is_micromips_code)
11482         {
11483           // MIPS16/microMIPS text labels should be treated as odd.
11484           symval.set_output_value(psymval->value(object, 1));
11485           psymval = &symval;
11486           changed_symbol_value = true;
11487         }
11488     }
11489   else
11490     {
11491       target_is_16_bit_code = mips_sym->is_mips16();
11492       target_is_micromips_code = mips_sym->is_micromips();
11493
11494       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11495       // it odd.  This will cause something like .word SYM to come up with
11496       // the right value when it is loaded into the PC.
11497
11498       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11499           && psymval->value(object, 0) != 0)
11500         {
11501           symval.set_output_value(psymval->value(object, 0) | 1);
11502           psymval = &symval;
11503           changed_symbol_value = true;
11504         }
11505
11506       // Pick the value to use for symbols defined in shared objects.
11507       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11508           || mips_sym->has_lazy_stub())
11509         {
11510           Mips_address value;
11511           if (!mips_sym->has_lazy_stub())
11512             {
11513               // Prefer a standard MIPS PLT entry.
11514               if (mips_sym->has_mips_plt_offset())
11515                 {
11516                   value = target->plt_section()->mips_entry_address(mips_sym);
11517                   target_is_micromips_code = false;
11518                   target_is_16_bit_code = false;
11519                 }
11520               else
11521                 {
11522                   value = (target->plt_section()->comp_entry_address(mips_sym)
11523                            + 1);
11524                   if (target->is_output_micromips())
11525                     target_is_micromips_code = true;
11526                   else
11527                     target_is_16_bit_code = true;
11528                 }
11529             }
11530           else
11531             value = target->mips_stubs_section()->stub_address(mips_sym);
11532
11533           symval.set_output_value(value);
11534           psymval = &symval;
11535         }
11536     }
11537
11538   // TRUE if the symbol referred to by this relocation is "_gp_disp".
11539   // Note that such a symbol must always be a global symbol.
11540   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11541                   && !object->is_newabi());
11542
11543   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11544   // Note that such a symbol must always be a global symbol.
11545   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11546
11547
11548   if (gp_disp)
11549     {
11550       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11551         gold_error_at_location(relinfo, relnum, r_offset,
11552           _("relocations against _gp_disp are permitted only"
11553             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11554     }
11555   else if (gnu_local_gp)
11556     {
11557       // __gnu_local_gp is _gp symbol.
11558       symval.set_output_value(target->adjusted_gp_value(object));
11559       psymval = &symval;
11560     }
11561
11562   // If this is a reference to a 16-bit function with a stub, we need
11563   // to redirect the relocation to the stub unless:
11564   //
11565   // (a) the relocation is for a MIPS16 JAL;
11566   //
11567   // (b) the relocation is for a MIPS16 PIC call, and there are no
11568   //     non-MIPS16 uses of the GOT slot; or
11569   //
11570   // (c) the section allows direct references to MIPS16 functions.
11571   if (r_type != elfcpp::R_MIPS16_26
11572       && ((mips_sym != NULL
11573            && mips_sym->has_mips16_fn_stub()
11574            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11575           || (mips_sym == NULL
11576               && object->get_local_mips16_fn_stub(r_sym) != NULL))
11577       && !object->section_allows_mips16_refs(relinfo->data_shndx))
11578     {
11579       // This is a 32- or 64-bit call to a 16-bit function.  We should
11580       // have already noticed that we were going to need the
11581       // stub.
11582       Mips_address value;
11583       if (mips_sym == NULL)
11584         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11585       else
11586         {
11587           gold_assert(mips_sym->need_fn_stub());
11588           if (mips_sym->has_la25_stub())
11589             value = target->la25_stub_section()->stub_address(mips_sym);
11590           else
11591             {
11592               value = mips_sym->template
11593                       get_mips16_fn_stub<big_endian>()->output_address();
11594             }
11595           }
11596       symval.set_output_value(value);
11597       psymval = &symval;
11598       changed_symbol_value = true;
11599
11600       // The target is 16-bit, but the stub isn't.
11601       target_is_16_bit_code = false;
11602     }
11603   // If this is a MIPS16 call with a stub, that is made through the PLT or
11604   // to a standard MIPS function, we need to redirect the call to the stub.
11605   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11606   // indirect calls should use an indirect stub instead.
11607   else if (r_type == elfcpp::R_MIPS16_26
11608            && ((mips_sym != NULL
11609                 && (mips_sym->has_mips16_call_stub()
11610                     || mips_sym->has_mips16_call_fp_stub()))
11611                || (mips_sym == NULL
11612                    && object->get_local_mips16_call_stub(r_sym) != NULL))
11613            && ((mips_sym != NULL && mips_sym->has_plt_offset())
11614                || !target_is_16_bit_code))
11615     {
11616       Mips16_stub_section<size, big_endian>* call_stub;
11617       if (mips_sym == NULL)
11618         call_stub = object->get_local_mips16_call_stub(r_sym);
11619       else
11620         {
11621           // If both call_stub and call_fp_stub are defined, we can figure
11622           // out which one to use by checking which one appears in the input
11623           // file.
