Add missing Mips_output_data_la25_stub::do_print_to_mapfile.
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "nacl.h"
48
49 namespace
50 {
51 using namespace gold;
52
53 template<int size, bool big_endian>
54 class Mips_output_data_plt;
55
56 template<int size, bool big_endian>
57 class Mips_output_data_got;
58
59 template<int size, bool big_endian>
60 class Target_mips;
61
62 template<int size, bool big_endian>
63 class Mips_output_section_reginfo;
64
65 template<int size, bool big_endian>
66 class Mips_output_data_la25_stub;
67
68 template<int size, bool big_endian>
69 class Mips_output_data_mips_stubs;
70
71 template<int size>
72 class Mips_symbol;
73
74 template<int size, bool big_endian>
75 class Mips_got_info;
76
77 template<int size, bool big_endian>
78 class Mips_relobj;
79
80 class Mips16_stub_section_base;
81
82 template<int size, bool big_endian>
83 class Mips16_stub_section;
84
85 // The ABI says that every symbol used by dynamic relocations must have
86 // a global GOT entry.  Among other things, this provides the dynamic
87 // linker with a free, directly-indexed cache.  The GOT can therefore
88 // contain symbols that are not referenced by GOT relocations themselves
89 // (in other words, it may have symbols that are not referenced by things
90 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92 // GOT relocations are less likely to overflow if we put the associated
93 // GOT entries towards the beginning.  We therefore divide the global
94 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
95 // the first area can be used for both dynamic relocations and GP-relative
96 // accesses, while those in the "reloc-only" area are for dynamic
97 // relocations only.
98
99 // These GGA_* ("Global GOT Area") values are organised so that lower
100 // values are more general than higher values.  Also, non-GGA_NONE
101 // values are ordered by the position of the area in the GOT.
102
103 enum Global_got_area
104 {
105   GGA_NORMAL = 0,
106   GGA_RELOC_ONLY = 1,
107   GGA_NONE = 2
108 };
109
110 // The types of GOT entries needed for this platform.
111 // These values are exposed to the ABI in an incremental link.
112 // Do not renumber existing values without changing the version
113 // number of the .gnu_incremental_inputs section.
114 enum Got_type
115 {
116   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
117   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
118   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
119
120   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121   GOT_TYPE_STANDARD_MULTIGOT = 3,
122   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124 };
125
126 // TLS type of GOT entry.
127 enum Got_tls_type
128 {
129   GOT_TLS_NONE = 0,
130   GOT_TLS_GD = 1,
131   GOT_TLS_LDM = 2,
132   GOT_TLS_IE = 4
133 };
134
135 // Return TRUE if a relocation of type R_TYPE from OBJECT might
136 // require an la25 stub.  See also local_pic_function, which determines
137 // whether the destination function ever requires a stub.
138 template<int size, bool big_endian>
139 static inline bool
140 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
141                            unsigned int r_type, bool target_is_16_bit_code)
142 {
143   // We specifically ignore branches and jumps from EF_PIC objects,
144   // where the onus is on the compiler or programmer to perform any
145   // necessary initialization of $25.  Sometimes such initialization
146   // is unnecessary; for example, -mno-shared functions do not use
147   // the incoming value of $25, and may therefore be called directly.
148   if (object->is_pic())
149     return false;
150
151   switch (r_type)
152     {
153     case elfcpp::R_MIPS_26:
154     case elfcpp::R_MIPS_PC16:
155     case elfcpp::R_MICROMIPS_26_S1:
156     case elfcpp::R_MICROMIPS_PC7_S1:
157     case elfcpp::R_MICROMIPS_PC10_S1:
158     case elfcpp::R_MICROMIPS_PC16_S1:
159     case elfcpp::R_MICROMIPS_PC23_S2:
160       return true;
161
162     case elfcpp::R_MIPS16_26:
163       return !target_is_16_bit_code;
164
165     default:
166       return false;
167     }
168 }
169
170 // Return true if SYM is a locally-defined PIC function, in the sense
171 // that it or its fn_stub might need $25 to be valid on entry.
172 // Note that MIPS16 functions set up $gp using PC-relative instructions,
173 // so they themselves never need $25 to be valid.  Only non-MIPS16
174 // entry points are of interest here.
175 template<int size, bool big_endian>
176 static inline bool
177 local_pic_function(Mips_symbol<size>* sym)
178 {
179   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
180                       && !sym->object()->is_dynamic()
181                       && !sym->is_undefined());
182
183   if (sym->is_defined() && def_regular)
184     {
185       Mips_relobj<size, big_endian>* object =
186         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
187
188       if ((object->is_pic() || sym->is_pic())
189           && (!sym->is_mips16()
190               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
191         return true;
192     }
193   return false;
194 }
195
196 static inline bool
197 hi16_reloc(int r_type)
198 {
199   return (r_type == elfcpp::R_MIPS_HI16
200           || r_type == elfcpp::R_MIPS16_HI16
201           || r_type == elfcpp::R_MICROMIPS_HI16);
202 }
203
204 static inline bool
205 lo16_reloc(int r_type)
206 {
207   return (r_type == elfcpp::R_MIPS_LO16
208           || r_type == elfcpp::R_MIPS16_LO16
209           || r_type == elfcpp::R_MICROMIPS_LO16);
210 }
211
212 static inline bool
213 got16_reloc(unsigned int r_type)
214 {
215   return (r_type == elfcpp::R_MIPS_GOT16
216           || r_type == elfcpp::R_MIPS16_GOT16
217           || r_type == elfcpp::R_MICROMIPS_GOT16);
218 }
219
220 static inline bool
221 call_lo16_reloc(unsigned int r_type)
222 {
223   return (r_type == elfcpp::R_MIPS_CALL_LO16
224           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
225 }
226
227 static inline bool
228 got_lo16_reloc(unsigned int r_type)
229 {
230   return (r_type == elfcpp::R_MIPS_GOT_LO16
231           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
232 }
233
234 static inline bool
235 got_disp_reloc(unsigned int r_type)
236 {
237   return (r_type == elfcpp::R_MIPS_GOT_DISP
238           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
239 }
240
241 static inline bool
242 got_page_reloc(unsigned int r_type)
243 {
244   return (r_type == elfcpp::R_MIPS_GOT_PAGE
245           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
246 }
247
248 static inline bool
249 tls_gd_reloc(unsigned int r_type)
250 {
251   return (r_type == elfcpp::R_MIPS_TLS_GD
252           || r_type == elfcpp::R_MIPS16_TLS_GD
253           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
254 }
255
256 static inline bool
257 tls_gottprel_reloc(unsigned int r_type)
258 {
259   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
260           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
261           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
262 }
263
264 static inline bool
265 tls_ldm_reloc(unsigned int r_type)
266 {
267   return (r_type == elfcpp::R_MIPS_TLS_LDM
268           || r_type == elfcpp::R_MIPS16_TLS_LDM
269           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
270 }
271
272 static inline bool
273 mips16_call_reloc(unsigned int r_type)
274 {
275   return (r_type == elfcpp::R_MIPS16_26
276           || r_type == elfcpp::R_MIPS16_CALL16);
277 }
278
279 static inline bool
280 jal_reloc(unsigned int r_type)
281 {
282   return (r_type == elfcpp::R_MIPS_26
283           || r_type == elfcpp::R_MIPS16_26
284           || r_type == elfcpp::R_MICROMIPS_26_S1);
285 }
286
287 static inline bool
288 micromips_branch_reloc(unsigned int r_type)
289 {
290   return (r_type == elfcpp::R_MICROMIPS_26_S1
291           || r_type == elfcpp::R_MICROMIPS_PC16_S1
292           || r_type == elfcpp::R_MICROMIPS_PC10_S1
293           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
294 }
295
296 // Check if R_TYPE is a MIPS16 reloc.
297 static inline bool
298 mips16_reloc(unsigned int r_type)
299 {
300   switch (r_type)
301     {
302     case elfcpp::R_MIPS16_26:
303     case elfcpp::R_MIPS16_GPREL:
304     case elfcpp::R_MIPS16_GOT16:
305     case elfcpp::R_MIPS16_CALL16:
306     case elfcpp::R_MIPS16_HI16:
307     case elfcpp::R_MIPS16_LO16:
308     case elfcpp::R_MIPS16_TLS_GD:
309     case elfcpp::R_MIPS16_TLS_LDM:
310     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
311     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
312     case elfcpp::R_MIPS16_TLS_GOTTPREL:
313     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
314     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
315       return true;
316
317     default:
318       return false;
319     }
320 }
321
322 // Check if R_TYPE is a microMIPS reloc.
323 static inline bool
324 micromips_reloc(unsigned int r_type)
325 {
326   switch (r_type)
327     {
328     case elfcpp::R_MICROMIPS_26_S1:
329     case elfcpp::R_MICROMIPS_HI16:
330     case elfcpp::R_MICROMIPS_LO16:
331     case elfcpp::R_MICROMIPS_GPREL16:
332     case elfcpp::R_MICROMIPS_LITERAL:
333     case elfcpp::R_MICROMIPS_GOT16:
334     case elfcpp::R_MICROMIPS_PC7_S1:
335     case elfcpp::R_MICROMIPS_PC10_S1:
336     case elfcpp::R_MICROMIPS_PC16_S1:
337     case elfcpp::R_MICROMIPS_CALL16:
338     case elfcpp::R_MICROMIPS_GOT_DISP:
339     case elfcpp::R_MICROMIPS_GOT_PAGE:
340     case elfcpp::R_MICROMIPS_GOT_OFST:
341     case elfcpp::R_MICROMIPS_GOT_HI16:
342     case elfcpp::R_MICROMIPS_GOT_LO16:
343     case elfcpp::R_MICROMIPS_SUB:
344     case elfcpp::R_MICROMIPS_HIGHER:
345     case elfcpp::R_MICROMIPS_HIGHEST:
346     case elfcpp::R_MICROMIPS_CALL_HI16:
347     case elfcpp::R_MICROMIPS_CALL_LO16:
348     case elfcpp::R_MICROMIPS_SCN_DISP:
349     case elfcpp::R_MICROMIPS_JALR:
350     case elfcpp::R_MICROMIPS_HI0_LO16:
351     case elfcpp::R_MICROMIPS_TLS_GD:
352     case elfcpp::R_MICROMIPS_TLS_LDM:
353     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
354     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
355     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
356     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
357     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
358     case elfcpp::R_MICROMIPS_GPREL7_S2:
359     case elfcpp::R_MICROMIPS_PC23_S2:
360       return true;
361
362     default:
363       return false;
364     }
365 }
366
367 static inline bool
368 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
369 {
370   switch (high_reloc)
371     {
372     case elfcpp::R_MIPS_HI16:
373     case elfcpp::R_MIPS_GOT16:
374       return lo16_reloc == elfcpp::R_MIPS_LO16;
375     case elfcpp::R_MIPS16_HI16:
376     case elfcpp::R_MIPS16_GOT16:
377       return lo16_reloc == elfcpp::R_MIPS16_LO16;
378     case elfcpp::R_MICROMIPS_HI16:
379     case elfcpp::R_MICROMIPS_GOT16:
380       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
381     default:
382       return false;
383     }
384 }
385
386 // This class is used to hold information about one GOT entry.
387 // There are three types of entry:
388 //
389 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
390 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
391 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
392 //          (object != NULL, symndx == -1)
393 //    (3) a TLS LDM slot
394 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
395
396 template<int size, bool big_endian>
397 class Mips_got_entry
398 {
399   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
400
401  public:
402   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
403                  Mips_address addend, unsigned char tls_type,
404                  unsigned int shndx)
405     : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
406   { this->d.addend = addend; }
407
408   Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
409                  unsigned char tls_type)
410     : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
411   { this->d.sym = sym; }
412
413   // Return whether this entry is for a local symbol.
414   bool
415   is_for_local_symbol() const
416   { return this->symndx_ != -1U; }
417
418   // Return whether this entry is for a global symbol.
419   bool
420   is_for_global_symbol() const
421   { return this->symndx_ == -1U; }
422
423   // Return the hash of this entry.
424   size_t
425   hash() const
426   {
427     if (this->tls_type_ == GOT_TLS_LDM)
428       return this->symndx_ + (1 << 18);
429     if (this->symndx_ != -1U)
430       {
431         uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
432         return this->symndx_ + object_id + this->d.addend;
433       }
434     else
435       {
436         uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
437         return this->symndx_ + sym_id;
438       }
439   }
440
441   // Return whether this entry is equal to OTHER.
442   bool
443   equals(Mips_got_entry<size, big_endian>* other) const
444   {
445     if (this->symndx_ != other->symndx_
446         || this->tls_type_ != other->tls_type_)
447       return false;
448     if (this->tls_type_ == GOT_TLS_LDM)
449       return true;
450     if (this->symndx_ != -1U)
451       return (this->object() == other->object()
452               && this->d.addend == other->d.addend);
453     else
454       return this->d.sym == other->d.sym;
455   }
456
457   // Return input object that needs this GOT entry.
458   Mips_relobj<size, big_endian>*
459   object() const
460   {
461     gold_assert(this->object_ != NULL);
462     return this->object_;
463   }
464
465   // Return local symbol index for local GOT entries.
466   unsigned int
467   symndx() const
468   {
469     gold_assert(this->symndx_ != -1U);
470     return this->symndx_;
471   }
472
473   // Return the relocation addend for local GOT entries.
474   Mips_address
475   addend() const
476   {
477     gold_assert(this->symndx_ != -1U);
478     return this->d.addend;
479   }
480
481   // Return global symbol for global GOT entries.
482   Mips_symbol<size>*
483   sym() const
484   {
485     gold_assert(this->symndx_ == -1U);
486     return this->d.sym;
487   }
488
489   // Return whether this is a TLS GOT entry.
490   bool
491   is_tls_entry() const
492   { return this->tls_type_ != GOT_TLS_NONE; }
493
494   // Return TLS type of this GOT entry.
495   unsigned char
496   tls_type() const
497   { return this->tls_type_; }
498
499   // Return section index of the local symbol for local GOT entries.
500   unsigned int
501   shndx() const
502   { return this->shndx_; }
503
504  private:
505   // The input object that needs the GOT entry.
506   Mips_relobj<size, big_endian>* object_;
507   // The index of the symbol if we have a local symbol; -1 otherwise.
508   unsigned int symndx_;
509
510   union
511   {
512     // If symndx != -1, the addend of the relocation that should be added to the
513     // symbol value.
514     Mips_address addend;
515     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
516     // symbol's entry is in the local area if mips_sym->global_got_area is
517     // GGA_NONE, otherwise it is in the global area.
518     Mips_symbol<size>* sym;
519   } d;
520
521   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
522   // symbol entry with r_symndx == 0.
523   unsigned char tls_type_;
524
525   // For local GOT entries, section index of the local symbol.
526   unsigned int shndx_;
527 };
528
529 // Hash for Mips_got_entry.
530
531 template<int size, bool big_endian>
532 class Mips_got_entry_hash
533 {
534  public:
535   size_t
536   operator()(Mips_got_entry<size, big_endian>* entry) const
537   { return entry->hash(); }
538 };
539
540 // Equality for Mips_got_entry.
541
542 template<int size, bool big_endian>
543 class Mips_got_entry_eq
544 {
545  public:
546   bool
547   operator()(Mips_got_entry<size, big_endian>* e1,
548              Mips_got_entry<size, big_endian>* e2) const
549   { return e1->equals(e2); }
550 };
551
552 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
553 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
554 // increasing MIN_ADDEND.
555
556 struct Got_page_range
557 {
558   Got_page_range()
559     : next(NULL), min_addend(0), max_addend(0)
560   { }
561
562   Got_page_range* next;
563   int min_addend;
564   int max_addend;
565
566   // Return the maximum number of GOT page entries required.
567   int
568   get_max_pages()
569   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
570 };
571
572 // Got_page_entry.  This class describes the range of addends that are applied
573 // to page relocations against a given symbol.
574
575 struct Got_page_entry
576 {
577   Got_page_entry()
578     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
579   { }
580
581   Got_page_entry(Object* object_, unsigned int symndx_)
582     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
583   { }
584
585   // The input object that needs the GOT page entry.
586   Object* object;
587   // The index of the symbol, as stored in the relocation r_info.
588   unsigned int symndx;
589   // The ranges for this page entry.
590   Got_page_range* ranges;
591   // The maximum number of page entries needed for RANGES.
592   unsigned int num_pages;
593 };
594
595 // Hash for Got_page_entry.
596
597 struct Got_page_entry_hash
598 {
599   size_t
600   operator()(Got_page_entry* entry) const
601   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
602 };
603
604 // Equality for Got_page_entry.
605
606 struct Got_page_entry_eq
607 {
608   bool
609   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
610   {
611     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
612   }
613 };
614
615 // This class is used to hold .got information when linking.
616
617 template<int size, bool big_endian>
618 class Mips_got_info
619 {
620   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
621   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
622     Reloc_section;
623   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
624
625   // Unordered set of GOT entries.
626   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
627       Mips_got_entry_hash<size, big_endian>,
628       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
629
630   // Unordered set of GOT page entries.
631   typedef Unordered_set<Got_page_entry*,
632       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
633
634  public:
635   Mips_got_info()
636     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
637       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
638       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
639       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
640       offset_(0)
641   { }
642
643   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
644   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
645   void
646   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
647                           unsigned int symndx, Mips_address addend,
648                           unsigned int r_type, unsigned int shndx);
649
650   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
651   // in OBJECT.  FOR_CALL is true if the caller is only interested in
652   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
653   // relocation.
654   void
655   record_global_got_symbol(Mips_symbol<size>* mips_sym,
656                            Mips_relobj<size, big_endian>* object,
657                            unsigned int r_type, bool dyn_reloc, bool for_call);
658
659   // Add ENTRY to master GOT and to OBJECT's GOT.
660   void
661   record_got_entry(Mips_got_entry<size, big_endian>* entry,
662                    Mips_relobj<size, big_endian>* object);
663
664   // Record that OBJECT has a page relocation against symbol SYMNDX and
665   // that ADDEND is the addend for that relocation.
666   void
667   record_got_page_entry(Mips_relobj<size, big_endian>* object,
668                         unsigned int symndx, int addend);
669
670   // Create all entries that should be in the local part of the GOT.
671   void
672   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
673
674   // Create GOT page entries.
675   void
676   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
677
678   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
679   void
680   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
681                      unsigned int non_reloc_only_global_gotno);
682
683   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
684   void
685   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
686
687   // Create TLS GOT entries.
688   void
689   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
690
691   // Decide whether the symbol needs an entry in the global part of the primary
692   // GOT, setting global_got_area accordingly.  Count the number of global
693   // symbols that are in the primary GOT only because they have dynamic
694   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
695   void
696   count_got_symbols(Symbol_table* symtab);
697
698   // Return the offset of GOT page entry for VALUE.
699   unsigned int
700   get_got_page_offset(Mips_address value,
701                       Mips_output_data_got<size, big_endian>* got);
702
703   // Count the number of GOT entries required.
704   void
705   count_got_entries();
706
707   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
708   void
709   count_got_entry(Mips_got_entry<size, big_endian>* entry);
710
711   // Add FROM's GOT entries.
712   void
713   add_got_entries(Mips_got_info<size, big_endian>* from);
714
715   // Add FROM's GOT page entries.
716   void
717   add_got_page_entries(Mips_got_info<size, big_endian>* from);
718
719   // Return GOT size.
720   unsigned int
721   got_size() const
722   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
723              + this->tls_gotno_) * size/8);
724   }
725
726   // Return the number of local GOT entries.
727   unsigned int
728   local_gotno() const
729   { return this->local_gotno_; }
730
731   // Return the maximum number of page GOT entries needed.
732   unsigned int
733   page_gotno() const
734   { return this->page_gotno_; }
735
736   // Return the number of global GOT entries.
737   unsigned int
738   global_gotno() const
739   { return this->global_gotno_; }
740
741   // Set the number of global GOT entries.
742   void
743   set_global_gotno(unsigned int global_gotno)
744   { this->global_gotno_ = global_gotno; }
745
746   // Return the number of GGA_RELOC_ONLY global GOT entries.
747   unsigned int
748   reloc_only_gotno() const
749   { return this->reloc_only_gotno_; }
750
751   // Return the number of TLS GOT entries.
752   unsigned int
753   tls_gotno() const
754   { return this->tls_gotno_; }
755
756   // Return the GOT type for this GOT.  Used for multi-GOT links only.
757   unsigned int
758   multigot_got_type(unsigned int got_type) const
759   {
760     switch (got_type)
761       {
762       case GOT_TYPE_STANDARD:
763         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
764       case GOT_TYPE_TLS_OFFSET:
765         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
766       case GOT_TYPE_TLS_PAIR:
767         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
768       default:
769         gold_unreachable();
770       }
771   }
772
773   // Remove lazy-binding stubs for global symbols in this GOT.
774   void
775   remove_lazy_stubs(Target_mips<size, big_endian>* target);
776
777   // Return offset of this GOT from the start of .got section.
778   unsigned int
779   offset() const
780   { return this->offset_; }
781
782   // Set offset of this GOT from the start of .got section.
783   void
784   set_offset(unsigned int offset)
785   { this->offset_ = offset; }
786
787   // Set index of this GOT in multi-GOT links.
788   void
789   set_index(unsigned int index)
790   { this->index_ = index; }
791
792   // Return next GOT in multi-GOT links.
793   Mips_got_info<size, big_endian>*
794   next() const
795   { return this->next_; }
796
797   // Set next GOT in multi-GOT links.
798   void
799   set_next(Mips_got_info<size, big_endian>* next)
800   { this->next_ = next; }
801
802   // Return the offset of TLS LDM entry for this GOT.
803   unsigned int
804   tls_ldm_offset() const
805   { return this->tls_ldm_offset_; }
806
807   // Set the offset of TLS LDM entry for this GOT.
808   void
809   set_tls_ldm_offset(unsigned int tls_ldm_offset)
810   { this->tls_ldm_offset_ = tls_ldm_offset; }
811
812   Unordered_set<Mips_symbol<size>*>&
813   global_got_symbols()
814   { return this->global_got_symbols_; }
815
816   // Return the GOT_TLS_* type required by relocation type R_TYPE.
817   static int
818   mips_elf_reloc_tls_type(unsigned int r_type)
819   {
820     if (tls_gd_reloc(r_type))
821       return GOT_TLS_GD;
822
823     if (tls_ldm_reloc(r_type))
824       return GOT_TLS_LDM;
825
826     if (tls_gottprel_reloc(r_type))
827       return GOT_TLS_IE;
828
829     return GOT_TLS_NONE;
830   }
831
832   // Return the number of GOT slots needed for GOT TLS type TYPE.
833   static int
834   mips_tls_got_entries(unsigned int type)
835   {
836     switch (type)
837       {
838       case GOT_TLS_GD:
839       case GOT_TLS_LDM:
840         return 2;
841
842       case GOT_TLS_IE:
843         return 1;
844
845       case GOT_TLS_NONE:
846         return 0;
847
848       default:
849         gold_unreachable();
850       }
851   }
852
853  private:
854   // The number of local GOT entries.
855   unsigned int local_gotno_;
856   // The maximum number of page GOT entries needed.
857   unsigned int page_gotno_;
858   // The number of global GOT entries.
859   unsigned int global_gotno_;
860   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
861   unsigned int reloc_only_gotno_;
862   // The number of TLS GOT entries.
863   unsigned int tls_gotno_;
864   // The offset of TLS LDM entry for this GOT.
865   unsigned int tls_ldm_offset_;
866   // All symbols that have global GOT entry.
867   Unordered_set<Mips_symbol<size>*> global_got_symbols_;
868   // A hash table holding GOT entries.
869   Got_entry_set got_entries_;
870   // A hash table of GOT page entries.
871   Got_page_entry_set got_page_entries_;
872   // The offset of first GOT page entry for this GOT.
873   unsigned int got_page_offset_start_;
874   // The offset of next available GOT page entry for this GOT.
875   unsigned int got_page_offset_next_;
876   // A hash table that maps GOT page entry value to the GOT offset where
877   // the entry is located.
878   Got_page_offsets got_page_offsets_;
879   // In multi-GOT links, a pointer to the next GOT.
880   Mips_got_info<size, big_endian>* next_;
881   // Index of this GOT in multi-GOT links.
882   unsigned int index_;
883   // The offset of this GOT in multi-GOT links.
884   unsigned int offset_;
885 };
886
887 // This is a helper class used during relocation scan.  It records GOT16 addend.
888
889 template<int size, bool big_endian>
890 struct got16_addend
891 {
892   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
893
894   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
895                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
896                Mips_address _addend)
897     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
898       addend(_addend)
899   { }
900
901   const Sized_relobj_file<size, big_endian>* object;
902   unsigned int shndx;
903   unsigned int r_type;
904   unsigned int r_sym;
905   Mips_address addend;
906 };
907
908 // Mips_symbol class.  Holds additional symbol information needed for Mips.
909
910 template<int size>
911 class Mips_symbol : public Sized_symbol<size>
912 {
913  public:
914   Mips_symbol()
915     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
916       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
917       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
918       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
919       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
920       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
921       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
922   { }
923
924   // Return whether this is a MIPS16 symbol.
925   bool
926   is_mips16() const
927   {
928     // (st_other & STO_MIPS16) == STO_MIPS16
929     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
930             == elfcpp::STO_MIPS16 >> 2);
931   }
932
933   // Return whether this is a microMIPS symbol.
934   bool
935   is_micromips() const
936   {
937     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
938     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
939             == elfcpp::STO_MICROMIPS >> 2);
940   }
941
942   // Return whether the symbol needs MIPS16 fn_stub.
943   bool
944   need_fn_stub() const
945   { return this->need_fn_stub_; }
946
947   // Set that the symbol needs MIPS16 fn_stub.
948   void
949   set_need_fn_stub()
950   { this->need_fn_stub_ = true; }
951
952   // Return whether this symbol is referenced by branch relocations from
953   // any non-PIC input file.
954   bool
955   has_nonpic_branches() const
956   { return this->has_nonpic_branches_; }
957
958   // Set that this symbol is referenced by branch relocations from
959   // any non-PIC input file.
960   void
961   set_has_nonpic_branches()
962   { this->has_nonpic_branches_ = true; }
963
964   // Return the offset of the la25 stub for this symbol from the start of the
965   // la25 stub section.
966   unsigned int
967   la25_stub_offset() const
968   { return this->la25_stub_offset_; }
969
970   // Set the offset of the la25 stub for this symbol from the start of the
971   // la25 stub section.
972   void
973   set_la25_stub_offset(unsigned int offset)
974   { this->la25_stub_offset_ = offset; }
975
976   // Return whether the symbol has la25 stub.  This is true if this symbol is
977   // for a PIC function, and there are non-PIC branches and jumps to it.
978   bool
979   has_la25_stub() const
980   { return this->la25_stub_offset_ != -1U; }
981
982   // Return whether there is a relocation against this symbol that must be
983   // resolved by the static linker (that is, the relocation cannot possibly
984   // be made dynamic).
985   bool
986   has_static_relocs() const
987   { return this->has_static_relocs_; }
988
989   // Set that there is a relocation against this symbol that must be resolved
990   // by the static linker (that is, the relocation cannot possibly be made
991   // dynamic).
992   void
993   set_has_static_relocs()
994   { this->has_static_relocs_ = true; }
995
996   // Return whether we must not create a lazy-binding stub for this symbol.
997   bool
998   no_lazy_stub() const
999   { return this->no_lazy_stub_; }
1000
1001   // Set that we must not create a lazy-binding stub for this symbol.
1002   void
1003   set_no_lazy_stub()
1004   { this->no_lazy_stub_ = true; }
1005
1006   // Return the offset of the lazy-binding stub for this symbol from the start
1007   // of .MIPS.stubs section.
1008   unsigned int
1009   lazy_stub_offset() const
1010   { return this->lazy_stub_offset_; }
1011
1012   // Set the offset of the lazy-binding stub for this symbol from the start
1013   // of .MIPS.stubs section.
1014   void
1015   set_lazy_stub_offset(unsigned int offset)
1016   { this->lazy_stub_offset_ = offset; }
1017
1018   // Return whether there are any relocations for this symbol where
1019   // pointer equality matters.
1020   bool
1021   pointer_equality_needed() const
1022   { return this->pointer_equality_needed_; }
1023
1024   // Set that there are relocations for this symbol where pointer equality
1025   // matters.
1026   void
1027   set_pointer_equality_needed()
1028   { this->pointer_equality_needed_ = true; }
1029
1030   // Return global GOT area where this symbol in located.
1031   Global_got_area
1032   global_got_area() const
1033   { return this->global_got_area_; }
1034
1035   // Set global GOT area where this symbol in located.
1036   void
1037   set_global_got_area(Global_got_area global_got_area)
1038   { this->global_got_area_ = global_got_area; }
1039
1040   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1041   // returns the offset from the start of .got section to the first GOT entry
1042   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1043   // in more than one GOT.
1044   unsigned int
1045   global_gotoffset() const
1046   { return this->global_gotoffset_; }
1047
1048   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1049   // the symbol can have entry in more than one GOT.  This method will set
1050   // the offset only if it is less than current offset.
1051   void
1052   set_global_gotoffset(unsigned int offset)
1053   {
1054     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1055       this->global_gotoffset_ = offset;
1056   }
1057
1058   // Return whether all GOT relocations for this symbol are for calls.
1059   bool
1060   got_only_for_calls() const
1061   { return this->got_only_for_calls_; }
1062
1063   // Set that there is a GOT relocation for this symbol that is not for call.
1064   void
1065   set_got_not_only_for_calls()
1066   { this->got_only_for_calls_ = false; }
1067
1068   // Return whether this is a PIC symbol.
1069   bool
1070   is_pic() const
1071   {
1072     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1073     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1074             == (elfcpp::STO_MIPS_PIC >> 2));
1075   }
1076
1077   // Set the flag in st_other field that marks this symbol as PIC.
1078   void
1079   set_pic()
1080   {
1081     if (this->is_mips16())
1082       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1083       this->set_nonvis((this->nonvis()
1084                         & ~((elfcpp::STO_MIPS16 >> 2)
1085                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1086                        | (elfcpp::STO_MIPS_PIC >> 2));
1087     else
1088       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1089       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1090                        | (elfcpp::STO_MIPS_PIC >> 2));
1091   }
1092
1093   // Set the flag in st_other field that marks this symbol as PLT.
1094   void
1095   set_mips_plt()
1096   {
1097     if (this->is_mips16())
1098       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1099       this->set_nonvis((this->nonvis()
1100                         & ((elfcpp::STO_MIPS16 >> 2)
1101                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1102                        | (elfcpp::STO_MIPS_PLT >> 2));
1103
1104     else
1105       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1106       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1107                        | (elfcpp::STO_MIPS_PLT >> 2));
1108   }
1109
1110   // Downcast a base pointer to a Mips_symbol pointer.
1111   static Mips_symbol<size>*
1112   as_mips_sym(Symbol* sym)
1113   { return static_cast<Mips_symbol<size>*>(sym); }
1114
1115   // Downcast a base pointer to a Mips_symbol pointer.
1116   static const Mips_symbol<size>*
1117   as_mips_sym(const Symbol* sym)
1118   { return static_cast<const Mips_symbol<size>*>(sym); }
1119
1120   // Return whether the symbol has lazy-binding stub.
1121   bool
1122   has_lazy_stub() const
1123   { return this->has_lazy_stub_; }
1124
1125   // Set whether the symbol has lazy-binding stub.
1126   void
1127   set_has_lazy_stub(bool has_lazy_stub)
1128   { this->has_lazy_stub_ = has_lazy_stub; }
1129
1130   // Return whether the symbol needs a standard PLT entry.
1131   bool
1132   needs_mips_plt() const
1133   { return this->needs_mips_plt_; }
1134
1135   // Set whether the symbol needs a standard PLT entry.
1136   void
1137   set_needs_mips_plt(bool needs_mips_plt)
1138   { this->needs_mips_plt_ = needs_mips_plt; }
1139
1140   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1141   // entry.
1142   bool
1143   needs_comp_plt() const
1144   { return this->needs_comp_plt_; }
1145
1146   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1147   void
1148   set_needs_comp_plt(bool needs_comp_plt)
1149   { this->needs_comp_plt_ = needs_comp_plt; }
1150
1151   // Return standard PLT entry offset, or -1 if none.
1152   unsigned int
1153   mips_plt_offset() const
1154   { return this->mips_plt_offset_; }
1155
1156   // Set standard PLT entry offset.
1157   void
1158   set_mips_plt_offset(unsigned int mips_plt_offset)
1159   { this->mips_plt_offset_ = mips_plt_offset; }
1160
1161   // Return whether the symbol has standard PLT entry.
1162   bool
1163   has_mips_plt_offset() const
1164   { return this->mips_plt_offset_ != -1U; }
1165
1166   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1167   unsigned int
1168   comp_plt_offset() const
1169   { return this->comp_plt_offset_; }
1170
1171   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1172   void
1173   set_comp_plt_offset(unsigned int comp_plt_offset)
1174   { this->comp_plt_offset_ = comp_plt_offset; }
1175
1176   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1177   bool
1178   has_comp_plt_offset() const
1179   { return this->comp_plt_offset_ != -1U; }
1180
1181   // Return MIPS16 fn stub for a symbol.
1182   template<bool big_endian>
1183   Mips16_stub_section<size, big_endian>*
1184   get_mips16_fn_stub() const
1185   {
1186     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1187   }
1188
1189   // Set MIPS16 fn stub for a symbol.
1190   void
1191   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1192   { this->mips16_fn_stub_ = stub; }
1193
1194   // Return whether symbol has MIPS16 fn stub.
1195   bool
1196   has_mips16_fn_stub() const
1197   { return this->mips16_fn_stub_ != NULL; }
1198
1199   // Return MIPS16 call stub for a symbol.
1200   template<bool big_endian>
1201   Mips16_stub_section<size, big_endian>*
1202   get_mips16_call_stub() const
1203   {
1204     return static_cast<Mips16_stub_section<size, big_endian>*>(
1205       mips16_call_stub_);
1206   }
1207
1208   // Set MIPS16 call stub for a symbol.
1209   void
1210   set_mips16_call_stub(Mips16_stub_section_base* stub)
1211   { this->mips16_call_stub_ = stub; }
1212
1213   // Return whether symbol has MIPS16 call stub.
1214   bool
1215   has_mips16_call_stub() const
1216   { return this->mips16_call_stub_ != NULL; }
1217
1218   // Return MIPS16 call_fp stub for a symbol.
1219   template<bool big_endian>
1220   Mips16_stub_section<size, big_endian>*
1221   get_mips16_call_fp_stub() const
1222   {
1223     return static_cast<Mips16_stub_section<size, big_endian>*>(
1224       mips16_call_fp_stub_);
1225   }
1226
1227   // Set MIPS16 call_fp stub for a symbol.
1228   void
1229   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1230   { this->mips16_call_fp_stub_ = stub; }
1231
1232   // Return whether symbol has MIPS16 call_fp stub.
1233   bool
1234   has_mips16_call_fp_stub() const
1235   { return this->mips16_call_fp_stub_ != NULL; }
1236
1237   bool
1238   get_applied_secondary_got_fixup() const
1239   { return applied_secondary_got_fixup_; }
1240
1241   void
1242   set_applied_secondary_got_fixup()
1243   { this->applied_secondary_got_fixup_ = true; }
1244
1245  private:
1246   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1247   // appears in any relocs other than a 16 bit call.
1248   bool need_fn_stub_;
1249
1250   // True if this symbol is referenced by branch relocations from
1251   // any non-PIC input file.  This is used to determine whether an
1252   // la25 stub is required.
1253   bool has_nonpic_branches_;
1254
1255   // The offset of the la25 stub for this symbol from the start of the
1256   // la25 stub section.
1257   unsigned int la25_stub_offset_;
1258
1259   // True if there is a relocation against this symbol that must be
1260   // resolved by the static linker (that is, the relocation cannot
1261   // possibly be made dynamic).
1262   bool has_static_relocs_;
1263
1264   // Whether we must not create a lazy-binding stub for this symbol.
1265   // This is true if the symbol has relocations related to taking the
1266   // function's address.
1267   bool no_lazy_stub_;
1268
1269   // The offset of the lazy-binding stub for this symbol from the start of
1270   // .MIPS.stubs section.
1271   unsigned int lazy_stub_offset_;
1272
1273   // True if there are any relocations for this symbol where pointer equality
1274   // matters.
1275   bool pointer_equality_needed_;
1276
1277   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1278   // in the global part of the GOT.
1279   Global_got_area global_got_area_;
1280
1281   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1282   // from the start of .got section to the first GOT entry for the symbol.
1283   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1284   unsigned int global_gotoffset_;
1285
1286   // Whether all GOT relocations for this symbol are for calls.
1287   bool got_only_for_calls_;
1288   // Whether the symbol has lazy-binding stub.
1289   bool has_lazy_stub_;
1290   // Whether the symbol needs a standard PLT entry.
1291   bool needs_mips_plt_;
1292   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1293   bool needs_comp_plt_;
1294   // Standard PLT entry offset, or -1 if none.
1295   unsigned int mips_plt_offset_;
1296   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1297   unsigned int comp_plt_offset_;
1298   // MIPS16 fn stub for a symbol.
1299   Mips16_stub_section_base* mips16_fn_stub_;
1300   // MIPS16 call stub for a symbol.
1301   Mips16_stub_section_base* mips16_call_stub_;
1302   // MIPS16 call_fp stub for a symbol.
1303   Mips16_stub_section_base* mips16_call_fp_stub_;
1304
1305   bool applied_secondary_got_fixup_;
1306 };
1307
1308 // Mips16_stub_section class.
1309
1310 // The mips16 compiler uses a couple of special sections to handle
1311 // floating point arguments.
1312
1313 // Section names that look like .mips16.fn.FNNAME contain stubs that
1314 // copy floating point arguments from the fp regs to the gp regs and
1315 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1316 // call should be redirected to the stub instead.  If no 32 bit
1317 // function calls FNNAME, the stub should be discarded.  We need to
1318 // consider any reference to the function, not just a call, because
1319 // if the address of the function is taken we will need the stub,
1320 // since the address might be passed to a 32 bit function.
1321
1322 // Section names that look like .mips16.call.FNNAME contain stubs
1323 // that copy floating point arguments from the gp regs to the fp
1324 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1325 // then any 16 bit function that calls FNNAME should be redirected
1326 // to the stub instead.  If FNNAME is not a 32 bit function, the
1327 // stub should be discarded.
1328
1329 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1330 // which call FNNAME and then copy the return value from the fp regs
1331 // to the gp regs.  These stubs store the return address in $18 while
1332 // calling FNNAME; any function which might call one of these stubs
1333 // must arrange to save $18 around the call.  (This case is not
1334 // needed for 32 bit functions that call 16 bit functions, because
1335 // 16 bit functions always return floating point values in both
1336 // $f0/$f1 and $2/$3.)
1337
1338 // Note that in all cases FNNAME might be defined statically.
1339 // Therefore, FNNAME is not used literally.  Instead, the relocation
1340 // information will indicate which symbol the section is for.
1341
1342 // We record any stubs that we find in the symbol table.
1343
1344 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1345
1346 class Mips16_stub_section_base { };
1347
1348 template<int size, bool big_endian>
1349 class Mips16_stub_section : public Mips16_stub_section_base
1350 {
1351   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1352
1353  public:
1354   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1355     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1356       found_r_mips_none_(false)
1357   {
1358     gold_assert(object->is_mips16_fn_stub_section(shndx)
1359                 || object->is_mips16_call_stub_section(shndx)
1360                 || object->is_mips16_call_fp_stub_section(shndx));
1361   }
1362
1363   // Return the object of this stub section.
1364   Mips_relobj<size, big_endian>*
1365   object() const
1366   { return this->object_; }
1367
1368   // Return the size of a section.
1369   uint64_t
1370   section_size() const
1371   { return this->object_->section_size(this->shndx_); }
1372
1373   // Return section index of this stub section.
1374   unsigned int
1375   shndx() const
1376   { return this->shndx_; }
1377
1378   // Return symbol index, if stub is for a local function.
1379   unsigned int
1380   r_sym() const
1381   { return this->r_sym_; }
1382
1383   // Return symbol, if stub is for a global function.
1384   Mips_symbol<size>*
1385   gsym() const
1386   { return this->gsym_; }
1387
1388   // Return whether stub is for a local function.
1389   bool
1390   is_for_local_function() const
1391   { return this->gsym_ == NULL; }
1392
1393   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1394   // is found in the stub section.  Try to find stub target.
1395   void
1396   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1397   {
1398     // To find target symbol for this stub, trust the first R_MIPS_NONE
1399     // relocation, if any.  Otherwise trust the first relocation, whatever
1400     // its kind.
1401     if (this->found_r_mips_none_)
1402       return;
1403     if (r_type == elfcpp::R_MIPS_NONE)
1404       {
1405         this->r_sym_ = r_sym;
1406         this->gsym_ = NULL;
1407         this->found_r_mips_none_ = true;
1408       }
1409     else if (!is_target_found())
1410       this->r_sym_ = r_sym;
1411   }
1412
1413   // This method is called when a new relocation R_TYPE for global symbol GSYM
1414   // is found in the stub section.  Try to find stub target.
1415   void
1416   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1417   {
1418     // To find target symbol for this stub, trust the first R_MIPS_NONE
1419     // relocation, if any.  Otherwise trust the first relocation, whatever
1420     // its kind.
1421     if (this->found_r_mips_none_)
1422       return;
1423     if (r_type == elfcpp::R_MIPS_NONE)
1424       {
1425         this->gsym_ = gsym;
1426         this->r_sym_ = 0;
1427         this->found_r_mips_none_ = true;
1428       }
1429     else if (!is_target_found())
1430       this->gsym_ = gsym;
1431   }
1432
1433   // Return whether we found the stub target.
1434   bool
1435   is_target_found() const
1436   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1437
1438   // Return whether this is a fn stub.
1439   bool
1440   is_fn_stub() const
1441   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1442
1443   // Return whether this is a call stub.
1444   bool
1445   is_call_stub() const
1446   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1447
1448   // Return whether this is a call_fp stub.
1449   bool
1450   is_call_fp_stub() const
1451   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1452
1453   // Return the output address.
1454   Mips_address
1455   output_address() const
1456   {
1457     return (this->object_->output_section(this->shndx_)->address()
1458             + this->object_->output_section_offset(this->shndx_));
1459   }
1460
1461  private:
1462   // The object of this stub section.
1463   Mips_relobj<size, big_endian>* object_;
1464   // The section index of this stub section.
1465   unsigned int shndx_;
1466   // The symbol index, if stub is for a local function.
1467   unsigned int r_sym_;
1468   // The symbol, if stub is for a global function.
1469   Mips_symbol<size>* gsym_;
1470   // True if we found R_MIPS_NONE relocation in this stub.
1471   bool found_r_mips_none_;
1472 };
1473
1474 // Mips_relobj class.
