Add unaligned check for R_MIPS_PC16.
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
71
72 template<int size>
73 class Mips_symbol;
74
75 template<int size, bool big_endian>
76 class Mips_got_info;
77
78 template<int size, bool big_endian>
79 class Mips_relobj;
80
81 class Mips16_stub_section_base;
82
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
85
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry.  Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache.  The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
92
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning.  We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
98 // relocations only.
99
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values.  Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
103
104 enum Global_got_area
105 {
106   GGA_NORMAL = 0,
107   GGA_RELOC_ONLY = 1,
108   GGA_NONE = 2
109 };
110
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
115 enum Got_type
116 {
117   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
118   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
119   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
120
121   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122   GOT_TYPE_STANDARD_MULTIGOT = 3,
123   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
125 };
126
127 // TLS type of GOT entry.
128 enum Got_tls_type
129 {
130   GOT_TLS_NONE = 0,
131   GOT_TLS_GD = 1,
132   GOT_TLS_LDM = 2,
133   GOT_TLS_IE = 4
134 };
135
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
138 {
139   RSS_UNDEF = 0,    // None - value is zero.
140   RSS_GP = 1,       // Value of GP.
141   RSS_GP0 = 2,      // Value of GP in object being relocated.
142   RSS_LOC = 3       // Address of location being relocated.
143 };
144
145 // Whether the section is readonly.
146 static inline bool
147 is_readonly_section(Output_section* output_section)
148 {
149   elfcpp::Elf_Xword section_flags = output_section->flags();
150   elfcpp::Elf_Word section_type = output_section->type();
151
152   if (section_type == elfcpp::SHT_NOBITS)
153     return false;
154
155   if (section_flags & elfcpp::SHF_WRITE)
156     return false;
157
158   return true;
159 }
160
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub.  See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
165 static inline bool
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167                            unsigned int r_type, bool target_is_16_bit_code)
168 {
169   // We specifically ignore branches and jumps from EF_PIC objects,
170   // where the onus is on the compiler or programmer to perform any
171   // necessary initialization of $25.  Sometimes such initialization
172   // is unnecessary; for example, -mno-shared functions do not use
173   // the incoming value of $25, and may therefore be called directly.
174   if (object->is_pic())
175     return false;
176
177   switch (r_type)
178     {
179     case elfcpp::R_MIPS_26:
180     case elfcpp::R_MIPS_PC16:
181     case elfcpp::R_MIPS_PC21_S2:
182     case elfcpp::R_MIPS_PC26_S2:
183     case elfcpp::R_MICROMIPS_26_S1:
184     case elfcpp::R_MICROMIPS_PC7_S1:
185     case elfcpp::R_MICROMIPS_PC10_S1:
186     case elfcpp::R_MICROMIPS_PC16_S1:
187     case elfcpp::R_MICROMIPS_PC23_S2:
188       return true;
189
190     case elfcpp::R_MIPS16_26:
191       return !target_is_16_bit_code;
192
193     default:
194       return false;
195     }
196 }
197
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid.  Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
204 static inline bool
205 local_pic_function(Mips_symbol<size>* sym)
206 {
207   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208                       && !sym->object()->is_dynamic()
209                       && !sym->is_undefined());
210
211   if (sym->is_defined() && def_regular)
212     {
213       Mips_relobj<size, big_endian>* object =
214         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
215
216       if ((object->is_pic() || sym->is_pic())
217           && (!sym->is_mips16()
218               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
219         return true;
220     }
221   return false;
222 }
223
224 static inline bool
225 hi16_reloc(int r_type)
226 {
227   return (r_type == elfcpp::R_MIPS_HI16
228           || r_type == elfcpp::R_MIPS16_HI16
229           || r_type == elfcpp::R_MICROMIPS_HI16
230           || r_type == elfcpp::R_MIPS_PCHI16);
231 }
232
233 static inline bool
234 lo16_reloc(int r_type)
235 {
236   return (r_type == elfcpp::R_MIPS_LO16
237           || r_type == elfcpp::R_MIPS16_LO16
238           || r_type == elfcpp::R_MICROMIPS_LO16
239           || r_type == elfcpp::R_MIPS_PCLO16);
240 }
241
242 static inline bool
243 got16_reloc(unsigned int r_type)
244 {
245   return (r_type == elfcpp::R_MIPS_GOT16
246           || r_type == elfcpp::R_MIPS16_GOT16
247           || r_type == elfcpp::R_MICROMIPS_GOT16);
248 }
249
250 static inline bool
251 call_lo16_reloc(unsigned int r_type)
252 {
253   return (r_type == elfcpp::R_MIPS_CALL_LO16
254           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
255 }
256
257 static inline bool
258 got_lo16_reloc(unsigned int r_type)
259 {
260   return (r_type == elfcpp::R_MIPS_GOT_LO16
261           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
262 }
263
264 static inline bool
265 eh_reloc(unsigned int r_type)
266 {
267   return (r_type == elfcpp::R_MIPS_EH);
268 }
269
270 static inline bool
271 got_disp_reloc(unsigned int r_type)
272 {
273   return (r_type == elfcpp::R_MIPS_GOT_DISP
274           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
275 }
276
277 static inline bool
278 got_page_reloc(unsigned int r_type)
279 {
280   return (r_type == elfcpp::R_MIPS_GOT_PAGE
281           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
282 }
283
284 static inline bool
285 tls_gd_reloc(unsigned int r_type)
286 {
287   return (r_type == elfcpp::R_MIPS_TLS_GD
288           || r_type == elfcpp::R_MIPS16_TLS_GD
289           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
290 }
291
292 static inline bool
293 tls_gottprel_reloc(unsigned int r_type)
294 {
295   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
298 }
299
300 static inline bool
301 tls_ldm_reloc(unsigned int r_type)
302 {
303   return (r_type == elfcpp::R_MIPS_TLS_LDM
304           || r_type == elfcpp::R_MIPS16_TLS_LDM
305           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
306 }
307
308 static inline bool
309 mips16_call_reloc(unsigned int r_type)
310 {
311   return (r_type == elfcpp::R_MIPS16_26
312           || r_type == elfcpp::R_MIPS16_CALL16);
313 }
314
315 static inline bool
316 jal_reloc(unsigned int r_type)
317 {
318   return (r_type == elfcpp::R_MIPS_26
319           || r_type == elfcpp::R_MIPS16_26
320           || r_type == elfcpp::R_MICROMIPS_26_S1);
321 }
322
323 static inline bool
324 micromips_branch_reloc(unsigned int r_type)
325 {
326   return (r_type == elfcpp::R_MICROMIPS_26_S1
327           || r_type == elfcpp::R_MICROMIPS_PC16_S1
328           || r_type == elfcpp::R_MICROMIPS_PC10_S1
329           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
330 }
331
332 // Check if R_TYPE is a MIPS16 reloc.
333 static inline bool
334 mips16_reloc(unsigned int r_type)
335 {
336   switch (r_type)
337     {
338     case elfcpp::R_MIPS16_26:
339     case elfcpp::R_MIPS16_GPREL:
340     case elfcpp::R_MIPS16_GOT16:
341     case elfcpp::R_MIPS16_CALL16:
342     case elfcpp::R_MIPS16_HI16:
343     case elfcpp::R_MIPS16_LO16:
344     case elfcpp::R_MIPS16_TLS_GD:
345     case elfcpp::R_MIPS16_TLS_LDM:
346     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348     case elfcpp::R_MIPS16_TLS_GOTTPREL:
349     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
351       return true;
352
353     default:
354       return false;
355     }
356 }
357
358 // Check if R_TYPE is a microMIPS reloc.
359 static inline bool
360 micromips_reloc(unsigned int r_type)
361 {
362   switch (r_type)
363     {
364     case elfcpp::R_MICROMIPS_26_S1:
365     case elfcpp::R_MICROMIPS_HI16:
366     case elfcpp::R_MICROMIPS_LO16:
367     case elfcpp::R_MICROMIPS_GPREL16:
368     case elfcpp::R_MICROMIPS_LITERAL:
369     case elfcpp::R_MICROMIPS_GOT16:
370     case elfcpp::R_MICROMIPS_PC7_S1:
371     case elfcpp::R_MICROMIPS_PC10_S1:
372     case elfcpp::R_MICROMIPS_PC16_S1:
373     case elfcpp::R_MICROMIPS_CALL16:
374     case elfcpp::R_MICROMIPS_GOT_DISP:
375     case elfcpp::R_MICROMIPS_GOT_PAGE:
376     case elfcpp::R_MICROMIPS_GOT_OFST:
377     case elfcpp::R_MICROMIPS_GOT_HI16:
378     case elfcpp::R_MICROMIPS_GOT_LO16:
379     case elfcpp::R_MICROMIPS_SUB:
380     case elfcpp::R_MICROMIPS_HIGHER:
381     case elfcpp::R_MICROMIPS_HIGHEST:
382     case elfcpp::R_MICROMIPS_CALL_HI16:
383     case elfcpp::R_MICROMIPS_CALL_LO16:
384     case elfcpp::R_MICROMIPS_SCN_DISP:
385     case elfcpp::R_MICROMIPS_JALR:
386     case elfcpp::R_MICROMIPS_HI0_LO16:
387     case elfcpp::R_MICROMIPS_TLS_GD:
388     case elfcpp::R_MICROMIPS_TLS_LDM:
389     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394     case elfcpp::R_MICROMIPS_GPREL7_S2:
395     case elfcpp::R_MICROMIPS_PC23_S2:
396       return true;
397
398     default:
399       return false;
400     }
401 }
402
403 static inline bool
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
405 {
406   switch (high_reloc)
407     {
408     case elfcpp::R_MIPS_HI16:
409     case elfcpp::R_MIPS_GOT16:
410       return lo16_reloc == elfcpp::R_MIPS_LO16;
411     case elfcpp::R_MIPS_PCHI16:
412       return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413     case elfcpp::R_MIPS16_HI16:
414     case elfcpp::R_MIPS16_GOT16:
415       return lo16_reloc == elfcpp::R_MIPS16_LO16;
416     case elfcpp::R_MICROMIPS_HI16:
417     case elfcpp::R_MICROMIPS_GOT16:
418       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
419     default:
420       return false;
421     }
422 }
423
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
426 //
427 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
430 //          (sym != NULL, symndx == -1)
431 //    (3) a TLS LDM slot (there's only one of these per GOT.)
432 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
433
434 template<int size, bool big_endian>
435 class Mips_got_entry
436 {
437   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
438
439  public:
440   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441                  Mips_address addend, unsigned char tls_type,
442                  unsigned int shndx, bool is_section_symbol)
443     : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444       is_section_symbol_(is_section_symbol), shndx_(shndx)
445   { this->d.object = object; }
446
447   Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448     : addend_(0), symndx_(-1U), tls_type_(tls_type),
449       is_section_symbol_(false), shndx_(-1U)
450   { this->d.sym = sym; }
451
452   // Return whether this entry is for a local symbol.
453   bool
454   is_for_local_symbol() const
455   { return this->symndx_ != -1U; }
456
457   // Return whether this entry is for a global symbol.
458   bool
459   is_for_global_symbol() const
460   { return this->symndx_ == -1U; }
461
462   // Return the hash of this entry.
463   size_t
464   hash() const
465   {
466     if (this->tls_type_ == GOT_TLS_LDM)
467       return this->symndx_ + (1 << 18);
468
469     size_t name_hash_value = gold::string_hash<char>(
470         (this->symndx_ != -1U)
471          ? this->d.object->name().c_str()
472          : this->d.sym->name());
473     size_t addend = this->addend_;
474     return name_hash_value ^ this->symndx_ ^ addend;
475   }
476
477   // Return whether this entry is equal to OTHER.
478   bool
479   equals(Mips_got_entry<size, big_endian>* other) const
480   {
481     if (this->tls_type_ == GOT_TLS_LDM)
482       return true;
483
484     return ((this->tls_type_ == other->tls_type_)
485              && (this->symndx_ == other->symndx_)
486              && ((this->symndx_ != -1U)
487                   ? (this->d.object == other->d.object)
488                   : (this->d.sym == other->d.sym))
489              && (this->addend_ == other->addend_));
490   }
491
492   // Return input object that needs this GOT entry.
493   Mips_relobj<size, big_endian>*
494   object() const
495   {
496     gold_assert(this->symndx_ != -1U);
497     return this->d.object;
498   }
499
500   // Return local symbol index for local GOT entries.
501   unsigned int
502   symndx() const
503   {
504     gold_assert(this->symndx_ != -1U);
505     return this->symndx_;
506   }
507
508   // Return the relocation addend for local GOT entries.
509   Mips_address
510   addend() const
511   { return this->addend_; }
512
513   // Return global symbol for global GOT entries.
514   Mips_symbol<size>*
515   sym() const
516   {
517     gold_assert(this->symndx_ == -1U);
518     return this->d.sym;
519   }
520
521   // Return whether this is a TLS GOT entry.
522   bool
523   is_tls_entry() const
524   { return this->tls_type_ != GOT_TLS_NONE; }
525
526   // Return TLS type of this GOT entry.
527   unsigned char
528   tls_type() const
529   { return this->tls_type_; }
530
531   // Return section index of the local symbol for local GOT entries.
532   unsigned int
533   shndx() const
534   { return this->shndx_; }
535
536   // Return whether this is a STT_SECTION symbol.
537   bool
538   is_section_symbol() const
539   { return this->is_section_symbol_; }
540
541  private:
542   // The addend.
543   Mips_address addend_;
544
545   // The index of the symbol if we have a local symbol; -1 otherwise.
546   unsigned int symndx_;
547
548   union
549   {
550     // The input object for local symbols that needs the GOT entry.
551     Mips_relobj<size, big_endian>* object;
552     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
553     // symbol's entry is in the local area if mips_sym->global_got_area is
554     // GGA_NONE, otherwise it is in the global area.
555     Mips_symbol<size>* sym;
556   } d;
557
558   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
559   // symbol entry with r_symndx == 0.
560   unsigned char tls_type_;
561
562   // Whether this is a STT_SECTION symbol.
563   bool is_section_symbol_;
564
565   // For local GOT entries, section index of the local symbol.
566   unsigned int shndx_;
567 };
568
569 // Hash for Mips_got_entry.
570
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
573 {
574  public:
575   size_t
576   operator()(Mips_got_entry<size, big_endian>* entry) const
577   { return entry->hash(); }
578 };
579
580 // Equality for Mips_got_entry.
581
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
584 {
585  public:
586   bool
587   operator()(Mips_got_entry<size, big_endian>* e1,
588              Mips_got_entry<size, big_endian>* e2) const
589   { return e1->equals(e2); }
590 };
591
592 // Hash for Mips_symbol.
593
594 template<int size>
595 class Mips_symbol_hash
596 {
597  public:
598   size_t
599   operator()(Mips_symbol<size>* sym) const
600   { return sym->hash(); }
601 };
602
603 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
606
607 struct Got_page_range
608 {
609   Got_page_range()
610     : next(NULL), min_addend(0), max_addend(0)
611   { }
612
613   Got_page_range* next;
614   int min_addend;
615   int max_addend;
616
617   // Return the maximum number of GOT page entries required.
618   int
619   get_max_pages()
620   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
621 };
622
623 // Got_page_entry.  This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
625
626 struct Got_page_entry
627 {
628   Got_page_entry()
629     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
630   { }
631
632   Got_page_entry(Object* object_, unsigned int symndx_)
633     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
634   { }
635
636   // The input object that needs the GOT page entry.
637   Object* object;
638   // The index of the symbol, as stored in the relocation r_info.
639   unsigned int symndx;
640   // The ranges for this page entry.
641   Got_page_range* ranges;
642   // The maximum number of page entries needed for RANGES.
643   unsigned int num_pages;
644 };
645
646 // Hash for Got_page_entry.
647
648 struct Got_page_entry_hash
649 {
650   size_t
651   operator()(Got_page_entry* entry) const
652   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
653 };
654
655 // Equality for Got_page_entry.
656
657 struct Got_page_entry_eq
658 {
659   bool
660   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
661   {
662     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
663   }
664 };
665
666 // This class is used to hold .got information when linking.
667
668 template<int size, bool big_endian>
669 class Mips_got_info
670 {
671   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
673     Reloc_section;
674   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
675
676   // Unordered set of GOT entries.
677   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678       Mips_got_entry_hash<size, big_endian>,
679       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
680
681   // Unordered set of GOT page entries.
682   typedef Unordered_set<Got_page_entry*,
683       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
684
685   // Unordered set of global GOT entries.
686   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687       Global_got_entry_set;
688
689  public:
690   Mips_got_info()
691     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
695       offset_(0)
696   { }
697
698   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
700   void
701   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702                           unsigned int symndx, Mips_address addend,
703                           unsigned int r_type, unsigned int shndx,
704                           bool is_section_symbol);
705
706   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707   // in OBJECT.  FOR_CALL is true if the caller is only interested in
708   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
709   // relocation.
710   void
711   record_global_got_symbol(Mips_symbol<size>* mips_sym,
712                            Mips_relobj<size, big_endian>* object,
713                            unsigned int r_type, bool dyn_reloc, bool for_call);
714
715   // Add ENTRY to master GOT and to OBJECT's GOT.
716   void
717   record_got_entry(Mips_got_entry<size, big_endian>* entry,
718                    Mips_relobj<size, big_endian>* object);
719
720   // Record that OBJECT has a page relocation against symbol SYMNDX and
721   // that ADDEND is the addend for that relocation.
722   void
723   record_got_page_entry(Mips_relobj<size, big_endian>* object,
724                         unsigned int symndx, int addend);
725
726   // Create all entries that should be in the local part of the GOT.
727   void
728   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
729
730   // Create GOT page entries.
731   void
732   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
733
734   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
735   void
736   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737                      unsigned int non_reloc_only_global_gotno);
738
739   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
740   void
741   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
742
743   // Create TLS GOT entries.
744   void
745   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
746
747   // Decide whether the symbol needs an entry in the global part of the primary
748   // GOT, setting global_got_area accordingly.  Count the number of global
749   // symbols that are in the primary GOT only because they have dynamic
750   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
751   void
752   count_got_symbols(Symbol_table* symtab);
753
754   // Return the offset of GOT page entry for VALUE.
755   unsigned int
756   get_got_page_offset(Mips_address value,
757                       Mips_output_data_got<size, big_endian>* got);
758
759   // Count the number of GOT entries required.
760   void
761   count_got_entries();
762
763   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
764   void
765   count_got_entry(Mips_got_entry<size, big_endian>* entry);
766
767   // Add FROM's GOT entries.
768   void
769   add_got_entries(Mips_got_info<size, big_endian>* from);
770
771   // Add FROM's GOT page entries.
772   void
773   add_got_page_entries(Mips_got_info<size, big_endian>* from);
774
775   // Return GOT size.
776   unsigned int
777   got_size() const
778   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779              + this->tls_gotno_) * size/8);
780   }
781
782   // Return the number of local GOT entries.
783   unsigned int
784   local_gotno() const
785   { return this->local_gotno_; }
786
787   // Return the maximum number of page GOT entries needed.
788   unsigned int
789   page_gotno() const
790   { return this->page_gotno_; }
791
792   // Return the number of global GOT entries.
793   unsigned int
794   global_gotno() const
795   { return this->global_gotno_; }
796
797   // Set the number of global GOT entries.
798   void
799   set_global_gotno(unsigned int global_gotno)
800   { this->global_gotno_ = global_gotno; }
801
802   // Return the number of GGA_RELOC_ONLY global GOT entries.
803   unsigned int
804   reloc_only_gotno() const
805   { return this->reloc_only_gotno_; }
806
807   // Return the number of TLS GOT entries.
808   unsigned int
809   tls_gotno() const
810   { return this->tls_gotno_; }
811
812   // Return the GOT type for this GOT.  Used for multi-GOT links only.
813   unsigned int
814   multigot_got_type(unsigned int got_type) const
815   {
816     switch (got_type)
817       {
818       case GOT_TYPE_STANDARD:
819         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820       case GOT_TYPE_TLS_OFFSET:
821         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822       case GOT_TYPE_TLS_PAIR:
823         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
824       default:
825         gold_unreachable();
826       }
827   }
828
829   // Remove lazy-binding stubs for global symbols in this GOT.
830   void
831   remove_lazy_stubs(Target_mips<size, big_endian>* target);
832
833   // Return offset of this GOT from the start of .got section.
834   unsigned int
835   offset() const
836   { return this->offset_; }
837
838   // Set offset of this GOT from the start of .got section.
839   void
840   set_offset(unsigned int offset)
841   { this->offset_ = offset; }
842
843   // Set index of this GOT in multi-GOT links.
844   void
845   set_index(unsigned int index)
846   { this->index_ = index; }
847
848   // Return next GOT in multi-GOT links.
849   Mips_got_info<size, big_endian>*
850   next() const
851   { return this->next_; }
852
853   // Set next GOT in multi-GOT links.
854   void
855   set_next(Mips_got_info<size, big_endian>* next)
856   { this->next_ = next; }
857
858   // Return the offset of TLS LDM entry for this GOT.
859   unsigned int
860   tls_ldm_offset() const
861   { return this->tls_ldm_offset_; }
862
863   // Set the offset of TLS LDM entry for this GOT.
864   void
865   set_tls_ldm_offset(unsigned int tls_ldm_offset)
866   { this->tls_ldm_offset_ = tls_ldm_offset; }
867
868   Global_got_entry_set&
869   global_got_symbols()
870   { return this->global_got_symbols_; }
871
872   // Return the GOT_TLS_* type required by relocation type R_TYPE.
873   static int
874   mips_elf_reloc_tls_type(unsigned int r_type)
875   {
876     if (tls_gd_reloc(r_type))
877       return GOT_TLS_GD;
878
879     if (tls_ldm_reloc(r_type))
880       return GOT_TLS_LDM;
881
882     if (tls_gottprel_reloc(r_type))
883       return GOT_TLS_IE;
884
885     return GOT_TLS_NONE;
886   }
887
888   // Return the number of GOT slots needed for GOT TLS type TYPE.
889   static int
890   mips_tls_got_entries(unsigned int type)
891   {
892     switch (type)
893       {
894       case GOT_TLS_GD:
895       case GOT_TLS_LDM:
896         return 2;
897
898       case GOT_TLS_IE:
899         return 1;
900
901       case GOT_TLS_NONE:
902         return 0;
903
904       default:
905         gold_unreachable();
906       }
907   }
908
909  private:
910   // The number of local GOT entries.
911   unsigned int local_gotno_;
912   // The maximum number of page GOT entries needed.
913   unsigned int page_gotno_;
914   // The number of global GOT entries.
915   unsigned int global_gotno_;
916   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917   unsigned int reloc_only_gotno_;
918   // The number of TLS GOT entries.
919   unsigned int tls_gotno_;
920   // The offset of TLS LDM entry for this GOT.
921   unsigned int tls_ldm_offset_;
922   // All symbols that have global GOT entry.
923   Global_got_entry_set global_got_symbols_;
924   // A hash table holding GOT entries.
925   Got_entry_set got_entries_;
926   // A hash table of GOT page entries.
927   Got_page_entry_set got_page_entries_;
928   // The offset of first GOT page entry for this GOT.
929   unsigned int got_page_offset_start_;
930   // The offset of next available GOT page entry for this GOT.
931   unsigned int got_page_offset_next_;
932   // A hash table that maps GOT page entry value to the GOT offset where
933   // the entry is located.
934   Got_page_offsets got_page_offsets_;
935   // In multi-GOT links, a pointer to the next GOT.
936   Mips_got_info<size, big_endian>* next_;
937   // Index of this GOT in multi-GOT links.
938   unsigned int index_;
939   // The offset of this GOT in multi-GOT links.
940   unsigned int offset_;
941 };
942
943 // This is a helper class used during relocation scan.  It records GOT16 addend.
944
945 template<int size, bool big_endian>
946 struct got16_addend
947 {
948   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
949
950   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952                Mips_address _addend)
953     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
954       addend(_addend)
955   { }
956
957   const Sized_relobj_file<size, big_endian>* object;
958   unsigned int shndx;
959   unsigned int r_type;
960   unsigned int r_sym;
961   Mips_address addend;
962 };
963
964 // .MIPS.abiflags section content
965
966 template<bool big_endian>
967 struct Mips_abiflags
968 {
969   typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
972
973   Mips_abiflags()
974     : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975       cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
976   { }
977
978   // Version of flags structure.
979   Valtype16 version;
980   // The level of the ISA: 1-5, 32, 64.
981   Valtype8 isa_level;
982   // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
983   Valtype8 isa_rev;
984   // The size of general purpose registers.
985   Valtype8 gpr_size;
986   // The size of co-processor 1 registers.
987   Valtype8 cpr1_size;
988   // The size of co-processor 2 registers.
989   Valtype8 cpr2_size;
990   // The floating-point ABI.
991   Valtype8 fp_abi;
992   // Processor-specific extension.
993   Valtype32 isa_ext;
994   // Mask of ASEs used.
995   Valtype32 ases;
996   // Mask of general flags.
997   Valtype32 flags1;
998   Valtype32 flags2;
999 };
1000
1001 // Mips_symbol class.  Holds additional symbol information needed for Mips.
1002
1003 template<int size>
1004 class Mips_symbol : public Sized_symbol<size>
1005 {
1006  public:
1007   Mips_symbol()
1008     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1015   { }
1016
1017   // Return whether this is a MIPS16 symbol.
1018   bool
1019   is_mips16() const
1020   {
1021     // (st_other & STO_MIPS16) == STO_MIPS16
1022     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023             == elfcpp::STO_MIPS16 >> 2);
1024   }
1025
1026   // Return whether this is a microMIPS symbol.
1027   bool
1028   is_micromips() const
1029   {
1030     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032             == elfcpp::STO_MICROMIPS >> 2);
1033   }
1034
1035   // Return whether the symbol needs MIPS16 fn_stub.
1036   bool
1037   need_fn_stub() const
1038   { return this->need_fn_stub_; }
1039
1040   // Set that the symbol needs MIPS16 fn_stub.
1041   void
1042   set_need_fn_stub()
1043   { this->need_fn_stub_ = true; }
1044
1045   // Return whether this symbol is referenced by branch relocations from
1046   // any non-PIC input file.
1047   bool
1048   has_nonpic_branches() const
1049   { return this->has_nonpic_branches_; }
1050
1051   // Set that this symbol is referenced by branch relocations from
1052   // any non-PIC input file.
1053   void
1054   set_has_nonpic_branches()
1055   { this->has_nonpic_branches_ = true; }
1056
1057   // Return the offset of the la25 stub for this symbol from the start of the
1058   // la25 stub section.
1059   unsigned int
1060   la25_stub_offset() const
1061   { return this->la25_stub_offset_; }
1062
1063   // Set the offset of the la25 stub for this symbol from the start of the
1064   // la25 stub section.
1065   void
1066   set_la25_stub_offset(unsigned int offset)
1067   { this->la25_stub_offset_ = offset; }
1068
1069   // Return whether the symbol has la25 stub.  This is true if this symbol is
1070   // for a PIC function, and there are non-PIC branches and jumps to it.
1071   bool
1072   has_la25_stub() const
1073   { return this->la25_stub_offset_ != -1U; }
1074
1075   // Return whether there is a relocation against this symbol that must be
1076   // resolved by the static linker (that is, the relocation cannot possibly
1077   // be made dynamic).
1078   bool
1079   has_static_relocs() const
1080   { return this->has_static_relocs_; }
1081
1082   // Set that there is a relocation against this symbol that must be resolved
1083   // by the static linker (that is, the relocation cannot possibly be made
1084   // dynamic).
1085   void
1086   set_has_static_relocs()
1087   { this->has_static_relocs_ = true; }
1088
1089   // Return whether we must not create a lazy-binding stub for this symbol.
1090   bool
1091   no_lazy_stub() const
1092   { return this->no_lazy_stub_; }
1093
1094   // Set that we must not create a lazy-binding stub for this symbol.
1095   void
1096   set_no_lazy_stub()
1097   { this->no_lazy_stub_ = true; }
1098
1099   // Return the offset of the lazy-binding stub for this symbol from the start
1100   // of .MIPS.stubs section.
1101   unsigned int
1102   lazy_stub_offset() const
1103   { return this->lazy_stub_offset_; }
1104
1105   // Set the offset of the lazy-binding stub for this symbol from the start
1106   // of .MIPS.stubs section.
1107   void
1108   set_lazy_stub_offset(unsigned int offset)
1109   { this->lazy_stub_offset_ = offset; }
1110
1111   // Return whether there are any relocations for this symbol where
1112   // pointer equality matters.
1113   bool
1114   pointer_equality_needed() const
1115   { return this->pointer_equality_needed_; }
1116
1117   // Set that there are relocations for this symbol where pointer equality
1118   // matters.
1119   void
1120   set_pointer_equality_needed()
1121   { this->pointer_equality_needed_ = true; }
1122
1123   // Return global GOT area where this symbol in located.
1124   Global_got_area
1125   global_got_area() const
1126   { return this->global_got_area_; }
1127
1128   // Set global GOT area where this symbol in located.
1129   void
1130   set_global_got_area(Global_got_area global_got_area)
1131   { this->global_got_area_ = global_got_area; }
1132
1133   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1134   // returns the offset from the start of .got section to the first GOT entry
1135   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1136   // in more than one GOT.
1137   unsigned int
1138   global_gotoffset() const
1139   { return this->global_gotoffset_; }
1140
1141   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1142   // the symbol can have entry in more than one GOT.  This method will set
1143   // the offset only if it is less than current offset.
1144   void
1145   set_global_gotoffset(unsigned int offset)
1146   {
1147     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148       this->global_gotoffset_ = offset;
1149   }
1150
1151   // Return whether all GOT relocations for this symbol are for calls.
1152   bool
1153   got_only_for_calls() const
1154   { return this->got_only_for_calls_; }
1155
1156   // Set that there is a GOT relocation for this symbol that is not for call.
1157   void
1158   set_got_not_only_for_calls()
1159   { this->got_only_for_calls_ = false; }
1160
1161   // Return whether this is a PIC symbol.
1162   bool
1163   is_pic() const
1164   {
1165     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167             == (elfcpp::STO_MIPS_PIC >> 2));
1168   }
1169
1170   // Set the flag in st_other field that marks this symbol as PIC.
1171   void
1172   set_pic()
1173   {
1174     if (this->is_mips16())
1175       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176       this->set_nonvis((this->nonvis()
1177                         & ~((elfcpp::STO_MIPS16 >> 2)
1178                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179                        | (elfcpp::STO_MIPS_PIC >> 2));
1180     else
1181       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183                        | (elfcpp::STO_MIPS_PIC >> 2));
1184   }
1185
1186   // Set the flag in st_other field that marks this symbol as PLT.
1187   void
1188   set_mips_plt()
1189   {
1190     if (this->is_mips16())
1191       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192       this->set_nonvis((this->nonvis()
1193                         & ((elfcpp::STO_MIPS16 >> 2)
1194                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195                        | (elfcpp::STO_MIPS_PLT >> 2));
1196
1197     else
1198       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200                        | (elfcpp::STO_MIPS_PLT >> 2));
1201   }
1202
1203   // Downcast a base pointer to a Mips_symbol pointer.
1204   static Mips_symbol<size>*
1205   as_mips_sym(Symbol* sym)
1206   { return static_cast<Mips_symbol<size>*>(sym); }
1207
1208   // Downcast a base pointer to a Mips_symbol pointer.
1209   static const Mips_symbol<size>*
1210   as_mips_sym(const Symbol* sym)
1211   { return static_cast<const Mips_symbol<size>*>(sym); }
1212
1213   // Return whether the symbol has lazy-binding stub.
1214   bool
1215   has_lazy_stub() const
1216   { return this->has_lazy_stub_; }
1217
1218   // Set whether the symbol has lazy-binding stub.
1219   void
1220   set_has_lazy_stub(bool has_lazy_stub)
1221   { this->has_lazy_stub_ = has_lazy_stub; }
1222
1223   // Return whether the symbol needs a standard PLT entry.
1224   bool
1225   needs_mips_plt() const
1226   { return this->needs_mips_plt_; }
1227
1228   // Set whether the symbol needs a standard PLT entry.
1229   void
1230   set_needs_mips_plt(bool needs_mips_plt)
1231   { this->needs_mips_plt_ = needs_mips_plt; }
1232
1233   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1234   // entry.
1235   bool
1236   needs_comp_plt() const
1237   { return this->needs_comp_plt_; }
1238
1239   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1240   void
1241   set_needs_comp_plt(bool needs_comp_plt)
1242   { this->needs_comp_plt_ = needs_comp_plt; }
1243
1244   // Return standard PLT entry offset, or -1 if none.
1245   unsigned int
1246   mips_plt_offset() const
1247   { return this->mips_plt_offset_; }
1248
1249   // Set standard PLT entry offset.
1250   void
1251   set_mips_plt_offset(unsigned int mips_plt_offset)
1252   { this->mips_plt_offset_ = mips_plt_offset; }
1253
1254   // Return whether the symbol has standard PLT entry.
1255   bool
1256   has_mips_plt_offset() const
1257   { return this->mips_plt_offset_ != -1U; }
1258
1259   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1260   unsigned int
1261   comp_plt_offset() const
1262   { return this->comp_plt_offset_; }
1263
1264   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1265   void
1266   set_comp_plt_offset(unsigned int comp_plt_offset)
1267   { this->comp_plt_offset_ = comp_plt_offset; }
1268
1269   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1270   bool
1271   has_comp_plt_offset() const
1272   { return this->comp_plt_offset_ != -1U; }
1273
1274   // Return MIPS16 fn stub for a symbol.
1275   template<bool big_endian>
1276   Mips16_stub_section<size, big_endian>*
1277   get_mips16_fn_stub() const
1278   {
1279     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1280   }
1281
1282   // Set MIPS16 fn stub for a symbol.
1283   void
1284   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285   { this->mips16_fn_stub_ = stub; }
1286
1287   // Return whether symbol has MIPS16 fn stub.
1288   bool
1289   has_mips16_fn_stub() const
1290   { return this->mips16_fn_stub_ != NULL; }
1291
1292   // Return MIPS16 call stub for a symbol.
1293   template<bool big_endian>
1294   Mips16_stub_section<size, big_endian>*
1295   get_mips16_call_stub() const
1296   {
1297     return static_cast<Mips16_stub_section<size, big_endian>*>(
1298       mips16_call_stub_);
1299   }
1300
1301   // Set MIPS16 call stub for a symbol.
1302   void
1303   set_mips16_call_stub(Mips16_stub_section_base* stub)
1304   { this->mips16_call_stub_ = stub; }
1305
1306   // Return whether symbol has MIPS16 call stub.
1307   bool
1308   has_mips16_call_stub() const
1309   { return this->mips16_call_stub_ != NULL; }
1310
1311   // Return MIPS16 call_fp stub for a symbol.
1312   template<bool big_endian>
1313   Mips16_stub_section<size, big_endian>*
1314   get_mips16_call_fp_stub() const
1315   {
1316     return static_cast<Mips16_stub_section<size, big_endian>*>(
1317       mips16_call_fp_stub_);
1318   }
1319
1320   // Set MIPS16 call_fp stub for a symbol.
1321   void
1322   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323   { this->mips16_call_fp_stub_ = stub; }
1324
1325   // Return whether symbol has MIPS16 call_fp stub.
1326   bool
1327   has_mips16_call_fp_stub() const
1328   { return this->mips16_call_fp_stub_ != NULL; }
1329
1330   bool
1331   get_applied_secondary_got_fixup() const
1332   { return applied_secondary_got_fixup_; }
1333
1334   void
1335   set_applied_secondary_got_fixup()
1336   { this->applied_secondary_got_fixup_ = true; }
1337
1338   // Return the hash of this symbol.
1339   size_t
1340   hash() const
1341   {
1342     return gold::string_hash<char>(this->name());
1343   }
1344
1345  private:
1346   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1347   // appears in any relocs other than a 16 bit call.
1348   bool need_fn_stub_;
1349
1350   // True if this symbol is referenced by branch relocations from
1351   // any non-PIC input file.  This is used to determine whether an
1352   // la25 stub is required.
1353   bool has_nonpic_branches_;
1354
1355   // The offset of the la25 stub for this symbol from the start of the
1356   // la25 stub section.
1357   unsigned int la25_stub_offset_;
1358
1359   // True if there is a relocation against this symbol that must be
1360   // resolved by the static linker (that is, the relocation cannot
1361   // possibly be made dynamic).
1362   bool has_static_relocs_;
1363
1364   // Whether we must not create a lazy-binding stub for this symbol.
1365   // This is true if the symbol has relocations related to taking the
1366   // function's address.
1367   bool no_lazy_stub_;
1368
1369   // The offset of the lazy-binding stub for this symbol from the start of
1370   // .MIPS.stubs section.
1371   unsigned int lazy_stub_offset_;
1372
1373   // True if there are any relocations for this symbol where pointer equality
1374   // matters.
1375   bool pointer_equality_needed_;
1376
1377   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378   // in the global part of the GOT.
1379   Global_got_area global_got_area_;
1380
1381   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1382   // from the start of .got section to the first GOT entry for the symbol.
1383   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384   unsigned int global_gotoffset_;
1385
1386   // Whether all GOT relocations for this symbol are for calls.
1387   bool got_only_for_calls_;
1388   // Whether the symbol has lazy-binding stub.
1389   bool has_lazy_stub_;
1390   // Whether the symbol needs a standard PLT entry.
1391   bool needs_mips_plt_;
1392   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393   bool needs_comp_plt_;
1394   // Standard PLT entry offset, or -1 if none.
1395   unsigned int mips_plt_offset_;
1396   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397   unsigned int comp_plt_offset_;
1398   // MIPS16 fn stub for a symbol.
1399   Mips16_stub_section_base* mips16_fn_stub_;
1400   // MIPS16 call stub for a symbol.
1401   Mips16_stub_section_base* mips16_call_stub_;
1402   // MIPS16 call_fp stub for a symbol.
1403   Mips16_stub_section_base* mips16_call_fp_stub_;
1404
1405   bool applied_secondary_got_fixup_;
1406 };
1407
1408 // Mips16_stub_section class.
1409
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1412
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead.  If no 32 bit
1417 // function calls FNNAME, the stub should be discarded.  We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1421
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead.  If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1428
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs.  These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call.  (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1437
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally.  Instead, the relocation
1440 // information will indicate which symbol the section is for.
1441
1442 // We record any stubs that we find in the symbol table.
1443
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1445
1446 class Mips16_stub_section_base { };
1447
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1450 {
1451   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1452
1453  public:
1454   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456       found_r_mips_none_(false)
1457   {
1458     gold_assert(object->is_mips16_fn_stub_section(shndx)
1459                 || object->is_mips16_call_stub_section(shndx)
1460                 || object->is_mips16_call_fp_stub_section(shndx));
1461   }
1462
1463   // Return the object of this stub section.
1464   Mips_relobj<size, big_endian>*
1465   object() const
1466   { return this->object_; }
1467
1468   // Return the size of a section.
1469   uint64_t
1470   section_size() const
1471   { return this->object_->section_size(this->shndx_); }
1472
1473   // Return section index of this stub section.
1474   unsigned int
1475   shndx() const
1476   { return this->shndx_; }
1477
1478   // Return symbol index, if stub is for a local function.
1479   unsigned int
1480   r_sym() const
1481   { return this->r_sym_; }
1482
1483   // Return symbol, if stub is for a global function.
1484   Mips_symbol<size>*
1485   gsym() const
1486   { return this->gsym_; }
1487
1488   // Return whether stub is for a local function.
1489   bool
1490   is_for_local_function() const
1491   { return this->gsym_ == NULL; }
1492
1493   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494   // is found in the stub section.  Try to find stub target.
1495   void
1496   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1497   {
1498     // To find target symbol for this stub, trust the first R_MIPS_NONE
1499     // relocation, if any.  Otherwise trust the first relocation, whatever
1500     // its kind.
1501     if (this->found_r_mips_none_)
1502       return;
1503     if (r_type == elfcpp::R_MIPS_NONE)
1504       {
1505         this->r_sym_ = r_sym;
1506         this->gsym_ = NULL;
1507         this->found_r_mips_none_ = true;
1508       }
1509     else if (!is_target_found())
1510       this->r_sym_ = r_sym;
1511   }
1512
1513   // This method is called when a new relocation R_TYPE for global symbol GSYM
1514   // is found in the stub section.  Try to find stub target.
1515   void
1516   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1517   {
1518     // To find target symbol for this stub, trust the first R_MIPS_NONE
1519     // relocation, if any.  Otherwise trust the first relocation, whatever
1520     // its kind.
1521     if (this->found_r_mips_none_)
1522       return;
1523     if (r_type == elfcpp::R_MIPS_NONE)
1524       {
1525         this->gsym_ = gsym;
1526         this->r_sym_ = 0;
1527         this->found_r_mips_none_ = true;
1528       }
1529     else if (!is_target_found())
1530       this->gsym_ = gsym;
1531   }
1532
1533   // Return whether we found the stub target.
1534   bool
1535   is_target_found() const
1536   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1537
1538   // Return whether this is a fn stub.
1539   bool
1540   is_fn_stub() const
1541   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1542
1543   // Return whether this is a call stub.
1544   bool
1545   is_call_stub() const
1546   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1547
1548   // Return whether this is a call_fp stub.
1549   bool
1550   is_call_fp_stub() const
1551   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1552
1553   // Return the output address.
1554   Mips_address
1555   output_address() const
1556   {
1557     return (this->object_->output_section(this->shndx_)->address()
1558             + this->object_->output_section_offset(this->shndx_));
1559   }
1560
1561  private:
1562   // The object of this stub section.
1563   Mips_relobj<size, big_endian>* object_;
1564   // The section index of this stub section.
1565   unsigned int shndx_;
1566   // The symbol index, if stub is for a local function.
1567   unsigned int r_sym_;
1568   // The symbol, if stub is for a global function.
1569   Mips_symbol<size>* gsym_;
1570   // True if we found R_MIPS_NONE relocation in this stub.
1571   bool found_r_mips_none_;
1572 };
1573
1574 // Mips_relobj class.
1575
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1578 {
1579   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581     Mips16_stubs_int_map;
1582   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1583
1584  public:
1585   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588       processor_specific_flags_(0), local_symbol_is_mips16_(),
1589       local_symbol_is_micromips_(), mips16_stub_sections_(),
1590       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591       local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592       got_info_(NULL), section_is_mips16_fn_stub_(),
1593       section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594       pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595       gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1596   {
1597     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1599   }
1600
1601   ~Mips_relobj()
1602   { delete this->attributes_section_data_; }
1603
1604   // Downcast a base pointer to a Mips_relobj pointer.  This is
1605   // not type-safe but we only use Mips_relobj not the base class.
1606   static Mips_relobj<size, big_endian>*
1607   as_mips_relobj(Relobj* relobj)
1608   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1609
1610   // Downcast a base pointer to a Mips_relobj pointer.  This is
1611   // not type-safe but we only use Mips_relobj not the base class.
1612   static const Mips_relobj<size, big_endian>*
1613   as_mips_relobj(const Relobj* relobj)
1614   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1615
1616   // Processor-specific flags in ELF file header.  This is valid only after
1617   // reading symbols.
1618   elfcpp::Elf_Word
1619   processor_specific_flags() const
1620   { return this->processor_specific_flags_; }
1621
1622   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1623   // index.  This is only valid after do_count_local_symbol is called.
1624   bool
1625   local_symbol_is_mips16(unsigned int r_sym) const
1626   {
1627     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628     return this->local_symbol_is_mips16_[r_sym];
1629   }
1630
1631   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1632   // index.  This is only valid after do_count_local_symbol is called.
1633   bool
1634   local_symbol_is_micromips(unsigned int r_sym) const
1635   {
1636     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637     return this->local_symbol_is_micromips_[r_sym];
1638   }
1639
1640   // Get or create MIPS16 stub section.
1641   Mips16_stub_section<size, big_endian>*
1642   get_mips16_stub_section(unsigned int shndx)
1643   {
1644     typename Mips16_stubs_int_map::const_iterator it =
1645       this->mips16_stub_sections_.find(shndx);
1646     if (it != this->mips16_stub_sections_.end())
1647       return (*it).second;
1648
1649     Mips16_stub_section<size, big_endian>* stub_section =
1650       new Mips16_stub_section<size, big_endian>(this, shndx);
1651     this->mips16_stub_sections_.insert(
1652       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653         stub_section->shndx(), stub_section));
1654     return stub_section;
1655   }
1656
1657   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658   // object doesn't have fn stub for R_SYM.
1659   Mips16_stub_section<size, big_endian>*
1660   get_local_mips16_fn_stub(unsigned int r_sym) const
1661   {
1662     typename Mips16_stubs_int_map::const_iterator it =
1663       this->local_mips16_fn_stubs_.find(r_sym);
1664     if (it != this->local_mips16_fn_stubs_.end())
1665       return (*it).second;
1666     return NULL;
1667   }
1668
1669   // Record that this object has MIPS16 fn stub for local symbol.  This method
1670   // is only called if we decided not to discard the stub.
1671   void
1672   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1673   {
1674     gold_assert(stub->is_for_local_function());
1675     unsigned int r_sym = stub->r_sym();
1676     this->local_mips16_fn_stubs_.insert(
1677       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1678         r_sym, stub));
1679   }
1680
1681   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682   // object doesn't have call stub for R_SYM.
1683   Mips16_stub_section<size, big_endian>*
1684   get_local_mips16_call_stub(unsigned int r_sym) const
1685   {
1686     typename Mips16_stubs_int_map::const_iterator it =
1687       this->local_mips16_call_stubs_.find(r_sym);
1688     if (it != this->local_mips16_call_stubs_.end())
1689       return (*it).second;
1690     return NULL;
1691   }
1692
1693   // Record that this object has MIPS16 call stub for local symbol.  This method
1694   // is only called if we decided not to discard the stub.
1695   void
1696   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1697   {
1698     gold_assert(stub->is_for_local_function());
1699     unsigned int r_sym = stub->r_sym();
1700     this->local_mips16_call_stubs_.insert(
1701       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1702         r_sym, stub));
1703   }
1704
1705   // Record that we found "non 16-bit" call relocation against local symbol
1706   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1707   // is one.
1708   void
1709   add_local_non_16bit_call(unsigned int symndx)
1710   { this->local_non_16bit_calls_.insert(symndx); }
1711
1712   // Return true if there is any "non 16-bit" call relocation against local
1713   // symbol SYMNDX in this object.
1714   bool
1715   has_local_non_16bit_call_relocs(unsigned int symndx)
1716   {
1717     return (this->local_non_16bit_calls_.find(symndx)
1718             != this->local_non_16bit_calls_.end());
1719   }
1720
1721   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1723   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1724   void
1725   add_local_16bit_call(unsigned int symndx)
1726   { this->local_16bit_calls_.insert(symndx); }
1727
1728   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729   // symbol SYMNDX in this object.
1730   bool
1731   has_local_16bit_call_relocs(unsigned int symndx)
1732   {
1733     return (this->local_16bit_calls_.find(symndx)
1734             != this->local_16bit_calls_.end());
1735   }
1736
1737   // Get gp value that was used to create this object.
1738   Mips_address
1739   gp_value() const
1740   { return this->gp_; }
1741
1742   // Return whether the object is a PIC object.
1743   bool
1744   is_pic() const
1745   { return this->is_pic_; }
1746
1747   // Return whether the object uses N32 ABI.
1748   bool
1749   is_n32() const
1750   { return this->is_n32_; }
1751
1752   // Return whether the object uses N64 ABI.
1753   bool
1754   is_n64() const
1755   { return size == 64; }
1756
1757   // Return whether the object uses NewABI conventions.
1758   bool
1759   is_newabi() const
1760   { return this->is_n32() || this->is_n64(); }
1761
1762   // Return Mips_got_info for this object.
1763   Mips_got_info<size, big_endian>*
1764   get_got_info() const
1765   { return this->got_info_; }
1766
1767   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1768   Mips_got_info<size, big_endian>*
1769   get_or_create_got_info()
1770   {
1771     if (!this->got_info_)
1772       this->got_info_ = new Mips_got_info<size, big_endian>();
1773     return this->got_info_;
1774   }
1775
1776   // Set Mips_got_info for this object.