11624           if (mips_sym->has_mips16_call_stub()
11625               && mips_sym->has_mips16_call_fp_stub())
11626             {
11627               call_stub = NULL;
11628               for (unsigned int i = 1; i < object->shnum(); ++i)
11629                 {
11630                   if (object->is_mips16_call_fp_stub_section(i))
11631                     {
11632                       call_stub = mips_sym->template
11633                                   get_mips16_call_fp_stub<big_endian>();
11634                       break;
11635                     }
11636
11637                 }
11638               if (call_stub == NULL)
11639                 call_stub =
11640                   mips_sym->template get_mips16_call_stub<big_endian>();
11641             }
11642           else if (mips_sym->has_mips16_call_stub())
11643             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11644           else
11645             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11646         }
11647
11648       symval.set_output_value(call_stub->output_address());
11649       psymval = &symval;
11650       changed_symbol_value = true;
11651     }
11652   // If this is a direct call to a PIC function, redirect to the
11653   // non-PIC stub.
11654   else if (mips_sym != NULL
11655            && mips_sym->has_la25_stub()
11656            && relocation_needs_la25_stub<size, big_endian>(
11657                                        object, r_type, target_is_16_bit_code))
11658     {
11659       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11660       if (mips_sym->is_micromips())
11661         value += 1;
11662       symval.set_output_value(value);
11663       psymval = &symval;
11664     }
11665   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11666   // entry is used if a standard PLT entry has also been made.
11667   else if ((r_type == elfcpp::R_MIPS16_26
11668             || r_type == elfcpp::R_MICROMIPS_26_S1)
11669           && mips_sym != NULL
11670           && mips_sym->has_plt_offset()
11671           && mips_sym->has_comp_plt_offset()
11672           && mips_sym->has_mips_plt_offset())
11673     {
11674       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11675                             + 1);
11676       symval.set_output_value(value);
11677       psymval = &symval;
11678
11679       target_is_16_bit_code = !target->is_output_micromips();
11680       target_is_micromips_code = target->is_output_micromips();
11681     }
11682
11683   // Make sure MIPS16 and microMIPS are not used together.
11684   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11685       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11686    {
11687       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11688    }
11689
11690   // Calls from 16-bit code to 32-bit code and vice versa require the
11691   // mode change.  However, we can ignore calls to undefined weak symbols,
11692   // which should never be executed at runtime.  This exception is important
11693   // because the assembly writer may have "known" that any definition of the
11694   // symbol would be 16-bit code, and that direct jumps were therefore
11695   // acceptable.
11696   cross_mode_jump =
11697     (!(gsym != NULL && gsym->is_weak_undefined())
11698      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11699          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11700          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11701              && (target_is_16_bit_code || target_is_micromips_code))));
11702
11703   bool local = (mips_sym == NULL
11704                 || (mips_sym->got_only_for_calls()
11705                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11706                     : symbol_references_local(mips_sym,
11707                                               mips_sym->has_dynsym_index())));
11708
11709   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11710   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
11711   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11712   if (got_page_reloc(r_type) && !local)
11713     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11714                                       : elfcpp::R_MIPS_GOT_DISP);
11715
11716   unsigned int got_offset = 0;
11717   int gp_offset = 0;
11718
11719   bool calculate_only = false;
11720   Valtype calculated_value = 0;
11721   bool extract_addend = rel_type == elfcpp::SHT_REL;
11722   unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11723
11724   Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11725
11726   // For Mips64 N64 ABI, there may be up to three operations specified per
11727   // record, by the fields r_type, r_type2, and r_type3. The first operation
11728   // takes its addend from the relocation record. Each subsequent operation
11729   // takes as its addend the result of the previous operation.
11730   // The first operation in a record which references a symbol uses the symbol
11731   // implied by r_sym. The next operation in a record which references a symbol
11732   // uses the special symbol value given by the r_ssym field. A third operation
11733   // in a record which references a symbol will assume a NULL symbol,
11734   // i.e. value zero.
11735
11736   // TODO(Vladimir)
11737   // Check if a record references to a symbol.
11738   for (unsigned int i = 0; i < 3; ++i)
11739     {
11740       if (r_types[i] == elfcpp::R_MIPS_NONE)
11741         break;
11742
11743       // TODO(Vladimir)
11744       // Check if the next relocation is for the same instruction.
11745       calculate_only = i == 2 ? false
11746                               : r_types[i+1] != elfcpp::R_MIPS_NONE;
11747
11748       if (object->is_n64())
11749         {
11750           if (i == 1)
11751             {
11752               // Handle special symbol for r_type2 relocation type.
11753               switch (r_ssym)
11754                 {
11755                 case RSS_UNDEF:
11756                   symval.set_output_value(0);
11757                   break;
11758                 case RSS_GP:
11759                   symval.set_output_value(target->gp_value());
11760                   break;
11761                 case RSS_GP0:
11762                   symval.set_output_value(object->gp_value());
11763                   break;
11764                 case RSS_LOC:
11765                   symval.set_output_value(address);
11766                   break;
11767                 default:
11768                   gold_unreachable();
11769                 }
11770               psymval = &symval;
11771             }
11772           else if (i == 2)
11773            {
11774             // For r_type3 symbol value is 0.
11775             symval.set_output_value(0);
11776            }
11777         }
11778
11779       bool update_got_entry = false;
11780       switch (r_types[i])
11781         {
11782         case elfcpp::R_MIPS_NONE:
11783           break;
11784         case elfcpp::R_MIPS_16:
11785           reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11786                                             extract_addend, calculate_only,
11787                                             &calculated_value);
11788           break;
11789
11790         case elfcpp::R_MIPS_32:
11791           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11792                                         target))
11793             reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11794                                               extract_addend, calculate_only,
11795                                               &calculated_value);
11796           if (mips_sym != NULL
11797               && (mips_sym->is_mips16() || mips_sym->is_micromips())
11798               && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11799             {
11800               // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11801               // already updated by adding +1.