1475
1476 template<int size, bool big_endian>
1477 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1478 {
1479   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1480   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1481     Mips16_stubs_int_map;
1482   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1483
1484  public:
1485   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1486               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1487     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1488       processor_specific_flags_(0), local_symbol_is_mips16_(),
1489       local_symbol_is_micromips_(), mips16_stub_sections_(),
1490       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1491       local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1492       section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1493       section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1494       cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1495   {
1496     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1497     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1498     this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1499   }
1500
1501   ~Mips_relobj()
1502   { }
1503
1504   // Downcast a base pointer to a Mips_relobj pointer.  This is
1505   // not type-safe but we only use Mips_relobj not the base class.
1506   static Mips_relobj<size, big_endian>*
1507   as_mips_relobj(Relobj* relobj)
1508   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1509
1510   // Downcast a base pointer to a Mips_relobj pointer.  This is
1511   // not type-safe but we only use Mips_relobj not the base class.
1512   static const Mips_relobj<size, big_endian>*
1513   as_mips_relobj(const Relobj* relobj)
1514   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1515
1516   // Processor-specific flags in ELF file header.  This is valid only after
1517   // reading symbols.
1518   elfcpp::Elf_Word
1519   processor_specific_flags() const
1520   { return this->processor_specific_flags_; }
1521
1522   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1523   // index.  This is only valid after do_count_local_symbol is called.
1524   bool
1525   local_symbol_is_mips16(unsigned int r_sym) const
1526   {
1527     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1528     return this->local_symbol_is_mips16_[r_sym];
1529   }
1530
1531   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1532   // index.  This is only valid after do_count_local_symbol is called.
1533   bool
1534   local_symbol_is_micromips(unsigned int r_sym) const
1535   {
1536     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1537     return this->local_symbol_is_micromips_[r_sym];
1538   }
1539
1540   // Get or create MIPS16 stub section.
1541   Mips16_stub_section<size, big_endian>*
1542   get_mips16_stub_section(unsigned int shndx)
1543   {
1544     typename Mips16_stubs_int_map::const_iterator it =
1545       this->mips16_stub_sections_.find(shndx);
1546     if (it != this->mips16_stub_sections_.end())
1547       return (*it).second;
1548
1549     Mips16_stub_section<size, big_endian>* stub_section =
1550       new Mips16_stub_section<size, big_endian>(this, shndx);
1551     this->mips16_stub_sections_.insert(
1552       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1553         stub_section->shndx(), stub_section));
1554     return stub_section;
1555   }
1556
1557   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1558   // object doesn't have fn stub for R_SYM.
1559   Mips16_stub_section<size, big_endian>*
1560   get_local_mips16_fn_stub(unsigned int r_sym) const
1561   {
1562     typename Mips16_stubs_int_map::const_iterator it =
1563       this->local_mips16_fn_stubs_.find(r_sym);
1564     if (it != this->local_mips16_fn_stubs_.end())
1565       return (*it).second;
1566     return NULL;
1567   }
1568
1569   // Record that this object has MIPS16 fn stub for local symbol.  This method
1570   // is only called if we decided not to discard the stub.
1571   void
1572   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1573   {
1574     gold_assert(stub->is_for_local_function());
1575     unsigned int r_sym = stub->r_sym();
1576     this->local_mips16_fn_stubs_.insert(
1577       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1578         r_sym, stub));
1579   }
1580
1581   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1582   // object doesn't have call stub for R_SYM.
1583   Mips16_stub_section<size, big_endian>*
1584   get_local_mips16_call_stub(unsigned int r_sym) const
1585   {
1586     typename Mips16_stubs_int_map::const_iterator it =
1587       this->local_mips16_call_stubs_.find(r_sym);
1588     if (it != this->local_mips16_call_stubs_.end())
1589       return (*it).second;
1590     return NULL;
1591   }
1592
1593   // Record that this object has MIPS16 call stub for local symbol.  This method
1594   // is only called if we decided not to discard the stub.
1595   void
1596   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1597   {
1598     gold_assert(stub->is_for_local_function());
1599     unsigned int r_sym = stub->r_sym();
1600     this->local_mips16_call_stubs_.insert(
1601       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1602         r_sym, stub));
1603   }
1604
1605   // Record that we found "non 16-bit" call relocation against local symbol
1606   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1607   // is one.
1608   void
1609   add_local_non_16bit_call(unsigned int symndx)
1610   { this->local_non_16bit_calls_.insert(symndx); }
1611
1612   // Return true if there is any "non 16-bit" call relocation against local
1613   // symbol SYMNDX in this object.
1614   bool
1615   has_local_non_16bit_call_relocs(unsigned int symndx)
1616   {
1617     return (this->local_non_16bit_calls_.find(symndx)
1618             != this->local_non_16bit_calls_.end());
1619   }
1620
1621   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1622   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1623   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1624   void
1625   add_local_16bit_call(unsigned int symndx)
1626   { this->local_16bit_calls_.insert(symndx); }
1627
1628   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1629   // symbol SYMNDX in this object.
1630   bool
1631   has_local_16bit_call_relocs(unsigned int symndx)
1632   {
1633     return (this->local_16bit_calls_.find(symndx)
1634             != this->local_16bit_calls_.end());
1635   }
1636
1637   // Get gp value that was used to create this object.
1638   Mips_address
1639   gp_value() const
1640   { return this->gp_; }
1641
1642   // Return whether the object is a PIC object.
1643   bool
1644   is_pic() const
1645   { return this->is_pic_; }
1646
1647   // Return whether the object uses N32 ABI.
1648   bool
1649   is_n32() const
1650   { return this->is_n32_; }
1651
1652   // Return whether the object uses N64 ABI.
1653   bool
1654   is_n64() const
1655   { return this->is_n64_; }
1656
1657   // Return whether the object uses NewABI conventions.
1658   bool
1659   is_newabi() const
1660   { return this->is_n32_ || this->is_n64_; }
1661
1662   // Return Mips_got_info for this object.
1663   Mips_got_info<size, big_endian>*
1664   get_got_info() const
1665   { return this->got_info_; }
1666
1667   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1668   Mips_got_info<size, big_endian>*
1669   get_or_create_got_info()
1670   {
1671     if (!this->got_info_)
1672       this->got_info_ = new Mips_got_info<size, big_endian>();
1673     return this->got_info_;
1674   }
1675
1676   // Set Mips_got_info for this object.
1677   void
1678   set_got_info(Mips_got_info<size, big_endian>* got_info)
1679   { this->got_info_ = got_info; }
1680
1681   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1682   // after do_read_symbols is called.
1683   bool
1684   is_mips16_stub_section(unsigned int shndx)
1685   {
1686     return (is_mips16_fn_stub_section(shndx)
1687             || is_mips16_call_stub_section(shndx)
1688             || is_mips16_call_fp_stub_section(shndx));
1689   }
1690
1691   // Return TRUE if relocations in section SHNDX can refer directly to a
1692   // MIPS16 function rather than to a hard-float stub.  This is only valid
1693   // after do_read_symbols is called.
1694   bool
1695   section_allows_mips16_refs(unsigned int shndx)
1696   {
1697     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1698   }
1699
1700   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1701   // after do_read_symbols is called.
1702   bool
1703   is_mips16_fn_stub_section(unsigned int shndx)
1704   {
1705     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1706     return this->section_is_mips16_fn_stub_[shndx];
1707   }
1708
1709   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1710   // after do_read_symbols is called.
1711   bool
1712   is_mips16_call_stub_section(unsigned int shndx)
1713   {
1714     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1715     return this->section_is_mips16_call_stub_[shndx];
1716   }
1717
1718   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1719   // valid after do_read_symbols is called.
1720   bool
1721   is_mips16_call_fp_stub_section(unsigned int shndx)
1722   {
1723     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1724     return this->section_is_mips16_call_fp_stub_[shndx];
1725   }
1726
1727   // Discard MIPS16 stub secions that are not needed.
1728   void
1729   discard_mips16_stub_sections(Symbol_table* symtab);
1730
1731   // Return gprmask from the .reginfo section of this object.
1732   Valtype
1733   gprmask() const
1734   { return this->gprmask_; }
1735
1736   // Return cprmask1 from the .reginfo section of this object.
1737   Valtype
1738   cprmask1() const
1739   { return this->cprmask1_; }
1740
1741   // Return cprmask2 from the .reginfo section of this object.
1742   Valtype
1743   cprmask2() const
1744   { return this->cprmask2_; }
1745
1746   // Return cprmask3 from the .reginfo section of this object.
1747   Valtype
1748   cprmask3() const
1749   { return this->cprmask3_; }
1750
1751   // Return cprmask4 from the .reginfo section of this object.
1752   Valtype
1753   cprmask4() const
1754   { return this->cprmask4_; }
1755
1756  protected:
1757   // Count the local symbols.
1758   void
1759   do_count_local_symbols(Stringpool_template<char>*,
1760                          Stringpool_template<char>*);
1761
1762   // Read the symbol information.
1763   void
1764   do_read_symbols(Read_symbols_data* sd);
1765
1766  private:
1767   // processor-specific flags in ELF file header.
1768   elfcpp::Elf_Word processor_specific_flags_;
1769
1770   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1771   // This is only valid after do_count_local_symbol is called.
1772   std::vector<bool> local_symbol_is_mips16_;
1773
1774   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1775   // This is only valid after do_count_local_symbol is called.
1776   std::vector<bool> local_symbol_is_micromips_;
1777
1778   // Map from section index to the MIPS16 stub for that section.  This contains
1779   // all stubs found in this object.
1780   Mips16_stubs_int_map mips16_stub_sections_;
1781
1782   // Local symbols that have "non 16-bit" call relocation.  This relocation
1783   // would need to refer to a MIPS16 fn stub, if there is one.
1784   std::set<unsigned int> local_non_16bit_calls_;
1785
1786   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1787   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1788   // relocation that refers to the stub symbol.
1789   std::set<unsigned int> local_16bit_calls_;
1790
1791   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1792   // This contains only the stubs that we decided not to discard.
1793   Mips16_stubs_int_map local_mips16_fn_stubs_;
1794
1795   // Map from local symbol index to the MIPS16 call stub for that symbol.
1796   // This contains only the stubs that we decided not to discard.
1797   Mips16_stubs_int_map local_mips16_call_stubs_;
1798
1799   // gp value that was used to create this object.
1800   Mips_address gp_;
1801   // Whether the object is a PIC object.
1802   bool is_pic_ : 1;
1803   // Whether the object uses N32 ABI.
1804   bool is_n32_ : 1;
1805   // Whether the object uses N64 ABI.
1806   bool is_n64_ : 1;
1807   // The Mips_got_info for this object.
1808   Mips_got_info<size, big_endian>* got_info_;
1809
1810   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1811   // This is only valid after do_read_symbols is called.
1812   std::vector<bool> section_is_mips16_fn_stub_;
1813
1814   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1815   // This is only valid after do_read_symbols is called.
1816   std::vector<bool> section_is_mips16_call_stub_;
1817
1818   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1819   // This is only valid after do_read_symbols is called.
1820   std::vector<bool> section_is_mips16_call_fp_stub_;
1821
1822   // .pdr section index.
1823   unsigned int pdr_shndx_;
1824
1825   // gprmask from the .reginfo section of this object.
1826   Valtype gprmask_;
1827   // cprmask1 from the .reginfo section of this object.
1828   Valtype cprmask1_;
1829   // cprmask2 from the .reginfo section of this object.
1830   Valtype cprmask2_;
1831   // cprmask3 from the .reginfo section of this object.
1832   Valtype cprmask3_;
1833   // cprmask4 from the .reginfo section of this object.
1834   Valtype cprmask4_;
1835 };
1836
1837 // Mips_output_data_got class.
1838
1839 template<int size, bool big_endian>
1840 class Mips_output_data_got : public Output_data_got<size, big_endian>
1841 {
1842   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1843   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1844     Reloc_section;
1845   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1846
1847  public:
1848   Mips_output_data_got(Target_mips<size, big_endian>* target,
1849       Symbol_table* symtab, Layout* layout)
1850     : Output_data_got<size, big_endian>(), target_(target),
1851       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1852       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1853       secondary_got_relocs_()
1854   {
1855     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1856     this->set_addralign(16);
1857   }
1858
1859   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1860   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1861   void
1862   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1863                           unsigned int symndx, Mips_address addend,
1864                           unsigned int r_type, unsigned int shndx)
1865   {
1866     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1867                                                     r_type, shndx);
1868   }
1869
1870   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1871   // in OBJECT.  FOR_CALL is true if the caller is only interested in
1872   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
1873   // relocation.
1874   void
1875   record_global_got_symbol(Mips_symbol<size>* mips_sym,
1876                            Mips_relobj<size, big_endian>* object,
1877                            unsigned int r_type, bool dyn_reloc, bool for_call)
1878   {
1879     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1880                                                      dyn_reloc, for_call);
1881   }
1882
1883   // Record that OBJECT has a page relocation against symbol SYMNDX and
1884   // that ADDEND is the addend for that relocation.
1885   void
1886   record_got_page_entry(Mips_relobj<size, big_endian>* object,
1887                         unsigned int symndx, int addend)
1888   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1889
1890   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1891   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1892   // applied in a static link.
1893   void
1894   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1895                    Mips_symbol<size>* gsym)
1896   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1897
1898   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1899   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1900   // relocation that needs to be applied in a static link.
1901   void
1902   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1903                    Sized_relobj_file<size, big_endian>* relobj,
1904                    unsigned int index)
1905   {
1906     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1907                                                 index));
1908   }
1909
1910   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1911   // secondary GOT at OFFSET.
1912   void
1913   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1914                           Mips_symbol<size>* gsym)
1915   {
1916     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1917                                                        r_type, gsym));
1918   }
1919
1920   // Update GOT entry at OFFSET with VALUE.
1921   void
1922   update_got_entry(unsigned int offset, Mips_address value)
1923   {
1924     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1925   }
1926
1927   // Return the number of entries in local part of the GOT.  This includes
1928   // local entries, page entries and 2 reserved entries.
1929   unsigned int
1930   get_local_gotno() const
1931   {
1932     if (!this->multi_got())
1933       {
1934         return (2 + this->master_got_info_->local_gotno()
1935                 + this->master_got_info_->page_gotno());
1936       }
1937     else
1938       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1939   }
1940
1941   // Return dynamic symbol table index of the first symbol with global GOT
1942   // entry.
1943   unsigned int
1944   first_global_got_dynsym_index() const
1945   { return this->first_global_got_dynsym_index_; }
1946
1947   // Set dynamic symbol table index of the first symbol with global GOT entry.
1948   void
1949   set_first_global_got_dynsym_index(unsigned int index)
1950   { this->first_global_got_dynsym_index_ = index; }
1951
1952   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
1953   // larger than 64K, create multi-GOT.
1954   void
1955   lay_out_got(Layout* layout, Symbol_table* symtab,
1956               const Input_objects* input_objects);
1957
1958   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
1959   void
1960   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1961
1962   // Attempt to merge GOTs of different input objects.
1963   void
1964   merge_gots(const Input_objects* input_objects);
1965
1966   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
1967   // this would lead to overflow, true if they were merged successfully.
1968   bool
1969   merge_got_with(Mips_got_info<size, big_endian>* from,
1970                  Mips_relobj<size, big_endian>* object,
1971                  Mips_got_info<size, big_endian>* to);
1972
1973   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
1974   // use OBJECT's GOT.
1975   unsigned int
1976   get_got_page_offset(Mips_address value,
1977                       const Mips_relobj<size, big_endian>* object)
1978   {
1979     Mips_got_info<size, big_endian>* g = (!this->multi_got()
1980                                           ? this->master_got_info_
1981                                           : object->get_got_info());
1982     gold_assert(g != NULL);
1983     return g->get_got_page_offset(value, this);
1984   }
1985
1986   // Return the GOT offset of type GOT_TYPE of the global symbol
1987   // GSYM.  For multi-GOT links, use OBJECT's GOT.
1988   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1989                           Mips_relobj<size, big_endian>* object) const
1990   {
1991     if (!this->multi_got())
1992       return gsym->got_offset(got_type);
1993     else
1994       {
1995         Mips_got_info<size, big_endian>* g = object->get_got_info();
1996         gold_assert(g != NULL);
1997         return gsym->got_offset(g->multigot_got_type(got_type));
1998       }
1999   }
2000
2001   // Return the GOT offset of type GOT_TYPE of the local symbol
2002   // SYMNDX.
2003   unsigned int
2004   got_offset(unsigned int symndx, unsigned int got_type,
2005              Sized_relobj_file<size, big_endian>* object) const
2006   { return object->local_got_offset(symndx, got_type); }
2007
2008   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2009   unsigned int
2010   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2011   {
2012     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2013                                           ? this->master_got_info_
2014                                           : object->get_got_info());
2015     gold_assert(g != NULL);
2016     return g->tls_ldm_offset();
2017   }
2018
2019   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2020   void
2021   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2022                      Mips_relobj<size, big_endian>* object)
2023   {
2024     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2025                                           ? this->master_got_info_
2026                                           : object->get_got_info());
2027     gold_assert(g != NULL);
2028     g->set_tls_ldm_offset(tls_ldm_offset);
2029   }
2030
2031   // Return true for multi-GOT links.
2032   bool
2033   multi_got() const
2034   { return this->primary_got_ != NULL; }
2035
2036   // Return the offset of OBJECT's GOT from the start of .got section.
2037   unsigned int
2038   get_got_offset(const Mips_relobj<size, big_endian>* object)
2039   {
2040     if (!this->multi_got())
2041       return 0;
2042     else
2043       {
2044         Mips_got_info<size, big_endian>* g = object->get_got_info();
2045         return g != NULL ? g->offset() : 0;
2046       }
2047   }
2048
2049   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2050   void
2051   add_reloc_only_entries()
2052   { this->master_got_info_->add_reloc_only_entries(this); }
2053
2054   // Return offset of the primary GOT's entry for global symbol.
2055   unsigned int
2056   get_primary_got_offset(const Mips_symbol<size>* sym) const
2057   {
2058     gold_assert(sym->global_got_area() != GGA_NONE);
2059     return (this->get_local_gotno() + sym->dynsym_index()
2060             - this->first_global_got_dynsym_index()) * size/8;
2061   }
2062
2063   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2064   // Input argument GOT_OFFSET is always global offset from the start of
2065   // .got section, for both single and multi-GOT links.
2066   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2067   // links, the return value is object_got_offset - 0x7FF0, where
2068   // object_got_offset is offset in the OBJECT's GOT.
2069   int
2070   gp_offset(unsigned int got_offset,
2071             const Mips_relobj<size, big_endian>* object) const
2072   {
2073     return (this->address() + got_offset
2074             - this->target_->adjusted_gp_value(object));
2075   }
2076
2077  protected:
2078   // Write out the GOT table.
2079   void
2080   do_write(Output_file*);
2081
2082  private:
2083
2084   // This class represent dynamic relocations that need to be applied by
2085   // gold because we are using TLS relocations in a static link.
2086   class Static_reloc
2087   {
2088    public:
2089     Static_reloc(unsigned int got_offset, unsigned int r_type,
2090                  Mips_symbol<size>* gsym)
2091       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2092     { this->u_.global.symbol = gsym; }
2093
2094     Static_reloc(unsigned int got_offset, unsigned int r_type,
2095           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2096       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2097     {
2098       this->u_.local.relobj = relobj;
2099       this->u_.local.index = index;
2100     }
2101
2102     // Return the GOT offset.
2103     unsigned int
2104     got_offset() const
2105     { return this->got_offset_; }
2106
2107     // Relocation type.
2108     unsigned int
2109     r_type() const
2110     { return this->r_type_; }
2111
2112     // Whether the symbol is global or not.
2113     bool
2114     symbol_is_global() const
2115     { return this->symbol_is_global_; }
2116
2117     // For a relocation against a global symbol, the global symbol.
2118     Mips_symbol<size>*
2119     symbol() const
2120     {
2121       gold_assert(this->symbol_is_global_);
2122       return this->u_.global.symbol;
2123     }
2124
2125     // For a relocation against a local symbol, the defining object.
2126     Sized_relobj_file<size, big_endian>*
2127     relobj() const
2128     {
2129       gold_assert(!this->symbol_is_global_);
2130       return this->u_.local.relobj;
2131     }
2132
2133     // For a relocation against a local symbol, the local symbol index.
2134     unsigned int
2135     index() const
2136     {
2137       gold_assert(!this->symbol_is_global_);
2138       return this->u_.local.index;
2139     }
2140
2141    private:
2142     // GOT offset of the entry to which this relocation is applied.
2143     unsigned int got_offset_;
2144     // Type of relocation.
2145     unsigned int r_type_;
2146     // Whether this relocation is against a global symbol.
2147     bool symbol_is_global_;
2148     // A global or local symbol.
2149     union
2150     {
2151       struct
2152       {
2153         // For a global symbol, the symbol itself.
2154         Mips_symbol<size>* symbol;
2155       } global;
2156       struct
2157       {
2158         // For a local symbol, the object defining object.
2159         Sized_relobj_file<size, big_endian>* relobj;
2160         // For a local symbol, the symbol index.
2161         unsigned int index;
2162       } local;
2163     } u_;
2164   };
2165
2166   // The target.
2167   Target_mips<size, big_endian>* target_;
2168   // The symbol table.
2169   Symbol_table* symbol_table_;
2170   // The layout.
2171   Layout* layout_;
2172   // Static relocs to be applied to the GOT.
2173   std::vector<Static_reloc> static_relocs_;
2174   // .got section view.
2175   unsigned char* got_view_;
2176   // The dynamic symbol table index of the first symbol with global GOT entry.
2177   unsigned int first_global_got_dynsym_index_;
2178   // The master GOT information.
2179   Mips_got_info<size, big_endian>* master_got_info_;
2180   // The  primary GOT information.
2181   Mips_got_info<size, big_endian>* primary_got_;
2182   // Secondary GOT fixups.
2183   std::vector<Static_reloc> secondary_got_relocs_;
2184 };
2185
2186 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2187 // two ways of creating these interfaces.  The first is to add:
2188 //
2189 //      lui     $25,%hi(func)
2190 //      j       func
2191 //      addiu   $25,$25,%lo(func)
2192 //
2193 // to a separate trampoline section.  The second is to add:
2194 //
2195 //      lui     $25,%hi(func)
2196 //      addiu   $25,$25,%lo(func)
2197 //
2198 // immediately before a PIC function "func", but only if a function is at the
2199 // beginning of the section, and the section is not too heavily aligned (i.e we
2200 // would need to add no more than 2 nops before the stub.)
2201 //
2202 // We only create stubs of the first type.
2203
2204 template<int size, bool big_endian>
2205 class Mips_output_data_la25_stub : public Output_section_data
2206 {
2207   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2208
2209  public:
2210   Mips_output_data_la25_stub()
2211   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2212   { }
2213
2214   // Create LA25 stub for a symbol.
2215   void
2216   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2217                    Mips_symbol<size>* gsym);
2218
2219   // Return output address of a stub.
2220   Mips_address
2221   stub_address(const Mips_symbol<size>* sym) const
2222   {
2223     gold_assert(sym->has_la25_stub());
2224     return this->address() + sym->la25_stub_offset();
2225   }
2226
2227  protected:
2228   void
2229   do_adjust_output_section(Output_section* os)
2230   { os->set_entsize(0); }
2231
2232  private:
2233   // Template for standard LA25 stub.
2234   static const uint32_t la25_stub_entry[];
2235   // Template for microMIPS LA25 stub.
2236   static const uint32_t la25_stub_micromips_entry[];
2237
2238   // Set the final size.
2239   void
2240   set_final_data_size()
2241   { this->set_data_size(this->symbols_.size() * 16); }
2242
2243   // Create a symbol for SYM stub's value and size, to help make the
2244   // disassembly easier to read.
2245   void
2246   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2247                      Target_mips<size, big_endian>* target, uint64_t symsize);
2248
2249   // Write to a map file.
2250   void
2251   do_print_to_mapfile(Mapfile* mapfile) const
2252   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2253
2254   // Write out the LA25 stub section.
2255   void
2256   do_write(Output_file*);
2257
2258   // Symbols that have LA25 stubs.
2259   Unordered_set<Mips_symbol<size>*> symbols_;
2260 };
2261
2262 // A class to handle the PLT data.
2263
2264 template<int size, bool big_endian>
2265 class Mips_output_data_plt : public Output_section_data
2266 {
2267   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2268   typedef Output_data_reloc<elfcpp::SHT_REL, true,
2269                             size, big_endian> Reloc_section;
2270
2271  public:
2272   // Create the PLT section.  The ordinary .got section is an argument,
2273   // since we need to refer to the start.
2274   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2275                        Target_mips<size, big_endian>* target)
2276     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2277       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2278       target_(target)
2279   {
2280     this->rel_ = new Reloc_section(false);
2281     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2282                                     elfcpp::SHF_ALLOC, this->rel_,
2283                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2284   }
2285
2286   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2287   void
2288   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2289
2290   // Return the .rel.plt section data.
2291   const Reloc_section*
2292   rel_plt() const
2293   { return this->rel_; }
2294
2295   // Return the number of PLT entries.
2296   unsigned int
2297   entry_count() const
2298   { return this->symbols_.size(); }
2299
2300   // Return the offset of the first non-reserved PLT entry.
2301   unsigned int
2302   first_plt_entry_offset() const
2303   { return sizeof(plt0_entry_o32); }
2304
2305   // Return the size of a PLT entry.
2306   unsigned int
2307   plt_entry_size() const
2308   { return sizeof(plt_entry); }
2309
2310   // Set final PLT offsets.  For each symbol, determine whether standard or
2311   // compressed (MIPS16 or microMIPS) PLT entry is used.
2312   void
2313   set_plt_offsets();
2314
2315   // Return the offset of the first standard PLT entry.
2316   unsigned int
2317   first_mips_plt_offset() const
2318   { return this->plt_header_size_; }
2319
2320   // Return the offset of the first compressed PLT entry.
2321   unsigned int
2322   first_comp_plt_offset() const
2323   { return this->plt_header_size_ + this->plt_mips_offset_; }
2324
2325   // Return whether there are any standard PLT entries.
2326   bool
2327   has_standard_entries() const
2328   { return this->plt_mips_offset_ > 0; }
2329
2330   // Return the output address of standard PLT entry.
2331   Mips_address
2332   mips_entry_address(const Mips_symbol<size>* sym) const
2333   {
2334     gold_assert (sym->has_mips_plt_offset());
2335     return (this->address() + this->first_mips_plt_offset()
2336             + sym->mips_plt_offset());
2337   }
2338
2339   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2340   Mips_address
2341   comp_entry_address(const Mips_symbol<size>* sym) const
2342   {
2343     gold_assert (sym->has_comp_plt_offset());
2344     return (this->address() + this->first_comp_plt_offset()
2345             + sym->comp_plt_offset());
2346   }
2347
2348  protected:
2349   void
2350   do_adjust_output_section(Output_section* os)
2351   { os->set_entsize(0); }
2352
2353   // Write to a map file.
2354   void
2355   do_print_to_mapfile(Mapfile* mapfile) const
2356   { mapfile->print_output_data(this, _(".plt")); }
2357
2358  private:
2359   // Template for the first PLT entry.
2360   static const uint32_t plt0_entry_o32[];
2361   static const uint32_t plt0_entry_n32[];
2362   static const uint32_t plt0_entry_n64[];
2363   static const uint32_t plt0_entry_micromips_o32[];
2364   static const uint32_t plt0_entry_micromips32_o32[];
2365
2366   // Template for subsequent PLT entries.
2367   static const uint32_t plt_entry[];
2368   static const uint32_t plt_entry_mips16_o32[];
2369   static const uint32_t plt_entry_micromips_o32[];
2370   static const uint32_t plt_entry_micromips32_o32[];
2371
2372   // Set the final size.
2373   void
2374   set_final_data_size()
2375   {
2376     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2377                         + this->plt_comp_offset_);
2378   }
2379
2380   // Write out the PLT data.
2381   void
2382   do_write(Output_file*);
2383
2384   // Return whether the plt header contains microMIPS code.  For the sake of
2385   // cache alignment always use a standard header whenever any standard entries
2386   // are present even if microMIPS entries are present as well.  This also lets
2387   // the microMIPS header rely on the value of $v0 only set by microMIPS
2388   // entries, for a small size reduction.
2389   bool
2390   is_plt_header_compressed() const
2391   {
2392     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2393     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2394   }
2395
2396   // Return the size of the PLT header.
2397   unsigned int
2398   get_plt_header_size() const
2399   {
2400     if (this->target_->is_output_n64())
2401       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2402     else if (this->target_->is_output_n32())
2403       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2404     else if (!this->is_plt_header_compressed())
2405       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2406     else if (this->target_->use_32bit_micromips_instructions())
2407       return (2 * sizeof(plt0_entry_micromips32_o32)
2408               / sizeof(plt0_entry_micromips32_o32[0]));
2409     else
2410       return (2 * sizeof(plt0_entry_micromips_o32)
2411               / sizeof(plt0_entry_micromips_o32[0]));
2412   }
2413
2414   // Return the PLT header entry.
2415   const uint32_t*
2416   get_plt_header_entry() const
2417   {
2418     if (this->target_->is_output_n64())
2419       return plt0_entry_n64;
2420     else if (this->target_->is_output_n32())
2421       return plt0_entry_n32;
2422     else if (!this->is_plt_header_compressed())
2423       return plt0_entry_o32;
2424     else if (this->target_->use_32bit_micromips_instructions())
2425       return plt0_entry_micromips32_o32;
2426     else
2427       return plt0_entry_micromips_o32;
2428   }
2429
2430   // Return the size of the standard PLT entry.
2431   unsigned int
2432   standard_plt_entry_size() const
2433   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2434
2435   // Return the size of the compressed PLT entry.
2436   unsigned int
2437   compressed_plt_entry_size() const
2438   {
2439     gold_assert(!this->target_->is_output_newabi());
2440
2441     if (!this->target_->is_output_micromips())
2442       return (2 * sizeof(plt_entry_mips16_o32)
2443               / sizeof(plt_entry_mips16_o32[0]));
2444     else if (this->target_->use_32bit_micromips_instructions())
2445       return (2 * sizeof(plt_entry_micromips32_o32)
2446               / sizeof(plt_entry_micromips32_o32[0]));
2447     else
2448       return (2 * sizeof(plt_entry_micromips_o32)
2449               / sizeof(plt_entry_micromips_o32[0]));
2450   }
2451
2452   // The reloc section.
2453   Reloc_section* rel_;
2454   // The .got.plt section.
2455   Output_data_space* got_plt_;
2456   // Symbols that have PLT entry.
2457   std::vector<Mips_symbol<size>*> symbols_;
2458   // The offset of the next standard PLT entry to create.
2459   unsigned int plt_mips_offset_;
2460   // The offset of the next compressed PLT entry to create.
2461   unsigned int plt_comp_offset_;
2462   // The size of the PLT header in bytes.
2463   unsigned int plt_header_size_;
2464   // The target.
2465   Target_mips<size, big_endian>* target_;
2466 };
2467
2468 // A class to handle the .MIPS.stubs data.
2469
2470 template<int size, bool big_endian>
2471 class Mips_output_data_mips_stubs : public Output_section_data
2472 {
2473   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2474
2475  public:
2476    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2477      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2478        stub_offsets_are_set_(false), target_(target)
2479    { }
2480
2481   // Create entry for a symbol.
2482   void
2483   make_entry(Mips_symbol<size>*);
2484
2485   // Remove entry for a symbol.
2486   void
2487   remove_entry(Mips_symbol<size>* gsym);
2488
2489   // Set stub offsets for symbols.  This method expects that the number of
2490   // entries in dynamic symbol table is set.
2491   void
2492   set_lazy_stub_offsets();
2493
2494   void
2495   set_needs_dynsym_value();
2496
2497    // Set the number of entries in dynamic symbol table.
2498   void
2499   set_dynsym_count(unsigned int dynsym_count)
2500   { this->dynsym_count_ = dynsym_count; }
2501
2502   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2503   // count is greater than 0x10000.  If the dynamic symbol count is less than
2504   // 0x10000, the stub will be 4 bytes smaller.
2505   // There's no disadvantage from using microMIPS code here, so for the sake of
2506   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2507   // output produced at all.  This has a benefit of stubs being shorter by
2508   // 4 bytes each too, unless in the insn32 mode.
2509   unsigned int
2510   stub_max_size() const
2511   {
2512     if (!this->target_->is_output_micromips()
2513         || this->target_->use_32bit_micromips_instructions())
2514       return 20;
2515     else
2516       return 16;
2517   }
2518
2519   // Return the size of the stub.  This method expects that the final dynsym
2520   // count is set.
2521   unsigned int
2522   stub_size() const
2523   {
2524     gold_assert(this->dynsym_count_ != -1U);
2525     if (this->dynsym_count_ > 0x10000)
2526       return this->stub_max_size();
2527     else
2528       return this->stub_max_size() - 4;
2529   }
2530
2531   // Return output address of a stub.
2532   Mips_address
2533   stub_address(const Mips_symbol<size>* sym) const
2534   {
2535     gold_assert(sym->has_lazy_stub());
2536     return this->address() + sym->lazy_stub_offset();
2537   }
2538
2539  protected:
2540   void
2541   do_adjust_output_section(Output_section* os)
2542   { os->set_entsize(0); }
2543
2544   // Write to a map file.
2545   void
2546   do_print_to_mapfile(Mapfile* mapfile) const
2547   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2548
2549  private:
2550   static const uint32_t lazy_stub_normal_1[];
2551   static const uint32_t lazy_stub_normal_1_n64[];
2552   static const uint32_t lazy_stub_normal_2[];
2553   static const uint32_t lazy_stub_normal_2_n64[];
2554   static const uint32_t lazy_stub_big[];
2555   static const uint32_t lazy_stub_big_n64[];
2556
2557   static const uint32_t lazy_stub_micromips_normal_1[];
2558   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2559   static const uint32_t lazy_stub_micromips_normal_2[];
2560   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2561   static const uint32_t lazy_stub_micromips_big[];
2562   static const uint32_t lazy_stub_micromips_big_n64[];
2563
2564   static const uint32_t lazy_stub_micromips32_normal_1[];
2565   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2566   static const uint32_t lazy_stub_micromips32_normal_2[];
2567   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2568   static const uint32_t lazy_stub_micromips32_big[];
2569   static const uint32_t lazy_stub_micromips32_big_n64[];
2570
2571   // Set the final size.
2572   void
2573   set_final_data_size()
2574   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2575
2576   // Write out the .MIPS.stubs data.
2577   void
2578   do_write(Output_file*);
2579
2580   // .MIPS.stubs symbols
2581   Unordered_set<Mips_symbol<size>*> symbols_;
2582   // Number of entries in dynamic symbol table.
2583   unsigned int dynsym_count_;
2584   // Whether the stub offsets are set.
2585   bool stub_offsets_are_set_;
2586   // The target.
2587   Target_mips<size, big_endian>* target_;
2588 };
2589
2590 // This class handles Mips .reginfo output section.
2591
2592 template<int size, bool big_endian>
2593 class Mips_output_section_reginfo : public Output_section
2594 {
2595   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2596
2597  public:
2598   Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2599                               elfcpp::Elf_Xword flags,
2600                               Target_mips<size, big_endian>* target)
2601     : Output_section(name, type, flags), target_(target), gprmask_(0),
2602       cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2603   { }
2604
2605   // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2606   static Mips_output_section_reginfo<size, big_endian>*
2607   as_mips_output_section_reginfo(Output_section* os)
2608   { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2609
2610   // Set masks of the output .reginfo section.
2611   void
2612   set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2613             Valtype cprmask3, Valtype cprmask4)
2614   {
2615     this->gprmask_ = gprmask;
2616     this->cprmask1_ = cprmask1;
2617     this->cprmask2_ = cprmask2;
2618     this->cprmask3_ = cprmask3;
2619     this->cprmask4_ = cprmask4;
2620   }
2621
2622  protected:
2623   // Set the final data size.
2624   void
2625   set_final_data_size()
2626   { this->set_data_size(24); }
2627
2628   // Write out reginfo section.
2629   void
2630   do_write(Output_file* of);
2631
2632  private:
2633   Target_mips<size, big_endian>* target_;
2634
2635   // gprmask of the output .reginfo section.
2636   Valtype gprmask_;
2637   // cprmask1 of the output .reginfo section.
2638   Valtype cprmask1_;
2639   // cprmask2 of the output .reginfo section.
2640   Valtype cprmask2_;
2641   // cprmask3 of the output .reginfo section.
2642   Valtype cprmask3_;
2643   // cprmask4 of the output .reginfo section.
2644   Valtype cprmask4_;
2645 };
2646
2647 // The MIPS target has relocation types which default handling of relocatable
2648 // relocation cannot process.  So we have to extend the default code.
2649
2650 template<bool big_endian, typename Classify_reloc>
2651 class Mips_scan_relocatable_relocs :
2652   public Default_scan_relocatable_relocs<Classify_reloc>
2653 {
2654  public:
2655   // Return the strategy to use for a local symbol which is a section
2656   // symbol, given the relocation type.
2657   inline Relocatable_relocs::Reloc_strategy
2658   local_section_strategy(unsigned int r_type, Relobj* object)
2659   {
2660     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2661       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2662     else
2663       {
2664         switch (r_type)
2665           {
2666           case elfcpp::R_MIPS_26:
2667             return Relocatable_relocs::RELOC_SPECIAL;
2668
2669           default:
2670             return Default_scan_relocatable_relocs<Classify_reloc>::
2671                 local_section_strategy(r_type, object);
2672           }
2673       }
2674   }
2675 };
2676
2677 // Mips_copy_relocs class.  The only difference from the base class is the
2678 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2679 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2680 // cannot be made dynamic, a COPY reloc is emitted.
2681
2682 template<int sh_type, int size, bool big_endian>
2683 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2684 {
2685  public:
2686   Mips_copy_relocs()
2687     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2688   { }
2689
2690   // Emit any saved relocations which turn out to be needed.  This is
2691   // called after all the relocs have been scanned.
2692   void
2693   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2694             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2695
2696  private:
2697   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2698     Copy_reloc_entry;
2699
2700   // Emit this reloc if appropriate.  This is called after we have
2701   // scanned all the relocations, so we know whether we emitted a
2702   // COPY relocation for SYM_.
2703   void
2704   emit_entry(Copy_reloc_entry& entry,
2705              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2706              Symbol_table* symtab, Layout* layout,
2707              Target_mips<size, big_endian>* target);
2708 };
2709
2710
2711 // Return true if the symbol SYM should be considered to resolve local
2712 // to the current module, and false otherwise.  The logic is taken from
2713 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2714 static bool
2715 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2716                   bool local_protected)
2717 {
2718   // If it's a local sym, of course we resolve locally.
2719   if (sym == NULL)
2720     return true;
2721
2722   // STV_HIDDEN or STV_INTERNAL ones must be local.
2723   if (sym->visibility() == elfcpp::STV_HIDDEN
2724       || sym->visibility() == elfcpp::STV_INTERNAL)
2725     return true;
2726
2727   // If we don't have a definition in a regular file, then we can't
2728   // resolve locally.  The sym is either undefined or dynamic.
2729   if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2730       || sym->is_undefined())
2731     return false;
2732
2733   // Forced local symbols resolve locally.
2734   if (sym->is_forced_local())
2735     return true;
2736
2737   // As do non-dynamic symbols.
2738   if (!has_dynsym_entry)
2739     return true;
2740
2741   // At this point, we know the symbol is defined and dynamic.  In an
2742   // executable it must resolve locally, likewise when building symbolic
2743   // shared libraries.
2744   if (parameters->options().output_is_executable()
2745       || parameters->options().Bsymbolic())
2746     return true;
2747
2748   // Now deal with defined dynamic symbols in shared libraries.  Ones
2749   // with default visibility might not resolve locally.
2750   if (sym->visibility() == elfcpp::STV_DEFAULT)
2751     return false;
2752
2753   // STV_PROTECTED non-function symbols are local.
2754   if (sym->type() != elfcpp::STT_FUNC)
2755     return true;
2756
2757   // Function pointer equality tests may require that STV_PROTECTED
2758   // symbols be treated as dynamic symbols.  If the address of a
2759   // function not defined in an executable is set to that function's
2760   // plt entry in the executable, then the address of the function in
2761   // a shared library must also be the plt entry in the executable.
2762   return local_protected;
2763 }
2764
2765 // Return TRUE if references to this symbol always reference the symbol in this
2766 // object.
2767 static bool
2768 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2769 {
2770   return symbol_refs_local(sym, has_dynsym_entry, false);
2771 }
2772
2773 // Return TRUE if calls to this symbol always call the version in this object.
2774 static bool
2775 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2776 {
2777   return symbol_refs_local(sym, has_dynsym_entry, true);
2778 }
2779
2780 // Compare GOT offsets of two symbols.
2781
2782 template<int size, bool big_endian>
2783 static bool
2784 got_offset_compare(Symbol* sym1, Symbol* sym2)
2785 {
2786   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2787   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2788   unsigned int area1 = mips_sym1->global_got_area();
2789   unsigned int area2 = mips_sym2->global_got_area();
2790   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2791
2792   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2793   if (area1 != area2)
2794     return area1 < area2;
2795
2796   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2797 }
2798
2799 // This method divides dynamic symbols into symbols that have GOT entry, and
2800 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
2801 // Mips ABI requires that symbols with the GOT entry must be at the end of
2802 // dynamic symbol table, and the order in dynamic symbol table must match the
2803 // order in GOT.
2804
2805 template<int size, bool big_endian>
2806 static void
2807 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2808                     std::vector<Symbol*>* non_got_symbols,
2809                     std::vector<Symbol*>* got_symbols)
2810 {
2811   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2812        p != dyn_symbols->end();
2813        ++p)
2814     {
2815       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2816       if (mips_sym->global_got_area() == GGA_NORMAL
2817           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2818         got_symbols->push_back(mips_sym);
2819       else
2820         non_got_symbols->push_back(mips_sym);
2821     }
2822
2823   std::sort(got_symbols->begin(), got_symbols->end(),
2824             got_offset_compare<size, big_endian>);
2825 }
2826
2827 // Functor class for processing the global symbol table.
2828
2829 template<int size, bool big_endian>
2830 class Symbol_visitor_check_symbols
2831 {
2832  public:
2833   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2834     Layout* layout, Symbol_table* symtab)
2835     : target_(target), layout_(layout), symtab_(symtab)
2836   { }
2837
2838   void
2839   operator()(Sized_symbol<size>* sym)
2840   {
2841     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2842     if (local_pic_function<size, big_endian>(mips_sym))
2843       {
2844         // SYM is a function that might need $25 to be valid on entry.
2845         // If we're creating a non-PIC relocatable object, mark SYM as
2846         // being PIC.  If we're creating a non-relocatable object with
2847         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2848         // stub.