1777   void
1778   set_got_info(Mips_got_info<size, big_endian>* got_info)
1779   { this->got_info_ = got_info; }
1780
1781   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1782   // after do_read_symbols is called.
1783   bool
1784   is_mips16_stub_section(unsigned int shndx)
1785   {
1786     return (is_mips16_fn_stub_section(shndx)
1787             || is_mips16_call_stub_section(shndx)
1788             || is_mips16_call_fp_stub_section(shndx));
1789   }
1790
1791   // Return TRUE if relocations in section SHNDX can refer directly to a
1792   // MIPS16 function rather than to a hard-float stub.  This is only valid
1793   // after do_read_symbols is called.
1794   bool
1795   section_allows_mips16_refs(unsigned int shndx)
1796   {
1797     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1798   }
1799
1800   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1801   // after do_read_symbols is called.
1802   bool
1803   is_mips16_fn_stub_section(unsigned int shndx)
1804   {
1805     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806     return this->section_is_mips16_fn_stub_[shndx];
1807   }
1808
1809   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1810   // after do_read_symbols is called.
1811   bool
1812   is_mips16_call_stub_section(unsigned int shndx)
1813   {
1814     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815     return this->section_is_mips16_call_stub_[shndx];
1816   }
1817
1818   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1819   // valid after do_read_symbols is called.
1820   bool
1821   is_mips16_call_fp_stub_section(unsigned int shndx)
1822   {
1823     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824     return this->section_is_mips16_call_fp_stub_[shndx];
1825   }
1826
1827   // Discard MIPS16 stub secions that are not needed.
1828   void
1829   discard_mips16_stub_sections(Symbol_table* symtab);
1830
1831   // Return whether there is a .reginfo section.
1832   bool
1833   has_reginfo_section() const
1834   { return this->has_reginfo_section_; }
1835
1836   // Return gprmask from the .reginfo section of this object.
1837   Valtype
1838   gprmask() const
1839   { return this->gprmask_; }
1840
1841   // Return cprmask1 from the .reginfo section of this object.
1842   Valtype
1843   cprmask1() const
1844   { return this->cprmask1_; }
1845
1846   // Return cprmask2 from the .reginfo section of this object.
1847   Valtype
1848   cprmask2() const
1849   { return this->cprmask2_; }
1850
1851   // Return cprmask3 from the .reginfo section of this object.
1852   Valtype
1853   cprmask3() const
1854   { return this->cprmask3_; }
1855
1856   // Return cprmask4 from the .reginfo section of this object.
1857   Valtype
1858   cprmask4() const
1859   { return this->cprmask4_; }
1860
1861   // This is the contents of the .MIPS.abiflags section if there is one.
1862   Mips_abiflags<big_endian>*
1863   abiflags()
1864   { return this->abiflags_; }
1865
1866   // This is the contents of the .gnu.attribute section if there is one.
1867   const Attributes_section_data*
1868   attributes_section_data() const
1869   { return this->attributes_section_data_; }
1870
1871  protected:
1872   // Count the local symbols.
1873   void
1874   do_count_local_symbols(Stringpool_template<char>*,
1875                          Stringpool_template<char>*);
1876
1877   // Read the symbol information.
1878   void
1879   do_read_symbols(Read_symbols_data* sd);
1880
1881  private:
1882   // The name of the options section.
1883   const char* mips_elf_options_section_name()
1884   { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1885
1886   // processor-specific flags in ELF file header.
1887   elfcpp::Elf_Word processor_specific_flags_;
1888
1889   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890   // This is only valid after do_count_local_symbol is called.
1891   std::vector<bool> local_symbol_is_mips16_;
1892
1893   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894   // This is only valid after do_count_local_symbol is called.
1895   std::vector<bool> local_symbol_is_micromips_;
1896
1897   // Map from section index to the MIPS16 stub for that section.  This contains
1898   // all stubs found in this object.
1899   Mips16_stubs_int_map mips16_stub_sections_;
1900
1901   // Local symbols that have "non 16-bit" call relocation.  This relocation
1902   // would need to refer to a MIPS16 fn stub, if there is one.
1903   std::set<unsigned int> local_non_16bit_calls_;
1904
1905   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1906   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907   // relocation that refers to the stub symbol.
1908   std::set<unsigned int> local_16bit_calls_;
1909
1910   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911   // This contains only the stubs that we decided not to discard.
1912   Mips16_stubs_int_map local_mips16_fn_stubs_;
1913
1914   // Map from local symbol index to the MIPS16 call stub for that symbol.
1915   // This contains only the stubs that we decided not to discard.
1916   Mips16_stubs_int_map local_mips16_call_stubs_;
1917
1918   // gp value that was used to create this object.
1919   Mips_address gp_;
1920   // Whether the object is a PIC object.
1921   bool is_pic_ : 1;
1922   // Whether the object uses N32 ABI.
1923   bool is_n32_ : 1;
1924   // Whether the object contains a .reginfo section.
1925   bool has_reginfo_section_ : 1;
1926   // The Mips_got_info for this object.
1927   Mips_got_info<size, big_endian>* got_info_;
1928
1929   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930   // This is only valid after do_read_symbols is called.
1931   std::vector<bool> section_is_mips16_fn_stub_;
1932
1933   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934   // This is only valid after do_read_symbols is called.
1935   std::vector<bool> section_is_mips16_call_stub_;
1936
1937   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938   // This is only valid after do_read_symbols is called.
1939   std::vector<bool> section_is_mips16_call_fp_stub_;
1940
1941   // .pdr section index.
1942   unsigned int pdr_shndx_;
1943
1944   // Object attributes if there is a .gnu.attributes section or NULL.
1945   Attributes_section_data* attributes_section_data_;
1946
1947   // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948   Mips_abiflags<big_endian>* abiflags_;
1949
1950   // gprmask from the .reginfo section of this object.
1951   Valtype gprmask_;
1952   // cprmask1 from the .reginfo section of this object.
1953   Valtype cprmask1_;
1954   // cprmask2 from the .reginfo section of this object.
1955   Valtype cprmask2_;
1956   // cprmask3 from the .reginfo section of this object.
1957   Valtype cprmask3_;
1958   // cprmask4 from the .reginfo section of this object.
1959   Valtype cprmask4_;
1960 };
1961
1962 // Mips_output_data_got class.
1963
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1966 {
1967   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1969     Reloc_section;
1970   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1971
1972  public:
1973   Mips_output_data_got(Target_mips<size, big_endian>* target,
1974       Symbol_table* symtab, Layout* layout)
1975     : Output_data_got<size, big_endian>(), target_(target),
1976       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978       secondary_got_relocs_()
1979   {
1980     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981     this->set_addralign(16);
1982   }
1983
1984   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1986   void
1987   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988                           unsigned int symndx, Mips_address addend,
1989                           unsigned int r_type, unsigned int shndx,
1990                           bool is_section_symbol)
1991   {
1992     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1993                                                     r_type, shndx,
1994                                                     is_section_symbol);
1995   }
1996
1997   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998   // in OBJECT.  FOR_CALL is true if the caller is only interested in
1999   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
2000   // relocation.
2001   void
2002   record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003                            Mips_relobj<size, big_endian>* object,
2004                            unsigned int r_type, bool dyn_reloc, bool for_call)
2005   {
2006     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007                                                      dyn_reloc, for_call);
2008   }
2009
2010   // Record that OBJECT has a page relocation against symbol SYMNDX and
2011   // that ADDEND is the addend for that relocation.
2012   void
2013   record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014                         unsigned int symndx, int addend)
2015   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2016
2017   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
2018   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019   // applied in a static link.
2020   void
2021   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022                    Mips_symbol<size>* gsym)
2023   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2024
2025   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
2026   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
2027   // relocation that needs to be applied in a static link.
2028   void
2029   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030                    Sized_relobj_file<size, big_endian>* relobj,
2031                    unsigned int index)
2032   {
2033     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2034                                                 index));
2035   }
2036
2037   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038   // secondary GOT at OFFSET.
2039   void
2040   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041                           Mips_symbol<size>* gsym)
2042   {
2043     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2044                                                        r_type, gsym));
2045   }
2046
2047   // Update GOT entry at OFFSET with VALUE.
2048   void
2049   update_got_entry(unsigned int offset, Mips_address value)
2050   {
2051     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2052   }
2053
2054   // Return the number of entries in local part of the GOT.  This includes
2055   // local entries, page entries and 2 reserved entries.
2056   unsigned int
2057   get_local_gotno() const
2058   {
2059     if (!this->multi_got())
2060       {
2061         return (2 + this->master_got_info_->local_gotno()
2062                 + this->master_got_info_->page_gotno());
2063       }
2064     else
2065       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2066   }
2067
2068   // Return dynamic symbol table index of the first symbol with global GOT
2069   // entry.
2070   unsigned int
2071   first_global_got_dynsym_index() const
2072   { return this->first_global_got_dynsym_index_; }
2073
2074   // Set dynamic symbol table index of the first symbol with global GOT entry.
2075   void
2076   set_first_global_got_dynsym_index(unsigned int index)
2077   { this->first_global_got_dynsym_index_ = index; }
2078
2079   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
2080   // larger than 64K, create multi-GOT.
2081   void
2082   lay_out_got(Layout* layout, Symbol_table* symtab,
2083               const Input_objects* input_objects);
2084
2085   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
2086   void
2087   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2088
2089   // Attempt to merge GOTs of different input objects.
2090   void
2091   merge_gots(const Input_objects* input_objects);
2092
2093   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
2094   // this would lead to overflow, true if they were merged successfully.
2095   bool
2096   merge_got_with(Mips_got_info<size, big_endian>* from,
2097                  Mips_relobj<size, big_endian>* object,
2098                  Mips_got_info<size, big_endian>* to);
2099
2100   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
2101   // use OBJECT's GOT.
2102   unsigned int
2103   get_got_page_offset(Mips_address value,
2104                       const Mips_relobj<size, big_endian>* object)
2105   {
2106     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107                                           ? this->master_got_info_
2108                                           : object->get_got_info());
2109     gold_assert(g != NULL);
2110     return g->get_got_page_offset(value, this);
2111   }
2112
2113   // Return the GOT offset of type GOT_TYPE of the global symbol
2114   // GSYM.  For multi-GOT links, use OBJECT's GOT.
2115   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116                           Mips_relobj<size, big_endian>* object) const
2117   {
2118     if (!this->multi_got())
2119       return gsym->got_offset(got_type);
2120     else
2121       {
2122         Mips_got_info<size, big_endian>* g = object->get_got_info();
2123         gold_assert(g != NULL);
2124         return gsym->got_offset(g->multigot_got_type(got_type));
2125       }
2126   }
2127
2128   // Return the GOT offset of type GOT_TYPE of the local symbol
2129   // SYMNDX.
2130   unsigned int
2131   got_offset(unsigned int symndx, unsigned int got_type,
2132              Sized_relobj_file<size, big_endian>* object,
2133              uint64_t addend) const
2134   { return object->local_got_offset(symndx, got_type, addend); }
2135
2136   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2137   unsigned int
2138   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2139   {
2140     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141                                           ? this->master_got_info_
2142                                           : object->get_got_info());
2143     gold_assert(g != NULL);
2144     return g->tls_ldm_offset();
2145   }
2146
2147   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2148   void
2149   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150                      Mips_relobj<size, big_endian>* object)
2151   {
2152     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153                                           ? this->master_got_info_
2154                                           : object->get_got_info());
2155     gold_assert(g != NULL);
2156     g->set_tls_ldm_offset(tls_ldm_offset);
2157   }
2158
2159   // Return true for multi-GOT links.
2160   bool
2161   multi_got() const
2162   { return this->primary_got_ != NULL; }
2163
2164   // Return the offset of OBJECT's GOT from the start of .got section.
2165   unsigned int
2166   get_got_offset(const Mips_relobj<size, big_endian>* object)
2167   {
2168     if (!this->multi_got())
2169       return 0;
2170     else
2171       {
2172         Mips_got_info<size, big_endian>* g = object->get_got_info();
2173         return g != NULL ? g->offset() : 0;
2174       }
2175   }
2176
2177   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2178   void
2179   add_reloc_only_entries()
2180   { this->master_got_info_->add_reloc_only_entries(this); }
2181
2182   // Return offset of the primary GOT's entry for global symbol.
2183   unsigned int
2184   get_primary_got_offset(const Mips_symbol<size>* sym) const
2185   {
2186     gold_assert(sym->global_got_area() != GGA_NONE);
2187     return (this->get_local_gotno() + sym->dynsym_index()
2188             - this->first_global_got_dynsym_index()) * size/8;
2189   }
2190
2191   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192   // Input argument GOT_OFFSET is always global offset from the start of
2193   // .got section, for both single and multi-GOT links.
2194   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2195   // links, the return value is object_got_offset - 0x7FF0, where
2196   // object_got_offset is offset in the OBJECT's GOT.
2197   int
2198   gp_offset(unsigned int got_offset,
2199             const Mips_relobj<size, big_endian>* object) const
2200   {
2201     return (this->address() + got_offset
2202             - this->target_->adjusted_gp_value(object));
2203   }
2204
2205  protected:
2206   // Write out the GOT table.
2207   void
2208   do_write(Output_file*);
2209
2210  private:
2211
2212   // This class represent dynamic relocations that need to be applied by
2213   // gold because we are using TLS relocations in a static link.
2214   class Static_reloc
2215   {
2216    public:
2217     Static_reloc(unsigned int got_offset, unsigned int r_type,
2218                  Mips_symbol<size>* gsym)
2219       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220     { this->u_.global.symbol = gsym; }
2221
2222     Static_reloc(unsigned int got_offset, unsigned int r_type,
2223           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2225     {
2226       this->u_.local.relobj = relobj;
2227       this->u_.local.index = index;
2228     }
2229
2230     // Return the GOT offset.
2231     unsigned int
2232     got_offset() const
2233     { return this->got_offset_; }
2234
2235     // Relocation type.
2236     unsigned int
2237     r_type() const
2238     { return this->r_type_; }
2239
2240     // Whether the symbol is global or not.
2241     bool
2242     symbol_is_global() const
2243     { return this->symbol_is_global_; }
2244
2245     // For a relocation against a global symbol, the global symbol.
2246     Mips_symbol<size>*
2247     symbol() const
2248     {
2249       gold_assert(this->symbol_is_global_);
2250       return this->u_.global.symbol;
2251     }
2252
2253     // For a relocation against a local symbol, the defining object.
2254     Sized_relobj_file<size, big_endian>*
2255     relobj() const
2256     {
2257       gold_assert(!this->symbol_is_global_);
2258       return this->u_.local.relobj;
2259     }
2260
2261     // For a relocation against a local symbol, the local symbol index.
2262     unsigned int
2263     index() const
2264     {
2265       gold_assert(!this->symbol_is_global_);
2266       return this->u_.local.index;
2267     }
2268
2269    private:
2270     // GOT offset of the entry to which this relocation is applied.
2271     unsigned int got_offset_;
2272     // Type of relocation.
2273     unsigned int r_type_;
2274     // Whether this relocation is against a global symbol.
2275     bool symbol_is_global_;
2276     // A global or local symbol.
2277     union
2278     {
2279       struct
2280       {
2281         // For a global symbol, the symbol itself.
2282         Mips_symbol<size>* symbol;
2283       } global;
2284       struct
2285       {
2286         // For a local symbol, the object defining object.
2287         Sized_relobj_file<size, big_endian>* relobj;
2288         // For a local symbol, the symbol index.
2289         unsigned int index;
2290       } local;
2291     } u_;
2292   };
2293
2294   // The target.
2295   Target_mips<size, big_endian>* target_;
2296   // The symbol table.
2297   Symbol_table* symbol_table_;
2298   // The layout.
2299   Layout* layout_;
2300   // Static relocs to be applied to the GOT.
2301   std::vector<Static_reloc> static_relocs_;
2302   // .got section view.
2303   unsigned char* got_view_;
2304   // The dynamic symbol table index of the first symbol with global GOT entry.
2305   unsigned int first_global_got_dynsym_index_;
2306   // The master GOT information.
2307   Mips_got_info<size, big_endian>* master_got_info_;
2308   // The  primary GOT information.
2309   Mips_got_info<size, big_endian>* primary_got_;
2310   // Secondary GOT fixups.
2311   std::vector<Static_reloc> secondary_got_relocs_;
2312 };
2313
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces.  The first is to add:
2316 //
2317 //      lui     $25,%hi(func)
2318 //      j       func
2319 //      addiu   $25,$25,%lo(func)
2320 //
2321 // to a separate trampoline section.  The second is to add:
2322 //
2323 //      lui     $25,%hi(func)
2324 //      addiu   $25,$25,%lo(func)
2325 //
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2329 //
2330 // We only create stubs of the first type.
2331
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2334 {
2335   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2336
2337  public:
2338   Mips_output_data_la25_stub()
2339   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2340   { }
2341
2342   // Create LA25 stub for a symbol.
2343   void
2344   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345                    Mips_symbol<size>* gsym);
2346
2347   // Return output address of a stub.
2348   Mips_address
2349   stub_address(const Mips_symbol<size>* sym) const
2350   {
2351     gold_assert(sym->has_la25_stub());
2352     return this->address() + sym->la25_stub_offset();
2353   }
2354
2355  protected:
2356   void
2357   do_adjust_output_section(Output_section* os)
2358   { os->set_entsize(0); }
2359
2360  private:
2361   // Template for standard LA25 stub.
2362   static const uint32_t la25_stub_entry[];
2363   // Template for microMIPS LA25 stub.
2364   static const uint32_t la25_stub_micromips_entry[];
2365
2366   // Set the final size.
2367   void
2368   set_final_data_size()
2369   { this->set_data_size(this->symbols_.size() * 16); }
2370
2371   // Create a symbol for SYM stub's value and size, to help make the
2372   // disassembly easier to read.
2373   void
2374   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375                      Target_mips<size, big_endian>* target, uint64_t symsize);
2376
2377   // Write to a map file.
2378   void
2379   do_print_to_mapfile(Mapfile* mapfile) const
2380   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2381
2382   // Write out the LA25 stub section.
2383   void
2384   do_write(Output_file*);
2385
2386   // Symbols that have LA25 stubs.
2387   std::vector<Mips_symbol<size>*> symbols_;
2388 };
2389
2390 // MIPS-specific relocation writer.
2391
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2394
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2397 {
2398   typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399   typedef std::vector<Output_reloc_type> Relocs;
2400
2401   static void
2402   write(typename Relocs::const_iterator p, unsigned char* pov)
2403   { p->write(pov); }
2404 };
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2408 {
2409   typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410   typedef std::vector<Output_reloc_type> Relocs;
2411
2412   static void
2413   write(typename Relocs::const_iterator p, unsigned char* pov)
2414   {
2415     elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416     orel.put_r_offset(p->get_address());
2417     orel.put_r_sym(p->get_symbol_index());
2418     orel.put_r_ssym(RSS_UNDEF);
2419     orel.put_r_type(p->type());
2420     if (p->type() == elfcpp::R_MIPS_REL32)
2421       orel.put_r_type2(elfcpp::R_MIPS_64);
2422     else
2423       orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424     orel.put_r_type3(elfcpp::R_MIPS_NONE);
2425   }
2426 };
2427
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2430                                                         size, big_endian>
2431 {
2432  public:
2433   Mips_output_data_reloc(bool sort_relocs)
2434     : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2435   { }
2436
2437  protected:
2438   // Write out the data.
2439   void
2440   do_write(Output_file* of)
2441   {
2442     typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2443         big_endian> Writer;
2444     this->template do_write_generic<Writer>(of);
2445   }
2446 };
2447
2448
2449 // A class to handle the PLT data.
2450
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2453 {
2454   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456                                  size, big_endian> Reloc_section;
2457
2458  public:
2459   // Create the PLT section.  The ordinary .got section is an argument,
2460   // since we need to refer to the start.
2461   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462                        Target_mips<size, big_endian>* target)
2463     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2465       target_(target)
2466   {
2467     this->rel_ = new Reloc_section(false);
2468     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469                                     elfcpp::SHF_ALLOC, this->rel_,
2470                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2471   }
2472
2473   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2474   void
2475   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2476
2477   // Return the .rel.plt section data.
2478   const Reloc_section*
2479   rel_plt() const
2480   { return this->rel_; }
2481
2482   // Return the number of PLT entries.
2483   unsigned int
2484   entry_count() const
2485   { return this->symbols_.size(); }
2486
2487   // Return the offset of the first non-reserved PLT entry.
2488   unsigned int
2489   first_plt_entry_offset() const
2490   { return sizeof(plt0_entry_o32); }
2491
2492   // Return the size of a PLT entry.
2493   unsigned int
2494   plt_entry_size() const
2495   { return sizeof(plt_entry); }
2496
2497   // Set final PLT offsets.  For each symbol, determine whether standard or
2498   // compressed (MIPS16 or microMIPS) PLT entry is used.
2499   void
2500   set_plt_offsets();
2501
2502   // Return the offset of the first standard PLT entry.
2503   unsigned int
2504   first_mips_plt_offset() const
2505   { return this->plt_header_size_; }
2506
2507   // Return the offset of the first compressed PLT entry.
2508   unsigned int
2509   first_comp_plt_offset() const
2510   { return this->plt_header_size_ + this->plt_mips_offset_; }
2511
2512   // Return whether there are any standard PLT entries.
2513   bool
2514   has_standard_entries() const
2515   { return this->plt_mips_offset_ > 0; }
2516
2517   // Return the output address of standard PLT entry.
2518   Mips_address
2519   mips_entry_address(const Mips_symbol<size>* sym) const
2520   {
2521     gold_assert (sym->has_mips_plt_offset());
2522     return (this->address() + this->first_mips_plt_offset()
2523             + sym->mips_plt_offset());
2524   }
2525
2526   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2527   Mips_address
2528   comp_entry_address(const Mips_symbol<size>* sym) const
2529   {
2530     gold_assert (sym->has_comp_plt_offset());
2531     return (this->address() + this->first_comp_plt_offset()
2532             + sym->comp_plt_offset());
2533   }
2534
2535  protected:
2536   void
2537   do_adjust_output_section(Output_section* os)
2538   { os->set_entsize(0); }
2539
2540   // Write to a map file.
2541   void
2542   do_print_to_mapfile(Mapfile* mapfile) const
2543   { mapfile->print_output_data(this, _(".plt")); }
2544
2545  private:
2546   // Template for the first PLT entry.
2547   static const uint32_t plt0_entry_o32[];
2548   static const uint32_t plt0_entry_n32[];
2549   static const uint32_t plt0_entry_n64[];
2550   static const uint32_t plt0_entry_micromips_o32[];
2551   static const uint32_t plt0_entry_micromips32_o32[];
2552
2553   // Template for subsequent PLT entries.
2554   static const uint32_t plt_entry[];
2555   static const uint32_t plt_entry_r6[];
2556   static const uint32_t plt_entry_mips16_o32[];
2557   static const uint32_t plt_entry_micromips_o32[];
2558   static const uint32_t plt_entry_micromips32_o32[];
2559
2560   // Set the final size.
2561   void
2562   set_final_data_size()
2563   {
2564     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565                         + this->plt_comp_offset_);
2566   }
2567
2568   // Write out the PLT data.
2569   void
2570   do_write(Output_file*);
2571
2572   // Return whether the plt header contains microMIPS code.  For the sake of
2573   // cache alignment always use a standard header whenever any standard entries
2574   // are present even if microMIPS entries are present as well.  This also lets
2575   // the microMIPS header rely on the value of $v0 only set by microMIPS
2576   // entries, for a small size reduction.
2577   bool
2578   is_plt_header_compressed() const
2579   {
2580     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2582   }
2583
2584   // Return the size of the PLT header.
2585   unsigned int
2586   get_plt_header_size() const
2587   {
2588     if (this->target_->is_output_n64())
2589       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590     else if (this->target_->is_output_n32())
2591       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592     else if (!this->is_plt_header_compressed())
2593       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594     else if (this->target_->use_32bit_micromips_instructions())
2595       return (2 * sizeof(plt0_entry_micromips32_o32)
2596               / sizeof(plt0_entry_micromips32_o32[0]));
2597     else
2598       return (2 * sizeof(plt0_entry_micromips_o32)
2599               / sizeof(plt0_entry_micromips_o32[0]));
2600   }
2601
2602   // Return the PLT header entry.
2603   const uint32_t*
2604   get_plt_header_entry() const
2605   {
2606     if (this->target_->is_output_n64())
2607       return plt0_entry_n64;
2608     else if (this->target_->is_output_n32())
2609       return plt0_entry_n32;
2610     else if (!this->is_plt_header_compressed())
2611       return plt0_entry_o32;
2612     else if (this->target_->use_32bit_micromips_instructions())
2613       return plt0_entry_micromips32_o32;
2614     else
2615       return plt0_entry_micromips_o32;
2616   }
2617
2618   // Return the size of the standard PLT entry.
2619   unsigned int
2620   standard_plt_entry_size() const
2621   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2622
2623   // Return the size of the compressed PLT entry.
2624   unsigned int
2625   compressed_plt_entry_size() const
2626   {
2627     gold_assert(!this->target_->is_output_newabi());
2628
2629     if (!this->target_->is_output_micromips())
2630       return (2 * sizeof(plt_entry_mips16_o32)
2631               / sizeof(plt_entry_mips16_o32[0]));
2632     else if (this->target_->use_32bit_micromips_instructions())
2633       return (2 * sizeof(plt_entry_micromips32_o32)
2634               / sizeof(plt_entry_micromips32_o32[0]));
2635     else
2636       return (2 * sizeof(plt_entry_micromips_o32)
2637               / sizeof(plt_entry_micromips_o32[0]));
2638   }
2639
2640   // The reloc section.
2641   Reloc_section* rel_;
2642   // The .got.plt section.
2643   Output_data_space* got_plt_;
2644   // Symbols that have PLT entry.
2645   std::vector<Mips_symbol<size>*> symbols_;
2646   // The offset of the next standard PLT entry to create.
2647   unsigned int plt_mips_offset_;
2648   // The offset of the next compressed PLT entry to create.
2649   unsigned int plt_comp_offset_;
2650   // The size of the PLT header in bytes.
2651   unsigned int plt_header_size_;
2652   // The target.
2653   Target_mips<size, big_endian>* target_;
2654 };
2655
2656 // A class to handle the .MIPS.stubs data.
2657
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2660 {
2661   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2662
2663   // Unordered set of .MIPS.stubs entries.
2664   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665       Mips_stubs_entry_set;
2666
2667  public:
2668    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670        stub_offsets_are_set_(false), target_(target)
2671    { }
2672
2673   // Create entry for a symbol.
2674   void
2675   make_entry(Mips_symbol<size>*);
2676
2677   // Remove entry for a symbol.
2678   void
2679   remove_entry(Mips_symbol<size>* gsym);
2680
2681   // Set stub offsets for symbols.  This method expects that the number of
2682   // entries in dynamic symbol table is set.
2683   void
2684   set_lazy_stub_offsets();
2685
2686   void
2687   set_needs_dynsym_value();
2688
2689    // Set the number of entries in dynamic symbol table.
2690   void
2691   set_dynsym_count(unsigned int dynsym_count)
2692   { this->dynsym_count_ = dynsym_count; }
2693
2694   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695   // count is greater than 0x10000.  If the dynamic symbol count is less than
2696   // 0x10000, the stub will be 4 bytes smaller.
2697   // There's no disadvantage from using microMIPS code here, so for the sake of
2698   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699   // output produced at all.  This has a benefit of stubs being shorter by
2700   // 4 bytes each too, unless in the insn32 mode.
2701   unsigned int
2702   stub_max_size() const
2703   {
2704     if (!this->target_->is_output_micromips()
2705         || this->target_->use_32bit_micromips_instructions())
2706       return 20;
2707     else
2708       return 16;
2709   }
2710
2711   // Return the size of the stub.  This method expects that the final dynsym
2712   // count is set.
2713   unsigned int
2714   stub_size() const
2715   {
2716     gold_assert(this->dynsym_count_ != -1U);
2717     if (this->dynsym_count_ > 0x10000)
2718       return this->stub_max_size();
2719     else
2720       return this->stub_max_size() - 4;
2721   }
2722
2723   // Return output address of a stub.
2724   Mips_address
2725   stub_address(const Mips_symbol<size>* sym) const
2726   {
2727     gold_assert(sym->has_lazy_stub());
2728     return this->address() + sym->lazy_stub_offset();
2729   }
2730
2731  protected:
2732   void
2733   do_adjust_output_section(Output_section* os)
2734   { os->set_entsize(0); }
2735
2736   // Write to a map file.
2737   void
2738   do_print_to_mapfile(Mapfile* mapfile) const
2739   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2740
2741  private:
2742   static const uint32_t lazy_stub_normal_1[];
2743   static const uint32_t lazy_stub_normal_1_n64[];
2744   static const uint32_t lazy_stub_normal_2[];
2745   static const uint32_t lazy_stub_normal_2_n64[];
2746   static const uint32_t lazy_stub_big[];
2747   static const uint32_t lazy_stub_big_n64[];
2748
2749   static const uint32_t lazy_stub_micromips_normal_1[];
2750   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751   static const uint32_t lazy_stub_micromips_normal_2[];
2752   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753   static const uint32_t lazy_stub_micromips_big[];
2754   static const uint32_t lazy_stub_micromips_big_n64[];
2755
2756   static const uint32_t lazy_stub_micromips32_normal_1[];
2757   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758   static const uint32_t lazy_stub_micromips32_normal_2[];
2759   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760   static const uint32_t lazy_stub_micromips32_big[];
2761   static const uint32_t lazy_stub_micromips32_big_n64[];
2762
2763   // Set the final size.
2764   void
2765   set_final_data_size()
2766   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2767
2768   // Write out the .MIPS.stubs data.
2769   void
2770   do_write(Output_file*);
2771
2772   // .MIPS.stubs symbols
2773   Mips_stubs_entry_set symbols_;
2774   // Number of entries in dynamic symbol table.
2775   unsigned int dynsym_count_;
2776   // Whether the stub offsets are set.
2777   bool stub_offsets_are_set_;
2778   // The target.
2779   Target_mips<size, big_endian>* target_;
2780 };
2781
2782 // This class handles Mips .reginfo output section.
2783
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2786 {
2787   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2788
2789  public:
2790   Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791                               Valtype gprmask, Valtype cprmask1,
2792                               Valtype cprmask2, Valtype cprmask3,
2793                               Valtype cprmask4)
2794     : Output_section_data(24, 4, true), target_(target),
2795       gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796       cprmask3_(cprmask3), cprmask4_(cprmask4)
2797   { }
2798
2799  protected:
2800   // Write to a map file.
2801   void
2802   do_print_to_mapfile(Mapfile* mapfile) const
2803   { mapfile->print_output_data(this, _(".reginfo")); }
2804
2805   // Write out reginfo section.
2806   void
2807   do_write(Output_file* of);
2808
2809  private:
2810   Target_mips<size, big_endian>* target_;
2811
2812   // gprmask of the output .reginfo section.
2813   Valtype gprmask_;
2814   // cprmask1 of the output .reginfo section.
2815   Valtype cprmask1_;
2816   // cprmask2 of the output .reginfo section.
2817   Valtype cprmask2_;
2818   // cprmask3 of the output .reginfo section.
2819   Valtype cprmask3_;
2820   // cprmask4 of the output .reginfo section.
2821   Valtype cprmask4_;
2822 };
2823
2824 // This class handles .MIPS.abiflags output section.
2825
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2828 {
2829  public:
2830   Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831     : Output_section_data(24, 8, true), abiflags_(abiflags)
2832   { }
2833
2834  protected:
2835   // Write to a map file.
2836   void
2837   do_print_to_mapfile(Mapfile* mapfile) const
2838   { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2839
2840   void
2841   do_write(Output_file* of);
2842
2843  private:
2844   const Mips_abiflags<big_endian>& abiflags_;
2845 };
2846
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process.  So we have to extend the default code.
2849
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852   public Default_scan_relocatable_relocs<Classify_reloc>
2853 {
2854  public:
2855   // Return the strategy to use for a local symbol which is a section
2856   // symbol, given the relocation type.
2857   inline Relocatable_relocs::Reloc_strategy
2858   local_section_strategy(unsigned int r_type, Relobj* object)
2859   {
2860     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2862     else
2863       {
2864         switch (r_type)
2865           {
2866           case elfcpp::R_MIPS_26:
2867             return Relocatable_relocs::RELOC_SPECIAL;
2868
2869           default:
2870             return Default_scan_relocatable_relocs<Classify_reloc>::
2871                 local_section_strategy(r_type, object);
2872           }
2873       }
2874   }
2875 };
2876
2877 // Mips_copy_relocs class.  The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2881
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2884 {
2885  public:
2886   Mips_copy_relocs()
2887     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2888   { }
2889
2890   // Emit any saved relocations which turn out to be needed.  This is
2891   // called after all the relocs have been scanned.
2892   void
2893   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2895
2896  private:
2897   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2898     Copy_reloc_entry;
2899
2900   // Emit this reloc if appropriate.  This is called after we have
2901   // scanned all the relocations, so we know whether we emitted a
2902   // COPY relocation for SYM_.
2903   void
2904   emit_entry(Copy_reloc_entry& entry,
2905              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906              Symbol_table* symtab, Layout* layout,
2907              Target_mips<size, big_endian>* target);
2908 };
2909
2910
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise.  The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2914 static bool
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916                   bool local_protected)
2917 {
2918   // If it's a local sym, of course we resolve locally.
2919   if (sym == NULL)
2920     return true;
2921
2922   // STV_HIDDEN or STV_INTERNAL ones must be local.
2923   if (sym->visibility() == elfcpp::STV_HIDDEN
2924       || sym->visibility() == elfcpp::STV_INTERNAL)
2925     return true;
2926
2927   // If we don't have a definition in a regular file, then we can't
2928   // resolve locally.  The sym is either undefined or dynamic.
2929   if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2930       || sym->is_undefined())
2931     return false;
2932
2933   // Forced local symbols resolve locally.
2934   if (sym->is_forced_local())
2935     return true;
2936
2937   // As do non-dynamic symbols.
2938   if (!has_dynsym_entry)
2939     return true;
2940
2941   // At this point, we know the symbol is defined and dynamic.  In an
2942   // executable it must resolve locally, likewise when building symbolic
2943   // shared libraries.
2944   if (parameters->options().output_is_executable()
2945       || parameters->options().Bsymbolic())
2946     return true;
2947
2948   // Now deal with defined dynamic symbols in shared libraries.  Ones
2949   // with default visibility might not resolve locally.
2950   if (sym->visibility() == elfcpp::STV_DEFAULT)
2951     return false;
2952
2953   // STV_PROTECTED non-function symbols are local.
2954   if (sym->type() != elfcpp::STT_FUNC)
2955     return true;
2956
2957   // Function pointer equality tests may require that STV_PROTECTED
2958   // symbols be treated as dynamic symbols.  If the address of a
2959   // function not defined in an executable is set to that function's
2960   // plt entry in the executable, then the address of the function in
2961   // a shared library must also be the plt entry in the executable.
2962   return local_protected;
2963 }
2964
2965 // Return TRUE if references to this symbol always reference the symbol in this
2966 // object.
2967 static bool
2968 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2969 {
2970   return symbol_refs_local(sym, has_dynsym_entry, false);
2971 }
2972
2973 // Return TRUE if calls to this symbol always call the version in this object.
2974 static bool
2975 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2976 {
2977   return symbol_refs_local(sym, has_dynsym_entry, true);
2978 }
2979
2980 // Compare GOT offsets of two symbols.
2981
2982 template<int size, bool big_endian>
2983 static bool
2984 got_offset_compare(Symbol* sym1, Symbol* sym2)
2985 {
2986   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2987   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2988   unsigned int area1 = mips_sym1->global_got_area();
2989   unsigned int area2 = mips_sym2->global_got_area();
2990   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2991
2992   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2993   if (area1 != area2)
2994     return area1 < area2;
2995
2996   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2997 }
2998
2999 // This method divides dynamic symbols into symbols that have GOT entry, and
3000 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
3001 // Mips ABI requires that symbols with the GOT entry must be at the end of
3002 // dynamic symbol table, and the order in dynamic symbol table must match the
3003 // order in GOT.
3004
3005 template<int size, bool big_endian>
3006 static void
3007 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3008                     std::vector<Symbol*>* non_got_symbols,
3009                     std::vector<Symbol*>* got_symbols)
3010 {
3011   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3012        p != dyn_symbols->end();
3013        ++p)
3014     {
3015       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3016       if (mips_sym->global_got_area() == GGA_NORMAL
3017           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3018         got_symbols->push_back(mips_sym);
3019       else
3020         non_got_symbols->push_back(mips_sym);
3021     }
3022
3023   std::sort(got_symbols->begin(), got_symbols->end(),
3024             got_offset_compare<size, big_endian>);
3025 }
3026
3027 // Functor class for processing the global symbol table.
3028
3029 template<int size, bool big_endian>
3030 class Symbol_visitor_check_symbols
3031 {
3032  public:
3033   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3034     Layout* layout, Symbol_table* symtab)
3035     : target_(target), layout_(layout), symtab_(symtab)
3036   { }
3037
3038   void
3039   operator()(Sized_symbol<size>* sym)
3040   {
3041     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3042     if (local_pic_function<size, big_endian>(mips_sym))
3043       {
3044         // SYM is a function that might need $25 to be valid on entry.
3045         // If we're creating a non-PIC relocatable object, mark SYM as
3046         // being PIC.  If we're creating a non-relocatable object with
3047         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3048         // stub.
3049         if (parameters->options().relocatable())
3050           {
3051             if (!parameters->options().output_is_position_independent())
3052               mips_sym->set_pic();
3053           }
3054         else if (mips_sym->has_nonpic_branches())
3055           {
3056             this->target_->la25_stub_section(layout_)
3057                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3058           }
3059       }
3060   }
3061
3062  private:
3063   Target_mips<size, big_endian>* target_;
3064   Layout* layout_;
3065   Symbol_table* symtab_;
3066 };
3067
3068 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3069 // and endianness. The relocation format for MIPS-64 is non-standard.
3070
3071 template<int sh_type, int size, bool big_endian>
3072 struct Mips_reloc_types;
3073
3074 template<bool big_endian>
3075 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3076 {
3077   typedef typename elfcpp::Rel<32, big_endian> Reloc;
3078   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3079
3080   static typename elfcpp::Elf_types<32>::Elf_Swxword
3081   get_r_addend(const Reloc*)
3082   { return 0; }
3083
3084   static inline void
3085   set_reloc_addend(Reloc_write*,
3086                    typename elfcpp::Elf_types<32>::Elf_Swxword)
3087   { gold_unreachable(); }
3088 };
3089
3090 template<bool big_endian>
3091 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3092 {
3093   typedef typename elfcpp::Rela<32, big_endian> Reloc;
3094   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3095
3096   static typename elfcpp::Elf_types<32>::Elf_Swxword
3097   get_r_addend(const Reloc* reloc)
3098   { return reloc->get_r_addend(); }
3099
3100   static inline void
3101   set_reloc_addend(Reloc_write* p,
3102                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
3103   { p->put_r_addend(val); }
3104 };
3105
3106 template<bool big_endian>
3107 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3108 {
3109   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3110   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3111
3112   static typename elfcpp::Elf_types<64>::Elf_Swxword
3113   get_r_addend(const Reloc*)
3114   { return 0; }
3115
3116   static inline void
3117   set_reloc_addend(Reloc_write*,
3118                    typename elfcpp::Elf_types<64>::Elf_Swxword)
3119   { gold_unreachable(); }
3120 };
3121
3122 template<bool big_endian>
3123 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3124 {
3125   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3126   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3127
3128   static typename elfcpp::Elf_types<64>::Elf_Swxword
3129   get_r_addend(const Reloc* reloc)
3130   { return reloc->get_r_addend(); }
3131
3132   static inline void
3133   set_reloc_addend(Reloc_write* p,
3134                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
3135   { p->put_r_addend(val); }
3136 };
3137
3138 // Forward declaration.
3139 static unsigned int
3140 mips_get_size_for_reloc(unsigned int, Relobj*);
3141
3142 // A class for inquiring about properties of a relocation,
3143 // used while scanning relocs during a relocatable link and
3144 // garbage collection.
3145
3146 template<int sh_type_, int size, bool big_endian>
3147 class Mips_classify_reloc;
3148
3149 template<int sh_type_, bool big_endian>
3150 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3151     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3152 {
3153  public:
3154   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3155       Reltype;
3156   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3157       Reltype_write;
3158
3159   // Return the symbol referred to by the relocation.
3160   static inline unsigned int
3161   get_r_sym(const Reltype* reloc)
3162   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3163
3164   // Return the type of the relocation.
3165   static inline unsigned int
3166   get_r_type(const Reltype* reloc)
3167   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3168
3169   static inline unsigned int
3170   get_r_type2(const Reltype*)
3171   { return 0; }
3172
3173   static inline unsigned int
3174   get_r_type3(const Reltype*)
3175   { return 0; }
3176
3177   static inline unsigned int
3178   get_r_ssym(const Reltype*)
3179   { return 0; }
3180
3181   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3182   static inline unsigned int
3183   get_r_addend(const Reltype* reloc)
3184   {
3185     if (sh_type_ == elfcpp::SHT_REL)
3186       return 0;
3187     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3188   }
3189
3190   // Write the r_info field to a new reloc, using the r_info field from
3191   // the original reloc, replacing the r_sym field with R_SYM.
3192   static inline void
3193   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3194   {
3195     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3196     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3197   }
3198
3199   // Write the r_addend field to a new reloc.
3200   static inline void
3201   put_r_addend(Reltype_write* to,
3202                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3203   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3204
3205   // Return the size of the addend of the relocation (only used for SHT_REL).
3206   static unsigned int
3207   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3208   { return mips_get_size_for_reloc(r_type, obj); }
3209 };
3210
3211 template<int sh_type_, bool big_endian>
3212 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3213     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3214 {
3215  public:
3216   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3217       Reltype;
3218   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3219       Reltype_write;
3220
3221   // Return the symbol referred to by the relocation.
3222   static inline unsigned int
3223   get_r_sym(const Reltype* reloc)
3224   { return reloc->get_r_sym(); }
3225
3226   // Return the r_type of the relocation.
3227   static inline unsigned int
3228   get_r_type(const Reltype* reloc)
3229   { return reloc->get_r_type(); }
3230
3231   // Return the r_type2 of the relocation.
3232   static inline unsigned int
3233   get_r_type2(const Reltype* reloc)
3234   { return reloc->get_r_type2(); }
3235
3236   // Return the r_type3 of the relocation.
3237   static inline unsigned int
3238   get_r_type3(const Reltype* reloc)
3239   { return reloc->get_r_type3(); }
3240
3241   // Return the special symbol of the relocation.
3242   static inline unsigned int
3243   get_r_ssym(const Reltype* reloc)
3244   { return reloc->get_r_ssym(); }
3245
3246   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3247   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3248   get_r_addend(const Reltype* reloc)
3249   {
3250     if (sh_type_ == elfcpp::SHT_REL)
3251       return 0;
3252     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3253   }
3254
3255   // Write the r_info field to a new reloc, using the r_info field from
3256   // the original reloc, replacing the r_sym field with R_SYM.
3257   static inline void
3258   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3259   {
3260     new_reloc->put_r_sym(r_sym);
3261     new_reloc->put_r_ssym(reloc->get_r_ssym());
3262     new_reloc->put_r_type3(reloc->get_r_type3());
3263     new_reloc->put_r_type2(reloc->get_r_type2());
3264     new_reloc->put_r_type(reloc->get_r_type());
3265   }
3266
3267   // Write the r_addend field to a new reloc.
3268   static inline void
3269   put_r_addend(Reltype_write* to,
3270                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3271   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3272
3273   // Return the size of the addend of the relocation (only used for SHT_REL).
3274   static unsigned int
3275   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3276   { return mips_get_size_for_reloc(r_type, obj); }
3277 };
3278
3279 template<int size, bool big_endian>
3280 class Target_mips : public Sized_target<size, big_endian>
3281 {
3282   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3283   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3284     Reloc_section;
3285   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3286   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3287   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3288       Reltype;
3289   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3290       Relatype;
3291
3292  public:
3293   Target_mips(const Target::Target_info* info = &mips_info)
3294     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3295       got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(), dyn_relocs_(),
3296       la25_stub_(NULL), mips_mach_extensions_(), mips_stubs_(NULL),
3297       attributes_section_data_(NULL), abiflags_(NULL), mach_(0), layout_(NULL),
3298       got16_addends_(), has_abiflags_section_(false),
3299       entry_symbol_is_compressed_(false), insn32_(false)
3300   {
3301     this->add_machine_extensions();
3302   }
3303
3304   // The offset of $gp from the beginning of the .got section.
3305   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3306
3307   // The maximum size of the GOT for it to be addressable using 16-bit
3308   // offsets from $gp.
3309   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3310
3311   // Make a new symbol table entry for the Mips target.
3312   Sized_symbol<size>*
3313   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3314   { return new Mips_symbol<size>(); }
3315
3316   // Process the relocations to determine unreferenced sections for
3317   // garbage collection.
3318   void
3319   gc_process_relocs(Symbol_table* symtab,
3320                     Layout* layout,
3321                     Sized_relobj_file<size, big_endian>* object,
3322                     unsigned int data_shndx,
3323                     unsigned int sh_type,
3324                     const unsigned char* prelocs,
3325                     size_t reloc_count,
3326                     Output_section* output_section,
3327                     bool needs_special_offset_handling,
3328                     size_t local_symbol_count,
3329                     const unsigned char* plocal_symbols);
3330
3331   // Scan the relocations to look for symbol adjustments.
3332   void
3333   scan_relocs(Symbol_table* symtab,
3334               Layout* layout,
3335               Sized_relobj_file<size, big_endian>* object,
3336               unsigned int data_shndx,
3337               unsigned int sh_type,
3338               const unsigned char* prelocs,
3339               size_t reloc_count,
3340               Output_section* output_section,
3341               bool needs_special_offset_handling,
3342               size_t local_symbol_count,
3343               const unsigned char* plocal_symbols);
3344
3345   // Finalize the sections.
3346   void
3347   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3348
3349   // Relocate a section.
3350   void
3351   relocate_section(const Relocate_info<size, big_endian>*,
3352                    unsigned int sh_type,
3353                    const unsigned char* prelocs,
3354                    size_t reloc_count,
3355                    Output_section* output_section,
3356                    bool needs_special_offset_handling,
3357                    unsigned char* view,
3358                    Mips_address view_address,
3359                    section_size_type view_size,
3360                    const Reloc_symbol_changes*);
3361
3362   // Scan the relocs during a relocatable link.
3363   void
3364   scan_relocatable_relocs(Symbol_table* symtab,
3365                           Layout* layout,
3366                           Sized_relobj_file<size, big_endian>* object,
3367                           unsigned int data_shndx,
3368                           unsigned int sh_type,
3369                           const unsigned char* prelocs,
3370                           size_t reloc_count,
3371                           Output_section* output_section,
3372                           bool needs_special_offset_handling,
3373                           size_t local_symbol_count,
3374                           const unsigned char* plocal_symbols,
3375                           Relocatable_relocs*);
3376
3377   // Scan the relocs for --emit-relocs.
3378   void
3379   emit_relocs_scan(Symbol_table* symtab,
3380                    Layout* layout,
3381                    Sized_relobj_file<size, big_endian>* object,
3382                    unsigned int data_shndx,
3383                    unsigned int sh_type,
3384                    const unsigned char* prelocs,
3385                    size_t reloc_count,
3386                    Output_section* output_section,
3387                    bool needs_special_offset_handling,
3388                    size_t local_symbol_count,
3389                    const unsigned char* plocal_syms,
3390                    Relocatable_relocs* rr);
3391
3392   // Emit relocations for a section.