11802               if (mips_sym->has_mips16_fn_stub())
11803                 {
11804                   gold_assert(mips_sym->need_fn_stub());
11805                   Mips16_stub_section<size, big_endian>* fn_stub =
11806                     mips_sym->template get_mips16_fn_stub<big_endian>();
11807
11808                   symval.set_output_value(fn_stub->output_address());
11809                   psymval = &symval;
11810                 }
11811               got_offset = mips_sym->global_gotoffset();
11812               update_got_entry = true;
11813             }
11814           break;
11815
11816         case elfcpp::R_MIPS_64:
11817           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11818                                         target))
11819             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11820                                               extract_addend, calculate_only,
11821                                               &calculated_value, false);
11822           else if (target->is_output_n64() && r_addend != 0)
11823             // Only apply the addend.  The static relocation was RELA, but the
11824             // dynamic relocation is REL, so we need to apply the addend.
11825             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11826                                               extract_addend, calculate_only,
11827                                               &calculated_value, true);
11828           break;
11829         case elfcpp::R_MIPS_REL32:
11830           gold_unreachable();
11831
11832         case elfcpp::R_MIPS_PC32:
11833           reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11834                                               r_addend, extract_addend,
11835                                               calculate_only,
11836                                               &calculated_value);
11837           break;
11838
11839         case elfcpp::R_MIPS16_26:
11840           // The calculation for R_MIPS16_26 is just the same as for an
11841           // R_MIPS_26.  It's only the storage of the relocated field into
11842           // the output file that's different.  So, we just fall through to the
11843           // R_MIPS_26 case here.
11844         case elfcpp::R_MIPS_26:
11845         case elfcpp::R_MICROMIPS_26_S1:
11846           reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11847               gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11848               r_types[i], target->jal_to_bal(), calculate_only,
11849               &calculated_value);
11850           break;
11851
11852         case elfcpp::R_MIPS_HI16:
11853         case elfcpp::R_MIPS16_HI16:
11854         case elfcpp::R_MICROMIPS_HI16:
11855           if (rel_type == elfcpp::SHT_RELA)
11856             reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11857                                                    r_addend, address,
11858                                                    gp_disp, r_types[i],
11859                                                    extract_addend, 0,
11860                                                    target, calculate_only,
11861                                                    &calculated_value);
11862           else if (rel_type == elfcpp::SHT_REL)
11863             reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11864                                                 address, gp_disp, r_types[i],
11865                                                 r_sym, extract_addend);
11866           else
11867             gold_unreachable();
11868           break;
11869
11870         case elfcpp::R_MIPS_LO16:
11871         case elfcpp::R_MIPS16_LO16:
11872         case elfcpp::R_MICROMIPS_LO16:
11873         case elfcpp::R_MICROMIPS_HI0_LO16:
11874           reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11875                                               r_addend, extract_addend, address,
11876                                               gp_disp, r_types[i], r_sym,
11877                                               rel_type, calculate_only,
11878                                               &calculated_value);
11879           break;
11880
11881         case elfcpp::R_MIPS_LITERAL:
11882         case elfcpp::R_MICROMIPS_LITERAL:
11883           // Because we don't merge literal sections, we can handle this
11884           // just like R_MIPS_GPREL16.  In the long run, we should merge
11885           // shared literals, and then we will need to additional work
11886           // here.
11887
11888           // Fall through.
11889
11890         case elfcpp::R_MIPS_GPREL16:
11891         case elfcpp::R_MIPS16_GPREL:
11892         case elfcpp::R_MICROMIPS_GPREL7_S2:
11893         case elfcpp::R_MICROMIPS_GPREL16:
11894           reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11895                                              target->adjusted_gp_value(object),
11896                                              r_addend, extract_addend,
11897                                              gsym == NULL, r_types[i],
11898                                              calculate_only, &calculated_value);
11899           break;
11900
11901         case elfcpp::R_MIPS_PC16:
11902           reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11903                                               r_addend, extract_addend,
11904                                               calculate_only,
11905                                               &calculated_value);
11906           break;
11907
11908         case elfcpp::R_MIPS_PC21_S2:
11909           reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11910                                               r_addend, extract_addend,
11911                                               calculate_only,
11912                                               &calculated_value);
11913           break;
11914
11915         case elfcpp::R_MIPS_PC26_S2:
11916           reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11917                                               r_addend, extract_addend,
11918                                               calculate_only,
11919                                               &calculated_value);
11920           break;
11921
11922         case elfcpp::R_MIPS_PC18_S3:
11923           reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11924                                               r_addend, extract_addend,
11925                                               calculate_only,
11926                                               &calculated_value);
11927           break;
11928
11929         case elfcpp::R_MIPS_PC19_S2:
11930           reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11931                                               r_addend, extract_addend,
11932                                               calculate_only,
11933                                               &calculated_value);
11934           break;
11935
11936         case elfcpp::R_MIPS_PCHI16:
11937           if (rel_type == elfcpp::SHT_RELA)