2849         if (parameters->options().relocatable())
2850           {
2851             if (!parameters->options().output_is_position_independent())
2852               mips_sym->set_pic();
2853           }
2854         else if (mips_sym->has_nonpic_branches())
2855           {
2856             this->target_->la25_stub_section(layout_)
2857                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2858           }
2859       }
2860   }
2861
2862  private:
2863   Target_mips<size, big_endian>* target_;
2864   Layout* layout_;
2865   Symbol_table* symtab_;
2866 };
2867
2868 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
2869 // and endianness. The relocation format for MIPS-64 is non-standard.
2870
2871 template<int sh_type, int size, bool big_endian>
2872 struct Mips_reloc_types;
2873
2874 template<bool big_endian>
2875 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
2876 {
2877   typedef typename elfcpp::Rel<32, big_endian> Reloc;
2878   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
2879
2880   static unsigned typename elfcpp::Elf_types<32>::Elf_Swxword
2881   get_r_addend(const Reloc*)
2882   { return 0; }
2883
2884   static inline void
2885   set_reloc_addend(Reloc_write*,
2886                    typename elfcpp::Elf_types<32>::Elf_Swxword)
2887   { gold_unreachable(); }
2888 };
2889
2890 template<bool big_endian>
2891 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
2892 {
2893   typedef typename elfcpp::Rela<32, big_endian> Reloc;
2894   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
2895
2896   static unsigned typename elfcpp::Elf_types<32>::Elf_Swxword
2897   get_r_addend(const Reloc* reloc)
2898   { return reloc->get_r_addend(); }
2899
2900   static inline void
2901   set_reloc_addend(Reloc_write* p,
2902                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
2903   { p->put_r_addend(val); }
2904 };
2905
2906 template<bool big_endian>
2907 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
2908 {
2909   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
2910   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
2911
2912   static unsigned typename elfcpp::Elf_types<64>::Elf_Swxword
2913   get_r_addend(const Reloc*)
2914   { return 0; }
2915
2916   static inline void
2917   set_reloc_addend(Reloc_write*,
2918                    typename elfcpp::Elf_types<64>::Elf_Swxword)
2919   { gold_unreachable(); }
2920 };
2921
2922 template<bool big_endian>
2923 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
2924 {
2925   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
2926   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
2927
2928   static unsigned typename elfcpp::Elf_types<64>::Elf_Swxword
2929   get_r_addend(const Reloc* reloc)
2930   { return reloc->get_r_addend(); }
2931
2932   static inline void
2933   set_reloc_addend(Reloc_write* p,
2934                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
2935   { p->put_r_addend(val); }
2936 };
2937
2938 // Forward declaration.
2939 static unsigned int
2940 mips_get_size_for_reloc(unsigned int, Relobj*);
2941
2942 // A class for inquiring about properties of a relocation,
2943 // used while scanning relocs during a relocatable link and
2944 // garbage collection.
2945
2946 template<int sh_type_, int size, bool big_endian>
2947 class Mips_classify_reloc;
2948
2949 template<int sh_type_, bool big_endian>
2950 class Mips_classify_reloc<sh_type_, 32, big_endian> :
2951     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
2952 {
2953  public:
2954   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
2955       Reltype;
2956   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
2957       Reltype_write;
2958
2959   // Return the symbol referred to by the relocation.
2960   static inline unsigned int
2961   get_r_sym(const Reltype* reloc)
2962   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
2963
2964   // Return the type of the relocation.
2965   static inline unsigned int
2966   get_r_type(const Reltype* reloc)
2967   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
2968
2969   // Return the explicit addend of the relocation (return 0 for SHT_REL).
2970   static inline unsigned int
2971   get_r_addend(const Reltype* reloc)
2972   {
2973     if (sh_type_ == elfcpp::SHT_REL)
2974       return 0;
2975     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
2976   }
2977
2978   // Write the r_info field to a new reloc, using the r_info field from
2979   // the original reloc, replacing the r_sym field with R_SYM.
2980   static inline void
2981   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
2982   {
2983     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
2984     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
2985   }
2986
2987   // Write the r_addend field to a new reloc.
2988   static inline void
2989   put_r_addend(Reltype_write* to,
2990                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
2991   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
2992
2993   // Return the size of the addend of the relocation (only used for SHT_REL).
2994   static unsigned int
2995   get_size_for_reloc(unsigned int r_type, Relobj* obj)
2996   { return mips_get_size_for_reloc(r_type, obj); }
2997 };
2998
2999 template<int sh_type_, bool big_endian>
3000 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3001     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3002 {
3003  public:
3004   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3005       Reltype;
3006   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3007       Reltype_write;
3008
3009   // Return the symbol referred to by the relocation.
3010   static inline unsigned int
3011   get_r_sym(const Reltype* reloc)
3012   { return reloc->get_r_sym(); }
3013
3014   // Return the type of the relocation.
3015   static inline unsigned int
3016   get_r_type(const Reltype* reloc)
3017   { return reloc->get_r_type(); }
3018
3019   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3020   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3021   get_r_addend(const Reltype* reloc)
3022   {
3023     if (sh_type_ == elfcpp::SHT_REL)
3024       return 0;
3025     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3026   }
3027
3028   // Write the r_info field to a new reloc, using the r_info field from
3029   // the original reloc, replacing the r_sym field with R_SYM.
3030   static inline void
3031   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3032   {
3033     new_reloc->put_r_sym(r_sym);
3034     new_reloc->put_r_ssym(reloc->get_r_ssym());
3035     new_reloc->put_r_type3(reloc->get_r_type3());
3036     new_reloc->put_r_type2(reloc->get_r_type2());
3037     new_reloc->put_r_type(reloc->get_r_type());
3038   }
3039
3040   // Write the r_addend field to a new reloc.
3041   static inline void
3042   put_r_addend(Reltype_write* to,
3043                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3044   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3045
3046   // Return the size of the addend of the relocation (only used for SHT_REL).
3047   static unsigned int
3048   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3049   { return mips_get_size_for_reloc(r_type, obj); }
3050 };
3051
3052 template<int size, bool big_endian>
3053 class Target_mips : public Sized_target<size, big_endian>
3054 {
3055   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3056   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3057     Reloc_section;
3058   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3059     Reloca_section;
3060   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3061   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3062   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3063       Reltype;
3064   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3065       Relatype;
3066
3067  public:
3068   Target_mips(const Target::Target_info* info = &mips_info)
3069     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3070       got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
3071       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3072       mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
3073       got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
3074   {
3075     this->add_machine_extensions();
3076   }
3077
3078   // The offset of $gp from the beginning of the .got section.
3079   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3080
3081   // The maximum size of the GOT for it to be addressable using 16-bit
3082   // offsets from $gp.
3083   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3084
3085   // Make a new symbol table entry for the Mips target.
3086   Sized_symbol<size>*
3087   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3088   { return new Mips_symbol<size>(); }
3089
3090   // Process the relocations to determine unreferenced sections for
3091   // garbage collection.
3092   void
3093   gc_process_relocs(Symbol_table* symtab,
3094                     Layout* layout,
3095                     Sized_relobj_file<size, big_endian>* object,
3096                     unsigned int data_shndx,
3097                     unsigned int sh_type,
3098                     const unsigned char* prelocs,
3099                     size_t reloc_count,
3100                     Output_section* output_section,
3101                     bool needs_special_offset_handling,
3102                     size_t local_symbol_count,
3103                     const unsigned char* plocal_symbols);
3104
3105   // Scan the relocations to look for symbol adjustments.
3106   void
3107   scan_relocs(Symbol_table* symtab,
3108               Layout* layout,
3109               Sized_relobj_file<size, big_endian>* object,
3110               unsigned int data_shndx,
3111               unsigned int sh_type,
3112               const unsigned char* prelocs,
3113               size_t reloc_count,
3114               Output_section* output_section,
3115               bool needs_special_offset_handling,
3116               size_t local_symbol_count,
3117               const unsigned char* plocal_symbols);
3118
3119   // Finalize the sections.
3120   void
3121   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3122
3123   // Relocate a section.
3124   void
3125   relocate_section(const Relocate_info<size, big_endian>*,
3126                    unsigned int sh_type,
3127                    const unsigned char* prelocs,
3128                    size_t reloc_count,
3129                    Output_section* output_section,
3130                    bool needs_special_offset_handling,
3131                    unsigned char* view,
3132                    Mips_address view_address,
3133                    section_size_type view_size,
3134                    const Reloc_symbol_changes*);
3135
3136   // Scan the relocs during a relocatable link.
3137   void
3138   scan_relocatable_relocs(Symbol_table* symtab,
3139                           Layout* layout,
3140                           Sized_relobj_file<size, big_endian>* object,
3141                           unsigned int data_shndx,
3142                           unsigned int sh_type,
3143                           const unsigned char* prelocs,
3144                           size_t reloc_count,
3145                           Output_section* output_section,
3146                           bool needs_special_offset_handling,
3147                           size_t local_symbol_count,
3148                           const unsigned char* plocal_symbols,
3149                           Relocatable_relocs*);
3150
3151   // Scan the relocs for --emit-relocs.
3152   void
3153   emit_relocs_scan(Symbol_table* symtab,
3154                    Layout* layout,
3155                    Sized_relobj_file<size, big_endian>* object,
3156                    unsigned int data_shndx,
3157                    unsigned int sh_type,
3158                    const unsigned char* prelocs,
3159                    size_t reloc_count,
3160                    Output_section* output_section,
3161                    bool needs_special_offset_handling,
3162                    size_t local_symbol_count,
3163                    const unsigned char* plocal_syms,
3164                    Relocatable_relocs* rr);
3165
3166   // Emit relocations for a section.
3167   void
3168   relocate_relocs(const Relocate_info<size, big_endian>*,
3169                   unsigned int sh_type,
3170                   const unsigned char* prelocs,
3171                   size_t reloc_count,
3172                   Output_section* output_section,
3173                   typename elfcpp::Elf_types<size>::Elf_Off
3174                     offset_in_output_section,
3175                   unsigned char* view,
3176                   Mips_address view_address,
3177                   section_size_type view_size,
3178                   unsigned char* reloc_view,
3179                   section_size_type reloc_view_size);
3180
3181   // Perform target-specific processing in a relocatable link.  This is
3182   // only used if we use the relocation strategy RELOC_SPECIAL.
3183   void
3184   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3185                                unsigned int sh_type,
3186                                const unsigned char* preloc_in,
3187                                size_t relnum,
3188                                Output_section* output_section,
3189                                typename elfcpp::Elf_types<size>::Elf_Off
3190                                  offset_in_output_section,
3191                                unsigned char* view,
3192                                Mips_address view_address,
3193                                section_size_type view_size,
3194                                unsigned char* preloc_out);
3195
3196   // Return whether SYM is defined by the ABI.
3197   bool
3198   do_is_defined_by_abi(const Symbol* sym) const
3199   {
3200     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3201             || (strcmp(sym->name(), "_gp_disp") == 0)
3202             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3203   }
3204
3205   // Return the number of entries in the GOT.
3206   unsigned int
3207   got_entry_count() const
3208   {
3209     if (!this->has_got_section())
3210       return 0;
3211     return this->got_size() / (size/8);
3212   }
3213
3214   // Return the number of entries in the PLT.
3215   unsigned int
3216   plt_entry_count() const
3217   {
3218     if (this->plt_ == NULL)
3219       return 0;
3220     return this->plt_->entry_count();
3221   }
3222
3223   // Return the offset of the first non-reserved PLT entry.
3224   unsigned int
3225   first_plt_entry_offset() const
3226   { return this->plt_->first_plt_entry_offset(); }
3227
3228   // Return the size of each PLT entry.
3229   unsigned int
3230   plt_entry_size() const
3231   { return this->plt_->plt_entry_size(); }
3232
3233   // Get the GOT section, creating it if necessary.
3234   Mips_output_data_got<size, big_endian>*
3235   got_section(Symbol_table*, Layout*);
3236
3237   // Get the GOT section.
3238   Mips_output_data_got<size, big_endian>*
3239   got_section() const
3240   {
3241     gold_assert(this->got_ != NULL);
3242     return this->got_;
3243   }
3244
3245   // Get the .MIPS.stubs section, creating it if necessary.
3246   Mips_output_data_mips_stubs<size, big_endian>*
3247   mips_stubs_section(Layout* layout);
3248
3249   // Get the .MIPS.stubs section.
3250   Mips_output_data_mips_stubs<size, big_endian>*
3251   mips_stubs_section() const
3252   {
3253     gold_assert(this->mips_stubs_ != NULL);
3254     return this->mips_stubs_;
3255   }
3256
3257   // Get the LA25 stub section, creating it if necessary.
3258   Mips_output_data_la25_stub<size, big_endian>*
3259   la25_stub_section(Layout*);
3260
3261   // Get the LA25 stub section.
3262   Mips_output_data_la25_stub<size, big_endian>*
3263   la25_stub_section()
3264   {
3265     gold_assert(this->la25_stub_ != NULL);
3266     return this->la25_stub_;
3267   }
3268
3269   // Get gp value.  It has the value of .got + 0x7FF0.
3270   Mips_address
3271   gp_value() const
3272   {
3273     if (this->gp_ != NULL)
3274       return this->gp_->value();
3275     return 0;
3276   }
3277
3278   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3279   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3280   Mips_address
3281   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3282   {
3283     if (this->gp_ == NULL)
3284       return 0;
3285
3286     bool multi_got = false;
3287     if (this->has_got_section())
3288       multi_got = this->got_section()->multi_got();
3289     if (!multi_got)
3290       return this->gp_->value();
3291     else
3292       return this->gp_->value() + this->got_section()->get_got_offset(object);
3293   }
3294
3295   // Get the dynamic reloc section, creating it if necessary.
3296   Reloc_section*
3297   rel_dyn_section(Layout*);
3298
3299   bool
3300   do_has_custom_set_dynsym_indexes() const
3301   { return true; }
3302
3303   // Don't emit input .reginfo sections to output .reginfo.
3304   bool
3305   do_should_include_section(elfcpp::Elf_Word sh_type) const
3306   { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3307
3308   // Set the dynamic symbol indexes.  INDEX is the index of the first
3309   // global dynamic symbol.  Pointers to the symbols are stored into the
3310   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3311   // updated dynamic symbol index.
3312   unsigned int
3313   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3314                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3315                         Versions* versions, Symbol_table* symtab) const;
3316
3317   // Remove .MIPS.stubs entry for a symbol.
3318   void
3319   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3320   {
3321     if (this->mips_stubs_ != NULL)
3322       this->mips_stubs_->remove_entry(sym);
3323   }
3324
3325   // The value to write into got[1] for SVR4 targets, to identify it is
3326   // a GNU object.  The dynamic linker can then use got[1] to store the
3327   // module pointer.
3328   uint64_t
3329   mips_elf_gnu_got1_mask()
3330   {
3331     if (this->is_output_n64())
3332       return (uint64_t)1 << 63;
3333     else
3334       return 1 << 31;
3335   }
3336
3337   // Whether the output has microMIPS code.  This is valid only after
3338   // merge_processor_specific_flags() is called.
3339   bool
3340   is_output_micromips() const
3341   {
3342     gold_assert(this->are_processor_specific_flags_set());
3343     return elfcpp::is_micromips(this->processor_specific_flags());
3344   }
3345
3346   // Whether the output uses N32 ABI.  This is valid only after
3347   // merge_processor_specific_flags() is called.
3348   bool
3349   is_output_n32() const
3350   {
3351     gold_assert(this->are_processor_specific_flags_set());
3352     return elfcpp::abi_n32(this->processor_specific_flags());
3353   }
3354
3355   // Whether the output uses N64 ABI.  This is valid only after
3356   // merge_processor_specific_flags() is called.
3357   bool
3358   is_output_n64() const
3359   {
3360     gold_assert(this->are_processor_specific_flags_set());
3361     return elfcpp::abi_64(this->ei_class_);
3362   }
3363
3364   // Whether the output uses NEWABI.  This is valid only after
3365   // merge_processor_specific_flags() is called.
3366   bool
3367   is_output_newabi() const
3368   { return this->is_output_n32() || this->is_output_n64(); }
3369
3370   // Whether we can only use 32-bit microMIPS instructions.
3371   bool
3372   use_32bit_micromips_instructions() const
3373   { return this->insn32_; }
3374
3375   // Return the r_sym field from a relocation.
3376   unsigned int
3377   get_r_sym(const unsigned char* preloc) const
3378   {
3379     // Since REL and RELA relocs share the same structure through
3380     // the r_info field, we can just use REL here.
3381     Reltype rel(preloc);
3382     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3383         get_r_sym(&rel);
3384   }
3385
3386  protected:
3387   // Return the value to use for a dynamic symbol which requires special
3388   // treatment.  This is how we support equality comparisons of function
3389   // pointers across shared library boundaries, as described in the
3390   // processor specific ABI supplement.
3391   uint64_t
3392   do_dynsym_value(const Symbol* gsym) const;
3393
3394   // Make an ELF object.
3395   Object*
3396   do_make_elf_object(const std::string&, Input_file*, off_t,
3397                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3398
3399   Object*
3400   do_make_elf_object(const std::string&, Input_file*, off_t,
3401                      const elfcpp::Ehdr<size, !big_endian>&)
3402   { gold_unreachable(); }
3403
3404   // Make an output section.
3405   Output_section*
3406   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3407                          elfcpp::Elf_Xword flags)
3408     {
3409       if (type == elfcpp::SHT_MIPS_REGINFO)
3410         return new Mips_output_section_reginfo<size, big_endian>(name, type,
3411                                                                  flags, this);
3412       else
3413         return new Output_section(name, type, flags);
3414     }
3415
3416   // Adjust ELF file header.
3417   void
3418   do_adjust_elf_header(unsigned char* view, int len);
3419
3420   // Get the custom dynamic tag value.
3421   unsigned int
3422   do_dynamic_tag_custom_value(elfcpp::DT) const;
3423
3424   // Adjust the value written to the dynamic symbol table.
3425   virtual void
3426   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3427   {
3428     elfcpp::Sym<size, big_endian> isym(view);
3429     elfcpp::Sym_write<size, big_endian> osym(view);
3430     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3431
3432     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3433     // to treat compressed symbols like any other.
3434     Mips_address value = isym.get_st_value();
3435     if (mips_sym->is_mips16() && value != 0)
3436       {
3437         if (!mips_sym->has_mips16_fn_stub())
3438           value |= 1;
3439         else
3440           {
3441             // If we have a MIPS16 function with a stub, the dynamic symbol
3442             // must refer to the stub, since only the stub uses the standard
3443             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3444             // in this case.
3445
3446             // There is a code which does this in the method
3447             // Target_mips::do_dynsym_value, but that code will only be
3448             // executed if the symbol is from dynobj.
3449             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3450             // table.
3451
3452             Mips16_stub_section<size, big_endian>* fn_stub =
3453               mips_sym->template get_mips16_fn_stub<big_endian>();
3454             value = fn_stub->output_address();
3455             osym.put_st_size(fn_stub->section_size());
3456           }
3457
3458         osym.put_st_value(value);
3459         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3460                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3461       }
3462     else if ((mips_sym->is_micromips()
3463               // Stubs are always microMIPS if there is any microMIPS code in
3464               // the output.
3465               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3466              && value != 0)
3467       {
3468         osym.put_st_value(value | 1);
3469         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3470                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3471       }
3472   }
3473
3474  private:
3475   // The class which scans relocations.
3476   class Scan
3477   {
3478    public:
3479     Scan()
3480     { }
3481
3482     static inline int
3483     get_reference_flags(unsigned int r_type);
3484
3485     inline void
3486     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3487           Sized_relobj_file<size, big_endian>* object,
3488           unsigned int data_shndx,
3489           Output_section* output_section,
3490           const Reltype& reloc, unsigned int r_type,
3491           const elfcpp::Sym<size, big_endian>& lsym,
3492           bool is_discarded);
3493
3494     inline void
3495     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3496           Sized_relobj_file<size, big_endian>* object,
3497           unsigned int data_shndx,
3498           Output_section* output_section,
3499           const Relatype& reloc, unsigned int r_type,
3500           const elfcpp::Sym<size, big_endian>& lsym,
3501           bool is_discarded);
3502
3503     inline void
3504     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3505           Sized_relobj_file<size, big_endian>* object,
3506           unsigned int data_shndx,
3507           Output_section* output_section,
3508           const Relatype* rela,
3509           const Reltype* rel,
3510           unsigned int rel_type,
3511           unsigned int r_type,
3512           const elfcpp::Sym<size, big_endian>& lsym,
3513           bool is_discarded);
3514
3515     inline void
3516     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3517            Sized_relobj_file<size, big_endian>* object,
3518            unsigned int data_shndx,
3519            Output_section* output_section,
3520            const Reltype& reloc, unsigned int r_type,
3521            Symbol* gsym);
3522
3523     inline void
3524     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3525            Sized_relobj_file<size, big_endian>* object,
3526            unsigned int data_shndx,
3527            Output_section* output_section,
3528            const Relatype& reloc, unsigned int r_type,
3529            Symbol* gsym);
3530
3531     inline void
3532     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3533            Sized_relobj_file<size, big_endian>* object,
3534            unsigned int data_shndx,
3535            Output_section* output_section,
3536            const Relatype* rela,
3537            const Reltype* rel,
3538            unsigned int rel_type,
3539            unsigned int r_type,
3540            Symbol* gsym);
3541
3542     inline bool
3543     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3544                                         Target_mips*,
3545                                         Sized_relobj_file<size, big_endian>*,
3546                                         unsigned int,
3547                                         Output_section*,
3548                                         const Reltype&,
3549                                         unsigned int,
3550                                         const elfcpp::Sym<size, big_endian>&)
3551     { return false; }
3552
3553     inline bool
3554     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3555                                          Target_mips*,
3556                                          Sized_relobj_file<size, big_endian>*,
3557                                          unsigned int,
3558                                          Output_section*,
3559                                          const Reltype&,
3560                                          unsigned int, Symbol*)
3561     { return false; }
3562
3563     inline bool
3564     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3565                                         Target_mips*,
3566                                         Sized_relobj_file<size, big_endian>*,
3567                                         unsigned int,
3568                                         Output_section*,
3569                                         const Relatype&,
3570                                         unsigned int,
3571                                         const elfcpp::Sym<size, big_endian>&)
3572     { return false; }
3573
3574     inline bool
3575     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3576                                          Target_mips*,
3577                                          Sized_relobj_file<size, big_endian>*,
3578                                          unsigned int,
3579                                          Output_section*,
3580                                          const Relatype&,
3581                                          unsigned int, Symbol*)
3582     { return false; }
3583    private:
3584     static void
3585     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3586                             unsigned int r_type);
3587
3588     static void
3589     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3590                              unsigned int r_type, Symbol*);
3591   };
3592
3593   // The class which implements relocation.
3594   class Relocate
3595   {
3596    public:
3597     Relocate()
3598     { }
3599
3600     ~Relocate()
3601     { }
3602
3603     // Return whether the R_MIPS_32 relocation needs to be applied.
3604     inline bool
3605     should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3606                                  unsigned int r_type,
3607                                  Output_section* output_section,
3608                                  Target_mips* target);
3609
3610     // Do a relocation.  Return false if the caller should not issue
3611     // any warnings about this relocation.
3612     inline bool
3613     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3614              Target_mips*, Output_section*, size_t, const unsigned char*,
3615              const Sized_symbol<size>*, const Symbol_value<size>*,
3616              unsigned char*, Mips_address, section_size_type);
3617   };
3618
3619   // This POD class holds the dynamic relocations that should be emitted instead
3620   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3621   // relocations if it turns out that the symbol does not have static
3622   // relocations.
3623   class Dyn_reloc
3624   {
3625    public:
3626     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3627               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3628               Output_section* output_section, Mips_address r_offset)
3629       : sym_(sym), r_type_(r_type), relobj_(relobj),
3630         shndx_(shndx), output_section_(output_section),
3631         r_offset_(r_offset)
3632     { }
3633
3634     // Emit this reloc if appropriate.  This is called after we have
3635     // scanned all the relocations, so we know whether the symbol has
3636     // static relocations.
3637     void
3638     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3639          Symbol_table* symtab)
3640     {
3641       if (!this->sym_->has_static_relocs())
3642         {
3643           got->record_global_got_symbol(this->sym_, this->relobj_,
3644                                         this->r_type_, true, false);
3645           if (!symbol_references_local(this->sym_,
3646                                 this->sym_->should_add_dynsym_entry(symtab)))
3647             rel_dyn->add_global(this->sym_, this->r_type_,
3648                                 this->output_section_, this->relobj_,
3649                                 this->shndx_, this->r_offset_);
3650           else
3651             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3652                                           this->output_section_, this->relobj_,
3653                                           this->shndx_, this->r_offset_);
3654         }
3655     }
3656
3657    private:
3658     Mips_symbol<size>* sym_;
3659     unsigned int r_type_;
3660     Mips_relobj<size, big_endian>* relobj_;
3661     unsigned int shndx_;
3662     Output_section* output_section_;
3663     Mips_address r_offset_;
3664   };
3665
3666   // Adjust TLS relocation type based on the options and whether this
3667   // is a local symbol.
3668   static tls::Tls_optimization
3669   optimize_tls_reloc(bool is_final, int r_type);
3670
3671   // Return whether there is a GOT section.
3672   bool
3673   has_got_section() const
3674   { return this->got_ != NULL; }
3675
3676   // Check whether the given ELF header flags describe a 32-bit binary.
3677   bool
3678   mips_32bit_flags(elfcpp::Elf_Word);
3679
3680   enum Mips_mach {
3681     mach_mips3000             = 3000,
3682     mach_mips3900             = 3900,
3683     mach_mips4000             = 4000,
3684     mach_mips4010             = 4010,
3685     mach_mips4100             = 4100,
3686     mach_mips4111             = 4111,
3687     mach_mips4120             = 4120,
3688     mach_mips4300             = 4300,
3689     mach_mips4400             = 4400,
3690     mach_mips4600             = 4600,
3691     mach_mips4650             = 4650,
3692     mach_mips5000             = 5000,
3693     mach_mips5400             = 5400,
3694     mach_mips5500             = 5500,
3695     mach_mips6000             = 6000,
3696     mach_mips7000             = 7000,
3697     mach_mips8000             = 8000,
3698     mach_mips9000             = 9000,
3699     mach_mips10000            = 10000,
3700     mach_mips12000            = 12000,
3701     mach_mips14000            = 14000,
3702     mach_mips16000            = 16000,
3703     mach_mips16               = 16,
3704     mach_mips5                = 5,
3705     mach_mips_loongson_2e     = 3001,
3706     mach_mips_loongson_2f     = 3002,
3707     mach_mips_loongson_3a     = 3003,
3708     mach_mips_sb1             = 12310201, // octal 'SB', 01
3709     mach_mips_octeon          = 6501,
3710     mach_mips_octeonp         = 6601,
3711     mach_mips_octeon2         = 6502,
3712     mach_mips_xlr             = 887682,   // decimal 'XLR'
3713     mach_mipsisa32            = 32,
3714     mach_mipsisa32r2          = 33,
3715     mach_mipsisa64            = 64,
3716     mach_mipsisa64r2          = 65,
3717     mach_mips_micromips       = 96
3718   };
3719
3720   // Return the MACH for a MIPS e_flags value.
3721   unsigned int
3722   elf_mips_mach(elfcpp::Elf_Word);
3723
3724   // Check whether machine EXTENSION is an extension of machine BASE.
3725   bool
3726   mips_mach_extends(unsigned int, unsigned int);
3727
3728   // Merge processor specific flags.
3729   void
3730   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3731                                  unsigned char, bool);
3732
3733   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3734   static inline bool
3735   jal_to_bal()
3736   { return false; }
3737
3738   // True if we are linking for CPUs that are faster if JALR is converted to
3739   // BAL.  This should be safe for all architectures.  We enable this predicate
3740   // for all CPUs.
3741   static inline bool
3742   jalr_to_bal()
3743   { return true; }
3744
3745   // True if we are linking for CPUs that are faster if JR is converted to B.
3746   // This should be safe for all architectures.  We enable this predicate for
3747   // all CPUs.
3748   static inline bool
3749   jr_to_b()
3750   { return true; }
3751
3752   // Return the size of the GOT section.
3753   section_size_type
3754   got_size() const
3755   {
3756     gold_assert(this->got_ != NULL);
3757     return this->got_->data_size();
3758   }
3759
3760   // Create a PLT entry for a global symbol referenced by r_type relocation.
3761   void
3762   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3763                  unsigned int r_type);
3764
3765   // Get the PLT section.
3766   Mips_output_data_plt<size, big_endian>*
3767   plt_section() const
3768   {
3769     gold_assert(this->plt_ != NULL);
3770     return this->plt_;
3771   }
3772
3773   // Get the GOT PLT section.
3774   const Mips_output_data_plt<size, big_endian>*
3775   got_plt_section() const
3776   {
3777     gold_assert(this->got_plt_ != NULL);
3778     return this->got_plt_;
3779   }
3780
3781   // Copy a relocation against a global symbol.
3782   void
3783   copy_reloc(Symbol_table* symtab, Layout* layout,
3784              Sized_relobj_file<size, big_endian>* object,
3785              unsigned int shndx, Output_section* output_section,
3786              Symbol* sym, const Reltype& reloc)
3787   {
3788     unsigned int r_type =
3789         Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3790           get_r_type(&reloc);
3791     this->copy_relocs_.copy_reloc(symtab, layout,
3792                                   symtab->get_sized_symbol<size>(sym),
3793                                   object, shndx, output_section,
3794                                   r_type, reloc.get_r_offset(), 0,
3795                                   this->rel_dyn_section(layout));
3796   }
3797
3798   void
3799   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3800                 Mips_relobj<size, big_endian>* relobj,
3801                 unsigned int shndx, Output_section* output_section,
3802                 Mips_address r_offset)
3803   {
3804     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3805                                           output_section, r_offset));
3806   }
3807
3808   // Calculate value of _gp symbol.
3809   void
3810   set_gp(Layout*, Symbol_table*);
3811
3812   const char*
3813   elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3814   const char*
3815   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3816
3817   // Adds entries that describe how machines relate to one another.  The entries
3818   // are ordered topologically with MIPS I extensions listed last.  First
3819   // element is extension, second element is base.
3820   void
3821   add_machine_extensions()
3822   {
3823     // MIPS64r2 extensions.
3824     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3825     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3826     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3827
3828     // MIPS64 extensions.
3829     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3830     this->add_extension(mach_mips_sb1, mach_mipsisa64);
3831     this->add_extension(mach_mips_xlr, mach_mipsisa64);
3832     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3833
3834     // MIPS V extensions.
3835     this->add_extension(mach_mipsisa64, mach_mips5);
3836
3837     // R10000 extensions.
3838     this->add_extension(mach_mips12000, mach_mips10000);
3839     this->add_extension(mach_mips14000, mach_mips10000);
3840     this->add_extension(mach_mips16000, mach_mips10000);
3841
3842     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
3843     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
3844     // better to allow vr5400 and vr5500 code to be merged anyway, since
3845     // many libraries will just use the core ISA.  Perhaps we could add
3846     // some sort of ASE flag if this ever proves a problem.
3847     this->add_extension(mach_mips5500, mach_mips5400);
3848     this->add_extension(mach_mips5400, mach_mips5000);
3849
3850     // MIPS IV extensions.
3851     this->add_extension(mach_mips5, mach_mips8000);
3852     this->add_extension(mach_mips10000, mach_mips8000);
3853     this->add_extension(mach_mips5000, mach_mips8000);
3854     this->add_extension(mach_mips7000, mach_mips8000);
3855     this->add_extension(mach_mips9000, mach_mips8000);
3856
3857     // VR4100 extensions.
3858     this->add_extension(mach_mips4120, mach_mips4100);
3859     this->add_extension(mach_mips4111, mach_mips4100);
3860
3861     // MIPS III extensions.
3862     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3863     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3864     this->add_extension(mach_mips8000, mach_mips4000);
3865     this->add_extension(mach_mips4650, mach_mips4000);
3866     this->add_extension(mach_mips4600, mach_mips4000);
3867     this->add_extension(mach_mips4400, mach_mips4000);
3868     this->add_extension(mach_mips4300, mach_mips4000);
3869     this->add_extension(mach_mips4100, mach_mips4000);
3870     this->add_extension(mach_mips4010, mach_mips4000);
3871
3872     // MIPS32 extensions.
3873     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3874
3875     // MIPS II extensions.
3876     this->add_extension(mach_mips4000, mach_mips6000);
3877     this->add_extension(mach_mipsisa32, mach_mips6000);
3878
3879     // MIPS I extensions.
3880     this->add_extension(mach_mips6000, mach_mips3000);
3881     this->add_extension(mach_mips3900, mach_mips3000);
3882   }
3883
3884   // Add value to MIPS extenstions.
3885   void
3886   add_extension(unsigned int base, unsigned int extension)
3887   {
3888     std::pair<unsigned int, unsigned int> ext(base, extension);
3889     this->mips_mach_extensions_.push_back(ext);
3890   }
3891
3892   // Return the number of entries in the .dynsym section.
3893   unsigned int get_dt_mips_symtabno() const
3894   {
3895     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3896                            / elfcpp::Elf_sizes<size>::sym_size));
3897     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3898   }
3899
3900   // Information about this specific target which we pass to the
3901   // general Target structure.
3902   static const Target::Target_info mips_info;
3903   // The GOT section.
3904   Mips_output_data_got<size, big_endian>* got_;
3905   // gp symbol.  It has the value of .got + 0x7FF0.
3906   Sized_symbol<size>* gp_;
3907   // The PLT section.
3908   Mips_output_data_plt<size, big_endian>* plt_;
3909   // The GOT PLT section.
3910   Output_data_space* got_plt_;
3911   // The dynamic reloc section.
3912   Reloc_section* rel_dyn_;
3913   // Relocs saved to avoid a COPY reloc.
3914   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3915
3916   // A list of dyn relocs to be saved.
3917   std::vector<Dyn_reloc> dyn_relocs_;
3918
3919   // The LA25 stub section.
3920   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3921   // Architecture extensions.
3922   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3923   // .MIPS.stubs
3924   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3925
3926   unsigned char ei_class_;
3927   unsigned int mach_;
3928   Layout* layout_;
3929
3930   typename std::list<got16_addend<size, big_endian> > got16_addends_;
3931
3932   // Whether the entry symbol is mips16 or micromips.
3933   bool entry_symbol_is_compressed_;
3934
3935   // Whether we can use only 32-bit microMIPS instructions.
3936   // TODO(sasa): This should be a linker option.
3937   bool insn32_;
3938 };
3939
3940 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3941 // It records high part of the relocation pair.
3942
3943 template<int size, bool big_endian>
3944 struct reloc_high
3945 {
3946   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3947
3948   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3949              const Symbol_value<size>* _psymval, Mips_address _addend,
3950              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
3951              Mips_address _address = 0, bool _gp_disp = false)
3952     : view(_view), object(_object), psymval(_psymval), addend(_addend),
3953       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
3954       address(_address), gp_disp(_gp_disp)
3955   { }
3956
3957   unsigned char* view;
3958   const Mips_relobj<size, big_endian>* object;
3959   const Symbol_value<size>* psymval;
3960   Mips_address addend;
3961   unsigned int r_type;
3962   unsigned int r_sym;
3963   bool extract_addend;
3964   Mips_address address;
3965   bool gp_disp;
3966 };
3967
3968 template<int size, bool big_endian>
3969 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3970 {
3971   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3972   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3973   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3974
3975  public:
3976   typedef enum
3977   {
3978     STATUS_OKAY,        // No error during relocation.
3979     STATUS_OVERFLOW,    // Relocation overflow.
3980     STATUS_BAD_RELOC    // Relocation cannot be applied.
3981   } Status;
3982
3983  private:
3984   typedef Relocate_functions<size, big_endian> Base;
3985   typedef Mips_relocate_functions<size, big_endian> This;
3986
3987   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3988   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3989
3990   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3991   //   Most mips16 instructions are 16 bits, but these instructions
3992   //   are 32 bits.
3993   //
3994   //   The format of these instructions is:
3995   //
3996   //   +--------------+--------------------------------+
3997   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
3998   //   +--------------+--------------------------------+
3999   //   |                Immediate  15:0                |
4000   //   +-----------------------------------------------+
4001   //
4002   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4003   //   Note that the immediate value in the first word is swapped.
4004   //
4005   //   When producing a relocatable object file, R_MIPS16_26 is
4006   //   handled mostly like R_MIPS_26.  In particular, the addend is
4007   //   stored as a straight 26-bit value in a 32-bit instruction.
4008   //   (gas makes life simpler for itself by never adjusting a
4009   //   R_MIPS16_26 reloc to be against a section, so the addend is
4010   //   always zero).  However, the 32 bit instruction is stored as 2
4011   //   16-bit values, rather than a single 32-bit value.  In a
4012   //   big-endian file, the result is the same; in a little-endian
4013   //   file, the two 16-bit halves of the 32 bit value are swapped.
4014   //   This is so that a disassembler can recognize the jal
4015   //   instruction.
4016   //
4017   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4018   //   instruction stored as two 16-bit values.  The addend A is the
4019   //   contents of the targ26 field.  The calculation is the same as
4020   //   R_MIPS_26.  When storing the calculated value, reorder the
4021   //   immediate value as shown above, and don't forget to store the
4022   //   value as two 16-bit values.
4023   //
4024   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4025   //   defined as
4026   //
4027   //   big-endian:
4028   //   +--------+----------------------+
4029   //   |        |                      |
4030   //   |        |    targ26-16         |
4031   //   |31    26|25                   0|
4032   //   +--------+----------------------+
4033   //
4034   //   little-endian:
4035   //   +----------+------+-------------+
4036   //   |          |      |             |
4037   //   |  sub1    |      |     sub2    |
4038   //   |0        9|10  15|16         31|
4039   //   +----------+--------------------+
4040   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4041   //   ((sub1 << 16) | sub2)).
4042   //
4043   //   When producing a relocatable object file, the calculation is
4044   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4045   //   When producing a fully linked file, the calculation is
4046   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4047   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4048   //
4049   //   The table below lists the other MIPS16 instruction relocations.
4050   //   Each one is calculated in the same way as the non-MIPS16 relocation
4051   //   given on the right, but using the extended MIPS16 layout of 16-bit
4052   //   immediate fields:
4053   //
4054   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4055   //      R_MIPS16_GOT16          R_MIPS_GOT16
4056   //      R_MIPS16_CALL16         R_MIPS_CALL16
4057   //      R_MIPS16_HI16           R_MIPS_HI16
4058   //      R_MIPS16_LO16           R_MIPS_LO16
4059   //
4060   //   A typical instruction will have a format like this:
4061   //
4062   //   +--------------+--------------------------------+
4063   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4064   //   +--------------+--------------------------------+
4065   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4066   //   +--------------+--------------------------------+
4067   //
4068   //   EXTEND is the five bit value 11110.  Major is the instruction
4069   //   opcode.
4070   //
4071   //   All we need to do here is shuffle the bits appropriately.
4072   //   As above, the two 16-bit halves must be swapped on a
4073   //   little-endian system.
4074
4075   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4076   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4077   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4078
4079   static inline bool
4080   should_shuffle_micromips_reloc(unsigned int r_type)
4081   {
4082     return (micromips_reloc(r_type)
4083             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4084             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4085   }
4086
4087   static void
4088   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4089                        bool jal_shuffle)
4090   {
4091     if (!mips16_reloc(r_type)
4092         && !should_shuffle_micromips_reloc(r_type))
4093       return;
4094
4095     // Pick up the first and second halfwords of the instruction.
4096     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4097     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4098     Valtype32 val;
4099
4100     if (micromips_reloc(r_type)
4101         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4102       val = first << 16 | second;
4103     else if (r_type != elfcpp::R_MIPS16_26)
4104       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4105              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4106     else
4107       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4108              | ((first & 0x1f) << 21) | second);
4109
4110     elfcpp::Swap<32, big_endian>::writeval(view, val);
4111   }
4112
4113   static void
4114   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4115   {
4116     if (!mips16_reloc(r_type)
4117         && !should_shuffle_micromips_reloc(r_type))
4118       return;
4119
4120     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4121     Valtype16 first, second;
4122
4123     if (micromips_reloc(r_type)
4124         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4125       {
4126         second = val & 0xffff;
4127         first = val >> 16;
4128       }
4129     else if (r_type != elfcpp::R_MIPS16_26)
4130       {
4131         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4132         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4133       }
4134     else
4135       {
4136         second = val & 0xffff;
4137         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4138                  | ((val >> 21) & 0x1f);
4139       }
4140
4141     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4142     elfcpp::Swap<16, big_endian>::writeval(view, first);
4143   }
4144
4145  public:
4146   // R_MIPS_16: S + sign-extend(A)
4147   static inline typename This::Status
4148   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4149         const Symbol_value<size>* psymval, Mips_address addend_a,
4150         bool extract_addend, unsigned int r_type)
4151   {
4152     mips_reloc_unshuffle(view, r_type, false);
4153     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4154     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4155
4156     Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
4157                                        : Bits<16>::sign_extend32(addend_a));
4158
4159     Valtype32 x = psymval->value(object, addend);
4160     val = Bits<16>::bit_select32(val, x, 0xffffU);
4161     elfcpp::Swap<16, big_endian>::writeval(wv, val);
4162     mips_reloc_shuffle(view, r_type, false);
4163     return (Bits<16>::has_overflow32(x)
4164             ? This::STATUS_OVERFLOW
4165             : This::STATUS_OKAY);
4166   }
4167
4168   // R_MIPS_32: S + A
4169   static inline typename This::Status
4170   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4171         const Symbol_value<size>* psymval, Mips_address addend_a,
4172         bool extract_addend, unsigned int r_type)
4173   {
4174     mips_reloc_unshuffle(view, r_type, false);
4175     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4176     Valtype32 addend = (extract_addend
4177                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4178                         : Bits<32>::sign_extend32(addend_a));
4179     Valtype32 x = psymval->value(object, addend);
4180     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4181     mips_reloc_shuffle(view, r_type, false);
4182     return This::STATUS_OKAY;
4183   }
4184
4185   // R_MIPS_JALR, R_MICROMIPS_JALR
4186   static inline typename This::Status
4187   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4188           const Symbol_value<size>* psymval, Mips_address address,
4189           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4190           unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
4191   {
4192     mips_reloc_unshuffle(view, r_type, false);
4193     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4194     Valtype32 addend = extract_addend ? 0 : addend_a;
4195     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4196
4197     // Try converting J(AL)R to B(AL), if the target is in range.
