[GOLD] PowerPC style fix
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2015 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "nacl.h"
48
49 namespace
50 {
51 using namespace gold;
52
53 template<int size, bool big_endian>
54 class Mips_output_data_plt;
55
56 template<int size, bool big_endian>
57 class Mips_output_data_got;
58
59 template<int size, bool big_endian>
60 class Target_mips;
61
62 template<int size, bool big_endian>
63 class Mips_output_section_reginfo;
64
65 template<int size, bool big_endian>
66 class Mips_output_data_la25_stub;
67
68 template<int size, bool big_endian>
69 class Mips_output_data_mips_stubs;
70
71 template<int size>
72 class Mips_symbol;
73
74 template<int size, bool big_endian>
75 class Mips_got_info;
76
77 template<int size, bool big_endian>
78 class Mips_relobj;
79
80 class Mips16_stub_section_base;
81
82 template<int size, bool big_endian>
83 class Mips16_stub_section;
84
85 // The ABI says that every symbol used by dynamic relocations must have
86 // a global GOT entry.  Among other things, this provides the dynamic
87 // linker with a free, directly-indexed cache.  The GOT can therefore
88 // contain symbols that are not referenced by GOT relocations themselves
89 // (in other words, it may have symbols that are not referenced by things
90 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92 // GOT relocations are less likely to overflow if we put the associated
93 // GOT entries towards the beginning.  We therefore divide the global
94 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
95 // the first area can be used for both dynamic relocations and GP-relative
96 // accesses, while those in the "reloc-only" area are for dynamic
97 // relocations only.
98
99 // These GGA_* ("Global GOT Area") values are organised so that lower
100 // values are more general than higher values.  Also, non-GGA_NONE
101 // values are ordered by the position of the area in the GOT.
102
103 enum Global_got_area
104 {
105   GGA_NORMAL = 0,
106   GGA_RELOC_ONLY = 1,
107   GGA_NONE = 2
108 };
109
110 // The types of GOT entries needed for this platform.
111 // These values are exposed to the ABI in an incremental link.
112 // Do not renumber existing values without changing the version
113 // number of the .gnu_incremental_inputs section.
114 enum Got_type
115 {
116   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
117   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
118   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
119
120   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121   GOT_TYPE_STANDARD_MULTIGOT = 3,
122   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124 };
125
126 // TLS type of GOT entry.
127 enum Got_tls_type
128 {
129   GOT_TLS_NONE = 0,
130   GOT_TLS_GD = 1,
131   GOT_TLS_LDM = 2,
132   GOT_TLS_IE = 4
133 };
134
135 // Return TRUE if a relocation of type R_TYPE from OBJECT might
136 // require an la25 stub.  See also local_pic_function, which determines
137 // whether the destination function ever requires a stub.
138 template<int size, bool big_endian>
139 static inline bool
140 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
141                            unsigned int r_type, bool target_is_16_bit_code)
142 {
143   // We specifically ignore branches and jumps from EF_PIC objects,
144   // where the onus is on the compiler or programmer to perform any
145   // necessary initialization of $25.  Sometimes such initialization
146   // is unnecessary; for example, -mno-shared functions do not use
147   // the incoming value of $25, and may therefore be called directly.
148   if (object->is_pic())
149     return false;
150
151   switch (r_type)
152     {
153     case elfcpp::R_MIPS_26:
154     case elfcpp::R_MIPS_PC16:
155     case elfcpp::R_MICROMIPS_26_S1:
156     case elfcpp::R_MICROMIPS_PC7_S1:
157     case elfcpp::R_MICROMIPS_PC10_S1:
158     case elfcpp::R_MICROMIPS_PC16_S1:
159     case elfcpp::R_MICROMIPS_PC23_S2:
160       return true;
161
162     case elfcpp::R_MIPS16_26:
163       return !target_is_16_bit_code;
164
165     default:
166       return false;
167     }
168 }
169
170 // Return true if SYM is a locally-defined PIC function, in the sense
171 // that it or its fn_stub might need $25 to be valid on entry.