11938             reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11939                                                      r_addend, address,
11940                                                      extract_addend, 0,
11941                                                      calculate_only,
11942                                                      &calculated_value);
11943           else if (rel_type == elfcpp::SHT_REL)
11944             reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11945                                                   r_addend, address, r_sym,
11946                                                   extract_addend);
11947           else
11948             gold_unreachable();
11949           break;
11950
11951         case elfcpp::R_MIPS_PCLO16:
11952           reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11953                                                 extract_addend, address, r_sym,
11954                                                 rel_type, calculate_only,
11955                                                 &calculated_value);
11956           break;
11957         case elfcpp::R_MICROMIPS_PC7_S1:
11958           reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11959                                                         address, r_addend,
11960                                                         extract_addend,
11961                                                         calculate_only,
11962                                                         &calculated_value);
11963           break;
11964         case elfcpp::R_MICROMIPS_PC10_S1:
11965           reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11966                                                        psymval, address,
11967                                                        r_addend, extract_addend,
11968                                                        calculate_only,
11969                                                        &calculated_value);
11970           break;
11971         case elfcpp::R_MICROMIPS_PC16_S1:
11972           reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11973                                                        psymval, address,
11974                                                        r_addend, extract_addend,
11975                                                        calculate_only,
11976                                                        &calculated_value);
11977           break;
11978         case elfcpp::R_MIPS_GPREL32:
11979           reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11980                                               target->adjusted_gp_value(object),
11981                                               r_addend, extract_addend,
11982                                               calculate_only,
11983                                               &calculated_value);
11984           break;
11985         case elfcpp::R_MIPS_GOT_HI16:
11986         case elfcpp::R_MIPS_CALL_HI16:
11987         case elfcpp::R_MICROMIPS_GOT_HI16:
11988         case elfcpp::R_MICROMIPS_CALL_HI16:
11989           if (gsym != NULL)
11990             got_offset = target->got_section()->got_offset(gsym,
11991                                                            GOT_TYPE_STANDARD,
11992                                                            object);
11993           else
11994             got_offset = target->got_section()->got_offset(r_sym,
11995                                                            GOT_TYPE_STANDARD,
11996                                                            object, r_addend);
11997           gp_offset = target->got_section()->gp_offset(got_offset, object);
11998           reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11999                                                   calculate_only,
12000                                                   &calculated_value);
12001           update_got_entry = changed_symbol_value;
12002           break;
12003
12004         case elfcpp::R_MIPS_GOT_LO16:
12005         case elfcpp::R_MIPS_CALL_LO16:
12006         case elfcpp::R_MICROMIPS_GOT_LO16:
12007         case elfcpp::R_MICROMIPS_CALL_LO16:
12008           if (gsym != NULL)
12009             got_offset = target->got_section()->got_offset(gsym,
12010                                                            GOT_TYPE_STANDARD,
12011                                                            object);
12012           else
12013             got_offset = target->got_section()->got_offset(r_sym,
12014                                                            GOT_TYPE_STANDARD,
12015                                                            object, r_addend);
12016           gp_offset = target->got_section()->gp_offset(got_offset, object);
12017           reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12018                                                   calculate_only,
12019                                                   &calculated_value);
12020           update_got_entry = changed_symbol_value;
12021           break;
12022
12023         case elfcpp::R_MIPS_GOT_DISP:
12024         case elfcpp::R_MICROMIPS_GOT_DISP:
12025         case elfcpp::R_MIPS_EH:
12026           if (gsym != NULL)
12027             got_offset = target->got_section()->got_offset(gsym,
12028                                                            GOT_TYPE_STANDARD,
12029                                                            object);
12030           else
12031             got_offset = target->got_section()->got_offset(r_sym,
12032                                                            GOT_TYPE_STANDARD,
12033                                                            object, r_addend);
12034           gp_offset = target->got_section()->gp_offset(got_offset, object);
12035           if (eh_reloc(r_types[i]))
12036             reloc_status = Reloc_funcs::releh(view, gp_offset,
12037                                               calculate_only,
12038                                               &calculated_value);
12039           else
12040             reloc_status = Reloc_funcs::relgot(view, gp_offset,
12041                                                calculate_only,
12042                                                &calculated_value);
12043           break;
12044         case elfcpp::R_MIPS_CALL16:
12045         case elfcpp::R_MIPS16_CALL16:
12046         case elfcpp::R_MICROMIPS_CALL16:
12047           gold_assert(gsym != NULL);
12048           got_offset = target->got_section()->got_offset(gsym,
12049                                                          GOT_TYPE_STANDARD,
12050                                                          object);
12051           gp_offset = target->got_section()->gp_offset(got_offset, object);
12052           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12053                                              calculate_only, &calculated_value);
12054           // TODO(sasa): We should also initialize update_got_entry
12055           // in other place swhere relgot is called.