4198     if (!parameters->options().relocatable()
4199         && r_type == elfcpp::R_MIPS_JALR
4200         && !cross_mode_jump
4201         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4202             || (jr_to_b && val == 0x03200008)))   // jr t9
4203       {
4204         int offset = psymval->value(object, addend) - (address + 4);
4205         if (!Bits<18>::has_overflow32(offset))
4206           {
4207             if (val == 0x03200008)   // jr t9
4208               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4209             else
4210               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4211           }
4212       }
4213
4214     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4215     mips_reloc_shuffle(view, r_type, false);
4216     return This::STATUS_OKAY;
4217   }
4218
4219   // R_MIPS_PC32: S + A - P
4220   static inline typename This::Status
4221   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4222           const Symbol_value<size>* psymval, Mips_address address,
4223           Mips_address addend_a, bool extract_addend, unsigned int r_type)
4224   {
4225     mips_reloc_unshuffle(view, r_type, false);
4226     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4227     Valtype32 addend = (extract_addend
4228                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4229                         : Bits<32>::sign_extend32(addend_a));
4230     Valtype32 x = psymval->value(object, addend) - address;
4231     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4232     mips_reloc_shuffle(view, r_type, false);
4233     return This::STATUS_OKAY;
4234   }
4235
4236   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4237   static inline typename This::Status
4238   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4239         const Symbol_value<size>* psymval, Mips_address address,
4240         bool local, Mips_address addend_a, bool extract_addend,
4241         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4242         bool jal_to_bal)
4243   {
4244     mips_reloc_unshuffle(view, r_type, false);
4245     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4246     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4247
4248     Valtype32 addend;
4249     if (extract_addend)
4250       {
4251         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4252           addend = (val & 0x03ffffff) << 1;
4253         else
4254           addend = (val & 0x03ffffff) << 2;
4255       }
4256     else
4257       addend = addend_a;
4258
4259     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4260     // the correct ISA mode selector and bit 1 must be 0.
4261     if (cross_mode_jump
4262         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4263       {
4264         gold_warning(_("JALX to a non-word-aligned address"));
4265         mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4266         return This::STATUS_BAD_RELOC;
4267       }
4268
4269     // Shift is 2, unusually, for microMIPS JALX.
4270     unsigned int shift =
4271         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4272
4273     Valtype32 x;
4274     if (local)
4275       x = addend | ((address + 4) & (0xfc000000 << shift));
4276     else
4277       {
4278         if (shift == 1)
4279           x = Bits<27>::sign_extend32(addend);
4280         else
4281           x = Bits<28>::sign_extend32(addend);
4282       }
4283     x = psymval->value(object, x) >> shift;
4284
4285     if (!local && !gsym->is_weak_undefined())
4286       {
4287         if ((x >> 26) != ((address + 4) >> (26 + shift)))
4288           {
4289             gold_error(_("relocation truncated to fit: %u against '%s'"),
4290                        r_type, gsym->name());
4291             return This::STATUS_OVERFLOW;
4292           }
4293       }
4294
4295     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4296
4297     // If required, turn JAL into JALX.
4298     if (cross_mode_jump)
4299       {
4300         bool ok;
4301         Valtype32 opcode = val >> 26;
4302         Valtype32 jalx_opcode;
4303
4304         // Check to see if the opcode is already JAL or JALX.
4305         if (r_type == elfcpp::R_MIPS16_26)
4306           {
4307             ok = (opcode == 0x6) || (opcode == 0x7);
4308             jalx_opcode = 0x7;
4309           }
4310         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4311           {
4312             ok = (opcode == 0x3d) || (opcode == 0x3c);
4313             jalx_opcode = 0x3c;
4314           }
4315         else
4316           {
4317             ok = (opcode == 0x3) || (opcode == 0x1d);
4318             jalx_opcode = 0x1d;
4319           }
4320
4321         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4322         // convert J or JALS to JALX.
4323         if (!ok)
4324           {
4325             gold_error(_("Unsupported jump between ISA modes; consider "
4326                          "recompiling with interlinking enabled."));
4327             return This::STATUS_BAD_RELOC;
4328           }
4329
4330         // Make this the JALX opcode.
4331         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4332       }
4333
4334     // Try converting JAL to BAL, if the target is in range.
4335     if (!parameters->options().relocatable()
4336         && !cross_mode_jump
4337         && ((jal_to_bal
4338             && r_type == elfcpp::R_MIPS_26
4339             && (val >> 26) == 0x3)))    // jal addr
4340       {
4341         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4342         int offset = dest - (address + 4);
4343         if (!Bits<18>::has_overflow32(offset))
4344           {
4345             if (val == 0x03200008)   // jr t9
4346               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4347             else
4348               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4349           }
4350       }
4351
4352     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4353     mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4354     return This::STATUS_OKAY;
4355   }
4356
4357   // R_MIPS_PC16
4358   static inline typename This::Status
4359   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4360           const Symbol_value<size>* psymval, Mips_address address,
4361           Mips_address addend_a, bool extract_addend, unsigned int r_type)
4362   {
4363     mips_reloc_unshuffle(view, r_type, false);
4364     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4365     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4366
4367     Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4368     addend = Bits<18>::sign_extend32(addend);
4369
4370     Valtype32 x = psymval->value(object, addend) - address;
4371     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4372     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4373     mips_reloc_shuffle(view, r_type, false);
4374     return (Bits<18>::has_overflow32(x)
4375             ? This::STATUS_OVERFLOW
4376             : This::STATUS_OKAY);
4377   }
4378
4379   // R_MICROMIPS_PC7_S1
4380   static inline typename This::Status
4381   relmicromips_pc7_s1(unsigned char* view,
4382                       const Mips_relobj<size, big_endian>* object,
4383                       const Symbol_value<size>* psymval, Mips_address address,
4384                       Mips_address addend_a, bool extract_addend,
4385                       unsigned int r_type)
4386   {
4387     mips_reloc_unshuffle(view, r_type, false);
4388     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4389     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4390
4391     Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4392     addend = Bits<8>::sign_extend32(addend);
4393
4394     Valtype32 x = psymval->value(object, addend) - address;
4395     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4396     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4397     mips_reloc_shuffle(view, r_type, false);
4398     return (Bits<8>::has_overflow32(x)
4399             ? This::STATUS_OVERFLOW
4400             : This::STATUS_OKAY);
4401   }
4402
4403   // R_MICROMIPS_PC10_S1
4404   static inline typename This::Status
4405   relmicromips_pc10_s1(unsigned char* view,
4406                        const Mips_relobj<size, big_endian>* object,
4407                        const Symbol_value<size>* psymval, Mips_address address,
4408                        Mips_address addend_a, bool extract_addend,
4409                        unsigned int r_type)
4410   {
4411     mips_reloc_unshuffle(view, r_type, false);
4412     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4413     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4414
4415     Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4416     addend = Bits<11>::sign_extend32(addend);
4417
4418     Valtype32 x = psymval->value(object, addend) - address;
4419     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4420     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4421     mips_reloc_shuffle(view, r_type, false);
4422     return (Bits<11>::has_overflow32(x)
4423             ? This::STATUS_OVERFLOW
4424             : This::STATUS_OKAY);
4425   }
4426
4427   // R_MICROMIPS_PC16_S1
4428   static inline typename This::Status
4429   relmicromips_pc16_s1(unsigned char* view,
4430                        const Mips_relobj<size, big_endian>* object,
4431                        const Symbol_value<size>* psymval, Mips_address address,
4432                        Mips_address addend_a, bool extract_addend,
4433                        unsigned int r_type)
4434   {
4435     mips_reloc_unshuffle(view, r_type, false);
4436     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4437     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4438
4439     Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4440     addend = Bits<17>::sign_extend32(addend);
4441
4442     Valtype32 x = psymval->value(object, addend) - address;
4443     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4444     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4445     mips_reloc_shuffle(view, r_type, false);
4446     return (Bits<17>::has_overflow32(x)
4447             ? This::STATUS_OVERFLOW
4448             : This::STATUS_OKAY);
4449   }
4450
4451   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4452   static inline typename This::Status
4453   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4454           const Symbol_value<size>* psymval, Mips_address addend,
4455           Mips_address address, bool gp_disp, unsigned int r_type,
4456           unsigned int r_sym, bool extract_addend)
4457   {
4458     // Record the relocation.  It will be resolved when we find lo16 part.
4459     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4460                           addend, r_type, r_sym, extract_addend, address,
4461                           gp_disp));
4462     return This::STATUS_OKAY;
4463   }
4464
4465   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4466   static inline typename This::Status
4467   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4468              const Symbol_value<size>* psymval, Mips_address addend_hi,
4469              Mips_address address, bool is_gp_disp, unsigned int r_type,
4470              bool extract_addend, Valtype32 addend_lo,
4471              Target_mips<size, big_endian>* target)
4472   {
4473     mips_reloc_unshuffle(view, r_type, false);
4474     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4475     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4476
4477     Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4478                                        : addend_hi);
4479
4480     Valtype32 value;
4481     if (!is_gp_disp)
4482       value = psymval->value(object, addend);
4483     else
4484       {
4485         // For MIPS16 ABI code we generate this sequence
4486         //    0: li      $v0,%hi(_gp_disp)
4487         //    4: addiupc $v1,%lo(_gp_disp)
4488         //    8: sll     $v0,16
4489         //   12: addu    $v0,$v1
4490         //   14: move    $gp,$v0
4491         // So the offsets of hi and lo relocs are the same, but the
4492         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4493         // ADDIUPC clears the low two bits of the instruction address,
4494         // so the base is ($t9 + 4) & ~3.
4495         Valtype32 gp_disp;
4496         if (r_type == elfcpp::R_MIPS16_HI16)
4497           gp_disp = (target->adjusted_gp_value(object)
4498                      - ((address + 4) & ~0x3));
4499         // The microMIPS .cpload sequence uses the same assembly
4500         // instructions as the traditional psABI version, but the
4501         // incoming $t9 has the low bit set.
4502         else if (r_type == elfcpp::R_MICROMIPS_HI16)
4503           gp_disp = target->adjusted_gp_value(object) - address - 1;
4504         else
4505           gp_disp = target->adjusted_gp_value(object) - address;
4506         value = gp_disp + addend;
4507       }
4508     Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4509     val = Bits<32>::bit_select32(val, x, 0xffff);
4510     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4511     mips_reloc_shuffle(view, r_type, false);
4512     return (is_gp_disp && Bits<16>::has_overflow32(x)
4513             ? This::STATUS_OVERFLOW
4514             : This::STATUS_OKAY);
4515   }
4516
4517   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4518   static inline typename This::Status
4519   relgot16_local(unsigned char* view,
4520                  const Mips_relobj<size, big_endian>* object,
4521                  const Symbol_value<size>* psymval, Mips_address addend_a,
4522                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
4523   {
4524     // Record the relocation.  It will be resolved when we find lo16 part.
4525     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4526                            addend_a, r_type, r_sym, extract_addend));
4527     return This::STATUS_OKAY;
4528   }
4529
4530   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4531   static inline typename This::Status
4532   do_relgot16_local(unsigned char* view,
4533                     const Mips_relobj<size, big_endian>* object,
4534                     const Symbol_value<size>* psymval, Mips_address addend_hi,
4535                     unsigned int r_type, bool extract_addend,
4536                     Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4537   {
4538     mips_reloc_unshuffle(view, r_type, false);
4539     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4540     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4541
4542     Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4543                                        : addend_hi);
4544
4545     // Find GOT page entry.
4546     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4547                           & 0xffff;
4548     value <<= 16;
4549     unsigned int got_offset =
4550       target->got_section()->get_got_page_offset(value, object);
4551
4552     // Resolve the relocation.
4553     Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4554     val = Bits<32>::bit_select32(val, x, 0xffff);
4555     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4556     mips_reloc_shuffle(view, r_type, false);
4557     return (Bits<16>::has_overflow32(x)
4558             ? This::STATUS_OVERFLOW
4559             : This::STATUS_OKAY);
4560   }
4561
4562   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4563   static inline typename This::Status
4564   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4565           const Mips_relobj<size, big_endian>* object,
4566           const Symbol_value<size>* psymval, Mips_address addend_a,
4567           bool extract_addend, Mips_address address, bool is_gp_disp,
4568           unsigned int r_type, unsigned int r_sym)
4569   {
4570     mips_reloc_unshuffle(view, r_type, false);
4571     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4572     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4573
4574     Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4575                                        : addend_a);
4576
4577     // Resolve pending R_MIPS_HI16 relocations.
4578     typename std::list<reloc_high<size, big_endian> >::iterator it =
4579       hi16_relocs.begin();
4580     while (it != hi16_relocs.end())
4581       {
4582         reloc_high<size, big_endian> hi16 = *it;
4583         if (hi16.r_sym == r_sym
4584             && is_matching_lo16_reloc(hi16.r_type, r_type))
4585           {
4586             if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4587                            hi16.address, hi16.gp_disp, hi16.r_type,
4588                            hi16.extract_addend, addend, target)
4589                 == This::STATUS_OVERFLOW)
4590               return This::STATUS_OVERFLOW;
4591             it = hi16_relocs.erase(it);
4592           }
4593         else
4594           ++it;
4595       }
4596
4597     // Resolve pending local R_MIPS_GOT16 relocations.
4598     typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4599       got16_relocs.begin();
4600     while (it2 != got16_relocs.end())
4601       {
4602         reloc_high<size, big_endian> got16 = *it2;
4603         if (got16.r_sym == r_sym
4604             && is_matching_lo16_reloc(got16.r_type, r_type))
4605           {
4606             if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4607                                   got16.addend, got16.r_type,
4608                                   got16.extract_addend, addend,
4609                                   target) == This::STATUS_OVERFLOW)
4610               return This::STATUS_OVERFLOW;
4611             it2 = got16_relocs.erase(it2);
4612           }
4613         else
4614           ++it2;
4615       }
4616
4617     // Resolve R_MIPS_LO16 relocation.
4618     Valtype32 x;
4619     if (!is_gp_disp)
4620       x = psymval->value(object, addend);
4621     else
4622       {
4623         // See the comment for R_MIPS16_HI16 above for the reason
4624         // for this conditional.
4625         Valtype32 gp_disp;
4626         if (r_type == elfcpp::R_MIPS16_LO16)
4627           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4628         else if (r_type == elfcpp::R_MICROMIPS_LO16
4629                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4630           gp_disp = target->adjusted_gp_value(object) - address + 3;
4631         else
4632           gp_disp = target->adjusted_gp_value(object) - address + 4;
4633         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4634         // for overflow.  Relocations against _gp_disp are normally
4635         // generated from the .cpload pseudo-op.  It generates code
4636         // that normally looks like this:
4637
4638         //   lui    $gp,%hi(_gp_disp)
4639         //   addiu  $gp,$gp,%lo(_gp_disp)
4640         //   addu   $gp,$gp,$t9
4641
4642         // Here $t9 holds the address of the function being called,
4643         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
4644         // relocation can easily overflow in this situation, but the
4645         // R_MIPS_HI16 relocation will handle the overflow.
4646         // Therefore, we consider this a bug in the MIPS ABI, and do
4647         // not check for overflow here.
4648         x = gp_disp + addend;
4649       }
4650     val = Bits<32>::bit_select32(val, x, 0xffff);
4651     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4652     mips_reloc_shuffle(view, r_type, false);
4653     return This::STATUS_OKAY;
4654   }
4655
4656   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4657   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4658   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4659   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4660   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4661   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4662   static inline typename This::Status
4663   relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4664   {
4665     mips_reloc_unshuffle(view, r_type, false);
4666     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4667     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4668     Valtype32 x = gp_offset;
4669     val = Bits<32>::bit_select32(val, x, 0xffff);
4670     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4671     mips_reloc_shuffle(view, r_type, false);
4672     return (Bits<16>::has_overflow32(x)
4673             ? This::STATUS_OVERFLOW
4674             : This::STATUS_OKAY);
4675   }
4676
4677   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4678   static inline typename This::Status
4679   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4680              const Mips_relobj<size, big_endian>* object,
4681              const Symbol_value<size>* psymval, Mips_address addend_a,
4682              bool extract_addend, unsigned int r_type)
4683   {
4684     mips_reloc_unshuffle(view, r_type, false);
4685     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4686     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4687     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4688
4689     // Find a GOT page entry that points to within 32KB of symbol + addend.
4690     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4691     unsigned int  got_offset =
4692       target->got_section()->get_got_page_offset(value, object);
4693
4694     Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4695     val = Bits<32>::bit_select32(val, x, 0xffff);
4696     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4697     mips_reloc_shuffle(view, r_type, false);
4698     return (Bits<16>::has_overflow32(x)
4699             ? This::STATUS_OVERFLOW
4700             : This::STATUS_OKAY);
4701   }
4702
4703   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4704   static inline typename This::Status
4705   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4706              const Mips_relobj<size, big_endian>* object,
4707              const Symbol_value<size>* psymval, Mips_address addend_a,
4708              bool extract_addend, bool local, unsigned int r_type)
4709   {
4710     mips_reloc_unshuffle(view, r_type, false);
4711     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4712     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4713     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4714
4715     // For a local symbol, find a GOT page entry that points to within 32KB of
4716     // symbol + addend.  Relocation value is the offset of the GOT page entry's
4717     // value from symbol + addend.
4718     // For a global symbol, relocation value is addend.
4719     Valtype32 x;
4720     if (local)
4721       {
4722         // Find GOT page entry.
4723         Mips_address value = ((psymval->value(object, addend) + 0x8000)
4724                               & ~0xffff);
4725         target->got_section()->get_got_page_offset(value, object);
4726
4727         x = psymval->value(object, addend) - value;
4728       }
4729     else
4730       x = addend;
4731     val = Bits<32>::bit_select32(val, x, 0xffff);
4732     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4733     mips_reloc_shuffle(view, r_type, false);
4734     return (Bits<16>::has_overflow32(x)
4735             ? This::STATUS_OVERFLOW
4736             : This::STATUS_OKAY);
4737   }
4738
4739   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4740   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4741   static inline typename This::Status
4742   relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4743   {
4744     mips_reloc_unshuffle(view, r_type, false);
4745     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4746     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4747     Valtype32 x = gp_offset;
4748     x = ((x + 0x8000) >> 16) & 0xffff;
4749     val = Bits<32>::bit_select32(val, x, 0xffff);
4750     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4751     mips_reloc_shuffle(view, r_type, false);
4752     return This::STATUS_OKAY;
4753   }
4754
4755   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4756   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4757   static inline typename This::Status
4758   relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4759   {
4760     mips_reloc_unshuffle(view, r_type, false);
4761     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4762     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4763     Valtype32 x = gp_offset;
4764     val = Bits<32>::bit_select32(val, x, 0xffff);
4765     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4766     mips_reloc_shuffle(view, r_type, false);
4767     return This::STATUS_OKAY;
4768   }
4769
4770   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4771   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4772   static inline typename This::Status
4773   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4774            const Symbol_value<size>* psymval, Mips_address gp,
4775            Mips_address addend_a, bool extract_addend, bool local,
4776            unsigned int r_type)
4777   {
4778     mips_reloc_unshuffle(view, r_type, false);
4779     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4780     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4781
4782     Valtype32 addend;
4783     if (extract_addend)
4784       {
4785         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4786           addend = (val & 0x7f) << 2;
4787         else
4788           addend = val & 0xffff;
4789         // Only sign-extend the addend if it was extracted from the
4790         // instruction.  If the addend was separate, leave it alone,
4791         // otherwise we may lose significant bits.
4792         addend = Bits<16>::sign_extend32(addend);
4793       }
4794     else
4795       addend = addend_a;
4796
4797     Valtype32 x = psymval->value(object, addend) - gp;
4798
4799     // If the symbol was local, any earlier relocatable links will
4800     // have adjusted its addend with the gp offset, so compensate
4801     // for that now.  Don't do it for symbols forced local in this
4802     // link, though, since they won't have had the gp offset applied
4803     // to them before.
4804     if (local)
4805       x += object->gp_value();
4806
4807     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4808       val = Bits<32>::bit_select32(val, x, 0x7f);
4809     else
4810       val = Bits<32>::bit_select32(val, x, 0xffff);
4811     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4812     mips_reloc_shuffle(view, r_type, false);
4813     if (Bits<16>::has_overflow32(x))
4814       {
4815         gold_error(_("small-data section exceeds 64KB; lower small-data size "
4816                      "limit (see option -G)"));
4817         return This::STATUS_OVERFLOW;
4818       }
4819     return This::STATUS_OKAY;
4820   }
4821
4822   // R_MIPS_GPREL32
4823   static inline typename This::Status
4824   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4825              const Symbol_value<size>* psymval, Mips_address gp,
4826              Mips_address addend_a, bool extract_addend, unsigned int r_type)
4827   {
4828     mips_reloc_unshuffle(view, r_type, false);
4829     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4830     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4831     Valtype32 addend = extract_addend ? val : addend_a;
4832
4833     // R_MIPS_GPREL32 relocations are defined for local symbols only.
4834     Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4835     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4836     mips_reloc_shuffle(view, r_type, false);
4837     return This::STATUS_OKAY;
4838  }
4839
4840   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4841   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4842   // R_MICROMIPS_TLS_DTPREL_HI16
4843   static inline typename This::Status
4844   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4845              const Symbol_value<size>* psymval, Valtype32 tp_offset,
4846              Mips_address addend_a, bool extract_addend, unsigned int r_type)
4847   {
4848     mips_reloc_unshuffle(view, r_type, false);
4849     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4850     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4851     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4852
4853     // tls symbol values are relative to tls_segment()->vaddr()
4854     Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4855     val = Bits<32>::bit_select32(val, x, 0xffff);
4856     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4857     mips_reloc_shuffle(view, r_type, false);
4858     return This::STATUS_OKAY;
4859   }
4860
4861   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4862   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4863   // R_MICROMIPS_TLS_DTPREL_LO16,
4864   static inline typename This::Status
4865   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4866              const Symbol_value<size>* psymval, Valtype32 tp_offset,
4867              Mips_address addend_a, bool extract_addend, unsigned int r_type)
4868   {
4869     mips_reloc_unshuffle(view, r_type, false);
4870     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4871     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4872     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4873
4874     // tls symbol values are relative to tls_segment()->vaddr()
4875     Valtype32 x = psymval->value(object, addend) - tp_offset;
4876     val = Bits<32>::bit_select32(val, x, 0xffff);
4877     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4878     mips_reloc_shuffle(view, r_type, false);
4879     return This::STATUS_OKAY;
4880   }
4881
4882   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4883   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4884   static inline typename This::Status
4885   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4886            const Symbol_value<size>* psymval, Valtype32 tp_offset,
4887            Mips_address addend_a, bool extract_addend, unsigned int r_type)
4888   {
4889     mips_reloc_unshuffle(view, r_type, false);
4890     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4891     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4892     Valtype32 addend = extract_addend ? val : addend_a;
4893
4894     // tls symbol values are relative to tls_segment()->vaddr()
4895     Valtype32 x = psymval->value(object, addend) - tp_offset;
4896     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4897     mips_reloc_shuffle(view, r_type, false);
4898     return This::STATUS_OKAY;
4899   }
4900
4901   // R_MIPS_SUB, R_MICROMIPS_SUB
4902   static inline typename This::Status
4903   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4904          const Symbol_value<size>* psymval, Mips_address addend_a,
4905          bool extract_addend, unsigned int r_type)
4906   {
4907     mips_reloc_unshuffle(view, r_type, false);
4908     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4909     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4910     Valtype32 addend = extract_addend ? val : addend_a;
4911
4912     Valtype32 x = psymval->value(object, -addend);
4913     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4914     mips_reloc_shuffle(view, r_type, false);
4915     return This::STATUS_OKAY;
4916  }
4917 };
4918
4919 template<int size, bool big_endian>
4920 typename std::list<reloc_high<size, big_endian> >
4921     Mips_relocate_functions<size, big_endian>::hi16_relocs;
4922
4923 template<int size, bool big_endian>
4924 typename std::list<reloc_high<size, big_endian> >
4925     Mips_relocate_functions<size, big_endian>::got16_relocs;
4926
4927 // Mips_got_info methods.
4928
4929 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4930 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4931
4932 template<int size, bool big_endian>
4933 void
4934 Mips_got_info<size, big_endian>::record_local_got_symbol(
4935     Mips_relobj<size, big_endian>* object, unsigned int symndx,
4936     Mips_address addend, unsigned int r_type, unsigned int shndx)
4937 {
4938   Mips_got_entry<size, big_endian>* entry =
4939     new Mips_got_entry<size, big_endian>(object, symndx, addend,
4940                                          mips_elf_reloc_tls_type(r_type),
4941                                          shndx);
4942   this->record_got_entry(entry, object);
4943 }
4944
4945 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4946 // in OBJECT.  FOR_CALL is true if the caller is only interested in
4947 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
4948 // relocation.
4949
4950 template<int size, bool big_endian>
4951 void
4952 Mips_got_info<size, big_endian>::record_global_got_symbol(
4953     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4954     unsigned int r_type, bool dyn_reloc, bool for_call)
4955 {
4956   if (!for_call)
4957     mips_sym->set_got_not_only_for_calls();
4958
4959   // A global symbol in the GOT must also be in the dynamic symbol table.
4960   if (!mips_sym->needs_dynsym_entry())
4961     {
4962       switch (mips_sym->visibility())
4963         {
4964         case elfcpp::STV_INTERNAL:
4965         case elfcpp::STV_HIDDEN:
4966           mips_sym->set_is_forced_local();
4967           break;
4968         default:
4969           mips_sym->set_needs_dynsym_entry();
4970           break;
4971         }
4972     }
4973
4974   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4975   if (tls_type == GOT_TLS_NONE)
4976     this->global_got_symbols_.insert(mips_sym);
4977
4978   if (dyn_reloc)
4979     {
4980       if (mips_sym->global_got_area() == GGA_NONE)
4981         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4982       return;
4983     }
4984
4985   Mips_got_entry<size, big_endian>* entry =
4986     new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4987
4988   this->record_got_entry(entry, object);
4989 }
4990
4991 // Add ENTRY to master GOT and to OBJECT's GOT.
4992
4993 template<int size, bool big_endian>
4994 void
4995 Mips_got_info<size, big_endian>::record_got_entry(
4996     Mips_got_entry<size, big_endian>* entry,
4997     Mips_relobj<size, big_endian>* object)
4998 {
4999   if (this->got_entries_.find(entry) == this->got_entries_.end())
5000     this->got_entries_.insert(entry);
5001
5002   // Create the GOT entry for the OBJECT's GOT.
5003   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5004   Mips_got_entry<size, big_endian>* entry2 =
5005     new Mips_got_entry<size, big_endian>(*entry);
5006
5007   if (g->got_entries_.find(entry2) == g->got_entries_.end())
5008     g->got_entries_.insert(entry2);
5009 }
5010
5011 // Record that OBJECT has a page relocation against symbol SYMNDX and
5012 // that ADDEND is the addend for that relocation.
5013 // This function creates an upper bound on the number of GOT slots
5014 // required; no attempt is made to combine references to non-overridable
5015 // global symbols across multiple input files.
5016
5017 template<int size, bool big_endian>
5018 void
5019 Mips_got_info<size, big_endian>::record_got_page_entry(
5020     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5021 {
5022   struct Got_page_range **range_ptr, *range;
5023   int old_pages, new_pages;
5024
5025   // Find the Got_page_entry for this symbol.
5026   Got_page_entry* entry = new Got_page_entry(object, symndx);
5027   typename Got_page_entry_set::iterator it =
5028     this->got_page_entries_.find(entry);
5029   if (it != this->got_page_entries_.end())
5030     entry = *it;
5031   else
5032     this->got_page_entries_.insert(entry);
5033
5034   // Add the same entry to the OBJECT's GOT.
5035   Got_page_entry* entry2 = NULL;
5036   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5037   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5038     {
5039       entry2 = new Got_page_entry(*entry);
5040       g2->got_page_entries_.insert(entry2);
5041     }
5042
5043   // Skip over ranges whose maximum extent cannot share a page entry
5044   // with ADDEND.
5045   range_ptr = &entry->ranges;
5046   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5047     range_ptr = &(*range_ptr)->next;
5048
5049   // If we scanned to the end of the list, or found a range whose
5050   // minimum extent cannot share a page entry with ADDEND, create
5051   // a new singleton range.
5052   range = *range_ptr;
5053   if (!range || addend < range->min_addend - 0xffff)
5054     {
5055       range = new Got_page_range();
5056       range->next = *range_ptr;
5057       range->min_addend = addend;
5058       range->max_addend = addend;
5059
5060       *range_ptr = range;
5061       ++entry->num_pages;
5062       if (entry2 != NULL)
5063         ++entry2->num_pages;
5064       ++this->page_gotno_;
5065       ++g2->page_gotno_;
5066       return;
5067     }
5068
5069   // Remember how many pages the old range contributed.
5070   old_pages = range->get_max_pages();
5071
5072   // Update the ranges.
5073   if (addend < range->min_addend)
5074     range->min_addend = addend;
5075   else if (addend > range->max_addend)
5076     {
5077       if (range->next && addend >= range->next->min_addend - 0xffff)
5078         {
5079           old_pages += range->next->get_max_pages();
5080           range->max_addend = range->next->max_addend;
5081           range->next = range->next->next;
5082         }
5083       else
5084         range->max_addend = addend;
5085     }
5086
5087   // Record any change in the total estimate.
5088   new_pages = range->get_max_pages();
5089   if (old_pages != new_pages)
5090     {
5091       entry->num_pages += new_pages - old_pages;
5092       if (entry2 != NULL)
5093         entry2->num_pages += new_pages - old_pages;
5094       this->page_gotno_ += new_pages - old_pages;
5095       g2->page_gotno_ += new_pages - old_pages;
5096     }
5097 }
5098
5099 // Create all entries that should be in the local part of the GOT.
5100
5101 template<int size, bool big_endian>
5102 void
5103 Mips_got_info<size, big_endian>::add_local_entries(
5104     Target_mips<size, big_endian>* target, Layout* layout)
5105 {
5106   Mips_output_data_got<size, big_endian>* got = target->got_section();
5107   // First two GOT entries are reserved.  The first entry will be filled at
5108   // runtime.  The second entry will be used by some runtime loaders.
5109   got->add_constant(0);
5110   got->add_constant(target->mips_elf_gnu_got1_mask());
5111
5112   for (typename Got_entry_set::iterator
5113        p = this->got_entries_.begin();
5114        p != this->got_entries_.end();
5115        ++p)
5116     {
5117       Mips_got_entry<size, big_endian>* entry = *p;
5118       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5119         {
5120           got->add_local(entry->object(), entry->symndx(),
5121                          GOT_TYPE_STANDARD);
5122           unsigned int got_offset = entry->object()->local_got_offset(
5123               entry->symndx(), GOT_TYPE_STANDARD);
5124           if (got->multi_got() && this->index_ > 0
5125               && parameters->options().output_is_position_independent())
5126             target->rel_dyn_section(layout)->add_local(entry->object(),
5127                 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5128         }
5129     }
5130
5131   this->add_page_entries(target, layout);
5132
5133   // Add global entries that should be in the local area.
5134   for (typename Got_entry_set::iterator
5135        p = this->got_entries_.begin();
5136        p != this->got_entries_.end();
5137        ++p)
5138     {
5139       Mips_got_entry<size, big_endian>* entry = *p;
5140       if (!entry->is_for_global_symbol())
5141         continue;
5142
5143       Mips_symbol<size>* mips_sym = entry->sym();
5144       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5145         {
5146           unsigned int got_type;
5147           if (!got->multi_got())
5148             got_type = GOT_TYPE_STANDARD;
5149           else
5150             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5151           if (got->add_global(mips_sym, got_type))
5152             {
5153               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5154               if (got->multi_got() && this->index_ > 0
5155                   && parameters->options().output_is_position_independent())
5156                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5157                     mips_sym, elfcpp::R_MIPS_REL32, got,
5158                     mips_sym->got_offset(got_type));
5159             }
5160         }
5161     }
5162 }
5163
5164 // Create GOT page entries.
5165
5166 template<int size, bool big_endian>
5167 void
5168 Mips_got_info<size, big_endian>::add_page_entries(
5169     Target_mips<size, big_endian>* target, Layout* layout)
5170 {
5171   if (this->page_gotno_ == 0)
5172     return;
5173
5174   Mips_output_data_got<size, big_endian>* got = target->got_section();
5175   this->got_page_offset_start_ = got->add_constant(0);
5176   if (got->multi_got() && this->index_ > 0
5177       && parameters->options().output_is_position_independent())
5178     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5179                                                   this->got_page_offset_start_);
5180   int num_entries = this->page_gotno_;
5181   unsigned int prev_offset = this->got_page_offset_start_;
5182   while (--num_entries > 0)
5183     {
5184       unsigned int next_offset = got->add_constant(0);
5185       if (got->multi_got() && this->index_ > 0
5186           && parameters->options().output_is_position_independent())
5187         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5188                                                       next_offset);
5189       gold_assert(next_offset == prev_offset + size/8);
5190       prev_offset = next_offset;
5191     }
5192   this->got_page_offset_next_ = this->got_page_offset_start_;
5193 }
5194
5195 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5196
5197 template<int size, bool big_endian>
5198 void
5199 Mips_got_info<size, big_endian>::add_global_entries(
5200     Target_mips<size, big_endian>* target, Layout* layout,
5201     unsigned int non_reloc_only_global_gotno)
5202 {
5203   Mips_output_data_got<size, big_endian>* got = target->got_section();
5204   // Add GGA_NORMAL entries.
5205   unsigned int count = 0;
5206   for (typename Got_entry_set::iterator
5207        p = this->got_entries_.begin();
5208        p != this->got_entries_.end();
5209        ++p)
5210     {
5211       Mips_got_entry<size, big_endian>* entry = *p;
5212       if (!entry->is_for_global_symbol())
5213         continue;
5214
5215       Mips_symbol<size>* mips_sym = entry->sym();
5216       if (mips_sym->global_got_area() != GGA_NORMAL)
5217         continue;
5218
5219       unsigned int got_type;
5220       if (!got->multi_got())
5221         got_type = GOT_TYPE_STANDARD;
5222       else
5223         // In multi-GOT links, global symbol can be in both primary and
5224         // secondary GOT(s).  By creating custom GOT type
5225         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5226         // is added to secondary GOT(s).
5227         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5228       if (!got->add_global(mips_sym, got_type))
5229         continue;
5230
5231       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5232       if (got->multi_got() && this->index_ == 0)
5233         count++;
5234       if (got->multi_got() && this->index_ > 0)
5235         {
5236           if (parameters->options().output_is_position_independent()
5237               || (!parameters->doing_static_link()
5238                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5239             {
5240               target->rel_dyn_section(layout)->add_global(
5241                   mips_sym, elfcpp::R_MIPS_REL32, got,
5242                   mips_sym->got_offset(got_type));
5243               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5244                                            elfcpp::R_MIPS_REL32, mips_sym);
5245             }
5246         }
5247     }
5248
5249   if (!got->multi_got() || this->index_ == 0)
5250     {
5251       if (got->multi_got())
5252         {
5253           // We need to allocate space in the primary GOT for GGA_NORMAL entries
5254           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5255           // entries correspond to dynamic symbol indexes.
5256           while (count < non_reloc_only_global_gotno)
5257             {
5258               got->add_constant(0);
5259               ++count;
5260             }
5261         }
5262
5263       // Add GGA_RELOC_ONLY entries.
5264       got->add_reloc_only_entries();
5265     }
5266 }
5267
5268 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5269
5270 template<int size, bool big_endian>
5271 void
5272 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5273     Mips_output_data_got<size, big_endian>* got)
5274 {
5275   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5276        p = this->global_got_symbols_.begin();
5277        p != this->global_got_symbols_.end();
5278        ++p)
5279     {
5280       Mips_symbol<size>* mips_sym = *p;
5281       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5282         {
5283           unsigned int got_type;
5284           if (!got->multi_got())
5285             got_type = GOT_TYPE_STANDARD;
5286           else
5287             got_type = GOT_TYPE_STANDARD_MULTIGOT;
5288           if (got->add_global(mips_sym, got_type))
5289             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5290         }
5291     }
5292 }
5293
5294 // Create TLS GOT entries.
5295
5296 template<int size, bool big_endian>
5297 void
5298 Mips_got_info<size, big_endian>::add_tls_entries(
5299     Target_mips<size, big_endian>* target, Layout* layout)
5300 {
5301   Mips_output_data_got<size, big_endian>* got = target->got_section();
5302   // Add local tls entries.
5303   for (typename Got_entry_set::iterator
5304        p = this->got_entries_.begin();
5305        p != this->got_entries_.end();
5306        ++p)
5307     {
5308       Mips_got_entry<size, big_endian>* entry = *p;
5309       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5310         continue;
5311
5312       if (entry->tls_type() == GOT_TLS_GD)
5313         {
5314           unsigned int got_type = GOT_TYPE_TLS_PAIR;
5315           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5316                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5317           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5318                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5319
5320           if (!parameters->doing_static_link())
5321             {
5322               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5323                                            entry->shndx(), got_type,
5324                                            target->rel_dyn_section(layout),
5325                                            r_type1);
5326               unsigned int got_offset =
5327                 entry->object()->local_got_offset(entry->symndx(), got_type);
5328               got->add_static_reloc(got_offset + size/8, r_type2,
5329                                     entry->object(), entry->symndx());
5330             }
5331           else
5332             {
5333               // We are doing a static link.  Mark it as belong to module 1,
5334               // the executable.
5335               unsigned int got_offset = got->add_constant(1);
5336               entry->object()->set_local_got_offset(entry->symndx(), got_type,
5337                                                     got_offset);
5338               got->add_constant(0);
5339               got->add_static_reloc(got_offset + size/8, r_type2,
5340                                     entry->object(), entry->symndx());
5341             }
5342         }
5343       else if (entry->tls_type() == GOT_TLS_IE)
5344         {
5345           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5346           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5347                                             : elfcpp::R_MIPS_TLS_TPREL64);
5348           if (!parameters->doing_static_link())
5349             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5350                                     target->rel_dyn_section(layout), r_type);
5351           else
5352             {
5353               got->add_local(entry->object(), entry->symndx(), got_type);
5354               unsigned int got_offset =
5355                   entry->object()->local_got_offset(entry->symndx(), got_type);
5356               got->add_static_reloc(got_offset, r_type, entry->object(),
5357                                     entry->symndx());
5358             }
5359         }
5360       else if (entry->tls_type() == GOT_TLS_LDM)
5361         {
5362           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5363                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
5364           unsigned int got_offset;
5365           if (!parameters->doing_static_link())
5366             {
5367               got_offset = got->add_constant(0);
5368               target->rel_dyn_section(layout)->add_local(
5369                   entry->object(), 0, r_type, got, got_offset);
5370             }
5371           else
5372             // We are doing a static link.  Just mark it as belong to module 1,
5373             // the executable.
5374             got_offset = got->add_constant(1);
5375
5376           got->add_constant(0);
5377           got->set_tls_ldm_offset(got_offset, entry->object());
5378         }
5379       else
5380         gold_unreachable();
5381     }
5382
5383   // Add global tls entries.
5384   for (typename Got_entry_set::iterator
5385        p = this->got_entries_.begin();
5386        p != this->got_entries_.end();
5387        ++p)
5388     {
5389       Mips_got_entry<size, big_endian>* entry = *p;
5390       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5391         continue;
5392
5393       Mips_symbol<size>* mips_sym = entry->sym();
5394       if (entry->tls_type() == GOT_TLS_GD)
5395         {
5396           unsigned int got_type;
5397           if (!got->multi_got())
5398             got_type = GOT_TYPE_TLS_PAIR;
5399           else
5400             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5401           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5402                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5403           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5404                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5405           if (!parameters->doing_static_link())
5406             got->add_global_pair_with_rel(mips_sym, got_type,
5407                              target->rel_dyn_section(layout), r_type1, r_type2);
5408           else
5409             {
5410               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
5411               // GOT entries.  The first one is initialized to be 1, which is the
5412               // module index for the main executable and the second one 0.  A
5413               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5414               // the second GOT entry and will be applied by gold.
5415               unsigned int got_offset = got->add_constant(1);
5416               mips_sym->set_got_offset(got_type, got_offset);
5417               got->add_constant(0);
5418               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5419             }
5420         }
5421       else if (entry->tls_type() == GOT_TLS_IE)
5422         {
5423           unsigned int got_type;
5424           if (!got->multi_got())
5425             got_type = GOT_TYPE_TLS_OFFSET;
5426           else
5427             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5428           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5429                                             : elfcpp::R_MIPS_TLS_TPREL64);
5430           if (!parameters->doing_static_link())
5431             got->add_global_with_rel(mips_sym, got_type,
5432                                      target->rel_dyn_section(layout), r_type);
5433           else
5434             {
5435               got->add_global(mips_sym, got_type);
5436               unsigned int got_offset = mips_sym->got_offset(got_type);
5437               got->add_static_reloc(got_offset, r_type, mips_sym);
5438             }
5439         }
5440       else
5441         gold_unreachable();
5442     }
5443 }
5444
5445 // Decide whether the symbol needs an entry in the global part of the primary
5446 // GOT, setting global_got_area accordingly.  Count the number of global
5447 // symbols that are in the primary GOT only because they have dynamic
5448 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
5449
5450 template<int size, bool big_endian>
5451 void
5452 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5453 {
5454   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5455        p = this->global_got_symbols_.begin();
5456        p != this->global_got_symbols_.end();
5457        ++p)
5458     {
5459       Mips_symbol<size>* sym = *p;
5460       // Make a final decision about whether the symbol belongs in the
5461       // local or global GOT.  Symbols that bind locally can (and in the
5462       // case of forced-local symbols, must) live in the local GOT.
5463       // Those that are aren't in the dynamic symbol table must also
5464       // live in the local GOT.
5465
5466       if (!sym->should_add_dynsym_entry(symtab)
5467           || (sym->got_only_for_calls()
5468               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5469               : symbol_references_local(sym,
5470                                         sym->should_add_dynsym_entry(symtab))))
5471         // The symbol belongs in the local GOT.  We no longer need this
5472         // entry if it was only used for relocations; those relocations
5473         // will be against the null or section symbol instead.
5474         sym->set_global_got_area(GGA_NONE);
5475       else if (sym->global_got_area() == GGA_RELOC_ONLY)
5476         {
5477           ++this->reloc_only_gotno_;
5478           ++this->global_gotno_ ;
5479         }
5480     }
5481 }
5482
5483 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
5484 // VALUE if it is not initialized.
5485
5486 template<int size, bool big_endian>
5487 unsigned int
5488 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5489     Mips_output_data_got<size, big_endian>* got)
5490 {
5491   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5492   if (it != this->got_page_offsets_.end())
5493     return it->second;
5494
5495   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5496               + (size/8) * this->page_gotno_);
5497
5498   unsigned int got_offset = this->got_page_offset_next_;
5499   this->got_page_offsets_[value] = got_offset;
5500   this->got_page_offset_next_ += size/8;
5501   got->update_got_entry(got_offset, value);
5502   return got_offset;
5503 }
5504
5505 // Remove lazy-binding stubs for global symbols in this GOT.
5506
5507 template<int size, bool big_endian>
5508 void
5509 Mips_got_info<size, big_endian>::remove_lazy_stubs(
5510     Target_mips<size, big_endian>* target)
5511 {
5512   for (typename Got_entry_set::iterator
5513        p = this->got_entries_.begin();
5514        p != this->got_entries_.end();
5515        ++p)
5516     {
5517       Mips_got_entry<size, big_endian>* entry = *p;
5518       if (entry->is_for_global_symbol())
5519         target->remove_lazy_stub_entry(entry->sym());
5520     }
5521 }
5522
5523 // Count the number of GOT entries required.