172 // Note that MIPS16 functions set up $gp using PC-relative instructions,
173 // so they themselves never need $25 to be valid.  Only non-MIPS16
174 // entry points are of interest here.
175 template<int size, bool big_endian>
176 static inline bool
177 local_pic_function(Mips_symbol<size>* sym)
178 {
179   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
180                       && !sym->object()->is_dynamic()
181                       && !sym->is_undefined());
182
183   if (sym->is_defined() && def_regular)
184     {
185       Mips_relobj<size, big_endian>* object =
186         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
187
188       if ((object->is_pic() || sym->is_pic())
189           && (!sym->is_mips16()
190               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
191         return true;
192     }
193   return false;
194 }
195
196 static inline bool
197 hi16_reloc(int r_type)
198 {
199   return (r_type == elfcpp::R_MIPS_HI16
200           || r_type == elfcpp::R_MIPS16_HI16
201           || r_type == elfcpp::R_MICROMIPS_HI16);
202 }
203
204 static inline bool
205 lo16_reloc(int r_type)
206 {
207   return (r_type == elfcpp::R_MIPS_LO16
208           || r_type == elfcpp::R_MIPS16_LO16
209           || r_type == elfcpp::R_MICROMIPS_LO16);
210 }
211
212 static inline bool
213 got16_reloc(unsigned int r_type)
214 {
215   return (r_type == elfcpp::R_MIPS_GOT16
216           || r_type == elfcpp::R_MIPS16_GOT16
217           || r_type == elfcpp::R_MICROMIPS_GOT16);
218 }
219
220 static inline bool
221 call_lo16_reloc(unsigned int r_type)
222 {
223   return (r_type == elfcpp::R_MIPS_CALL_LO16
224           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
225 }
226
227 static inline bool
228 got_lo16_reloc(unsigned int r_type)
229 {
230   return (r_type == elfcpp::R_MIPS_GOT_LO16
231           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
232 }
233
234 static inline bool
235 got_disp_reloc(unsigned int r_type)
236 {
237   return (r_type == elfcpp::R_MIPS_GOT_DISP
238           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
239 }
240
241 static inline bool
242 got_page_reloc(unsigned int r_type)
243 {
244   return (r_type == elfcpp::R_MIPS_GOT_PAGE
245           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
246 }
247
248 static inline bool
249 tls_gd_reloc(unsigned int r_type)
250 {
251   return (r_type == elfcpp::R_MIPS_TLS_GD
252           || r_type == elfcpp::R_MIPS16_TLS_GD
253           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
254 }
255
256 static inline bool
257 tls_gottprel_reloc(unsigned int r_type)
258 {
259   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
260           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
261           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
262 }
263
264 static inline bool
265 tls_ldm_reloc(unsigned int r_type)
266 {
267   return (r_type == elfcpp::R_MIPS_TLS_LDM
268           || r_type == elfcpp::R_MIPS16_TLS_LDM
269           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
270 }
271
272 static inline bool
273 mips16_call_reloc(unsigned int r_type)
274 {
275   return (r_type == elfcpp::R_MIPS16_26
276           || r_type == elfcpp::R_MIPS16_CALL16);
277 }
278
279 static inline bool
280 jal_reloc(unsigned int r_type)
281 {
282   return (r_type == elfcpp::R_MIPS_26
283           || r_type == elfcpp::R_MIPS16_26
284           || r_type == elfcpp::R_MICROMIPS_26_S1);
285 }
286
287 static inline bool
288 micromips_branch_reloc(unsigned int r_type)
289 {
290   return (r_type == elfcpp::R_MICROMIPS_26_S1
291           || r_type == elfcpp::R_MICROMIPS_PC16_S1
292           || r_type == elfcpp::R_MICROMIPS_PC10_S1
293           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
294 }
295
296 // Check if R_TYPE is a MIPS16 reloc.