12056           update_got_entry = changed_symbol_value;
12057           break;
12058
12059         case elfcpp::R_MIPS_GOT16:
12060         case elfcpp::R_MIPS16_GOT16:
12061         case elfcpp::R_MICROMIPS_GOT16:
12062           if (gsym != NULL)
12063             {
12064               got_offset = target->got_section()->got_offset(gsym,
12065                                                              GOT_TYPE_STANDARD,
12066                                                              object);
12067               gp_offset = target->got_section()->gp_offset(got_offset, object);
12068               reloc_status = Reloc_funcs::relgot(view, gp_offset,
12069                                                  calculate_only,
12070                                                  &calculated_value);
12071             }
12072           else
12073             {
12074               if (rel_type == elfcpp::SHT_RELA)
12075                 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12076                                                          psymval, r_addend,
12077                                                          extract_addend, 0,
12078                                                          target,
12079                                                          calculate_only,
12080                                                          &calculated_value);
12081               else if (rel_type == elfcpp::SHT_REL)
12082                 reloc_status = Reloc_funcs::relgot16_local(view, object,
12083                                                            psymval, r_addend,
12084                                                            extract_addend,
12085                                                            r_types[i], r_sym);
12086               else
12087                 gold_unreachable();
12088             }
12089           update_got_entry = changed_symbol_value;
12090           break;
12091
12092         case elfcpp::R_MIPS_TLS_GD:
12093         case elfcpp::R_MIPS16_TLS_GD:
12094         case elfcpp::R_MICROMIPS_TLS_GD:
12095           if (gsym != NULL)
12096             got_offset = target->got_section()->got_offset(gsym,
12097                                                            GOT_TYPE_TLS_PAIR,
12098                                                            object);
12099           else
12100             got_offset = target->got_section()->got_offset(r_sym,
12101                                                            GOT_TYPE_TLS_PAIR,
12102                                                            object, r_addend);
12103           gp_offset = target->got_section()->gp_offset(got_offset, object);
12104           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12105                                              &calculated_value);
12106           break;
12107
12108         case elfcpp::R_MIPS_TLS_GOTTPREL:
12109         case elfcpp::R_MIPS16_TLS_GOTTPREL:
12110         case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12111           if (gsym != NULL)
12112             got_offset = target->got_section()->got_offset(gsym,
12113                                                            GOT_TYPE_TLS_OFFSET,
12114                                                            object);
12115           else
12116             got_offset = target->got_section()->got_offset(r_sym,
12117                                                            GOT_TYPE_TLS_OFFSET,
12118                                                            object, r_addend);
12119           gp_offset = target->got_section()->gp_offset(got_offset, object);
12120           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12121                                              &calculated_value);
12122           break;
12123
12124         case elfcpp::R_MIPS_TLS_LDM:
12125         case elfcpp::R_MIPS16_TLS_LDM:
12126         case elfcpp::R_MICROMIPS_TLS_LDM:
12127           // Relocate the field with the offset of the GOT entry for
12128           // the module index.
12129           got_offset = target->got_section()->tls_ldm_offset(object);
12130           gp_offset = target->got_section()->gp_offset(got_offset, object);
12131           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12132                                              &calculated_value);
12133           break;
12134
12135         case elfcpp::R_MIPS_GOT_PAGE:
12136         case elfcpp::R_MICROMIPS_GOT_PAGE:
12137           reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12138                                                  r_addend, extract_addend,
12139                                                  calculate_only,
12140                                                  &calculated_value);
12141           break;
12142
12143         case elfcpp::R_MIPS_GOT_OFST:
12144         case elfcpp::R_MICROMIPS_GOT_OFST:
12145           reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12146                                                  r_addend, extract_addend,
12147                                                  local, calculate_only,
12148                                                  &calculated_value);
12149           break;
12150
12151         case elfcpp::R_MIPS_JALR:
12152         case elfcpp::R_MICROMIPS_JALR:
12153           // This relocation is only a hint.  In some cases, we optimize
12154           // it into a bal instruction.  But we don't try to optimize
12155           // when the symbol does not resolve locally.
12156           if (gsym == NULL
12157               || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12158             reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12159                                                 r_addend, extract_addend,
12160                                                 cross_mode_jump, r_types[i],
12161                                                 target->jalr_to_bal(),
12162                                                 target->jr_to_b(),
12163                                                 calculate_only,
12164                                                 &calculated_value);
12165           break;
12166
12167         case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12168         case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12169         case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12170           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12171                                                  elfcpp::DTP_OFFSET, r_addend,
12172                                                  extract_addend, calculate_only,
12173                                                  &calculated_value);
12174           break;
12175         case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12176         case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12177         case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12178           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12179                                                  elfcpp::DTP_OFFSET, r_addend,
12180                                                  extract_addend, calculate_only,
12181                                                  &calculated_value);
12182           break;
12183         case elfcpp::R_MIPS_TLS_DTPREL32:
12184         case elfcpp::R_MIPS_TLS_DTPREL64:
12185           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12186                                                elfcpp::DTP_OFFSET, r_addend,
12187                                                extract_addend, calculate_only,
12188                                                &calculated_value);
12189           break;
12190         case elfcpp::R_MIPS_TLS_TPREL_HI16:
12191         case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12192         case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12193           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12194                                                  elfcpp::TP_OFFSET, r_addend,
12195                                                  extract_addend, calculate_only,
12196                                                  &calculated_value);
12197           break;
12198         case elfcpp::R_MIPS_TLS_TPREL_LO16:
12199         case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12200         case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12201           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12202                                                  elfcpp::TP_OFFSET, r_addend,
12203                                                  extract_addend, calculate_only,
12204                                                  &calculated_value);
12205           break;
12206         case elfcpp::R_MIPS_TLS_TPREL32:
12207         case elfcpp::R_MIPS_TLS_TPREL64:
12208           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12209                                                elfcpp::TP_OFFSET, r_addend,
12210                                                extract_addend, calculate_only,
12211                                                &calculated_value);
12212           break;
12213         case elfcpp::R_MIPS_SUB:
12214         case elfcpp::R_MICROMIPS_SUB:
12215           reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12216                                              extract_addend,
12217                                              calculate_only, &calculated_value);
12218           break;
12219         case elfcpp::R_MIPS_HIGHER:
12220         case elfcpp::R_MICROMIPS_HIGHER:
12221           reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12222                                                 extract_addend, calculate_only,
12223                                                 &calculated_value);
12224           break;
12225         case elfcpp::R_MIPS_HIGHEST:
12226         case elfcpp::R_MICROMIPS_HIGHEST:
12227           reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12228                                                  r_addend, extract_addend,
12229                                                  calculate_only,
12230                                                  &calculated_value);
12231           break;
12232         default:
12233           gold_error_at_location(relinfo, relnum, r_offset,
12234                                  _("unsupported reloc %u"), r_types[i]);
12235           break;
12236         }
12237
12238       if (update_got_entry)
12239         {
12240           Mips_output_data_got<size, big_endian>* got = target->got_section();
12241           if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12242             got->update_got_entry(got->get_primary_got_offset(mips_sym),
12243                                   psymval->value(object, 0));
12244           else
12245             got->update_got_entry(got_offset, psymval->value(object, 0));
12246         }
12247
12248       r_addend = calculated_value;
12249     }
12250
12251   bool jal_shuffle = jal_reloc(r_type);
12252   Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12253
12254   // Report any errors.