5524
5525 template<int size, bool big_endian>
5526 void
5527 Mips_got_info<size, big_endian>::count_got_entries()
5528 {
5529   for (typename Got_entry_set::iterator
5530        p = this->got_entries_.begin();
5531        p != this->got_entries_.end();
5532        ++p)
5533     {
5534       this->count_got_entry(*p);
5535     }
5536 }
5537
5538 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
5539
5540 template<int size, bool big_endian>
5541 void
5542 Mips_got_info<size, big_endian>::count_got_entry(
5543     Mips_got_entry<size, big_endian>* entry)
5544 {
5545   if (entry->is_tls_entry())
5546     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5547   else if (entry->is_for_local_symbol()
5548            || entry->sym()->global_got_area() == GGA_NONE)
5549     ++this->local_gotno_;
5550   else
5551     ++this->global_gotno_;
5552 }
5553
5554 // Add FROM's GOT entries.
5555
5556 template<int size, bool big_endian>
5557 void
5558 Mips_got_info<size, big_endian>::add_got_entries(
5559     Mips_got_info<size, big_endian>* from)
5560 {
5561   for (typename Got_entry_set::iterator
5562        p = from->got_entries_.begin();
5563        p != from->got_entries_.end();
5564        ++p)
5565     {
5566       Mips_got_entry<size, big_endian>* entry = *p;
5567       if (this->got_entries_.find(entry) == this->got_entries_.end())
5568         {
5569           Mips_got_entry<size, big_endian>* entry2 =
5570             new Mips_got_entry<size, big_endian>(*entry);
5571           this->got_entries_.insert(entry2);
5572           this->count_got_entry(entry);
5573         }
5574     }
5575 }
5576
5577 // Add FROM's GOT page entries.
5578
5579 template<int size, bool big_endian>
5580 void
5581 Mips_got_info<size, big_endian>::add_got_page_entries(
5582     Mips_got_info<size, big_endian>* from)
5583 {
5584   for (typename Got_page_entry_set::iterator
5585        p = from->got_page_entries_.begin();
5586        p != from->got_page_entries_.end();
5587        ++p)
5588     {
5589       Got_page_entry* entry = *p;
5590       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5591         {
5592           Got_page_entry* entry2 = new Got_page_entry(*entry);
5593           this->got_page_entries_.insert(entry2);
5594           this->page_gotno_ += entry->num_pages;
5595         }
5596     }
5597 }
5598
5599 // Mips_output_data_got methods.
5600
5601 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
5602 // larger than 64K, create multi-GOT.
5603
5604 template<int size, bool big_endian>
5605 void
5606 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5607     Symbol_table* symtab, const Input_objects* input_objects)
5608 {
5609   // Decide which symbols need to go in the global part of the GOT and
5610   // count the number of reloc-only GOT symbols.
5611   this->master_got_info_->count_got_symbols(symtab);
5612
5613   // Count the number of GOT entries.
5614   this->master_got_info_->count_got_entries();
5615
5616   unsigned int got_size = this->master_got_info_->got_size();
5617   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5618     this->lay_out_multi_got(layout, input_objects);
5619   else
5620     {
5621       // Record that all objects use single GOT.
5622       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5623            p != input_objects->relobj_end();
5624            ++p)
5625         {
5626           Mips_relobj<size, big_endian>* object =
5627             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5628           if (object->get_got_info() != NULL)
5629             object->set_got_info(this->master_got_info_);
5630         }
5631
5632       this->master_got_info_->add_local_entries(this->target_, layout);
5633       this->master_got_info_->add_global_entries(this->target_, layout,
5634                                                  /*not used*/-1U);
5635       this->master_got_info_->add_tls_entries(this->target_, layout);
5636     }
5637 }
5638
5639 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
5640
5641 template<int size, bool big_endian>
5642 void
5643 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5644     const Input_objects* input_objects)
5645 {
5646   // Try to merge the GOTs of input objects together, as long as they
5647   // don't seem to exceed the maximum GOT size, choosing one of them
5648   // to be the primary GOT.
5649   this->merge_gots(input_objects);
5650
5651   // Every symbol that is referenced in a dynamic relocation must be
5652   // present in the primary GOT.
5653   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5654
5655   // Add GOT entries.
5656   unsigned int i = 0;
5657   unsigned int offset = 0;
5658   Mips_got_info<size, big_endian>* g = this->primary_got_;
5659   do
5660     {
5661       g->set_index(i);
5662       g->set_offset(offset);
5663
5664       g->add_local_entries(this->target_, layout);
5665       if (i == 0)
5666         g->add_global_entries(this->target_, layout,
5667                               (this->master_got_info_->global_gotno()
5668                                - this->master_got_info_->reloc_only_gotno()));
5669       else
5670         g->add_global_entries(this->target_, layout, /*not used*/-1U);
5671       g->add_tls_entries(this->target_, layout);
5672
5673       // Forbid global symbols in every non-primary GOT from having
5674       // lazy-binding stubs.
5675       if (i > 0)
5676         g->remove_lazy_stubs(this->target_);
5677
5678       ++i;
5679       offset += g->got_size();
5680       g = g->next();
5681     }
5682   while (g);
5683 }
5684
5685 // Attempt to merge GOTs of different input objects.  Try to use as much as
5686 // possible of the primary GOT, since it doesn't require explicit dynamic
5687 // relocations, but don't use objects that would reference global symbols
5688 // out of the addressable range.  Failing the primary GOT, attempt to merge
5689 // with the current GOT, or finish the current GOT and then make make the new
5690 // GOT current.
5691
5692 template<int size, bool big_endian>
5693 void
5694 Mips_output_data_got<size, big_endian>::merge_gots(
5695     const Input_objects* input_objects)
5696 {
5697   gold_assert(this->primary_got_ == NULL);
5698   Mips_got_info<size, big_endian>* current = NULL;
5699
5700   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5701        p != input_objects->relobj_end();
5702        ++p)
5703     {
5704       Mips_relobj<size, big_endian>* object =
5705         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5706
5707       Mips_got_info<size, big_endian>* g = object->get_got_info();
5708       if (g == NULL)
5709         continue;
5710
5711       g->count_got_entries();
5712
5713       // Work out the number of page, local and TLS entries.
5714       unsigned int estimate = this->master_got_info_->page_gotno();
5715       if (estimate > g->page_gotno())
5716         estimate = g->page_gotno();
5717       estimate += g->local_gotno() + g->tls_gotno();
5718
5719       // We place TLS GOT entries after both locals and globals.  The globals
5720       // for the primary GOT may overflow the normal GOT size limit, so be
5721       // sure not to merge a GOT which requires TLS with the primary GOT in that
5722       // case.  This doesn't affect non-primary GOTs.
5723       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5724                                       : g->global_gotno());
5725
5726       unsigned int max_count =
5727         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5728       if (estimate <= max_count)
5729         {
5730           // If we don't have a primary GOT, use it as
5731           // a starting point for the primary GOT.
5732           if (!this->primary_got_)
5733             {
5734               this->primary_got_ = g;
5735               continue;
5736             }
5737
5738           // Try merging with the primary GOT.
5739           if (this->merge_got_with(g, object, this->primary_got_))
5740             continue;
5741         }
5742
5743       // If we can merge with the last-created GOT, do it.
5744       if (current && this->merge_got_with(g, object, current))
5745         continue;
5746
5747       // Well, we couldn't merge, so create a new GOT.  Don't check if it
5748       // fits; if it turns out that it doesn't, we'll get relocation
5749       // overflows anyway.
5750       g->set_next(current);
5751       current = g;
5752     }
5753
5754   // If we do not find any suitable primary GOT, create an empty one.
5755   if (this->primary_got_ == NULL)
5756     this->primary_got_ = new Mips_got_info<size, big_endian>();
5757
5758   // Link primary GOT with secondary GOTs.
5759   this->primary_got_->set_next(current);
5760 }
5761
5762 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
5763 // this would lead to overflow, true if they were merged successfully.
5764
5765 template<int size, bool big_endian>
5766 bool
5767 Mips_output_data_got<size, big_endian>::merge_got_with(
5768     Mips_got_info<size, big_endian>* from,
5769     Mips_relobj<size, big_endian>* object,
5770     Mips_got_info<size, big_endian>* to)
5771 {
5772   // Work out how many page entries we would need for the combined GOT.
5773   unsigned int estimate = this->master_got_info_->page_gotno();
5774   if (estimate >= from->page_gotno() + to->page_gotno())
5775     estimate = from->page_gotno() + to->page_gotno();
5776
5777   // Conservatively estimate how many local and TLS entries would be needed.
5778   estimate += from->local_gotno() + to->local_gotno();
5779   estimate += from->tls_gotno() + to->tls_gotno();
5780
5781   // If we're merging with the primary got, any TLS relocations will
5782   // come after the full set of global entries.  Otherwise estimate those
5783   // conservatively as well.
5784   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5785     estimate += this->master_got_info_->global_gotno();
5786   else
5787     estimate += from->global_gotno() + to->global_gotno();
5788
5789   // Bail out if the combined GOT might be too big.
5790   unsigned int max_count =
5791     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5792   if (estimate > max_count)
5793     return false;
5794
5795   // Transfer the object's GOT information from FROM to TO.
5796   to->add_got_entries(from);
5797   to->add_got_page_entries(from);
5798
5799   // Record that OBJECT should use output GOT TO.
5800   object->set_got_info(to);
5801
5802   return true;
5803 }
5804
5805 // Write out the GOT.
5806
5807 template<int size, bool big_endian>
5808 void
5809 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5810 {
5811   // Call parent to write out GOT.
5812   Output_data_got<size, big_endian>::do_write(of);
5813
5814   const off_t offset = this->offset();
5815   const section_size_type oview_size =
5816     convert_to_section_size_type(this->data_size());
5817   unsigned char* const oview = of->get_output_view(offset, oview_size);
5818
5819   // Needed for fixing values of .got section.
5820   this->got_view_ = oview;
5821
5822   // Write lazy stub addresses.
5823   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5824        p = this->master_got_info_->global_got_symbols().begin();
5825        p != this->master_got_info_->global_got_symbols().end();
5826        ++p)
5827     {
5828       Mips_symbol<size>* mips_sym = *p;
5829       if (mips_sym->has_lazy_stub())
5830         {
5831           Valtype* wv = reinterpret_cast<Valtype*>(
5832             oview + this->get_primary_got_offset(mips_sym));
5833           Valtype value =
5834             this->target_->mips_stubs_section()->stub_address(mips_sym);
5835           elfcpp::Swap<size, big_endian>::writeval(wv, value);
5836         }
5837     }
5838
5839   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5840   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5841        p = this->master_got_info_->global_got_symbols().begin();
5842        p != this->master_got_info_->global_got_symbols().end();
5843        ++p)
5844     {
5845       Mips_symbol<size>* mips_sym = *p;
5846       if (!this->multi_got()
5847           && (mips_sym->is_mips16() || mips_sym->is_micromips())
5848           && mips_sym->global_got_area() == GGA_NONE
5849           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5850         {
5851           Valtype* wv = reinterpret_cast<Valtype*>(
5852             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5853           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5854           if (value != 0)
5855             {
5856               value |= 1;
5857               elfcpp::Swap<size, big_endian>::writeval(wv, value);
5858             }
5859         }
5860     }
5861
5862   if (!this->secondary_got_relocs_.empty())
5863     {
5864       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
5865       // secondary GOT entries with non-zero initial value copy the value
5866       // to the corresponding primary GOT entry, and set the secondary GOT
5867       // entry to zero.
5868       // TODO(sasa): This is workaround.  It needs to be investigated further.
5869
5870       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5871         {
5872           Static_reloc& reloc(this->secondary_got_relocs_[i]);
5873           if (reloc.symbol_is_global())
5874             {
5875               Mips_symbol<size>* gsym = reloc.symbol();
5876               gold_assert(gsym != NULL);
5877
5878               unsigned got_offset = reloc.got_offset();
5879               gold_assert(got_offset < oview_size);
5880
5881               // Find primary GOT entry.
5882               Valtype* wv_prim = reinterpret_cast<Valtype*>(
5883                 oview + this->get_primary_got_offset(gsym));
5884
5885               // Find secondary GOT entry.
5886               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5887
5888               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5889               if (value != 0)
5890                 {
5891                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5892                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5893                   gsym->set_applied_secondary_got_fixup();
5894                 }
5895             }
5896         }
5897
5898       of->write_output_view(offset, oview_size, oview);
5899     }
5900
5901   // We are done if there is no fix up.
5902   if (this->static_relocs_.empty())
5903     return;
5904
5905   Output_segment* tls_segment = this->layout_->tls_segment();
5906   gold_assert(tls_segment != NULL);
5907
5908   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5909     {
5910       Static_reloc& reloc(this->static_relocs_[i]);
5911
5912       Mips_address value;
5913       if (!reloc.symbol_is_global())
5914         {
5915           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5916           const Symbol_value<size>* psymval =
5917             object->local_symbol(reloc.index());
5918
5919           // We are doing static linking.  Issue an error and skip this
5920           // relocation if the symbol is undefined or in a discarded_section.
5921           bool is_ordinary;
5922           unsigned int shndx = psymval->input_shndx(&is_ordinary);
5923           if ((shndx == elfcpp::SHN_UNDEF)
5924               || (is_ordinary
5925                   && shndx != elfcpp::SHN_UNDEF
5926                   && !object->is_section_included(shndx)
5927                   && !this->symbol_table_->is_section_folded(object, shndx)))
5928             {
5929               gold_error(_("undefined or discarded local symbol %u from "
5930                            " object %s in GOT"),
5931                          reloc.index(), reloc.relobj()->name().c_str());
5932               continue;
5933             }
5934
5935           value = psymval->value(object, 0);
5936         }
5937       else
5938         {
5939           const Mips_symbol<size>* gsym = reloc.symbol();
5940           gold_assert(gsym != NULL);
5941
5942           // We are doing static linking.  Issue an error and skip this
5943           // relocation if the symbol is undefined or in a discarded_section
5944           // unless it is a weakly_undefined symbol.
5945           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5946               && !gsym->is_weak_undefined())
5947             {
5948               gold_error(_("undefined or discarded symbol %s in GOT"),
5949                          gsym->name());
5950               continue;
5951             }
5952
5953           if (!gsym->is_weak_undefined())
5954             value = gsym->value();
5955           else
5956             value = 0;
5957         }
5958
5959       unsigned got_offset = reloc.got_offset();
5960       gold_assert(got_offset < oview_size);
5961
5962       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5963       Valtype x;
5964
5965       switch (reloc.r_type())
5966         {
5967         case elfcpp::R_MIPS_TLS_DTPMOD32:
5968         case elfcpp::R_MIPS_TLS_DTPMOD64:
5969           x = value;
5970           break;
5971         case elfcpp::R_MIPS_TLS_DTPREL32:
5972         case elfcpp::R_MIPS_TLS_DTPREL64:
5973           x = value - elfcpp::DTP_OFFSET;
5974           break;
5975         case elfcpp::R_MIPS_TLS_TPREL32:
5976         case elfcpp::R_MIPS_TLS_TPREL64:
5977           x = value - elfcpp::TP_OFFSET;
5978           break;
5979         default:
5980           gold_unreachable();
5981           break;
5982         }
5983
5984       elfcpp::Swap<size, big_endian>::writeval(wv, x);
5985     }
5986
5987   of->write_output_view(offset, oview_size, oview);
5988 }
5989
5990 // Mips_relobj methods.
5991
5992 // Count the local symbols.  The Mips backend needs to know if a symbol
5993 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
5994 // because the Symbol object keeps the ELF symbol type and st_other field.
5995 // For local symbol it is harder because we cannot access this information.
5996 // So we override the do_count_local_symbol in parent and scan local symbols to
5997 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
5998 // I do not want to slow down other ports by calling a per symbol target hook
5999 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6000
6001 template<int size, bool big_endian>
6002 void
6003 Mips_relobj<size, big_endian>::do_count_local_symbols(
6004     Stringpool_template<char>* pool,
6005     Stringpool_template<char>* dynpool)
6006 {
6007   // Ask parent to count the local symbols.
6008   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6009   const unsigned int loccount = this->local_symbol_count();
6010   if (loccount == 0)
6011     return;
6012
6013   // Initialize the mips16 and micromips function bit-vector.
6014   this->local_symbol_is_mips16_.resize(loccount, false);
6015   this->local_symbol_is_micromips_.resize(loccount, false);
6016
6017   // Read the symbol table section header.
6018   const unsigned int symtab_shndx = this->symtab_shndx();
6019   elfcpp::Shdr<size, big_endian>
6020     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6021   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6022
6023   // Read the local symbols.
6024   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6025   gold_assert(loccount == symtabshdr.get_sh_info());
6026   off_t locsize = loccount * sym_size;
6027   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6028                                               locsize, true, true);
6029
6030   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6031
6032   // Skip the first dummy symbol.
6033   psyms += sym_size;
6034   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6035     {
6036       elfcpp::Sym<size, big_endian> sym(psyms);
6037       unsigned char st_other = sym.get_st_other();
6038       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6039       this->local_symbol_is_micromips_[i] =
6040         elfcpp::elf_st_is_micromips(st_other);
6041     }
6042 }
6043
6044 // Read the symbol information.
6045
6046 template<int size, bool big_endian>
6047 void
6048 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6049 {
6050   // Call parent class to read symbol information.
6051   this->base_read_symbols(sd);
6052
6053   // Read processor-specific flags in ELF file header.
6054   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6055                                             elfcpp::Elf_sizes<size>::ehdr_size,
6056                                             true, false);
6057   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6058   this->processor_specific_flags_ = ehdr.get_e_flags();
6059
6060   // Get the section names.
6061   const unsigned char* pnamesu = sd->section_names->data();
6062   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6063
6064   // Initialize the mips16 stub section bit-vectors.
6065   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6066   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6067   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6068
6069   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6070   const unsigned char* pshdrs = sd->section_headers->data();
6071   const unsigned char* ps = pshdrs + shdr_size;
6072   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6073     {
6074       elfcpp::Shdr<size, big_endian> shdr(ps);
6075
6076       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6077         {
6078           // Read the gp value that was used to create this object.  We need the
6079           // gp value while processing relocs.  The .reginfo section is not used
6080           // in the 64-bit MIPS ELF ABI.
6081           section_offset_type section_offset = shdr.get_sh_offset();
6082           section_size_type section_size =
6083             convert_to_section_size_type(shdr.get_sh_size());
6084           const unsigned char* view =
6085              this->get_view(section_offset, section_size, true, false);
6086
6087           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6088
6089           // Read the rest of .reginfo.
6090           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6091           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6092           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6093           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6094           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6095         }
6096
6097       const char* name = pnames + shdr.get_sh_name();
6098       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6099       this->section_is_mips16_call_stub_[i] =
6100         is_prefix_of(".mips16.call.", name);
6101       this->section_is_mips16_call_fp_stub_[i] =
6102         is_prefix_of(".mips16.call.fp.", name);
6103
6104       if (strcmp(name, ".pdr") == 0)
6105         {
6106           gold_assert(this->pdr_shndx_ == -1U);
6107           this->pdr_shndx_ = i;
6108         }
6109     }
6110 }
6111
6112 // Discard MIPS16 stub secions that are not needed.
6113
6114 template<int size, bool big_endian>
6115 void
6116 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6117 {
6118   for (typename Mips16_stubs_int_map::const_iterator
6119        it = this->mips16_stub_sections_.begin();
6120        it != this->mips16_stub_sections_.end(); ++it)
6121     {
6122       Mips16_stub_section<size, big_endian>* stub_section = it->second;
6123       if (!stub_section->is_target_found())
6124         {
6125           gold_error(_("no relocation found in mips16 stub section '%s'"),
6126                      stub_section->object()
6127                        ->section_name(stub_section->shndx()).c_str());
6128         }
6129
6130       bool discard = false;
6131       if (stub_section->is_for_local_function())
6132         {
6133           if (stub_section->is_fn_stub())
6134             {
6135               // This stub is for a local symbol.  This stub will only
6136               // be needed if there is some relocation in this object,
6137               // other than a 16 bit function call, which refers to this
6138               // symbol.
6139               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
6140                 discard = true;
6141               else
6142                 this->add_local_mips16_fn_stub(stub_section);
6143             }
6144           else
6145             {
6146               // This stub is for a local symbol.  This stub will only
6147               // be needed if there is some relocation (R_MIPS16_26) in
6148               // this object that refers to this symbol.
6149               gold_assert(stub_section->is_call_stub()
6150                           || stub_section->is_call_fp_stub());
6151               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
6152                 discard = true;
6153               else
6154                 this->add_local_mips16_call_stub(stub_section);
6155             }
6156         }
6157       else
6158         {
6159           Mips_symbol<size>* gsym = stub_section->gsym();
6160           if (stub_section->is_fn_stub())
6161             {
6162               if (gsym->has_mips16_fn_stub())
6163                 // We already have a stub for this function.
6164                 discard = true;
6165               else
6166                 {
6167                   gsym->set_mips16_fn_stub(stub_section);
6168                   if (gsym->should_add_dynsym_entry(symtab))
6169                     {
6170                       // If we have a MIPS16 function with a stub, the
6171                       // dynamic symbol must refer to the stub, since only
6172                       // the stub uses the standard calling conventions.
6173                       gsym->set_need_fn_stub();
6174                       if (gsym->is_from_dynobj())
6175                         gsym->set_needs_dynsym_value();
6176                     }
6177                 }
6178               if (!gsym->need_fn_stub())
6179                 discard = true;
6180             }
6181           else if (stub_section->is_call_stub())
6182             {
6183               if (gsym->is_mips16())
6184                 // We don't need the call_stub; this is a 16 bit
6185                 // function, so calls from other 16 bit functions are
6186                 // OK.
6187                 discard = true;
6188               else if (gsym->has_mips16_call_stub())
6189                 // We already have a stub for this function.
6190                 discard = true;
6191               else
6192                 gsym->set_mips16_call_stub(stub_section);
6193             }
6194           else
6195             {
6196               gold_assert(stub_section->is_call_fp_stub());
6197               if (gsym->is_mips16())
6198                 // We don't need the call_stub; this is a 16 bit
6199                 // function, so calls from other 16 bit functions are
6200                 // OK.
6201                 discard = true;
6202               else if (gsym->has_mips16_call_fp_stub())
6203                 // We already have a stub for this function.
6204                 discard = true;
6205               else
6206                 gsym->set_mips16_call_fp_stub(stub_section);
6207             }
6208         }
6209       if (discard)
6210         this->set_output_section(stub_section->shndx(), NULL);
6211    }
6212 }
6213
6214 // Mips_output_data_la25_stub methods.
6215
6216 // Template for standard LA25 stub.
6217 template<int size, bool big_endian>
6218 const uint32_t
6219 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6220 {
6221   0x3c190000,           // lui $25,%hi(func)
6222   0x08000000,           // j func
6223   0x27390000,           // add $25,$25,%lo(func)
6224   0x00000000            // nop
6225 };
6226
6227 // Template for microMIPS LA25 stub.
6228 template<int size, bool big_endian>
6229 const uint32_t
6230 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6231 {
6232   0x41b9, 0x0000,       // lui t9,%hi(func)
6233   0xd400, 0x0000,       // j func
6234   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
6235   0x0000, 0x0000        // nop
6236 };
6237
6238 // Create la25 stub for a symbol.
6239
6240 template<int size, bool big_endian>
6241 void
6242 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6243     Symbol_table* symtab, Target_mips<size, big_endian>* target,
6244     Mips_symbol<size>* gsym)
6245 {
6246   if (!gsym->has_la25_stub())
6247     {
6248       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6249       this->symbols_.insert(gsym);
6250       this->create_stub_symbol(gsym, symtab, target, 16);
6251     }
6252 }
6253
6254 // Create a symbol for SYM stub's value and size, to help make the disassembly
6255 // easier to read.
6256
6257 template<int size, bool big_endian>
6258 void
6259 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6260     Mips_symbol<size>* sym, Symbol_table* symtab,
6261     Target_mips<size, big_endian>* target, uint64_t symsize)
6262 {
6263   std::string name(".pic.");
6264   name += sym->name();
6265
6266   unsigned int offset = sym->la25_stub_offset();
6267   if (sym->is_micromips())
6268     offset |= 1;
6269
6270   // Make it a local function.
6271   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6272                                       Symbol_table::PREDEFINED,
6273                                       target->la25_stub_section(),
6274                                       offset, symsize, elfcpp::STT_FUNC,
6275                                       elfcpp::STB_LOCAL,
6276                                       elfcpp::STV_DEFAULT, 0,
6277                                       false, false);
6278   new_sym->set_is_forced_local();
6279 }
6280
6281 // Write out la25 stubs.  This uses the hand-coded instructions above,
6282 // and adjusts them as needed.
6283
6284 template<int size, bool big_endian>
6285 void
6286 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6287 {
6288   const off_t offset = this->offset();
6289   const section_size_type oview_size =
6290     convert_to_section_size_type(this->data_size());
6291   unsigned char* const oview = of->get_output_view(offset, oview_size);
6292
6293   for (typename Unordered_set<Mips_symbol<size>*>::iterator
6294        p = this->symbols_.begin();
6295        p != this->symbols_.end();
6296        ++p)
6297     {
6298       Mips_symbol<size>* sym = *p;
6299       unsigned char* pov = oview + sym->la25_stub_offset();
6300
6301       Mips_address target = sym->value();
6302       if (!sym->is_micromips())
6303         {
6304           elfcpp::Swap<32, big_endian>::writeval(pov,
6305               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6306           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6307               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6308           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6309               la25_stub_entry[2] | (target & 0xffff));
6310           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6311         }
6312       else
6313         {
6314           target |= 1;
6315           // First stub instruction.  Paste high 16-bits of the target.
6316           elfcpp::Swap<16, big_endian>::writeval(pov,
6317                                                  la25_stub_micromips_entry[0]);
6318           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6319               ((target + 0x8000) >> 16) & 0xffff);
6320           // Second stub instruction.  Paste low 26-bits of the target, shifted
6321           // right by 1.
6322           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6323               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6324           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6325               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6326           // Third stub instruction.  Paste low 16-bits of the target.
6327           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6328                                                  la25_stub_micromips_entry[4]);
6329           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6330           // Fourth stub instruction.
6331           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6332                                                  la25_stub_micromips_entry[6]);
6333           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6334                                                  la25_stub_micromips_entry[7]);
6335         }
6336     }
6337
6338   of->write_output_view(offset, oview_size, oview);
6339 }
6340
6341 // Mips_output_data_plt methods.
6342
6343 // The format of the first PLT entry in an O32 executable.
6344 template<int size, bool big_endian>
6345 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6346 {
6347   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
6348   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
6349   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
6350   0x031cc023,         // subu $24, $24, $28
6351   0x03e07825,         // or $15, $31, zero
6352   0x0018c082,         // srl $24, $24, 2
6353   0x0320f809,         // jalr $25
6354   0x2718fffe          // subu $24, $24, 2
6355 };
6356
6357 // The format of the first PLT entry in an N32 executable.  Different
6358 // because gp ($28) is not available; we use t2 ($14) instead.
6359 template<int size, bool big_endian>
6360 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6361 {
6362   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
6363   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
6364   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
6365   0x030ec023,         // subu $24, $24, $14
6366   0x03e07825,         // or $15, $31, zero
6367   0x0018c082,         // srl $24, $24, 2
6368   0x0320f809,         // jalr $25
6369   0x2718fffe          // subu $24, $24, 2
6370 };
6371
6372 // The format of the first PLT entry in an N64 executable.  Different
6373 // from N32 because of the increased size of GOT entries.
6374 template<int size, bool big_endian>
6375 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6376 {
6377   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
6378   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
6379   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
6380   0x030ec023,         // subu $24, $24, $14
6381   0x03e07825,         // or $15, $31, zero
6382   0x0018c0c2,         // srl $24, $24, 3
6383   0x0320f809,         // jalr $25
6384   0x2718fffe          // subu $24, $24, 2
6385 };
6386
6387 // The format of the microMIPS first PLT entry in an O32 executable.
6388 // We rely on v0 ($2) rather than t8 ($24) to contain the address
6389 // of the GOTPLT entry handled, so this stub may only be used when
6390 // all the subsequent PLT entries are microMIPS code too.
6391 //
6392 // The trailing NOP is for alignment and correct disassembly only.
6393 template<int size, bool big_endian>
6394 const uint32_t Mips_output_data_plt<size, big_endian>::
6395 plt0_entry_micromips_o32[] =
6396 {
6397   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
6398   0xff23, 0x0000,      // lw $25, 0($3)
6399   0x0535,              // subu $2, $2, $3
6400   0x2525,              // srl $2, $2, 2
6401   0x3302, 0xfffe,      // subu $24, $2, 2
6402   0x0dff,              // move $15, $31
6403   0x45f9,              // jalrs $25
6404   0x0f83,              // move $28, $3
6405   0x0c00               // nop
6406 };
6407
6408 // The format of the microMIPS first PLT entry in an O32 executable
6409 // in the insn32 mode.
6410 template<int size, bool big_endian>
6411 const uint32_t Mips_output_data_plt<size, big_endian>::
6412 plt0_entry_micromips32_o32[] =
6413 {
6414   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
6415   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
6416   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
6417   0x0398, 0xc1d0,      // subu $24, $24, $28
6418   0x001f, 0x7a90,      // or $15, $31, zero
6419   0x0318, 0x1040,      // srl $24, $24, 2
6420   0x03f9, 0x0f3c,      // jalr $25
6421   0x3318, 0xfffe       // subu $24, $24, 2
6422 };
6423
6424 // The format of subsequent standard entries in the PLT.
6425 template<int size, bool big_endian>
6426 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6427 {
6428   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
6429   0x8df90000,           // l[wd] $25, %lo(.got.plt entry)($15)
6430   0x03200008,           // jr $25
6431   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
6432 };
6433
6434 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
6435 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
6436 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6437 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6438 // target function address in register v0.
6439 template<int size, bool big_endian>
6440 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6441 {
6442   0xb303,              // lw $3, 12($pc)
6443   0x651b,              // move $24, $3
6444   0x9b60,              // lw $3, 0($3)
6445   0xeb00,              // jr $3
6446   0x653b,              // move $25, $3
6447   0x6500,              // nop
6448   0x0000, 0x0000       // .word (.got.plt entry)
6449 };
6450
6451 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
6452 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
6453 template<int size, bool big_endian>
6454 const uint32_t Mips_output_data_plt<size, big_endian>::
6455 plt_entry_micromips_o32[] =
6456 {
6457   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
6458   0xff22, 0x0000,      // lw $25, 0($2)
6459   0x4599,              // jr $25
6460   0x0f02               // move $24, $2
6461 };
6462
6463 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6464 template<int size, bool big_endian>
6465 const uint32_t Mips_output_data_plt<size, big_endian>::
6466 plt_entry_micromips32_o32[] =
6467 {
6468   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
6469   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
6470   0x0019, 0x0f3c,      // jr $25
6471   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
6472 };
6473
6474 // Add an entry to the PLT for a symbol referenced by r_type relocation.
6475
6476 template<int size, bool big_endian>
6477 void
6478 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6479                                                   unsigned int r_type)
6480 {
6481   gold_assert(!gsym->has_plt_offset());
6482
6483   // Final PLT offset for a symbol will be set in method set_plt_offsets().
6484   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6485                        + sizeof(plt0_entry_o32));
6486   this->symbols_.push_back(gsym);
6487
6488   // Record whether the relocation requires a standard MIPS
6489   // or a compressed code entry.
6490   if (jal_reloc(r_type))
6491    {
6492      if (r_type == elfcpp::R_MIPS_26)
6493        gsym->set_needs_mips_plt(true);
6494      else
6495        gsym->set_needs_comp_plt(true);
6496    }
6497
6498   section_offset_type got_offset = this->got_plt_->current_data_size();
6499
6500   // Every PLT entry needs a GOT entry which points back to the PLT
6501   // entry (this will be changed by the dynamic linker, normally
6502   // lazily when the function is called).
6503   this->got_plt_->set_current_data_size(got_offset + size/8);
6504
6505   gsym->set_needs_dynsym_entry();
6506   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6507                          got_offset);
6508 }
6509
6510 // Set final PLT offsets.  For each symbol, determine whether standard or
6511 // compressed (MIPS16 or microMIPS) PLT entry is used.
6512
6513 template<int size, bool big_endian>
6514 void
6515 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6516 {
6517   // The sizes of individual PLT entries.
6518   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6519   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6520                                       ? this->compressed_plt_entry_size() : 0);
6521
6522   for (typename std::vector<Mips_symbol<size>*>::const_iterator
6523        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6524     {
6525       Mips_symbol<size>* mips_sym = *p;
6526
6527       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6528       // so always use a standard entry there.
6529       //
6530       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6531       // all MIPS16 calls will go via that stub, and there is no benefit
6532       // to having a MIPS16 entry.  And in the case of call_stub a
6533       // standard entry actually has to be used as the stub ends with a J
6534       // instruction.
6535       if (this->target_->is_output_newabi()
6536           || mips_sym->has_mips16_call_stub()
6537           || mips_sym->has_mips16_call_fp_stub())
6538         {
6539           mips_sym->set_needs_mips_plt(true);
6540           mips_sym->set_needs_comp_plt(false);
6541         }
6542
6543       // Otherwise, if there are no direct calls to the function, we
6544       // have a free choice of whether to use standard or compressed
6545       // entries.  Prefer microMIPS entries if the object is known to
6546       // contain microMIPS code, so that it becomes possible to create
6547       // pure microMIPS binaries.  Prefer standard entries otherwise,
6548       // because MIPS16 ones are no smaller and are usually slower.
6549       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6550         {
6551           if (this->target_->is_output_micromips())
6552             mips_sym->set_needs_comp_plt(true);
6553           else
6554             mips_sym->set_needs_mips_plt(true);
6555         }
6556
6557       if (mips_sym->needs_mips_plt())
6558         {
6559           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6560           this->plt_mips_offset_ += plt_mips_entry_size;
6561         }
6562       if (mips_sym->needs_comp_plt())
6563         {
6564           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6565           this->plt_comp_offset_ += plt_comp_entry_size;
6566         }
6567     }
6568
6569     // Figure out the size of the PLT header if we know that we are using it.
6570     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6571       this->plt_header_size_ = this->get_plt_header_size();
6572 }
6573
6574 // Write out the PLT.  This uses the hand-coded instructions above,
6575 // and adjusts them as needed.
6576
6577 template<int size, bool big_endian>
6578 void
6579 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6580 {
6581   const off_t offset = this->offset();
6582   const section_size_type oview_size =
6583     convert_to_section_size_type(this->data_size());
6584   unsigned char* const oview = of->get_output_view(offset, oview_size);
6585
6586   const off_t gotplt_file_offset = this->got_plt_->offset();
6587   const section_size_type gotplt_size =
6588     convert_to_section_size_type(this->got_plt_->data_size());
6589   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6590                                                          gotplt_size);
6591   unsigned char* pov = oview;
6592
6593   Mips_address plt_address = this->address();
6594
6595   // Calculate the address of .got.plt.
6596   Mips_address gotplt_addr = this->got_plt_->address();
6597   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6598   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6599
6600   // The PLT sequence is not safe for N64 if .got.plt's address can
6601   // not be loaded in two instructions.
6602   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6603               || ~(gotplt_addr | 0x7fffffff) == 0);
6604
6605   // Write the PLT header.
6606   const uint32_t* plt0_entry = this->get_plt_header_entry();
6607   if (plt0_entry == plt0_entry_micromips_o32)
6608     {
6609       // Write microMIPS PLT header.
6610       gold_assert(gotplt_addr % 4 == 0);
6611
6612       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6613
6614       // ADDIUPC has a span of +/-16MB, check we're in range.
6615       if (gotpc_offset + 0x1000000 >= 0x2000000)
6616        {
6617          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6618                     "ADDIUPC"), (long)gotpc_offset);
6619          return;
6620        }
6621
6622       elfcpp::Swap<16, big_endian>::writeval(pov,
6623                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6624       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6625                                              (gotpc_offset >> 2) & 0xffff);
6626       pov += 4;
6627       for (unsigned int i = 2;
6628            i < (sizeof(plt0_entry_micromips_o32)
6629                 / sizeof(plt0_entry_micromips_o32[0]));
6630            i++)
6631         {
6632           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6633           pov += 2;
6634         }
6635     }
6636   else if (plt0_entry == plt0_entry_micromips32_o32)
6637     {
6638       // Write microMIPS PLT header in insn32 mode.
6639       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6640       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6641       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6642       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6643       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6644       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6645       pov += 12;
6646       for (unsigned int i = 6;
6647            i < (sizeof(plt0_entry_micromips32_o32)
6648                 / sizeof(plt0_entry_micromips32_o32[0]));
6649            i++)
6650         {
6651           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6652           pov += 2;
6653         }
6654     }
6655   else
6656     {
6657       // Write standard PLT header.
6658       elfcpp::Swap<32, big_endian>::writeval(pov,
6659                                              plt0_entry[0] | gotplt_addr_high);
6660       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6661                                              plt0_entry[1] | gotplt_addr_low);
6662       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6663                                              plt0_entry[2] | gotplt_addr_low);
6664       pov += 12;
6665       for (int i = 3; i < 8; i++)
6666         {
6667           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6668           pov += 4;
6669         }
6670     }
6671
6672
6673   unsigned char* gotplt_pov = gotplt_view;
6674   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6675
6676   // The first two entries in .got.plt are reserved.
6677   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6678   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6679
6680   unsigned int gotplt_offset = 2 * got_entry_size;
6681   gotplt_pov += 2 * got_entry_size;
6682
6683   // Calculate the address of the PLT header.
6684   Mips_address header_address = (plt_address
6685                                  + (this->is_plt_header_compressed() ? 1 : 0));
6686
6687   // Initialize compressed PLT area view.
6688   unsigned char* pov2 = pov + this->plt_mips_offset_;
6689
6690   // Write the PLT entries.
6691   for (typename std::vector<Mips_symbol<size>*>::const_iterator
6692        p = this->symbols_.begin();
6693        p != this->symbols_.end();
6694        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6695     {
6696       Mips_symbol<size>* mips_sym = *p;
6697
6698       // Calculate the address of the .got.plt entry.
6699       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6700       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6701                                        & 0xffff);
6702       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6703
6704       // Initially point the .got.plt entry at the PLT header.
6705       if (this->target_->is_output_n64())
6706         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6707       else
6708         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6709
6710       // Now handle the PLT itself.  First the standard entry.
6711       if (mips_sym->has_mips_plt_offset())
6712         {
6713           // Pick the load opcode (LW or LD).
6714           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6715                                                          : 0x8c000000;
6716
6717           // Fill in the PLT entry itself.
6718           elfcpp::Swap<32, big_endian>::writeval(pov,
6719               plt_entry[0] | gotplt_entry_addr_hi);
6720           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6721               plt_entry[1] | gotplt_entry_addr_lo | load);
6722           elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6723           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6724               plt_entry[3] | gotplt_entry_addr_lo);
6725           pov += 16;
6726         }
6727
6728       // Now the compressed entry.  They come after any standard ones.
6729       if (mips_sym->has_comp_plt_offset())
6730         {
6731           if (!this->target_->is_output_micromips())
6732             {
6733               // Write MIPS16 PLT entry.
6734               const uint32_t* plt_entry = plt_entry_mips16_o32;
6735
6736               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6737               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6738               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6739               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6740               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6741               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6742               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6743                                                      gotplt_entry_addr);
6744               pov2 += 16;
6745             }
6746           else if (this->target_->use_32bit_micromips_instructions())
6747             {
6748               // Write microMIPS PLT entry in insn32 mode.
6749               const uint32_t* plt_entry = plt_entry_micromips32_o32;
6750
6751               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6752               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6753                                                      gotplt_entry_addr_hi);
6754               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6755               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6756                                                      gotplt_entry_addr_lo);
6757               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6758               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6759               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6760               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6761                                                      gotplt_entry_addr_lo);
6762               pov2 += 16;
6763             }
6764           else
6765             {
6766               // Write microMIPS PLT entry.
6767               const uint32_t* plt_entry = plt_entry_micromips_o32;
6768
6769               gold_assert(gotplt_entry_addr % 4 == 0);
6770
6771               Mips_address loc_address = plt_address + pov2 - oview;
6772               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6773
6774               // ADDIUPC has a span of +/-16MB, check we're in range.
6775               if (gotpc_offset + 0x1000000 >= 0x2000000)
6776                 {
6777                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
6778                              "range of ADDIUPC"), (long)gotpc_offset);
6779                   return;
6780                 }
6781
6782               elfcpp::Swap<16, big_endian>::writeval(pov2,
6783                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6784               elfcpp::Swap<16, big_endian>::writeval(
6785                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6786               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6787               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6788               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6789               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6790               pov2 += 12;
6791             }
6792         }
6793     }
6794
6795   // Check the number of bytes written for standard entries.
6796   gold_assert(static_cast<section_size_type>(
6797       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6798   // Check the number of bytes written for compressed entries.
6799   gold_assert((static_cast<section_size_type>(pov2 - pov)
6800                == this->plt_comp_offset_));
6801   // Check the total number of bytes written.
6802   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6803
6804   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6805               == gotplt_size);
6806
6807   of->write_output_view(offset, oview_size, oview);
6808   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6809 }
6810
6811 // Mips_output_data_mips_stubs methods.
6812
6813 // The format of the lazy binding stub when dynamic symbol count is less than
6814 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6815 template<int size, bool big_endian>
6816 const uint32_t
6817 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6818 {
6819   0x8f998010,         // lw t9,0x8010(gp)
6820   0x03e07825,         // or t7,ra,zero
6821   0x0320f809,         // jalr t9,ra
6822   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
6823 };
6824
6825 // The format of the lazy binding stub when dynamic symbol count is less than
6826 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
6827 template<int size, bool big_endian>
6828 const uint32_t
6829 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6830 {
6831   0xdf998010,         // ld t9,0x8010(gp)
6832   0x03e07825,         // or t7,ra,zero
6833   0x0320f809,         // jalr t9,ra
6834   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
6835 };
6836
6837 // The format of the lazy binding stub when dynamic symbol count is less than
6838 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6839 template<int size, bool big_endian>
6840 const uint32_t
6841 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6842 {
6843   0x8f998010,         // lw t9,0x8010(gp)
6844   0x03e07825,         // or t7,ra,zero
6845   0x0320f809,         // jalr t9,ra
6846   0x34180000          // ori t8,zero,DYN_INDEX unsigned
6847 };
6848
6849 // The format of the lazy binding stub when dynamic symbol count is less than
6850 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6851 template<int size, bool big_endian>
6852 const uint32_t
6853 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6854 {
6855   0xdf998010,         // ld t9,0x8010(gp)
6856   0x03e07825,         // or t7,ra,zero
6857   0x0320f809,         // jalr t9,ra
6858   0x34180000          // ori t8,zero,DYN_INDEX unsigned
6859 };
6860
6861 // The format of the lazy binding stub when dynamic symbol count is greater than
6862 // 64K, and ABI is not N64.