3393   void
3394   relocate_relocs(const Relocate_info<size, big_endian>*,
3395                   unsigned int sh_type,
3396                   const unsigned char* prelocs,
3397                   size_t reloc_count,
3398                   Output_section* output_section,
3399                   typename elfcpp::Elf_types<size>::Elf_Off
3400                     offset_in_output_section,
3401                   unsigned char* view,
3402                   Mips_address view_address,
3403                   section_size_type view_size,
3404                   unsigned char* reloc_view,
3405                   section_size_type reloc_view_size);
3406
3407   // Perform target-specific processing in a relocatable link.  This is
3408   // only used if we use the relocation strategy RELOC_SPECIAL.
3409   void
3410   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3411                                unsigned int sh_type,
3412                                const unsigned char* preloc_in,
3413                                size_t relnum,
3414                                Output_section* output_section,
3415                                typename elfcpp::Elf_types<size>::Elf_Off
3416                                  offset_in_output_section,
3417                                unsigned char* view,
3418                                Mips_address view_address,
3419                                section_size_type view_size,
3420                                unsigned char* preloc_out);
3421
3422   // Return whether SYM is defined by the ABI.
3423   bool
3424   do_is_defined_by_abi(const Symbol* sym) const
3425   {
3426     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3427             || (strcmp(sym->name(), "_gp_disp") == 0)
3428             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3429   }
3430
3431   // Return the number of entries in the GOT.
3432   unsigned int
3433   got_entry_count() const
3434   {
3435     if (!this->has_got_section())
3436       return 0;
3437     return this->got_size() / (size/8);
3438   }
3439
3440   // Return the number of entries in the PLT.
3441   unsigned int
3442   plt_entry_count() const
3443   {
3444     if (this->plt_ == NULL)
3445       return 0;
3446     return this->plt_->entry_count();
3447   }
3448
3449   // Return the offset of the first non-reserved PLT entry.
3450   unsigned int
3451   first_plt_entry_offset() const
3452   { return this->plt_->first_plt_entry_offset(); }
3453
3454   // Return the size of each PLT entry.
3455   unsigned int
3456   plt_entry_size() const
3457   { return this->plt_->plt_entry_size(); }
3458
3459   // Get the GOT section, creating it if necessary.
3460   Mips_output_data_got<size, big_endian>*
3461   got_section(Symbol_table*, Layout*);
3462
3463   // Get the GOT section.
3464   Mips_output_data_got<size, big_endian>*
3465   got_section() const
3466   {
3467     gold_assert(this->got_ != NULL);
3468     return this->got_;
3469   }
3470
3471   // Get the .MIPS.stubs section, creating it if necessary.
3472   Mips_output_data_mips_stubs<size, big_endian>*
3473   mips_stubs_section(Layout* layout);
3474
3475   // Get the .MIPS.stubs section.
3476   Mips_output_data_mips_stubs<size, big_endian>*
3477   mips_stubs_section() const
3478   {
3479     gold_assert(this->mips_stubs_ != NULL);
3480     return this->mips_stubs_;
3481   }
3482
3483   // Get the LA25 stub section, creating it if necessary.
3484   Mips_output_data_la25_stub<size, big_endian>*
3485   la25_stub_section(Layout*);
3486
3487   // Get the LA25 stub section.
3488   Mips_output_data_la25_stub<size, big_endian>*
3489   la25_stub_section()
3490   {
3491     gold_assert(this->la25_stub_ != NULL);
3492     return this->la25_stub_;
3493   }
3494
3495   // Get gp value.  It has the value of .got + 0x7FF0.
3496   Mips_address
3497   gp_value() const
3498   {
3499     if (this->gp_ != NULL)
3500       return this->gp_->value();
3501     return 0;
3502   }
3503
3504   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3505   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3506   Mips_address
3507   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3508   {
3509     if (this->gp_ == NULL)
3510       return 0;
3511
3512     bool multi_got = false;
3513     if (this->has_got_section())
3514       multi_got = this->got_section()->multi_got();
3515     if (!multi_got)
3516       return this->gp_->value();
3517     else
3518       return this->gp_->value() + this->got_section()->get_got_offset(object);
3519   }
3520
3521   // Get the dynamic reloc section, creating it if necessary.
3522   Reloc_section*
3523   rel_dyn_section(Layout*);
3524
3525   bool
3526   do_has_custom_set_dynsym_indexes() const
3527   { return true; }
3528
3529   // Don't emit input .reginfo/.MIPS.abiflags sections to
3530   // output .reginfo/.MIPS.abiflags.
3531   bool
3532   do_should_include_section(elfcpp::Elf_Word sh_type) const
3533   {
3534     return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3535              && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3536   }
3537
3538   // Set the dynamic symbol indexes.  INDEX is the index of the first
3539   // global dynamic symbol.  Pointers to the symbols are stored into the
3540   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3541   // updated dynamic symbol index.
3542   unsigned int
3543   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3544                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3545                         Versions* versions, Symbol_table* symtab) const;
3546
3547   // Remove .MIPS.stubs entry for a symbol.
3548   void
3549   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3550   {
3551     if (this->mips_stubs_ != NULL)
3552       this->mips_stubs_->remove_entry(sym);
3553   }
3554
3555   // The value to write into got[1] for SVR4 targets, to identify it is
3556   // a GNU object.  The dynamic linker can then use got[1] to store the
3557   // module pointer.
3558   uint64_t
3559   mips_elf_gnu_got1_mask()
3560   {
3561     if (this->is_output_n64())
3562       return (uint64_t)1 << 63;
3563     else
3564       return 1 << 31;
3565   }
3566
3567   // Whether the output has microMIPS code.  This is valid only after
3568   // merge_obj_e_flags() is called.
3569   bool
3570   is_output_micromips() const
3571   {
3572     gold_assert(this->are_processor_specific_flags_set());
3573     return elfcpp::is_micromips(this->processor_specific_flags());
3574   }
3575
3576   // Whether the output uses N32 ABI.  This is valid only after
3577   // merge_obj_e_flags() is called.
3578   bool
3579   is_output_n32() const
3580   {
3581     gold_assert(this->are_processor_specific_flags_set());
3582     return elfcpp::abi_n32(this->processor_specific_flags());
3583   }
3584
3585   // Whether the output uses R6 ISA.  This is valid only after
3586   // merge_obj_e_flags() is called.
3587   bool
3588   is_output_r6() const
3589   {
3590     gold_assert(this->are_processor_specific_flags_set());
3591     return elfcpp::r6_isa(this->processor_specific_flags());
3592   }
3593
3594   // Whether the output uses N64 ABI.
3595   bool
3596   is_output_n64() const
3597   { return size == 64; }
3598
3599   // Whether the output uses NEWABI.  This is valid only after
3600   // merge_obj_e_flags() is called.
3601   bool
3602   is_output_newabi() const
3603   { return this->is_output_n32() || this->is_output_n64(); }
3604
3605   // Whether we can only use 32-bit microMIPS instructions.
3606   bool
3607   use_32bit_micromips_instructions() const
3608   { return this->insn32_; }
3609
3610   // Return the r_sym field from a relocation.
3611   unsigned int
3612   get_r_sym(const unsigned char* preloc) const
3613   {
3614     // Since REL and RELA relocs share the same structure through
3615     // the r_info field, we can just use REL here.
3616     Reltype rel(preloc);
3617     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3618         get_r_sym(&rel);
3619   }
3620
3621  protected:
3622   // Return the value to use for a dynamic symbol which requires special
3623   // treatment.  This is how we support equality comparisons of function
3624   // pointers across shared library boundaries, as described in the
3625   // processor specific ABI supplement.
3626   uint64_t
3627   do_dynsym_value(const Symbol* gsym) const;
3628
3629   // Make an ELF object.
3630   Object*
3631   do_make_elf_object(const std::string&, Input_file*, off_t,
3632                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3633
3634   Object*
3635   do_make_elf_object(const std::string&, Input_file*, off_t,
3636                      const elfcpp::Ehdr<size, !big_endian>&)
3637   { gold_unreachable(); }
3638
3639   // Adjust ELF file header.
3640   void
3641   do_adjust_elf_header(unsigned char* view, int len);
3642
3643   // Get the custom dynamic tag value.
3644   unsigned int
3645   do_dynamic_tag_custom_value(elfcpp::DT) const;
3646
3647   // Adjust the value written to the dynamic symbol table.
3648   virtual void
3649   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3650   {
3651     elfcpp::Sym<size, big_endian> isym(view);
3652     elfcpp::Sym_write<size, big_endian> osym(view);
3653     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3654
3655     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3656     // to treat compressed symbols like any other.
3657     Mips_address value = isym.get_st_value();
3658     if (mips_sym->is_mips16() && value != 0)
3659       {
3660         if (!mips_sym->has_mips16_fn_stub())
3661           value |= 1;
3662         else
3663           {
3664             // If we have a MIPS16 function with a stub, the dynamic symbol
3665             // must refer to the stub, since only the stub uses the standard
3666             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3667             // in this case.
3668
3669             // There is a code which does this in the method
3670             // Target_mips::do_dynsym_value, but that code will only be
3671             // executed if the symbol is from dynobj.
3672             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3673             // table.
3674
3675             Mips16_stub_section<size, big_endian>* fn_stub =
3676               mips_sym->template get_mips16_fn_stub<big_endian>();
3677             value = fn_stub->output_address();
3678             osym.put_st_size(fn_stub->section_size());
3679           }
3680
3681         osym.put_st_value(value);
3682         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3683                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3684       }
3685     else if ((mips_sym->is_micromips()
3686               // Stubs are always microMIPS if there is any microMIPS code in
3687               // the output.
3688               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3689              && value != 0)
3690       {
3691         osym.put_st_value(value | 1);
3692         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3693                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3694       }
3695   }
3696
3697  private:
3698   // The class which scans relocations.
3699   class Scan
3700   {
3701    public:
3702     Scan()
3703     { }
3704
3705     static inline int
3706     get_reference_flags(unsigned int r_type);
3707
3708     inline void
3709     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3710           Sized_relobj_file<size, big_endian>* object,
3711           unsigned int data_shndx,
3712           Output_section* output_section,
3713           const Reltype& reloc, unsigned int r_type,
3714           const elfcpp::Sym<size, big_endian>& lsym,
3715           bool is_discarded);
3716
3717     inline void
3718     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3719           Sized_relobj_file<size, big_endian>* object,
3720           unsigned int data_shndx,
3721           Output_section* output_section,
3722           const Relatype& reloc, unsigned int r_type,
3723           const elfcpp::Sym<size, big_endian>& lsym,
3724           bool is_discarded);
3725
3726     inline void
3727     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3728           Sized_relobj_file<size, big_endian>* object,
3729           unsigned int data_shndx,
3730           Output_section* output_section,
3731           const Relatype* rela,
3732           const Reltype* rel,
3733           unsigned int rel_type,
3734           unsigned int r_type,
3735           const elfcpp::Sym<size, big_endian>& lsym,
3736           bool is_discarded);
3737
3738     inline void
3739     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3740            Sized_relobj_file<size, big_endian>* object,
3741            unsigned int data_shndx,
3742            Output_section* output_section,
3743            const Reltype& reloc, unsigned int r_type,
3744            Symbol* gsym);
3745
3746     inline void
3747     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3748            Sized_relobj_file<size, big_endian>* object,
3749            unsigned int data_shndx,
3750            Output_section* output_section,
3751            const Relatype& reloc, unsigned int r_type,
3752            Symbol* gsym);
3753
3754     inline void
3755     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3756            Sized_relobj_file<size, big_endian>* object,
3757            unsigned int data_shndx,
3758            Output_section* output_section,
3759            const Relatype* rela,
3760            const Reltype* rel,
3761            unsigned int rel_type,
3762            unsigned int r_type,
3763            Symbol* gsym);
3764
3765     inline bool
3766     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3767                                         Target_mips*,
3768                                         Sized_relobj_file<size, big_endian>*,
3769                                         unsigned int,
3770                                         Output_section*,
3771                                         const Reltype&,
3772                                         unsigned int,
3773                                         const elfcpp::Sym<size, big_endian>&)
3774     { return false; }
3775
3776     inline bool
3777     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3778                                          Target_mips*,
3779                                          Sized_relobj_file<size, big_endian>*,
3780                                          unsigned int,
3781                                          Output_section*,
3782                                          const Reltype&,
3783                                          unsigned int, Symbol*)
3784     { return false; }
3785
3786     inline bool
3787     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3788                                         Target_mips*,
3789                                         Sized_relobj_file<size, big_endian>*,
3790                                         unsigned int,
3791                                         Output_section*,
3792                                         const Relatype&,
3793                                         unsigned int,
3794                                         const elfcpp::Sym<size, big_endian>&)
3795     { return false; }
3796
3797     inline bool
3798     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3799                                          Target_mips*,
3800                                          Sized_relobj_file<size, big_endian>*,
3801                                          unsigned int,
3802                                          Output_section*,
3803                                          const Relatype&,
3804                                          unsigned int, Symbol*)
3805     { return false; }
3806    private:
3807     static void
3808     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3809                             unsigned int r_type);
3810
3811     static void
3812     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3813                              unsigned int r_type, Symbol*);
3814   };
3815
3816   // The class which implements relocation.
3817   class Relocate
3818   {
3819    public:
3820     Relocate()
3821     { }
3822
3823     ~Relocate()
3824     { }
3825
3826     // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3827     inline bool
3828     should_apply_static_reloc(const Mips_symbol<size>* gsym,
3829                               unsigned int r_type,
3830                               Output_section* output_section,
3831                               Target_mips* target);
3832
3833     // Do a relocation.  Return false if the caller should not issue
3834     // any warnings about this relocation.
3835     inline bool
3836     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3837              Target_mips*, Output_section*, size_t, const unsigned char*,
3838              const Sized_symbol<size>*, const Symbol_value<size>*,
3839              unsigned char*, Mips_address, section_size_type);
3840   };
3841
3842   // This POD class holds the dynamic relocations that should be emitted instead
3843   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3844   // relocations if it turns out that the symbol does not have static
3845   // relocations.
3846   class Dyn_reloc
3847   {
3848    public:
3849     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3850               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3851               Output_section* output_section, Mips_address r_offset)
3852       : sym_(sym), r_type_(r_type), relobj_(relobj),
3853         shndx_(shndx), output_section_(output_section),
3854         r_offset_(r_offset)
3855     { }
3856
3857     // Emit this reloc if appropriate.  This is called after we have
3858     // scanned all the relocations, so we know whether the symbol has
3859     // static relocations.
3860     void
3861     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3862          Symbol_table* symtab)
3863     {
3864       if (!this->sym_->has_static_relocs())
3865         {
3866           got->record_global_got_symbol(this->sym_, this->relobj_,
3867                                         this->r_type_, true, false);
3868           if (!symbol_references_local(this->sym_,
3869                                 this->sym_->should_add_dynsym_entry(symtab)))
3870             rel_dyn->add_global(this->sym_, this->r_type_,
3871                                 this->output_section_, this->relobj_,
3872                                 this->shndx_, this->r_offset_);
3873           else
3874             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3875                                           this->output_section_, this->relobj_,
3876                                           this->shndx_, this->r_offset_);
3877         }
3878     }
3879
3880    private:
3881     Mips_symbol<size>* sym_;
3882     unsigned int r_type_;
3883     Mips_relobj<size, big_endian>* relobj_;
3884     unsigned int shndx_;
3885     Output_section* output_section_;
3886     Mips_address r_offset_;
3887   };
3888
3889   // Adjust TLS relocation type based on the options and whether this
3890   // is a local symbol.
3891   static tls::Tls_optimization
3892   optimize_tls_reloc(bool is_final, int r_type);
3893
3894   // Return whether there is a GOT section.
3895   bool
3896   has_got_section() const
3897   { return this->got_ != NULL; }
3898
3899   // Check whether the given ELF header flags describe a 32-bit binary.
3900   bool
3901   mips_32bit_flags(elfcpp::Elf_Word);
3902
3903   enum Mips_mach {
3904     mach_mips3000             = 3000,
3905     mach_mips3900             = 3900,
3906     mach_mips4000             = 4000,
3907     mach_mips4010             = 4010,
3908     mach_mips4100             = 4100,
3909     mach_mips4111             = 4111,
3910     mach_mips4120             = 4120,
3911     mach_mips4300             = 4300,
3912     mach_mips4400             = 4400,
3913     mach_mips4600             = 4600,
3914     mach_mips4650             = 4650,
3915     mach_mips5000             = 5000,
3916     mach_mips5400             = 5400,
3917     mach_mips5500             = 5500,
3918     mach_mips5900             = 5900,
3919     mach_mips6000             = 6000,
3920     mach_mips7000             = 7000,
3921     mach_mips8000             = 8000,
3922     mach_mips9000             = 9000,
3923     mach_mips10000            = 10000,
3924     mach_mips12000            = 12000,
3925     mach_mips14000            = 14000,
3926     mach_mips16000            = 16000,
3927     mach_mips16               = 16,
3928     mach_mips5                = 5,
3929     mach_mips_loongson_2e     = 3001,
3930     mach_mips_loongson_2f     = 3002,
3931     mach_mips_loongson_3a     = 3003,
3932     mach_mips_sb1             = 12310201, // octal 'SB', 01
3933     mach_mips_octeon          = 6501,
3934     mach_mips_octeonp         = 6601,
3935     mach_mips_octeon2         = 6502,
3936     mach_mips_octeon3         = 6503,
3937     mach_mips_xlr             = 887682,   // decimal 'XLR'
3938     mach_mipsisa32            = 32,
3939     mach_mipsisa32r2          = 33,
3940     mach_mipsisa32r3          = 34,
3941     mach_mipsisa32r5          = 36,
3942     mach_mipsisa32r6          = 37,
3943     mach_mipsisa64            = 64,
3944     mach_mipsisa64r2          = 65,
3945     mach_mipsisa64r3          = 66,
3946     mach_mipsisa64r5          = 68,
3947     mach_mipsisa64r6          = 69,
3948     mach_mips_micromips       = 96
3949   };
3950
3951   // Return the MACH for a MIPS e_flags value.
3952   unsigned int
3953   elf_mips_mach(elfcpp::Elf_Word);
3954
3955   // Return the MACH for each .MIPS.abiflags ISA Extension.
3956   unsigned int
3957   mips_isa_ext_mach(unsigned int);
3958
3959   // Return the .MIPS.abiflags value representing each ISA Extension.
3960   unsigned int
3961   mips_isa_ext(unsigned int);
3962
3963   // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3964   void
3965   update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3966                       Mips_abiflags<big_endian>*);
3967
3968   // Infer the content of the ABI flags based on the elf header.
3969   void
3970   infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3971
3972   // Create abiflags from elf header or from .MIPS.abiflags section.
3973   void
3974   create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3975
3976   // Return the meaning of fp_abi, or "unknown" if not known.
3977   const char*
3978   fp_abi_string(int);
3979
3980   // Select fp_abi.
3981   int
3982   select_fp_abi(const std::string&, int, int);
3983
3984   // Merge attributes from input object.
3985   void
3986   merge_obj_attributes(const std::string&, const Attributes_section_data*);
3987
3988   // Merge abiflags from input object.
3989   void
3990   merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3991
3992   // Check whether machine EXTENSION is an extension of machine BASE.
3993   bool
3994   mips_mach_extends(unsigned int, unsigned int);
3995
3996   // Merge file header flags from input object.
3997   void
3998   merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
3999
4000   // Encode ISA level and revision as a single value.
4001   int
4002   level_rev(unsigned char isa_level, unsigned char isa_rev) const
4003   { return (isa_level << 3) | isa_rev; }
4004
4005   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4006   static inline bool
4007   jal_to_bal()
4008   { return false; }
4009
4010   // True if we are linking for CPUs that are faster if JALR is converted to
4011   // BAL.  This should be safe for all architectures.  We enable this predicate
4012   // for all CPUs.
4013   static inline bool
4014   jalr_to_bal()
4015   { return true; }
4016
4017   // True if we are linking for CPUs that are faster if JR is converted to B.
4018   // This should be safe for all architectures.  We enable this predicate for
4019   // all CPUs.
4020   static inline bool
4021   jr_to_b()
4022   { return true; }
4023
4024   // Return the size of the GOT section.
4025   section_size_type
4026   got_size() const
4027   {
4028     gold_assert(this->got_ != NULL);
4029     return this->got_->data_size();
4030   }
4031
4032   // Create a PLT entry for a global symbol referenced by r_type relocation.
4033   void
4034   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4035                  unsigned int r_type);
4036
4037   // Get the PLT section.
4038   Mips_output_data_plt<size, big_endian>*
4039   plt_section() const
4040   {
4041     gold_assert(this->plt_ != NULL);
4042     return this->plt_;
4043   }
4044
4045   // Get the GOT PLT section.
4046   const Mips_output_data_plt<size, big_endian>*
4047   got_plt_section() const
4048   {
4049     gold_assert(this->got_plt_ != NULL);
4050     return this->got_plt_;
4051   }
4052
4053   // Copy a relocation against a global symbol.
4054   void
4055   copy_reloc(Symbol_table* symtab, Layout* layout,
4056              Sized_relobj_file<size, big_endian>* object,
4057              unsigned int shndx, Output_section* output_section,
4058              Symbol* sym, unsigned int r_type, Mips_address r_offset)
4059   {
4060     this->copy_relocs_.copy_reloc(symtab, layout,
4061                                   symtab->get_sized_symbol<size>(sym),
4062                                   object, shndx, output_section,
4063                                   r_type, r_offset, 0,
4064                                   this->rel_dyn_section(layout));
4065   }
4066
4067   void
4068   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4069                 Mips_relobj<size, big_endian>* relobj,
4070                 unsigned int shndx, Output_section* output_section,
4071                 Mips_address r_offset)
4072   {
4073     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4074                                           output_section, r_offset));
4075   }
4076
4077   // Calculate value of _gp symbol.
4078   void
4079   set_gp(Layout*, Symbol_table*);
4080
4081   const char*
4082   elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4083   const char*
4084   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4085
4086   // Adds entries that describe how machines relate to one another.  The entries
4087   // are ordered topologically with MIPS I extensions listed last.  First
4088   // element is extension, second element is base.
4089   void
4090   add_machine_extensions()
4091   {
4092     // MIPS64r2 extensions.
4093     this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4094     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4095     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4096     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4097     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4098
4099     // MIPS64 extensions.
4100     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4101     this->add_extension(mach_mips_sb1, mach_mipsisa64);
4102     this->add_extension(mach_mips_xlr, mach_mipsisa64);
4103
4104     // MIPS V extensions.
4105     this->add_extension(mach_mipsisa64, mach_mips5);
4106
4107     // R10000 extensions.
4108     this->add_extension(mach_mips12000, mach_mips10000);
4109     this->add_extension(mach_mips14000, mach_mips10000);
4110     this->add_extension(mach_mips16000, mach_mips10000);
4111
4112     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
4113     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
4114     // better to allow vr5400 and vr5500 code to be merged anyway, since
4115     // many libraries will just use the core ISA.  Perhaps we could add
4116     // some sort of ASE flag if this ever proves a problem.
4117     this->add_extension(mach_mips5500, mach_mips5400);
4118     this->add_extension(mach_mips5400, mach_mips5000);
4119
4120     // MIPS IV extensions.
4121     this->add_extension(mach_mips5, mach_mips8000);
4122     this->add_extension(mach_mips10000, mach_mips8000);
4123     this->add_extension(mach_mips5000, mach_mips8000);
4124     this->add_extension(mach_mips7000, mach_mips8000);
4125     this->add_extension(mach_mips9000, mach_mips8000);
4126
4127     // VR4100 extensions.
4128     this->add_extension(mach_mips4120, mach_mips4100);
4129     this->add_extension(mach_mips4111, mach_mips4100);
4130
4131     // MIPS III extensions.
4132     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4133     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4134     this->add_extension(mach_mips8000, mach_mips4000);
4135     this->add_extension(mach_mips4650, mach_mips4000);
4136     this->add_extension(mach_mips4600, mach_mips4000);
4137     this->add_extension(mach_mips4400, mach_mips4000);
4138     this->add_extension(mach_mips4300, mach_mips4000);
4139     this->add_extension(mach_mips4100, mach_mips4000);
4140     this->add_extension(mach_mips4010, mach_mips4000);
4141     this->add_extension(mach_mips5900, mach_mips4000);
4142
4143     // MIPS32 extensions.
4144     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4145
4146     // MIPS II extensions.
4147     this->add_extension(mach_mips4000, mach_mips6000);
4148     this->add_extension(mach_mipsisa32, mach_mips6000);
4149
4150     // MIPS I extensions.
4151     this->add_extension(mach_mips6000, mach_mips3000);
4152     this->add_extension(mach_mips3900, mach_mips3000);
4153   }
4154
4155   // Add value to MIPS extenstions.
4156   void
4157   add_extension(unsigned int base, unsigned int extension)
4158   {
4159     std::pair<unsigned int, unsigned int> ext(base, extension);
4160     this->mips_mach_extensions_.push_back(ext);
4161   }
4162
4163   // Return the number of entries in the .dynsym section.
4164   unsigned int get_dt_mips_symtabno() const
4165   {
4166     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4167                            / elfcpp::Elf_sizes<size>::sym_size));
4168     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4169   }
4170
4171   // Information about this specific target which we pass to the
4172   // general Target structure.
4173   static const Target::Target_info mips_info;
4174   // The GOT section.
4175   Mips_output_data_got<size, big_endian>* got_;
4176   // gp symbol.  It has the value of .got + 0x7FF0.
4177   Sized_symbol<size>* gp_;
4178   // The PLT section.
4179   Mips_output_data_plt<size, big_endian>* plt_;
4180   // The GOT PLT section.
4181   Output_data_space* got_plt_;
4182   // The dynamic reloc section.
4183   Reloc_section* rel_dyn_;
4184   // Relocs saved to avoid a COPY reloc.
4185   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4186
4187   // A list of dyn relocs to be saved.
4188   std::vector<Dyn_reloc> dyn_relocs_;
4189
4190   // The LA25 stub section.
4191   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4192   // Architecture extensions.
4193   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4194   // .MIPS.stubs
4195   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4196
4197   // Attributes section data in output.
4198   Attributes_section_data* attributes_section_data_;
4199   // .MIPS.abiflags section data in output.
4200   Mips_abiflags<big_endian>* abiflags_;
4201
4202   unsigned int mach_;
4203   Layout* layout_;
4204
4205   typename std::list<got16_addend<size, big_endian> > got16_addends_;
4206
4207   // Whether there is an input .MIPS.abiflags section.
4208   bool has_abiflags_section_;
4209
4210   // Whether the entry symbol is mips16 or micromips.
4211   bool entry_symbol_is_compressed_;
4212
4213   // Whether we can use only 32-bit microMIPS instructions.
4214   // TODO(sasa): This should be a linker option.
4215   bool insn32_;
4216 };
4217
4218 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4219 // It records high part of the relocation pair.
4220
4221 template<int size, bool big_endian>
4222 struct reloc_high
4223 {
4224   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4225
4226   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4227              const Symbol_value<size>* _psymval, Mips_address _addend,
4228              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4229              Mips_address _address = 0, bool _gp_disp = false)
4230     : view(_view), object(_object), psymval(_psymval), addend(_addend),
4231       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4232       address(_address), gp_disp(_gp_disp)
4233   { }
4234
4235   unsigned char* view;
4236   const Mips_relobj<size, big_endian>* object;
4237   const Symbol_value<size>* psymval;
4238   Mips_address addend;
4239   unsigned int r_type;
4240   unsigned int r_sym;
4241   bool extract_addend;
4242   Mips_address address;
4243   bool gp_disp;
4244 };
4245
4246 template<int size, bool big_endian>
4247 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4248 {
4249   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4250   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4251   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4252   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4253   typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4254
4255  public:
4256   typedef enum
4257   {
4258     STATUS_OKAY,            // No error during relocation.
4259     STATUS_OVERFLOW,        // Relocation overflow.
4260     STATUS_BAD_RELOC,       // Relocation cannot be applied.
4261     STATUS_PCREL_UNALIGNED  // Unaligned PC-relative relocation.
4262   } Status;
4263
4264  private:
4265   typedef Relocate_functions<size, big_endian> Base;
4266   typedef Mips_relocate_functions<size, big_endian> This;
4267
4268   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4269   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4270   static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4271
4272   template<int valsize>
4273   static inline typename This::Status
4274   check_overflow(Valtype value)
4275   {
4276     if (size == 32)
4277       return (Bits<valsize>::has_overflow32(value)
4278               ? This::STATUS_OVERFLOW
4279               : This::STATUS_OKAY);
4280
4281     return (Bits<valsize>::has_overflow(value)
4282             ? This::STATUS_OVERFLOW
4283             : This::STATUS_OKAY);
4284   }
4285
4286   static inline bool
4287   should_shuffle_micromips_reloc(unsigned int r_type)
4288   {
4289     return (micromips_reloc(r_type)
4290             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4291             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4292   }
4293
4294  public:
4295   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4296   //   Most mips16 instructions are 16 bits, but these instructions
4297   //   are 32 bits.
4298   //
4299   //   The format of these instructions is:
4300   //
4301   //   +--------------+--------------------------------+
4302   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
4303   //   +--------------+--------------------------------+
4304   //   |                Immediate  15:0                |
4305   //   +-----------------------------------------------+
4306   //
4307   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4308   //   Note that the immediate value in the first word is swapped.
4309   //
4310   //   When producing a relocatable object file, R_MIPS16_26 is
4311   //   handled mostly like R_MIPS_26.  In particular, the addend is
4312   //   stored as a straight 26-bit value in a 32-bit instruction.
4313   //   (gas makes life simpler for itself by never adjusting a
4314   //   R_MIPS16_26 reloc to be against a section, so the addend is
4315   //   always zero).  However, the 32 bit instruction is stored as 2
4316   //   16-bit values, rather than a single 32-bit value.  In a
4317   //   big-endian file, the result is the same; in a little-endian
4318   //   file, the two 16-bit halves of the 32 bit value are swapped.
4319   //   This is so that a disassembler can recognize the jal
4320   //   instruction.
4321   //
4322   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4323   //   instruction stored as two 16-bit values.  The addend A is the
4324   //   contents of the targ26 field.  The calculation is the same as
4325   //   R_MIPS_26.  When storing the calculated value, reorder the
4326   //   immediate value as shown above, and don't forget to store the
4327   //   value as two 16-bit values.
4328   //
4329   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4330   //   defined as
4331   //
4332   //   big-endian:
4333   //   +--------+----------------------+
4334   //   |        |                      |
4335   //   |        |    targ26-16         |
4336   //   |31    26|25                   0|
4337   //   +--------+----------------------+
4338   //
4339   //   little-endian:
4340   //   +----------+------+-------------+
4341   //   |          |      |             |
4342   //   |  sub1    |      |     sub2    |
4343   //   |0        9|10  15|16         31|
4344   //   +----------+--------------------+
4345   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4346   //   ((sub1 << 16) | sub2)).
4347   //
4348   //   When producing a relocatable object file, the calculation is
4349   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4350   //   When producing a fully linked file, the calculation is
4351   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4352   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4353   //
4354   //   The table below lists the other MIPS16 instruction relocations.
4355   //   Each one is calculated in the same way as the non-MIPS16 relocation
4356   //   given on the right, but using the extended MIPS16 layout of 16-bit
4357   //   immediate fields:
4358   //
4359   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4360   //      R_MIPS16_GOT16          R_MIPS_GOT16
4361   //      R_MIPS16_CALL16         R_MIPS_CALL16
4362   //      R_MIPS16_HI16           R_MIPS_HI16
4363   //      R_MIPS16_LO16           R_MIPS_LO16
4364   //
4365   //   A typical instruction will have a format like this:
4366   //
4367   //   +--------------+--------------------------------+
4368   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4369   //   +--------------+--------------------------------+
4370   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4371   //   +--------------+--------------------------------+
4372   //
4373   //   EXTEND is the five bit value 11110.  Major is the instruction
4374   //   opcode.
4375   //
4376   //   All we need to do here is shuffle the bits appropriately.
4377   //   As above, the two 16-bit halves must be swapped on a
4378   //   little-endian system.
4379
4380   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4381   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4382   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4383
4384   static void
4385   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4386                        bool jal_shuffle)
4387   {
4388     if (!mips16_reloc(r_type)
4389         && !should_shuffle_micromips_reloc(r_type))
4390       return;
4391
4392     // Pick up the first and second halfwords of the instruction.
4393     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4394     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4395     Valtype32 val;
4396
4397     if (micromips_reloc(r_type)
4398         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4399       val = first << 16 | second;
4400     else if (r_type != elfcpp::R_MIPS16_26)
4401       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4402              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4403     else
4404       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4405              | ((first & 0x1f) << 21) | second);
4406
4407     elfcpp::Swap<32, big_endian>::writeval(view, val);
4408   }
4409
4410   static void
4411   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4412   {
4413     if (!mips16_reloc(r_type)
4414         && !should_shuffle_micromips_reloc(r_type))
4415       return;
4416
4417     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4418     Valtype16 first, second;
4419
4420     if (micromips_reloc(r_type)
4421         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4422       {
4423         second = val & 0xffff;
4424         first = val >> 16;
4425       }
4426     else if (r_type != elfcpp::R_MIPS16_26)
4427       {
4428         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4429         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4430       }
4431     else
4432       {
4433         second = val & 0xffff;
4434         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4435                  | ((val >> 21) & 0x1f);
4436       }
4437
4438     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4439     elfcpp::Swap<16, big_endian>::writeval(view, first);
4440   }
4441
4442   // R_MIPS_16: S + sign-extend(A)
4443   static inline typename This::Status
4444   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4445         const Symbol_value<size>* psymval, Mips_address addend_a,
4446         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4447   {
4448     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4449     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4450
4451     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4452                                      : addend_a);
4453
4454     Valtype x = psymval->value(object, addend);
4455     val = Bits<16>::bit_select32(val, x, 0xffffU);
4456
4457     if (calculate_only)
4458       {
4459         *calculated_value = x;
4460         return This::STATUS_OKAY;
4461       }
4462     else
4463       elfcpp::Swap<16, big_endian>::writeval(wv, val);
4464
4465     return check_overflow<16>(x);
4466   }
4467
4468   // R_MIPS_32: S + A
4469   static inline typename This::Status
4470   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4471         const Symbol_value<size>* psymval, Mips_address addend_a,
4472         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4473   {
4474     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4475     Valtype addend = (extract_addend
4476                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4477                         : addend_a);
4478     Valtype x = psymval->value(object, addend);
4479
4480     if (calculate_only)
4481       *calculated_value = x;
4482     else
4483       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4484
4485     return This::STATUS_OKAY;
4486   }
4487
4488   // R_MIPS_JALR, R_MICROMIPS_JALR
4489   static inline typename This::Status
4490   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4491           const Symbol_value<size>* psymval, Mips_address address,
4492           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4493           unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4494           bool calculate_only, Valtype* calculated_value)
4495   {
4496     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4497     Valtype addend = extract_addend ? 0 : addend_a;
4498     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4499
4500     // Try converting J(AL)R to B(AL), if the target is in range.
4501     if (!parameters->options().relocatable()
4502         && r_type == elfcpp::R_MIPS_JALR
4503         && !cross_mode_jump
4504         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4505             || (jr_to_b && val == 0x03200008)))   // jr t9
4506       {
4507         int offset = psymval->value(object, addend) - (address + 4);
4508         if (!Bits<18>::has_overflow32(offset))
4509           {
4510             if (val == 0x03200008)   // jr t9
4511               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4512             else
4513               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4514           }
4515       }
4516
4517     if (calculate_only)
4518       *calculated_value = val;
4519     else
4520       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4521
4522     return This::STATUS_OKAY;
4523   }
4524
4525   // R_MIPS_PC32: S + A - P
4526   static inline typename This::Status
4527   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4528           const Symbol_value<size>* psymval, Mips_address address,
4529           Mips_address addend_a, bool extract_addend, bool calculate_only,
4530           Valtype* calculated_value)
4531   {
4532     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4533     Valtype addend = (extract_addend
4534                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4535                         : addend_a);
4536     Valtype x = psymval->value(object, addend) - address;
4537
4538     if (calculate_only)
4539        *calculated_value = x;
4540     else
4541       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4542
4543     return This::STATUS_OKAY;
4544   }
4545
4546   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4547   static inline typename This::Status
4548   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4549         const Symbol_value<size>* psymval, Mips_address address,
4550         bool local, Mips_address addend_a, bool extract_addend,
4551         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4552         bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4553   {
4554     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4555     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4556
4557     Valtype addend;
4558     if (extract_addend)
4559       {
4560         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4561           addend = (val & 0x03ffffff) << 1;
4562         else
4563           addend = (val & 0x03ffffff) << 2;
4564       }
4565     else
4566       addend = addend_a;
4567
4568     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4569     // the correct ISA mode selector and bit 1 must be 0.
4570     if (!calculate_only && cross_mode_jump
4571         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4572       {
4573         gold_warning(_("JALX to a non-word-aligned address"));
4574         return This::STATUS_BAD_RELOC;
4575       }
4576
4577     // Shift is 2, unusually, for microMIPS JALX.
4578     unsigned int shift =
4579         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4580
4581     Valtype x;
4582     if (local)
4583       x = addend | ((address + 4) & (0xfc000000 << shift));
4584     else
4585       {
4586         if (shift == 1)
4587           x = Bits<27>::sign_extend32(addend);
4588         else
4589           x = Bits<28>::sign_extend32(addend);
4590       }
4591     x = psymval->value(object, x) >> shift;
4592
4593     if (!calculate_only && !local && !gsym->is_weak_undefined())
4594       {
4595         if ((x >> 26) != ((address + 4) >> (26 + shift)))
4596           {
4597             gold_error(_("relocation truncated to fit: %u against '%s'"),
4598                        r_type, gsym->name());
4599             return This::STATUS_OVERFLOW;
4600           }
4601       }
4602
4603     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4604
4605     // If required, turn JAL into JALX.
4606     if (cross_mode_jump)
4607       {
4608         bool ok;
4609         Valtype32 opcode = val >> 26;
4610         Valtype32 jalx_opcode;
4611
4612         // Check to see if the opcode is already JAL or JALX.
4613         if (r_type == elfcpp::R_MIPS16_26)
4614           {
4615             ok = (opcode == 0x6) || (opcode == 0x7);
4616             jalx_opcode = 0x7;
4617           }
4618         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4619           {
4620             ok = (opcode == 0x3d) || (opcode == 0x3c);
4621             jalx_opcode = 0x3c;
4622           }
4623         else
4624           {
4625             ok = (opcode == 0x3) || (opcode == 0x1d);
4626             jalx_opcode = 0x1d;
4627           }
4628
4629         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4630         // convert J or JALS to JALX.
4631         if (!calculate_only && !ok)
4632           {
4633             gold_error(_("Unsupported jump between ISA modes; consider "
4634                          "recompiling with interlinking enabled."));
4635             return This::STATUS_BAD_RELOC;
4636           }
4637
4638         // Make this the JALX opcode.
4639         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4640       }
4641
4642     // Try converting JAL to BAL, if the target is in range.
4643     if (!parameters->options().relocatable()
4644         && !cross_mode_jump
4645         && ((jal_to_bal
4646             && r_type == elfcpp::R_MIPS_26
4647             && (val >> 26) == 0x3)))    // jal addr
4648       {
4649         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4650         int offset = dest - (address + 4);
4651         if (!Bits<18>::has_overflow32(offset))
4652           {
4653             if (val == 0x03200008)   // jr t9
4654               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4655             else
4656               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4657           }
4658       }
4659
4660     if (calculate_only)
4661       *calculated_value = val;
4662     else
4663       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4664
4665     return This::STATUS_OKAY;
4666   }
4667
4668   // R_MIPS_PC16
4669   static inline typename This::Status
4670   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4671           const Symbol_value<size>* psymval, Mips_address address,
4672           Mips_address addend_a, bool extract_addend, bool calculate_only,
4673           Valtype* calculated_value)
4674   {
4675     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4676     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4677
4678     Valtype addend = (extract_addend
4679                       ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4680                       : addend_a);
4681
4682     Valtype x = psymval->value(object, addend) - address;
4683     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4684
4685     if (calculate_only)
4686       {
4687         *calculated_value = x >> 2;
4688         return This::STATUS_OKAY;
4689       }
4690     else
4691       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4692
4693     if (psymval->value(object, addend) & 3)
4694       return This::STATUS_PCREL_UNALIGNED;
4695
4696     return check_overflow<18>(x);
4697   }
4698
4699   // R_MIPS_PC21_S2
4700   static inline typename This::Status
4701   relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4702           const Symbol_value<size>* psymval, Mips_address address,
4703           Mips_address addend_a, bool extract_addend, bool calculate_only,
4704           Valtype* calculated_value)
4705   {
4706     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4707     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4708
4709     Valtype addend = (extract_addend
4710                       ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4711                       : addend_a);
4712
4713     Valtype x = psymval->value(object, addend) - address;
4714     val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4715
4716     if (calculate_only)
4717       {
4718         *calculated_value = x >> 2;
4719         return This::STATUS_OKAY;
4720       }
4721     else
4722       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4723
4724     if (psymval->value(object, addend) & 3)
4725       return This::STATUS_PCREL_UNALIGNED;
4726
4727     return check_overflow<23>(x);
4728   }
4729
4730   // R_MIPS_PC26_S2
4731   static inline typename This::Status
4732   relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4733           const Symbol_value<size>* psymval, Mips_address address,
4734           Mips_address addend_a, bool extract_addend, bool calculate_only,
4735           Valtype* calculated_value)
4736   {
4737     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4738     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4739
4740     Valtype addend = (extract_addend
4741                       ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4742                       : addend_a);
4743
4744     Valtype x = psymval->value(object, addend) - address;
4745     val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4746
4747     if (calculate_only)
4748       {
4749         *calculated_value = x >> 2;
4750         return This::STATUS_OKAY;
4751       }
4752     else
4753       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4754
4755     if (psymval->value(object, addend) & 3)
4756       return This::STATUS_PCREL_UNALIGNED;
4757
4758     return check_overflow<28>(x);
4759   }
4760
4761   // R_MIPS_PC18_S3
4762   static inline typename This::Status
4763   relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4764           const Symbol_value<size>* psymval, Mips_address address,
4765           Mips_address addend_a, bool extract_addend, bool calculate_only,
4766           Valtype* calculated_value)
4767   {
4768     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4769     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4770
4771     Valtype addend = (extract_addend
4772                       ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4773                       : addend_a);
4774
4775     Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4776     val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4777
4778     if (calculate_only)
4779       {
4780         *calculated_value = x >> 3;
4781         return This::STATUS_OKAY;
4782       }
4783     else
4784       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4785
4786     if (psymval->value(object, addend) & 7)
4787       return This::STATUS_PCREL_UNALIGNED;
4788
4789     return check_overflow<21>(x);
4790   }
4791
4792   // R_MIPS_PC19_S2
4793   static inline typename This::Status
4794   relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4795           const Symbol_value<size>* psymval, Mips_address address,
4796           Mips_address addend_a, bool extract_addend, bool calculate_only,
4797           Valtype* calculated_value)
4798   {
4799     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4800     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4801
4802     Valtype addend = (extract_addend
4803                       ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4804                       : addend_a);
4805
4806     Valtype x = psymval->value(object, addend) - address;
4807     val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4808
4809     if (calculate_only)
4810       {
4811         *calculated_value = x >> 2;
4812         return This::STATUS_OKAY;
4813       }
4814     else
4815       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4816
4817     if (psymval->value(object, addend) & 3)
4818       return This::STATUS_PCREL_UNALIGNED;
4819
4820     return check_overflow<21>(x);
4821   }
4822
4823   // R_MIPS_PCHI16
4824   static inline typename This::Status
4825   relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4826             const Symbol_value<size>* psymval, Mips_address addend,
4827             Mips_address address, unsigned int r_sym, bool extract_addend)
4828   {
4829     // Record the relocation.  It will be resolved when we find pclo16 part.
4830     pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4831                             addend, 0, r_sym, extract_addend, address));
4832     return This::STATUS_OKAY;
4833   }
4834
4835   // R_MIPS_PCHI16
4836   static inline typename This::Status
4837   do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4838              const Symbol_value<size>* psymval, Mips_address addend_hi,
4839              Mips_address address, bool extract_addend, Valtype32 addend_lo,
4840              bool calculate_only, Valtype* calculated_value)
4841   {
4842     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4843     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4844
4845     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4846                                        : addend_hi);
4847
4848     Valtype value = psymval->value(object, addend) - address;
4849     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4850     val = Bits<32>::bit_select32(val, x, 0xffff);
4851
4852     if (calculate_only)
4853       *calculated_value = x;
4854     else
4855       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4856
4857     return This::STATUS_OKAY;
4858   }
4859
4860   // R_MIPS_PCLO16
4861   static inline typename This::Status
4862   relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4863             const Symbol_value<size>* psymval, Mips_address addend_a,
4864             bool extract_addend, Mips_address address, unsigned int r_sym,
4865             unsigned int rel_type, bool calculate_only,
4866             Valtype* calculated_value)
4867   {
4868     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4869     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4870
4871     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4872                                      : addend_a);
4873
4874     if (rel_type == elfcpp::SHT_REL)
4875       {
4876         // Resolve pending R_MIPS_PCHI16 relocations.
4877         typename std::list<reloc_high<size, big_endian> >::iterator it =
4878             pchi16_relocs.begin();
4879         while (it != pchi16_relocs.end())
4880           {
4881             reloc_high<size, big_endian> pchi16 = *it;
4882             if (pchi16.r_sym == r_sym)
4883               {
4884                 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4885                              pchi16.addend, pchi16.address,
4886                              pchi16.extract_addend, addend, calculate_only,
4887                              calculated_value);
4888                 it = pchi16_relocs.erase(it);
4889               }
4890             else
4891               ++it;
4892           }
4893       }
4894
4895     // Resolve R_MIPS_PCLO16 relocation.
4896     Valtype x = psymval->value(object, addend) - address;
4897     val = Bits<32>::bit_select32(val, x, 0xffff);
4898
4899     if (calculate_only)
4900       *calculated_value = x;
4901     else
4902       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4903
4904     return This::STATUS_OKAY;
4905   }
4906
4907   // R_MICROMIPS_PC7_S1
4908   static inline typename This::Status
4909   relmicromips_pc7_s1(unsigned char* view,
4910                       const Mips_relobj<size, big_endian>* object,
4911                       const Symbol_value<size>* psymval, Mips_address address,
4912                       Mips_address addend_a, bool extract_addend,
4913                       bool calculate_only, Valtype* calculated_value)
4914   {
4915     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4916     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4917
4918     Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4919                                     : addend_a;
4920
4921     Valtype x = psymval->value(object, addend) - address;
4922     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4923
4924     if (calculate_only)
4925       {
4926         *calculated_value = x >> 1;
4927         return This::STATUS_OKAY;
4928       }
4929     else
4930       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4931
4932     return check_overflow<8>(x);
4933   }
4934
4935   // R_MICROMIPS_PC10_S1
4936   static inline typename This::Status
4937   relmicromips_pc10_s1(unsigned char* view,
4938                        const Mips_relobj<size, big_endian>* object,
4939                        const Symbol_value<size>* psymval, Mips_address address,
4940                        Mips_address addend_a, bool extract_addend,
4941                        bool calculate_only, Valtype* calculated_value)
4942   {
4943     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4944     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4945
4946     Valtype addend = (extract_addend
4947                       ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4948                       : addend_a);
4949
4950     Valtype x = psymval->value(object, addend) - address;
4951     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4952
4953     if (calculate_only)
4954       {
4955         *calculated_value = x >> 1;
4956         return This::STATUS_OKAY;
4957       }
4958     else
4959       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4960
4961     return check_overflow<11>(x);
4962   }
4963
4964   // R_MICROMIPS_PC16_S1
4965   static inline typename This::Status
4966   relmicromips_pc16_s1(unsigned char* view,
4967                        const Mips_relobj<size, big_endian>* object,
4968                        const Symbol_value<size>* psymval, Mips_address address,
4969                        Mips_address addend_a, bool extract_addend,
4970                        bool calculate_only, Valtype* calculated_value)
4971   {
4972     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4973     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4974
4975     Valtype addend = (extract_addend
4976                       ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4977                       : addend_a);
4978
4979     Valtype x = psymval->value(object, addend) - address;
4980     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4981
4982     if (calculate_only)
4983       {
4984         *calculated_value = x >> 1;
4985         return This::STATUS_OKAY;
4986       }
4987     else
4988       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4989
4990     return check_overflow<17>(x);
4991   }
4992
4993   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4994   static inline typename This::Status
4995   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4996           const Symbol_value<size>* psymval, Mips_address addend,
4997           Mips_address address, bool gp_disp, unsigned int r_type,
4998           unsigned int r_sym, bool extract_addend)
4999   {
5000     // Record the relocation.  It will be resolved when we find lo16 part.