12255   switch (reloc_status)
12256     {
12257     case Reloc_funcs::STATUS_OKAY:
12258       break;
12259     case Reloc_funcs::STATUS_OVERFLOW:
12260       if (gsym == NULL)
12261         gold_error_at_location(relinfo, relnum, r_offset,
12262                                _("relocation overflow: "
12263                                  "%u against local symbol %u in %s"),
12264                                r_type, r_sym, object->name().c_str());
12265       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12266         gold_error_at_location(relinfo, relnum, r_offset,
12267                                _("relocation overflow: "
12268                                  "%u against '%s' defined in %s"),
12269                                r_type, gsym->demangled_name().c_str(),
12270                                gsym->object()->name().c_str());
12271       else
12272         gold_error_at_location(relinfo, relnum, r_offset,
12273                                _("relocation overflow: %u against '%s'"),
12274                                r_type, gsym->demangled_name().c_str());
12275       break;
12276     case Reloc_funcs::STATUS_BAD_RELOC:
12277       gold_error_at_location(relinfo, relnum, r_offset,
12278         _("unexpected opcode while processing relocation"));
12279       break;
12280     case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12281       gold_error_at_location(relinfo, relnum, r_offset,
12282         _("unaligned PC-relative relocation"));
12283       break;
12284     default:
12285       gold_unreachable();
12286     }
12287
12288   return true;
12289 }
12290
12291 // Get the Reference_flags for a particular relocation.
12292
12293 template<int size, bool big_endian>
12294 int
12295 Target_mips<size, big_endian>::Scan::get_reference_flags(
12296                        unsigned int r_type)
12297 {
12298   switch (r_type)
12299     {
12300     case elfcpp::R_MIPS_NONE:
12301       // No symbol reference.
12302       return 0;
12303
12304     case elfcpp::R_MIPS_16:
12305     case elfcpp::R_MIPS_32:
12306     case elfcpp::R_MIPS_64:
12307     case elfcpp::R_MIPS_HI16:
12308     case elfcpp::R_MIPS_LO16:
12309     case elfcpp::R_MIPS_HIGHER:
12310     case elfcpp::R_MIPS_HIGHEST:
12311     case elfcpp::R_MIPS16_HI16:
12312     case elfcpp::R_MIPS16_LO16:
12313     case elfcpp::R_MICROMIPS_HI16:
12314     case elfcpp::R_MICROMIPS_LO16:
12315     case elfcpp::R_MICROMIPS_HIGHER:
12316     case elfcpp::R_MICROMIPS_HIGHEST:
12317       return Symbol::ABSOLUTE_REF;
12318
12319     case elfcpp::R_MIPS_26:
12320     case elfcpp::R_MIPS16_26:
12321     case elfcpp::R_MICROMIPS_26_S1:
12322       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12323
12324     case elfcpp::R_MIPS_PC18_S3:
12325     case elfcpp::R_MIPS_PC19_S2:
12326     case elfcpp::R_MIPS_PCHI16:
12327     case elfcpp::R_MIPS_PCLO16:
12328     case elfcpp::R_MIPS_GPREL32:
12329     case elfcpp::R_MIPS_GPREL16:
12330     case elfcpp::R_MIPS_REL32:
12331     case elfcpp::R_MIPS16_GPREL:
12332       return Symbol::RELATIVE_REF;
12333
12334     case elfcpp::R_MIPS_PC16:
12335     case elfcpp::R_MIPS_PC32:
12336     case elfcpp::R_MIPS_PC21_S2:
12337     case elfcpp::R_MIPS_PC26_S2:
12338     case elfcpp::R_MIPS_JALR:
12339     case elfcpp::R_MICROMIPS_JALR:
12340       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12341
12342     case elfcpp::R_MIPS_GOT16:
12343     case elfcpp::R_MIPS_CALL16:
12344     case elfcpp::R_MIPS_GOT_DISP:
12345     case elfcpp::R_MIPS_GOT_HI16:
12346     case elfcpp::R_MIPS_GOT_LO16:
12347     case elfcpp::R_MIPS_CALL_HI16:
12348     case elfcpp::R_MIPS_CALL_LO16:
12349     case elfcpp::R_MIPS_LITERAL:
12350     case elfcpp::R_MIPS_GOT_PAGE:
12351     case elfcpp::R_MIPS_GOT_OFST:
12352     case elfcpp::R_MIPS16_GOT16:
12353     case elfcpp::R_MIPS16_CALL16:
12354     case elfcpp::R_MICROMIPS_GOT16:
12355     case elfcpp::R_MICROMIPS_CALL16:
12356     case elfcpp::R_MICROMIPS_GOT_HI16:
12357     case elfcpp::R_MICROMIPS_GOT_LO16:
12358     case elfcpp::R_MICROMIPS_CALL_HI16:
12359     case elfcpp::R_MICROMIPS_CALL_LO16:
12360     case elfcpp::R_MIPS_EH:
12361       // Absolute in GOT.