6863 template<int size, bool big_endian>
6864 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6865 {
6866   0x8f998010,         // lw t9,0x8010(gp)
6867   0x03e07825,         // or t7,ra,zero
6868   0x3c180000,         // lui t8,DYN_INDEX
6869   0x0320f809,         // jalr t9,ra
6870   0x37180000          // ori t8,t8,DYN_INDEX
6871 };
6872
6873 // The format of the lazy binding stub when dynamic symbol count is greater than
6874 // 64K, and ABI is N64.
6875 template<int size, bool big_endian>
6876 const uint32_t
6877 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6878 {
6879   0xdf998010,         // ld t9,0x8010(gp)
6880   0x03e07825,         // or t7,ra,zero
6881   0x3c180000,         // lui t8,DYN_INDEX
6882   0x0320f809,         // jalr t9,ra
6883   0x37180000          // ori t8,t8,DYN_INDEX
6884 };
6885
6886 // microMIPS stubs.
6887
6888 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6889 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6890 template<int size, bool big_endian>
6891 const uint32_t
6892 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6893 {
6894   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6895   0x0dff,             // move t7,ra
6896   0x45d9,             // jalr t9
6897   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
6898 };
6899
6900 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6901 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6902 template<int size, bool big_endian>
6903 const uint32_t
6904 Mips_output_data_mips_stubs<size, big_endian>::
6905 lazy_stub_micromips_normal_1_n64[] =
6906 {
6907   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6908   0x0dff,             // move t7,ra
6909   0x45d9,             // jalr t9
6910   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
6911 };
6912
6913 // The format of the microMIPS lazy binding stub when dynamic symbol
6914 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6915 // and ABI is not N64.
6916 template<int size, bool big_endian>
6917 const uint32_t
6918 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6919 {
6920   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6921   0x0dff,             // move t7,ra
6922   0x45d9,             // jalr t9
6923   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
6924 };
6925
6926 // The format of the microMIPS lazy binding stub when dynamic symbol
6927 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6928 // and ABI is N64.
6929 template<int size, bool big_endian>
6930 const uint32_t
6931 Mips_output_data_mips_stubs<size, big_endian>::
6932 lazy_stub_micromips_normal_2_n64[] =
6933 {
6934   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6935   0x0dff,             // move t7,ra
6936   0x45d9,             // jalr t9
6937   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
6938 };
6939
6940 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6941 // greater than 64K, and ABI is not N64.
6942 template<int size, bool big_endian>
6943 const uint32_t
6944 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6945 {
6946   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6947   0x0dff,             // move t7,ra
6948   0x41b8, 0x0000,     // lui t8,DYN_INDEX
6949   0x45d9,             // jalr t9
6950   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
6951 };
6952
6953 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6954 // greater than 64K, and ABI is N64.
6955 template<int size, bool big_endian>
6956 const uint32_t
6957 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6958 {
6959   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6960   0x0dff,             // move t7,ra
6961   0x41b8, 0x0000,     // lui t8,DYN_INDEX
6962   0x45d9,             // jalr t9
6963   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
6964 };
6965
6966 // 32-bit microMIPS stubs.
6967
6968 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6969 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6970 // can use only 32-bit instructions.
6971 template<int size, bool big_endian>
6972 const uint32_t
6973 Mips_output_data_mips_stubs<size, big_endian>::
6974 lazy_stub_micromips32_normal_1[] =
6975 {
6976   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6977   0x001f, 0x7a90,     // or t7,ra,zero
6978   0x03f9, 0x0f3c,     // jalr ra,t9
6979   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
6980 };
6981
6982 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6983 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6984 // use only 32-bit instructions.
6985 template<int size, bool big_endian>
6986 const uint32_t
6987 Mips_output_data_mips_stubs<size, big_endian>::
6988 lazy_stub_micromips32_normal_1_n64[] =
6989 {
6990   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6991   0x001f, 0x7a90,     // or t7,ra,zero
6992   0x03f9, 0x0f3c,     // jalr ra,t9
6993   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
6994 };
6995
6996 // The format of the microMIPS lazy binding stub when dynamic symbol
6997 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6998 // ABI is not N64, and we can use only 32-bit instructions.
6999 template<int size, bool big_endian>
7000 const uint32_t
7001 Mips_output_data_mips_stubs<size, big_endian>::
7002 lazy_stub_micromips32_normal_2[] =
7003 {
7004   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7005   0x001f, 0x7a90,     // or t7,ra,zero
7006   0x03f9, 0x0f3c,     // jalr ra,t9
7007   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7008 };
7009
7010 // The format of the microMIPS lazy binding stub when dynamic symbol
7011 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7012 // ABI is N64, and we can use only 32-bit instructions.
7013 template<int size, bool big_endian>
7014 const uint32_t
7015 Mips_output_data_mips_stubs<size, big_endian>::
7016 lazy_stub_micromips32_normal_2_n64[] =
7017 {
7018   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7019   0x001f, 0x7a90,     // or t7,ra,zero
7020   0x03f9, 0x0f3c,     // jalr ra,t9
7021   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7022 };
7023
7024 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7025 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7026 template<int size, bool big_endian>
7027 const uint32_t
7028 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7029 {
7030   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7031   0x001f, 0x7a90,     // or t7,ra,zero
7032   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7033   0x03f9, 0x0f3c,     // jalr ra,t9
7034   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7035 };
7036
7037 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7038 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7039 template<int size, bool big_endian>
7040 const uint32_t
7041 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7042 {
7043   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7044   0x001f, 0x7a90,     // or t7,ra,zero
7045   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7046   0x03f9, 0x0f3c,     // jalr ra,t9
7047   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7048 };
7049
7050 // Create entry for a symbol.
7051
7052 template<int size, bool big_endian>
7053 void
7054 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7055     Mips_symbol<size>* gsym)
7056 {
7057   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7058     {
7059       this->symbols_.insert(gsym);
7060       gsym->set_has_lazy_stub(true);
7061     }
7062 }
7063
7064 // Remove entry for a symbol.
7065
7066 template<int size, bool big_endian>
7067 void
7068 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7069     Mips_symbol<size>* gsym)
7070 {
7071   if (gsym->has_lazy_stub())
7072     {
7073       this->symbols_.erase(gsym);
7074       gsym->set_has_lazy_stub(false);
7075     }
7076 }
7077
7078 // Set stub offsets for symbols.  This method expects that the number of
7079 // entries in dynamic symbol table is set.
7080
7081 template<int size, bool big_endian>
7082 void
7083 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7084 {
7085   gold_assert(this->dynsym_count_ != -1U);
7086
7087   if (this->stub_offsets_are_set_)
7088     return;
7089
7090   unsigned int stub_size = this->stub_size();
7091   unsigned int offset = 0;
7092   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7093        p = this->symbols_.begin();
7094        p != this->symbols_.end();
7095        ++p, offset += stub_size)
7096     {
7097       Mips_symbol<size>* mips_sym = *p;
7098       mips_sym->set_lazy_stub_offset(offset);
7099     }
7100   this->stub_offsets_are_set_ = true;
7101 }
7102
7103 template<int size, bool big_endian>
7104 void
7105 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7106 {
7107   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7108        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7109     {
7110       Mips_symbol<size>* sym = *p;
7111       if (sym->is_from_dynobj())
7112         sym->set_needs_dynsym_value();
7113     }
7114 }
7115
7116 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
7117 // adjusts them as needed.
7118
7119 template<int size, bool big_endian>
7120 void
7121 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7122 {
7123   const off_t offset = this->offset();
7124   const section_size_type oview_size =
7125     convert_to_section_size_type(this->data_size());
7126   unsigned char* const oview = of->get_output_view(offset, oview_size);
7127
7128   bool big_stub = this->dynsym_count_ > 0x10000;
7129
7130   unsigned char* pov = oview;
7131   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7132        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7133     {
7134       Mips_symbol<size>* sym = *p;
7135       const uint32_t* lazy_stub;
7136       bool n64 = this->target_->is_output_n64();
7137
7138       if (!this->target_->is_output_micromips())
7139         {
7140           // Write standard (non-microMIPS) stub.
7141           if (!big_stub)
7142             {
7143               if (sym->dynsym_index() & ~0x7fff)
7144                 // Dynsym index is between 32K and 64K.
7145                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
7146               else
7147                 // Dynsym index is less than 32K.
7148                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
7149             }
7150           else
7151             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
7152
7153           unsigned int i = 0;
7154           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7155           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
7156           pov += 8;
7157
7158           i += 2;
7159           if (big_stub)
7160             {
7161               // LUI instruction of the big stub.  Paste high 16 bits of the
7162               // dynsym index.
7163               elfcpp::Swap<32, big_endian>::writeval(pov,
7164                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
7165               pov += 4;
7166               i += 1;
7167             }
7168           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7169           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7170           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7171               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
7172           pov += 8;
7173         }
7174       else if (this->target_->use_32bit_micromips_instructions())
7175         {
7176           // Write microMIPS stub in insn32 mode.
7177           if (!big_stub)
7178             {
7179               if (sym->dynsym_index() & ~0x7fff)
7180                 // Dynsym index is between 32K and 64K.
7181                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
7182                                 : lazy_stub_micromips32_normal_2;
7183               else
7184                 // Dynsym index is less than 32K.
7185                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
7186                                 : lazy_stub_micromips32_normal_1;
7187             }
7188           else
7189             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
7190                             : lazy_stub_micromips32_big;
7191
7192           unsigned int i = 0;
7193           // First stub instruction.  We emit 32-bit microMIPS instructions by
7194           // emitting two 16-bit parts because on microMIPS the 16-bit part of
7195           // the instruction where the opcode is must always come first, for
7196           // both little and big endian.
7197           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7198           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7199           // Second stub instruction.
7200           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7201           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
7202           pov += 8;
7203           i += 4;
7204           if (big_stub)
7205             {
7206               // LUI instruction of the big stub.  Paste high 16 bits of the
7207               // dynsym index.
7208               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7209               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7210                   (sym->dynsym_index() >> 16) & 0x7fff);
7211               pov += 4;
7212               i += 2;
7213             }
7214           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7215           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7216           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7217           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7218           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7219               sym->dynsym_index() & 0xffff);
7220           pov += 8;
7221         }
7222       else
7223         {
7224           // Write microMIPS stub.
7225           if (!big_stub)
7226             {
7227               if (sym->dynsym_index() & ~0x7fff)
7228                 // Dynsym index is between 32K and 64K.
7229                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7230                                 : lazy_stub_micromips_normal_2;
7231               else
7232                 // Dynsym index is less than 32K.
7233                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7234                                 : lazy_stub_micromips_normal_1;
7235             }
7236           else
7237             lazy_stub = n64 ? lazy_stub_micromips_big_n64
7238                             : lazy_stub_micromips_big;
7239
7240           unsigned int i = 0;
7241           // First stub instruction.  We emit 32-bit microMIPS instructions by
7242           // emitting two 16-bit parts because on microMIPS the 16-bit part of
7243           // the instruction where the opcode is must always come first, for
7244           // both little and big endian.
7245           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7246           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7247           // Second stub instruction.
7248           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7249           pov += 6;
7250           i += 3;
7251           if (big_stub)
7252             {
7253               // LUI instruction of the big stub.  Paste high 16 bits of the
7254               // dynsym index.
7255               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7256               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7257                   (sym->dynsym_index() >> 16) & 0x7fff);
7258               pov += 4;
7259               i += 2;
7260             }
7261           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7262           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7263           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7264           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7265               sym->dynsym_index() & 0xffff);
7266           pov += 6;
7267         }
7268     }
7269
7270   // We always allocate 20 bytes for every stub, because final dynsym count is
7271   // not known in method do_finalize_sections.  There are 4 unused bytes per
7272   // stub if final dynsym count is less than 0x10000.
7273   unsigned int used = pov - oview;
7274   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7275   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7276
7277   // Fill the unused space with zeroes.
7278   // TODO(sasa): Can we strip unused bytes during the relaxation?
7279   if (unused > 0)
7280     memset(pov, 0, unused);
7281
7282   of->write_output_view(offset, oview_size, oview);
7283 }
7284
7285 // Mips_output_section_reginfo methods.
7286
7287 template<int size, bool big_endian>
7288 void
7289 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7290 {
7291   off_t offset = this->offset();
7292   off_t data_size = this->data_size();
7293
7294   unsigned char* view = of->get_output_view(offset, data_size);
7295   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7296   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7297   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7298   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7299   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7300   // Write the gp value.
7301   elfcpp::Swap<size, big_endian>::writeval(view + 20,
7302                                            this->target_->gp_value());
7303
7304   of->write_output_view(offset, data_size, view);
7305 }
7306
7307 // Mips_copy_relocs methods.
7308
7309 // Emit any saved relocs.
7310
7311 template<int sh_type, int size, bool big_endian>
7312 void
7313 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7314     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7315     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7316 {
7317   for (typename Copy_relocs<sh_type, size, big_endian>::
7318        Copy_reloc_entries::iterator p = this->entries_.begin();
7319        p != this->entries_.end();
7320        ++p)
7321     emit_entry(*p, reloc_section, symtab, layout, target);
7322
7323   // We no longer need the saved information.
7324   this->entries_.clear();
7325 }
7326
7327 // Emit the reloc if appropriate.
7328
7329 template<int sh_type, int size, bool big_endian>
7330 void
7331 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7332     Copy_reloc_entry& entry,
7333     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7334     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7335 {
7336   // If the symbol is no longer defined in a dynamic object, then we
7337   // emitted a COPY relocation, and we do not want to emit this
7338   // dynamic relocation.
7339   if (!entry.sym_->is_from_dynobj())
7340     return;
7341
7342   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7343                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7344                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
7345
7346   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7347   if (can_make_dynamic && !sym->has_static_relocs())
7348     {
7349       Mips_relobj<size, big_endian>* object =
7350         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7351       target->got_section(symtab, layout)->record_global_got_symbol(
7352                           sym, object, entry.reloc_type_, true, false);
7353       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7354         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7355             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7356       else
7357         target->rel_dyn_section(layout)->add_symbolless_global_addend(
7358             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7359             entry.shndx_, entry.address_);
7360     }
7361   else
7362     this->make_copy_reloc(symtab, layout,
7363                           static_cast<Sized_symbol<size>*>(entry.sym_),
7364                           reloc_section);
7365 }
7366
7367 // Target_mips methods.
7368
7369 // Return the value to use for a dynamic symbol which requires special
7370 // treatment.  This is how we support equality comparisons of function
7371 // pointers across shared library boundaries, as described in the
7372 // processor specific ABI supplement.
7373
7374 template<int size, bool big_endian>
7375 uint64_t
7376 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7377 {
7378   uint64_t value = 0;
7379   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7380
7381   if (!mips_sym->has_lazy_stub())
7382     {
7383       if (mips_sym->has_plt_offset())
7384         {
7385           // We distinguish between PLT entries and lazy-binding stubs by
7386           // giving the former an st_other value of STO_MIPS_PLT.  Set the
7387           // value to the stub address if there are any relocations in the
7388           // binary where pointer equality matters.
7389           if (mips_sym->pointer_equality_needed())
7390             {
7391               // Prefer a standard MIPS PLT entry.
7392               if (mips_sym->has_mips_plt_offset())
7393                 value = this->plt_section()->mips_entry_address(mips_sym);
7394               else
7395                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7396             }
7397           else
7398             value = 0;
7399         }
7400     }
7401   else
7402     {
7403       // First, set stub offsets for symbols.  This method expects that the
7404       // number of entries in dynamic symbol table is set.
7405       this->mips_stubs_section()->set_lazy_stub_offsets();
7406
7407       // The run-time linker uses the st_value field of the symbol
7408       // to reset the global offset table entry for this external
7409       // to its stub address when unlinking a shared object.
7410       value = this->mips_stubs_section()->stub_address(mips_sym);
7411     }
7412
7413   if (mips_sym->has_mips16_fn_stub())
7414     {
7415       // If we have a MIPS16 function with a stub, the dynamic symbol must
7416       // refer to the stub, since only the stub uses the standard calling
7417       // conventions.
7418       value = mips_sym->template
7419               get_mips16_fn_stub<big_endian>()->output_address();
7420     }
7421
7422   return value;
7423 }
7424
7425 // Get the dynamic reloc section, creating it if necessary.  It's always
7426 // .rel.dyn, even for MIPS64.
7427
7428 template<int size, bool big_endian>
7429 typename Target_mips<size, big_endian>::Reloc_section*
7430 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7431 {
7432   if (this->rel_dyn_ == NULL)
7433     {
7434       gold_assert(layout != NULL);
7435       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7436       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7437                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
7438                                       ORDER_DYNAMIC_RELOCS, false);
7439
7440       // First entry in .rel.dyn has to be null.
7441       // This is hack - we define dummy output data and set its address to 0,
7442       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7443       // This ensures that the entry is null.
7444       Output_data* od = new Output_data_zero_fill(0, 0);
7445       od->set_address(0);
7446       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7447     }
7448   return this->rel_dyn_;
7449 }
7450
7451 // Get the GOT section, creating it if necessary.
7452
7453 template<int size, bool big_endian>
7454 Mips_output_data_got<size, big_endian>*
7455 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7456                                            Layout* layout)
7457 {
7458   if (this->got_ == NULL)
7459     {
7460       gold_assert(symtab != NULL && layout != NULL);
7461
7462       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7463                                                               layout);
7464       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7465                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7466                                       elfcpp::SHF_MIPS_GPREL),
7467                                       this->got_, ORDER_DATA, false);
7468
7469       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7470       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7471                                     Symbol_table::PREDEFINED,
7472                                     this->got_,
7473                                     0, 0, elfcpp::STT_OBJECT,
7474                                     elfcpp::STB_GLOBAL,
7475                                     elfcpp::STV_DEFAULT, 0,
7476                                     false, false);
7477     }
7478
7479   return this->got_;
7480 }
7481
7482 // Calculate value of _gp symbol.
7483
7484 template<int size, bool big_endian>
7485 void
7486 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7487 {
7488   if (this->gp_ != NULL)
7489     return;
7490
7491   Output_data* section = layout->find_output_section(".got");
7492   if (section == NULL)
7493     {
7494       // If there is no .got section, gp should be based on .sdata.
7495       // TODO(sasa): This is probably not needed.  This was needed for older
7496       // MIPS architectures which accessed both GOT and .sdata section using
7497       // gp-relative addressing.  Modern Mips Linux ELF architectures don't
7498       // access .sdata using gp-relative addressing.
7499       for (Layout::Section_list::const_iterator
7500            p = layout->section_list().begin();
7501            p != layout->section_list().end();
7502            ++p)
7503         {
7504           if (strcmp((*p)->name(), ".sdata") == 0)
7505             {
7506               section = *p;
7507               break;
7508             }
7509         }
7510     }
7511
7512   Sized_symbol<size>* gp =
7513     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7514   if (gp != NULL)
7515     {
7516       if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7517         gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7518                              elfcpp::STT_OBJECT,
7519                              elfcpp::STB_GLOBAL,
7520                              elfcpp::STV_DEFAULT, 0,
7521                              false, false);
7522       this->gp_ = gp;
7523     }
7524   else if (section != NULL)
7525     {
7526       gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7527                                       "_gp", NULL, Symbol_table::PREDEFINED,
7528                                       section, MIPS_GP_OFFSET, 0,
7529                                       elfcpp::STT_OBJECT,
7530                                       elfcpp::STB_GLOBAL,
7531                                       elfcpp::STV_DEFAULT,
7532                                       0, false, false));
7533       this->gp_ = gp;
7534     }
7535 }
7536
7537 // Set the dynamic symbol indexes.  INDEX is the index of the first
7538 // global dynamic symbol.  Pointers to the symbols are stored into the
7539 // vector SYMS.  The names are added to DYNPOOL.  This returns an
7540 // updated dynamic symbol index.
7541
7542 template<int size, bool big_endian>
7543 unsigned int
7544 Target_mips<size, big_endian>::do_set_dynsym_indexes(
7545     std::vector<Symbol*>* dyn_symbols, unsigned int index,
7546     std::vector<Symbol*>* syms, Stringpool* dynpool,
7547     Versions* versions, Symbol_table* symtab) const
7548 {
7549   std::vector<Symbol*> non_got_symbols;
7550   std::vector<Symbol*> got_symbols;
7551
7552   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7553                                         &got_symbols);
7554
7555   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7556        p != non_got_symbols.end();
7557        ++p)
7558     {
7559       Symbol* sym = *p;
7560
7561       // Note that SYM may already have a dynamic symbol index, since
7562       // some symbols appear more than once in the symbol table, with
7563       // and without a version.
7564
7565       if (!sym->has_dynsym_index())
7566         {
7567           sym->set_dynsym_index(index);
7568           ++index;
7569           syms->push_back(sym);
7570           dynpool->add(sym->name(), false, NULL);
7571
7572           // Record any version information.
7573           if (sym->version() != NULL)
7574             versions->record_version(symtab, dynpool, sym);
7575
7576           // If the symbol is defined in a dynamic object and is
7577           // referenced in a regular object, then mark the dynamic
7578           // object as needed.  This is used to implement --as-needed.
7579           if (sym->is_from_dynobj() && sym->in_reg())
7580             sym->object()->set_is_needed();
7581         }
7582     }
7583
7584   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7585        p != got_symbols.end();
7586        ++p)
7587     {
7588       Symbol* sym = *p;
7589       if (!sym->has_dynsym_index())
7590         {
7591           // Record any version information.
7592           if (sym->version() != NULL)
7593             versions->record_version(symtab, dynpool, sym);
7594         }
7595     }
7596
7597   index = versions->finalize(symtab, index, syms);
7598
7599   int got_sym_count = 0;
7600   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7601        p != got_symbols.end();
7602        ++p)
7603     {
7604       Symbol* sym = *p;
7605
7606       if (!sym->has_dynsym_index())
7607         {
7608           ++got_sym_count;
7609           sym->set_dynsym_index(index);
7610           ++index;
7611           syms->push_back(sym);
7612           dynpool->add(sym->name(), false, NULL);
7613
7614           // If the symbol is defined in a dynamic object and is
7615           // referenced in a regular object, then mark the dynamic
7616           // object as needed.  This is used to implement --as-needed.
7617           if (sym->is_from_dynobj() && sym->in_reg())
7618             sym->object()->set_is_needed();
7619         }
7620     }
7621
7622   // Set index of the first symbol that has .got entry.
7623   this->got_->set_first_global_got_dynsym_index(
7624     got_sym_count > 0 ? index - got_sym_count : -1U);
7625
7626   if (this->mips_stubs_ != NULL)
7627     this->mips_stubs_->set_dynsym_count(index);
7628
7629   return index;
7630 }
7631
7632 // Create a PLT entry for a global symbol referenced by r_type relocation.
7633
7634 template<int size, bool big_endian>
7635 void
7636 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7637                                               Layout* layout,
7638                                               Mips_symbol<size>* gsym,
7639                                               unsigned int r_type)
7640 {
7641   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7642     return;
7643
7644   if (this->plt_ == NULL)
7645     {
7646       // Create the GOT section first.
7647       this->got_section(symtab, layout);
7648
7649       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7650       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7651                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7652                                       this->got_plt_, ORDER_DATA, false);
7653
7654       // The first two entries are reserved.
7655       this->got_plt_->set_current_data_size(2 * size/8);
7656
7657       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7658                                                               this->got_plt_,
7659                                                               this);
7660       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7661                                       (elfcpp::SHF_ALLOC
7662                                        | elfcpp::SHF_EXECINSTR),
7663                                       this->plt_, ORDER_PLT, false);
7664     }
7665
7666   this->plt_->add_entry(gsym, r_type);
7667 }
7668
7669
7670 // Get the .MIPS.stubs section, creating it if necessary.
7671
7672 template<int size, bool big_endian>
7673 Mips_output_data_mips_stubs<size, big_endian>*
7674 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7675 {
7676   if (this->mips_stubs_ == NULL)
7677     {
7678       this->mips_stubs_ =
7679         new Mips_output_data_mips_stubs<size, big_endian>(this);
7680       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7681                                       (elfcpp::SHF_ALLOC
7682                                        | elfcpp::SHF_EXECINSTR),
7683                                       this->mips_stubs_, ORDER_PLT, false);
7684     }
7685   return this->mips_stubs_;
7686 }
7687
7688 // Get the LA25 stub section, creating it if necessary.
7689
7690 template<int size, bool big_endian>
7691 Mips_output_data_la25_stub<size, big_endian>*
7692 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7693 {
7694   if (this->la25_stub_ == NULL)
7695     {
7696       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7697       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7698                                       (elfcpp::SHF_ALLOC
7699                                        | elfcpp::SHF_EXECINSTR),
7700                                       this->la25_stub_, ORDER_TEXT, false);
7701     }
7702   return this->la25_stub_;
7703 }
7704
7705 // Process the relocations to determine unreferenced sections for
7706 // garbage collection.
7707
7708 template<int size, bool big_endian>
7709 void
7710 Target_mips<size, big_endian>::gc_process_relocs(
7711                         Symbol_table* symtab,
7712                         Layout* layout,
7713                         Sized_relobj_file<size, big_endian>* object,
7714                         unsigned int data_shndx,
7715                         unsigned int,
7716                         const unsigned char* prelocs,
7717                         size_t reloc_count,
7718                         Output_section* output_section,
7719                         bool needs_special_offset_handling,
7720                         size_t local_symbol_count,
7721                         const unsigned char* plocal_symbols)
7722 {
7723   typedef Target_mips<size, big_endian> Mips;
7724   typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
7725       Classify_reloc;
7726
7727   gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
7728     symtab,
7729     layout,
7730     this,
7731     object,
7732     data_shndx,
7733     prelocs,
7734     reloc_count,
7735     output_section,
7736     needs_special_offset_handling,
7737     local_symbol_count,
7738     plocal_symbols);
7739 }
7740
7741 // Scan relocations for a section.
7742
7743 template<int size, bool big_endian>
7744 void
7745 Target_mips<size, big_endian>::scan_relocs(
7746                         Symbol_table* symtab,
7747                         Layout* layout,
7748                         Sized_relobj_file<size, big_endian>* object,
7749                         unsigned int data_shndx,
7750                         unsigned int sh_type,
7751                         const unsigned char* prelocs,
7752                         size_t reloc_count,
7753                         Output_section* output_section,
7754                         bool needs_special_offset_handling,
7755                         size_t local_symbol_count,
7756                         const unsigned char* plocal_symbols)
7757 {
7758   typedef Target_mips<size, big_endian> Mips;
7759
7760   if (sh_type == elfcpp::SHT_REL)
7761     {
7762       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
7763           Classify_reloc;
7764
7765       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
7766         symtab,
7767         layout,
7768         this,
7769         object,
7770         data_shndx,
7771         prelocs,
7772         reloc_count,
7773         output_section,
7774         needs_special_offset_handling,
7775         local_symbol_count,
7776         plocal_symbols);
7777     }
7778   else if (sh_type == elfcpp::SHT_RELA)
7779     {
7780       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7781           Classify_reloc;
7782
7783       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
7784         symtab,
7785         layout,
7786         this,
7787         object,
7788         data_shndx,
7789         prelocs,
7790         reloc_count,
7791         output_section,
7792         needs_special_offset_handling,
7793         local_symbol_count,
7794         plocal_symbols);
7795     }
7796 }
7797
7798 template<int size, bool big_endian>
7799 bool
7800 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7801 {
7802   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7803           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7804           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7805           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7806           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7807           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7808           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7809 }
7810
7811 // Return the MACH for a MIPS e_flags value.
7812 template<int size, bool big_endian>
7813 unsigned int
7814 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7815 {
7816   switch (flags & elfcpp::EF_MIPS_MACH)
7817     {
7818     case elfcpp::E_MIPS_MACH_3900:
7819       return mach_mips3900;
7820
7821     case elfcpp::E_MIPS_MACH_4010:
7822       return mach_mips4010;
7823
7824     case elfcpp::E_MIPS_MACH_4100:
7825       return mach_mips4100;
7826
7827     case elfcpp::E_MIPS_MACH_4111:
7828       return mach_mips4111;
7829
7830     case elfcpp::E_MIPS_MACH_4120:
7831       return mach_mips4120;
7832
7833     case elfcpp::E_MIPS_MACH_4650:
7834       return mach_mips4650;
7835
7836     case elfcpp::E_MIPS_MACH_5400:
7837       return mach_mips5400;
7838
7839     case elfcpp::E_MIPS_MACH_5500:
7840       return mach_mips5500;
7841
7842     case elfcpp::E_MIPS_MACH_9000:
7843       return mach_mips9000;
7844
7845     case elfcpp::E_MIPS_MACH_SB1:
7846       return mach_mips_sb1;
7847
7848     case elfcpp::E_MIPS_MACH_LS2E:
7849       return mach_mips_loongson_2e;
7850
7851     case elfcpp::E_MIPS_MACH_LS2F:
7852       return mach_mips_loongson_2f;
7853
7854     case elfcpp::E_MIPS_MACH_LS3A:
7855       return mach_mips_loongson_3a;
7856
7857     case elfcpp::E_MIPS_MACH_OCTEON2:
7858       return mach_mips_octeon2;
7859
7860     case elfcpp::E_MIPS_MACH_OCTEON:
7861       return mach_mips_octeon;
7862
7863     case elfcpp::E_MIPS_MACH_XLR:
7864       return mach_mips_xlr;
7865
7866     default:
7867       switch (flags & elfcpp::EF_MIPS_ARCH)
7868         {
7869         default:
7870         case elfcpp::E_MIPS_ARCH_1:
7871           return mach_mips3000;
7872
7873         case elfcpp::E_MIPS_ARCH_2:
7874           return mach_mips6000;
7875
7876         case elfcpp::E_MIPS_ARCH_3:
7877           return mach_mips4000;
7878
7879         case elfcpp::E_MIPS_ARCH_4:
7880           return mach_mips8000;
7881
7882         case elfcpp::E_MIPS_ARCH_5:
7883           return mach_mips5;
7884
7885         case elfcpp::E_MIPS_ARCH_32:
7886           return mach_mipsisa32;
7887
7888         case elfcpp::E_MIPS_ARCH_64:
7889           return mach_mipsisa64;
7890
7891         case elfcpp::E_MIPS_ARCH_32R2:
7892           return mach_mipsisa32r2;
7893
7894         case elfcpp::E_MIPS_ARCH_64R2:
7895           return mach_mipsisa64r2;
7896         }
7897     }
7898
7899   return 0;
7900 }
7901
7902 // Check whether machine EXTENSION is an extension of machine BASE.
7903 template<int size, bool big_endian>
7904 bool
7905 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7906                                                  unsigned int extension)
7907 {
7908   if (extension == base)
7909     return true;
7910
7911   if ((base == mach_mipsisa32)
7912       && this->mips_mach_extends(mach_mipsisa64, extension))
7913     return true;
7914
7915   if ((base == mach_mipsisa32r2)
7916       && this->mips_mach_extends(mach_mipsisa64r2, extension))
7917     return true;
7918
7919   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7920     if (extension == this->mips_mach_extensions_[i].first)
7921       {
7922         extension = this->mips_mach_extensions_[i].second;
7923         if (extension == base)
7924           return true;
7925       }
7926
7927   return false;
7928 }
7929
7930 template<int size, bool big_endian>
7931 void
7932 Target_mips<size, big_endian>::merge_processor_specific_flags(
7933     const std::string& name, elfcpp::Elf_Word in_flags,
7934     unsigned char in_ei_class, bool dyn_obj)
7935 {
7936   // If flags are not set yet, just copy them.
7937   if (!this->are_processor_specific_flags_set())
7938     {
7939       this->set_processor_specific_flags(in_flags);
7940       this->ei_class_ = in_ei_class;
7941       this->mach_ = this->elf_mips_mach(in_flags);
7942       return;
7943     }
7944
7945   elfcpp::Elf_Word new_flags = in_flags;
7946   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7947   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7948   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7949
7950   // Check flag compatibility.
7951   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7952   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7953
7954   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
7955   // doesn't seem to matter.
7956   new_flags &= ~elfcpp::EF_MIPS_XGOT;
7957   old_flags &= ~elfcpp::EF_MIPS_XGOT;
7958
7959   // MIPSpro generates ucode info in n64 objects.  Again, we should
7960   // just be able to ignore this.
7961   new_flags &= ~elfcpp::EF_MIPS_UCODE;
7962   old_flags &= ~elfcpp::EF_MIPS_UCODE;
7963
7964   // DSOs should only be linked with CPIC code.
7965   if (dyn_obj)
7966     new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7967
7968   if (new_flags == old_flags)
7969     {
7970       this->set_processor_specific_flags(merged_flags);
7971       return;
7972     }
7973
7974   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7975       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7976     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7977                  name.c_str());
7978
7979   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7980     merged_flags |= elfcpp::EF_MIPS_CPIC;
7981   if (!(new_flags & elfcpp::EF_MIPS_PIC))
7982     merged_flags &= ~elfcpp::EF_MIPS_PIC;
7983
7984   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7985   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7986
7987   // Compare the ISAs.
7988   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7989     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7990   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7991     {
7992       // Output ISA isn't the same as, or an extension of, input ISA.
7993       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7994         {
7995           // Copy the architecture info from input object to output.  Also copy
7996           // the 32-bit flag (if set) so that we continue to recognise
7997           // output as a 32-bit binary.
7998           this->mach_ = this->elf_mips_mach(in_flags);
7999           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
8000           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
8001                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
8002
8003           // Copy across the ABI flags if output doesn't use them
8004           // and if that was what caused us to treat input object as 32-bit.
8005           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
8006               && this->mips_32bit_flags(new_flags)
8007               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
8008             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
8009         }
8010       else
8011         // The ISAs aren't compatible.
8012         gold_error(_("%s: linking %s module with previous %s modules"),
8013                    name.c_str(), this->elf_mips_mach_name(in_flags),
8014                    this->elf_mips_mach_name(merged_flags));
8015     }
8016
8017   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
8018                 | elfcpp::EF_MIPS_32BITMODE));
8019   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
8020                 | elfcpp::EF_MIPS_32BITMODE));
8021
8022   // Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
8023   // EI_CLASS differently from any 32-bit ABI.
8024   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
8025       || (in_ei_class != this->ei_class_))
8026     {
8027       // Only error if both are set (to different values).
8028       if (((new_flags & elfcpp::EF_MIPS_ABI)
8029            && (old_flags & elfcpp::EF_MIPS_ABI))
8030           || (in_ei_class != this->ei_class_))
8031         gold_error(_("%s: ABI mismatch: linking %s module with "
8032                      "previous %s modules"), name.c_str(),
8033                    this->elf_mips_abi_name(in_flags, in_ei_class),
8034                    this->elf_mips_abi_name(merged_flags, this->ei_class_));
8035
8036       new_flags &= ~elfcpp::EF_MIPS_ABI;
8037       old_flags &= ~elfcpp::EF_MIPS_ABI;
8038     }
8039
8040   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
8041   // and allow arbitrary mixing of the remaining ASEs (retain the union).
8042   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
8043       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
8044     {
8045       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
8046       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
8047       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
8048       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
8049       int micro_mis = old_m16 && new_micro;
8050       int m16_mis = old_micro && new_m16;
8051
8052       if (m16_mis || micro_mis)
8053         gold_error(_("%s: ASE mismatch: linking %s module with "
8054                      "previous %s modules"), name.c_str(),
8055                    m16_mis ? "MIPS16" : "microMIPS",
8056                    m16_mis ? "microMIPS" : "MIPS16");
8057
8058       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
8059
8060       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
8061       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
8062     }
8063
8064   // Warn about any other mismatches.
8065   if (new_flags != old_flags)
8066     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
8067                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
8068
8069   this->set_processor_specific_flags(merged_flags);
8070 }
8071
8072 // Adjust ELF file header.
8073
8074 template<int size, bool big_endian>
8075 void
8076 Target_mips<size, big_endian>::do_adjust_elf_header(
8077     unsigned char* view,
8078     int len)
8079 {
8080   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
8081
8082   elfcpp::Ehdr<size, big_endian> ehdr(view);
8083   unsigned char e_ident[elfcpp::EI_NIDENT];
8084   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
8085
8086   e_ident[elfcpp::EI_CLASS] = this->ei_class_;
8087
8088   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
8089   oehdr.put_e_ident(e_ident);
8090   if (this->entry_symbol_is_compressed_)
8091     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
8092 }
8093
8094 // do_make_elf_object to override the same function in the base class.
8095 // We need to use a target-specific sub-class of
8096 // Sized_relobj_file<size, big_endian> to store Mips specific information.
8097 // Hence we need to have our own ELF object creation.
8098
8099 template<int size, bool big_endian>
8100 Object*
8101 Target_mips<size, big_endian>::do_make_elf_object(
8102     const std::string& name,
8103     Input_file* input_file,
8104     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
8105 {
8106   int et = ehdr.get_e_type();
8107   // ET_EXEC files are valid input for --just-symbols/-R,
8108   // and we treat them as relocatable objects.
8109   if (et == elfcpp::ET_REL
8110       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
8111     {
8112       Mips_relobj<size, big_endian>* obj =
8113         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
8114       obj->setup();
8115       return obj;
8116     }
8117   else if (et == elfcpp::ET_DYN)
8118     {
8119       // TODO(sasa): Should we create Mips_dynobj?
8120       return Target::do_make_elf_object(name, input_file, offset, ehdr);
8121     }
8122   else
8123     {
8124       gold_error(_("%s: unsupported ELF file type %d"),
8125                  name.c_str(), et);
8126       return NULL;
8127     }
8128 }
8129
8130 // Finalize the sections.
8131
8132 template <int size, bool big_endian>
8133 void
8134 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
8135                                         const Input_objects* input_objects,
8136                                         Symbol_table* symtab)
8137 {
8138   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
8139   // DT_FINI have correct values.
8140   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
8141       symtab->lookup(parameters->options().init()));
8142   if (init != NULL && (init->is_mips16() || init->is_micromips()))
8143     init->set_value(init->value() | 1);
8144   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
8145       symtab->lookup(parameters->options().fini()));
8146   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
8147     fini->set_value(fini->value() | 1);
8148
8149   // Check whether the entry symbol is mips16 or micromips.  This is needed to
8150   // adjust entry address in ELF header.
8151   Mips_symbol<size>* entry =
8152     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
8153   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
8154                                        || entry->is_micromips()));
8155
8156   if (!parameters->doing_static_link()
8157       && (strcmp(parameters->options().hash_style(), "gnu") == 0
8158           || strcmp(parameters->options().hash_style(), "both") == 0))
8159     {
8160       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
8161       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
8162       // MIPS ABI requires a mapping between the GOT and the symbol table.
8163       gold_error(".gnu.hash is incompatible with the MIPS ABI");
8164     }
8165
8166   // Check whether the final section that was scanned has HI16 or GOT16
8167   // relocations without the corresponding LO16 part.
8168   if (this->got16_addends_.size() > 0)
8169       gold_error("Can't find matching LO16 reloc");
8170
8171   // Set _gp value.
8172   this->set_gp(layout, symtab);
8173
8174   // Check for any mips16 stub sections that we can discard.
8175   if (!parameters->options().relocatable())
8176     {
8177       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8178           p != input_objects->relobj_end();
8179           ++p)
8180         {
8181           Mips_relobj<size, big_endian>* object =
8182             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8183           object->discard_mips16_stub_sections(symtab);
8184         }
8185     }
8186
8187   // Merge processor-specific flags.
8188   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8189        p != input_objects->relobj_end();
8190        ++p)
8191     {
8192       Mips_relobj<size, big_endian>* relobj =
8193         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8194
8195       Input_file::Format format = relobj->input_file()->format();
8196       if (format == Input_file::FORMAT_ELF)
8197         {
8198           // Read processor-specific flags in ELF file header.
8199           const unsigned char* pehdr = relobj->get_view(
8200                                             elfcpp::file_header_offset,
8201                                             elfcpp::Elf_sizes<size>::ehdr_size,
8202                                             true, false);
8203
8204           elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8205           elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8206           unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8207
8208           this->merge_processor_specific_flags(relobj->name(), in_flags,
8209                                                ei_class, false);
8210         }
8211     }
8212
8213   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8214        p != input_objects->dynobj_end();
8215        ++p)
8216     {
8217       Sized_dynobj<size, big_endian>* dynobj =
8218         static_cast<Sized_dynobj<size, big_endian>*>(*p);
8219
8220       // Read processor-specific flags.
8221       const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8222                                            elfcpp::Elf_sizes<size>::ehdr_size,
8223                                            true, false);
8224
8225       elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8226       elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8227       unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8228
8229       this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8230                                            true);
8231     }
8232
8233   // Merge .reginfo contents of input objects.
8234   Valtype gprmask = 0;
8235   Valtype cprmask1 = 0;
8236   Valtype cprmask2 = 0;
8237   Valtype cprmask3 = 0;
8238   Valtype cprmask4 = 0;
8239   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8240        p != input_objects->relobj_end();
8241        ++p)
8242     {
8243       Mips_relobj<size, big_endian>* relobj =
8244         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8245
8246       gprmask |= relobj->gprmask();
8247       cprmask1 |= relobj->cprmask1();
8248       cprmask2 |= relobj->cprmask2();
8249       cprmask3 |= relobj->cprmask3();
8250       cprmask4 |= relobj->cprmask4();
8251     }
8252
8253   if (this->plt_ != NULL)
8254     {
8255       // Set final PLT offsets for symbols.
8256       this->plt_section()->set_plt_offsets();
8257
8258       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8259       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8260       // there are no standard PLT entries present.
8261       unsigned char nonvis = 0;
8262       if (this->is_output_micromips()
8263           && !this->plt_section()->has_standard_entries())
8264         nonvis = elfcpp::STO_MICROMIPS >> 2;
8265       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8266                                     Symbol_table::PREDEFINED,
8267                                     this->plt_,
8268                                     0, 0, elfcpp::STT_FUNC,
8269                                     elfcpp::STB_LOCAL,
8270                                     elfcpp::STV_DEFAULT, nonvis,
8271                                     false, false);
8272     }
8273
8274   if (this->mips_stubs_ != NULL)
8275     {
8276       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8277       unsigned char nonvis = 0;
8278       if (this->is_output_micromips())
8279         nonvis = elfcpp::STO_MICROMIPS >> 2;
8280       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8281                                     Symbol_table::PREDEFINED,
8282                                     this->mips_stubs_,
8283                                     0, 0, elfcpp::STT_FUNC,
8284                                     elfcpp::STB_LOCAL,
8285                                     elfcpp::STV_DEFAULT, nonvis,
8286                                     false, false);
8287     }
8288
8289   if (!parameters->options().relocatable() && !parameters->doing_static_link())
8290     // In case there is no .got section, create one.