5001     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5002                           addend, r_type, r_sym, extract_addend, address,
5003                           gp_disp));
5004     return This::STATUS_OKAY;
5005   }
5006
5007   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5008   static inline typename This::Status
5009   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5010              const Symbol_value<size>* psymval, Mips_address addend_hi,
5011              Mips_address address, bool is_gp_disp, unsigned int r_type,
5012              bool extract_addend, Valtype32 addend_lo,
5013              Target_mips<size, big_endian>* target, bool calculate_only,
5014              Valtype* calculated_value)
5015   {
5016     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5017     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5018
5019     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5020                                        : addend_hi);
5021
5022     Valtype32 value;
5023     if (!is_gp_disp)
5024       value = psymval->value(object, addend);
5025     else
5026       {
5027         // For MIPS16 ABI code we generate this sequence
5028         //    0: li      $v0,%hi(_gp_disp)
5029         //    4: addiupc $v1,%lo(_gp_disp)
5030         //    8: sll     $v0,16
5031         //   12: addu    $v0,$v1
5032         //   14: move    $gp,$v0
5033         // So the offsets of hi and lo relocs are the same, but the
5034         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5035         // ADDIUPC clears the low two bits of the instruction address,
5036         // so the base is ($t9 + 4) & ~3.
5037         Valtype32 gp_disp;
5038         if (r_type == elfcpp::R_MIPS16_HI16)
5039           gp_disp = (target->adjusted_gp_value(object)
5040                      - ((address + 4) & ~0x3));
5041         // The microMIPS .cpload sequence uses the same assembly
5042         // instructions as the traditional psABI version, but the
5043         // incoming $t9 has the low bit set.
5044         else if (r_type == elfcpp::R_MICROMIPS_HI16)
5045           gp_disp = target->adjusted_gp_value(object) - address - 1;
5046         else
5047           gp_disp = target->adjusted_gp_value(object) - address;
5048         value = gp_disp + addend;
5049       }
5050     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5051     val = Bits<32>::bit_select32(val, x, 0xffff);
5052
5053     if (calculate_only)
5054       {
5055         *calculated_value = x;
5056         return This::STATUS_OKAY;
5057       }
5058     else
5059       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5060
5061     return (is_gp_disp ? check_overflow<16>(x)
5062                        : This::STATUS_OKAY);
5063   }
5064
5065   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5066   static inline typename This::Status
5067   relgot16_local(unsigned char* view,
5068                  const Mips_relobj<size, big_endian>* object,
5069                  const Symbol_value<size>* psymval, Mips_address addend_a,
5070                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
5071   {
5072     // Record the relocation.  It will be resolved when we find lo16 part.
5073     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5074                            addend_a, r_type, r_sym, extract_addend));
5075     return This::STATUS_OKAY;
5076   }
5077
5078   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5079   static inline typename This::Status
5080   do_relgot16_local(unsigned char* view,
5081                     const Mips_relobj<size, big_endian>* object,
5082                     const Symbol_value<size>* psymval, Mips_address addend_hi,
5083                     bool extract_addend, Valtype32 addend_lo,
5084                     Target_mips<size, big_endian>* target, bool calculate_only,
5085                     Valtype* calculated_value)
5086   {
5087     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5088     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5089
5090     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5091                                        : addend_hi);
5092
5093     // Find GOT page entry.
5094     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5095                           & 0xffff;
5096     value <<= 16;
5097     unsigned int got_offset =
5098       target->got_section()->get_got_page_offset(value, object);
5099
5100     // Resolve the relocation.
5101     Valtype x = target->got_section()->gp_offset(got_offset, object);
5102     val = Bits<32>::bit_select32(val, x, 0xffff);
5103
5104     if (calculate_only)
5105       {
5106         *calculated_value = x;
5107         return This::STATUS_OKAY;
5108       }
5109     else
5110       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5111
5112     return check_overflow<16>(x);
5113   }
5114
5115   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5116   static inline typename This::Status
5117   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5118           const Mips_relobj<size, big_endian>* object,
5119           const Symbol_value<size>* psymval, Mips_address addend_a,
5120           bool extract_addend, Mips_address address, bool is_gp_disp,
5121           unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5122           bool calculate_only, Valtype* calculated_value)
5123   {
5124     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5125     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5126
5127     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5128                                      : addend_a);
5129
5130     if (rel_type == elfcpp::SHT_REL)
5131       {
5132         typename This::Status reloc_status = This::STATUS_OKAY;
5133         // Resolve pending R_MIPS_HI16 relocations.
5134         typename std::list<reloc_high<size, big_endian> >::iterator it =
5135           hi16_relocs.begin();
5136         while (it != hi16_relocs.end())
5137           {
5138             reloc_high<size, big_endian> hi16 = *it;
5139             if (hi16.r_sym == r_sym
5140                 && is_matching_lo16_reloc(hi16.r_type, r_type))
5141               {
5142                 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5143                 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5144                                        hi16.addend, hi16.address, hi16.gp_disp,
5145                                        hi16.r_type, hi16.extract_addend, addend,
5146                                        target, calculate_only, calculated_value);
5147                 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5148                 if (reloc_status == This::STATUS_OVERFLOW)
5149                   return This::STATUS_OVERFLOW;
5150                 it = hi16_relocs.erase(it);
5151               }
5152             else
5153               ++it;
5154           }
5155
5156         // Resolve pending local R_MIPS_GOT16 relocations.
5157         typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5158           got16_relocs.begin();
5159         while (it2 != got16_relocs.end())
5160           {
5161             reloc_high<size, big_endian> got16 = *it2;
5162             if (got16.r_sym == r_sym
5163                 && is_matching_lo16_reloc(got16.r_type, r_type))
5164               {
5165                 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5166
5167                 reloc_status = do_relgot16_local(got16.view, got16.object,
5168                                      got16.psymval, got16.addend,
5169                                      got16.extract_addend, addend, target,
5170                                      calculate_only, calculated_value);
5171
5172                 mips_reloc_shuffle(got16.view, got16.r_type, false);
5173                 if (reloc_status == This::STATUS_OVERFLOW)
5174                   return This::STATUS_OVERFLOW;
5175                 it2 = got16_relocs.erase(it2);
5176               }
5177             else
5178               ++it2;
5179           }
5180       }
5181
5182     // Resolve R_MIPS_LO16 relocation.
5183     Valtype x;
5184     if (!is_gp_disp)
5185       x = psymval->value(object, addend);
5186     else
5187       {
5188         // See the comment for R_MIPS16_HI16 above for the reason
5189         // for this conditional.
5190         Valtype32 gp_disp;
5191         if (r_type == elfcpp::R_MIPS16_LO16)
5192           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5193         else if (r_type == elfcpp::R_MICROMIPS_LO16
5194                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5195           gp_disp = target->adjusted_gp_value(object) - address + 3;
5196         else
5197           gp_disp = target->adjusted_gp_value(object) - address + 4;
5198         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5199         // for overflow.  Relocations against _gp_disp are normally
5200         // generated from the .cpload pseudo-op.  It generates code
5201         // that normally looks like this:
5202
5203         //   lui    $gp,%hi(_gp_disp)
5204         //   addiu  $gp,$gp,%lo(_gp_disp)
5205         //   addu   $gp,$gp,$t9
5206
5207         // Here $t9 holds the address of the function being called,
5208         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
5209         // relocation can easily overflow in this situation, but the
5210         // R_MIPS_HI16 relocation will handle the overflow.
5211         // Therefore, we consider this a bug in the MIPS ABI, and do
5212         // not check for overflow here.
5213         x = gp_disp + addend;
5214       }
5215     val = Bits<32>::bit_select32(val, x, 0xffff);
5216
5217     if (calculate_only)
5218       *calculated_value = x;
5219     else
5220       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5221
5222     return This::STATUS_OKAY;
5223   }
5224
5225   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5226   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5227   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5228   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5229   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5230   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5231   static inline typename This::Status
5232   relgot(unsigned char* view, int gp_offset, bool calculate_only,
5233          Valtype* calculated_value)
5234   {
5235     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5236     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5237     Valtype x = gp_offset;
5238     val = Bits<32>::bit_select32(val, x, 0xffff);
5239
5240     if (calculate_only)
5241       {
5242         *calculated_value = x;
5243         return This::STATUS_OKAY;
5244       }
5245     else
5246       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5247
5248     return check_overflow<16>(x);
5249   }
5250
5251   // R_MIPS_EH
5252   static inline typename This::Status
5253   releh(unsigned char* view, int gp_offset, bool calculate_only,
5254         Valtype* calculated_value)
5255   {
5256     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5257     Valtype x = gp_offset;
5258
5259     if (calculate_only)
5260       {
5261         *calculated_value = x;
5262         return This::STATUS_OKAY;
5263       }
5264     else
5265       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5266
5267     return check_overflow<32>(x);
5268   }
5269
5270   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5271   static inline typename This::Status
5272   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5273              const Mips_relobj<size, big_endian>* object,
5274              const Symbol_value<size>* psymval, Mips_address addend_a,
5275              bool extract_addend, bool calculate_only,
5276              Valtype* calculated_value)
5277   {
5278     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5279     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5280     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5281
5282     // Find a GOT page entry that points to within 32KB of symbol + addend.
5283     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5284     unsigned int  got_offset =
5285       target->got_section()->get_got_page_offset(value, object);
5286
5287     Valtype x = target->got_section()->gp_offset(got_offset, object);
5288     val = Bits<32>::bit_select32(val, x, 0xffff);
5289
5290     if (calculate_only)
5291       {
5292         *calculated_value = x;
5293         return This::STATUS_OKAY;
5294       }
5295     else
5296       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5297
5298     return check_overflow<16>(x);
5299   }
5300
5301   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5302   static inline typename This::Status
5303   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5304              const Mips_relobj<size, big_endian>* object,
5305              const Symbol_value<size>* psymval, Mips_address addend_a,
5306              bool extract_addend, bool local, bool calculate_only,
5307              Valtype* calculated_value)
5308   {
5309     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5310     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5311     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5312
5313     // For a local symbol, find a GOT page entry that points to within 32KB of
5314     // symbol + addend.  Relocation value is the offset of the GOT page entry's
5315     // value from symbol + addend.
5316     // For a global symbol, relocation value is addend.
5317     Valtype x;
5318     if (local)
5319       {
5320         // Find GOT page entry.
5321         Mips_address value = ((psymval->value(object, addend) + 0x8000)
5322                               & ~0xffff);
5323         target->got_section()->get_got_page_offset(value, object);
5324
5325         x = psymval->value(object, addend) - value;
5326       }
5327     else
5328       x = addend;
5329     val = Bits<32>::bit_select32(val, x, 0xffff);
5330
5331     if (calculate_only)
5332       {
5333         *calculated_value = x;
5334         return This::STATUS_OKAY;
5335       }
5336     else
5337       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5338
5339     return check_overflow<16>(x);
5340   }
5341
5342   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5343   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5344   static inline typename This::Status
5345   relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5346               Valtype* calculated_value)
5347   {
5348     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5349     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5350     Valtype x = gp_offset;
5351     x = ((x + 0x8000) >> 16) & 0xffff;
5352     val = Bits<32>::bit_select32(val, x, 0xffff);
5353
5354     if (calculate_only)
5355       *calculated_value = x;
5356     else
5357       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5358
5359     return This::STATUS_OKAY;
5360   }
5361
5362   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5363   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5364   static inline typename This::Status
5365   relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5366               Valtype* calculated_value)
5367   {
5368     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5369     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5370     Valtype x = gp_offset;
5371     val = Bits<32>::bit_select32(val, x, 0xffff);
5372
5373     if (calculate_only)
5374       *calculated_value = x;
5375     else
5376       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5377
5378     return This::STATUS_OKAY;
5379   }
5380
5381   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5382   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5383   static inline typename This::Status
5384   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5385            const Symbol_value<size>* psymval, Mips_address gp,
5386            Mips_address addend_a, bool extract_addend, bool local,
5387            unsigned int r_type, bool calculate_only,
5388            Valtype* calculated_value)
5389   {
5390     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5391     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5392
5393     Valtype addend;
5394     if (extract_addend)
5395       {
5396         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5397           addend = (val & 0x7f) << 2;
5398         else
5399           addend = val & 0xffff;
5400         // Only sign-extend the addend if it was extracted from the
5401         // instruction.  If the addend was separate, leave it alone,
5402         // otherwise we may lose significant bits.
5403         addend = Bits<16>::sign_extend32(addend);
5404       }
5405     else
5406       addend = addend_a;
5407
5408     Valtype x = psymval->value(object, addend) - gp;
5409
5410     // If the symbol was local, any earlier relocatable links will
5411     // have adjusted its addend with the gp offset, so compensate
5412     // for that now.  Don't do it for symbols forced local in this
5413     // link, though, since they won't have had the gp offset applied
5414     // to them before.
5415     if (local)
5416       x += object->gp_value();
5417
5418     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5419       val = Bits<32>::bit_select32(val, x, 0x7f);
5420     else
5421       val = Bits<32>::bit_select32(val, x, 0xffff);
5422
5423     if (calculate_only)
5424       {
5425         *calculated_value = x;
5426         return This::STATUS_OKAY;
5427       }
5428     else
5429       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5430
5431     if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5432       {
5433         gold_error(_("small-data section exceeds 64KB; lower small-data size "
5434                      "limit (see option -G)"));
5435         return This::STATUS_OVERFLOW;
5436       }
5437     return This::STATUS_OKAY;
5438   }
5439
5440   // R_MIPS_GPREL32
5441   static inline typename This::Status
5442   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5443              const Symbol_value<size>* psymval, Mips_address gp,
5444              Mips_address addend_a, bool extract_addend, bool calculate_only,
5445              Valtype* calculated_value)
5446   {
5447     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5448     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5449     Valtype addend = extract_addend ? val : addend_a;
5450
5451     // R_MIPS_GPREL32 relocations are defined for local symbols only.
5452     Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5453
5454     if (calculate_only)
5455       *calculated_value = x;
5456     else
5457       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5458
5459     return This::STATUS_OKAY;
5460  }
5461
5462   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5463   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5464   // R_MICROMIPS_TLS_DTPREL_HI16
5465   static inline typename This::Status
5466   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5467              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5468              Mips_address addend_a, bool extract_addend, bool calculate_only,
5469              Valtype* calculated_value)
5470   {
5471     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5472     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5473     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5474
5475     // tls symbol values are relative to tls_segment()->vaddr()
5476     Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5477     val = Bits<32>::bit_select32(val, x, 0xffff);
5478
5479     if (calculate_only)
5480       *calculated_value = x;
5481     else
5482       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5483
5484     return This::STATUS_OKAY;
5485   }
5486
5487   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5488   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5489   // R_MICROMIPS_TLS_DTPREL_LO16,
5490   static inline typename This::Status
5491   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5492              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5493              Mips_address addend_a, bool extract_addend, bool calculate_only,
5494              Valtype* calculated_value)
5495   {
5496     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5497     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5498     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5499
5500     // tls symbol values are relative to tls_segment()->vaddr()
5501     Valtype x = psymval->value(object, addend) - tp_offset;
5502     val = Bits<32>::bit_select32(val, x, 0xffff);
5503
5504     if (calculate_only)
5505       *calculated_value = x;
5506     else
5507       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5508
5509     return This::STATUS_OKAY;
5510   }
5511
5512   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5513   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5514   static inline typename This::Status
5515   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5516            const Symbol_value<size>* psymval, Valtype32 tp_offset,
5517            Mips_address addend_a, bool extract_addend, bool calculate_only,
5518            Valtype* calculated_value)
5519   {
5520     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5521     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5522     Valtype addend = extract_addend ? val : addend_a;
5523
5524     // tls symbol values are relative to tls_segment()->vaddr()
5525     Valtype x = psymval->value(object, addend) - tp_offset;
5526
5527     if (calculate_only)
5528       *calculated_value = x;
5529     else
5530       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5531
5532     return This::STATUS_OKAY;
5533   }
5534
5535   // R_MIPS_SUB, R_MICROMIPS_SUB
5536   static inline typename This::Status
5537   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5538          const Symbol_value<size>* psymval, Mips_address addend_a,
5539          bool extract_addend, bool calculate_only, Valtype* calculated_value)
5540   {
5541     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5542     Valtype64 addend = (extract_addend
5543                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5544                         : addend_a);
5545
5546     Valtype64 x = psymval->value(object, -addend);
5547     if (calculate_only)
5548       *calculated_value = x;
5549     else
5550       elfcpp::Swap<64, big_endian>::writeval(wv, x);
5551
5552     return This::STATUS_OKAY;
5553   }
5554
5555   // R_MIPS_64: S + A
5556   static inline typename This::Status
5557   rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5558         const Symbol_value<size>* psymval, Mips_address addend_a,
5559         bool extract_addend, bool calculate_only, Valtype* calculated_value,
5560         bool apply_addend_only)
5561   {
5562     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5563     Valtype64 addend = (extract_addend
5564                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5565                         : addend_a);
5566
5567     Valtype64 x = psymval->value(object, addend);
5568     if (calculate_only)
5569       *calculated_value = x;
5570     else
5571       {
5572         if (apply_addend_only)
5573           x = addend;
5574         elfcpp::Swap<64, big_endian>::writeval(wv, x);
5575       }
5576
5577     return This::STATUS_OKAY;
5578   }
5579
5580 };
5581
5582 template<int size, bool big_endian>
5583 typename std::list<reloc_high<size, big_endian> >
5584     Mips_relocate_functions<size, big_endian>::hi16_relocs;
5585
5586 template<int size, bool big_endian>
5587 typename std::list<reloc_high<size, big_endian> >
5588     Mips_relocate_functions<size, big_endian>::got16_relocs;
5589
5590 template<int size, bool big_endian>
5591 typename std::list<reloc_high<size, big_endian> >
5592     Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5593
5594 // Mips_got_info methods.
5595
5596 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5597 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5598
5599 template<int size, bool big_endian>
5600 void
5601 Mips_got_info<size, big_endian>::record_local_got_symbol(
5602     Mips_relobj<size, big_endian>* object, unsigned int symndx,
5603     Mips_address addend, unsigned int r_type, unsigned int shndx,
5604     bool is_section_symbol)
5605 {
5606   Mips_got_entry<size, big_endian>* entry =
5607     new Mips_got_entry<size, big_endian>(object, symndx, addend,
5608                                          mips_elf_reloc_tls_type(r_type),
5609                                          shndx, is_section_symbol);
5610   this->record_got_entry(entry, object);
5611 }
5612
5613 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5614 // in OBJECT.  FOR_CALL is true if the caller is only interested in
5615 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
5616 // relocation.
5617
5618 template<int size, bool big_endian>
5619 void
5620 Mips_got_info<size, big_endian>::record_global_got_symbol(
5621     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5622     unsigned int r_type, bool dyn_reloc, bool for_call)
5623 {
5624   if (!for_call)
5625     mips_sym->set_got_not_only_for_calls();
5626
5627   // A global symbol in the GOT must also be in the dynamic symbol table.
5628   if (!mips_sym->needs_dynsym_entry())
5629     {
5630       switch (mips_sym->visibility())
5631         {
5632         case elfcpp::STV_INTERNAL:
5633         case elfcpp::STV_HIDDEN:
5634           mips_sym->set_is_forced_local();
5635           break;
5636         default:
5637           mips_sym->set_needs_dynsym_entry();
5638           break;
5639         }
5640     }
5641
5642   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5643   if (tls_type == GOT_TLS_NONE)
5644     this->global_got_symbols_.insert(mips_sym);
5645
5646   if (dyn_reloc)
5647     {
5648       if (mips_sym->global_got_area() == GGA_NONE)
5649         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5650       return;
5651     }
5652
5653   Mips_got_entry<size, big_endian>* entry =
5654     new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5655
5656   this->record_got_entry(entry, object);
5657 }
5658
5659 // Add ENTRY to master GOT and to OBJECT's GOT.
5660
5661 template<int size, bool big_endian>
5662 void
5663 Mips_got_info<size, big_endian>::record_got_entry(
5664     Mips_got_entry<size, big_endian>* entry,
5665     Mips_relobj<size, big_endian>* object)
5666 {
5667   this->got_entries_.insert(entry);
5668
5669   // Create the GOT entry for the OBJECT's GOT.
5670   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5671   Mips_got_entry<size, big_endian>* entry2 =
5672     new Mips_got_entry<size, big_endian>(*entry);
5673
5674   g->got_entries_.insert(entry2);
5675 }
5676
5677 // Record that OBJECT has a page relocation against symbol SYMNDX and
5678 // that ADDEND is the addend for that relocation.
5679 // This function creates an upper bound on the number of GOT slots
5680 // required; no attempt is made to combine references to non-overridable
5681 // global symbols across multiple input files.
5682
5683 template<int size, bool big_endian>
5684 void
5685 Mips_got_info<size, big_endian>::record_got_page_entry(
5686     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5687 {
5688   struct Got_page_range **range_ptr, *range;
5689   int old_pages, new_pages;
5690
5691   // Find the Got_page_entry for this symbol.
5692   Got_page_entry* entry = new Got_page_entry(object, symndx);
5693   typename Got_page_entry_set::iterator it =
5694     this->got_page_entries_.find(entry);
5695   if (it != this->got_page_entries_.end())
5696     entry = *it;
5697   else
5698     this->got_page_entries_.insert(entry);
5699
5700   // Add the same entry to the OBJECT's GOT.
5701   Got_page_entry* entry2 = NULL;
5702   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5703   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5704     {
5705       entry2 = new Got_page_entry(*entry);
5706       g2->got_page_entries_.insert(entry2);
5707     }
5708
5709   // Skip over ranges whose maximum extent cannot share a page entry
5710   // with ADDEND.
5711   range_ptr = &entry->ranges;
5712   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5713     range_ptr = &(*range_ptr)->next;
5714
5715   // If we scanned to the end of the list, or found a range whose
5716   // minimum extent cannot share a page entry with ADDEND, create
5717   // a new singleton range.
5718   range = *range_ptr;
5719   if (!range || addend < range->min_addend - 0xffff)
5720     {
5721       range = new Got_page_range();
5722       range->next = *range_ptr;
5723       range->min_addend = addend;
5724       range->max_addend = addend;
5725
5726       *range_ptr = range;
5727       ++entry->num_pages;
5728       if (entry2 != NULL)
5729         ++entry2->num_pages;
5730       ++this->page_gotno_;
5731       ++g2->page_gotno_;
5732       return;
5733     }
5734
5735   // Remember how many pages the old range contributed.
5736   old_pages = range->get_max_pages();
5737
5738   // Update the ranges.
5739   if (addend < range->min_addend)
5740     range->min_addend = addend;
5741   else if (addend > range->max_addend)
5742     {
5743       if (range->next && addend >= range->next->min_addend - 0xffff)
5744         {
5745           old_pages += range->next->get_max_pages();
5746           range->max_addend = range->next->max_addend;
5747           range->next = range->next->next;
5748         }
5749       else
5750         range->max_addend = addend;
5751     }
5752
5753   // Record any change in the total estimate.
5754   new_pages = range->get_max_pages();
5755   if (old_pages != new_pages)
5756     {
5757       entry->num_pages += new_pages - old_pages;
5758       if (entry2 != NULL)
5759         entry2->num_pages += new_pages - old_pages;
5760       this->page_gotno_ += new_pages - old_pages;
5761       g2->page_gotno_ += new_pages - old_pages;
5762     }
5763 }
5764
5765 // Create all entries that should be in the local part of the GOT.
5766
5767 template<int size, bool big_endian>
5768 void
5769 Mips_got_info<size, big_endian>::add_local_entries(
5770     Target_mips<size, big_endian>* target, Layout* layout)
5771 {
5772   Mips_output_data_got<size, big_endian>* got = target->got_section();
5773   // First two GOT entries are reserved.  The first entry will be filled at
5774   // runtime.  The second entry will be used by some runtime loaders.
5775   got->add_constant(0);
5776   got->add_constant(target->mips_elf_gnu_got1_mask());
5777
5778   for (typename Got_entry_set::iterator
5779        p = this->got_entries_.begin();
5780        p != this->got_entries_.end();
5781        ++p)
5782     {
5783       Mips_got_entry<size, big_endian>* entry = *p;
5784       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5785         {
5786           got->add_local(entry->object(), entry->symndx(),
5787                          GOT_TYPE_STANDARD, entry->addend());
5788           unsigned int got_offset = entry->object()->local_got_offset(
5789               entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5790           if (got->multi_got() && this->index_ > 0
5791               && parameters->options().output_is_position_independent())
5792           {
5793             if (!entry->is_section_symbol())
5794               target->rel_dyn_section(layout)->add_local(entry->object(),
5795                   entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5796             else
5797               target->rel_dyn_section(layout)->add_symbolless_local_addend(
5798                   entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5799                   got, got_offset);
5800           }
5801         }
5802     }
5803
5804   this->add_page_entries(target, layout);
5805
5806   // Add global entries that should be in the local area.
5807   for (typename Got_entry_set::iterator
5808        p = this->got_entries_.begin();
5809        p != this->got_entries_.end();
5810        ++p)
5811     {
5812       Mips_got_entry<size, big_endian>* entry = *p;
5813       if (!entry->is_for_global_symbol())
5814         continue;
5815
5816       Mips_symbol<size>* mips_sym = entry->sym();
5817       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5818         {
5819           unsigned int got_type;
5820           if (!got->multi_got())
5821             got_type = GOT_TYPE_STANDARD;
5822           else
5823             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5824           if (got->add_global(mips_sym, got_type))
5825             {
5826               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5827               if (got->multi_got() && this->index_ > 0
5828                   && parameters->options().output_is_position_independent())
5829                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5830                     mips_sym, elfcpp::R_MIPS_REL32, got,
5831                     mips_sym->got_offset(got_type));
5832             }
5833         }
5834     }
5835 }
5836
5837 // Create GOT page entries.
5838
5839 template<int size, bool big_endian>
5840 void
5841 Mips_got_info<size, big_endian>::add_page_entries(
5842     Target_mips<size, big_endian>* target, Layout* layout)
5843 {
5844   if (this->page_gotno_ == 0)
5845     return;
5846
5847   Mips_output_data_got<size, big_endian>* got = target->got_section();
5848   this->got_page_offset_start_ = got->add_constant(0);
5849   if (got->multi_got() && this->index_ > 0
5850       && parameters->options().output_is_position_independent())
5851     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5852                                                   this->got_page_offset_start_);
5853   int num_entries = this->page_gotno_;
5854   unsigned int prev_offset = this->got_page_offset_start_;
5855   while (--num_entries > 0)
5856     {
5857       unsigned int next_offset = got->add_constant(0);
5858       if (got->multi_got() && this->index_ > 0
5859           && parameters->options().output_is_position_independent())
5860         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5861                                                       next_offset);
5862       gold_assert(next_offset == prev_offset + size/8);
5863       prev_offset = next_offset;
5864     }
5865   this->got_page_offset_next_ = this->got_page_offset_start_;
5866 }
5867
5868 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5869
5870 template<int size, bool big_endian>
5871 void
5872 Mips_got_info<size, big_endian>::add_global_entries(
5873     Target_mips<size, big_endian>* target, Layout* layout,
5874     unsigned int non_reloc_only_global_gotno)
5875 {
5876   Mips_output_data_got<size, big_endian>* got = target->got_section();
5877   // Add GGA_NORMAL entries.
5878   unsigned int count = 0;
5879   for (typename Got_entry_set::iterator
5880        p = this->got_entries_.begin();
5881        p != this->got_entries_.end();
5882        ++p)
5883     {
5884       Mips_got_entry<size, big_endian>* entry = *p;
5885       if (!entry->is_for_global_symbol())
5886         continue;
5887
5888       Mips_symbol<size>* mips_sym = entry->sym();
5889       if (mips_sym->global_got_area() != GGA_NORMAL)
5890         continue;
5891
5892       unsigned int got_type;
5893       if (!got->multi_got())
5894         got_type = GOT_TYPE_STANDARD;
5895       else
5896         // In multi-GOT links, global symbol can be in both primary and
5897         // secondary GOT(s).  By creating custom GOT type
5898         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5899         // is added to secondary GOT(s).
5900         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5901       if (!got->add_global(mips_sym, got_type))
5902         continue;
5903
5904       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5905       if (got->multi_got() && this->index_ == 0)
5906         count++;
5907       if (got->multi_got() && this->index_ > 0)
5908         {
5909           if (parameters->options().output_is_position_independent()
5910               || (!parameters->doing_static_link()
5911                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5912             {
5913               target->rel_dyn_section(layout)->add_global(
5914                   mips_sym, elfcpp::R_MIPS_REL32, got,
5915                   mips_sym->got_offset(got_type));
5916               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5917                                            elfcpp::R_MIPS_REL32, mips_sym);
5918             }
5919         }
5920     }
5921
5922   if (!got->multi_got() || this->index_ == 0)
5923     {
5924       if (got->multi_got())
5925         {
5926           // We need to allocate space in the primary GOT for GGA_NORMAL entries
5927           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5928           // entries correspond to dynamic symbol indexes.
5929           while (count < non_reloc_only_global_gotno)
5930             {
5931               got->add_constant(0);
5932               ++count;
5933             }
5934         }
5935
5936       // Add GGA_RELOC_ONLY entries.
5937       got->add_reloc_only_entries();
5938     }
5939 }
5940
5941 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5942
5943 template<int size, bool big_endian>
5944 void
5945 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5946     Mips_output_data_got<size, big_endian>* got)
5947 {
5948   for (typename Global_got_entry_set::iterator
5949        p = this->global_got_symbols_.begin();
5950        p != this->global_got_symbols_.end();
5951        ++p)
5952     {
5953       Mips_symbol<size>* mips_sym = *p;
5954       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5955         {
5956           unsigned int got_type;
5957           if (!got->multi_got())
5958             got_type = GOT_TYPE_STANDARD;
5959           else
5960             got_type = GOT_TYPE_STANDARD_MULTIGOT;
5961           if (got->add_global(mips_sym, got_type))
5962             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5963         }
5964     }
5965 }
5966
5967 // Create TLS GOT entries.
5968
5969 template<int size, bool big_endian>
5970 void
5971 Mips_got_info<size, big_endian>::add_tls_entries(
5972     Target_mips<size, big_endian>* target, Layout* layout)
5973 {
5974   Mips_output_data_got<size, big_endian>* got = target->got_section();
5975   // Add local tls entries.
5976   for (typename Got_entry_set::iterator
5977        p = this->got_entries_.begin();
5978        p != this->got_entries_.end();
5979        ++p)
5980     {
5981       Mips_got_entry<size, big_endian>* entry = *p;
5982       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5983         continue;
5984
5985       if (entry->tls_type() == GOT_TLS_GD)
5986         {
5987           unsigned int got_type = GOT_TYPE_TLS_PAIR;
5988           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5989                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5990           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5991                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5992
5993           if (!parameters->doing_static_link())
5994             {
5995               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5996                                            entry->shndx(), got_type,
5997                                            target->rel_dyn_section(layout),
5998                                            r_type1, entry->addend());
5999               unsigned int got_offset =
6000                 entry->object()->local_got_offset(entry->symndx(), got_type,
6001                                                   entry->addend());
6002               got->add_static_reloc(got_offset + size/8, r_type2,
6003                                     entry->object(), entry->symndx());
6004             }
6005           else
6006             {
6007               // We are doing a static link.  Mark it as belong to module 1,
6008               // the executable.
6009               unsigned int got_offset = got->add_constant(1);
6010               entry->object()->set_local_got_offset(entry->symndx(), got_type,
6011                                                     got_offset,
6012                                                     entry->addend());
6013               got->add_constant(0);
6014               got->add_static_reloc(got_offset + size/8, r_type2,
6015                                     entry->object(), entry->symndx());
6016             }
6017         }
6018       else if (entry->tls_type() == GOT_TLS_IE)
6019         {
6020           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6021           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6022                                             : elfcpp::R_MIPS_TLS_TPREL64);
6023           if (!parameters->doing_static_link())
6024             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6025                                     target->rel_dyn_section(layout), r_type,
6026                                     entry->addend());
6027           else
6028             {
6029               got->add_local(entry->object(), entry->symndx(), got_type,
6030                              entry->addend());
6031               unsigned int got_offset =
6032                   entry->object()->local_got_offset(entry->symndx(), got_type,
6033                                                     entry->addend());
6034               got->add_static_reloc(got_offset, r_type, entry->object(),
6035                                     entry->symndx());
6036             }
6037         }
6038       else if (entry->tls_type() == GOT_TLS_LDM)
6039         {
6040           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6041                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
6042           unsigned int got_offset;
6043           if (!parameters->doing_static_link())
6044             {
6045               got_offset = got->add_constant(0);
6046               target->rel_dyn_section(layout)->add_local(
6047                   entry->object(), 0, r_type, got, got_offset);
6048             }
6049           else
6050             // We are doing a static link.  Just mark it as belong to module 1,
6051             // the executable.
6052             got_offset = got->add_constant(1);
6053
6054           got->add_constant(0);
6055           got->set_tls_ldm_offset(got_offset, entry->object());
6056         }
6057       else
6058         gold_unreachable();
6059     }
6060
6061   // Add global tls entries.
6062   for (typename Got_entry_set::iterator
6063        p = this->got_entries_.begin();
6064        p != this->got_entries_.end();
6065        ++p)
6066     {
6067       Mips_got_entry<size, big_endian>* entry = *p;
6068       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6069         continue;
6070
6071       Mips_symbol<size>* mips_sym = entry->sym();
6072       if (entry->tls_type() == GOT_TLS_GD)
6073         {
6074           unsigned int got_type;
6075           if (!got->multi_got())
6076             got_type = GOT_TYPE_TLS_PAIR;
6077           else
6078             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6079           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6080                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6081           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6082                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6083           if (!parameters->doing_static_link())
6084             got->add_global_pair_with_rel(mips_sym, got_type,
6085                              target->rel_dyn_section(layout), r_type1, r_type2);
6086           else
6087             {
6088               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
6089               // GOT entries.  The first one is initialized to be 1, which is the
6090               // module index for the main executable and the second one 0.  A
6091               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6092               // the second GOT entry and will be applied by gold.
6093               unsigned int got_offset = got->add_constant(1);
6094               mips_sym->set_got_offset(got_type, got_offset);
6095               got->add_constant(0);
6096               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6097             }
6098         }
6099       else if (entry->tls_type() == GOT_TLS_IE)
6100         {
6101           unsigned int got_type;
6102           if (!got->multi_got())
6103             got_type = GOT_TYPE_TLS_OFFSET;
6104           else
6105             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6106           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6107                                             : elfcpp::R_MIPS_TLS_TPREL64);
6108           if (!parameters->doing_static_link())
6109             got->add_global_with_rel(mips_sym, got_type,
6110                                      target->rel_dyn_section(layout), r_type);
6111           else
6112             {
6113               got->add_global(mips_sym, got_type);
6114               unsigned int got_offset = mips_sym->got_offset(got_type);
6115               got->add_static_reloc(got_offset, r_type, mips_sym);
6116             }
6117         }
6118       else
6119         gold_unreachable();
6120     }
6121 }
6122
6123 // Decide whether the symbol needs an entry in the global part of the primary
6124 // GOT, setting global_got_area accordingly.  Count the number of global
6125 // symbols that are in the primary GOT only because they have dynamic
6126 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6127
6128 template<int size, bool big_endian>
6129 void
6130 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6131 {
6132   for (typename Global_got_entry_set::iterator
6133        p = this->global_got_symbols_.begin();
6134        p != this->global_got_symbols_.end();
6135        ++p)
6136     {
6137       Mips_symbol<size>* sym = *p;
6138       // Make a final decision about whether the symbol belongs in the
6139       // local or global GOT.  Symbols that bind locally can (and in the
6140       // case of forced-local symbols, must) live in the local GOT.
6141       // Those that are aren't in the dynamic symbol table must also
6142       // live in the local GOT.
6143
6144       if (!sym->should_add_dynsym_entry(symtab)
6145           || (sym->got_only_for_calls()
6146               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6147               : symbol_references_local(sym,
6148                                         sym->should_add_dynsym_entry(symtab))))
6149         // The symbol belongs in the local GOT.  We no longer need this
6150         // entry if it was only used for relocations; those relocations
6151         // will be against the null or section symbol instead.
6152         sym->set_global_got_area(GGA_NONE);
6153       else if (sym->global_got_area() == GGA_RELOC_ONLY)
6154         {
6155           ++this->reloc_only_gotno_;
6156           ++this->global_gotno_ ;
6157         }
6158     }
6159 }
6160
6161 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
6162 // VALUE if it is not initialized.
6163
6164 template<int size, bool big_endian>
6165 unsigned int
6166 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6167     Mips_output_data_got<size, big_endian>* got)
6168 {
6169   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6170   if (it != this->got_page_offsets_.end())
6171     return it->second;
6172
6173   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6174               + (size/8) * this->page_gotno_);
6175
6176   unsigned int got_offset = this->got_page_offset_next_;
6177   this->got_page_offsets_[value] = got_offset;
6178   this->got_page_offset_next_ += size/8;
6179   got->update_got_entry(got_offset, value);
6180   return got_offset;
6181 }
6182
6183 // Remove lazy-binding stubs for global symbols in this GOT.
6184
6185 template<int size, bool big_endian>
6186 void
6187 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6188     Target_mips<size, big_endian>* target)
6189 {
6190   for (typename Got_entry_set::iterator
6191        p = this->got_entries_.begin();
6192        p != this->got_entries_.end();
6193        ++p)
6194     {
6195       Mips_got_entry<size, big_endian>* entry = *p;
6196       if (entry->is_for_global_symbol())
6197         target->remove_lazy_stub_entry(entry->sym());
6198     }
6199 }
6200
6201 // Count the number of GOT entries required.
6202
6203 template<int size, bool big_endian>
6204 void
6205 Mips_got_info<size, big_endian>::count_got_entries()
6206 {
6207   for (typename Got_entry_set::iterator
6208        p = this->got_entries_.begin();
6209        p != this->got_entries_.end();
6210        ++p)
6211     {
6212       this->count_got_entry(*p);
6213     }
6214 }
6215
6216 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
6217
6218 template<int size, bool big_endian>
6219 void
6220 Mips_got_info<size, big_endian>::count_got_entry(
6221     Mips_got_entry<size, big_endian>* entry)
6222 {
6223   if (entry->is_tls_entry())
6224     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6225   else if (entry->is_for_local_symbol()
6226            || entry->sym()->global_got_area() == GGA_NONE)
6227     ++this->local_gotno_;
6228   else
6229     ++this->global_gotno_;
6230 }
6231
6232 // Add FROM's GOT entries.
6233
6234 template<int size, bool big_endian>
6235 void
6236 Mips_got_info<size, big_endian>::add_got_entries(
6237     Mips_got_info<size, big_endian>* from)
6238 {
6239   for (typename Got_entry_set::iterator
6240        p = from->got_entries_.begin();
6241        p != from->got_entries_.end();
6242        ++p)
6243     {
6244       Mips_got_entry<size, big_endian>* entry = *p;
6245       if (this->got_entries_.find(entry) == this->got_entries_.end())
6246         {
6247           Mips_got_entry<size, big_endian>* entry2 =
6248             new Mips_got_entry<size, big_endian>(*entry);
6249           this->got_entries_.insert(entry2);
6250           this->count_got_entry(entry);
6251         }
6252     }
6253 }
6254
6255 // Add FROM's GOT page entries.
6256
6257 template<int size, bool big_endian>
6258 void
6259 Mips_got_info<size, big_endian>::add_got_page_entries(
6260     Mips_got_info<size, big_endian>* from)
6261 {
6262   for (typename Got_page_entry_set::iterator
6263        p = from->got_page_entries_.begin();
6264        p != from->got_page_entries_.end();
6265        ++p)
6266     {
6267       Got_page_entry* entry = *p;
6268       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6269         {
6270           Got_page_entry* entry2 = new Got_page_entry(*entry);
6271           this->got_page_entries_.insert(entry2);
6272           this->page_gotno_ += entry->num_pages;
6273         }
6274     }
6275 }
6276
6277 // Mips_output_data_got methods.
6278
6279 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
6280 // larger than 64K, create multi-GOT.
6281
6282 template<int size, bool big_endian>
6283 void
6284 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6285     Symbol_table* symtab, const Input_objects* input_objects)
6286 {
6287   // Decide which symbols need to go in the global part of the GOT and
6288   // count the number of reloc-only GOT symbols.
6289   this->master_got_info_->count_got_symbols(symtab);
6290
6291   // Count the number of GOT entries.
6292   this->master_got_info_->count_got_entries();
6293
6294   unsigned int got_size = this->master_got_info_->got_size();
6295   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6296     this->lay_out_multi_got(layout, input_objects);
6297   else
6298     {
6299       // Record that all objects use single GOT.
6300       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6301            p != input_objects->relobj_end();
6302            ++p)
6303         {
6304           Mips_relobj<size, big_endian>* object =
6305             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6306           if (object->get_got_info() != NULL)
6307             object->set_got_info(this->master_got_info_);
6308         }
6309
6310       this->master_got_info_->add_local_entries(this->target_, layout);
6311       this->master_got_info_->add_global_entries(this->target_, layout,
6312                                                  /*not used*/-1U);
6313       this->master_got_info_->add_tls_entries(this->target_, layout);
6314     }
6315 }
6316
6317 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
6318
6319 template<int size, bool big_endian>
6320 void
6321 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6322     const Input_objects* input_objects)
6323 {
6324   // Try to merge the GOTs of input objects together, as long as they
6325   // don't seem to exceed the maximum GOT size, choosing one of them
6326   // to be the primary GOT.
6327   this->merge_gots(input_objects);
6328
6329   // Every symbol that is referenced in a dynamic relocation must be
6330   // present in the primary GOT.
6331   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6332
6333   // Add GOT entries.
6334   unsigned int i = 0;
6335   unsigned int offset = 0;
6336   Mips_got_info<size, big_endian>* g = this->primary_got_;
6337   do
6338     {
6339       g->set_index(i);
6340       g->set_offset(offset);
6341
6342       g->add_local_entries(this->target_, layout);
6343       if (i == 0)
6344         g->add_global_entries(this->target_, layout,
6345                               (this->master_got_info_->global_gotno()
6346                                - this->master_got_info_->reloc_only_gotno()));
6347       else
6348         g->add_global_entries(this->target_, layout, /*not used*/-1U);
6349       g->add_tls_entries(this->target_, layout);
6350
6351       // Forbid global symbols in every non-primary GOT from having
6352       // lazy-binding stubs.
6353       if (i > 0)
6354         g->remove_lazy_stubs(this->target_);
6355
6356       ++i;
6357       offset += g->got_size();
6358       g = g->next();
6359     }
6360   while (g);
6361 }
6362
6363 // Attempt to merge GOTs of different input objects.  Try to use as much as
6364 // possible of the primary GOT, since it doesn't require explicit dynamic
6365 // relocations, but don't use objects that would reference global symbols
6366 // out of the addressable range.  Failing the primary GOT, attempt to merge
6367 // with the current GOT, or finish the current GOT and then make make the new
6368 // GOT current.
6369
6370 template<int size, bool big_endian>
6371 void
6372 Mips_output_data_got<size, big_endian>::merge_gots(
6373     const Input_objects* input_objects)
6374 {
6375   gold_assert(this->primary_got_ == NULL);
6376   Mips_got_info<size, big_endian>* current = NULL;
6377
6378   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6379        p != input_objects->relobj_end();
6380        ++p)
6381     {
6382       Mips_relobj<size, big_endian>* object =
6383         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6384
6385       Mips_got_info<size, big_endian>* g = object->get_got_info();
6386       if (g == NULL)
6387         continue;
6388
6389       g->count_got_entries();
6390
6391       // Work out the number of page, local and TLS entries.
6392       unsigned int estimate = this->master_got_info_->page_gotno();
6393       if (estimate > g->page_gotno())
6394         estimate = g->page_gotno();
6395       estimate += g->local_gotno() + g->tls_gotno();
6396
6397       // We place TLS GOT entries after both locals and globals.  The globals
6398       // for the primary GOT may overflow the normal GOT size limit, so be
6399       // sure not to merge a GOT which requires TLS with the primary GOT in that
6400       // case.  This doesn't affect non-primary GOTs.
6401       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6402                                       : g->global_gotno());
6403
6404       unsigned int max_count =
6405         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6406       if (estimate <= max_count)
6407         {
6408           // If we don't have a primary GOT, use it as
6409           // a starting point for the primary GOT.
6410           if (!this->primary_got_)
6411             {
6412               this->primary_got_ = g;
6413               continue;
6414             }
6415
6416           // Try merging with the primary GOT.
6417           if (this->merge_got_with(g, object, this->primary_got_))
6418             continue;
6419         }
6420
6421       // If we can merge with the last-created GOT, do it.
6422       if (current && this->merge_got_with(g, object, current))
6423         continue;
6424
6425       // Well, we couldn't merge, so create a new GOT.  Don't check if it
6426       // fits; if it turns out that it doesn't, we'll get relocation
6427       // overflows anyway.
6428       g->set_next(current);
6429       current = g;
6430     }
6431
6432   // If we do not find any suitable primary GOT, create an empty one.
6433   if (this->primary_got_ == NULL)
6434     this->primary_got_ = new Mips_got_info<size, big_endian>();
6435
6436   // Link primary GOT with secondary GOTs.
6437   this->primary_got_->set_next(current);
6438 }
6439
6440 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
6441 // this would lead to overflow, true if they were merged successfully.
6442
6443 template<int size, bool big_endian>
6444 bool
6445 Mips_output_data_got<size, big_endian>::merge_got_with(
6446     Mips_got_info<size, big_endian>* from,
6447     Mips_relobj<size, big_endian>* object,
6448     Mips_got_info<size, big_endian>* to)
6449 {
6450   // Work out how many page entries we would need for the combined GOT.
6451   unsigned int estimate = this->master_got_info_->page_gotno();
6452   if (estimate >= from->page_gotno() + to->page_gotno())
6453     estimate = from->page_gotno() + to->page_gotno();
6454
6455   // Conservatively estimate how many local and TLS entries would be needed.
6456   estimate += from->local_gotno() + to->local_gotno();
6457   estimate += from->tls_gotno() + to->tls_gotno();
6458
6459   // If we're merging with the primary got, any TLS relocations will
6460   // come after the full set of global entries.  Otherwise estimate those
6461   // conservatively as well.
6462   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6463     estimate += this->master_got_info_->global_gotno();
6464   else
6465     estimate += from->global_gotno() + to->global_gotno();
6466
6467   // Bail out if the combined GOT might be too big.
6468   unsigned int max_count =
6469     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6470   if (estimate > max_count)
6471     return false;
6472
6473   // Transfer the object's GOT information from FROM to TO.
6474   to->add_got_entries(from);
6475   to->add_got_page_entries(from);
6476
6477   // Record that OBJECT should use output GOT TO.
6478   object->set_got_info(to);
6479
6480   return true;
6481 }
6482
6483 // Write out the GOT.
6484
6485 template<int size, bool big_endian>
6486 void
6487 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6488 {
6489   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6490       Mips_stubs_entry_set;
6491
6492   // Call parent to write out GOT.
6493   Output_data_got<size, big_endian>::do_write(of);
6494
6495   const off_t offset = this->offset();
6496   const section_size_type oview_size =
6497     convert_to_section_size_type(this->data_size());
6498   unsigned char* const oview = of->get_output_view(offset, oview_size);
6499
6500   // Needed for fixing values of .got section.
6501   this->got_view_ = oview;
6502
6503   // Write lazy stub addresses.