12362       return Symbol::RELATIVE_REF;
12363
12364     case elfcpp::R_MIPS_TLS_DTPMOD32:
12365     case elfcpp::R_MIPS_TLS_DTPREL32:
12366     case elfcpp::R_MIPS_TLS_DTPMOD64:
12367     case elfcpp::R_MIPS_TLS_DTPREL64:
12368     case elfcpp::R_MIPS_TLS_GD:
12369     case elfcpp::R_MIPS_TLS_LDM:
12370     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12371     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12372     case elfcpp::R_MIPS_TLS_GOTTPREL:
12373     case elfcpp::R_MIPS_TLS_TPREL32:
12374     case elfcpp::R_MIPS_TLS_TPREL64:
12375     case elfcpp::R_MIPS_TLS_TPREL_HI16:
12376     case elfcpp::R_MIPS_TLS_TPREL_LO16:
12377     case elfcpp::R_MIPS16_TLS_GD:
12378     case elfcpp::R_MIPS16_TLS_GOTTPREL:
12379     case elfcpp::R_MICROMIPS_TLS_GD:
12380     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12381     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12382     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12383       return Symbol::TLS_REF;
12384
12385     case elfcpp::R_MIPS_COPY:
12386     case elfcpp::R_MIPS_JUMP_SLOT:
12387     default:
12388       // Not expected.  We will give an error later.
12389       return 0;
12390     }
12391 }
12392
12393 // Report an unsupported relocation against a local symbol.
12394
12395 template<int size, bool big_endian>
12396 void
12397 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12398                         Sized_relobj_file<size, big_endian>* object,
12399                         unsigned int r_type)
12400 {
12401   gold_error(_("%s: unsupported reloc %u against local symbol"),
12402              object->name().c_str(), r_type);
12403 }
12404
12405 // Report an unsupported relocation against a global symbol.
12406
12407 template<int size, bool big_endian>
12408 void
12409 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12410                         Sized_relobj_file<size, big_endian>* object,
12411                         unsigned int r_type,
12412                         Symbol* gsym)
12413 {
12414   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12415              object->name().c_str(), r_type, gsym->demangled_name().c_str());
12416 }
12417
12418 // Return printable name for ABI.
12419 template<int size, bool big_endian>
12420 const char*
12421 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12422 {
12423   switch (e_flags & elfcpp::EF_MIPS_ABI)
12424     {
12425     case 0:
12426       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12427         return "N32";
12428       else if (size == 64)
12429         return "64";
12430       else
12431         return "none";
12432     case elfcpp::E_MIPS_ABI_O32:
12433       return "O32";
12434     case elfcpp::E_MIPS_ABI_O64:
12435       return "O64";
12436     case elfcpp::E_MIPS_ABI_EABI32:
12437       return "EABI32";
12438     case elfcpp::E_MIPS_ABI_EABI64:
12439       return "EABI64";
12440     default:
12441       return "unknown abi";
12442     }
12443 }
12444
12445 template<int size, bool big_endian>
12446 const char*
12447 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12448 {
12449   switch (e_flags & elfcpp::EF_MIPS_MACH)
12450     {
12451     case elfcpp::E_MIPS_MACH_3900:
12452       return "mips:3900";
12453     case elfcpp::E_MIPS_MACH_4010:
12454       return "mips:4010";
12455     case elfcpp::E_MIPS_MACH_4100:
12456       return "mips:4100";
12457     case elfcpp::E_MIPS_MACH_4111:
12458       return "mips:4111";
12459     case elfcpp::E_MIPS_MACH_4120:
12460       return "mips:4120";
12461     case elfcpp::E_MIPS_MACH_4650:
12462       return "mips:4650";
12463     case elfcpp::E_MIPS_MACH_5400:
12464       return "mips:5400";
12465     case elfcpp::E_MIPS_MACH_5500:
12466       return "mips:5500";
12467     case elfcpp::E_MIPS_MACH_5900:
12468       return "mips:5900";
12469     case elfcpp::E_MIPS_MACH_SB1:
12470       return "mips:sb1";
12471     case elfcpp::E_MIPS_MACH_9000:
12472       return "mips:9000";
12473     case elfcpp::E_MIPS_MACH_LS2E:
12474       return "mips:loongson_2e";
12475     case elfcpp::E_MIPS_MACH_LS2F:
12476       return "mips:loongson_2f";
12477     case elfcpp::E_MIPS_MACH_LS3A:
12478       return "mips:loongson_3a";
12479     case elfcpp::E_MIPS_MACH_OCTEON:
12480       return "mips:octeon";
12481     case elfcpp::E_MIPS_MACH_OCTEON2:
12482       return "mips:octeon2";
12483     case elfcpp::E_MIPS_MACH_OCTEON3:
12484       return "mips:octeon3";
12485     case elfcpp::E_MIPS_MACH_XLR:
12486       return "mips:xlr";
12487     default:
12488       switch (e_flags & elfcpp::EF_MIPS_ARCH)
12489         {
12490         default:
12491         case elfcpp::E_MIPS_ARCH_1:
12492           return "mips:3000";
12493
12494         case elfcpp::E_MIPS_ARCH_2:
12495           return "mips:6000";
12496
12497         case elfcpp::E_MIPS_ARCH_3:
12498           return "mips:4000";
12499
12500         case elfcpp::E_MIPS_ARCH_4:
12501           return "mips:8000";
12502
12503         case elfcpp::E_MIPS_ARCH_5:
12504           return "mips:mips5";
12505
12506         case elfcpp::E_MIPS_ARCH_32:
12507           return "mips:isa32";
12508
12509         case elfcpp::E_MIPS_ARCH_64:
12510           return "mips:isa64";
12511
12512         case elfcpp::E_MIPS_ARCH_32R2:
12513           return "mips:isa32r2";
12514
12515         case elfcpp::E_MIPS_ARCH_32R6:
12516           return "mips:isa32r6";
12517
12518         case elfcpp::E_MIPS_ARCH_64R2:
12519           return "mips:isa64r2";
12520
12521         case elfcpp::E_MIPS_ARCH_64R6:
12522           return "mips:isa64r6";
12523         }
12524     }
12525     return "unknown CPU";
12526 }
12527
12528 template<int size, bool big_endian>
12529 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12530 {
12531   size,                 // size
12532   big_endian,           // is_big_endian
12533   elfcpp::EM_MIPS,      // machine_code
12534   true,                 // has_make_symbol
12535   false,                // has_resolve
12536   false,                // has_code_fill
12537   true,                 // is_default_stack_executable
12538   false,                // can_icf_inline_merge_sections
12539   '\0',                 // wrap_char
12540   size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
12541   0x400000,             // default_text_segment_address
12542   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
12543   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
12544   false,                // isolate_execinstr
12545   0,                    // rosegment_gap
12546   elfcpp::SHN_UNDEF,    // small_common_shndx
12547   elfcpp::SHN_UNDEF,    // large_common_shndx
12548   0,                    // small_common_section_flags
12549   0,                    // large_common_section_flags
12550   NULL,                 // attributes_section
12551   NULL,                 // attributes_vendor
12552   "__start",            // entry_symbol_name
12553   32,                   // hash_entry_size
12554 };
12555
12556 template<int size, bool big_endian>
12557 class Target_mips_nacl : public Target_mips<size, big_endian>
12558 {
12559  public:
12560   Target_mips_nacl()
12561     : Target_mips<size, big_endian>(&mips_nacl_info)
12562   { }
12563
12564  private:
12565   static const Target::Target_info mips_nacl_info;
12566 };
12567
12568 template<int size, bool big_endian>
12569 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12570 {
12571   size,                 // size
12572   big_endian,           // is_big_endian
12573   elfcpp::EM_MIPS,      // machine_code
12574   true,                 // has_make_symbol
12575   false,                // has_resolve
12576   false,                // has_code_fill
12577   true,                 // is_default_stack_executable
12578   false,                // can_icf_inline_merge_sections
12579   '\0',                 // wrap_char
12580   "/lib/ld.so.1",       // dynamic_linker
12581   0x20000,              // default_text_segment_address
12582   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12583   0x10000,              // common_pagesize (overridable by -z common-page-size)
12584   true,                 // isolate_execinstr
12585   0x10000000,           // rosegment_gap
12586   elfcpp::SHN_UNDEF,    // small_common_shndx
12587   elfcpp::SHN_UNDEF,    // large_common_shndx
12588   0,                    // small_common_section_flags
12589   0,                    // large_common_section_flags
12590   NULL,                 // attributes_section
12591   NULL,                 // attributes_vendor
12592   "_start",             // entry_symbol_name
12593   32,                   // hash_entry_size
12594 };
12595
12596 // Target selector for Mips.  Note this is never instantiated directly.
12597 // It's only used in Target_selector_mips_nacl, below.
12598
12599 template<int size, bool big_endian>
12600 class Target_selector_mips : public Target_selector
12601 {
12602 public:
12603   Target_selector_mips()
12604     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12605                 (size == 64 ?
12606                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12607                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12608                 (size == 64 ?
12609                   (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12610                   (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12611   { }
12612
12613   Target* do_instantiate_target()
12614   { return new Target_mips<size, big_endian>(); }
12615 };
12616
12617 template<int size, bool big_endian>
12618 class Target_selector_mips_nacl
12619   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12620                                 Target_mips_nacl<size, big_endian> >
12621 {
12622  public:
12623   Target_selector_mips_nacl()
12624     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12625                            Target_mips_nacl<size, big_endian> >(
12626         // NaCl currently supports only MIPS32 little-endian.
12627         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12628   { }
12629 };
12630
12631 Target_selector_mips_nacl<32, true> target_selector_mips32;
12632 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12633 Target_selector_mips_nacl<64, true> target_selector_mips64;
12634 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12635
12636 } // End anonymous namespace.