8291     this->got_section(symtab, layout);
8292
8293   // Emit any relocs we saved in an attempt to avoid generating COPY
8294   // relocs.
8295   if (this->copy_relocs_.any_saved_relocs())
8296     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8297                                  this);
8298
8299   // Emit dynamic relocs.
8300   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8301        p != this->dyn_relocs_.end();
8302        ++p)
8303     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8304
8305   if (this->has_got_section())
8306     this->got_section()->lay_out_got(layout, symtab, input_objects);
8307
8308   if (this->mips_stubs_ != NULL)
8309     this->mips_stubs_->set_needs_dynsym_value();
8310
8311   // Check for functions that might need $25 to be valid on entry.
8312   // TODO(sasa): Can we do this without iterating over all symbols?
8313   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8314   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8315                                                                symtab));
8316
8317   // Add NULL segment.
8318   if (!parameters->options().relocatable())
8319     layout->make_output_segment(elfcpp::PT_NULL, 0);
8320
8321   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8322        p != layout->section_list().end();
8323        ++p)
8324     {
8325       if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8326         {
8327           Mips_output_section_reginfo<size, big_endian>* reginfo =
8328             Mips_output_section_reginfo<size, big_endian>::
8329               as_mips_output_section_reginfo(*p);
8330
8331           reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8332
8333           if (!parameters->options().relocatable())
8334             {
8335               Output_segment* reginfo_segment =
8336                 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8337                                             elfcpp::PF_R);
8338               reginfo_segment->add_output_section_to_nonload(reginfo,
8339                                                              elfcpp::PF_R);
8340             }
8341         }
8342     }
8343
8344   // Fill in some more dynamic tags.
8345   // TODO(sasa): Add more dynamic tags.
8346   const Reloc_section* rel_plt = (this->plt_ == NULL
8347                                   ? NULL : this->plt_->rel_plt());
8348   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8349                                   this->rel_dyn_, true, false);
8350
8351   Output_data_dynamic* const odyn = layout->dynamic_data();
8352   if (odyn != NULL
8353       && !parameters->options().relocatable()
8354       && !parameters->doing_static_link())
8355   {
8356     unsigned int d_val;
8357     // This element holds a 32-bit version id for the Runtime
8358     // Linker Interface.  This will start at integer value 1.
8359     d_val = 0x01;
8360     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8361
8362     // Dynamic flags
8363     d_val = elfcpp::RHF_NOTPOT;
8364     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8365
8366     // Save layout for using when emiting custom dynamic tags.
8367     this->layout_ = layout;
8368
8369     // This member holds the base address of the segment.
8370     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8371
8372     // This member holds the number of entries in the .dynsym section.
8373     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8374
8375     // This member holds the index of the first dynamic symbol
8376     // table entry that corresponds to an entry in the global offset table.
8377     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8378
8379     // This member holds the number of local GOT entries.
8380     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8381                        this->got_->get_local_gotno());
8382
8383     if (this->plt_ != NULL)
8384       // DT_MIPS_PLTGOT dynamic tag
8385       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8386   }
8387  }
8388
8389 // Get the custom dynamic tag value.
8390 template<int size, bool big_endian>
8391 unsigned int
8392 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8393 {
8394   switch (tag)
8395     {
8396     case elfcpp::DT_MIPS_BASE_ADDRESS:
8397       {
8398         // The base address of the segment.
8399         // At this point, the segment list has been sorted into final order,
8400         // so just return vaddr of the first readable PT_LOAD segment.
8401         Output_segment* seg =
8402           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8403         gold_assert(seg != NULL);
8404         return seg->vaddr();
8405       }
8406
8407     case elfcpp::DT_MIPS_SYMTABNO:
8408       // The number of entries in the .dynsym section.
8409       return this->get_dt_mips_symtabno();
8410
8411     case elfcpp::DT_MIPS_GOTSYM:
8412       {
8413         // The index of the first dynamic symbol table entry that corresponds
8414         // to an entry in the GOT.
8415         if (this->got_->first_global_got_dynsym_index() != -1U)
8416           return this->got_->first_global_got_dynsym_index();
8417         else
8418           // In case if we don't have global GOT symbols we default to setting
8419           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8420           return this->get_dt_mips_symtabno();
8421       }
8422
8423     default:
8424       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8425     }
8426
8427   return (unsigned int)-1;
8428 }
8429
8430 // Relocate section data.
8431
8432 template<int size, bool big_endian>
8433 void
8434 Target_mips<size, big_endian>::relocate_section(
8435                         const Relocate_info<size, big_endian>* relinfo,
8436                         unsigned int sh_type,
8437                         const unsigned char* prelocs,
8438                         size_t reloc_count,
8439                         Output_section* output_section,
8440                         bool needs_special_offset_handling,
8441                         unsigned char* view,
8442                         Mips_address address,
8443                         section_size_type view_size,
8444                         const Reloc_symbol_changes* reloc_symbol_changes)
8445 {
8446   typedef Target_mips<size, big_endian> Mips;
8447   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8448
8449   if (sh_type == elfcpp::SHT_REL)
8450     {
8451       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8452           Classify_reloc;
8453
8454       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
8455                              gold::Default_comdat_behavior, Classify_reloc>(
8456         relinfo,
8457         this,
8458         prelocs,
8459         reloc_count,
8460         output_section,
8461         needs_special_offset_handling,
8462         view,
8463         address,
8464         view_size,
8465         reloc_symbol_changes);
8466     }
8467   else if (sh_type == elfcpp::SHT_RELA)
8468     {
8469       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8470           Classify_reloc;
8471
8472       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
8473                              gold::Default_comdat_behavior, Classify_reloc>(
8474         relinfo,
8475         this,
8476         prelocs,
8477         reloc_count,
8478         output_section,
8479         needs_special_offset_handling,
8480         view,
8481         address,
8482         view_size,
8483         reloc_symbol_changes);
8484     }
8485 }
8486
8487 // Return the size of a relocation while scanning during a relocatable
8488 // link.
8489
8490 unsigned int
8491 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
8492 {
8493   switch (r_type)
8494     {
8495     case elfcpp::R_MIPS_NONE:
8496     case elfcpp::R_MIPS_TLS_DTPMOD64:
8497     case elfcpp::R_MIPS_TLS_DTPREL64:
8498     case elfcpp::R_MIPS_TLS_TPREL64:
8499       return 0;
8500
8501     case elfcpp::R_MIPS_32:
8502     case elfcpp::R_MIPS_TLS_DTPMOD32:
8503     case elfcpp::R_MIPS_TLS_DTPREL32:
8504     case elfcpp::R_MIPS_TLS_TPREL32:
8505     case elfcpp::R_MIPS_REL32:
8506     case elfcpp::R_MIPS_PC32:
8507     case elfcpp::R_MIPS_GPREL32:
8508     case elfcpp::R_MIPS_JALR:
8509       return 4;
8510
8511     case elfcpp::R_MIPS_16:
8512     case elfcpp::R_MIPS_HI16:
8513     case elfcpp::R_MIPS_LO16:
8514     case elfcpp::R_MIPS_GPREL16:
8515     case elfcpp::R_MIPS16_HI16:
8516     case elfcpp::R_MIPS16_LO16:
8517     case elfcpp::R_MIPS_PC16:
8518     case elfcpp::R_MIPS_GOT16:
8519     case elfcpp::R_MIPS16_GOT16:
8520     case elfcpp::R_MIPS_CALL16:
8521     case elfcpp::R_MIPS16_CALL16:
8522     case elfcpp::R_MIPS_GOT_HI16:
8523     case elfcpp::R_MIPS_CALL_HI16:
8524     case elfcpp::R_MIPS_GOT_LO16:
8525     case elfcpp::R_MIPS_CALL_LO16:
8526     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8527     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8528     case elfcpp::R_MIPS_TLS_TPREL_HI16:
8529     case elfcpp::R_MIPS_TLS_TPREL_LO16:
8530     case elfcpp::R_MIPS16_GPREL:
8531     case elfcpp::R_MIPS_GOT_DISP:
8532     case elfcpp::R_MIPS_LITERAL:
8533     case elfcpp::R_MIPS_GOT_PAGE:
8534     case elfcpp::R_MIPS_GOT_OFST:
8535     case elfcpp::R_MIPS_TLS_GD:
8536     case elfcpp::R_MIPS_TLS_LDM:
8537     case elfcpp::R_MIPS_TLS_GOTTPREL:
8538       return 2;
8539
8540     // These relocations are not byte sized
8541     case elfcpp::R_MIPS_26:
8542     case elfcpp::R_MIPS16_26:
8543       return 4;
8544
8545     case elfcpp::R_MIPS_COPY:
8546     case elfcpp::R_MIPS_JUMP_SLOT:
8547       object->error(_("unexpected reloc %u in object file"), r_type);
8548       return 0;
8549
8550     default:
8551       object->error(_("unsupported reloc %u in object file"), r_type);
8552       return 0;
8553   }
8554 }
8555
8556 // Scan the relocs during a relocatable link.
8557
8558 template<int size, bool big_endian>
8559 void
8560 Target_mips<size, big_endian>::scan_relocatable_relocs(
8561                         Symbol_table* symtab,
8562                         Layout* layout,
8563                         Sized_relobj_file<size, big_endian>* object,
8564                         unsigned int data_shndx,
8565                         unsigned int sh_type,
8566                         const unsigned char* prelocs,
8567                         size_t reloc_count,
8568                         Output_section* output_section,
8569                         bool needs_special_offset_handling,
8570                         size_t local_symbol_count,
8571                         const unsigned char* plocal_symbols,
8572                         Relocatable_relocs* rr)
8573 {
8574   typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8575       Classify_reloc;
8576   typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
8577       Scan_relocatable_relocs;
8578
8579   gold_assert(sh_type == elfcpp::SHT_REL);
8580
8581   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8582     symtab,
8583     layout,
8584     object,
8585     data_shndx,
8586     prelocs,
8587     reloc_count,
8588     output_section,
8589     needs_special_offset_handling,
8590     local_symbol_count,
8591     plocal_symbols,
8592     rr);
8593 }
8594
8595 // Scan the relocs for --emit-relocs.
8596
8597 template<int size, bool big_endian>
8598 void
8599 Target_mips<size, big_endian>::emit_relocs_scan(
8600     Symbol_table* symtab,
8601     Layout* layout,
8602     Sized_relobj_file<size, big_endian>* object,
8603     unsigned int data_shndx,
8604     unsigned int sh_type,
8605     const unsigned char* prelocs,
8606     size_t reloc_count,
8607     Output_section* output_section,
8608     bool needs_special_offset_handling,
8609     size_t local_symbol_count,
8610     const unsigned char* plocal_syms,
8611     Relocatable_relocs* rr)
8612 {
8613   typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8614       Classify_reloc;
8615   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8616       Emit_relocs_strategy;
8617
8618   gold_assert(sh_type == elfcpp::SHT_REL);
8619
8620   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8621     symtab,
8622     layout,
8623     object,
8624     data_shndx,
8625     prelocs,
8626     reloc_count,
8627     output_section,
8628     needs_special_offset_handling,
8629     local_symbol_count,
8630     plocal_syms,
8631     rr);
8632 }
8633
8634 // Emit relocations for a section.
8635
8636 template<int size, bool big_endian>
8637 void
8638 Target_mips<size, big_endian>::relocate_relocs(
8639                         const Relocate_info<size, big_endian>* relinfo,
8640                         unsigned int sh_type,
8641                         const unsigned char* prelocs,
8642                         size_t reloc_count,
8643                         Output_section* output_section,
8644                         typename elfcpp::Elf_types<size>::Elf_Off
8645                           offset_in_output_section,
8646                         unsigned char* view,
8647                         Mips_address view_address,
8648                         section_size_type view_size,
8649                         unsigned char* reloc_view,
8650                         section_size_type reloc_view_size)
8651 {
8652   typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8653       Classify_reloc;
8654
8655   gold_assert(sh_type == elfcpp::SHT_REL);
8656
8657   gold::relocate_relocs<size, big_endian, Classify_reloc>(
8658     relinfo,
8659     prelocs,
8660     reloc_count,
8661     output_section,
8662     offset_in_output_section,
8663     view,
8664     view_address,
8665     view_size,
8666     reloc_view,
8667     reloc_view_size);
8668 }
8669
8670 // Perform target-specific processing in a relocatable link.  This is
8671 // only used if we use the relocation strategy RELOC_SPECIAL.
8672
8673 template<int size, bool big_endian>
8674 void
8675 Target_mips<size, big_endian>::relocate_special_relocatable(
8676     const Relocate_info<size, big_endian>* relinfo,
8677     unsigned int sh_type,
8678     const unsigned char* preloc_in,
8679     size_t relnum,
8680     Output_section* output_section,
8681     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8682     unsigned char* view,
8683     Mips_address view_address,
8684     section_size_type,
8685     unsigned char* preloc_out)
8686 {
8687   // We can only handle REL type relocation sections.
8688   gold_assert(sh_type == elfcpp::SHT_REL);
8689
8690   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8691     Reltype;
8692   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8693     Reltype_write;
8694
8695   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8696
8697   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8698
8699   Mips_relobj<size, big_endian>* object =
8700     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8701   const unsigned int local_count = object->local_symbol_count();
8702
8703   Reltype reloc(preloc_in);
8704   Reltype_write reloc_write(preloc_out);
8705
8706   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8707   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8708   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8709
8710   // Get the new symbol index.
8711   // We only use RELOC_SPECIAL strategy in local relocations.
8712   gold_assert(r_sym < local_count);
8713
8714   // We are adjusting a section symbol.  We need to find
8715   // the symbol table index of the section symbol for
8716   // the output section corresponding to input section
8717   // in which this symbol is defined.
8718   bool is_ordinary;
8719   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8720   gold_assert(is_ordinary);
8721   Output_section* os = object->output_section(shndx);
8722   gold_assert(os != NULL);
8723   gold_assert(os->needs_symtab_index());
8724   unsigned int new_symndx = os->symtab_index();
8725
8726   // Get the new offset--the location in the output section where
8727   // this relocation should be applied.
8728
8729   Mips_address offset = reloc.get_r_offset();
8730   Mips_address new_offset;
8731   if (offset_in_output_section != invalid_address)
8732     new_offset = offset + offset_in_output_section;
8733   else
8734     {
8735       section_offset_type sot_offset =
8736         convert_types<section_offset_type, Mips_address>(offset);
8737       section_offset_type new_sot_offset =
8738         output_section->output_offset(object, relinfo->data_shndx,
8739                                       sot_offset);
8740       gold_assert(new_sot_offset != -1);
8741       new_offset = new_sot_offset;
8742     }
8743
8744   // In an object file, r_offset is an offset within the section.
8745   // In an executable or dynamic object, generated by
8746   // --emit-relocs, r_offset is an absolute address.
8747   if (!parameters->options().relocatable())
8748     {
8749       new_offset += view_address;
8750       if (offset_in_output_section != invalid_address)
8751         new_offset -= offset_in_output_section;
8752     }
8753
8754   reloc_write.put_r_offset(new_offset);
8755   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8756
8757   // Handle the reloc addend.
8758   // The relocation uses a section symbol in the input file.
8759   // We are adjusting it to use a section symbol in the output
8760   // file.  The input section symbol refers to some address in
8761   // the input section.  We need the relocation in the output
8762   // file to refer to that same address.  This adjustment to
8763   // the addend is the same calculation we use for a simple
8764   // absolute relocation for the input section symbol.
8765
8766   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8767
8768   unsigned char* paddend = view + offset;
8769   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8770   switch (r_type)
8771     {
8772     case elfcpp::R_MIPS_26:
8773       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8774           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8775           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8776       break;
8777
8778     default:
8779       gold_unreachable();
8780     }
8781
8782   // Report any errors.
8783   switch (reloc_status)
8784     {
8785     case Reloc_funcs::STATUS_OKAY:
8786       break;
8787     case Reloc_funcs::STATUS_OVERFLOW:
8788       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8789                              _("relocation overflow"));
8790       break;
8791     case Reloc_funcs::STATUS_BAD_RELOC:
8792       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8793         _("unexpected opcode while processing relocation"));
8794       break;
8795     default:
8796       gold_unreachable();
8797     }
8798 }
8799
8800 // Optimize the TLS relocation type based on what we know about the
8801 // symbol.  IS_FINAL is true if the final address of this symbol is
8802 // known at link time.
8803
8804 template<int size, bool big_endian>
8805 tls::Tls_optimization
8806 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8807 {
8808   // FIXME: Currently we do not do any TLS optimization.
8809   return tls::TLSOPT_NONE;
8810 }
8811
8812 // Scan a relocation for a local symbol.
8813
8814 template<int size, bool big_endian>
8815 inline void
8816 Target_mips<size, big_endian>::Scan::local(
8817                         Symbol_table* symtab,
8818                         Layout* layout,
8819                         Target_mips<size, big_endian>* target,
8820                         Sized_relobj_file<size, big_endian>* object,
8821                         unsigned int data_shndx,
8822                         Output_section* output_section,
8823                         const Relatype* rela,
8824                         const Reltype* rel,
8825                         unsigned int rel_type,
8826                         unsigned int r_type,
8827                         const elfcpp::Sym<size, big_endian>& lsym,
8828                         bool is_discarded)
8829 {
8830   if (is_discarded)
8831     return;
8832
8833   Mips_address r_offset;
8834   unsigned int r_sym;
8835   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8836
8837   if (rel_type == elfcpp::SHT_RELA)
8838     {
8839       r_offset = rela->get_r_offset();
8840       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
8841           get_r_sym(rela);
8842       r_addend = rela->get_r_addend();
8843     }
8844   else
8845     {
8846       r_offset = rel->get_r_offset();
8847       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
8848           get_r_sym(rel);
8849       r_addend = 0;
8850     }
8851
8852   Mips_relobj<size, big_endian>* mips_obj =
8853     Mips_relobj<size, big_endian>::as_mips_relobj(object);
8854
8855   if (mips_obj->is_mips16_stub_section(data_shndx))
8856     {
8857       mips_obj->get_mips16_stub_section(data_shndx)
8858               ->new_local_reloc_found(r_type, r_sym);
8859     }
8860
8861   if (r_type == elfcpp::R_MIPS_NONE)
8862     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8863     // mips16 stub.
8864     return;
8865
8866   if (!mips16_call_reloc(r_type)
8867       && !mips_obj->section_allows_mips16_refs(data_shndx))
8868     // This reloc would need to refer to a MIPS16 hard-float stub, if
8869     // there is one.  We ignore MIPS16 stub sections and .pdr section when
8870     // looking for relocs that would need to refer to MIPS16 stubs.
8871     mips_obj->add_local_non_16bit_call(r_sym);
8872
8873   if (r_type == elfcpp::R_MIPS16_26
8874       && !mips_obj->section_allows_mips16_refs(data_shndx))
8875     mips_obj->add_local_16bit_call(r_sym);
8876
8877   switch (r_type)
8878     {
8879     case elfcpp::R_MIPS_GOT16:
8880     case elfcpp::R_MIPS_CALL16:
8881     case elfcpp::R_MIPS_CALL_HI16:
8882     case elfcpp::R_MIPS_CALL_LO16:
8883     case elfcpp::R_MIPS_GOT_HI16:
8884     case elfcpp::R_MIPS_GOT_LO16:
8885     case elfcpp::R_MIPS_GOT_PAGE:
8886     case elfcpp::R_MIPS_GOT_OFST:
8887     case elfcpp::R_MIPS_GOT_DISP:
8888     case elfcpp::R_MIPS_TLS_GOTTPREL:
8889     case elfcpp::R_MIPS_TLS_GD:
8890     case elfcpp::R_MIPS_TLS_LDM:
8891     case elfcpp::R_MIPS16_GOT16:
8892     case elfcpp::R_MIPS16_CALL16:
8893     case elfcpp::R_MIPS16_TLS_GOTTPREL:
8894     case elfcpp::R_MIPS16_TLS_GD:
8895     case elfcpp::R_MIPS16_TLS_LDM:
8896     case elfcpp::R_MICROMIPS_GOT16:
8897     case elfcpp::R_MICROMIPS_CALL16:
8898     case elfcpp::R_MICROMIPS_CALL_HI16:
8899     case elfcpp::R_MICROMIPS_CALL_LO16:
8900     case elfcpp::R_MICROMIPS_GOT_HI16:
8901     case elfcpp::R_MICROMIPS_GOT_LO16:
8902     case elfcpp::R_MICROMIPS_GOT_PAGE:
8903     case elfcpp::R_MICROMIPS_GOT_OFST:
8904     case elfcpp::R_MICROMIPS_GOT_DISP:
8905     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8906     case elfcpp::R_MICROMIPS_TLS_GD:
8907     case elfcpp::R_MICROMIPS_TLS_LDM:
8908       // We need a GOT section.
8909       target->got_section(symtab, layout);
8910       break;
8911
8912     default:
8913       break;
8914     }
8915
8916   if (call_lo16_reloc(r_type)
8917       || got_lo16_reloc(r_type)
8918       || got_disp_reloc(r_type))
8919     {
8920       // We may need a local GOT entry for this relocation.  We
8921       // don't count R_MIPS_GOT_PAGE because we can estimate the
8922       // maximum number of pages needed by looking at the size of
8923       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
8924       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
8925       // R_MIPS_CALL_HI16 because these are always followed by an
8926       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8927       Mips_output_data_got<size, big_endian>* got =
8928         target->got_section(symtab, layout);
8929       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8930     }
8931
8932   switch (r_type)
8933     {
8934     case elfcpp::R_MIPS_CALL16:
8935     case elfcpp::R_MIPS16_CALL16:
8936     case elfcpp::R_MICROMIPS_CALL16:
8937       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8938                  (unsigned long)r_offset);
8939       return;
8940
8941     case elfcpp::R_MIPS_GOT_PAGE:
8942     case elfcpp::R_MICROMIPS_GOT_PAGE:
8943     case elfcpp::R_MIPS16_GOT16:
8944     case elfcpp::R_MIPS_GOT16:
8945     case elfcpp::R_MIPS_GOT_HI16:
8946     case elfcpp::R_MIPS_GOT_LO16:
8947     case elfcpp::R_MICROMIPS_GOT16:
8948     case elfcpp::R_MICROMIPS_GOT_HI16:
8949     case elfcpp::R_MICROMIPS_GOT_LO16:
8950       {
8951         // This relocation needs a page entry in the GOT.
8952         // Get the section contents.
8953         section_size_type view_size = 0;
8954         const unsigned char* view = object->section_contents(data_shndx,
8955                                                              &view_size, false);
8956         view += r_offset;
8957
8958         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8959         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8960                                                         : r_addend);
8961
8962         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8963           target->got16_addends_.push_back(got16_addend<size, big_endian>(
8964               object, data_shndx, r_type, r_sym, addend));
8965         else
8966           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8967         break;
8968       }
8969
8970     case elfcpp::R_MIPS_HI16:
8971     case elfcpp::R_MIPS16_HI16:
8972     case elfcpp::R_MICROMIPS_HI16:
8973       // Record the reloc so that we can check whether the corresponding LO16
8974       // part exists.
8975       if (rel_type == elfcpp::SHT_REL)
8976         target->got16_addends_.push_back(got16_addend<size, big_endian>(
8977             object, data_shndx, r_type, r_sym, 0));
8978       break;
8979
8980     case elfcpp::R_MIPS_LO16:
8981     case elfcpp::R_MIPS16_LO16:
8982     case elfcpp::R_MICROMIPS_LO16:
8983       {
8984         if (rel_type != elfcpp::SHT_REL)
8985           break;
8986
8987         // Find corresponding GOT16/HI16 relocation.
8988
8989         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8990         // be immediately following.  However, for the IRIX6 ABI, the next
8991         // relocation may be a composed relocation consisting of several
8992         // relocations for the same address.  In that case, the R_MIPS_LO16
8993         // relocation may occur as one of these.  We permit a similar
8994         // extension in general, as that is useful for GCC.
8995
8996         // In some cases GCC dead code elimination removes the LO16 but
8997         // keeps the corresponding HI16.  This is strictly speaking a
8998         // violation of the ABI but not immediately harmful.
8999
9000         typename std::list<got16_addend<size, big_endian> >::iterator it =
9001           target->got16_addends_.begin();
9002         while (it != target->got16_addends_.end())
9003           {
9004             got16_addend<size, big_endian> _got16_addend = *it;
9005
9006             // TODO(sasa): Split got16_addends_ list into two lists - one for
9007             // GOT16 relocs and the other for HI16 relocs.
9008
9009             // Report an error if we find HI16 or GOT16 reloc from the
9010             // previous section without the matching LO16 part.
9011             if (_got16_addend.object != object
9012                 || _got16_addend.shndx != data_shndx)
9013               {
9014                 gold_error("Can't find matching LO16 reloc");
9015                 break;
9016               }
9017
9018             if (_got16_addend.r_sym != r_sym
9019                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
9020               {
9021                 ++it;
9022                 continue;
9023               }
9024
9025             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
9026             // For GOT16, we need to calculate combined addend and record GOT page
9027             // entry.
9028             if (got16_reloc(_got16_addend.r_type))
9029               {
9030
9031                 section_size_type view_size = 0;
9032                 const unsigned char* view = object->section_contents(data_shndx,
9033                                                                      &view_size,
9034                                                                      false);
9035                 view += r_offset;
9036
9037                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9038                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
9039
9040                 addend = (_got16_addend.addend << 16) + addend;
9041                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
9042                                                              addend);
9043               }
9044
9045             it = target->got16_addends_.erase(it);
9046           }
9047         break;
9048       }
9049     }
9050
9051   switch (r_type)
9052     {
9053     case elfcpp::R_MIPS_32:
9054     case elfcpp::R_MIPS_REL32:
9055     case elfcpp::R_MIPS_64:
9056       {
9057         if (parameters->options().output_is_position_independent())
9058           {
9059             // If building a shared library (or a position-independent
9060             // executable), we need to create a dynamic relocation for
9061             // this location.
9062             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9063             rel_dyn->add_symbolless_local_addend(object, r_sym,
9064                                                  elfcpp::R_MIPS_REL32,
9065                                                  output_section, data_shndx,
9066                                                  r_offset);
9067           }
9068         break;
9069       }
9070
9071     case elfcpp::R_MIPS_TLS_GOTTPREL:
9072     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9073     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9074     case elfcpp::R_MIPS_TLS_LDM:
9075     case elfcpp::R_MIPS16_TLS_LDM:
9076     case elfcpp::R_MICROMIPS_TLS_LDM:
9077     case elfcpp::R_MIPS_TLS_GD:
9078     case elfcpp::R_MIPS16_TLS_GD:
9079     case elfcpp::R_MICROMIPS_TLS_GD:
9080       {
9081         bool output_is_shared = parameters->options().shared();
9082         const tls::Tls_optimization optimized_type
9083             = Target_mips<size, big_endian>::optimize_tls_reloc(
9084                                              !output_is_shared, r_type);
9085         switch (r_type)
9086           {
9087           case elfcpp::R_MIPS_TLS_GD:
9088           case elfcpp::R_MIPS16_TLS_GD:
9089           case elfcpp::R_MICROMIPS_TLS_GD:
9090             if (optimized_type == tls::TLSOPT_NONE)
9091               {
9092                 // Create a pair of GOT entries for the module index and
9093                 // dtv-relative offset.
9094                 Mips_output_data_got<size, big_endian>* got =
9095                   target->got_section(symtab, layout);
9096                 unsigned int shndx = lsym.get_st_shndx();
9097                 bool is_ordinary;
9098                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
9099                 if (!is_ordinary)
9100                   {
9101                     object->error(_("local symbol %u has bad shndx %u"),
9102                                   r_sym, shndx);
9103                     break;
9104                   }
9105                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
9106                                              shndx);
9107               }
9108             else
9109               {
9110                 // FIXME: TLS optimization not supported yet.
9111                 gold_unreachable();
9112               }
9113             break;
9114
9115           case elfcpp::R_MIPS_TLS_LDM:
9116           case elfcpp::R_MIPS16_TLS_LDM:
9117           case elfcpp::R_MICROMIPS_TLS_LDM:
9118             if (optimized_type == tls::TLSOPT_NONE)
9119               {
9120                 // We always record LDM symbols as local with index 0.
9121                 target->got_section()->record_local_got_symbol(mips_obj, 0,
9122                                                                r_addend, r_type,
9123                                                                -1U);
9124               }
9125             else
9126               {
9127                 // FIXME: TLS optimization not supported yet.
9128                 gold_unreachable();
9129               }
9130             break;
9131           case elfcpp::R_MIPS_TLS_GOTTPREL:
9132           case elfcpp::R_MIPS16_TLS_GOTTPREL:
9133           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9134             layout->set_has_static_tls();
9135             if (optimized_type == tls::TLSOPT_NONE)
9136               {
9137                 // Create a GOT entry for the tp-relative offset.
9138                 Mips_output_data_got<size, big_endian>* got =
9139                   target->got_section(symtab, layout);
9140                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
9141                                              -1U);
9142               }
9143             else
9144               {
9145                 // FIXME: TLS optimization not supported yet.
9146                 gold_unreachable();
9147               }
9148             break;
9149
9150           default:
9151             gold_unreachable();
9152         }
9153       }
9154       break;
9155
9156     default:
9157       break;
9158     }
9159
9160   // Refuse some position-dependent relocations when creating a
9161   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
9162   // not PIC, but we can create dynamic relocations and the result
9163   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
9164   // combined with R_MIPS_GOT16.
9165   if (parameters->options().shared())
9166     {
9167       switch (r_type)
9168         {
9169         case elfcpp::R_MIPS16_HI16:
9170         case elfcpp::R_MIPS_HI16:
9171         case elfcpp::R_MICROMIPS_HI16:
9172           // Don't refuse a high part relocation if it's against
9173           // no symbol (e.g. part of a compound relocation).
9174           if (r_sym == 0)
9175             break;
9176
9177           // FALLTHROUGH
9178
9179         case elfcpp::R_MIPS16_26:
9180         case elfcpp::R_MIPS_26:
9181         case elfcpp::R_MICROMIPS_26_S1:
9182           gold_error(_("%s: relocation %u against `%s' can not be used when "
9183                        "making a shared object; recompile with -fPIC"),
9184                      object->name().c_str(), r_type, "a local symbol");
9185         default:
9186           break;
9187         }
9188     }
9189 }
9190
9191 template<int size, bool big_endian>
9192 inline void
9193 Target_mips<size, big_endian>::Scan::local(
9194                         Symbol_table* symtab,
9195                         Layout* layout,
9196                         Target_mips<size, big_endian>* target,
9197                         Sized_relobj_file<size, big_endian>* object,
9198                         unsigned int data_shndx,
9199                         Output_section* output_section,
9200                         const Reltype& reloc,
9201                         unsigned int r_type,
9202                         const elfcpp::Sym<size, big_endian>& lsym,
9203                         bool is_discarded)
9204 {
9205   if (is_discarded)
9206     return;
9207
9208   local(
9209     symtab,
9210     layout,
9211     target,
9212     object,
9213     data_shndx,
9214     output_section,
9215     (const Relatype*) NULL,
9216     &reloc,
9217     elfcpp::SHT_REL,
9218     r_type,
9219     lsym, is_discarded);
9220 }
9221
9222
9223 template<int size, bool big_endian>
9224 inline void
9225 Target_mips<size, big_endian>::Scan::local(
9226                         Symbol_table* symtab,
9227                         Layout* layout,
9228                         Target_mips<size, big_endian>* target,
9229                         Sized_relobj_file<size, big_endian>* object,
9230                         unsigned int data_shndx,
9231                         Output_section* output_section,
9232                         const Relatype& reloc,
9233                         unsigned int r_type,
9234                         const elfcpp::Sym<size, big_endian>& lsym,
9235                         bool is_discarded)
9236 {
9237   if (is_discarded)
9238     return;
9239
9240   local(
9241     symtab,
9242     layout,
9243     target,
9244     object,
9245     data_shndx,
9246     output_section,
9247     &reloc,
9248     (const Reltype*) NULL,
9249     elfcpp::SHT_RELA,
9250     r_type,
9251     lsym, is_discarded);
9252 }
9253
9254 // Scan a relocation for a global symbol.
9255
9256 template<int size, bool big_endian>
9257 inline void
9258 Target_mips<size, big_endian>::Scan::global(
9259                                 Symbol_table* symtab,
9260                                 Layout* layout,
9261                                 Target_mips<size, big_endian>* target,
9262                                 Sized_relobj_file<size, big_endian>* object,
9263                                 unsigned int data_shndx,
9264                                 Output_section* output_section,
9265                                 const Relatype* rela,
9266                                 const Reltype* rel,
9267                                 unsigned int rel_type,
9268                                 unsigned int r_type,
9269                                 Symbol* gsym)
9270 {
9271   Mips_address r_offset;
9272   unsigned int r_sym;
9273   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9274
9275   if (rel_type == elfcpp::SHT_RELA)
9276     {
9277       r_offset = rela->get_r_offset();
9278       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9279           get_r_sym(rela);
9280       r_addend = rela->get_r_addend();
9281     }
9282   else
9283     {
9284       r_offset = rel->get_r_offset();
9285       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9286           get_r_sym(rel);
9287       r_addend = 0;
9288     }
9289
9290   Mips_relobj<size, big_endian>* mips_obj =
9291     Mips_relobj<size, big_endian>::as_mips_relobj(object);
9292   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9293
9294   if (mips_obj->is_mips16_stub_section(data_shndx))
9295     {
9296       mips_obj->get_mips16_stub_section(data_shndx)
9297               ->new_global_reloc_found(r_type, mips_sym);
9298     }
9299
9300   if (r_type == elfcpp::R_MIPS_NONE)
9301     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9302     // mips16 stub.
9303     return;
9304
9305   if (!mips16_call_reloc(r_type)
9306       && !mips_obj->section_allows_mips16_refs(data_shndx))
9307     // This reloc would need to refer to a MIPS16 hard-float stub, if
9308     // there is one.  We ignore MIPS16 stub sections and .pdr section when
9309     // looking for relocs that would need to refer to MIPS16 stubs.
9310     mips_sym->set_need_fn_stub();
9311
9312   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9313   // section.  We check here to avoid creating a dynamic reloc against
9314   // _GLOBAL_OFFSET_TABLE_.
9315   if (!target->has_got_section()
9316       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9317     target->got_section(symtab, layout);
9318
9319   // We need PLT entries if there are static-only relocations against
9320   // an externally-defined function.  This can technically occur for
9321   // shared libraries if there are branches to the symbol, although it
9322   // is unlikely that this will be used in practice due to the short
9323   // ranges involved.  It can occur for any relative or absolute relocation
9324   // in executables; in that case, the PLT entry becomes the function's
9325   // canonical address.
9326   bool static_reloc = false;
9327
9328   // Set CAN_MAKE_DYNAMIC to true if we can convert this
9329   // relocation into a dynamic one.
9330   bool can_make_dynamic = false;
9331   switch (r_type)
9332     {
9333     case elfcpp::R_MIPS_GOT16:
9334     case elfcpp::R_MIPS_CALL16:
9335     case elfcpp::R_MIPS_CALL_HI16:
9336     case elfcpp::R_MIPS_CALL_LO16:
9337     case elfcpp::R_MIPS_GOT_HI16:
9338     case elfcpp::R_MIPS_GOT_LO16:
9339     case elfcpp::R_MIPS_GOT_PAGE:
9340     case elfcpp::R_MIPS_GOT_OFST:
9341     case elfcpp::R_MIPS_GOT_DISP:
9342     case elfcpp::R_MIPS_TLS_GOTTPREL:
9343     case elfcpp::R_MIPS_TLS_GD:
9344     case elfcpp::R_MIPS_TLS_LDM:
9345     case elfcpp::R_MIPS16_GOT16:
9346     case elfcpp::R_MIPS16_CALL16:
9347     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9348     case elfcpp::R_MIPS16_TLS_GD:
9349     case elfcpp::R_MIPS16_TLS_LDM:
9350     case elfcpp::R_MICROMIPS_GOT16:
9351     case elfcpp::R_MICROMIPS_CALL16:
9352     case elfcpp::R_MICROMIPS_CALL_HI16:
9353     case elfcpp::R_MICROMIPS_CALL_LO16:
9354     case elfcpp::R_MICROMIPS_GOT_HI16:
9355     case elfcpp::R_MICROMIPS_GOT_LO16:
9356     case elfcpp::R_MICROMIPS_GOT_PAGE:
9357     case elfcpp::R_MICROMIPS_GOT_OFST:
9358     case elfcpp::R_MICROMIPS_GOT_DISP:
9359     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9360     case elfcpp::R_MICROMIPS_TLS_GD:
9361     case elfcpp::R_MICROMIPS_TLS_LDM:
9362       // We need a GOT section.
9363       target->got_section(symtab, layout);
9364       break;
9365
9366     // This is just a hint; it can safely be ignored.  Don't set
9367     // has_static_relocs for the corresponding symbol.
9368     case elfcpp::R_MIPS_JALR:
9369     case elfcpp::R_MICROMIPS_JALR:
9370       break;
9371
9372     case elfcpp::R_MIPS_GPREL16:
9373     case elfcpp::R_MIPS_GPREL32:
9374     case elfcpp::R_MIPS16_GPREL:
9375     case elfcpp::R_MICROMIPS_GPREL16:
9376       // TODO(sasa)
9377       // GP-relative relocations always resolve to a definition in a
9378       // regular input file, ignoring the one-definition rule.  This is
9379       // important for the GP setup sequence in NewABI code, which
9380       // always resolves to a local function even if other relocations
9381       // against the symbol wouldn't.
9382       //constrain_symbol_p = FALSE;
9383       break;
9384
9385     case elfcpp::R_MIPS_32:
9386     case elfcpp::R_MIPS_REL32:
9387     case elfcpp::R_MIPS_64:
9388       if (parameters->options().shared()
9389           || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9390         {
9391           if (r_type != elfcpp::R_MIPS_REL32)
9392             {
9393               static_reloc = true;
9394               mips_sym->set_pointer_equality_needed();
9395             }
9396           can_make_dynamic = true;
9397           break;
9398         }
9399       // Fall through.
9400
9401     default:
9402       // Most static relocations require pointer equality, except
9403       // for branches.
9404       mips_sym->set_pointer_equality_needed();
9405
9406       // Fall through.
9407
9408     case elfcpp::R_MIPS_26:
9409     case elfcpp::R_MIPS_PC16:
9410     case elfcpp::R_MIPS16_26:
9411     case elfcpp::R_MICROMIPS_26_S1:
9412     case elfcpp::R_MICROMIPS_PC7_S1:
9413     case elfcpp::R_MICROMIPS_PC10_S1:
9414     case elfcpp::R_MICROMIPS_PC16_S1:
9415     case elfcpp::R_MICROMIPS_PC23_S2:
9416       static_reloc = true;
9417       mips_sym->set_has_static_relocs();
9418       break;
9419     }
9420
9421   // If there are call relocations against an externally-defined symbol,
9422   // see whether we can create a MIPS lazy-binding stub for it.  We can
9423   // only do this if all references to the function are through call
9424   // relocations, and in that case, the traditional lazy-binding stubs
9425   // are much more efficient than PLT entries.
9426   switch (r_type)
9427     {
9428     case elfcpp::R_MIPS16_CALL16:
9429     case elfcpp::R_MIPS_CALL16:
9430     case elfcpp::R_MIPS_CALL_HI16:
9431     case elfcpp::R_MIPS_CALL_LO16:
9432     case elfcpp::R_MIPS_JALR:
9433     case elfcpp::R_MICROMIPS_CALL16:
9434     case elfcpp::R_MICROMIPS_CALL_HI16:
9435     case elfcpp::R_MICROMIPS_CALL_LO16:
9436     case elfcpp::R_MICROMIPS_JALR:
9437       if (!mips_sym->no_lazy_stub())
9438         {
9439           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9440               // Calls from shared objects to undefined symbols of type
9441               // STT_NOTYPE need lazy-binding stub.
9442               || (mips_sym->is_undefined() && parameters->options().shared()))
9443             target->mips_stubs_section(layout)->make_entry(mips_sym);
9444         }
9445       break;
9446     default:
9447       {
9448         // We must not create a stub for a symbol that has relocations
9449         // related to taking the function's address.
9450         mips_sym->set_no_lazy_stub();
9451         target->remove_lazy_stub_entry(mips_sym);
9452         break;
9453       }
9454   }
9455
9456   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9457                                                    mips_sym->is_mips16()))
9458     mips_sym->set_has_nonpic_branches();
9459
9460   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9461   // and has a special meaning.
9462   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9463                                && strcmp(gsym->name(), "_gp_disp") == 0
9464                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9465   if (static_reloc && gsym->needs_plt_entry())
9466     {
9467       target->make_plt_entry(symtab, layout, mips_sym, r_type);
9468
9469       // Since this is not a PC-relative relocation, we may be
9470       // taking the address of a function.  In that case we need to
9471       // set the entry in the dynamic symbol table to the address of
9472       // the PLT entry.
9473       if (gsym->is_from_dynobj() && !parameters->options().shared())
9474         {
9475           gsym->set_needs_dynsym_value();
9476           // We distinguish between PLT entries and lazy-binding stubs by
9477           // giving the former an st_other value of STO_MIPS_PLT.  Set the
9478           // flag if there are any relocations in the binary where pointer
9479           // equality matters.
9480           if (mips_sym->pointer_equality_needed())
9481             mips_sym->set_mips_plt();
9482         }
9483     }
9484   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9485     {
9486       // Absolute addressing relocations.
9487       // Make a dynamic relocation if necessary.
9488       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9489         {
9490           if (gsym->may_need_copy_reloc())
9491             {
9492               target->copy_reloc(symtab, layout, object,
9493                                  data_shndx, output_section, gsym, *rel);
9494             }
9495           else if (can_make_dynamic)
9496             {
9497               // Create .rel.dyn section.
9498               target->rel_dyn_section(layout);
9499               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9500                                     data_shndx, output_section, r_offset);
9501             }
9502           else
9503             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9504                        gsym->name());
9505         }
9506     }
9507
9508   bool for_call = false;
9509   switch (r_type)
9510     {
9511     case elfcpp::R_MIPS_CALL16:
9512     case elfcpp::R_MIPS16_CALL16:
9513     case elfcpp::R_MICROMIPS_CALL16:
9514     case elfcpp::R_MIPS_CALL_HI16:
9515     case elfcpp::R_MIPS_CALL_LO16:
9516     case elfcpp::R_MICROMIPS_CALL_HI16:
9517     case elfcpp::R_MICROMIPS_CALL_LO16:
9518       for_call = true;
9519       // Fall through.
9520
9521     case elfcpp::R_MIPS16_GOT16:
9522     case elfcpp::R_MIPS_GOT16:
9523     case elfcpp::R_MIPS_GOT_HI16:
9524     case elfcpp::R_MIPS_GOT_LO16:
9525     case elfcpp::R_MICROMIPS_GOT16:
9526     case elfcpp::R_MICROMIPS_GOT_HI16:
9527     case elfcpp::R_MICROMIPS_GOT_LO16:
9528     case elfcpp::R_MIPS_GOT_DISP:
9529     case elfcpp::R_MICROMIPS_GOT_DISP:
9530       {
9531         // The symbol requires a GOT entry.