6504   for (typename Mips_stubs_entry_set::iterator
6505        p = this->master_got_info_->global_got_symbols().begin();
6506        p != this->master_got_info_->global_got_symbols().end();
6507        ++p)
6508     {
6509       Mips_symbol<size>* mips_sym = *p;
6510       if (mips_sym->has_lazy_stub())
6511         {
6512           Valtype* wv = reinterpret_cast<Valtype*>(
6513             oview + this->get_primary_got_offset(mips_sym));
6514           Valtype value =
6515             this->target_->mips_stubs_section()->stub_address(mips_sym);
6516           elfcpp::Swap<size, big_endian>::writeval(wv, value);
6517         }
6518     }
6519
6520   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6521   for (typename Mips_stubs_entry_set::iterator
6522        p = this->master_got_info_->global_got_symbols().begin();
6523        p != this->master_got_info_->global_got_symbols().end();
6524        ++p)
6525     {
6526       Mips_symbol<size>* mips_sym = *p;
6527       if (!this->multi_got()
6528           && (mips_sym->is_mips16() || mips_sym->is_micromips())
6529           && mips_sym->global_got_area() == GGA_NONE
6530           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6531         {
6532           Valtype* wv = reinterpret_cast<Valtype*>(
6533             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6534           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6535           if (value != 0)
6536             {
6537               value |= 1;
6538               elfcpp::Swap<size, big_endian>::writeval(wv, value);
6539             }
6540         }
6541     }
6542
6543   if (!this->secondary_got_relocs_.empty())
6544     {
6545       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
6546       // secondary GOT entries with non-zero initial value copy the value
6547       // to the corresponding primary GOT entry, and set the secondary GOT
6548       // entry to zero.
6549       // TODO(sasa): This is workaround.  It needs to be investigated further.
6550
6551       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6552         {
6553           Static_reloc& reloc(this->secondary_got_relocs_[i]);
6554           if (reloc.symbol_is_global())
6555             {
6556               Mips_symbol<size>* gsym = reloc.symbol();
6557               gold_assert(gsym != NULL);
6558
6559               unsigned got_offset = reloc.got_offset();
6560               gold_assert(got_offset < oview_size);
6561
6562               // Find primary GOT entry.
6563               Valtype* wv_prim = reinterpret_cast<Valtype*>(
6564                 oview + this->get_primary_got_offset(gsym));
6565
6566               // Find secondary GOT entry.
6567               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6568
6569               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6570               if (value != 0)
6571                 {
6572                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6573                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6574                   gsym->set_applied_secondary_got_fixup();
6575                 }
6576             }
6577         }
6578
6579       of->write_output_view(offset, oview_size, oview);
6580     }
6581
6582   // We are done if there is no fix up.
6583   if (this->static_relocs_.empty())
6584     return;
6585
6586   Output_segment* tls_segment = this->layout_->tls_segment();
6587   gold_assert(tls_segment != NULL);
6588
6589   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6590     {
6591       Static_reloc& reloc(this->static_relocs_[i]);
6592
6593       Mips_address value;
6594       if (!reloc.symbol_is_global())
6595         {
6596           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6597           const Symbol_value<size>* psymval =
6598             object->local_symbol(reloc.index());
6599
6600           // We are doing static linking.  Issue an error and skip this
6601           // relocation if the symbol is undefined or in a discarded_section.
6602           bool is_ordinary;
6603           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6604           if ((shndx == elfcpp::SHN_UNDEF)
6605               || (is_ordinary
6606                   && shndx != elfcpp::SHN_UNDEF
6607                   && !object->is_section_included(shndx)
6608                   && !this->symbol_table_->is_section_folded(object, shndx)))
6609             {
6610               gold_error(_("undefined or discarded local symbol %u from "
6611                            " object %s in GOT"),
6612                          reloc.index(), reloc.relobj()->name().c_str());
6613               continue;
6614             }
6615
6616           value = psymval->value(object, 0);
6617         }
6618       else
6619         {
6620           const Mips_symbol<size>* gsym = reloc.symbol();
6621           gold_assert(gsym != NULL);
6622
6623           // We are doing static linking.  Issue an error and skip this
6624           // relocation if the symbol is undefined or in a discarded_section
6625           // unless it is a weakly_undefined symbol.
6626           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6627               && !gsym->is_weak_undefined())
6628             {
6629               gold_error(_("undefined or discarded symbol %s in GOT"),
6630                          gsym->name());
6631               continue;
6632             }
6633
6634           if (!gsym->is_weak_undefined())
6635             value = gsym->value();
6636           else
6637             value = 0;
6638         }
6639
6640       unsigned got_offset = reloc.got_offset();
6641       gold_assert(got_offset < oview_size);
6642
6643       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6644       Valtype x;
6645
6646       switch (reloc.r_type())
6647         {
6648         case elfcpp::R_MIPS_TLS_DTPMOD32:
6649         case elfcpp::R_MIPS_TLS_DTPMOD64:
6650           x = value;
6651           break;
6652         case elfcpp::R_MIPS_TLS_DTPREL32:
6653         case elfcpp::R_MIPS_TLS_DTPREL64:
6654           x = value - elfcpp::DTP_OFFSET;
6655           break;
6656         case elfcpp::R_MIPS_TLS_TPREL32:
6657         case elfcpp::R_MIPS_TLS_TPREL64:
6658           x = value - elfcpp::TP_OFFSET;
6659           break;
6660         default:
6661           gold_unreachable();
6662           break;
6663         }
6664
6665       elfcpp::Swap<size, big_endian>::writeval(wv, x);
6666     }
6667
6668   of->write_output_view(offset, oview_size, oview);
6669 }
6670
6671 // Mips_relobj methods.
6672
6673 // Count the local symbols.  The Mips backend needs to know if a symbol
6674 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
6675 // because the Symbol object keeps the ELF symbol type and st_other field.
6676 // For local symbol it is harder because we cannot access this information.
6677 // So we override the do_count_local_symbol in parent and scan local symbols to
6678 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
6679 // I do not want to slow down other ports by calling a per symbol target hook
6680 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6681
6682 template<int size, bool big_endian>
6683 void
6684 Mips_relobj<size, big_endian>::do_count_local_symbols(
6685     Stringpool_template<char>* pool,
6686     Stringpool_template<char>* dynpool)
6687 {
6688   // Ask parent to count the local symbols.
6689   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6690   const unsigned int loccount = this->local_symbol_count();
6691   if (loccount == 0)
6692     return;
6693
6694   // Initialize the mips16 and micromips function bit-vector.
6695   this->local_symbol_is_mips16_.resize(loccount, false);
6696   this->local_symbol_is_micromips_.resize(loccount, false);
6697
6698   // Read the symbol table section header.
6699   const unsigned int symtab_shndx = this->symtab_shndx();
6700   elfcpp::Shdr<size, big_endian>
6701     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6702   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6703
6704   // Read the local symbols.
6705   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6706   gold_assert(loccount == symtabshdr.get_sh_info());
6707   off_t locsize = loccount * sym_size;
6708   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6709                                               locsize, true, true);
6710
6711   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6712
6713   // Skip the first dummy symbol.
6714   psyms += sym_size;
6715   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6716     {
6717       elfcpp::Sym<size, big_endian> sym(psyms);
6718       unsigned char st_other = sym.get_st_other();
6719       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6720       this->local_symbol_is_micromips_[i] =
6721         elfcpp::elf_st_is_micromips(st_other);
6722     }
6723 }
6724
6725 // Read the symbol information.
6726
6727 template<int size, bool big_endian>
6728 void
6729 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6730 {
6731   // Call parent class to read symbol information.
6732   this->base_read_symbols(sd);
6733
6734   // Read processor-specific flags in ELF file header.
6735   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6736                                             elfcpp::Elf_sizes<size>::ehdr_size,
6737                                             true, false);
6738   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6739   this->processor_specific_flags_ = ehdr.get_e_flags();
6740
6741   // Get the section names.
6742   const unsigned char* pnamesu = sd->section_names->data();
6743   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6744
6745   // Initialize the mips16 stub section bit-vectors.
6746   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6747   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6748   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6749
6750   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6751   const unsigned char* pshdrs = sd->section_headers->data();
6752   const unsigned char* ps = pshdrs + shdr_size;
6753   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6754     {
6755       elfcpp::Shdr<size, big_endian> shdr(ps);
6756
6757       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6758         {
6759           this->has_reginfo_section_ = true;
6760           // Read the gp value that was used to create this object.  We need the
6761           // gp value while processing relocs.  The .reginfo section is not used
6762           // in the 64-bit MIPS ELF ABI.
6763           section_offset_type section_offset = shdr.get_sh_offset();
6764           section_size_type section_size =
6765             convert_to_section_size_type(shdr.get_sh_size());
6766           const unsigned char* view =
6767              this->get_view(section_offset, section_size, true, false);
6768
6769           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6770
6771           // Read the rest of .reginfo.
6772           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6773           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6774           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6775           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6776           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6777         }
6778
6779       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6780         {
6781           gold_assert(this->attributes_section_data_ == NULL);
6782           section_offset_type section_offset = shdr.get_sh_offset();
6783           section_size_type section_size =
6784             convert_to_section_size_type(shdr.get_sh_size());
6785           const unsigned char* view =
6786             this->get_view(section_offset, section_size, true, false);
6787           this->attributes_section_data_ =
6788             new Attributes_section_data(view, section_size);
6789         }
6790
6791       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6792         {
6793           gold_assert(this->abiflags_ == NULL);
6794           section_offset_type section_offset = shdr.get_sh_offset();
6795           section_size_type section_size =
6796             convert_to_section_size_type(shdr.get_sh_size());
6797           const unsigned char* view =
6798             this->get_view(section_offset, section_size, true, false);
6799           this->abiflags_ = new Mips_abiflags<big_endian>();
6800
6801           this->abiflags_->version =
6802             elfcpp::Swap<16, big_endian>::readval(view);
6803           if (this->abiflags_->version != 0)
6804             {
6805               gold_error(_("%s: .MIPS.abiflags section has "
6806                            "unsupported version %u"),
6807                          this->name().c_str(),
6808                          this->abiflags_->version);
6809               break;
6810             }
6811           this->abiflags_->isa_level =
6812             elfcpp::Swap<8, big_endian>::readval(view + 2);
6813           this->abiflags_->isa_rev =
6814             elfcpp::Swap<8, big_endian>::readval(view + 3);
6815           this->abiflags_->gpr_size =
6816             elfcpp::Swap<8, big_endian>::readval(view + 4);
6817           this->abiflags_->cpr1_size =
6818             elfcpp::Swap<8, big_endian>::readval(view + 5);
6819           this->abiflags_->cpr2_size =
6820             elfcpp::Swap<8, big_endian>::readval(view + 6);
6821           this->abiflags_->fp_abi =
6822             elfcpp::Swap<8, big_endian>::readval(view + 7);
6823           this->abiflags_->isa_ext =
6824             elfcpp::Swap<32, big_endian>::readval(view + 8);
6825           this->abiflags_->ases =
6826             elfcpp::Swap<32, big_endian>::readval(view + 12);
6827           this->abiflags_->flags1 =
6828             elfcpp::Swap<32, big_endian>::readval(view + 16);
6829           this->abiflags_->flags2 =
6830             elfcpp::Swap<32, big_endian>::readval(view + 20);
6831         }
6832
6833       // In the 64-bit ABI, .MIPS.options section holds register information.
6834       // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6835       // starts with this header:
6836       //
6837       // typedef struct
6838       // {
6839       //   // Type of option.
6840       //   unsigned char kind[1];
6841       //   // Size of option descriptor, including header.
6842       //   unsigned char size[1];
6843       //   // Section index of affected section, or 0 for global option.
6844       //   unsigned char section[2];
6845       //   // Information specific to this kind of option.
6846       //   unsigned char info[4];
6847       // };
6848       //
6849       // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6850       // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
6851       // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6852
6853       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6854         {
6855           section_offset_type section_offset = shdr.get_sh_offset();
6856           section_size_type section_size =
6857             convert_to_section_size_type(shdr.get_sh_size());
6858           const unsigned char* view =
6859              this->get_view(section_offset, section_size, true, false);
6860           const unsigned char* end = view + section_size;
6861
6862           while (view + 8 <= end)
6863             {
6864               unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6865               unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6866               if (sz < 8)
6867                 {
6868                   gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6869                                "than its header"),
6870                              this->name().c_str(),
6871                              this->mips_elf_options_section_name(), sz);
6872                   break;
6873                 }
6874
6875               if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6876                 {
6877                   // In the 64 bit ABI, an ODK_REGINFO option is the following
6878                   // structure.  The info field of the options header is not
6879                   // used.
6880                   //
6881                   // typedef struct
6882                   // {
6883                   //   // Mask of general purpose registers used.
6884                   //   unsigned char ri_gprmask[4];
6885                   //   // Padding.
6886                   //   unsigned char ri_pad[4];
6887                   //   // Mask of co-processor registers used.
6888                   //   unsigned char ri_cprmask[4][4];
6889                   //   // GP register value for this object file.
6890                   //   unsigned char ri_gp_value[8];
6891                   // };
6892
6893                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6894                                                                       + 32);
6895                 }
6896               else if (kind == elfcpp::ODK_REGINFO)
6897                 {
6898                   // In the 32 bit ABI, an ODK_REGINFO option is the following
6899                   // structure.  The info field of the options header is not
6900                   // used.  The same structure is used in .reginfo section.
6901                   //
6902                   // typedef struct
6903                   // {
6904                   //   unsigned char ri_gprmask[4];
6905                   //   unsigned char ri_cprmask[4][4];
6906                   //   unsigned char ri_gp_value[4];
6907                   // };
6908
6909                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6910                                                                       + 28);
6911                 }
6912               view += sz;
6913             }
6914         }
6915
6916       const char* name = pnames + shdr.get_sh_name();
6917       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6918       this->section_is_mips16_call_stub_[i] =
6919         is_prefix_of(".mips16.call.", name);
6920       this->section_is_mips16_call_fp_stub_[i] =
6921         is_prefix_of(".mips16.call.fp.", name);
6922
6923       if (strcmp(name, ".pdr") == 0)
6924         {
6925           gold_assert(this->pdr_shndx_ == -1U);
6926           this->pdr_shndx_ = i;
6927         }
6928     }
6929 }
6930
6931 // Discard MIPS16 stub secions that are not needed.
6932
6933 template<int size, bool big_endian>
6934 void
6935 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6936 {
6937   for (typename Mips16_stubs_int_map::const_iterator
6938        it = this->mips16_stub_sections_.begin();
6939        it != this->mips16_stub_sections_.end(); ++it)
6940     {
6941       Mips16_stub_section<size, big_endian>* stub_section = it->second;
6942       if (!stub_section->is_target_found())
6943         {
6944           gold_error(_("no relocation found in mips16 stub section '%s'"),
6945                      stub_section->object()
6946                        ->section_name(stub_section->shndx()).c_str());
6947         }
6948
6949       bool discard = false;
6950       if (stub_section->is_for_local_function())
6951         {
6952           if (stub_section->is_fn_stub())
6953             {
6954               // This stub is for a local symbol.  This stub will only
6955               // be needed if there is some relocation in this object,
6956               // other than a 16 bit function call, which refers to this
6957               // symbol.
6958               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
6959                 discard = true;
6960               else
6961                 this->add_local_mips16_fn_stub(stub_section);
6962             }
6963           else
6964             {
6965               // This stub is for a local symbol.  This stub will only
6966               // be needed if there is some relocation (R_MIPS16_26) in
6967               // this object that refers to this symbol.
6968               gold_assert(stub_section->is_call_stub()
6969                           || stub_section->is_call_fp_stub());
6970               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
6971                 discard = true;
6972               else
6973                 this->add_local_mips16_call_stub(stub_section);
6974             }
6975         }
6976       else
6977         {
6978           Mips_symbol<size>* gsym = stub_section->gsym();
6979           if (stub_section->is_fn_stub())
6980             {
6981               if (gsym->has_mips16_fn_stub())
6982                 // We already have a stub for this function.
6983                 discard = true;
6984               else
6985                 {
6986                   gsym->set_mips16_fn_stub(stub_section);
6987                   if (gsym->should_add_dynsym_entry(symtab))
6988                     {
6989                       // If we have a MIPS16 function with a stub, the
6990                       // dynamic symbol must refer to the stub, since only
6991                       // the stub uses the standard calling conventions.
6992                       gsym->set_need_fn_stub();
6993                       if (gsym->is_from_dynobj())
6994                         gsym->set_needs_dynsym_value();
6995                     }
6996                 }
6997               if (!gsym->need_fn_stub())
6998                 discard = true;
6999             }
7000           else if (stub_section->is_call_stub())
7001             {
7002               if (gsym->is_mips16())
7003                 // We don't need the call_stub; this is a 16 bit
7004                 // function, so calls from other 16 bit functions are
7005                 // OK.
7006                 discard = true;
7007               else if (gsym->has_mips16_call_stub())
7008                 // We already have a stub for this function.
7009                 discard = true;
7010               else
7011                 gsym->set_mips16_call_stub(stub_section);
7012             }
7013           else
7014             {
7015               gold_assert(stub_section->is_call_fp_stub());
7016               if (gsym->is_mips16())
7017                 // We don't need the call_stub; this is a 16 bit
7018                 // function, so calls from other 16 bit functions are
7019                 // OK.
7020                 discard = true;
7021               else if (gsym->has_mips16_call_fp_stub())
7022                 // We already have a stub for this function.
7023                 discard = true;
7024               else
7025                 gsym->set_mips16_call_fp_stub(stub_section);
7026             }
7027         }
7028       if (discard)
7029         this->set_output_section(stub_section->shndx(), NULL);
7030    }
7031 }
7032
7033 // Mips_output_data_la25_stub methods.
7034
7035 // Template for standard LA25 stub.
7036 template<int size, bool big_endian>
7037 const uint32_t
7038 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7039 {
7040   0x3c190000,           // lui $25,%hi(func)
7041   0x08000000,           // j func
7042   0x27390000,           // add $25,$25,%lo(func)
7043   0x00000000            // nop
7044 };
7045
7046 // Template for microMIPS LA25 stub.
7047 template<int size, bool big_endian>
7048 const uint32_t
7049 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7050 {
7051   0x41b9, 0x0000,       // lui t9,%hi(func)
7052   0xd400, 0x0000,       // j func
7053   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
7054   0x0000, 0x0000        // nop
7055 };
7056
7057 // Create la25 stub for a symbol.
7058
7059 template<int size, bool big_endian>
7060 void
7061 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7062     Symbol_table* symtab, Target_mips<size, big_endian>* target,
7063     Mips_symbol<size>* gsym)
7064 {
7065   if (!gsym->has_la25_stub())
7066     {
7067       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7068       this->symbols_.push_back(gsym);
7069       this->create_stub_symbol(gsym, symtab, target, 16);
7070     }
7071 }
7072
7073 // Create a symbol for SYM stub's value and size, to help make the disassembly
7074 // easier to read.
7075
7076 template<int size, bool big_endian>
7077 void
7078 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7079     Mips_symbol<size>* sym, Symbol_table* symtab,
7080     Target_mips<size, big_endian>* target, uint64_t symsize)
7081 {
7082   std::string name(".pic.");
7083   name += sym->name();
7084
7085   unsigned int offset = sym->la25_stub_offset();
7086   if (sym->is_micromips())
7087     offset |= 1;
7088
7089   // Make it a local function.
7090   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7091                                       Symbol_table::PREDEFINED,
7092                                       target->la25_stub_section(),
7093                                       offset, symsize, elfcpp::STT_FUNC,
7094                                       elfcpp::STB_LOCAL,
7095                                       elfcpp::STV_DEFAULT, 0,
7096                                       false, false);
7097   new_sym->set_is_forced_local();
7098 }
7099
7100 // Write out la25 stubs.  This uses the hand-coded instructions above,
7101 // and adjusts them as needed.
7102
7103 template<int size, bool big_endian>
7104 void
7105 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7106 {
7107   const off_t offset = this->offset();
7108   const section_size_type oview_size =
7109     convert_to_section_size_type(this->data_size());
7110   unsigned char* const oview = of->get_output_view(offset, oview_size);
7111
7112   for (typename std::vector<Mips_symbol<size>*>::iterator
7113        p = this->symbols_.begin();
7114        p != this->symbols_.end();
7115        ++p)
7116     {
7117       Mips_symbol<size>* sym = *p;
7118       unsigned char* pov = oview + sym->la25_stub_offset();
7119
7120       Mips_address target = sym->value();
7121       if (!sym->is_micromips())
7122         {
7123           elfcpp::Swap<32, big_endian>::writeval(pov,
7124               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7125           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7126               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7127           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7128               la25_stub_entry[2] | (target & 0xffff));
7129           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7130         }
7131       else
7132         {
7133           target |= 1;
7134           // First stub instruction.  Paste high 16-bits of the target.
7135           elfcpp::Swap<16, big_endian>::writeval(pov,
7136                                                  la25_stub_micromips_entry[0]);
7137           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7138               ((target + 0x8000) >> 16) & 0xffff);
7139           // Second stub instruction.  Paste low 26-bits of the target, shifted
7140           // right by 1.
7141           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7142               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7143           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7144               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7145           // Third stub instruction.  Paste low 16-bits of the target.
7146           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7147                                                  la25_stub_micromips_entry[4]);
7148           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7149           // Fourth stub instruction.
7150           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7151                                                  la25_stub_micromips_entry[6]);
7152           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7153                                                  la25_stub_micromips_entry[7]);
7154         }
7155     }
7156
7157   of->write_output_view(offset, oview_size, oview);
7158 }
7159
7160 // Mips_output_data_plt methods.
7161
7162 // The format of the first PLT entry in an O32 executable.
7163 template<int size, bool big_endian>
7164 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7165 {
7166   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
7167   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
7168   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
7169   0x031cc023,         // subu $24, $24, $28
7170   0x03e07825,         // or $15, $31, zero
7171   0x0018c082,         // srl $24, $24, 2
7172   0x0320f809,         // jalr $25
7173   0x2718fffe          // subu $24, $24, 2
7174 };
7175
7176 // The format of the first PLT entry in an N32 executable.  Different
7177 // because gp ($28) is not available; we use t2 ($14) instead.
7178 template<int size, bool big_endian>
7179 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7180 {
7181   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7182   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
7183   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7184   0x030ec023,         // subu $24, $24, $14
7185   0x03e07825,         // or $15, $31, zero
7186   0x0018c082,         // srl $24, $24, 2
7187   0x0320f809,         // jalr $25
7188   0x2718fffe          // subu $24, $24, 2
7189 };
7190
7191 // The format of the first PLT entry in an N64 executable.  Different
7192 // from N32 because of the increased size of GOT entries.
7193 template<int size, bool big_endian>
7194 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7195 {
7196   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7197   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
7198   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7199   0x030ec023,         // subu $24, $24, $14
7200   0x03e07825,         // or $15, $31, zero
7201   0x0018c0c2,         // srl $24, $24, 3
7202   0x0320f809,         // jalr $25
7203   0x2718fffe          // subu $24, $24, 2
7204 };
7205
7206 // The format of the microMIPS first PLT entry in an O32 executable.
7207 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7208 // of the GOTPLT entry handled, so this stub may only be used when
7209 // all the subsequent PLT entries are microMIPS code too.
7210 //
7211 // The trailing NOP is for alignment and correct disassembly only.
7212 template<int size, bool big_endian>
7213 const uint32_t Mips_output_data_plt<size, big_endian>::
7214 plt0_entry_micromips_o32[] =
7215 {
7216   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
7217   0xff23, 0x0000,      // lw $25, 0($3)
7218   0x0535,              // subu $2, $2, $3
7219   0x2525,              // srl $2, $2, 2
7220   0x3302, 0xfffe,      // subu $24, $2, 2
7221   0x0dff,              // move $15, $31
7222   0x45f9,              // jalrs $25
7223   0x0f83,              // move $28, $3
7224   0x0c00               // nop
7225 };
7226
7227 // The format of the microMIPS first PLT entry in an O32 executable
7228 // in the insn32 mode.
7229 template<int size, bool big_endian>
7230 const uint32_t Mips_output_data_plt<size, big_endian>::
7231 plt0_entry_micromips32_o32[] =
7232 {
7233   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
7234   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
7235   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
7236   0x0398, 0xc1d0,      // subu $24, $24, $28
7237   0x001f, 0x7a90,      // or $15, $31, zero
7238   0x0318, 0x1040,      // srl $24, $24, 2
7239   0x03f9, 0x0f3c,      // jalr $25
7240   0x3318, 0xfffe       // subu $24, $24, 2
7241 };
7242
7243 // The format of subsequent standard entries in the PLT.
7244 template<int size, bool big_endian>
7245 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7246 {
7247   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7248   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7249   0x03200008,           // jr $25
7250   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7251 };
7252
7253 // The format of subsequent R6 PLT entries.
7254 template<int size, bool big_endian>
7255 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7256 {
7257   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7258   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7259   0x03200009,           // jr $25
7260   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7261 };
7262
7263 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
7264 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7265 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7266 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7267 // target function address in register v0.
7268 template<int size, bool big_endian>
7269 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7270 {
7271   0xb303,              // lw $3, 12($pc)
7272   0x651b,              // move $24, $3
7273   0x9b60,              // lw $3, 0($3)
7274   0xeb00,              // jr $3
7275   0x653b,              // move $25, $3
7276   0x6500,              // nop
7277   0x0000, 0x0000       // .word (.got.plt entry)
7278 };
7279
7280 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
7281 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7282 template<int size, bool big_endian>
7283 const uint32_t Mips_output_data_plt<size, big_endian>::
7284 plt_entry_micromips_o32[] =
7285 {
7286   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
7287   0xff22, 0x0000,      // lw $25, 0($2)
7288   0x4599,              // jr $25
7289   0x0f02               // move $24, $2
7290 };
7291
7292 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7293 template<int size, bool big_endian>
7294 const uint32_t Mips_output_data_plt<size, big_endian>::
7295 plt_entry_micromips32_o32[] =
7296 {
7297   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
7298   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
7299   0x0019, 0x0f3c,      // jr $25
7300   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
7301 };
7302
7303 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7304
7305 template<int size, bool big_endian>
7306 void
7307 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7308                                                   unsigned int r_type)
7309 {
7310   gold_assert(!gsym->has_plt_offset());
7311
7312   // Final PLT offset for a symbol will be set in method set_plt_offsets().
7313   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7314                        + sizeof(plt0_entry_o32));
7315   this->symbols_.push_back(gsym);
7316
7317   // Record whether the relocation requires a standard MIPS
7318   // or a compressed code entry.
7319   if (jal_reloc(r_type))
7320    {
7321      if (r_type == elfcpp::R_MIPS_26)
7322        gsym->set_needs_mips_plt(true);
7323      else
7324        gsym->set_needs_comp_plt(true);
7325    }
7326
7327   section_offset_type got_offset = this->got_plt_->current_data_size();
7328
7329   // Every PLT entry needs a GOT entry which points back to the PLT
7330   // entry (this will be changed by the dynamic linker, normally
7331   // lazily when the function is called).
7332   this->got_plt_->set_current_data_size(got_offset + size/8);
7333
7334   gsym->set_needs_dynsym_entry();
7335   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7336                          got_offset);
7337 }
7338
7339 // Set final PLT offsets.  For each symbol, determine whether standard or
7340 // compressed (MIPS16 or microMIPS) PLT entry is used.
7341
7342 template<int size, bool big_endian>
7343 void
7344 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7345 {
7346   // The sizes of individual PLT entries.
7347   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7348   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7349                                       ? this->compressed_plt_entry_size() : 0);
7350
7351   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7352        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7353     {
7354       Mips_symbol<size>* mips_sym = *p;
7355
7356       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7357       // so always use a standard entry there.
7358       //
7359       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7360       // all MIPS16 calls will go via that stub, and there is no benefit
7361       // to having a MIPS16 entry.  And in the case of call_stub a
7362       // standard entry actually has to be used as the stub ends with a J
7363       // instruction.
7364       if (this->target_->is_output_newabi()
7365           || mips_sym->has_mips16_call_stub()
7366           || mips_sym->has_mips16_call_fp_stub())
7367         {
7368           mips_sym->set_needs_mips_plt(true);
7369           mips_sym->set_needs_comp_plt(false);
7370         }
7371
7372       // Otherwise, if there are no direct calls to the function, we
7373       // have a free choice of whether to use standard or compressed
7374       // entries.  Prefer microMIPS entries if the object is known to
7375       // contain microMIPS code, so that it becomes possible to create
7376       // pure microMIPS binaries.  Prefer standard entries otherwise,
7377       // because MIPS16 ones are no smaller and are usually slower.
7378       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7379         {
7380           if (this->target_->is_output_micromips())
7381             mips_sym->set_needs_comp_plt(true);
7382           else
7383             mips_sym->set_needs_mips_plt(true);
7384         }
7385
7386       if (mips_sym->needs_mips_plt())
7387         {
7388           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7389           this->plt_mips_offset_ += plt_mips_entry_size;
7390         }
7391       if (mips_sym->needs_comp_plt())
7392         {
7393           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7394           this->plt_comp_offset_ += plt_comp_entry_size;
7395         }
7396     }
7397
7398     // Figure out the size of the PLT header if we know that we are using it.
7399     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7400       this->plt_header_size_ = this->get_plt_header_size();
7401 }
7402
7403 // Write out the PLT.  This uses the hand-coded instructions above,
7404 // and adjusts them as needed.
7405
7406 template<int size, bool big_endian>
7407 void
7408 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7409 {
7410   const off_t offset = this->offset();
7411   const section_size_type oview_size =
7412     convert_to_section_size_type(this->data_size());
7413   unsigned char* const oview = of->get_output_view(offset, oview_size);
7414
7415   const off_t gotplt_file_offset = this->got_plt_->offset();
7416   const section_size_type gotplt_size =
7417     convert_to_section_size_type(this->got_plt_->data_size());
7418   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7419                                                          gotplt_size);
7420   unsigned char* pov = oview;
7421
7422   Mips_address plt_address = this->address();
7423
7424   // Calculate the address of .got.plt.
7425   Mips_address gotplt_addr = this->got_plt_->address();
7426   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7427   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7428
7429   // The PLT sequence is not safe for N64 if .got.plt's address can
7430   // not be loaded in two instructions.
7431   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7432               || ~(gotplt_addr | 0x7fffffff) == 0);
7433
7434   // Write the PLT header.
7435   const uint32_t* plt0_entry = this->get_plt_header_entry();
7436   if (plt0_entry == plt0_entry_micromips_o32)
7437     {
7438       // Write microMIPS PLT header.
7439       gold_assert(gotplt_addr % 4 == 0);
7440
7441       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7442
7443       // ADDIUPC has a span of +/-16MB, check we're in range.
7444       if (gotpc_offset + 0x1000000 >= 0x2000000)
7445        {
7446          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7447                     "ADDIUPC"), (long)gotpc_offset);
7448          return;
7449        }
7450
7451       elfcpp::Swap<16, big_endian>::writeval(pov,
7452                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7453       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7454                                              (gotpc_offset >> 2) & 0xffff);
7455       pov += 4;
7456       for (unsigned int i = 2;
7457            i < (sizeof(plt0_entry_micromips_o32)
7458                 / sizeof(plt0_entry_micromips_o32[0]));
7459            i++)
7460         {
7461           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7462           pov += 2;
7463         }
7464     }
7465   else if (plt0_entry == plt0_entry_micromips32_o32)
7466     {
7467       // Write microMIPS PLT header in insn32 mode.
7468       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7469       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7470       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7471       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7472       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7473       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7474       pov += 12;
7475       for (unsigned int i = 6;
7476            i < (sizeof(plt0_entry_micromips32_o32)
7477                 / sizeof(plt0_entry_micromips32_o32[0]));
7478            i++)
7479         {
7480           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7481           pov += 2;
7482         }
7483     }
7484   else
7485     {
7486       // Write standard PLT header.
7487       elfcpp::Swap<32, big_endian>::writeval(pov,
7488                                              plt0_entry[0] | gotplt_addr_high);
7489       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7490                                              plt0_entry[1] | gotplt_addr_low);
7491       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7492                                              plt0_entry[2] | gotplt_addr_low);
7493       pov += 12;
7494       for (int i = 3; i < 8; i++)
7495         {
7496           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7497           pov += 4;
7498         }
7499     }
7500
7501
7502   unsigned char* gotplt_pov = gotplt_view;
7503   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7504
7505   // The first two entries in .got.plt are reserved.
7506   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7507   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7508
7509   unsigned int gotplt_offset = 2 * got_entry_size;
7510   gotplt_pov += 2 * got_entry_size;
7511
7512   // Calculate the address of the PLT header.
7513   Mips_address header_address = (plt_address
7514                                  + (this->is_plt_header_compressed() ? 1 : 0));
7515
7516   // Initialize compressed PLT area view.
7517   unsigned char* pov2 = pov + this->plt_mips_offset_;
7518
7519   // Write the PLT entries.
7520   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7521        p = this->symbols_.begin();
7522        p != this->symbols_.end();
7523        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7524     {
7525       Mips_symbol<size>* mips_sym = *p;
7526
7527       // Calculate the address of the .got.plt entry.
7528       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7529       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7530                                        & 0xffff);
7531       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7532
7533       // Initially point the .got.plt entry at the PLT header.
7534       if (this->target_->is_output_n64())
7535         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7536       else
7537         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7538
7539       // Now handle the PLT itself.  First the standard entry.
7540       if (mips_sym->has_mips_plt_offset())
7541         {
7542           // Pick the load opcode (LW or LD).
7543           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7544                                                          : 0x8c000000;
7545
7546           const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7547                                                                 : plt_entry;
7548
7549           // Fill in the PLT entry itself.
7550           elfcpp::Swap<32, big_endian>::writeval(pov,
7551               entry[0] | gotplt_entry_addr_hi);
7552           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7553               entry[1] | gotplt_entry_addr_lo | load);
7554           elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7555           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7556               entry[3] | gotplt_entry_addr_lo);
7557           pov += 16;
7558         }
7559
7560       // Now the compressed entry.  They come after any standard ones.
7561       if (mips_sym->has_comp_plt_offset())
7562         {
7563           if (!this->target_->is_output_micromips())
7564             {
7565               // Write MIPS16 PLT entry.
7566               const uint32_t* plt_entry = plt_entry_mips16_o32;
7567
7568               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7569               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7570               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7571               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7572               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7573               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7574               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7575                                                      gotplt_entry_addr);
7576               pov2 += 16;
7577             }
7578           else if (this->target_->use_32bit_micromips_instructions())
7579             {
7580               // Write microMIPS PLT entry in insn32 mode.
7581               const uint32_t* plt_entry = plt_entry_micromips32_o32;
7582
7583               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7584               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7585                                                      gotplt_entry_addr_hi);
7586               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7587               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7588                                                      gotplt_entry_addr_lo);
7589               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7590               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7591               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7592               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7593                                                      gotplt_entry_addr_lo);
7594               pov2 += 16;
7595             }
7596           else
7597             {
7598               // Write microMIPS PLT entry.
7599               const uint32_t* plt_entry = plt_entry_micromips_o32;
7600
7601               gold_assert(gotplt_entry_addr % 4 == 0);
7602
7603               Mips_address loc_address = plt_address + pov2 - oview;
7604               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7605
7606               // ADDIUPC has a span of +/-16MB, check we're in range.
7607               if (gotpc_offset + 0x1000000 >= 0x2000000)
7608                 {
7609                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
7610                              "range of ADDIUPC"), (long)gotpc_offset);
7611                   return;
7612                 }
7613
7614               elfcpp::Swap<16, big_endian>::writeval(pov2,
7615                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7616               elfcpp::Swap<16, big_endian>::writeval(
7617                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7618               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7619               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7620               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7621               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7622               pov2 += 12;
7623             }
7624         }
7625     }
7626
7627   // Check the number of bytes written for standard entries.
7628   gold_assert(static_cast<section_size_type>(
7629       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7630   // Check the number of bytes written for compressed entries.
7631   gold_assert((static_cast<section_size_type>(pov2 - pov)
7632                == this->plt_comp_offset_));
7633   // Check the total number of bytes written.
7634   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7635
7636   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7637               == gotplt_size);
7638
7639   of->write_output_view(offset, oview_size, oview);
7640   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7641 }
7642
7643 // Mips_output_data_mips_stubs methods.
7644
7645 // The format of the lazy binding stub when dynamic symbol count is less than
7646 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7647 template<int size, bool big_endian>
7648 const uint32_t
7649 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7650 {
7651   0x8f998010,         // lw t9,0x8010(gp)
7652   0x03e07825,         // or t7,ra,zero
7653   0x0320f809,         // jalr t9,ra
7654   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
7655 };
7656
7657 // The format of the lazy binding stub when dynamic symbol count is less than
7658 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7659 template<int size, bool big_endian>
7660 const uint32_t
7661 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7662 {
7663   0xdf998010,         // ld t9,0x8010(gp)
7664   0x03e07825,         // or t7,ra,zero
7665   0x0320f809,         // jalr t9,ra
7666   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
7667 };
7668
7669 // The format of the lazy binding stub when dynamic symbol count is less than
7670 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7671 template<int size, bool big_endian>
7672 const uint32_t
7673 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7674 {
7675   0x8f998010,         // lw t9,0x8010(gp)
7676   0x03e07825,         // or t7,ra,zero
7677   0x0320f809,         // jalr t9,ra
7678   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7679 };
7680
7681 // The format of the lazy binding stub when dynamic symbol count is less than
7682 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7683 template<int size, bool big_endian>
7684 const uint32_t
7685 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7686 {
7687   0xdf998010,         // ld t9,0x8010(gp)
7688   0x03e07825,         // or t7,ra,zero
7689   0x0320f809,         // jalr t9,ra
7690   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7691 };
7692
7693 // The format of the lazy binding stub when dynamic symbol count is greater than
7694 // 64K, and ABI is not N64.
7695 template<int size, bool big_endian>
7696 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7697 {
7698   0x8f998010,         // lw t9,0x8010(gp)
7699   0x03e07825,         // or t7,ra,zero
7700   0x3c180000,         // lui t8,DYN_INDEX
7701   0x0320f809,         // jalr t9,ra
7702   0x37180000          // ori t8,t8,DYN_INDEX
7703 };
7704
7705 // The format of the lazy binding stub when dynamic symbol count is greater than
7706 // 64K, and ABI is N64.
7707 template<int size, bool big_endian>
7708 const uint32_t
7709 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7710 {
7711   0xdf998010,         // ld t9,0x8010(gp)
7712   0x03e07825,         // or t7,ra,zero
7713   0x3c180000,         // lui t8,DYN_INDEX
7714   0x0320f809,         // jalr t9,ra
7715   0x37180000          // ori t8,t8,DYN_INDEX
7716 };
7717
7718 // microMIPS stubs.
7719
7720 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7721 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7722 template<int size, bool big_endian>
7723 const uint32_t
7724 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7725 {
7726   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7727   0x0dff,             // move t7,ra
7728   0x45d9,             // jalr t9
7729   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7730 };
7731
7732 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7733 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7734 template<int size, bool big_endian>
7735 const uint32_t
7736 Mips_output_data_mips_stubs<size, big_endian>::
7737 lazy_stub_micromips_normal_1_n64[] =
7738 {
7739   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7740   0x0dff,             // move t7,ra
7741   0x45d9,             // jalr t9
7742   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7743 };
7744
7745 // The format of the microMIPS lazy binding stub when dynamic symbol
7746 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7747 // and ABI is not N64.
7748 template<int size, bool big_endian>
7749 const uint32_t
7750 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7751 {
7752   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7753   0x0dff,             // move t7,ra
7754   0x45d9,             // jalr t9
7755   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7756 };
7757
7758 // The format of the microMIPS lazy binding stub when dynamic symbol
7759 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7760 // and ABI is N64.
7761 template<int size, bool big_endian>
7762 const uint32_t
7763 Mips_output_data_mips_stubs<size, big_endian>::
7764 lazy_stub_micromips_normal_2_n64[] =
7765 {
7766   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7767   0x0dff,             // move t7,ra
7768   0x45d9,             // jalr t9
7769   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7770 };
7771
7772 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7773 // greater than 64K, and ABI is not N64.
7774 template<int size, bool big_endian>
7775 const uint32_t
7776 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7777 {
7778   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7779   0x0dff,             // move t7,ra
7780   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7781   0x45d9,             // jalr t9
7782   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7783 };
7784
7785 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7786 // greater than 64K, and ABI is N64.
7787 template<int size, bool big_endian>
7788 const uint32_t
7789 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7790 {
7791   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7792   0x0dff,             // move t7,ra
7793   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7794   0x45d9,             // jalr t9
7795   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7796 };
7797
7798 // 32-bit microMIPS stubs.
7799
7800 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7801 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7802 // can use only 32-bit instructions.
7803 template<int size, bool big_endian>
7804 const uint32_t
7805 Mips_output_data_mips_stubs<size, big_endian>::
7806 lazy_stub_micromips32_normal_1[] =
7807 {
7808   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7809   0x001f, 0x7a90,     // or t7,ra,zero
7810   0x03f9, 0x0f3c,     // jalr ra,t9
7811   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7812 };
7813
7814 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7815 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7816 // use only 32-bit instructions.
7817 template<int size, bool big_endian>
7818 const uint32_t
7819 Mips_output_data_mips_stubs<size, big_endian>::
7820 lazy_stub_micromips32_normal_1_n64[] =
7821 {
7822   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7823   0x001f, 0x7a90,     // or t7,ra,zero
7824   0x03f9, 0x0f3c,     // jalr ra,t9
7825   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7826 };
7827
7828 // The format of the microMIPS lazy binding stub when dynamic symbol
7829 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7830 // ABI is not N64, and we can use only 32-bit instructions.
7831 template<int size, bool big_endian>
7832 const uint32_t
7833 Mips_output_data_mips_stubs<size, big_endian>::
7834 lazy_stub_micromips32_normal_2[] =
7835 {
7836   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7837   0x001f, 0x7a90,     // or t7,ra,zero
7838   0x03f9, 0x0f3c,     // jalr ra,t9
7839   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7840 };
7841
7842 // The format of the microMIPS lazy binding stub when dynamic symbol
7843 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7844 // ABI is N64, and we can use only 32-bit instructions.
7845 template<int size, bool big_endian>
7846 const uint32_t
7847 Mips_output_data_mips_stubs<size, big_endian>::
7848 lazy_stub_micromips32_normal_2_n64[] =
7849 {
7850   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7851   0x001f, 0x7a90,     // or t7,ra,zero
7852   0x03f9, 0x0f3c,     // jalr ra,t9
7853   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7854 };
7855
7856 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7857 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7858 template<int size, bool big_endian>
7859 const uint32_t
7860 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7861 {
7862   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7863   0x001f, 0x7a90,     // or t7,ra,zero
7864   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7865   0x03f9, 0x0f3c,     // jalr ra,t9
7866   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7867 };
7868
7869 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7870 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7871 template<int size, bool big_endian>
7872 const uint32_t
7873 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7874 {
7875   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7876   0x001f, 0x7a90,     // or t7,ra,zero
7877   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7878   0x03f9, 0x0f3c,     // jalr ra,t9
7879   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7880 };
7881
7882 // Create entry for a symbol.
7883
7884 template<int size, bool big_endian>
7885 void
7886 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7887     Mips_symbol<size>* gsym)
7888 {
7889   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7890     {
7891       this->symbols_.insert(gsym);
7892       gsym->set_has_lazy_stub(true);
7893     }
7894 }
7895
7896 // Remove entry for a symbol.
7897
7898 template<int size, bool big_endian>
7899 void
7900 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7901     Mips_symbol<size>* gsym)
7902 {
7903   if (gsym->has_lazy_stub())
7904     {
7905       this->symbols_.erase(gsym);
7906       gsym->set_has_lazy_stub(false);
7907     }
7908 }
7909
7910 // Set stub offsets for symbols.  This method expects that the number of
7911 // entries in dynamic symbol table is set.
7912
7913 template<int size, bool big_endian>
7914 void
7915 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7916 {
7917   gold_assert(this->dynsym_count_ != -1U);
7918
7919   if (this->stub_offsets_are_set_)
7920     return;
7921
7922   unsigned int stub_size = this->stub_size();
7923   unsigned int offset = 0;
7924   for (typename Mips_stubs_entry_set::const_iterator
7925        p = this->symbols_.begin();
7926        p != this->symbols_.end();
7927        ++p, offset += stub_size)
7928     {
7929       Mips_symbol<size>* mips_sym = *p;
7930       mips_sym->set_lazy_stub_offset(offset);
7931     }
7932   this->stub_offsets_are_set_ = true;
7933 }
7934
7935 template<int size, bool big_endian>
7936 void
7937 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7938 {
7939   for (typename Mips_stubs_entry_set::const_iterator
7940        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7941     {
7942       Mips_symbol<size>* sym = *p;
7943       if (sym->is_from_dynobj())
7944         sym->set_needs_dynsym_value();
7945     }
7946 }
7947
7948 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
7949 // adjusts them as needed.
7950
7951 template<int size, bool big_endian>
7952 void
7953 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7954 {
7955   const off_t offset = this->offset();
7956   const section_size_type oview_size =
7957     convert_to_section_size_type(this->data_size());
7958   unsigned char* const oview = of->get_output_view(offset, oview_size);
7959
7960   bool big_stub = this->dynsym_count_ > 0x10000;
7961
7962   unsigned char* pov = oview;
7963   for (typename Mips_stubs_entry_set::const_iterator
7964        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7965     {
7966       Mips_symbol<size>* sym = *p;
7967       const uint32_t* lazy_stub;
7968       bool n64 = this->target_->is_output_n64();
7969
7970       if (!this->target_->is_output_micromips())
7971         {
7972           // Write standard (non-microMIPS) stub.
7973           if (!big_stub)
7974             {
7975               if (sym->dynsym_index() & ~0x7fff)
7976                 // Dynsym index is between 32K and 64K.
7977                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
7978               else
7979                 // Dynsym index is less than 32K.
7980                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
7981             }
7982           else
7983             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
7984
7985           unsigned int i = 0;
7986           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7987           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
7988           pov += 8;
7989
7990           i += 2;
7991           if (big_stub)
7992             {
7993               // LUI instruction of the big stub.  Paste high 16 bits of the
7994               // dynsym index.
7995               elfcpp::Swap<32, big_endian>::writeval(pov,
7996                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
7997               pov += 4;
7998               i += 1;
7999             }
8000           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8001           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8002           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8003               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8004           pov += 8;
8005         }
8006       else if (this->target_->use_32bit_micromips_instructions())
8007         {
8008           // Write microMIPS stub in insn32 mode.
8009           if (!big_stub)
8010             {
8011               if (sym->dynsym_index() & ~0x7fff)
8012                 // Dynsym index is between 32K and 64K.
8013                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8014                                 : lazy_stub_micromips32_normal_2;
8015               else
8016                 // Dynsym index is less than 32K.
8017                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8018                                 : lazy_stub_micromips32_normal_1;
8019             }
8020           else
8021             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8022                             : lazy_stub_micromips32_big;
8023
8024           unsigned int i = 0;
8025           // First stub instruction.  We emit 32-bit microMIPS instructions by
8026           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8027           // the instruction where the opcode is must always come first, for
8028           // both little and big endian.
8029           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8030           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8031           // Second stub instruction.
8032           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8033           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8034           pov += 8;
8035           i += 4;
8036           if (big_stub)
8037             {
8038               // LUI instruction of the big stub.  Paste high 16 bits of the
8039               // dynsym index.
8040               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8041               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8042                   (sym->dynsym_index() >> 16) & 0x7fff);
8043               pov += 4;
8044               i += 2;
8045             }
8046           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8047           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8048           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8049           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8050           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8051               sym->dynsym_index() & 0xffff);
8052           pov += 8;
8053         }
8054       else
8055         {
8056           // Write microMIPS stub.
8057           if (!big_stub)
8058             {
8059               if (sym->dynsym_index() & ~0x7fff)
8060                 // Dynsym index is between 32K and 64K.
8061                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8062                                 : lazy_stub_micromips_normal_2;
8063               else
8064                 // Dynsym index is less than 32K.
8065                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8066                                 : lazy_stub_micromips_normal_1;
8067             }
8068           else
8069             lazy_stub = n64 ? lazy_stub_micromips_big_n64
8070                             : lazy_stub_micromips_big;
8071
8072           unsigned int i = 0;
8073           // First stub instruction.  We emit 32-bit microMIPS instructions by
8074           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8075           // the instruction where the opcode is must always come first, for
8076           // both little and big endian.
8077           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8078           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8079           // Second stub instruction.
8080           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8081           pov += 6;
8082           i += 3;
8083           if (big_stub)
8084             {
8085               // LUI instruction of the big stub.  Paste high 16 bits of the
8086               // dynsym index.
8087               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8088               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8089                   (sym->dynsym_index() >> 16) & 0x7fff);
8090               pov += 4;
8091               i += 2;
8092             }
8093           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8094           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8095           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8096           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8097               sym->dynsym_index() & 0xffff);
8098           pov += 6;
8099         }
8100     }
8101
8102   // We always allocate 20 bytes for every stub, because final dynsym count is
8103   // not known in method do_finalize_sections.  There are 4 unused bytes per
8104   // stub if final dynsym count is less than 0x10000.
8105   unsigned int used = pov - oview;
8106   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8107   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8108
8109   // Fill the unused space with zeroes.
8110   // TODO(sasa): Can we strip unused bytes during the relaxation?
8111   if (unused > 0)
8112     memset(pov, 0, unused);
8113
8114   of->write_output_view(offset, oview_size, oview);
8115 }
8116
8117 // Mips_output_section_reginfo methods.
8118
8119 template<int size, bool big_endian>
8120 void
8121 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8122 {
8123   off_t offset = this->offset();
8124   off_t data_size = this->data_size();
8125
8126   unsigned char* view = of->get_output_view(offset, data_size);
8127   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8128   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8129   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8130   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8131   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8132   // Write the gp value.
8133   elfcpp::Swap<size, big_endian>::writeval(view + 20,
8134                                            this->target_->gp_value());
8135
8136   of->write_output_view(offset, data_size, view);
8137 }
8138
8139 // Mips_output_section_abiflags methods.
8140
8141 template<int size, bool big_endian>
8142 void
8143 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8144 {
8145   off_t offset = this->offset();
8146   off_t data_size = this->data_size();
8147
8148   unsigned char* view = of->get_output_view(offset, data_size);
8149   elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8150   elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8151   elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8152   elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8153   elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8154   elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8155   elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8156   elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8157   elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8158   elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8159   elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8160
8161   of->write_output_view(offset, data_size, view);
8162 }
8163
8164 // Mips_copy_relocs methods.
8165
8166 // Emit any saved relocs.
8167
8168 template<int sh_type, int size, bool big_endian>
8169 void
8170 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8171     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8172     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8173 {
8174   for (typename Copy_relocs<sh_type, size, big_endian>::
8175        Copy_reloc_entries::iterator p = this->entries_.begin();
8176        p != this->entries_.end();
8177        ++p)
8178     emit_entry(*p, reloc_section, symtab, layout, target);
8179
8180   // We no longer need the saved information.
8181   this->entries_.clear();
8182 }
8183
8184 // Emit the reloc if appropriate.
8185
8186 template<int sh_type, int size, bool big_endian>
8187 void
8188 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8189     Copy_reloc_entry& entry,
8190     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8191     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8192 {
8193   // If the symbol is no longer defined in a dynamic object, then we
8194   // emitted a COPY relocation, and we do not want to emit this
8195   // dynamic relocation.
8196   if (!entry.sym_->is_from_dynobj())
8197     return;
8198
8199   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8200                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8201                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
8202
8203   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8204   if (can_make_dynamic && !sym->has_static_relocs())
8205     {
8206       Mips_relobj<size, big_endian>* object =
8207         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8208       target->got_section(symtab, layout)->record_global_got_symbol(
8209                           sym, object, entry.reloc_type_, true, false);
8210       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8211         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8212             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8213       else
8214         target->rel_dyn_section(layout)->add_symbolless_global_addend(
8215             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8216             entry.shndx_, entry.address_);
8217     }
8218   else
8219     this->make_copy_reloc(symtab, layout,
8220                           static_cast<Sized_symbol<size>*>(entry.sym_),
8221                           entry.relobj_,
8222                           reloc_section);
8223 }
8224
8225 // Target_mips methods.
8226
8227 // Return the value to use for a dynamic symbol which requires special
8228 // treatment.  This is how we support equality comparisons of function
8229 // pointers across shared library boundaries, as described in the
8230 // processor specific ABI supplement.
8231
8232 template<int size, bool big_endian>
8233 uint64_t
8234 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8235 {
8236   uint64_t value = 0;
8237   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8238
8239   if (!mips_sym->has_lazy_stub())
8240     {
8241       if (mips_sym->has_plt_offset())
8242         {
8243           // We distinguish between PLT entries and lazy-binding stubs by
8244           // giving the former an st_other value of STO_MIPS_PLT.  Set the
8245           // value to the stub address if there are any relocations in the
8246           // binary where pointer equality matters.
8247           if (mips_sym->pointer_equality_needed())
8248             {
8249               // Prefer a standard MIPS PLT entry.
8250               if (mips_sym->has_mips_plt_offset())
8251                 value = this->plt_section()->mips_entry_address(mips_sym);
8252               else
8253                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8254             }
8255           else
8256             value = 0;
8257         }
8258     }
8259   else
8260     {
8261       // First, set stub offsets for symbols.  This method expects that the
8262       // number of entries in dynamic symbol table is set.
8263       this->mips_stubs_section()->set_lazy_stub_offsets();
8264
8265       // The run-time linker uses the st_value field of the symbol
8266       // to reset the global offset table entry for this external
8267       // to its stub address when unlinking a shared object.
8268       value = this->mips_stubs_section()->stub_address(mips_sym);
8269     }
8270
8271   if (mips_sym->has_mips16_fn_stub())
8272     {
8273       // If we have a MIPS16 function with a stub, the dynamic symbol must
8274       // refer to the stub, since only the stub uses the standard calling
8275       // conventions.
8276       value = mips_sym->template
8277               get_mips16_fn_stub<big_endian>()->output_address();
8278     }
8279
8280   return value;
8281 }
8282
8283 // Get the dynamic reloc section, creating it if necessary.  It's always
8284 // .rel.dyn, even for MIPS64.
8285
8286 template<int size, bool big_endian>
8287 typename Target_mips<size, big_endian>::Reloc_section*
8288 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8289 {
8290   if (this->rel_dyn_ == NULL)
8291     {
8292       gold_assert(layout != NULL);
8293       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8294       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8295                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
8296                                       ORDER_DYNAMIC_RELOCS, false);
8297
8298       // First entry in .rel.dyn has to be null.
8299       // This is hack - we define dummy output data and set its address to 0,
8300       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8301       // This ensures that the entry is null.
8302       Output_data* od = new Output_data_zero_fill(0, 0);
8303       od->set_address(0);
8304       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8305     }
8306   return this->rel_dyn_;
8307 }
8308
8309 // Get the GOT section, creating it if necessary.
8310
8311 template<int size, bool big_endian>
8312 Mips_output_data_got<size, big_endian>*
8313 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8314                                            Layout* layout)
8315 {
8316   if (this->got_ == NULL)
8317     {
8318       gold_assert(symtab != NULL && layout != NULL);
8319
8320       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8321                                                               layout);
8322       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8323                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8324                                       elfcpp::SHF_MIPS_GPREL),
8325                                       this->got_, ORDER_DATA, false);
8326
8327       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8328       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8329                                     Symbol_table::PREDEFINED,
8330                                     this->got_,
8331                                     0, 0, elfcpp::STT_OBJECT,
8332                                     elfcpp::STB_GLOBAL,
8333                                     elfcpp::STV_DEFAULT, 0,
8334                                     false, false);
8335     }
8336
8337   return this->got_;
8338 }
8339
8340 // Calculate value of _gp symbol.
8341
8342 template<int size, bool big_endian>
8343 void
8344 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8345 {
8346   if (this->gp_ != NULL)
8347     return;
8348
8349   Output_data* section = layout->find_output_section(".got");
8350   if (section == NULL)
8351     {
8352       // If there is no .got section, gp should be based on .sdata.
8353       // TODO(sasa): This is probably not needed.  This was needed for older
8354       // MIPS architectures which accessed both GOT and .sdata section using
8355       // gp-relative addressing.  Modern Mips Linux ELF architectures don't
8356       // access .sdata using gp-relative addressing.
8357       for (Layout::Section_list::const_iterator
8358            p = layout->section_list().begin();
8359            p != layout->section_list().end();
8360            ++p)
8361         {
8362           if (strcmp((*p)->name(), ".sdata") == 0)
8363             {
8364               section = *p;
8365               break;
8366             }
8367         }
8368     }
8369
8370   Sized_symbol<size>* gp =
8371     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8372   if (gp != NULL)
8373     {
8374       if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
8375         gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
8376                              elfcpp::STT_OBJECT,
8377                              elfcpp::STB_GLOBAL,
8378                              elfcpp::STV_DEFAULT, 0,
8379                              false, false);
8380       this->gp_ = gp;
8381     }
8382   else if (section != NULL)
8383     {
8384       gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8385                                       "_gp", NULL, Symbol_table::PREDEFINED,
8386                                       section, MIPS_GP_OFFSET, 0,
8387                                       elfcpp::STT_OBJECT,
8388                                       elfcpp::STB_GLOBAL,
8389                                       elfcpp::STV_DEFAULT,
8390                                       0, false, false));
8391       this->gp_ = gp;
8392     }
8393 }
8394
8395 // Set the dynamic symbol indexes.  INDEX is the index of the first
8396 // global dynamic symbol.  Pointers to the symbols are stored into the
8397 // vector SYMS.  The names are added to DYNPOOL.  This returns an
8398 // updated dynamic symbol index.
8399
8400 template<int size, bool big_endian>
8401 unsigned int
8402 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8403     std::vector<Symbol*>* dyn_symbols, unsigned int index,
8404     std::vector<Symbol*>* syms, Stringpool* dynpool,
8405     Versions* versions, Symbol_table* symtab) const
8406 {
8407   std::vector<Symbol*> non_got_symbols;
8408   std::vector<Symbol*> got_symbols;
8409
8410   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8411                                         &got_symbols);
8412
8413   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8414        p != non_got_symbols.end();
8415        ++p)
8416     {
8417       Symbol* sym = *p;
8418
8419       // Note that SYM may already have a dynamic symbol index, since
8420       // some symbols appear more than once in the symbol table, with
8421       // and without a version.
8422
8423       if (!sym->has_dynsym_index())
8424         {
8425           sym->set_dynsym_index(index);
8426           ++index;
8427           syms->push_back(sym);
8428           dynpool->add(sym->name(), false, NULL);
8429
8430           // Record any version information.
8431           if (sym->version() != NULL)
8432             versions->record_version(symtab, dynpool, sym);
8433
8434           // If the symbol is defined in a dynamic object and is
8435           // referenced in a regular object, then mark the dynamic
8436           // object as needed.  This is used to implement --as-needed.
8437           if (sym->is_from_dynobj() && sym->in_reg())
8438             sym->object()->set_is_needed();
8439         }
8440     }
8441
8442   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8443        p != got_symbols.end();
8444        ++p)
8445     {
8446       Symbol* sym = *p;
8447       if (!sym->has_dynsym_index())
8448         {
8449           // Record any version information.
8450           if (sym->version() != NULL)
8451             versions->record_version(symtab, dynpool, sym);
8452         }
8453     }
8454
8455   index = versions->finalize(symtab, index, syms);
8456
8457   int got_sym_count = 0;
8458   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8459        p != got_symbols.end();
8460        ++p)
8461     {
8462       Symbol* sym = *p;
8463
8464       if (!sym->has_dynsym_index())
8465         {
8466           ++got_sym_count;
8467           sym->set_dynsym_index(index);
8468           ++index;
8469           syms->push_back(sym);
8470           dynpool->add(sym->name(), false, NULL);
8471
8472           // If the symbol is defined in a dynamic object and is
8473           // referenced in a regular object, then mark the dynamic
8474           // object as needed.  This is used to implement --as-needed.
8475           if (sym->is_from_dynobj() && sym->in_reg())
8476             sym->object()->set_is_needed();
8477         }
8478     }
8479
8480   // Set index of the first symbol that has .got entry.
8481   this->got_->set_first_global_got_dynsym_index(
8482     got_sym_count > 0 ? index - got_sym_count : -1U);
8483
8484   if (this->mips_stubs_ != NULL)
8485     this->mips_stubs_->set_dynsym_count(index);
8486
8487   return index;
8488 }
8489
8490 // Create a PLT entry for a global symbol referenced by r_type relocation.
8491
8492 template<int size, bool big_endian>
8493 void
8494 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8495                                               Layout* layout,
8496                                               Mips_symbol<size>* gsym,
8497                                               unsigned int r_type)
8498 {
8499   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8500     return;
8501
8502   if (this->plt_ == NULL)
8503     {
8504       // Create the GOT section first.
8505       this->got_section(symtab, layout);
8506
8507       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8508       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8509                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8510                                       this->got_plt_, ORDER_DATA, false);
8511
8512       // The first two entries are reserved.
8513       this->got_plt_->set_current_data_size(2 * size/8);
8514
8515       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8516                                                               this->got_plt_,
8517                                                               this);
8518       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8519                                       (elfcpp::SHF_ALLOC
8520                                        | elfcpp::SHF_EXECINSTR),
8521                                       this->plt_, ORDER_PLT, false);
8522     }
8523
8524   this->plt_->add_entry(gsym, r_type);
8525 }
8526
8527
8528 // Get the .MIPS.stubs section, creating it if necessary.
8529
8530 template<int size, bool big_endian>
8531 Mips_output_data_mips_stubs<size, big_endian>*
8532 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8533 {
8534   if (this->mips_stubs_ == NULL)
8535     {
8536       this->mips_stubs_ =
8537         new Mips_output_data_mips_stubs<size, big_endian>(this);
8538       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8539                                       (elfcpp::SHF_ALLOC
8540                                        | elfcpp::SHF_EXECINSTR),
8541                                       this->mips_stubs_, ORDER_PLT, false);
8542     }
8543   return this->mips_stubs_;
8544 }
8545
8546 // Get the LA25 stub section, creating it if necessary.
8547
8548 template<int size, bool big_endian>
8549 Mips_output_data_la25_stub<size, big_endian>*
8550 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8551 {
8552   if (this->la25_stub_ == NULL)
8553     {
8554       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8555       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8556                                       (elfcpp::SHF_ALLOC
8557                                        | elfcpp::SHF_EXECINSTR),
8558                                       this->la25_stub_, ORDER_TEXT, false);
8559     }
8560   return this->la25_stub_;
8561 }
8562
8563 // Process the relocations to determine unreferenced sections for
8564 // garbage collection.
8565
8566 template<int size, bool big_endian>
8567 void
8568 Target_mips<size, big_endian>::gc_process_relocs(
8569                         Symbol_table* symtab,
8570                         Layout* layout,
8571                         Sized_relobj_file<size, big_endian>* object,
8572                         unsigned int data_shndx,
8573                         unsigned int sh_type,
8574                         const unsigned char* prelocs,
8575                         size_t reloc_count,
8576                         Output_section* output_section,
8577                         bool needs_special_offset_handling,
8578                         size_t local_symbol_count,
8579                         const unsigned char* plocal_symbols)
8580 {
8581   typedef Target_mips<size, big_endian> Mips;
8582
8583   if (sh_type == elfcpp::SHT_REL)
8584     {
8585       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8586           Classify_reloc;
8587
8588       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8589         symtab,
8590         layout,
8591         this,
8592         object,
8593         data_shndx,
8594         prelocs,
8595         reloc_count,
8596         output_section,
8597         needs_special_offset_handling,
8598         local_symbol_count,
8599         plocal_symbols);
8600     }
8601   else if (sh_type == elfcpp::SHT_RELA)
8602     {
8603       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8604           Classify_reloc;
8605
8606       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8607         symtab,
8608         layout,
8609         this,
8610         object,
8611         data_shndx,
8612         prelocs,
8613         reloc_count,
8614         output_section,
8615         needs_special_offset_handling,
8616         local_symbol_count,
8617         plocal_symbols);
8618     }
8619   else
8620     gold_unreachable();
8621 }
8622
8623 // Scan relocations for a section.
8624
8625 template<int size, bool big_endian>
8626 void
8627 Target_mips<size, big_endian>::scan_relocs(
8628                         Symbol_table* symtab,
8629                         Layout* layout,
8630                         Sized_relobj_file<size, big_endian>* object,
8631                         unsigned int data_shndx,
8632                         unsigned int sh_type,
8633                         const unsigned char* prelocs,
8634                         size_t reloc_count,
8635                         Output_section* output_section,
8636                         bool needs_special_offset_handling,
8637                         size_t local_symbol_count,
8638                         const unsigned char* plocal_symbols)
8639 {
8640   typedef Target_mips<size, big_endian> Mips;
8641
8642   if (sh_type == elfcpp::SHT_REL)
8643     {
8644       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8645           Classify_reloc;
8646
8647       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8648         symtab,
8649         layout,
8650         this,
8651         object,
8652         data_shndx,
8653         prelocs,
8654         reloc_count,
8655         output_section,
8656         needs_special_offset_handling,
8657         local_symbol_count,
8658         plocal_symbols);
8659     }
8660   else if (sh_type == elfcpp::SHT_RELA)
8661     {
8662       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8663           Classify_reloc;
8664
8665       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8666         symtab,
8667         layout,
8668         this,
8669         object,
8670         data_shndx,
8671         prelocs,
8672         reloc_count,
8673         output_section,
8674         needs_special_offset_handling,
8675         local_symbol_count,
8676         plocal_symbols);
8677     }
8678 }
8679
8680 template<int size, bool big_endian>
8681 bool
8682 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8683 {
8684   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8685           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8686           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8687           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8688           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8689           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8690           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8691           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8692 }
8693
8694 // Return the MACH for a MIPS e_flags value.
8695 template<int size, bool big_endian>
8696 unsigned int
8697 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8698 {
8699   switch (flags & elfcpp::EF_MIPS_MACH)
8700     {
8701     case elfcpp::E_MIPS_MACH_3900:
8702       return mach_mips3900;
8703
8704     case elfcpp::E_MIPS_MACH_4010:
8705       return mach_mips4010;
8706
8707     case elfcpp::E_MIPS_MACH_4100:
8708       return mach_mips4100;
8709
8710     case elfcpp::E_MIPS_MACH_4111:
8711       return mach_mips4111;
8712
8713     case elfcpp::E_MIPS_MACH_4120:
8714       return mach_mips4120;
8715
8716     case elfcpp::E_MIPS_MACH_4650:
8717       return mach_mips4650;
8718
8719     case elfcpp::E_MIPS_MACH_5400:
8720       return mach_mips5400;
8721
8722     case elfcpp::E_MIPS_MACH_5500:
8723       return mach_mips5500;
8724
8725     case elfcpp::E_MIPS_MACH_5900:
8726       return mach_mips5900;
8727
8728     case elfcpp::E_MIPS_MACH_9000:
8729       return mach_mips9000;
8730
8731     case elfcpp::E_MIPS_MACH_SB1:
8732       return mach_mips_sb1;
8733
8734     case elfcpp::E_MIPS_MACH_LS2E:
8735       return mach_mips_loongson_2e;
8736
8737     case elfcpp::E_MIPS_MACH_LS2F:
8738       return mach_mips_loongson_2f;
8739
8740     case elfcpp::E_MIPS_MACH_LS3A:
8741       return mach_mips_loongson_3a;
8742
8743     case elfcpp::E_MIPS_MACH_OCTEON3:
8744       return mach_mips_octeon3;
8745
8746     case elfcpp::E_MIPS_MACH_OCTEON2:
8747       return mach_mips_octeon2;
8748
8749     case elfcpp::E_MIPS_MACH_OCTEON:
8750       return mach_mips_octeon;
8751
8752     case elfcpp::E_MIPS_MACH_XLR:
8753       return mach_mips_xlr;
8754
8755     default:
8756       switch (flags & elfcpp::EF_MIPS_ARCH)
8757         {
8758         default:
8759         case elfcpp::E_MIPS_ARCH_1:
8760           return mach_mips3000;
8761
8762         case elfcpp::E_MIPS_ARCH_2:
8763           return mach_mips6000;
8764
8765         case elfcpp::E_MIPS_ARCH_3:
8766           return mach_mips4000;
8767
8768         case elfcpp::E_MIPS_ARCH_4:
8769           return mach_mips8000;
8770
8771         case elfcpp::E_MIPS_ARCH_5:
8772           return mach_mips5;
8773
8774         case elfcpp::E_MIPS_ARCH_32:
8775           return mach_mipsisa32;
8776
8777         case elfcpp::E_MIPS_ARCH_64:
8778           return mach_mipsisa64;
8779
8780         case elfcpp::E_MIPS_ARCH_32R2:
8781           return mach_mipsisa32r2;
8782
8783         case elfcpp::E_MIPS_ARCH_32R6:
8784           return mach_mipsisa32r6;
8785
8786         case elfcpp::E_MIPS_ARCH_64R2:
8787           return mach_mipsisa64r2;
8788
8789         case elfcpp::E_MIPS_ARCH_64R6:
8790           return mach_mipsisa64r6;
8791         }
8792     }
8793
8794   return 0;
8795 }
8796
8797 // Return the MACH for each .MIPS.abiflags ISA Extension.
8798
8799 template<int size, bool big_endian>
8800 unsigned int
8801 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8802 {
8803   switch (isa_ext)
8804     {
8805     case elfcpp::AFL_EXT_3900:
8806       return mach_mips3900;
8807
8808     case elfcpp::AFL_EXT_4010:
8809       return mach_mips4010;
8810
8811     case elfcpp::AFL_EXT_4100:
8812       return mach_mips4100;
8813
8814     case elfcpp::AFL_EXT_4111:
8815       return mach_mips4111;
8816
8817     case elfcpp::AFL_EXT_4120:
8818       return mach_mips4120;
8819
8820     case elfcpp::AFL_EXT_4650:
8821       return mach_mips4650;
8822
8823     case elfcpp::AFL_EXT_5400:
8824       return mach_mips5400;
8825
8826     case elfcpp::AFL_EXT_5500:
8827       return mach_mips5500;
8828
8829     case elfcpp::AFL_EXT_5900:
8830       return mach_mips5900;
8831
8832     case elfcpp::AFL_EXT_10000:
8833       return mach_mips10000;
8834
8835     case elfcpp::AFL_EXT_LOONGSON_2E:
8836       return mach_mips_loongson_2e;
8837
8838     case elfcpp::AFL_EXT_LOONGSON_2F:
8839       return mach_mips_loongson_2f;
8840
8841     case elfcpp::AFL_EXT_LOONGSON_3A:
8842       return mach_mips_loongson_3a;
8843
8844     case elfcpp::AFL_EXT_SB1:
8845       return mach_mips_sb1;
8846
8847     case elfcpp::AFL_EXT_OCTEON:
8848       return mach_mips_octeon;
8849
8850     case elfcpp::AFL_EXT_OCTEONP:
8851       return mach_mips_octeonp;
8852
8853     case elfcpp::AFL_EXT_OCTEON2:
8854       return mach_mips_octeon2;
8855
8856     case elfcpp::AFL_EXT_XLR:
8857       return mach_mips_xlr;
8858
8859     default:
8860       return mach_mips3000;
8861     }
8862 }
8863
8864 // Return the .MIPS.abiflags value representing each ISA Extension.
8865
8866 template<int size, bool big_endian>
8867 unsigned int
8868 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8869 {
8870   switch (mips_mach)
8871     {
8872     case mach_mips3900:
8873       return elfcpp::AFL_EXT_3900;
8874
8875     case mach_mips4010:
8876       return elfcpp::AFL_EXT_4010;
8877
8878     case mach_mips4100:
8879       return elfcpp::AFL_EXT_4100;
8880
8881     case mach_mips4111:
8882       return elfcpp::AFL_EXT_4111;
8883
8884     case mach_mips4120:
8885       return elfcpp::AFL_EXT_4120;
8886
8887     case mach_mips4650:
8888       return elfcpp::AFL_EXT_4650;
8889
8890     case mach_mips5400:
8891       return elfcpp::AFL_EXT_5400;
8892
8893     case mach_mips5500:
8894       return elfcpp::AFL_EXT_5500;
8895
8896     case mach_mips5900:
8897       return elfcpp::AFL_EXT_5900;
8898
8899     case mach_mips10000:
8900       return elfcpp::AFL_EXT_10000;
8901
8902     case mach_mips_loongson_2e:
8903       return elfcpp::AFL_EXT_LOONGSON_2E;
8904
8905     case mach_mips_loongson_2f:
8906       return elfcpp::AFL_EXT_LOONGSON_2F;
8907
8908     case mach_mips_loongson_3a:
8909       return elfcpp::AFL_EXT_LOONGSON_3A;
8910
8911     case mach_mips_sb1:
8912       return elfcpp::AFL_EXT_SB1;
8913
8914     case mach_mips_octeon:
8915       return elfcpp::AFL_EXT_OCTEON;
8916
8917     case mach_mips_octeonp:
8918       return elfcpp::AFL_EXT_OCTEONP;
8919
8920     case mach_mips_octeon3:
8921       return elfcpp::AFL_EXT_OCTEON3;
8922
8923     case mach_mips_octeon2:
8924       return elfcpp::AFL_EXT_OCTEON2;
8925
8926     case mach_mips_xlr:
8927       return elfcpp::AFL_EXT_XLR;
8928
8929     default:
8930       return 0;
8931     }
8932 }
8933
8934 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8935
8936 template<int size, bool big_endian>
8937 void
8938 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8939     elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8940 {
8941   int new_isa = 0;
8942   switch (e_flags & elfcpp::EF_MIPS_ARCH)
8943     {
8944     case elfcpp::E_MIPS_ARCH_1:
8945       new_isa = this->level_rev(1, 0);
8946       break;
8947     case elfcpp::E_MIPS_ARCH_2:
8948       new_isa = this->level_rev(2, 0);
8949       break;
8950     case elfcpp::E_MIPS_ARCH_3:
8951       new_isa = this->level_rev(3, 0);
8952       break;
8953     case elfcpp::E_MIPS_ARCH_4:
8954       new_isa = this->level_rev(4, 0);
8955       break;
8956     case elfcpp::E_MIPS_ARCH_5:
8957       new_isa = this->level_rev(5, 0);
8958       break;
8959     case elfcpp::E_MIPS_ARCH_32:
8960       new_isa = this->level_rev(32, 1);
8961       break;
8962     case elfcpp::E_MIPS_ARCH_32R2:
8963       new_isa = this->level_rev(32, 2);
8964       break;
8965     case elfcpp::E_MIPS_ARCH_32R6:
8966       new_isa = this->level_rev(32, 6);
8967       break;
8968     case elfcpp::E_MIPS_ARCH_64:
8969       new_isa = this->level_rev(64, 1);
8970       break;
8971     case elfcpp::E_MIPS_ARCH_64R2:
8972       new_isa = this->level_rev(64, 2);
8973       break;
8974     case elfcpp::E_MIPS_ARCH_64R6:
8975       new_isa = this->level_rev(64, 6);
8976       break;
8977     default:
8978       gold_error(_("%s: Unknown architecture %s"), name.c_str(),
8979                  this->elf_mips_mach_name(e_flags));
8980     }
8981
8982   if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
8983     {
8984       // Decode a single value into level and revision.
8985       abiflags->isa_level = new_isa >> 3;
8986       abiflags->isa_rev = new_isa & 0x7;
8987     }
8988
8989   // Update the isa_ext if needed.
8990   if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
8991       this->elf_mips_mach(e_flags)))
8992     abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
8993 }
8994
8995 // Infer the content of the ABI flags based on the elf header.
8996
8997 template<int size, bool big_endian>
8998 void
8999 Target_mips<size, big_endian>::infer_abiflags(
9000     Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9001 {
9002   const Attributes_section_data* pasd = relobj->attributes_section_data();
9003   int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9004   elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9005
9006   this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9007   if (pasd != NULL)
9008     {
9009       // Read fp_abi from the .gnu.attribute section.
9010       const Object_attribute* attr =
9011         pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9012       attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9013     }
9014
9015   abiflags->fp_abi = attr_fp_abi;
9016   abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9017   abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9018   abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9019                                                        : elfcpp::AFL_REG_64;
9020
9021   if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9022       || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9023       || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9024       && abiflags->gpr_size == elfcpp::AFL_REG_32))
9025     abiflags->cpr1_size = elfcpp::AFL_REG_32;
9026   else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9027            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9028            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9029     abiflags->cpr1_size = elfcpp::AFL_REG_64;
9030
9031   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9032     abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9033   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9034     abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9035   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9036     abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9037
9038   if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9039       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9040       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9041       && abiflags->isa_level >= 32
9042       && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9043     abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9044 }
9045
9046 // Create abiflags from elf header or from .MIPS.abiflags section.
9047
9048 template<int size, bool big_endian>
9049 void
9050 Target_mips<size, big_endian>::create_abiflags(
9051     Mips_relobj<size, big_endian>* relobj,
9052     Mips_abiflags<big_endian>* abiflags)
9053 {
9054   Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9055   Mips_abiflags<big_endian> header_abiflags;
9056
9057   this->infer_abiflags(relobj, &header_abiflags);
9058
9059   if (sec_abiflags == NULL)
9060     {
9061       // If there is no input .MIPS.abiflags section, use abiflags created
9062       // from elf header.
9063       *abiflags = header_abiflags;
9064       return;
9065     }
9066
9067   this->has_abiflags_section_ = true;
9068
9069   // It is not possible to infer the correct ISA revision for R3 or R5
9070   // so drop down to R2 for the checks.
9071   unsigned char isa_rev = sec_abiflags->isa_rev;
9072   if (isa_rev == 3 || isa_rev == 5)
9073     isa_rev = 2;
9074
9075   // Check compatibility between abiflags created from elf header
9076   // and abiflags from .MIPS.abiflags section in this object file.
9077   if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9078       < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9079     gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9080                  relobj->name().c_str());
9081   if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9082       && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9083     gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9084                    ".MIPS.abiflags"), relobj->name().c_str());
9085   if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9086     gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9087                  relobj->name().c_str());
9088   // The isa_ext is allowed to be an extension of what can be inferred
9089   // from e_flags.
9090   if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9091                                this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9092     gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9093                    ".MIPS.abiflags"), relobj->name().c_str());
9094   if (sec_abiflags->flags2 != 0)
9095     gold_warning(_("%s: Unexpected flag in the flags2 field of "
9096                    ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9097                                              sec_abiflags->flags2);
9098   // Use abiflags from .MIPS.abiflags section.
9099   *abiflags = *sec_abiflags;
9100 }
9101
9102 // Return the meaning of fp_abi, or "unknown" if not known.
9103
9104 template<int size, bool big_endian>
9105 const char*
9106 Target_mips<size, big_endian>::fp_abi_string(int fp)
9107 {
9108   switch (fp)
9109     {
9110     case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9111       return "-mdouble-float";
9112     case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9113       return "-msingle-float";
9114     case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9115       return "-msoft-float";
9116     case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9117       return _("-mips32r2 -mfp64 (12 callee-saved)");
9118     case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9119       return "-mfpxx";
9120     case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9121       return "-mgp32 -mfp64";
9122     case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9123       return "-mgp32 -mfp64 -mno-odd-spreg";
9124     default:
9125       return "unknown";
9126     }
9127 }
9128
9129 // Select fp_abi.
9130
9131 template<int size, bool big_endian>
9132 int
9133 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9134                                              int out_fp)
9135 {
9136   if (in_fp == out_fp)
9137     return out_fp;
9138
9139   if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9140     return in_fp;
9141   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9142            && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9143                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9144                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9145     return in_fp;
9146   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9147            && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9148                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9149                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9150     return out_fp; // Keep the current setting.
9151   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9152            && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9153     return in_fp;
9154   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9155            && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9156     return out_fp; // Keep the current setting.
9157   else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9158     gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9159                  fp_abi_string(in_fp), fp_abi_string(out_fp));
9160   return out_fp;
9161 }
9162
9163 // Merge attributes from input object.
9164
9165 template<int size, bool big_endian>
9166 void
9167 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9168     const Attributes_section_data* pasd)
9169 {
9170   // Return if there is no attributes section data.
9171   if (pasd == NULL)
9172     return;
9173
9174   // If output has no object attributes, just copy.
9175   if (this->attributes_section_data_ == NULL)
9176     {
9177       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9178       return;
9179     }
9180
9181   Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9182       Object_attribute::OBJ_ATTR_GNU);
9183
9184   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9185   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9186
9187   // Merge Tag_compatibility attributes and any common GNU ones.
9188   this->attributes_section_data_->merge(name.c_str(), pasd);
9189 }
9190
9191 // Merge abiflags from input object.
9192
9193 template<int size, bool big_endian>
9194 void
9195 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9196     Mips_abiflags<big_endian>* in_abiflags)
9197 {
9198   // If output has no abiflags, just copy.
9199   if (this->abiflags_ == NULL)
9200   {
9201     this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9202     return;
9203   }
9204
9205   this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9206                                                 this->abiflags_->fp_abi);
9207
9208   // Merge abiflags.
9209   this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9210                                         in_abiflags->isa_level);
9211   this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9212                                       in_abiflags->isa_rev);
9213   this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9214                                        in_abiflags->gpr_size);
9215   this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9216                                         in_abiflags->cpr1_size);
9217   this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9218                                         in_abiflags->cpr2_size);
9219   this->abiflags_->ases |= in_abiflags->ases;
9220   this->abiflags_->flags1 |= in_abiflags->flags1;
9221 }
9222
9223 // Check whether machine EXTENSION is an extension of machine BASE.
9224 template<int size, bool big_endian>
9225 bool
9226 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9227                                                  unsigned int extension)
9228 {
9229   if (extension == base)
9230     return true;
9231
9232   if ((base == mach_mipsisa32)
9233       && this->mips_mach_extends(mach_mipsisa64, extension))
9234     return true;
9235
9236   if ((base == mach_mipsisa32r2)
9237       && this->mips_mach_extends(mach_mipsisa64r2, extension))
9238     return true;
9239
9240   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9241     if (extension == this->mips_mach_extensions_[i].first)
9242       {
9243         extension = this->mips_mach_extensions_[i].second;
9244         if (extension == base)
9245           return true;
9246       }
9247
9248   return false;
9249 }
9250
9251 // Merge file header flags from input object.
9252
9253 template<int size, bool big_endian>
9254 void
9255 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9256                                                  elfcpp::Elf_Word in_flags)
9257 {
9258   // If flags are not set yet, just copy them.
9259   if (!this->are_processor_specific_flags_set())
9260     {
9261       this->set_processor_specific_flags(in_flags);
9262       this->mach_ = this->elf_mips_mach(in_flags);
9263       return;
9264     }
9265
9266   elfcpp::Elf_Word new_flags = in_flags;
9267   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9268   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9269   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9270
9271   // Check flag compatibility.
9272   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9273   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9274
9275   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
9276   // doesn't seem to matter.
9277   new_flags &= ~elfcpp::EF_MIPS_XGOT;
9278   old_flags &= ~elfcpp::EF_MIPS_XGOT;
9279
9280   // MIPSpro generates ucode info in n64 objects.  Again, we should
9281   // just be able to ignore this.
9282   new_flags &= ~elfcpp::EF_MIPS_UCODE;
9283   old_flags &= ~elfcpp::EF_MIPS_UCODE;
9284
9285   if (new_flags == old_flags)
9286     {
9287       this->set_processor_specific_flags(merged_flags);
9288       return;
9289     }
9290
9291   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9292       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9293     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9294                  name.c_str());
9295
9296   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9297     merged_flags |= elfcpp::EF_MIPS_CPIC;
9298   if (!(new_flags & elfcpp::EF_MIPS_PIC))
9299     merged_flags &= ~elfcpp::EF_MIPS_PIC;
9300
9301   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9302   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9303
9304   // Compare the ISAs.
9305   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9306     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9307   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9308     {
9309       // Output ISA isn't the same as, or an extension of, input ISA.
9310       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9311         {
9312           // Copy the architecture info from input object to output.  Also copy
9313           // the 32-bit flag (if set) so that we continue to recognise
9314           // output as a 32-bit binary.
9315           this->mach_ = this->elf_mips_mach(in_flags);
9316           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9317           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9318                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9319
9320           // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9321           this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9322
9323           // Copy across the ABI flags if output doesn't use them
9324           // and if that was what caused us to treat input object as 32-bit.
9325           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9326               && this->mips_32bit_flags(new_flags)
9327               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9328             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9329         }
9330       else
9331         // The ISAs aren't compatible.
9332         gold_error(_("%s: linking %s module with previous %s modules"),
9333                    name.c_str(), this->elf_mips_mach_name(in_flags),
9334                    this->elf_mips_mach_name(merged_flags));
9335     }
9336
9337   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9338                 | elfcpp::EF_MIPS_32BITMODE));
9339   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9340                 | elfcpp::EF_MIPS_32BITMODE));
9341
9342   // Compare ABIs.
9343   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9344     {
9345       // Only error if both are set (to different values).
9346       if ((new_flags & elfcpp::EF_MIPS_ABI)
9347            && (old_flags & elfcpp::EF_MIPS_ABI))
9348         gold_error(_("%s: ABI mismatch: linking %s module with "
9349                      "previous %s modules"), name.c_str(),
9350                    this->elf_mips_abi_name(in_flags),
9351                    this->elf_mips_abi_name(merged_flags));
9352
9353       new_flags &= ~elfcpp::EF_MIPS_ABI;
9354       old_flags &= ~elfcpp::EF_MIPS_ABI;
9355     }
9356
9357   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
9358   // and allow arbitrary mixing of the remaining ASEs (retain the union).
9359   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9360       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9361     {
9362       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9363       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9364       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9365       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9366       int micro_mis = old_m16 && new_micro;
9367       int m16_mis = old_micro && new_m16;
9368
9369       if (m16_mis || micro_mis)
9370         gold_error(_("%s: ASE mismatch: linking %s module with "
9371                      "previous %s modules"), name.c_str(),
9372                    m16_mis ? "MIPS16" : "microMIPS",
9373                    m16_mis ? "microMIPS" : "MIPS16");
9374
9375       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9376
9377       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9378       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9379     }
9380
9381   // Compare NaN encodings.
9382   if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9383     {
9384       gold_error(_("%s: linking %s module with previous %s modules"),
9385                  name.c_str(),
9386                  (new_flags & elfcpp::EF_MIPS_NAN2008
9387                   ? "-mnan=2008" : "-mnan=legacy"),
9388                  (old_flags & elfcpp::EF_MIPS_NAN2008
9389                   ? "-mnan=2008" : "-mnan=legacy"));
9390
9391       new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9392       old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9393     }
9394
9395   // Compare FP64 state.
9396   if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9397     {
9398       gold_error(_("%s: linking %s module with previous %s modules"),
9399                  name.c_str(),
9400                  (new_flags & elfcpp::EF_MIPS_FP64
9401                   ? "-mfp64" : "-mfp32"),
9402                  (old_flags & elfcpp::EF_MIPS_FP64
9403                   ? "-mfp64" : "-mfp32"));
9404
9405       new_flags &= ~elfcpp::EF_MIPS_FP64;
9406       old_flags &= ~elfcpp::EF_MIPS_FP64;
9407     }
9408
9409   // Warn about any other mismatches.
9410   if (new_flags != old_flags)
9411     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9412                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9413
9414   this->set_processor_specific_flags(merged_flags);
9415 }
9416
9417 // Adjust ELF file header.
9418
9419 template<int size, bool big_endian>
9420 void
9421 Target_mips<size, big_endian>::do_adjust_elf_header(
9422     unsigned char* view,
9423     int len)
9424 {
9425   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9426
9427   elfcpp::Ehdr<size, big_endian> ehdr(view);
9428   unsigned char e_ident[elfcpp::EI_NIDENT];
9429   elfcpp::Elf_Word flags = this->processor_specific_flags();
9430   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9431
9432   unsigned char ei_abiversion = 0;
9433   elfcpp::Elf_Half type = ehdr.get_e_type();
9434   if (type == elfcpp::ET_EXEC
9435       && parameters->options().copyreloc()
9436       && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9437           == elfcpp::EF_MIPS_CPIC)
9438     ei_abiversion = 1;
9439
9440   if (this->abiflags_ != NULL
9441       && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9442           || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9443     ei_abiversion = 3;
9444
9445   e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9446   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9447   oehdr.put_e_ident(e_ident);
9448
9449   if (this->entry_symbol_is_compressed_)
9450     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9451 }
9452
9453 // do_make_elf_object to override the same function in the base class.
9454 // We need to use a target-specific sub-class of
9455 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9456 // Hence we need to have our own ELF object creation.
9457
9458 template<int size, bool big_endian>
9459 Object*
9460 Target_mips<size, big_endian>::do_make_elf_object(
9461     const std::string& name,
9462     Input_file* input_file,
9463     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9464 {
9465   int et = ehdr.get_e_type();
9466   // ET_EXEC files are valid input for --just-symbols/-R,
9467   // and we treat them as relocatable objects.
9468   if (et == elfcpp::ET_REL
9469       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9470     {
9471       Mips_relobj<size, big_endian>* obj =
9472         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9473       obj->setup();
9474       return obj;
9475     }
9476   else if (et == elfcpp::ET_DYN)
9477     {
9478       // TODO(sasa): Should we create Mips_dynobj?
9479       return Target::do_make_elf_object(name, input_file, offset, ehdr);
9480     }
9481   else
9482     {
9483       gold_error(_("%s: unsupported ELF file type %d"),
9484                  name.c_str(), et);
9485       return NULL;
9486     }
9487 }
9488
9489 // Finalize the sections.
9490
9491 template <int size, bool big_endian>
9492 void
9493 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9494                                         const Input_objects* input_objects,
9495                                         Symbol_table* symtab)
9496 {
9497   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9498   // DT_FINI have correct values.
9499   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9500       symtab->lookup(parameters->options().init()));
9501   if (init != NULL && (init->is_mips16() || init->is_micromips()))
9502     init->set_value(init->value() | 1);
9503   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9504       symtab->lookup(parameters->options().fini()));
9505   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9506     fini->set_value(fini->value() | 1);
9507
9508   // Check whether the entry symbol is mips16 or micromips.  This is needed to
9509   // adjust entry address in ELF header.
9510   Mips_symbol<size>* entry =
9511     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9512   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9513                                        || entry->is_micromips()));
9514
9515   if (!parameters->doing_static_link()
9516       && (strcmp(parameters->options().hash_style(), "gnu") == 0
9517           || strcmp(parameters->options().hash_style(), "both") == 0))
9518     {
9519       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9520       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
9521       // MIPS ABI requires a mapping between the GOT and the symbol table.
9522       gold_error(".gnu.hash is incompatible with the MIPS ABI");
9523     }
9524
9525   // Check whether the final section that was scanned has HI16 or GOT16
9526   // relocations without the corresponding LO16 part.
9527   if (this->got16_addends_.size() > 0)
9528       gold_error("Can't find matching LO16 reloc");
9529
9530   // Set _gp value.
9531   this->set_gp(layout, symtab);
9532
9533   // Check for any mips16 stub sections that we can discard.
9534   if (!parameters->options().relocatable())
9535     {
9536       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9537           p != input_objects->relobj_end();
9538           ++p)
9539         {
9540           Mips_relobj<size, big_endian>* object =
9541             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9542           object->discard_mips16_stub_sections(symtab);
9543         }
9544     }
9545
9546   Valtype gprmask = 0;
9547   Valtype cprmask1 = 0;
9548   Valtype cprmask2 = 0;
9549   Valtype cprmask3 = 0;
9550   Valtype cprmask4 = 0;
9551   bool has_reginfo_section = false;
9552
9553   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9554        p != input_objects->relobj_end();
9555        ++p)
9556     {
9557       Mips_relobj<size, big_endian>* relobj =
9558         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9559
9560       // Merge .reginfo contents of input objects.
9561       if (relobj->has_reginfo_section())
9562         {
9563           has_reginfo_section = true;
9564           gprmask |= relobj->gprmask();
9565           cprmask1 |= relobj->cprmask1();
9566           cprmask2 |= relobj->cprmask2();
9567           cprmask3 |= relobj->cprmask3();
9568           cprmask4 |= relobj->cprmask4();
9569         }
9570
9571       Input_file::Format format = relobj->input_file()->format();
9572       if (format != Input_file::FORMAT_ELF)
9573         continue;
9574
9575       // If all input sections will be discarded, don't use this object
9576       // file for merging processor specific flags.
9577       bool should_merge_processor_specific_flags = false;
9578
9579       for (unsigned int i = 1; i < relobj->shnum(); ++i)
9580         if (relobj->output_section(i) != NULL)
9581           {
9582             should_merge_processor_specific_flags = true;
9583             break;
9584           }
9585
9586       if (!should_merge_processor_specific_flags)
9587         continue;
9588
9589       // Merge processor specific flags.
9590       Mips_abiflags<big_endian> in_abiflags;
9591
9592       this->create_abiflags(relobj, &in_abiflags);
9593       this->merge_obj_e_flags(relobj->name(),
9594                               relobj->processor_specific_flags());
9595       this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9596       this->merge_obj_attributes(relobj->name(),
9597                                  relobj->attributes_section_data());
9598     }
9599
9600   // Create a .gnu.attributes section if we have merged any attributes
9601   // from inputs.
9602   if (this->attributes_section_data_ != NULL)
9603     {
9604       Output_attributes_section_data* attributes_section =
9605         new Output_attributes_section_data(*this->attributes_section_data_);
9606       layout->add_output_section_data(".gnu.attributes",
9607                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
9608                                       attributes_section, ORDER_INVALID, false);
9609     }
9610
9611   // Create .MIPS.abiflags output section if there is an input section.
9612   if (this->has_abiflags_section_)
9613     {
9614       Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9615         new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9616
9617       Output_section* os =
9618         layout->add_output_section_data(".MIPS.abiflags",
9619                                         elfcpp::SHT_MIPS_ABIFLAGS,
9620                                         elfcpp::SHF_ALLOC,
9621                                         abiflags_section, ORDER_INVALID, false);
9622
9623       if (!parameters->options().relocatable() && os != NULL)
9624         {
9625           Output_segment* abiflags_segment =
9626             layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9627           abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9628         }
9629     }
9630
9631   if (has_reginfo_section && !parameters->options().gc_sections())
9632     {
9633       // Create .reginfo output section.
9634       Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9635         new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9636                                                           cprmask1, cprmask2,
9637                                                           cprmask3, cprmask4);
9638
9639       Output_section* os =
9640         layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9641                                         elfcpp::SHF_ALLOC, reginfo_section,
9642                                         ORDER_INVALID, false);
9643
9644       if (!parameters->options().relocatable() && os != NULL)
9645         {
9646           Output_segment* reginfo_segment =
9647             layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9648                                         elfcpp::PF_R);
9649           reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9650         }
9651     }
9652
9653   if (this->plt_ != NULL)
9654     {
9655       // Set final PLT offsets for symbols.
9656       this->plt_section()->set_plt_offsets();
9657
9658       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9659       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9660       // there are no standard PLT entries present.
9661       unsigned char nonvis = 0;
9662       if (this->is_output_micromips()
9663           && !this->plt_section()->has_standard_entries())
9664         nonvis = elfcpp::STO_MICROMIPS >> 2;
9665       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9666                                     Symbol_table::PREDEFINED,
9667                                     this->plt_,
9668                                     0, 0, elfcpp::STT_FUNC,
9669                                     elfcpp::STB_LOCAL,
9670                                     elfcpp::STV_DEFAULT, nonvis,
9671                                     false, false);
9672     }
9673
9674   if (this->mips_stubs_ != NULL)
9675     {
9676       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9677       unsigned char nonvis = 0;
9678       if (this->is_output_micromips())
9679         nonvis = elfcpp::STO_MICROMIPS >> 2;
9680       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9681                                     Symbol_table::PREDEFINED,
9682                                     this->mips_stubs_,
9683                                     0, 0, elfcpp::STT_FUNC,
9684                                     elfcpp::STB_LOCAL,
9685                                     elfcpp::STV_DEFAULT, nonvis,
9686                                     false, false);
9687     }
9688
9689   if (!parameters->options().relocatable() && !parameters->doing_static_link())
9690     // In case there is no .got section, create one.