9532         Mips_output_data_got<size, big_endian>* got =
9533           target->got_section(symtab, layout);
9534         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9535                                       for_call);
9536         mips_sym->set_global_got_area(GGA_NORMAL);
9537       }
9538       break;
9539
9540     case elfcpp::R_MIPS_GOT_PAGE:
9541     case elfcpp::R_MICROMIPS_GOT_PAGE:
9542       {
9543         // This relocation needs a page entry in the GOT.
9544         // Get the section contents.
9545         section_size_type view_size = 0;
9546         const unsigned char* view =
9547           object->section_contents(data_shndx, &view_size, false);
9548         view += r_offset;
9549
9550         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9551         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9552                                                         : r_addend);
9553         Mips_output_data_got<size, big_endian>* got =
9554           target->got_section(symtab, layout);
9555         got->record_got_page_entry(mips_obj, r_sym, addend);
9556
9557         // If this is a global, overridable symbol, GOT_PAGE will
9558         // decay to GOT_DISP, so we'll need a GOT entry for it.
9559         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9560                             && !mips_sym->object()->is_dynamic()
9561                             && !mips_sym->is_undefined());
9562         if (!def_regular
9563             || (parameters->options().output_is_position_independent()
9564                 && !parameters->options().Bsymbolic()
9565                 && !mips_sym->is_forced_local()))
9566           {
9567             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9568                                           for_call);
9569             mips_sym->set_global_got_area(GGA_NORMAL);
9570           }
9571       }
9572       break;
9573
9574     case elfcpp::R_MIPS_TLS_GOTTPREL:
9575     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9576     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9577     case elfcpp::R_MIPS_TLS_LDM:
9578     case elfcpp::R_MIPS16_TLS_LDM:
9579     case elfcpp::R_MICROMIPS_TLS_LDM:
9580     case elfcpp::R_MIPS_TLS_GD:
9581     case elfcpp::R_MIPS16_TLS_GD:
9582     case elfcpp::R_MICROMIPS_TLS_GD:
9583       {
9584         const bool is_final = gsym->final_value_is_known();
9585         const tls::Tls_optimization optimized_type =
9586           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9587
9588         switch (r_type)
9589           {
9590           case elfcpp::R_MIPS_TLS_GD:
9591           case elfcpp::R_MIPS16_TLS_GD:
9592           case elfcpp::R_MICROMIPS_TLS_GD:
9593             if (optimized_type == tls::TLSOPT_NONE)
9594               {
9595                 // Create a pair of GOT entries for the module index and
9596                 // dtv-relative offset.
9597                 Mips_output_data_got<size, big_endian>* got =
9598                   target->got_section(symtab, layout);
9599                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9600                                               false);
9601               }
9602             else
9603               {
9604                 // FIXME: TLS optimization not supported yet.
9605                 gold_unreachable();
9606               }
9607             break;
9608
9609           case elfcpp::R_MIPS_TLS_LDM:
9610           case elfcpp::R_MIPS16_TLS_LDM:
9611           case elfcpp::R_MICROMIPS_TLS_LDM:
9612             if (optimized_type == tls::TLSOPT_NONE)
9613               {
9614                 // We always record LDM symbols as local with index 0.
9615                 target->got_section()->record_local_got_symbol(mips_obj, 0,
9616                                                                r_addend, r_type,
9617                                                                -1U);
9618               }
9619             else
9620               {
9621                 // FIXME: TLS optimization not supported yet.
9622                 gold_unreachable();
9623               }
9624             break;
9625           case elfcpp::R_MIPS_TLS_GOTTPREL:
9626           case elfcpp::R_MIPS16_TLS_GOTTPREL:
9627           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9628             layout->set_has_static_tls();
9629             if (optimized_type == tls::TLSOPT_NONE)
9630               {
9631                 // Create a GOT entry for the tp-relative offset.
9632                 Mips_output_data_got<size, big_endian>* got =
9633                   target->got_section(symtab, layout);
9634                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9635                                               false);
9636               }
9637             else
9638               {
9639                 // FIXME: TLS optimization not supported yet.
9640                 gold_unreachable();
9641               }
9642             break;
9643
9644           default:
9645             gold_unreachable();
9646         }
9647       }
9648       break;
9649     case elfcpp::R_MIPS_COPY:
9650     case elfcpp::R_MIPS_JUMP_SLOT:
9651       // These are relocations which should only be seen by the
9652       // dynamic linker, and should never be seen here.
9653       gold_error(_("%s: unexpected reloc %u in object file"),
9654                  object->name().c_str(), r_type);
9655       break;
9656
9657     default:
9658       break;
9659     }
9660
9661   // Refuse some position-dependent relocations when creating a
9662   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
9663   // not PIC, but we can create dynamic relocations and the result
9664   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
9665   // combined with R_MIPS_GOT16.
9666   if (parameters->options().shared())
9667     {
9668       switch (r_type)
9669         {
9670         case elfcpp::R_MIPS16_HI16:
9671         case elfcpp::R_MIPS_HI16:
9672         case elfcpp::R_MICROMIPS_HI16:
9673           // Don't refuse a high part relocation if it's against
9674           // no symbol (e.g. part of a compound relocation).
9675           if (r_sym == 0)
9676             break;
9677
9678           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9679           // and has a special meaning.
9680           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9681             break;
9682
9683           // FALLTHROUGH
9684
9685         case elfcpp::R_MIPS16_26:
9686         case elfcpp::R_MIPS_26:
9687         case elfcpp::R_MICROMIPS_26_S1:
9688           gold_error(_("%s: relocation %u against `%s' can not be used when "
9689                        "making a shared object; recompile with -fPIC"),
9690                      object->name().c_str(), r_type, gsym->name());
9691         default:
9692           break;
9693         }
9694     }
9695 }
9696
9697 template<int size, bool big_endian>
9698 inline void
9699 Target_mips<size, big_endian>::Scan::global(
9700                                 Symbol_table* symtab,
9701                                 Layout* layout,
9702                                 Target_mips<size, big_endian>* target,
9703                                 Sized_relobj_file<size, big_endian>* object,
9704                                 unsigned int data_shndx,
9705                                 Output_section* output_section,
9706                                 const Relatype& reloc,
9707                                 unsigned int r_type,
9708                                 Symbol* gsym)
9709 {
9710   global(
9711     symtab,
9712     layout,
9713     target,
9714     object,
9715     data_shndx,
9716     output_section,
9717     &reloc,
9718     (const Reltype*) NULL,
9719     elfcpp::SHT_RELA,
9720     r_type,
9721     gsym);
9722 }
9723
9724 template<int size, bool big_endian>
9725 inline void
9726 Target_mips<size, big_endian>::Scan::global(
9727                                 Symbol_table* symtab,
9728                                 Layout* layout,
9729                                 Target_mips<size, big_endian>* target,
9730                                 Sized_relobj_file<size, big_endian>* object,
9731                                 unsigned int data_shndx,
9732                                 Output_section* output_section,
9733                                 const Reltype& reloc,
9734                                 unsigned int r_type,
9735                                 Symbol* gsym)
9736 {
9737   global(
9738     symtab,
9739     layout,
9740     target,
9741     object,
9742     data_shndx,
9743     output_section,
9744     (const Relatype*) NULL,
9745     &reloc,
9746     elfcpp::SHT_REL,
9747     r_type,
9748     gsym);
9749 }
9750
9751 // Return whether a R_MIPS_32 relocation needs to be applied.
9752
9753 template<int size, bool big_endian>
9754 inline bool
9755 Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9756     const Mips_symbol<size>* gsym,
9757     unsigned int r_type,
9758     Output_section* output_section,
9759     Target_mips* target)
9760 {
9761   // If the output section is not allocated, then we didn't call
9762   // scan_relocs, we didn't create a dynamic reloc, and we must apply
9763   // the reloc here.
9764   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9765       return true;
9766
9767   if (gsym == NULL)
9768     return true;
9769   else
9770     {
9771       // For global symbols, we use the same helper routines used in the
9772       // scan pass.
9773       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9774           && !gsym->may_need_copy_reloc())
9775         {
9776           // We have generated dynamic reloc (R_MIPS_REL32).
9777
9778           bool multi_got = false;
9779           if (target->has_got_section())
9780             multi_got = target->got_section()->multi_got();
9781           bool has_got_offset;
9782           if (!multi_got)
9783             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9784           else
9785             has_got_offset = gsym->global_gotoffset() != -1U;
9786           if (!has_got_offset)
9787             return true;
9788           else
9789             // Apply the relocation only if the symbol is in the local got.
9790             // Do not apply the relocation if the symbol is in the global
9791             // got.
9792             return symbol_references_local(gsym, gsym->has_dynsym_index());
9793         }
9794       else
9795         // We have not generated dynamic reloc.
9796         return true;
9797     }
9798 }
9799
9800 // Perform a relocation.
9801
9802 template<int size, bool big_endian>
9803 inline bool
9804 Target_mips<size, big_endian>::Relocate::relocate(
9805                         const Relocate_info<size, big_endian>* relinfo,
9806                         unsigned int rel_type,
9807                         Target_mips* target,
9808                         Output_section* output_section,
9809                         size_t relnum,
9810                         const unsigned char* preloc,
9811                         const Sized_symbol<size>* gsym,
9812                         const Symbol_value<size>* psymval,
9813                         unsigned char* view,
9814                         Mips_address address,
9815                         section_size_type)
9816 {
9817   Mips_address r_offset;
9818   unsigned int r_sym;
9819   unsigned int r_type;
9820   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9821
9822   if (rel_type == elfcpp::SHT_RELA)
9823     {
9824       const Relatype rela(preloc);
9825       r_offset = rela.get_r_offset();
9826       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9827           get_r_sym(&rela);
9828       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9829           get_r_type(&rela);
9830       r_addend = rela.get_r_addend();
9831     }
9832   else
9833     {
9834
9835       const Reltype rel(preloc);
9836       r_offset = rel.get_r_offset();
9837       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9838           get_r_sym(&rel);
9839       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9840           get_r_type(&rel);
9841       r_addend = 0;
9842     }
9843
9844   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9845   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9846
9847   Mips_relobj<size, big_endian>* object =
9848       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9849
9850   bool target_is_16_bit_code = false;
9851   bool target_is_micromips_code = false;
9852   bool cross_mode_jump;
9853
9854   Symbol_value<size> symval;
9855
9856   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9857
9858   bool changed_symbol_value = false;
9859   if (gsym == NULL)
9860     {
9861       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9862       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9863       if (target_is_16_bit_code || target_is_micromips_code)
9864         {
9865           // MIPS16/microMIPS text labels should be treated as odd.
9866           symval.set_output_value(psymval->value(object, 1));
9867           psymval = &symval;
9868           changed_symbol_value = true;
9869         }
9870     }
9871   else
9872     {
9873       target_is_16_bit_code = mips_sym->is_mips16();
9874       target_is_micromips_code = mips_sym->is_micromips();
9875
9876       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9877       // it odd.  This will cause something like .word SYM to come up with
9878       // the right value when it is loaded into the PC.
9879
9880       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9881           && psymval->value(object, 0) != 0)
9882         {
9883           symval.set_output_value(psymval->value(object, 0) | 1);
9884           psymval = &symval;
9885           changed_symbol_value = true;
9886         }
9887
9888       // Pick the value to use for symbols defined in shared objects.
9889       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9890           || mips_sym->has_lazy_stub())
9891         {
9892           Mips_address value;
9893           if (!mips_sym->has_lazy_stub())
9894             {
9895               // Prefer a standard MIPS PLT entry.
9896               if (mips_sym->has_mips_plt_offset())
9897                 {
9898                   value = target->plt_section()->mips_entry_address(mips_sym);
9899                   target_is_micromips_code = false;
9900                   target_is_16_bit_code = false;
9901                 }
9902               else
9903                 {
9904                   value = (target->plt_section()->comp_entry_address(mips_sym)
9905                            + 1);
9906                   if (target->is_output_micromips())
9907                     target_is_micromips_code = true;
9908                   else
9909                     target_is_16_bit_code = true;
9910                 }
9911             }
9912           else
9913             value = target->mips_stubs_section()->stub_address(mips_sym);
9914
9915           symval.set_output_value(value);
9916           psymval = &symval;
9917         }
9918     }
9919
9920   // TRUE if the symbol referred to by this relocation is "_gp_disp".
9921   // Note that such a symbol must always be a global symbol.
9922   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9923                   && !object->is_newabi());
9924
9925   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9926   // Note that such a symbol must always be a global symbol.
9927   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9928
9929
9930   if (gp_disp)
9931     {
9932       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9933         gold_error_at_location(relinfo, relnum, r_offset,
9934           _("relocations against _gp_disp are permitted only"
9935             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9936     }
9937   else if (gnu_local_gp)
9938     {
9939       // __gnu_local_gp is _gp symbol.
9940       symval.set_output_value(target->adjusted_gp_value(object));
9941       psymval = &symval;
9942     }
9943
9944   // If this is a reference to a 16-bit function with a stub, we need
9945   // to redirect the relocation to the stub unless:
9946   //
9947   // (a) the relocation is for a MIPS16 JAL;
9948   //
9949   // (b) the relocation is for a MIPS16 PIC call, and there are no
9950   //     non-MIPS16 uses of the GOT slot; or
9951   //
9952   // (c) the section allows direct references to MIPS16 functions.
9953   if (r_type != elfcpp::R_MIPS16_26
9954       && !parameters->options().relocatable()
9955       && ((mips_sym != NULL
9956            && mips_sym->has_mips16_fn_stub()
9957            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9958           || (mips_sym == NULL
9959               && object->get_local_mips16_fn_stub(r_sym) != NULL))
9960       && !object->section_allows_mips16_refs(relinfo->data_shndx))
9961     {
9962       // This is a 32- or 64-bit call to a 16-bit function.  We should
9963       // have already noticed that we were going to need the
9964       // stub.
9965       Mips_address value;
9966       if (mips_sym == NULL)
9967         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9968       else
9969         {
9970           gold_assert(mips_sym->need_fn_stub());
9971           if (mips_sym->has_la25_stub())
9972             value = target->la25_stub_section()->stub_address(mips_sym);
9973           else
9974             {
9975               value = mips_sym->template
9976                       get_mips16_fn_stub<big_endian>()->output_address();
9977             }
9978           }
9979       symval.set_output_value(value);
9980       psymval = &symval;
9981       changed_symbol_value = true;
9982
9983       // The target is 16-bit, but the stub isn't.
9984       target_is_16_bit_code = false;
9985     }
9986   // If this is a MIPS16 call with a stub, that is made through the PLT or
9987   // to a standard MIPS function, we need to redirect the call to the stub.
9988   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9989   // indirect calls should use an indirect stub instead.
9990   else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9991            && ((mips_sym != NULL
9992                 && (mips_sym->has_mips16_call_stub()
9993                     || mips_sym->has_mips16_call_fp_stub()))
9994                || (mips_sym == NULL
9995                    && object->get_local_mips16_call_stub(r_sym) != NULL))
9996            && ((mips_sym != NULL && mips_sym->has_plt_offset())
9997                || !target_is_16_bit_code))
9998     {
9999       Mips16_stub_section<size, big_endian>* call_stub;
10000       if (mips_sym == NULL)
10001         call_stub = object->get_local_mips16_call_stub(r_sym);
10002       else
10003         {
10004           // If both call_stub and call_fp_stub are defined, we can figure
10005           // out which one to use by checking which one appears in the input
10006           // file.
10007           if (mips_sym->has_mips16_call_stub()
10008               && mips_sym->has_mips16_call_fp_stub())
10009             {
10010               call_stub = NULL;
10011               for (unsigned int i = 1; i < object->shnum(); ++i)
10012                 {
10013                   if (object->is_mips16_call_fp_stub_section(i))
10014                     {
10015                       call_stub = mips_sym->template
10016                                   get_mips16_call_fp_stub<big_endian>();
10017                       break;
10018                     }
10019
10020                 }
10021               if (call_stub == NULL)
10022                 call_stub =
10023                   mips_sym->template get_mips16_call_stub<big_endian>();
10024             }
10025           else if (mips_sym->has_mips16_call_stub())
10026             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
10027           else
10028             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
10029         }
10030
10031       symval.set_output_value(call_stub->output_address());
10032       psymval = &symval;
10033       changed_symbol_value = true;
10034     }
10035   // If this is a direct call to a PIC function, redirect to the
10036   // non-PIC stub.
10037   else if (mips_sym != NULL
10038            && mips_sym->has_la25_stub()
10039            && relocation_needs_la25_stub<size, big_endian>(
10040                                        object, r_type, target_is_16_bit_code))
10041     {
10042       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
10043       if (mips_sym->is_micromips())
10044         value += 1;
10045       symval.set_output_value(value);
10046       psymval = &symval;
10047     }
10048   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
10049   // entry is used if a standard PLT entry has also been made.
10050   else if ((r_type == elfcpp::R_MIPS16_26
10051             || r_type == elfcpp::R_MICROMIPS_26_S1)
10052           && !parameters->options().relocatable()
10053           && mips_sym != NULL
10054           && mips_sym->has_plt_offset()
10055           && mips_sym->has_comp_plt_offset()
10056           && mips_sym->has_mips_plt_offset())
10057     {
10058       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
10059                             + 1);
10060       symval.set_output_value(value);
10061       psymval = &symval;
10062
10063       target_is_16_bit_code = !target->is_output_micromips();
10064       target_is_micromips_code = target->is_output_micromips();
10065     }
10066
10067   // Make sure MIPS16 and microMIPS are not used together.
10068   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
10069       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
10070    {
10071       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
10072    }
10073
10074   // Calls from 16-bit code to 32-bit code and vice versa require the
10075   // mode change.  However, we can ignore calls to undefined weak symbols,
10076   // which should never be executed at runtime.  This exception is important
10077   // because the assembly writer may have "known" that any definition of the
10078   // symbol would be 16-bit code, and that direct jumps were therefore
10079   // acceptable.
10080   cross_mode_jump =
10081     (!parameters->options().relocatable()
10082      && !(gsym != NULL && gsym->is_weak_undefined())
10083      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
10084          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
10085          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
10086              && (target_is_16_bit_code || target_is_micromips_code))));
10087
10088   bool local = (mips_sym == NULL
10089                 || (mips_sym->got_only_for_calls()
10090                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
10091                     : symbol_references_local(mips_sym,
10092                                               mips_sym->has_dynsym_index())));
10093
10094   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
10095   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
10096   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
10097   if (got_page_reloc(r_type) && !local)
10098     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
10099                                       : elfcpp::R_MIPS_GOT_DISP);
10100
10101   unsigned int got_offset = 0;
10102   int gp_offset = 0;
10103
10104   bool update_got_entry = false;
10105   bool extract_addend = rel_type == elfcpp::SHT_REL;
10106   switch (r_type)
10107     {
10108     case elfcpp::R_MIPS_NONE:
10109       break;
10110     case elfcpp::R_MIPS_16:
10111       reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
10112                                         extract_addend, r_type);
10113       break;
10114
10115     case elfcpp::R_MIPS_32:
10116       if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
10117                                        target))
10118         reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
10119                                           extract_addend, r_type);
10120       if (mips_sym != NULL
10121           && (mips_sym->is_mips16() || mips_sym->is_micromips())
10122           && mips_sym->global_got_area() == GGA_RELOC_ONLY)
10123         {
10124           // If mips_sym->has_mips16_fn_stub() is false, symbol value is
10125           // already updated by adding +1.
10126           if (mips_sym->has_mips16_fn_stub())
10127             {
10128               gold_assert(mips_sym->need_fn_stub());
10129               Mips16_stub_section<size, big_endian>* fn_stub =
10130                 mips_sym->template get_mips16_fn_stub<big_endian>();
10131
10132               symval.set_output_value(fn_stub->output_address());
10133               psymval = &symval;
10134             }
10135           got_offset = mips_sym->global_gotoffset();
10136           update_got_entry = true;
10137         }
10138       break;
10139
10140     case elfcpp::R_MIPS_REL32:
10141       gold_unreachable();
10142
10143     case elfcpp::R_MIPS_PC32:
10144       reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
10145                                           r_addend, extract_addend, r_type);
10146       break;
10147
10148     case elfcpp::R_MIPS16_26:
10149       // The calculation for R_MIPS16_26 is just the same as for an
10150       // R_MIPS_26.  It's only the storage of the relocated field into
10151       // the output file that's different.  So, we just fall through to the
10152       // R_MIPS_26 case here.
10153     case elfcpp::R_MIPS_26:
10154     case elfcpp::R_MICROMIPS_26_S1:
10155       reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
10156           gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
10157           target->jal_to_bal());
10158       break;
10159
10160     case elfcpp::R_MIPS_HI16:
10161     case elfcpp::R_MIPS16_HI16:
10162     case elfcpp::R_MICROMIPS_HI16:
10163       reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
10164                                           address, gp_disp, r_type, r_sym,
10165                                           extract_addend);
10166       break;
10167
10168     case elfcpp::R_MIPS_LO16:
10169     case elfcpp::R_MIPS16_LO16:
10170     case elfcpp::R_MICROMIPS_LO16:
10171     case elfcpp::R_MICROMIPS_HI0_LO16:
10172       reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
10173                                           r_addend, extract_addend, address,
10174                                           gp_disp, r_type, r_sym);
10175       break;
10176
10177     case elfcpp::R_MIPS_LITERAL:
10178     case elfcpp::R_MICROMIPS_LITERAL:
10179       // Because we don't merge literal sections, we can handle this
10180       // just like R_MIPS_GPREL16.  In the long run, we should merge
10181       // shared literals, and then we will need to additional work
10182       // here.
10183
10184       // Fall through.
10185
10186     case elfcpp::R_MIPS_GPREL16:
10187     case elfcpp::R_MIPS16_GPREL:
10188     case elfcpp::R_MICROMIPS_GPREL7_S2:
10189     case elfcpp::R_MICROMIPS_GPREL16:
10190       reloc_status = Reloc_funcs::relgprel(view, object, psymval,
10191                                            target->adjusted_gp_value(object),
10192                                            r_addend, extract_addend,
10193                                            gsym == NULL, r_type);
10194       break;
10195
10196     case elfcpp::R_MIPS_PC16:
10197       reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
10198                                           r_addend, extract_addend, r_type);
10199       break;
10200     case elfcpp::R_MICROMIPS_PC7_S1:
10201       reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
10202                                                       address, r_addend,
10203                                                       extract_addend, r_type);
10204       break;
10205     case elfcpp::R_MICROMIPS_PC10_S1:
10206       reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
10207                                                        address, r_addend,
10208                                                        extract_addend, r_type);
10209       break;
10210     case elfcpp::R_MICROMIPS_PC16_S1:
10211       reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
10212                                                        address, r_addend,
10213                                                        extract_addend, r_type);
10214       break;
10215     case elfcpp::R_MIPS_GPREL32:
10216       reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
10217                                              target->adjusted_gp_value(object),
10218                                              r_addend, extract_addend, r_type);
10219       break;
10220     case elfcpp::R_MIPS_GOT_HI16:
10221     case elfcpp::R_MIPS_CALL_HI16:
10222     case elfcpp::R_MICROMIPS_GOT_HI16:
10223     case elfcpp::R_MICROMIPS_CALL_HI16:
10224       if (gsym != NULL)
10225         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10226                                                        object);
10227       else
10228         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10229                                                        object);
10230       gp_offset = target->got_section()->gp_offset(got_offset, object);
10231       reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
10232       update_got_entry = changed_symbol_value;
10233       break;
10234
10235     case elfcpp::R_MIPS_GOT_LO16:
10236     case elfcpp::R_MIPS_CALL_LO16:
10237     case elfcpp::R_MICROMIPS_GOT_LO16:
10238     case elfcpp::R_MICROMIPS_CALL_LO16:
10239       if (gsym != NULL)
10240         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10241                                                        object);
10242       else
10243         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10244                                                        object);
10245       gp_offset = target->got_section()->gp_offset(got_offset, object);
10246       reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
10247       update_got_entry = changed_symbol_value;
10248       break;
10249
10250     case elfcpp::R_MIPS_GOT_DISP:
10251     case elfcpp::R_MICROMIPS_GOT_DISP:
10252       if (gsym != NULL)
10253         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10254                                                        object);
10255       else
10256         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10257                                                        object);
10258       gp_offset = target->got_section()->gp_offset(got_offset, object);
10259       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10260       break;
10261
10262     case elfcpp::R_MIPS_CALL16:
10263     case elfcpp::R_MIPS16_CALL16:
10264     case elfcpp::R_MICROMIPS_CALL16:
10265       gold_assert(gsym != NULL);
10266       got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10267                                                      object);
10268       gp_offset = target->got_section()->gp_offset(got_offset, object);
10269       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10270       // TODO(sasa): We should also initialize update_got_entry in other places
10271       // where relgot is called.
10272       update_got_entry = changed_symbol_value;
10273       break;
10274
10275     case elfcpp::R_MIPS_GOT16:
10276     case elfcpp::R_MIPS16_GOT16:
10277     case elfcpp::R_MICROMIPS_GOT16:
10278       if (gsym != NULL)
10279         {
10280           got_offset = target->got_section()->got_offset(gsym,
10281                                                          GOT_TYPE_STANDARD,
10282                                                          object);
10283           gp_offset = target->got_section()->gp_offset(got_offset, object);
10284           reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10285         }
10286       else
10287         reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10288                                                    r_addend, extract_addend,
10289                                                    r_type, r_sym);
10290       update_got_entry = changed_symbol_value;
10291       break;
10292
10293     case elfcpp::R_MIPS_TLS_GD:
10294     case elfcpp::R_MIPS16_TLS_GD:
10295     case elfcpp::R_MICROMIPS_TLS_GD:
10296       if (gsym != NULL)
10297         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10298                                                        object);
10299       else
10300         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10301                                                        object);
10302       gp_offset = target->got_section()->gp_offset(got_offset, object);
10303       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10304       break;
10305
10306     case elfcpp::R_MIPS_TLS_GOTTPREL:
10307     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10308     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10309       if (gsym != NULL)
10310         got_offset = target->got_section()->got_offset(gsym,
10311                                                        GOT_TYPE_TLS_OFFSET,
10312                                                        object);
10313       else
10314         got_offset = target->got_section()->got_offset(r_sym,
10315                                                        GOT_TYPE_TLS_OFFSET,
10316                                                        object);
10317       gp_offset = target->got_section()->gp_offset(got_offset, object);
10318       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10319       break;
10320
10321     case elfcpp::R_MIPS_TLS_LDM:
10322     case elfcpp::R_MIPS16_TLS_LDM:
10323     case elfcpp::R_MICROMIPS_TLS_LDM:
10324       // Relocate the field with the offset of the GOT entry for
10325       // the module index.
10326       got_offset = target->got_section()->tls_ldm_offset(object);
10327       gp_offset = target->got_section()->gp_offset(got_offset, object);
10328       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10329       break;
10330
10331     case elfcpp::R_MIPS_GOT_PAGE:
10332     case elfcpp::R_MICROMIPS_GOT_PAGE:
10333       reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10334                                              r_addend, extract_addend, r_type);
10335       break;
10336
10337     case elfcpp::R_MIPS_GOT_OFST:
10338     case elfcpp::R_MICROMIPS_GOT_OFST:
10339       reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10340                                              r_addend, extract_addend, local,
10341                                              r_type);
10342       break;
10343
10344     case elfcpp::R_MIPS_JALR:
10345     case elfcpp::R_MICROMIPS_JALR:
10346       // This relocation is only a hint.  In some cases, we optimize
10347       // it into a bal instruction.  But we don't try to optimize
10348       // when the symbol does not resolve locally.
10349       if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10350         reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10351                                             r_addend, extract_addend,
10352                                             cross_mode_jump, r_type,
10353                                             target->jalr_to_bal(),
10354                                             target->jr_to_b());
10355       break;
10356
10357     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10358     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10359     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10360       reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10361                                              elfcpp::DTP_OFFSET, r_addend,
10362                                              extract_addend, r_type);
10363       break;
10364     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10365     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10366     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10367       reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10368                                              elfcpp::DTP_OFFSET, r_addend,
10369                                              extract_addend, r_type);
10370       break;
10371     case elfcpp::R_MIPS_TLS_DTPREL32:
10372     case elfcpp::R_MIPS_TLS_DTPREL64:
10373       reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10374                                            elfcpp::DTP_OFFSET, r_addend,
10375                                            extract_addend, r_type);
10376       break;
10377     case elfcpp::R_MIPS_TLS_TPREL_HI16:
10378     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10379     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10380       reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10381                                              elfcpp::TP_OFFSET, r_addend,
10382                                              extract_addend, r_type);
10383       break;
10384     case elfcpp::R_MIPS_TLS_TPREL_LO16:
10385     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10386     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10387       reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10388                                              elfcpp::TP_OFFSET, r_addend,
10389                                              extract_addend, r_type);
10390       break;
10391     case elfcpp::R_MIPS_TLS_TPREL32:
10392     case elfcpp::R_MIPS_TLS_TPREL64:
10393       reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10394                                            elfcpp::TP_OFFSET, r_addend,
10395                                            extract_addend, r_type);
10396       break;
10397     case elfcpp::R_MIPS_SUB:
10398     case elfcpp::R_MICROMIPS_SUB:
10399       reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10400                                          extract_addend, r_type);
10401       break;
10402     default:
10403       gold_error_at_location(relinfo, relnum, r_offset,
10404                              _("unsupported reloc %u"), r_type);
10405       break;
10406     }
10407
10408   if (update_got_entry)
10409     {
10410       Mips_output_data_got<size, big_endian>* got = target->got_section();
10411       if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10412         got->update_got_entry(got->get_primary_got_offset(mips_sym),
10413                               psymval->value(object, 0));
10414       else
10415         got->update_got_entry(got_offset, psymval->value(object, 0));
10416     }
10417
10418   // Report any errors.
10419   switch (reloc_status)
10420     {
10421     case Reloc_funcs::STATUS_OKAY:
10422       break;
10423     case Reloc_funcs::STATUS_OVERFLOW:
10424       gold_error_at_location(relinfo, relnum, r_offset,
10425                              _("relocation overflow"));
10426       break;
10427     case Reloc_funcs::STATUS_BAD_RELOC:
10428       gold_error_at_location(relinfo, relnum, r_offset,
10429         _("unexpected opcode while processing relocation"));
10430       break;
10431     default:
10432       gold_unreachable();
10433     }
10434
10435   return true;
10436 }
10437
10438 // Get the Reference_flags for a particular relocation.
10439
10440 template<int size, bool big_endian>
10441 int
10442 Target_mips<size, big_endian>::Scan::get_reference_flags(
10443                        unsigned int r_type)
10444 {
10445   switch (r_type)
10446     {
10447     case elfcpp::R_MIPS_NONE:
10448       // No symbol reference.
10449       return 0;
10450
10451     case elfcpp::R_MIPS_16:
10452     case elfcpp::R_MIPS_32:
10453     case elfcpp::R_MIPS_64:
10454     case elfcpp::R_MIPS_HI16:
10455     case elfcpp::R_MIPS_LO16:
10456     case elfcpp::R_MIPS16_HI16:
10457     case elfcpp::R_MIPS16_LO16:
10458     case elfcpp::R_MICROMIPS_HI16:
10459     case elfcpp::R_MICROMIPS_LO16:
10460       return Symbol::ABSOLUTE_REF;
10461
10462     case elfcpp::R_MIPS_26:
10463     case elfcpp::R_MIPS16_26:
10464     case elfcpp::R_MICROMIPS_26_S1:
10465       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10466
10467     case elfcpp::R_MIPS_GPREL32:
10468     case elfcpp::R_MIPS_GPREL16:
10469     case elfcpp::R_MIPS_REL32:
10470     case elfcpp::R_MIPS16_GPREL:
10471       return Symbol::RELATIVE_REF;
10472
10473     case elfcpp::R_MIPS_PC16:
10474     case elfcpp::R_MIPS_PC32:
10475     case elfcpp::R_MIPS_JALR:
10476     case elfcpp::R_MICROMIPS_JALR:
10477       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10478
10479     case elfcpp::R_MIPS_GOT16:
10480     case elfcpp::R_MIPS_CALL16:
10481     case elfcpp::R_MIPS_GOT_DISP:
10482     case elfcpp::R_MIPS_GOT_HI16:
10483     case elfcpp::R_MIPS_GOT_LO16:
10484     case elfcpp::R_MIPS_CALL_HI16:
10485     case elfcpp::R_MIPS_CALL_LO16:
10486     case elfcpp::R_MIPS_LITERAL:
10487     case elfcpp::R_MIPS_GOT_PAGE:
10488     case elfcpp::R_MIPS_GOT_OFST:
10489     case elfcpp::R_MIPS16_GOT16:
10490     case elfcpp::R_MIPS16_CALL16:
10491     case elfcpp::R_MICROMIPS_GOT16:
10492     case elfcpp::R_MICROMIPS_CALL16:
10493     case elfcpp::R_MICROMIPS_GOT_HI16:
10494     case elfcpp::R_MICROMIPS_GOT_LO16:
10495     case elfcpp::R_MICROMIPS_CALL_HI16:
10496     case elfcpp::R_MICROMIPS_CALL_LO16:
10497       // Absolute in GOT.
10498       return Symbol::RELATIVE_REF;
10499
10500     case elfcpp::R_MIPS_TLS_DTPMOD32:
10501     case elfcpp::R_MIPS_TLS_DTPREL32:
10502     case elfcpp::R_MIPS_TLS_DTPMOD64:
10503     case elfcpp::R_MIPS_TLS_DTPREL64:
10504     case elfcpp::R_MIPS_TLS_GD:
10505     case elfcpp::R_MIPS_TLS_LDM:
10506     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10507     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10508     case elfcpp::R_MIPS_TLS_GOTTPREL:
10509     case elfcpp::R_MIPS_TLS_TPREL32:
10510     case elfcpp::R_MIPS_TLS_TPREL64:
10511     case elfcpp::R_MIPS_TLS_TPREL_HI16:
10512     case elfcpp::R_MIPS_TLS_TPREL_LO16:
10513     case elfcpp::R_MIPS16_TLS_GD:
10514     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10515     case elfcpp::R_MICROMIPS_TLS_GD:
10516     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10517     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10518     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10519       return Symbol::TLS_REF;
10520
10521     case elfcpp::R_MIPS_COPY:
10522     case elfcpp::R_MIPS_JUMP_SLOT:
10523     default:
10524       gold_unreachable();
10525       // Not expected.  We will give an error later.
10526       return 0;
10527     }
10528 }
10529
10530 // Report an unsupported relocation against a local symbol.
10531
10532 template<int size, bool big_endian>
10533 void
10534 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10535                         Sized_relobj_file<size, big_endian>* object,
10536                         unsigned int r_type)
10537 {
10538   gold_error(_("%s: unsupported reloc %u against local symbol"),
10539              object->name().c_str(), r_type);
10540 }
10541
10542 // Report an unsupported relocation against a global symbol.
10543
10544 template<int size, bool big_endian>
10545 void
10546 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10547                         Sized_relobj_file<size, big_endian>* object,
10548                         unsigned int r_type,
10549                         Symbol* gsym)
10550 {
10551   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10552              object->name().c_str(), r_type, gsym->demangled_name().c_str());
10553 }
10554
10555 // Return printable name for ABI.
10556 template<int size, bool big_endian>
10557 const char*
10558 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10559                                                  unsigned char ei_class)
10560 {
10561   switch (e_flags & elfcpp::EF_MIPS_ABI)
10562     {
10563     case 0:
10564       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10565         return "N32";
10566       else if (elfcpp::abi_64(ei_class))
10567         return "64";
10568       else
10569         return "none";
10570     case elfcpp::E_MIPS_ABI_O32:
10571       return "O32";
10572     case elfcpp::E_MIPS_ABI_O64:
10573       return "O64";
10574     case elfcpp::E_MIPS_ABI_EABI32:
10575       return "EABI32";
10576     case elfcpp::E_MIPS_ABI_EABI64:
10577       return "EABI64";
10578     default:
10579       return "unknown abi";
10580     }
10581 }
10582
10583 template<int size, bool big_endian>
10584 const char*
10585 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10586 {
10587   switch (e_flags & elfcpp::EF_MIPS_MACH)
10588     {
10589     case elfcpp::E_MIPS_MACH_3900:
10590       return "mips:3900";
10591     case elfcpp::E_MIPS_MACH_4010:
10592       return "mips:4010";
10593     case elfcpp::E_MIPS_MACH_4100:
10594       return "mips:4100";
10595     case elfcpp::E_MIPS_MACH_4111:
10596       return "mips:4111";
10597     case elfcpp::E_MIPS_MACH_4120:
10598       return "mips:4120";
10599     case elfcpp::E_MIPS_MACH_4650:
10600       return "mips:4650";
10601     case elfcpp::E_MIPS_MACH_5400:
10602       return "mips:5400";
10603     case elfcpp::E_MIPS_MACH_5500:
10604       return "mips:5500";
10605     case elfcpp::E_MIPS_MACH_SB1:
10606       return "mips:sb1";
10607     case elfcpp::E_MIPS_MACH_9000:
10608       return "mips:9000";
10609     case elfcpp::E_MIPS_MACH_LS2E:
10610       return "mips:loongson-2e";
10611     case elfcpp::E_MIPS_MACH_LS2F:
10612       return "mips:loongson-2f";
10613     case elfcpp::E_MIPS_MACH_LS3A:
10614       return "mips:loongson-3a";
10615     case elfcpp::E_MIPS_MACH_OCTEON:
10616       return "mips:octeon";
10617     case elfcpp::E_MIPS_MACH_OCTEON2:
10618       return "mips:octeon2";
10619     case elfcpp::E_MIPS_MACH_XLR:
10620       return "mips:xlr";
10621     default:
10622       switch (e_flags & elfcpp::EF_MIPS_ARCH)
10623         {
10624         default:
10625         case elfcpp::E_MIPS_ARCH_1:
10626           return "mips:3000";
10627
10628         case elfcpp::E_MIPS_ARCH_2:
10629           return "mips:6000";
10630
10631         case elfcpp::E_MIPS_ARCH_3:
10632           return "mips:4000";
10633
10634         case elfcpp::E_MIPS_ARCH_4:
10635           return "mips:8000";
10636
10637         case elfcpp::E_MIPS_ARCH_5:
10638           return "mips:mips5";
10639
10640         case elfcpp::E_MIPS_ARCH_32:
10641           return "mips:isa32";
10642
10643         case elfcpp::E_MIPS_ARCH_64:
10644           return "mips:isa64";
10645
10646         case elfcpp::E_MIPS_ARCH_32R2:
10647           return "mips:isa32r2";
10648
10649         case elfcpp::E_MIPS_ARCH_64R2:
10650           return "mips:isa64r2";
10651         }
10652     }
10653     return "unknown CPU";
10654 }
10655
10656 template<int size, bool big_endian>
10657 const Target::Target_info Target_mips<size, big_endian>::mips_info =
10658 {
10659   size,                 // size
10660   big_endian,           // is_big_endian
10661   elfcpp::EM_MIPS,      // machine_code
10662   true,                 // has_make_symbol
10663   false,                // has_resolve
10664   false,                // has_code_fill
10665   true,                 // is_default_stack_executable
10666   false,                // can_icf_inline_merge_sections
10667   '\0',                 // wrap_char
10668   "/lib/ld.so.1",       // dynamic_linker
10669   0x400000,             // default_text_segment_address
10670   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
10671   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
10672   false,                // isolate_execinstr
10673   0,                    // rosegment_gap
10674   elfcpp::SHN_UNDEF,    // small_common_shndx
10675   elfcpp::SHN_UNDEF,    // large_common_shndx
10676   0,                    // small_common_section_flags
10677   0,                    // large_common_section_flags
10678   NULL,                 // attributes_section
10679   NULL,                 // attributes_vendor
10680   "__start",            // entry_symbol_name
10681   32,                   // hash_entry_size
10682 };
10683
10684 template<int size, bool big_endian>
10685 class Target_mips_nacl : public Target_mips<size, big_endian>
10686 {
10687  public:
10688   Target_mips_nacl()
10689     : Target_mips<size, big_endian>(&mips_nacl_info)
10690   { }
10691
10692  private:
10693   static const Target::Target_info mips_nacl_info;
10694 };
10695
10696 template<int size, bool big_endian>
10697 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
10698 {
10699   size,                 // size
10700   big_endian,           // is_big_endian
10701   elfcpp::EM_MIPS,      // machine_code
10702   true,                 // has_make_symbol
10703   false,                // has_resolve
10704   false,                // has_code_fill
10705   true,                 // is_default_stack_executable
10706   false,                // can_icf_inline_merge_sections
10707   '\0',                 // wrap_char
10708   "/lib/ld.so.1",       // dynamic_linker
10709   0x20000,              // default_text_segment_address
10710   0x10000,              // abi_pagesize (overridable by -z max-page-size)
10711   0x10000,              // common_pagesize (overridable by -z common-page-size)
10712   true,                 // isolate_execinstr
10713   0x10000000,           // rosegment_gap
10714   elfcpp::SHN_UNDEF,    // small_common_shndx
10715   elfcpp::SHN_UNDEF,    // large_common_shndx
10716   0,                    // small_common_section_flags
10717   0,                    // large_common_section_flags
10718   NULL,                 // attributes_section
10719   NULL,                 // attributes_vendor
10720   "_start",             // entry_symbol_name
10721   32,                   // hash_entry_size
10722 };
10723
10724 // Target selector for Mips.  Note this is never instantiated directly.
10725 // It's only used in Target_selector_mips_nacl, below.
10726
10727 template<int size, bool big_endian>
10728 class Target_selector_mips : public Target_selector
10729 {
10730 public:
10731   Target_selector_mips()
10732     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10733                 (size == 64 ?
10734                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10735                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10736                 (size == 64 ?
10737                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10738                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10739   { }
10740
10741   Target* do_instantiate_target()
10742   { return new Target_mips<size, big_endian>(); }
10743 };
10744
10745 template<int size, bool big_endian>
10746 class Target_selector_mips_nacl
10747   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
10748                                 Target_mips_nacl<size, big_endian> >
10749 {
10750  public:
10751   Target_selector_mips_nacl()
10752     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
10753                            Target_mips_nacl<size, big_endian> >(
10754         // NaCl currently supports only MIPS32 little-endian.
10755         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
10756   { }
10757 };
10758
10759 Target_selector_mips_nacl<32, true> target_selector_mips32;
10760 Target_selector_mips_nacl<32, false> target_selector_mips32el;
10761 Target_selector_mips_nacl<64, true> target_selector_mips64;
10762 Target_selector_mips_nacl<64, false> target_selector_mips64el;
10763
10764 } // End anonymous namespace.