9691     this->got_section(symtab, layout);
9692
9693   // Emit any relocs we saved in an attempt to avoid generating COPY
9694   // relocs.
9695   if (this->copy_relocs_.any_saved_relocs())
9696     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9697                                  this);
9698
9699   // Emit dynamic relocs.
9700   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9701        p != this->dyn_relocs_.end();
9702        ++p)
9703     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9704
9705   if (this->has_got_section())
9706     this->got_section()->lay_out_got(layout, symtab, input_objects);
9707
9708   if (this->mips_stubs_ != NULL)
9709     this->mips_stubs_->set_needs_dynsym_value();
9710
9711   // Check for functions that might need $25 to be valid on entry.
9712   // TODO(sasa): Can we do this without iterating over all symbols?
9713   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9714   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9715                                                                symtab));
9716
9717   // Add NULL segment.
9718   if (!parameters->options().relocatable())
9719     layout->make_output_segment(elfcpp::PT_NULL, 0);
9720
9721   // Fill in some more dynamic tags.
9722   // TODO(sasa): Add more dynamic tags.
9723   const Reloc_section* rel_plt = (this->plt_ == NULL
9724                                   ? NULL : this->plt_->rel_plt());
9725   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9726                                   this->rel_dyn_, true, false);
9727
9728   Output_data_dynamic* const odyn = layout->dynamic_data();
9729   if (odyn != NULL
9730       && !parameters->options().relocatable()
9731       && !parameters->doing_static_link())
9732   {
9733     unsigned int d_val;
9734     // This element holds a 32-bit version id for the Runtime
9735     // Linker Interface.  This will start at integer value 1.
9736     d_val = 0x01;
9737     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9738
9739     // Dynamic flags
9740     d_val = elfcpp::RHF_NOTPOT;
9741     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9742
9743     // Save layout for using when emiting custom dynamic tags.
9744     this->layout_ = layout;
9745
9746     // This member holds the base address of the segment.
9747     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9748
9749     // This member holds the number of entries in the .dynsym section.
9750     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9751
9752     // This member holds the index of the first dynamic symbol
9753     // table entry that corresponds to an entry in the global offset table.
9754     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9755
9756     // This member holds the number of local GOT entries.
9757     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9758                        this->got_->get_local_gotno());
9759
9760     if (this->plt_ != NULL)
9761       // DT_MIPS_PLTGOT dynamic tag
9762       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9763   }
9764  }
9765
9766 // Get the custom dynamic tag value.
9767 template<int size, bool big_endian>
9768 unsigned int
9769 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9770 {
9771   switch (tag)
9772     {
9773     case elfcpp::DT_MIPS_BASE_ADDRESS:
9774       {
9775         // The base address of the segment.
9776         // At this point, the segment list has been sorted into final order,
9777         // so just return vaddr of the first readable PT_LOAD segment.
9778         Output_segment* seg =
9779           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9780         gold_assert(seg != NULL);
9781         return seg->vaddr();
9782       }
9783
9784     case elfcpp::DT_MIPS_SYMTABNO:
9785       // The number of entries in the .dynsym section.
9786       return this->get_dt_mips_symtabno();
9787
9788     case elfcpp::DT_MIPS_GOTSYM:
9789       {
9790         // The index of the first dynamic symbol table entry that corresponds
9791         // to an entry in the GOT.
9792         if (this->got_->first_global_got_dynsym_index() != -1U)
9793           return this->got_->first_global_got_dynsym_index();
9794         else
9795           // In case if we don't have global GOT symbols we default to setting
9796           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9797           return this->get_dt_mips_symtabno();
9798       }
9799
9800     default:
9801       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9802     }
9803
9804   return (unsigned int)-1;
9805 }
9806
9807 // Relocate section data.
9808
9809 template<int size, bool big_endian>
9810 void
9811 Target_mips<size, big_endian>::relocate_section(
9812                         const Relocate_info<size, big_endian>* relinfo,
9813                         unsigned int sh_type,
9814                         const unsigned char* prelocs,
9815                         size_t reloc_count,
9816                         Output_section* output_section,
9817                         bool needs_special_offset_handling,
9818                         unsigned char* view,
9819                         Mips_address address,
9820                         section_size_type view_size,
9821                         const Reloc_symbol_changes* reloc_symbol_changes)
9822 {
9823   typedef Target_mips<size, big_endian> Mips;
9824   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9825
9826   if (sh_type == elfcpp::SHT_REL)
9827     {
9828       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9829           Classify_reloc;
9830
9831       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9832                              gold::Default_comdat_behavior, Classify_reloc>(
9833         relinfo,
9834         this,
9835         prelocs,
9836         reloc_count,
9837         output_section,
9838         needs_special_offset_handling,
9839         view,
9840         address,
9841         view_size,
9842         reloc_symbol_changes);
9843     }
9844   else if (sh_type == elfcpp::SHT_RELA)
9845     {
9846       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9847           Classify_reloc;
9848
9849       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9850                              gold::Default_comdat_behavior, Classify_reloc>(
9851         relinfo,
9852         this,
9853         prelocs,
9854         reloc_count,
9855         output_section,
9856         needs_special_offset_handling,
9857         view,
9858         address,
9859         view_size,
9860         reloc_symbol_changes);
9861     }
9862 }
9863
9864 // Return the size of a relocation while scanning during a relocatable
9865 // link.
9866
9867 unsigned int
9868 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9869 {
9870   switch (r_type)
9871     {
9872     case elfcpp::R_MIPS_NONE:
9873     case elfcpp::R_MIPS_TLS_DTPMOD64:
9874     case elfcpp::R_MIPS_TLS_DTPREL64:
9875     case elfcpp::R_MIPS_TLS_TPREL64:
9876       return 0;
9877
9878     case elfcpp::R_MIPS_32:
9879     case elfcpp::R_MIPS_TLS_DTPMOD32:
9880     case elfcpp::R_MIPS_TLS_DTPREL32:
9881     case elfcpp::R_MIPS_TLS_TPREL32:
9882     case elfcpp::R_MIPS_REL32:
9883     case elfcpp::R_MIPS_PC32:
9884     case elfcpp::R_MIPS_GPREL32:
9885     case elfcpp::R_MIPS_JALR:
9886     case elfcpp::R_MIPS_EH:
9887       return 4;
9888
9889     case elfcpp::R_MIPS_16:
9890     case elfcpp::R_MIPS_HI16:
9891     case elfcpp::R_MIPS_LO16:
9892     case elfcpp::R_MIPS_GPREL16:
9893     case elfcpp::R_MIPS16_HI16:
9894     case elfcpp::R_MIPS16_LO16:
9895     case elfcpp::R_MIPS_PC16:
9896     case elfcpp::R_MIPS_PCHI16:
9897     case elfcpp::R_MIPS_PCLO16:
9898     case elfcpp::R_MIPS_GOT16:
9899     case elfcpp::R_MIPS16_GOT16:
9900     case elfcpp::R_MIPS_CALL16:
9901     case elfcpp::R_MIPS16_CALL16:
9902     case elfcpp::R_MIPS_GOT_HI16:
9903     case elfcpp::R_MIPS_CALL_HI16:
9904     case elfcpp::R_MIPS_GOT_LO16:
9905     case elfcpp::R_MIPS_CALL_LO16:
9906     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
9907     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
9908     case elfcpp::R_MIPS_TLS_TPREL_HI16:
9909     case elfcpp::R_MIPS_TLS_TPREL_LO16:
9910     case elfcpp::R_MIPS16_GPREL:
9911     case elfcpp::R_MIPS_GOT_DISP:
9912     case elfcpp::R_MIPS_LITERAL:
9913     case elfcpp::R_MIPS_GOT_PAGE:
9914     case elfcpp::R_MIPS_GOT_OFST:
9915     case elfcpp::R_MIPS_TLS_GD:
9916     case elfcpp::R_MIPS_TLS_LDM:
9917     case elfcpp::R_MIPS_TLS_GOTTPREL:
9918       return 2;
9919
9920     // These relocations are not byte sized
9921     case elfcpp::R_MIPS_26:
9922     case elfcpp::R_MIPS16_26:
9923     case elfcpp::R_MIPS_PC21_S2:
9924     case elfcpp::R_MIPS_PC26_S2:
9925     case elfcpp::R_MIPS_PC18_S3:
9926     case elfcpp::R_MIPS_PC19_S2:
9927       return 4;
9928
9929     case elfcpp::R_MIPS_COPY:
9930     case elfcpp::R_MIPS_JUMP_SLOT:
9931       object->error(_("unexpected reloc %u in object file"), r_type);
9932       return 0;
9933
9934     default:
9935       object->error(_("unsupported reloc %u in object file"), r_type);
9936       return 0;
9937   }
9938 }
9939
9940 // Scan the relocs during a relocatable link.
9941
9942 template<int size, bool big_endian>
9943 void
9944 Target_mips<size, big_endian>::scan_relocatable_relocs(
9945                         Symbol_table* symtab,
9946                         Layout* layout,
9947                         Sized_relobj_file<size, big_endian>* object,
9948                         unsigned int data_shndx,
9949                         unsigned int sh_type,
9950                         const unsigned char* prelocs,
9951                         size_t reloc_count,
9952                         Output_section* output_section,
9953                         bool needs_special_offset_handling,
9954                         size_t local_symbol_count,
9955                         const unsigned char* plocal_symbols,
9956                         Relocatable_relocs* rr)
9957 {
9958   if (sh_type == elfcpp::SHT_REL)
9959     {
9960       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9961           Classify_reloc;
9962       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9963           Scan_relocatable_relocs;
9964
9965       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9966         symtab,
9967         layout,
9968         object,
9969         data_shndx,
9970         prelocs,
9971         reloc_count,
9972         output_section,
9973         needs_special_offset_handling,
9974         local_symbol_count,
9975         plocal_symbols,
9976         rr);
9977     }
9978   else if (sh_type == elfcpp::SHT_RELA)
9979     {
9980       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9981           Classify_reloc;
9982       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9983           Scan_relocatable_relocs;
9984
9985       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9986         symtab,
9987         layout,
9988         object,
9989         data_shndx,
9990         prelocs,
9991         reloc_count,
9992         output_section,
9993         needs_special_offset_handling,
9994         local_symbol_count,
9995         plocal_symbols,
9996         rr);
9997     }
9998   else
9999     gold_unreachable();
10000 }
10001
10002 // Scan the relocs for --emit-relocs.
10003
10004 template<int size, bool big_endian>
10005 void
10006 Target_mips<size, big_endian>::emit_relocs_scan(
10007     Symbol_table* symtab,
10008     Layout* layout,
10009     Sized_relobj_file<size, big_endian>* object,
10010     unsigned int data_shndx,
10011     unsigned int sh_type,
10012     const unsigned char* prelocs,
10013     size_t reloc_count,
10014     Output_section* output_section,
10015     bool needs_special_offset_handling,
10016     size_t local_symbol_count,
10017     const unsigned char* plocal_syms,
10018     Relocatable_relocs* rr)
10019 {
10020   if (sh_type == elfcpp::SHT_REL)
10021     {
10022       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10023           Classify_reloc;
10024       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10025           Emit_relocs_strategy;
10026
10027       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10028         symtab,
10029         layout,
10030         object,
10031         data_shndx,
10032         prelocs,
10033         reloc_count,
10034         output_section,
10035         needs_special_offset_handling,
10036         local_symbol_count,
10037         plocal_syms,
10038         rr);
10039     }
10040   else if (sh_type == elfcpp::SHT_RELA)
10041     {
10042       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10043           Classify_reloc;
10044       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10045           Emit_relocs_strategy;
10046
10047       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10048         symtab,
10049         layout,
10050         object,
10051         data_shndx,
10052         prelocs,
10053         reloc_count,
10054         output_section,
10055         needs_special_offset_handling,
10056         local_symbol_count,
10057         plocal_syms,
10058         rr);
10059     }
10060   else
10061     gold_unreachable();
10062 }
10063
10064 // Emit relocations for a section.
10065
10066 template<int size, bool big_endian>
10067 void
10068 Target_mips<size, big_endian>::relocate_relocs(
10069                         const Relocate_info<size, big_endian>* relinfo,
10070                         unsigned int sh_type,
10071                         const unsigned char* prelocs,
10072                         size_t reloc_count,
10073                         Output_section* output_section,
10074                         typename elfcpp::Elf_types<size>::Elf_Off
10075                           offset_in_output_section,
10076                         unsigned char* view,
10077                         Mips_address view_address,
10078                         section_size_type view_size,
10079                         unsigned char* reloc_view,
10080                         section_size_type reloc_view_size)
10081 {
10082   if (sh_type == elfcpp::SHT_REL)
10083     {
10084       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10085           Classify_reloc;
10086
10087       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10088         relinfo,
10089         prelocs,
10090         reloc_count,
10091         output_section,
10092         offset_in_output_section,
10093         view,
10094         view_address,
10095         view_size,
10096         reloc_view,
10097         reloc_view_size);
10098     }
10099   else if (sh_type == elfcpp::SHT_RELA)
10100     {
10101       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10102           Classify_reloc;
10103
10104       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10105         relinfo,
10106         prelocs,
10107         reloc_count,
10108         output_section,
10109         offset_in_output_section,
10110         view,
10111         view_address,
10112         view_size,
10113         reloc_view,
10114         reloc_view_size);
10115     }
10116   else
10117     gold_unreachable();
10118 }
10119
10120 // Perform target-specific processing in a relocatable link.  This is
10121 // only used if we use the relocation strategy RELOC_SPECIAL.
10122
10123 template<int size, bool big_endian>
10124 void
10125 Target_mips<size, big_endian>::relocate_special_relocatable(
10126     const Relocate_info<size, big_endian>* relinfo,
10127     unsigned int sh_type,
10128     const unsigned char* preloc_in,
10129     size_t relnum,
10130     Output_section* output_section,
10131     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10132     unsigned char* view,
10133     Mips_address view_address,
10134     section_size_type,
10135     unsigned char* preloc_out)
10136 {
10137   // We can only handle REL type relocation sections.
10138   gold_assert(sh_type == elfcpp::SHT_REL);
10139
10140   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10141     Reltype;
10142   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10143     Reltype_write;
10144
10145   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10146
10147   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10148
10149   Mips_relobj<size, big_endian>* object =
10150     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10151   const unsigned int local_count = object->local_symbol_count();
10152
10153   Reltype reloc(preloc_in);
10154   Reltype_write reloc_write(preloc_out);
10155
10156   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10157   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10158   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10159
10160   // Get the new symbol index.
10161   // We only use RELOC_SPECIAL strategy in local relocations.
10162   gold_assert(r_sym < local_count);
10163
10164   // We are adjusting a section symbol.  We need to find
10165   // the symbol table index of the section symbol for
10166   // the output section corresponding to input section
10167   // in which this symbol is defined.
10168   bool is_ordinary;
10169   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10170   gold_assert(is_ordinary);
10171   Output_section* os = object->output_section(shndx);
10172   gold_assert(os != NULL);
10173   gold_assert(os->needs_symtab_index());
10174   unsigned int new_symndx = os->symtab_index();
10175
10176   // Get the new offset--the location in the output section where
10177   // this relocation should be applied.
10178
10179   Mips_address offset = reloc.get_r_offset();
10180   Mips_address new_offset;
10181   if (offset_in_output_section != invalid_address)
10182     new_offset = offset + offset_in_output_section;
10183   else
10184     {
10185       section_offset_type sot_offset =
10186         convert_types<section_offset_type, Mips_address>(offset);
10187       section_offset_type new_sot_offset =
10188         output_section->output_offset(object, relinfo->data_shndx,
10189                                       sot_offset);
10190       gold_assert(new_sot_offset != -1);
10191       new_offset = new_sot_offset;
10192     }
10193
10194   // In an object file, r_offset is an offset within the section.
10195   // In an executable or dynamic object, generated by
10196   // --emit-relocs, r_offset is an absolute address.
10197   if (!parameters->options().relocatable())
10198     {
10199       new_offset += view_address;
10200       if (offset_in_output_section != invalid_address)
10201         new_offset -= offset_in_output_section;
10202     }
10203
10204   reloc_write.put_r_offset(new_offset);
10205   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10206
10207   // Handle the reloc addend.
10208   // The relocation uses a section symbol in the input file.
10209   // We are adjusting it to use a section symbol in the output
10210   // file.  The input section symbol refers to some address in
10211   // the input section.  We need the relocation in the output
10212   // file to refer to that same address.  This adjustment to
10213   // the addend is the same calculation we use for a simple
10214   // absolute relocation for the input section symbol.
10215   Valtype calculated_value = 0;
10216   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10217
10218   unsigned char* paddend = view + offset;
10219   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10220   switch (r_type)
10221     {
10222     case elfcpp::R_MIPS_26:
10223       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10224           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10225           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10226           false, &calculated_value);
10227       break;
10228
10229     default:
10230       gold_unreachable();
10231     }
10232
10233   // Report any errors.
10234   switch (reloc_status)
10235     {
10236     case Reloc_funcs::STATUS_OKAY:
10237       break;
10238     case Reloc_funcs::STATUS_OVERFLOW:
10239       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10240                              _("relocation overflow"));
10241       break;
10242     case Reloc_funcs::STATUS_BAD_RELOC:
10243       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10244         _("unexpected opcode while processing relocation"));
10245       break;
10246     default:
10247       gold_unreachable();
10248     }
10249 }
10250
10251 // Optimize the TLS relocation type based on what we know about the
10252 // symbol.  IS_FINAL is true if the final address of this symbol is
10253 // known at link time.
10254
10255 template<int size, bool big_endian>
10256 tls::Tls_optimization
10257 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10258 {
10259   // FIXME: Currently we do not do any TLS optimization.
10260   return tls::TLSOPT_NONE;
10261 }
10262
10263 // Scan a relocation for a local symbol.
10264
10265 template<int size, bool big_endian>
10266 inline void
10267 Target_mips<size, big_endian>::Scan::local(
10268                         Symbol_table* symtab,
10269                         Layout* layout,
10270                         Target_mips<size, big_endian>* target,
10271                         Sized_relobj_file<size, big_endian>* object,
10272                         unsigned int data_shndx,
10273                         Output_section* output_section,
10274                         const Relatype* rela,
10275                         const Reltype* rel,
10276                         unsigned int rel_type,
10277                         unsigned int r_type,
10278                         const elfcpp::Sym<size, big_endian>& lsym,
10279                         bool is_discarded)
10280 {
10281   if (is_discarded)
10282     return;
10283
10284   Mips_address r_offset;
10285   unsigned int r_sym;
10286   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10287
10288   if (rel_type == elfcpp::SHT_RELA)
10289     {
10290       r_offset = rela->get_r_offset();
10291       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10292           get_r_sym(rela);
10293       r_addend = rela->get_r_addend();
10294     }
10295   else
10296     {
10297       r_offset = rel->get_r_offset();
10298       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10299           get_r_sym(rel);
10300       r_addend = 0;
10301     }
10302
10303   Mips_relobj<size, big_endian>* mips_obj =
10304     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10305
10306   if (mips_obj->is_mips16_stub_section(data_shndx))
10307     {
10308       mips_obj->get_mips16_stub_section(data_shndx)
10309               ->new_local_reloc_found(r_type, r_sym);
10310     }
10311
10312   if (r_type == elfcpp::R_MIPS_NONE)
10313     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10314     // mips16 stub.
10315     return;
10316
10317   if (!mips16_call_reloc(r_type)
10318       && !mips_obj->section_allows_mips16_refs(data_shndx))
10319     // This reloc would need to refer to a MIPS16 hard-float stub, if
10320     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10321     // looking for relocs that would need to refer to MIPS16 stubs.
10322     mips_obj->add_local_non_16bit_call(r_sym);
10323
10324   if (r_type == elfcpp::R_MIPS16_26
10325       && !mips_obj->section_allows_mips16_refs(data_shndx))
10326     mips_obj->add_local_16bit_call(r_sym);
10327
10328   switch (r_type)
10329     {
10330     case elfcpp::R_MIPS_GOT16:
10331     case elfcpp::R_MIPS_CALL16:
10332     case elfcpp::R_MIPS_CALL_HI16:
10333     case elfcpp::R_MIPS_CALL_LO16:
10334     case elfcpp::R_MIPS_GOT_HI16:
10335     case elfcpp::R_MIPS_GOT_LO16:
10336     case elfcpp::R_MIPS_GOT_PAGE:
10337     case elfcpp::R_MIPS_GOT_OFST:
10338     case elfcpp::R_MIPS_GOT_DISP:
10339     case elfcpp::R_MIPS_TLS_GOTTPREL:
10340     case elfcpp::R_MIPS_TLS_GD:
10341     case elfcpp::R_MIPS_TLS_LDM:
10342     case elfcpp::R_MIPS16_GOT16:
10343     case elfcpp::R_MIPS16_CALL16:
10344     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10345     case elfcpp::R_MIPS16_TLS_GD:
10346     case elfcpp::R_MIPS16_TLS_LDM:
10347     case elfcpp::R_MICROMIPS_GOT16:
10348     case elfcpp::R_MICROMIPS_CALL16:
10349     case elfcpp::R_MICROMIPS_CALL_HI16:
10350     case elfcpp::R_MICROMIPS_CALL_LO16:
10351     case elfcpp::R_MICROMIPS_GOT_HI16:
10352     case elfcpp::R_MICROMIPS_GOT_LO16:
10353     case elfcpp::R_MICROMIPS_GOT_PAGE:
10354     case elfcpp::R_MICROMIPS_GOT_OFST:
10355     case elfcpp::R_MICROMIPS_GOT_DISP:
10356     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10357     case elfcpp::R_MICROMIPS_TLS_GD:
10358     case elfcpp::R_MICROMIPS_TLS_LDM:
10359     case elfcpp::R_MIPS_EH:
10360       // We need a GOT section.
10361       target->got_section(symtab, layout);
10362       break;
10363
10364     default:
10365       break;
10366     }
10367
10368   if (call_lo16_reloc(r_type)
10369       || got_lo16_reloc(r_type)
10370       || got_disp_reloc(r_type)
10371       || eh_reloc(r_type))
10372     {
10373       // We may need a local GOT entry for this relocation.  We
10374       // don't count R_MIPS_GOT_PAGE because we can estimate the
10375       // maximum number of pages needed by looking at the size of
10376       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
10377       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
10378       // R_MIPS_CALL_HI16 because these are always followed by an
10379       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10380       Mips_output_data_got<size, big_endian>* got =
10381         target->got_section(symtab, layout);
10382       bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10383       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10384                                    is_section_symbol);
10385     }
10386
10387   switch (r_type)
10388     {
10389     case elfcpp::R_MIPS_CALL16:
10390     case elfcpp::R_MIPS16_CALL16:
10391     case elfcpp::R_MICROMIPS_CALL16:
10392       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10393                  (unsigned long)r_offset);
10394       return;
10395
10396     case elfcpp::R_MIPS_GOT_PAGE:
10397     case elfcpp::R_MICROMIPS_GOT_PAGE:
10398     case elfcpp::R_MIPS16_GOT16:
10399     case elfcpp::R_MIPS_GOT16:
10400     case elfcpp::R_MIPS_GOT_HI16:
10401     case elfcpp::R_MIPS_GOT_LO16:
10402     case elfcpp::R_MICROMIPS_GOT16:
10403     case elfcpp::R_MICROMIPS_GOT_HI16:
10404     case elfcpp::R_MICROMIPS_GOT_LO16:
10405       {
10406         // This relocation needs a page entry in the GOT.
10407         // Get the section contents.
10408         section_size_type view_size = 0;
10409         const unsigned char* view = object->section_contents(data_shndx,
10410                                                              &view_size, false);
10411         view += r_offset;
10412
10413         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10414         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10415                                                         : r_addend);
10416
10417         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10418           target->got16_addends_.push_back(got16_addend<size, big_endian>(
10419               object, data_shndx, r_type, r_sym, addend));
10420         else
10421           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10422         break;
10423       }
10424
10425     case elfcpp::R_MIPS_HI16:
10426     case elfcpp::R_MIPS_PCHI16:
10427     case elfcpp::R_MIPS16_HI16:
10428     case elfcpp::R_MICROMIPS_HI16:
10429       // Record the reloc so that we can check whether the corresponding LO16
10430       // part exists.
10431       if (rel_type == elfcpp::SHT_REL)
10432         target->got16_addends_.push_back(got16_addend<size, big_endian>(
10433             object, data_shndx, r_type, r_sym, 0));
10434       break;
10435
10436     case elfcpp::R_MIPS_LO16:
10437     case elfcpp::R_MIPS_PCLO16:
10438     case elfcpp::R_MIPS16_LO16:
10439     case elfcpp::R_MICROMIPS_LO16:
10440       {
10441         if (rel_type != elfcpp::SHT_REL)
10442           break;
10443
10444         // Find corresponding GOT16/HI16 relocation.
10445
10446         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10447         // be immediately following.  However, for the IRIX6 ABI, the next
10448         // relocation may be a composed relocation consisting of several
10449         // relocations for the same address.  In that case, the R_MIPS_LO16
10450         // relocation may occur as one of these.  We permit a similar
10451         // extension in general, as that is useful for GCC.
10452
10453         // In some cases GCC dead code elimination removes the LO16 but
10454         // keeps the corresponding HI16.  This is strictly speaking a
10455         // violation of the ABI but not immediately harmful.
10456
10457         typename std::list<got16_addend<size, big_endian> >::iterator it =
10458           target->got16_addends_.begin();
10459         while (it != target->got16_addends_.end())
10460           {
10461             got16_addend<size, big_endian> _got16_addend = *it;
10462
10463             // TODO(sasa): Split got16_addends_ list into two lists - one for
10464             // GOT16 relocs and the other for HI16 relocs.
10465
10466             // Report an error if we find HI16 or GOT16 reloc from the
10467             // previous section without the matching LO16 part.
10468             if (_got16_addend.object != object
10469                 || _got16_addend.shndx != data_shndx)
10470               {
10471                 gold_error("Can't find matching LO16 reloc");
10472                 break;
10473               }
10474
10475             if (_got16_addend.r_sym != r_sym
10476                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10477               {
10478                 ++it;
10479                 continue;
10480               }
10481
10482             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10483             // For GOT16, we need to calculate combined addend and record GOT page
10484             // entry.
10485             if (got16_reloc(_got16_addend.r_type))
10486               {
10487
10488                 section_size_type view_size = 0;
10489                 const unsigned char* view = object->section_contents(data_shndx,
10490                                                                      &view_size,
10491                                                                      false);
10492                 view += r_offset;
10493
10494                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10495                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10496
10497                 addend = (_got16_addend.addend << 16) + addend;
10498                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10499                                                              addend);
10500               }
10501
10502             it = target->got16_addends_.erase(it);
10503           }
10504         break;
10505       }
10506     }
10507
10508   switch (r_type)
10509     {
10510     case elfcpp::R_MIPS_32:
10511     case elfcpp::R_MIPS_REL32:
10512     case elfcpp::R_MIPS_64:
10513       {
10514         if (parameters->options().output_is_position_independent())
10515           {
10516             // If building a shared library (or a position-independent
10517             // executable), we need to create a dynamic relocation for
10518             // this location.
10519             if (is_readonly_section(output_section))
10520               break;
10521             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10522             rel_dyn->add_symbolless_local_addend(object, r_sym,
10523                                                  elfcpp::R_MIPS_REL32,
10524                                                  output_section, data_shndx,
10525                                                  r_offset);
10526           }
10527         break;
10528       }
10529
10530     case elfcpp::R_MIPS_TLS_GOTTPREL:
10531     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10532     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10533     case elfcpp::R_MIPS_TLS_LDM:
10534     case elfcpp::R_MIPS16_TLS_LDM:
10535     case elfcpp::R_MICROMIPS_TLS_LDM:
10536     case elfcpp::R_MIPS_TLS_GD:
10537     case elfcpp::R_MIPS16_TLS_GD:
10538     case elfcpp::R_MICROMIPS_TLS_GD:
10539       {
10540         bool output_is_shared = parameters->options().shared();
10541         const tls::Tls_optimization optimized_type
10542             = Target_mips<size, big_endian>::optimize_tls_reloc(
10543                                              !output_is_shared, r_type);
10544         switch (r_type)
10545           {
10546           case elfcpp::R_MIPS_TLS_GD:
10547           case elfcpp::R_MIPS16_TLS_GD:
10548           case elfcpp::R_MICROMIPS_TLS_GD:
10549             if (optimized_type == tls::TLSOPT_NONE)
10550               {
10551                 // Create a pair of GOT entries for the module index and
10552                 // dtv-relative offset.
10553                 Mips_output_data_got<size, big_endian>* got =
10554                   target->got_section(symtab, layout);
10555                 unsigned int shndx = lsym.get_st_shndx();
10556                 bool is_ordinary;
10557                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10558                 if (!is_ordinary)
10559                   {
10560                     object->error(_("local symbol %u has bad shndx %u"),
10561                                   r_sym, shndx);
10562                     break;
10563                   }
10564                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10565                                              shndx, false);
10566               }
10567             else
10568               {
10569                 // FIXME: TLS optimization not supported yet.
10570                 gold_unreachable();
10571               }
10572             break;
10573
10574           case elfcpp::R_MIPS_TLS_LDM:
10575           case elfcpp::R_MIPS16_TLS_LDM:
10576           case elfcpp::R_MICROMIPS_TLS_LDM:
10577             if (optimized_type == tls::TLSOPT_NONE)
10578               {
10579                 // We always record LDM symbols as local with index 0.
10580                 target->got_section()->record_local_got_symbol(mips_obj, 0,
10581                                                                r_addend, r_type,
10582                                                                -1U, false);
10583               }
10584             else
10585               {
10586                 // FIXME: TLS optimization not supported yet.
10587                 gold_unreachable();
10588               }
10589             break;
10590           case elfcpp::R_MIPS_TLS_GOTTPREL:
10591           case elfcpp::R_MIPS16_TLS_GOTTPREL:
10592           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10593             layout->set_has_static_tls();
10594             if (optimized_type == tls::TLSOPT_NONE)
10595               {
10596                 // Create a GOT entry for the tp-relative offset.
10597                 Mips_output_data_got<size, big_endian>* got =
10598                   target->got_section(symtab, layout);
10599                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10600                                              -1U, false);
10601               }
10602             else
10603               {
10604                 // FIXME: TLS optimization not supported yet.
10605                 gold_unreachable();
10606               }
10607             break;
10608
10609           default:
10610             gold_unreachable();
10611         }
10612       }
10613       break;
10614
10615     default:
10616       break;
10617     }
10618
10619   // Refuse some position-dependent relocations when creating a
10620   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
10621   // not PIC, but we can create dynamic relocations and the result
10622   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
10623   // combined with R_MIPS_GOT16.
10624   if (parameters->options().shared())
10625     {
10626       switch (r_type)
10627         {
10628         case elfcpp::R_MIPS16_HI16:
10629         case elfcpp::R_MIPS_HI16:
10630         case elfcpp::R_MICROMIPS_HI16:
10631           // Don't refuse a high part relocation if it's against
10632           // no symbol (e.g. part of a compound relocation).
10633           if (r_sym == 0)
10634             break;
10635
10636           // FALLTHROUGH
10637
10638         case elfcpp::R_MIPS16_26:
10639         case elfcpp::R_MIPS_26:
10640         case elfcpp::R_MICROMIPS_26_S1:
10641           gold_error(_("%s: relocation %u against `%s' can not be used when "
10642                        "making a shared object; recompile with -fPIC"),
10643                      object->name().c_str(), r_type, "a local symbol");
10644         default:
10645           break;
10646         }
10647     }
10648 }
10649
10650 template<int size, bool big_endian>
10651 inline void
10652 Target_mips<size, big_endian>::Scan::local(
10653                         Symbol_table* symtab,
10654                         Layout* layout,
10655                         Target_mips<size, big_endian>* target,
10656                         Sized_relobj_file<size, big_endian>* object,
10657                         unsigned int data_shndx,
10658                         Output_section* output_section,
10659                         const Reltype& reloc,
10660                         unsigned int r_type,
10661                         const elfcpp::Sym<size, big_endian>& lsym,
10662                         bool is_discarded)
10663 {
10664   if (is_discarded)
10665     return;
10666
10667   local(
10668     symtab,
10669     layout,
10670     target,
10671     object,
10672     data_shndx,
10673     output_section,
10674     (const Relatype*) NULL,
10675     &reloc,
10676     elfcpp::SHT_REL,
10677     r_type,
10678     lsym, is_discarded);
10679 }
10680
10681
10682 template<int size, bool big_endian>
10683 inline void
10684 Target_mips<size, big_endian>::Scan::local(
10685                         Symbol_table* symtab,
10686                         Layout* layout,
10687                         Target_mips<size, big_endian>* target,
10688                         Sized_relobj_file<size, big_endian>* object,
10689                         unsigned int data_shndx,
10690                         Output_section* output_section,
10691                         const Relatype& reloc,
10692                         unsigned int r_type,
10693                         const elfcpp::Sym<size, big_endian>& lsym,
10694                         bool is_discarded)
10695 {
10696   if (is_discarded)
10697     return;
10698
10699   local(
10700     symtab,
10701     layout,
10702     target,
10703     object,
10704     data_shndx,
10705     output_section,
10706     &reloc,
10707     (const Reltype*) NULL,
10708     elfcpp::SHT_RELA,
10709     r_type,
10710     lsym, is_discarded);
10711 }
10712
10713 // Scan a relocation for a global symbol.
10714
10715 template<int size, bool big_endian>
10716 inline void
10717 Target_mips<size, big_endian>::Scan::global(
10718                                 Symbol_table* symtab,
10719                                 Layout* layout,
10720                                 Target_mips<size, big_endian>* target,
10721                                 Sized_relobj_file<size, big_endian>* object,
10722                                 unsigned int data_shndx,
10723                                 Output_section* output_section,
10724                                 const Relatype* rela,
10725                                 const Reltype* rel,
10726                                 unsigned int rel_type,
10727                                 unsigned int r_type,
10728                                 Symbol* gsym)
10729 {
10730   Mips_address r_offset;
10731   unsigned int r_sym;
10732   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10733
10734   if (rel_type == elfcpp::SHT_RELA)
10735     {
10736       r_offset = rela->get_r_offset();
10737       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10738           get_r_sym(rela);
10739       r_addend = rela->get_r_addend();
10740     }
10741   else
10742     {
10743       r_offset = rel->get_r_offset();
10744       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10745           get_r_sym(rel);
10746       r_addend = 0;
10747     }
10748
10749   Mips_relobj<size, big_endian>* mips_obj =
10750     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10751   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10752
10753   if (mips_obj->is_mips16_stub_section(data_shndx))
10754     {
10755       mips_obj->get_mips16_stub_section(data_shndx)
10756               ->new_global_reloc_found(r_type, mips_sym);
10757     }
10758
10759   if (r_type == elfcpp::R_MIPS_NONE)
10760     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10761     // mips16 stub.
10762     return;
10763
10764   if (!mips16_call_reloc(r_type)
10765       && !mips_obj->section_allows_mips16_refs(data_shndx))
10766     // This reloc would need to refer to a MIPS16 hard-float stub, if
10767     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10768     // looking for relocs that would need to refer to MIPS16 stubs.
10769     mips_sym->set_need_fn_stub();
10770
10771   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
10772   // section.  We check here to avoid creating a dynamic reloc against
10773   // _GLOBAL_OFFSET_TABLE_.
10774   if (!target->has_got_section()
10775       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
10776     target->got_section(symtab, layout);
10777
10778   // We need PLT entries if there are static-only relocations against
10779   // an externally-defined function.  This can technically occur for
10780   // shared libraries if there are branches to the symbol, although it
10781   // is unlikely that this will be used in practice due to the short
10782   // ranges involved.  It can occur for any relative or absolute relocation
10783   // in executables; in that case, the PLT entry becomes the function's
10784   // canonical address.
10785   bool static_reloc = false;
10786
10787   // Set CAN_MAKE_DYNAMIC to true if we can convert this
10788   // relocation into a dynamic one.
10789   bool can_make_dynamic = false;
10790   switch (r_type)
10791     {
10792     case elfcpp::R_MIPS_GOT16:
10793     case elfcpp::R_MIPS_CALL16:
10794     case elfcpp::R_MIPS_CALL_HI16:
10795     case elfcpp::R_MIPS_CALL_LO16:
10796     case elfcpp::R_MIPS_GOT_HI16:
10797     case elfcpp::R_MIPS_GOT_LO16:
10798     case elfcpp::R_MIPS_GOT_PAGE:
10799     case elfcpp::R_MIPS_GOT_OFST:
10800     case elfcpp::R_MIPS_GOT_DISP:
10801     case elfcpp::R_MIPS_TLS_GOTTPREL:
10802     case elfcpp::R_MIPS_TLS_GD:
10803     case elfcpp::R_MIPS_TLS_LDM:
10804     case elfcpp::R_MIPS16_GOT16:
10805     case elfcpp::R_MIPS16_CALL16:
10806     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10807     case elfcpp::R_MIPS16_TLS_GD:
10808     case elfcpp::R_MIPS16_TLS_LDM:
10809     case elfcpp::R_MICROMIPS_GOT16:
10810     case elfcpp::R_MICROMIPS_CALL16:
10811     case elfcpp::R_MICROMIPS_CALL_HI16:
10812     case elfcpp::R_MICROMIPS_CALL_LO16:
10813     case elfcpp::R_MICROMIPS_GOT_HI16:
10814     case elfcpp::R_MICROMIPS_GOT_LO16:
10815     case elfcpp::R_MICROMIPS_GOT_PAGE:
10816     case elfcpp::R_MICROMIPS_GOT_OFST:
10817     case elfcpp::R_MICROMIPS_GOT_DISP:
10818     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10819     case elfcpp::R_MICROMIPS_TLS_GD:
10820     case elfcpp::R_MICROMIPS_TLS_LDM:
10821     case elfcpp::R_MIPS_EH:
10822       // We need a GOT section.
10823       target->got_section(symtab, layout);
10824       break;
10825
10826     // This is just a hint; it can safely be ignored.  Don't set
10827     // has_static_relocs for the corresponding symbol.
10828     case elfcpp::R_MIPS_JALR:
10829     case elfcpp::R_MICROMIPS_JALR:
10830       break;
10831
10832     case elfcpp::R_MIPS_GPREL16:
10833     case elfcpp::R_MIPS_GPREL32:
10834     case elfcpp::R_MIPS16_GPREL:
10835     case elfcpp::R_MICROMIPS_GPREL16:
10836       // TODO(sasa)
10837       // GP-relative relocations always resolve to a definition in a
10838       // regular input file, ignoring the one-definition rule.  This is
10839       // important for the GP setup sequence in NewABI code, which
10840       // always resolves to a local function even if other relocations
10841       // against the symbol wouldn't.
10842       //constrain_symbol_p = FALSE;
10843       break;
10844
10845     case elfcpp::R_MIPS_32:
10846     case elfcpp::R_MIPS_REL32:
10847     case elfcpp::R_MIPS_64:
10848       if ((parameters->options().shared()
10849           || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10850           && (!is_readonly_section(output_section)
10851           || mips_obj->is_pic())))
10852           && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10853         {
10854           if (r_type != elfcpp::R_MIPS_REL32)
10855             mips_sym->set_pointer_equality_needed();
10856           can_make_dynamic = true;
10857           break;
10858         }
10859       // Fall through.
10860
10861     default:
10862       // Most static relocations require pointer equality, except
10863       // for branches.
10864       mips_sym->set_pointer_equality_needed();
10865
10866       // Fall through.
10867
10868     case elfcpp::R_MIPS_26:
10869     case elfcpp::R_MIPS_PC16:
10870     case elfcpp::R_MIPS_PC21_S2:
10871     case elfcpp::R_MIPS_PC26_S2:
10872     case elfcpp::R_MIPS16_26:
10873     case elfcpp::R_MICROMIPS_26_S1:
10874     case elfcpp::R_MICROMIPS_PC7_S1:
10875     case elfcpp::R_MICROMIPS_PC10_S1:
10876     case elfcpp::R_MICROMIPS_PC16_S1:
10877     case elfcpp::R_MICROMIPS_PC23_S2:
10878       static_reloc = true;
10879       mips_sym->set_has_static_relocs();
10880       break;
10881     }
10882
10883   // If there are call relocations against an externally-defined symbol,
10884   // see whether we can create a MIPS lazy-binding stub for it.  We can
10885   // only do this if all references to the function are through call
10886   // relocations, and in that case, the traditional lazy-binding stubs
10887   // are much more efficient than PLT entries.
10888   switch (r_type)
10889     {
10890     case elfcpp::R_MIPS16_CALL16:
10891     case elfcpp::R_MIPS_CALL16:
10892     case elfcpp::R_MIPS_CALL_HI16:
10893     case elfcpp::R_MIPS_CALL_LO16:
10894     case elfcpp::R_MIPS_JALR:
10895     case elfcpp::R_MICROMIPS_CALL16:
10896     case elfcpp::R_MICROMIPS_CALL_HI16:
10897     case elfcpp::R_MICROMIPS_CALL_LO16:
10898     case elfcpp::R_MICROMIPS_JALR:
10899       if (!mips_sym->no_lazy_stub())
10900         {
10901           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10902               // Calls from shared objects to undefined symbols of type
10903               // STT_NOTYPE need lazy-binding stub.
10904               || (mips_sym->is_undefined() && parameters->options().shared()))
10905             target->mips_stubs_section(layout)->make_entry(mips_sym);
10906         }
10907       break;
10908     default:
10909       {
10910         // We must not create a stub for a symbol that has relocations
10911         // related to taking the function's address.
10912         mips_sym->set_no_lazy_stub();
10913         target->remove_lazy_stub_entry(mips_sym);
10914         break;
10915       }
10916   }
10917
10918   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
10919                                                    mips_sym->is_mips16()))
10920     mips_sym->set_has_nonpic_branches();
10921
10922   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10923   // and has a special meaning.
10924   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
10925                                && strcmp(gsym->name(), "_gp_disp") == 0
10926                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
10927   if (static_reloc && gsym->needs_plt_entry())
10928     {
10929       target->make_plt_entry(symtab, layout, mips_sym, r_type);
10930
10931       // Since this is not a PC-relative relocation, we may be
10932       // taking the address of a function.  In that case we need to
10933       // set the entry in the dynamic symbol table to the address of
10934       // the PLT entry.
10935       if (gsym->is_from_dynobj() && !parameters->options().shared())
10936         {
10937           gsym->set_needs_dynsym_value();
10938           // We distinguish between PLT entries and lazy-binding stubs by
10939           // giving the former an st_other value of STO_MIPS_PLT.  Set the
10940           // flag if there are any relocations in the binary where pointer
10941           // equality matters.
10942           if (mips_sym->pointer_equality_needed())
10943             mips_sym->set_mips_plt();
10944         }
10945     }
10946   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
10947     {
10948       // Absolute addressing relocations.
10949       // Make a dynamic relocation if necessary.
10950       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
10951         {
10952           if (gsym->may_need_copy_reloc())
10953             {
10954               target->copy_reloc(symtab, layout, object, data_shndx,
10955                                  output_section, gsym, r_type, r_offset);
10956             }
10957           else if (can_make_dynamic)
10958             {
10959               // Create .rel.dyn section.
10960               target->rel_dyn_section(layout);
10961               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
10962                                     data_shndx, output_section, r_offset);
10963             }
10964           else
10965             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
10966                        gsym->name());
10967         }
10968     }
10969
10970   bool for_call = false;
10971   switch (r_type)
10972     {
10973     case elfcpp::R_MIPS_CALL16:
10974     case elfcpp::R_MIPS16_CALL16:
10975     case elfcpp::R_MICROMIPS_CALL16:
10976     case elfcpp::R_MIPS_CALL_HI16:
10977     case elfcpp::R_MIPS_CALL_LO16:
10978     case elfcpp::R_MICROMIPS_CALL_HI16:
10979     case elfcpp::R_MICROMIPS_CALL_LO16:
10980       for_call = true;
10981       // Fall through.
10982
10983     case elfcpp::R_MIPS16_GOT16:
10984     case elfcpp::R_MIPS_GOT16:
10985     case elfcpp::R_MIPS_GOT_HI16:
10986     case elfcpp::R_MIPS_GOT_LO16:
10987     case elfcpp::R_MICROMIPS_GOT16:
10988     case elfcpp::R_MICROMIPS_GOT_HI16:
10989     case elfcpp::R_MICROMIPS_GOT_LO16:
10990     case elfcpp::R_MIPS_GOT_DISP:
10991     case elfcpp::R_MICROMIPS_GOT_DISP:
10992     case elfcpp::R_MIPS_EH:
10993       {
10994         // The symbol requires a GOT entry.
10995         Mips_output_data_got<size, big_endian>* got =
10996           target->got_section(symtab, layout);
10997         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
10998                                       for_call);
10999         mips_sym->set_global_got_area(GGA_NORMAL);
11000       }
11001       break;
11002
11003     case elfcpp::R_MIPS_GOT_PAGE:
11004     case elfcpp::R_MICROMIPS_GOT_PAGE:
11005       {
11006         // This relocation needs a page entry in the GOT.
11007         // Get the section contents.
11008         section_size_type view_size = 0;
11009         const unsigned char* view =
11010           object->section_contents(data_shndx, &view_size, false);
11011         view += r_offset;
11012
11013         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11014         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11015                                                         : r_addend);
11016         Mips_output_data_got<size, big_endian>* got =
11017           target->got_section(symtab, layout);
11018         got->record_got_page_entry(mips_obj, r_sym, addend);
11019
11020         // If this is a global, overridable symbol, GOT_PAGE will
11021         // decay to GOT_DISP, so we'll need a GOT entry for it.
11022         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11023                             && !mips_sym->object()->is_dynamic()
11024                             && !mips_sym->is_undefined());
11025         if (!def_regular
11026             || (parameters->options().output_is_position_independent()
11027                 && !parameters->options().Bsymbolic()
11028                 && !mips_sym->is_forced_local()))
11029           {
11030             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11031                                           for_call);
11032             mips_sym->set_global_got_area(GGA_NORMAL);
11033           }
11034       }
11035       break;
11036
11037     case elfcpp::R_MIPS_TLS_GOTTPREL:
11038     case elfcpp::R_MIPS16_TLS_GOTTPREL:
11039     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11040     case elfcpp::R_MIPS_TLS_LDM:
11041     case elfcpp::R_MIPS16_TLS_LDM:
11042     case elfcpp::R_MICROMIPS_TLS_LDM:
11043     case elfcpp::R_MIPS_TLS_GD:
11044     case elfcpp::R_MIPS16_TLS_GD:
11045     case elfcpp::R_MICROMIPS_TLS_GD:
11046       {
11047         const bool is_final = gsym->final_value_is_known();
11048         const tls::Tls_optimization optimized_type =
11049           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11050
11051         switch (r_type)
11052           {
11053           case elfcpp::R_MIPS_TLS_GD:
11054           case elfcpp::R_MIPS16_TLS_GD:
11055           case elfcpp::R_MICROMIPS_TLS_GD:
11056             if (optimized_type == tls::TLSOPT_NONE)
11057               {
11058                 // Create a pair of GOT entries for the module index and
11059                 // dtv-relative offset.
11060                 Mips_output_data_got<size, big_endian>* got =
11061                   target->got_section(symtab, layout);
11062                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11063                                               false);
11064               }
11065             else
11066               {
11067                 // FIXME: TLS optimization not supported yet.
11068                 gold_unreachable();
11069               }
11070             break;
11071
11072           case elfcpp::R_MIPS_TLS_LDM:
11073           case elfcpp::R_MIPS16_TLS_LDM:
11074           case elfcpp::R_MICROMIPS_TLS_LDM:
11075             if (optimized_type == tls::TLSOPT_NONE)
11076               {
11077                 // We always record LDM symbols as local with index 0.
11078                 target->got_section()->record_local_got_symbol(mips_obj, 0,
11079                                                                r_addend, r_type,
11080                                                                -1U, false);
11081               }
11082             else
11083               {
11084                 // FIXME: TLS optimization not supported yet.
11085                 gold_unreachable();
11086               }
11087             break;
11088           case elfcpp::R_MIPS_TLS_GOTTPREL:
11089           case elfcpp::R_MIPS16_TLS_GOTTPREL:
11090           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11091             layout->set_has_static_tls();
11092             if (optimized_type == tls::TLSOPT_NONE)
11093               {
11094                 // Create a GOT entry for the tp-relative offset.
11095                 Mips_output_data_got<size, big_endian>* got =
11096                   target->got_section(symtab, layout);
11097                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11098                                               false);
11099               }
11100             else
11101               {
11102                 // FIXME: TLS optimization not supported yet.
11103                 gold_unreachable();
11104               }
11105             break;
11106
11107           default:
11108             gold_unreachable();
11109         }
11110       }
11111       break;
11112     case elfcpp::R_MIPS_COPY:
11113     case elfcpp::R_MIPS_JUMP_SLOT:
11114       // These are relocations which should only be seen by the
11115       // dynamic linker, and should never be seen here.
11116       gold_error(_("%s: unexpected reloc %u in object file"),
11117                  object->name().c_str(), r_type);
11118       break;
11119
11120     default:
11121       break;
11122     }
11123
11124   // Refuse some position-dependent relocations when creating a
11125   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
11126   // not PIC, but we can create dynamic relocations and the result
11127   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
11128   // combined with R_MIPS_GOT16.
11129   if (parameters->options().shared())
11130     {
11131       switch (r_type)
11132         {
11133         case elfcpp::R_MIPS16_HI16:
11134         case elfcpp::R_MIPS_HI16:
11135         case elfcpp::R_MICROMIPS_HI16:
11136           // Don't refuse a high part relocation if it's against
11137           // no symbol (e.g. part of a compound relocation).
11138           if (r_sym == 0)
11139             break;
11140
11141           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11142           // and has a special meaning.
11143           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11144             break;
11145
11146           // FALLTHROUGH
11147
11148         case elfcpp::R_MIPS16_26:
11149         case elfcpp::R_MIPS_26:
11150         case elfcpp::R_MICROMIPS_26_S1:
11151           gold_error(_("%s: relocation %u against `%s' can not be used when "
11152                        "making a shared object; recompile with -fPIC"),
11153                      object->name().c_str(), r_type, gsym->name());
11154         default:
11155           break;
11156         }
11157     }
11158 }
11159
11160 template<int size, bool big_endian>
11161 inline void
11162 Target_mips<size, big_endian>::Scan::global(
11163                                 Symbol_table* symtab,
11164                                 Layout* layout,
11165                                 Target_mips<size, big_endian>* target,
11166                                 Sized_relobj_file<size, big_endian>* object,
11167                                 unsigned int data_shndx,
11168                                 Output_section* output_section,
11169                                 const Relatype& reloc,
11170                                 unsigned int r_type,
11171                                 Symbol* gsym)
11172 {
11173   global(
11174     symtab,
11175     layout,
11176     target,
11177     object,
11178     data_shndx,
11179     output_section,
11180     &reloc,
11181     (const Reltype*) NULL,
11182     elfcpp::SHT_RELA,
11183     r_type,
11184     gsym);
11185 }
11186
11187 template<int size, bool big_endian>
11188 inline void
11189 Target_mips<size, big_endian>::Scan::global(
11190                                 Symbol_table* symtab,
11191                                 Layout* layout,
11192                                 Target_mips<size, big_endian>* target,
11193                                 Sized_relobj_file<size, big_endian>* object,
11194                                 unsigned int data_shndx,
11195                                 Output_section* output_section,
11196                                 const Reltype& reloc,
11197                                 unsigned int r_type,
11198                                 Symbol* gsym)
11199 {
11200   global(
11201     symtab,
11202     layout,
11203     target,
11204     object,
11205     data_shndx,
11206     output_section,
11207     (const Relatype*) NULL,
11208     &reloc,
11209     elfcpp::SHT_REL,
11210     r_type,
11211     gsym);
11212 }
11213
11214 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11215 // In cases where Scan::local() or Scan::global() has created
11216 // a dynamic relocation, the addend of the relocation is carried
11217 // in the data, and we must not apply the static relocation.
11218
11219 template<int size, bool big_endian>
11220 inline bool
11221 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11222     const Mips_symbol<size>* gsym,
11223     unsigned int r_type,
11224     Output_section* output_section,
11225     Target_mips* target)
11226 {
11227   // If the output section is not allocated, then we didn't call
11228   // scan_relocs, we didn't create a dynamic reloc, and we must apply
11229   // the reloc here.
11230   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11231       return true;
11232
11233   if (gsym == NULL)
11234     return true;
11235   else
11236     {
11237       // For global symbols, we use the same helper routines used in the
11238       // scan pass.
11239       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11240           && !gsym->may_need_copy_reloc())
11241         {
11242           // We have generated dynamic reloc (R_MIPS_REL32).
11243
11244           bool multi_got = false;
11245           if (target->has_got_section())
11246             multi_got = target->got_section()->multi_got();
11247           bool has_got_offset;
11248           if (!multi_got)
11249             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11250           else
11251             has_got_offset = gsym->global_gotoffset() != -1U;
11252           if (!has_got_offset)
11253             return true;
11254           else
11255             // Apply the relocation only if the symbol is in the local got.
11256             // Do not apply the relocation if the symbol is in the global
11257             // got.
11258             return symbol_references_local(gsym, gsym->has_dynsym_index());
11259         }
11260       else
11261         // We have not generated dynamic reloc.
11262         return true;
11263     }
11264 }
11265
11266 // Perform a relocation.
11267
11268 template<int size, bool big_endian>
11269 inline bool
11270 Target_mips<size, big_endian>::Relocate::relocate(
11271                         const Relocate_info<size, big_endian>* relinfo,
11272                         unsigned int rel_type,
11273                         Target_mips* target,
11274                         Output_section* output_section,
11275                         size_t relnum,
11276                         const unsigned char* preloc,
11277                         const Sized_symbol<size>* gsym,
11278                         const Symbol_value<size>* psymval,
11279                         unsigned char* view,
11280                         Mips_address address,
11281                         section_size_type)
11282 {
11283   Mips_address r_offset;
11284   unsigned int r_sym;
11285   unsigned int r_type;
11286   unsigned int r_type2;
11287   unsigned int r_type3;
11288   unsigned char r_ssym;
11289   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11290
11291   if (rel_type == elfcpp::SHT_RELA)
11292     {
11293       const Relatype rela(preloc);
11294       r_offset = rela.get_r_offset();
11295       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11296           get_r_sym(&rela);
11297       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11298           get_r_type(&rela);
11299       r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11300           get_r_type2(&rela);
11301       r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11302           get_r_type3(&rela);
11303       r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11304           get_r_ssym(&rela);
11305       r_addend = rela.get_r_addend();
11306     }
11307   else
11308     {
11309       const Reltype rel(preloc);
11310       r_offset = rel.get_r_offset();
11311       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11312           get_r_sym(&rel);
11313       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11314           get_r_type(&rel);
11315       r_ssym = 0;
11316       r_type2 = 0;
11317       r_type3 = 0;
11318       r_addend = 0;
11319     }
11320
11321   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11322   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11323
11324   Mips_relobj<size, big_endian>* object =
11325       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11326
11327   bool target_is_16_bit_code = false;
11328   bool target_is_micromips_code = false;
11329   bool cross_mode_jump;
11330
11331   Symbol_value<size> symval;
11332
11333   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11334
11335   bool changed_symbol_value = false;
11336   if (gsym == NULL)
11337     {
11338       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11339       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11340       if (target_is_16_bit_code || target_is_micromips_code)
11341         {
11342           // MIPS16/microMIPS text labels should be treated as odd.
11343           symval.set_output_value(psymval->value(object, 1));
11344           psymval = &symval;
11345           changed_symbol_value = true;
11346         }
11347     }
11348   else
11349     {
11350       target_is_16_bit_code = mips_sym->is_mips16();
11351       target_is_micromips_code = mips_sym->is_micromips();
11352
11353       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11354       // it odd.  This will cause something like .word SYM to come up with
11355       // the right value when it is loaded into the PC.
11356
11357       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11358           && psymval->value(object, 0) != 0)
11359         {
11360           symval.set_output_value(psymval->value(object, 0) | 1);
11361           psymval = &symval;
11362           changed_symbol_value = true;
11363         }
11364
11365       // Pick the value to use for symbols defined in shared objects.
11366       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11367           || mips_sym->has_lazy_stub())
11368         {
11369           Mips_address value;
11370           if (!mips_sym->has_lazy_stub())
11371             {
11372               // Prefer a standard MIPS PLT entry.
11373               if (mips_sym->has_mips_plt_offset())
11374                 {
11375                   value = target->plt_section()->mips_entry_address(mips_sym);
11376                   target_is_micromips_code = false;
11377                   target_is_16_bit_code = false;
11378                 }
11379               else
11380                 {
11381                   value = (target->plt_section()->comp_entry_address(mips_sym)
11382                            + 1);
11383                   if (target->is_output_micromips())
11384                     target_is_micromips_code = true;
11385                   else
11386                     target_is_16_bit_code = true;
11387                 }
11388             }
11389           else
11390             value = target->mips_stubs_section()->stub_address(mips_sym);
11391
11392           symval.set_output_value(value);
11393           psymval = &symval;
11394         }
11395     }
11396
11397   // TRUE if the symbol referred to by this relocation is "_gp_disp".
11398   // Note that such a symbol must always be a global symbol.
11399   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11400                   && !object->is_newabi());
11401
11402   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11403   // Note that such a symbol must always be a global symbol.
11404   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11405
11406
11407   if (gp_disp)
11408     {
11409       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11410         gold_error_at_location(relinfo, relnum, r_offset,
11411           _("relocations against _gp_disp are permitted only"
11412             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11413     }
11414   else if (gnu_local_gp)
11415     {
11416       // __gnu_local_gp is _gp symbol.
11417       symval.set_output_value(target->adjusted_gp_value(object));
11418       psymval = &symval;
11419     }
11420
11421   // If this is a reference to a 16-bit function with a stub, we need
11422   // to redirect the relocation to the stub unless:
11423   //
11424   // (a) the relocation is for a MIPS16 JAL;
11425   //
11426   // (b) the relocation is for a MIPS16 PIC call, and there are no
11427   //     non-MIPS16 uses of the GOT slot; or
11428   //
11429   // (c) the section allows direct references to MIPS16 functions.
11430   if (r_type != elfcpp::R_MIPS16_26
11431       && !parameters->options().relocatable()
11432       && ((mips_sym != NULL
11433            && mips_sym->has_mips16_fn_stub()
11434            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11435           || (mips_sym == NULL
11436               && object->get_local_mips16_fn_stub(r_sym) != NULL))
11437       && !object->section_allows_mips16_refs(relinfo->data_shndx))
11438     {
11439       // This is a 32- or 64-bit call to a 16-bit function.  We should
11440       // have already noticed that we were going to need the
11441       // stub.
11442       Mips_address value;
11443       if (mips_sym == NULL)
11444         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11445       else
11446         {
11447           gold_assert(mips_sym->need_fn_stub());
11448           if (mips_sym->has_la25_stub())
11449             value = target->la25_stub_section()->stub_address(mips_sym);
11450           else
11451             {
11452               value = mips_sym->template
11453                       get_mips16_fn_stub<big_endian>()->output_address();
11454             }
11455           }
11456       symval.set_output_value(value);
11457       psymval = &symval;
11458       changed_symbol_value = true;
11459
11460       // The target is 16-bit, but the stub isn't.
11461       target_is_16_bit_code = false;
11462     }
11463   // If this is a MIPS16 call with a stub, that is made through the PLT or
11464   // to a standard MIPS function, we need to redirect the call to the stub.
11465   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11466   // indirect calls should use an indirect stub instead.
11467   else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11468            && ((mips_sym != NULL
11469                 && (mips_sym->has_mips16_call_stub()
11470                     || mips_sym->has_mips16_call_fp_stub()))
11471                || (mips_sym == NULL
11472                    && object->get_local_mips16_call_stub(r_sym) != NULL))
11473            && ((mips_sym != NULL && mips_sym->has_plt_offset())
11474                || !target_is_16_bit_code))
11475     {
11476       Mips16_stub_section<size, big_endian>* call_stub;
11477       if (mips_sym == NULL)
11478         call_stub = object->get_local_mips16_call_stub(r_sym);
11479       else
11480         {
11481           // If both call_stub and call_fp_stub are defined, we can figure
11482           // out which one to use by checking which one appears in the input
11483           // file.
11484           if (mips_sym->has_mips16_call_stub()
11485               && mips_sym->has_mips16_call_fp_stub())
11486             {
11487               call_stub = NULL;
11488               for (unsigned int i = 1; i < object->shnum(); ++i)
11489                 {
11490                   if (object->is_mips16_call_fp_stub_section(i))
11491                     {
11492                       call_stub = mips_sym->template
11493                                   get_mips16_call_fp_stub<big_endian>();
11494                       break;
11495                     }
11496
11497                 }
11498               if (call_stub == NULL)
11499                 call_stub =
11500                   mips_sym->template get_mips16_call_stub<big_endian>();
11501             }
11502           else if (mips_sym->has_mips16_call_stub())
11503             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11504           else
11505             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11506         }
11507
11508       symval.set_output_value(call_stub->output_address());
11509       psymval = &symval;
11510       changed_symbol_value = true;
11511     }
11512   // If this is a direct call to a PIC function, redirect to the
11513   // non-PIC stub.
11514   else if (mips_sym != NULL
11515            && mips_sym->has_la25_stub()
11516            && relocation_needs_la25_stub<size, big_endian>(
11517                                        object, r_type, target_is_16_bit_code))
11518     {
11519       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11520       if (mips_sym->is_micromips())
11521         value += 1;
11522       symval.set_output_value(value);
11523       psymval = &symval;
11524     }
11525   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11526   // entry is used if a standard PLT entry has also been made.
11527   else if ((r_type == elfcpp::R_MIPS16_26
11528             || r_type == elfcpp::R_MICROMIPS_26_S1)
11529           && !parameters->options().relocatable()
11530           && mips_sym != NULL
11531           && mips_sym->has_plt_offset()
11532           && mips_sym->has_comp_plt_offset()
11533           && mips_sym->has_mips_plt_offset())
11534     {
11535       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11536                             + 1);
11537       symval.set_output_value(value);
11538       psymval = &symval;
11539
11540       target_is_16_bit_code = !target->is_output_micromips();
11541       target_is_micromips_code = target->is_output_micromips();
11542     }
11543
11544   // Make sure MIPS16 and microMIPS are not used together.
11545   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11546       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11547    {
11548       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11549    }
11550
11551   // Calls from 16-bit code to 32-bit code and vice versa require the
11552   // mode change.  However, we can ignore calls to undefined weak symbols,
11553   // which should never be executed at runtime.  This exception is important
11554   // because the assembly writer may have "known" that any definition of the
11555   // symbol would be 16-bit code, and that direct jumps were therefore
11556   // acceptable.
11557   cross_mode_jump =
11558     (!parameters->options().relocatable()
11559      && !(gsym != NULL && gsym->is_weak_undefined())
11560      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11561          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11562          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11563              && (target_is_16_bit_code || target_is_micromips_code))));
11564
11565   bool local = (mips_sym == NULL
11566                 || (mips_sym->got_only_for_calls()
11567                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11568                     : symbol_references_local(mips_sym,
11569                                               mips_sym->has_dynsym_index())));
11570
11571   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11572   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
11573   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11574   if (got_page_reloc(r_type) && !local)
11575     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11576                                       : elfcpp::R_MIPS_GOT_DISP);
11577
11578   unsigned int got_offset = 0;
11579   int gp_offset = 0;
11580
11581   bool calculate_only = false;
11582   Valtype calculated_value = 0;
11583   bool extract_addend = rel_type == elfcpp::SHT_REL;
11584   unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11585
11586   Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11587
11588   // For Mips64 N64 ABI, there may be up to three operations specified per
11589   // record, by the fields r_type, r_type2, and r_type3. The first operation
11590   // takes its addend from the relocation record. Each subsequent operation
11591   // takes as its addend the result of the previous operation.
11592   // The first operation in a record which references a symbol uses the symbol
11593   // implied by r_sym. The next operation in a record which references a symbol
11594   // uses the special symbol value given by the r_ssym field. A third operation
11595   // in a record which references a symbol will assume a NULL symbol,
11596   // i.e. value zero.
11597
11598   // TODO(Vladimir)
11599   // Check if a record references to a symbol.
11600   for (unsigned int i = 0; i < 3; ++i)
11601     {
11602       if (r_types[i] == elfcpp::R_MIPS_NONE)
11603         break;
11604
11605       // TODO(Vladimir)
11606       // Check if the next relocation is for the same instruction.
11607       calculate_only = i == 2 ? false
11608                               : r_types[i+1] != elfcpp::R_MIPS_NONE;
11609
11610       if (object->is_n64())
11611         {
11612           if (i == 1)
11613             {
11614               // Handle special symbol for r_type2 relocation type.
11615               switch (r_ssym)
11616                 {
11617                 case RSS_UNDEF:
11618                   symval.set_output_value(0);
11619                   break;
11620                 case RSS_GP:
11621                   symval.set_output_value(target->gp_value());
11622                   break;
11623                 case RSS_GP0:
11624                   symval.set_output_value(object->gp_value());
11625                   break;
11626                 case RSS_LOC:
11627                   symval.set_output_value(address);
11628                   break;
11629                 default:
11630                   gold_unreachable();
11631                 }
11632               psymval = &symval;
11633             }
11634           else if (i == 2)
11635            {
11636             // For r_type3 symbol value is 0.
11637             symval.set_output_value(0);
11638            }
11639         }
11640
11641       bool update_got_entry = false;
11642       switch (r_types[i])
11643         {
11644         case elfcpp::R_MIPS_NONE:
11645           break;
11646         case elfcpp::R_MIPS_16:
11647           reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11648                                             extract_addend, calculate_only,
11649                                             &calculated_value);
11650           break;
11651
11652         case elfcpp::R_MIPS_32:
11653           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11654                                         target))
11655             reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11656                                               extract_addend, calculate_only,
11657                                               &calculated_value);
11658           if (mips_sym != NULL
11659               && (mips_sym->is_mips16() || mips_sym->is_micromips())
11660               && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11661             {
11662               // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11663               // already updated by adding +1.
11664               if (mips_sym->has_mips16_fn_stub())
11665                 {
11666                   gold_assert(mips_sym->need_fn_stub());
11667                   Mips16_stub_section<size, big_endian>* fn_stub =
11668                     mips_sym->template get_mips16_fn_stub<big_endian>();
11669
11670                   symval.set_output_value(fn_stub->output_address());
11671                   psymval = &symval;
11672                 }
11673               got_offset = mips_sym->global_gotoffset();
11674               update_got_entry = true;
11675             }
11676           break;
11677
11678         case elfcpp::R_MIPS_64:
11679           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11680                                         target))
11681             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11682                                               extract_addend, calculate_only,
11683                                               &calculated_value, false);
11684           else if (target->is_output_n64() && r_addend != 0)
11685             // Only apply the addend.  The static relocation was RELA, but the
11686             // dynamic relocation is REL, so we need to apply the addend.
11687             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11688                                               extract_addend, calculate_only,
11689                                               &calculated_value, true);
11690           break;
11691         case elfcpp::R_MIPS_REL32:
11692           gold_unreachable();
11693
11694         case elfcpp::R_MIPS_PC32:
11695           reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11696                                               r_addend, extract_addend,
11697                                               calculate_only,
11698                                               &calculated_value);
11699           break;
11700
11701         case elfcpp::R_MIPS16_26:
11702           // The calculation for R_MIPS16_26 is just the same as for an
11703           // R_MIPS_26.  It's only the storage of the relocated field into
11704           // the output file that's different.  So, we just fall through to the
11705           // R_MIPS_26 case here.
11706         case elfcpp::R_MIPS_26:
11707         case elfcpp::R_MICROMIPS_26_S1:
11708           reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11709               gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11710               r_types[i], target->jal_to_bal(), calculate_only,
11711               &calculated_value);
11712           break;
11713
11714         case elfcpp::R_MIPS_HI16:
11715         case elfcpp::R_MIPS16_HI16:
11716         case elfcpp::R_MICROMIPS_HI16:
11717           if (rel_type == elfcpp::SHT_RELA)
11718             reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11719                                                    r_addend, address,
11720                                                    gp_disp, r_types[i],
11721                                                    extract_addend, 0,
11722                                                    target, calculate_only,
11723                                                    &calculated_value);
11724           else if (rel_type == elfcpp::SHT_REL)
11725             reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11726                                                 address, gp_disp, r_types[i],
11727                                                 r_sym, extract_addend);
11728           else
11729             gold_unreachable();
11730           break;
11731
11732         case elfcpp::R_MIPS_LO16:
11733         case elfcpp::R_MIPS16_LO16:
11734         case elfcpp::R_MICROMIPS_LO16:
11735         case elfcpp::R_MICROMIPS_HI0_LO16:
11736           reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11737                                               r_addend, extract_addend, address,
11738                                               gp_disp, r_types[i], r_sym,
11739                                               rel_type, calculate_only,
11740                                               &calculated_value);
11741           break;
11742
11743         case elfcpp::R_MIPS_LITERAL:
11744         case elfcpp::R_MICROMIPS_LITERAL:
11745           // Because we don't merge literal sections, we can handle this
11746           // just like R_MIPS_GPREL16.  In the long run, we should merge
11747           // shared literals, and then we will need to additional work
11748           // here.
11749
11750           // Fall through.
11751
11752         case elfcpp::R_MIPS_GPREL16:
11753         case elfcpp::R_MIPS16_GPREL:
11754         case elfcpp::R_MICROMIPS_GPREL7_S2:
11755         case elfcpp::R_MICROMIPS_GPREL16:
11756           reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11757                                              target->adjusted_gp_value(object),
11758                                              r_addend, extract_addend,
11759                                              gsym == NULL, r_types[i],
11760                                              calculate_only, &calculated_value);
11761           break;
11762
11763         case elfcpp::R_MIPS_PC16:
11764           reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11765                                               r_addend, extract_addend,
11766                                               calculate_only,
11767                                               &calculated_value);
11768           break;
11769
11770         case elfcpp::R_MIPS_PC21_S2:
11771           reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11772                                               r_addend, extract_addend,
11773                                               calculate_only,
11774                                               &calculated_value);
11775           break;
11776
11777         case elfcpp::R_MIPS_PC26_S2:
11778           reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11779                                               r_addend, extract_addend,
11780                                               calculate_only,
11781                                               &calculated_value);
11782           break;
11783
11784         case elfcpp::R_MIPS_PC18_S3:
11785           reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11786                                               r_addend, extract_addend,
11787                                               calculate_only,
11788                                               &calculated_value);
11789           break;
11790
11791         case elfcpp::R_MIPS_PC19_S2:
11792           reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11793                                               r_addend, extract_addend,
11794                                               calculate_only,
11795                                               &calculated_value);
11796           break;
11797
11798         case elfcpp::R_MIPS_PCHI16:
11799           if (rel_type == elfcpp::SHT_RELA)
11800             reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11801                                                      r_addend, address,
11802                                                      extract_addend, 0,
11803                                                      calculate_only,
11804                                                      &calculated_value);
11805           else if (rel_type == elfcpp::SHT_REL)
11806             reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11807                                                   r_addend, address, r_sym,
11808                                                   extract_addend);
11809           else
11810             gold_unreachable();
11811           break;
11812
11813         case elfcpp::R_MIPS_PCLO16:
11814           reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11815                                                 extract_addend, address, r_sym,
11816                                                 rel_type, calculate_only,
11817                                                 &calculated_value);
11818           break;
11819         case elfcpp::R_MICROMIPS_PC7_S1:
11820           reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11821                                                         address, r_addend,
11822                                                         extract_addend,
11823                                                         calculate_only,
11824                                                         &calculated_value);
11825           break;
11826         case elfcpp::R_MICROMIPS_PC10_S1:
11827           reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11828                                                        psymval, address,
11829                                                        r_addend, extract_addend,
11830                                                        calculate_only,
11831                                                        &calculated_value);
11832           break;
11833         case elfcpp::R_MICROMIPS_PC16_S1:
11834           reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11835                                                        psymval, address,
11836                                                        r_addend, extract_addend,
11837                                                        calculate_only,
11838                                                        &calculated_value);
11839           break;
11840         case elfcpp::R_MIPS_GPREL32:
11841           reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11842                                               target->adjusted_gp_value(object),
11843                                               r_addend, extract_addend,
11844                                               calculate_only,
11845                                               &calculated_value);
11846           break;
11847         case elfcpp::R_MIPS_GOT_HI16:
11848         case elfcpp::R_MIPS_CALL_HI16:
11849         case elfcpp::R_MICROMIPS_GOT_HI16:
11850         case elfcpp::R_MICROMIPS_CALL_HI16:
11851           if (gsym != NULL)
11852             got_offset = target->got_section()->got_offset(gsym,
11853                                                            GOT_TYPE_STANDARD,
11854                                                            object);
11855           else
11856             got_offset = target->got_section()->got_offset(r_sym,
11857                                                            GOT_TYPE_STANDARD,
11858                                                            object, r_addend);
11859           gp_offset = target->got_section()->gp_offset(got_offset, object);
11860           reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11861                                                   calculate_only,
11862                                                   &calculated_value);
11863           update_got_entry = changed_symbol_value;
11864           break;
11865
11866         case elfcpp::R_MIPS_GOT_LO16:
11867         case elfcpp::R_MIPS_CALL_LO16:
11868         case elfcpp::R_MICROMIPS_GOT_LO16:
11869         case elfcpp::R_MICROMIPS_CALL_LO16:
11870           if (gsym != NULL)
11871             got_offset = target->got_section()->got_offset(gsym,
11872                                                            GOT_TYPE_STANDARD,
11873                                                            object);
11874           else
11875             got_offset = target->got_section()->got_offset(r_sym,
11876                                                            GOT_TYPE_STANDARD,
11877                                                            object, r_addend);
11878           gp_offset = target->got_section()->gp_offset(got_offset, object);
11879           reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11880                                                   calculate_only,
11881                                                   &calculated_value);
11882           update_got_entry = changed_symbol_value;
11883           break;
11884
11885         case elfcpp::R_MIPS_GOT_DISP:
11886         case elfcpp::R_MICROMIPS_GOT_DISP:
11887         case elfcpp::R_MIPS_EH:
11888           if (gsym != NULL)
11889             got_offset = target->got_section()->got_offset(gsym,
11890                                                            GOT_TYPE_STANDARD,
11891                                                            object);
11892           else
11893             got_offset = target->got_section()->got_offset(r_sym,
11894                                                            GOT_TYPE_STANDARD,
11895                                                            object, r_addend);
11896           gp_offset = target->got_section()->gp_offset(got_offset, object);
11897           if (eh_reloc(r_types[i]))
11898             reloc_status = Reloc_funcs::releh(view, gp_offset,
11899                                               calculate_only,
11900                                               &calculated_value);
11901           else
11902             reloc_status = Reloc_funcs::relgot(view, gp_offset,
11903                                                calculate_only,
11904                                                &calculated_value);
11905           break;
11906         case elfcpp::R_MIPS_CALL16:
11907         case elfcpp::R_MIPS16_CALL16:
11908         case elfcpp::R_MICROMIPS_CALL16:
11909           gold_assert(gsym != NULL);
11910           got_offset = target->got_section()->got_offset(gsym,
11911                                                          GOT_TYPE_STANDARD,
11912                                                          object);
11913           gp_offset = target->got_section()->gp_offset(got_offset, object);
11914           reloc_status = Reloc_funcs::relgot(view, gp_offset,
11915                                              calculate_only, &calculated_value);
11916           // TODO(sasa): We should also initialize update_got_entry
11917           // in other place swhere relgot is called.
11918           update_got_entry = changed_symbol_value;
11919           break;
11920
11921         case elfcpp::R_MIPS_GOT16:
11922         case elfcpp::R_MIPS16_GOT16:
11923         case elfcpp::R_MICROMIPS_GOT16:
11924           if (gsym != NULL)
11925             {
11926               got_offset = target->got_section()->got_offset(gsym,
11927                                                              GOT_TYPE_STANDARD,
11928                                                              object);
11929               gp_offset = target->got_section()->gp_offset(got_offset, object);
11930               reloc_status = Reloc_funcs::relgot(view, gp_offset,
11931                                                  calculate_only,
11932                                                  &calculated_value);
11933             }
11934           else
11935             {
11936               if (rel_type == elfcpp::SHT_RELA)
11937                 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
11938                                                          psymval, r_addend,
11939                                                          extract_addend, 0,
11940                                                          target,
11941                                                          calculate_only,
11942                                                          &calculated_value);
11943               else if (rel_type == elfcpp::SHT_REL)
11944                 reloc_status = Reloc_funcs::relgot16_local(view, object,
11945                                                            psymval, r_addend,
11946                                                            extract_addend,
11947                                                            r_types[i], r_sym);
11948               else
11949                 gold_unreachable();
11950             }
11951           update_got_entry = changed_symbol_value;
11952           break;
11953
11954         case elfcpp::R_MIPS_TLS_GD:
11955         case elfcpp::R_MIPS16_TLS_GD:
11956         case elfcpp::R_MICROMIPS_TLS_GD:
11957           if (gsym != NULL)
11958             got_offset = target->got_section()->got_offset(gsym,
11959                                                            GOT_TYPE_TLS_PAIR,
11960                                                            object);
11961           else
11962             got_offset = target->got_section()->got_offset(r_sym,
11963                                                            GOT_TYPE_TLS_PAIR,
11964                                                            object, r_addend);
11965           gp_offset = target->got_section()->gp_offset(got_offset, object);
11966           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11967                                              &calculated_value);
11968           break;
11969
11970         case elfcpp::R_MIPS_TLS_GOTTPREL:
11971         case elfcpp::R_MIPS16_TLS_GOTTPREL:
11972         case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11973           if (gsym != NULL)
11974             got_offset = target->got_section()->got_offset(gsym,
11975                                                            GOT_TYPE_TLS_OFFSET,
11976                                                            object);
11977           else
11978             got_offset = target->got_section()->got_offset(r_sym,
11979                                                            GOT_TYPE_TLS_OFFSET,
11980                                                            object, r_addend);
11981           gp_offset = target->got_section()->gp_offset(got_offset, object);
11982           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11983                                              &calculated_value);
11984           break;
11985
11986         case elfcpp::R_MIPS_TLS_LDM:
11987         case elfcpp::R_MIPS16_TLS_LDM:
11988         case elfcpp::R_MICROMIPS_TLS_LDM:
11989           // Relocate the field with the offset of the GOT entry for
11990           // the module index.
11991           got_offset = target->got_section()->tls_ldm_offset(object);
11992           gp_offset = target->got_section()->gp_offset(got_offset, object);
11993           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11994                                              &calculated_value);
11995           break;
11996
11997         case elfcpp::R_MIPS_GOT_PAGE:
11998         case elfcpp::R_MICROMIPS_GOT_PAGE:
11999           reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12000                                                  r_addend, extract_addend,
12001                                                  calculate_only,
12002                                                  &calculated_value);
12003           break;
12004
12005         case elfcpp::R_MIPS_GOT_OFST:
12006         case elfcpp::R_MICROMIPS_GOT_OFST:
12007           reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12008                                                  r_addend, extract_addend,
12009                                                  local, calculate_only,
12010                                                  &calculated_value);
12011           break;
12012
12013         case elfcpp::R_MIPS_JALR:
12014         case elfcpp::R_MICROMIPS_JALR:
12015           // This relocation is only a hint.  In some cases, we optimize
12016           // it into a bal instruction.  But we don't try to optimize
12017           // when the symbol does not resolve locally.
12018           if (gsym == NULL
12019               || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12020             reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12021                                                 r_addend, extract_addend,
12022                                                 cross_mode_jump, r_types[i],
12023                                                 target->jalr_to_bal(),
12024                                                 target->jr_to_b(),
12025                                                 calculate_only,
12026                                                 &calculated_value);
12027           break;
12028
12029         case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12030         case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12031         case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12032           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12033                                                  elfcpp::DTP_OFFSET, r_addend,
12034                                                  extract_addend, calculate_only,
12035                                                  &calculated_value);
12036           break;
12037         case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12038         case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12039         case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12040           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12041                                                  elfcpp::DTP_OFFSET, r_addend,
12042                                                  extract_addend, calculate_only,
12043                                                  &calculated_value);
12044           break;
12045         case elfcpp::R_MIPS_TLS_DTPREL32:
12046         case elfcpp::R_MIPS_TLS_DTPREL64:
12047           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12048                                                elfcpp::DTP_OFFSET, r_addend,
12049                                                extract_addend, calculate_only,
12050                                                &calculated_value);
12051           break;
12052         case elfcpp::R_MIPS_TLS_TPREL_HI16:
12053         case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12054         case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12055           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12056                                                  elfcpp::TP_OFFSET, r_addend,
12057                                                  extract_addend, calculate_only,
12058                                                  &calculated_value);
12059           break;
12060         case elfcpp::R_MIPS_TLS_TPREL_LO16:
12061         case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12062         case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12063           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12064                                                  elfcpp::TP_OFFSET, r_addend,
12065                                                  extract_addend, calculate_only,
12066                                                  &calculated_value);
12067           break;
12068         case elfcpp::R_MIPS_TLS_TPREL32:
12069         case elfcpp::R_MIPS_TLS_TPREL64:
12070           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12071                                                elfcpp::TP_OFFSET, r_addend,
12072                                                extract_addend, calculate_only,
12073                                                &calculated_value);
12074           break;
12075         case elfcpp::R_MIPS_SUB:
12076         case elfcpp::R_MICROMIPS_SUB:
12077           reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12078                                              extract_addend,
12079                                              calculate_only, &calculated_value);
12080           break;
12081         default:
12082           gold_error_at_location(relinfo, relnum, r_offset,
12083                                  _("unsupported reloc %u"), r_types[i]);
12084           break;
12085         }
12086
12087       if (update_got_entry)
12088         {
12089           Mips_output_data_got<size, big_endian>* got = target->got_section();
12090           if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12091             got->update_got_entry(got->get_primary_got_offset(mips_sym),
12092                                   psymval->value(object, 0));
12093           else
12094             got->update_got_entry(got_offset, psymval->value(object, 0));
12095         }
12096
12097       r_addend = calculated_value;
12098     }
12099
12100   bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12101                                        : false;
12102   Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12103
12104   // Report any errors.
12105   switch (reloc_status)
12106     {
12107     case Reloc_funcs::STATUS_OKAY:
12108       break;
12109     case Reloc_funcs::STATUS_OVERFLOW:
12110       gold_error_at_location(relinfo, relnum, r_offset,
12111                              _("relocation overflow"));
12112       break;
12113     case Reloc_funcs::STATUS_BAD_RELOC:
12114       gold_error_at_location(relinfo, relnum, r_offset,
12115         _("unexpected opcode while processing relocation"));
12116       break;
12117     case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12118       gold_error_at_location(relinfo, relnum, r_offset,
12119         _("unaligned PC-relative relocation"));
12120       break;
12121     default:
12122       gold_unreachable();
12123     }
12124
12125   return true;
12126 }
12127
12128 // Get the Reference_flags for a particular relocation.
12129
12130 template<int size, bool big_endian>
12131 int
12132 Target_mips<size, big_endian>::Scan::get_reference_flags(
12133                        unsigned int r_type)
12134 {
12135   switch (r_type)
12136     {
12137     case elfcpp::R_MIPS_NONE:
12138       // No symbol reference.
12139       return 0;
12140
12141     case elfcpp::R_MIPS_16:
12142     case elfcpp::R_MIPS_32:
12143     case elfcpp::R_MIPS_64:
12144     case elfcpp::R_MIPS_HI16:
12145     case elfcpp::R_MIPS_LO16:
12146     case elfcpp::R_MIPS16_HI16:
12147     case elfcpp::R_MIPS16_LO16:
12148     case elfcpp::R_MICROMIPS_HI16:
12149     case elfcpp::R_MICROMIPS_LO16:
12150       return Symbol::ABSOLUTE_REF;
12151
12152     case elfcpp::R_MIPS_26:
12153     case elfcpp::R_MIPS16_26:
12154     case elfcpp::R_MICROMIPS_26_S1:
12155       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12156
12157     case elfcpp::R_MIPS_PC18_S3:
12158     case elfcpp::R_MIPS_PC19_S2:
12159     case elfcpp::R_MIPS_PCHI16:
12160     case elfcpp::R_MIPS_PCLO16:
12161     case elfcpp::R_MIPS_GPREL32:
12162     case elfcpp::R_MIPS_GPREL16:
12163     case elfcpp::R_MIPS_REL32:
12164     case elfcpp::R_MIPS16_GPREL:
12165       return Symbol::RELATIVE_REF;
12166
12167     case elfcpp::R_MIPS_PC16:
12168     case elfcpp::R_MIPS_PC32:
12169     case elfcpp::R_MIPS_PC21_S2:
12170     case elfcpp::R_MIPS_PC26_S2:
12171     case elfcpp::R_MIPS_JALR:
12172     case elfcpp::R_MICROMIPS_JALR:
12173       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12174
12175     case elfcpp::R_MIPS_GOT16:
12176     case elfcpp::R_MIPS_CALL16:
12177     case elfcpp::R_MIPS_GOT_DISP:
12178     case elfcpp::R_MIPS_GOT_HI16:
12179     case elfcpp::R_MIPS_GOT_LO16:
12180     case elfcpp::R_MIPS_CALL_HI16:
12181     case elfcpp::R_MIPS_CALL_LO16:
12182     case elfcpp::R_MIPS_LITERAL:
12183     case elfcpp::R_MIPS_GOT_PAGE:
12184     case elfcpp::R_MIPS_GOT_OFST:
12185     case elfcpp::R_MIPS16_GOT16:
12186     case elfcpp::R_MIPS16_CALL16:
12187     case elfcpp::R_MICROMIPS_GOT16:
12188     case elfcpp::R_MICROMIPS_CALL16:
12189     case elfcpp::R_MICROMIPS_GOT_HI16:
12190     case elfcpp::R_MICROMIPS_GOT_LO16:
12191     case elfcpp::R_MICROMIPS_CALL_HI16:
12192     case elfcpp::R_MICROMIPS_CALL_LO16:
12193     case elfcpp::R_MIPS_EH:
12194       // Absolute in GOT.
12195       return Symbol::RELATIVE_REF;
12196
12197     case elfcpp::R_MIPS_TLS_DTPMOD32:
12198     case elfcpp::R_MIPS_TLS_DTPREL32:
12199     case elfcpp::R_MIPS_TLS_DTPMOD64:
12200     case elfcpp::R_MIPS_TLS_DTPREL64:
12201     case elfcpp::R_MIPS_TLS_GD:
12202     case elfcpp::R_MIPS_TLS_LDM:
12203     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12204     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12205     case elfcpp::R_MIPS_TLS_GOTTPREL:
12206     case elfcpp::R_MIPS_TLS_TPREL32:
12207     case elfcpp::R_MIPS_TLS_TPREL64:
12208     case elfcpp::R_MIPS_TLS_TPREL_HI16:
12209     case elfcpp::R_MIPS_TLS_TPREL_LO16:
12210     case elfcpp::R_MIPS16_TLS_GD:
12211     case elfcpp::R_MIPS16_TLS_GOTTPREL:
12212     case elfcpp::R_MICROMIPS_TLS_GD:
12213     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12214     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12215     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12216       return Symbol::TLS_REF;
12217
12218     case elfcpp::R_MIPS_COPY:
12219     case elfcpp::R_MIPS_JUMP_SLOT:
12220     default:
12221       gold_unreachable();
12222       // Not expected.  We will give an error later.
12223       return 0;
12224     }
12225 }
12226
12227 // Report an unsupported relocation against a local symbol.
12228
12229 template<int size, bool big_endian>
12230 void
12231 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12232                         Sized_relobj_file<size, big_endian>* object,
12233                         unsigned int r_type)
12234 {
12235   gold_error(_("%s: unsupported reloc %u against local symbol"),
12236              object->name().c_str(), r_type);
12237 }
12238
12239 // Report an unsupported relocation against a global symbol.
12240
12241 template<int size, bool big_endian>
12242 void
12243 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12244                         Sized_relobj_file<size, big_endian>* object,
12245                         unsigned int r_type,
12246                         Symbol* gsym)
12247 {
12248   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12249              object->name().c_str(), r_type, gsym->demangled_name().c_str());
12250 }
12251
12252 // Return printable name for ABI.
12253 template<int size, bool big_endian>
12254 const char*
12255 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12256 {
12257   switch (e_flags & elfcpp::EF_MIPS_ABI)
12258     {
12259     case 0:
12260       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12261         return "N32";
12262       else if (size == 64)
12263         return "64";
12264       else
12265         return "none";
12266     case elfcpp::E_MIPS_ABI_O32:
12267       return "O32";
12268     case elfcpp::E_MIPS_ABI_O64:
12269       return "O64";
12270     case elfcpp::E_MIPS_ABI_EABI32:
12271       return "EABI32";
12272     case elfcpp::E_MIPS_ABI_EABI64:
12273       return "EABI64";
12274     default:
12275       return "unknown abi";
12276     }
12277 }
12278
12279 template<int size, bool big_endian>
12280 const char*
12281 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12282 {
12283   switch (e_flags & elfcpp::EF_MIPS_MACH)
12284     {
12285     case elfcpp::E_MIPS_MACH_3900:
12286       return "mips:3900";
12287     case elfcpp::E_MIPS_MACH_4010:
12288       return "mips:4010";
12289     case elfcpp::E_MIPS_MACH_4100:
12290       return "mips:4100";
12291     case elfcpp::E_MIPS_MACH_4111:
12292       return "mips:4111";
12293     case elfcpp::E_MIPS_MACH_4120:
12294       return "mips:4120";
12295     case elfcpp::E_MIPS_MACH_4650:
12296       return "mips:4650";
12297     case elfcpp::E_MIPS_MACH_5400:
12298       return "mips:5400";
12299     case elfcpp::E_MIPS_MACH_5500:
12300       return "mips:5500";
12301     case elfcpp::E_MIPS_MACH_5900:
12302       return "mips:5900";
12303     case elfcpp::E_MIPS_MACH_SB1:
12304       return "mips:sb1";
12305     case elfcpp::E_MIPS_MACH_9000:
12306       return "mips:9000";
12307     case elfcpp::E_MIPS_MACH_LS2E:
12308       return "mips:loongson_2e";
12309     case elfcpp::E_MIPS_MACH_LS2F:
12310       return "mips:loongson_2f";
12311     case elfcpp::E_MIPS_MACH_LS3A:
12312       return "mips:loongson_3a";
12313     case elfcpp::E_MIPS_MACH_OCTEON:
12314       return "mips:octeon";
12315     case elfcpp::E_MIPS_MACH_OCTEON2:
12316       return "mips:octeon2";
12317     case elfcpp::E_MIPS_MACH_OCTEON3:
12318       return "mips:octeon3";
12319     case elfcpp::E_MIPS_MACH_XLR:
12320       return "mips:xlr";
12321     default:
12322       switch (e_flags & elfcpp::EF_MIPS_ARCH)
12323         {
12324         default:
12325         case elfcpp::E_MIPS_ARCH_1:
12326           return "mips:3000";
12327
12328         case elfcpp::E_MIPS_ARCH_2:
12329           return "mips:6000";
12330
12331         case elfcpp::E_MIPS_ARCH_3:
12332           return "mips:4000";
12333
12334         case elfcpp::E_MIPS_ARCH_4:
12335           return "mips:8000";
12336
12337         case elfcpp::E_MIPS_ARCH_5:
12338           return "mips:mips5";
12339
12340         case elfcpp::E_MIPS_ARCH_32:
12341           return "mips:isa32";
12342
12343         case elfcpp::E_MIPS_ARCH_64:
12344           return "mips:isa64";
12345
12346         case elfcpp::E_MIPS_ARCH_32R2:
12347           return "mips:isa32r2";
12348
12349         case elfcpp::E_MIPS_ARCH_32R6:
12350           return "mips:isa32r6";
12351
12352         case elfcpp::E_MIPS_ARCH_64R2:
12353           return "mips:isa64r2";
12354
12355         case elfcpp::E_MIPS_ARCH_64R6:
12356           return "mips:isa64r6";
12357         }
12358     }
12359     return "unknown CPU";
12360 }
12361
12362 template<int size, bool big_endian>
12363 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12364 {
12365   size,                 // size
12366   big_endian,           // is_big_endian
12367   elfcpp::EM_MIPS,      // machine_code
12368   true,                 // has_make_symbol
12369   false,                // has_resolve
12370   false,                // has_code_fill
12371   true,                 // is_default_stack_executable
12372   false,                // can_icf_inline_merge_sections
12373   '\0',                 // wrap_char
12374   size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
12375   0x400000,             // default_text_segment_address
12376   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
12377   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
12378   false,                // isolate_execinstr
12379   0,                    // rosegment_gap
12380   elfcpp::SHN_UNDEF,    // small_common_shndx
12381   elfcpp::SHN_UNDEF,    // large_common_shndx
12382   0,                    // small_common_section_flags
12383   0,                    // large_common_section_flags
12384   NULL,                 // attributes_section
12385   NULL,                 // attributes_vendor
12386   "__start",            // entry_symbol_name
12387   32,                   // hash_entry_size
12388 };
12389
12390 template<int size, bool big_endian>
12391 class Target_mips_nacl : public Target_mips<size, big_endian>
12392 {
12393  public:
12394   Target_mips_nacl()
12395     : Target_mips<size, big_endian>(&mips_nacl_info)
12396   { }
12397
12398  private:
12399   static const Target::Target_info mips_nacl_info;
12400 };
12401
12402 template<int size, bool big_endian>
12403 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12404 {
12405   size,                 // size
12406   big_endian,           // is_big_endian
12407   elfcpp::EM_MIPS,      // machine_code
12408   true,                 // has_make_symbol
12409   false,                // has_resolve
12410   false,                // has_code_fill
12411   true,                 // is_default_stack_executable
12412   false,                // can_icf_inline_merge_sections
12413   '\0',                 // wrap_char
12414   "/lib/ld.so.1",       // dynamic_linker
12415   0x20000,              // default_text_segment_address
12416   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12417   0x10000,              // common_pagesize (overridable by -z common-page-size)
12418   true,                 // isolate_execinstr
12419   0x10000000,           // rosegment_gap
12420   elfcpp::SHN_UNDEF,    // small_common_shndx
12421   elfcpp::SHN_UNDEF,    // large_common_shndx
12422   0,                    // small_common_section_flags
12423   0,                    // large_common_section_flags
12424   NULL,                 // attributes_section
12425   NULL,                 // attributes_vendor
12426   "_start",             // entry_symbol_name
12427   32,                   // hash_entry_size
12428 };
12429
12430 // Target selector for Mips.  Note this is never instantiated directly.
12431 // It's only used in Target_selector_mips_nacl, below.
12432
12433 template<int size, bool big_endian>
12434 class Target_selector_mips : public Target_selector
12435 {
12436 public:
12437   Target_selector_mips()
12438     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12439                 (size == 64 ?
12440                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12441                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12442                 (size == 64 ?
12443                   (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12444                   (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12445   { }
12446
12447   Target* do_instantiate_target()
12448   { return new Target_mips<size, big_endian>(); }
12449 };
12450
12451 template<int size, bool big_endian>
12452 class Target_selector_mips_nacl
12453   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12454                                 Target_mips_nacl<size, big_endian> >
12455 {
12456  public:
12457   Target_selector_mips_nacl()
12458     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12459                            Target_mips_nacl<size, big_endian> >(
12460         // NaCl currently supports only MIPS32 little-endian.
12461         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12462   { }
12463 };
12464
12465 Target_selector_mips_nacl<32, true> target_selector_mips32;
12466 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12467 Target_selector_mips_nacl<64, true> target_selector_mips64;
12468 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12469
12470 } // End anonymous namespace.