297 static inline bool
298 mips16_reloc(unsigned int r_type)
299 {
300   switch (r_type)
301     {
302     case elfcpp::R_MIPS16_26:
303     case elfcpp::R_MIPS16_GPREL:
304     case elfcpp::R_MIPS16_GOT16:
305     case elfcpp::R_MIPS16_CALL16:
306     case elfcpp::R_MIPS16_HI16:
307     case elfcpp::R_MIPS16_LO16:
308     case elfcpp::R_MIPS16_TLS_GD:
309     case elfcpp::R_MIPS16_TLS_LDM:
310     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
311     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
312     case elfcpp::R_MIPS16_TLS_GOTTPREL:
313     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
314     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
315       return true;
316
317     default:
318       return false;
319     }
320 }
321
322 // Check if R_TYPE is a microMIPS reloc.
323 static inline bool
324 micromips_reloc(unsigned int r_type)
325 {
326   switch (r_type)
327     {
328     case elfcpp::R_MICROMIPS_26_S1:
329     case elfcpp::R_MICROMIPS_HI16:
330     case elfcpp::R_MICROMIPS_LO16:
331     case elfcpp::R_MICROMIPS_GPREL16:
332     case elfcpp::R_MICROMIPS_LITERAL:
333     case elfcpp::R_MICROMIPS_GOT16:
334     case elfcpp::R_MICROMIPS_PC7_S1:
335     case elfcpp::R_MICROMIPS_PC10_S1:
336     case elfcpp::R_MICROMIPS_PC16_S1:
337     case elfcpp::R_MICROMIPS_CALL16:
338     case elfcpp::R_MICROMIPS_GOT_DISP:
339     case elfcpp::R_MICROMIPS_GOT_PAGE:
340     case elfcpp::R_MICROMIPS_GOT_OFST:
341     case elfcpp::R_MICROMIPS_GOT_HI16:
342     case elfcpp::R_MICROMIPS_GOT_LO16:
343     case elfcpp::R_MICROMIPS_SUB:
344     case elfcpp::R_MICROMIPS_HIGHER:
345     case elfcpp::R_MICROMIPS_HIGHEST:
346     case elfcpp::R_MICROMIPS_CALL_HI16:
347     case elfcpp::R_MICROMIPS_CALL_LO16:
348     case elfcpp::R_MICROMIPS_SCN_DISP:
349     case elfcpp::R_MICROMIPS_JALR:
350     case elfcpp::R_MICROMIPS_HI0_LO16:
351     case elfcpp::R_MICROMIPS_TLS_GD:
352     case elfcpp::R_MICROMIPS_TLS_LDM:
353     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
354     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
355     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
356     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
357     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
358     case elfcpp::R_MICROMIPS_GPREL7_S2:
359     case elfcpp::R_MICROMIPS_PC23_S2:
360       return true;
361
362     default:
363       return false;
364     }
365 }
366
367 static inline bool
368 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
369 {
370   switch (high_reloc)
371     {
372     case elfcpp::R_MIPS_HI16:
373     case elfcpp::R_MIPS_GOT16:
374       return lo16_reloc == elfcpp::R_MIPS_LO16;
375     case elfcpp::R_MIPS16_HI16:
376     case elfcpp::R_MIPS16_GOT16:
377       return lo16_reloc == elfcpp::R_MIPS16_LO16;
378     case elfcpp::R_MICROMIPS_HI16:
379     case elfcpp::R_MICROMIPS_GOT16:
380       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
381     default:
382       return false;
383     }
384 }
385
386 // This class is used to hold information about one GOT entry.
387 // There are three types of entry:
388 //
389 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
390 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
391 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
392 //          (object != NULL, symndx == -1)
393 //    (3) a TLS LDM slot
394 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
395
396 template<int size, bool big_endian>
397 class Mips_got_entry
398 {
399   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
400
401  public:
402   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
403                  Mips_address addend, unsigned char tls_type,
404                  unsigned int shndx)
405     : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
406   { this->d.addend = addend; }
407
408   Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
409                  unsigned char tls_type)
410     : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
411   { this->d.sym = sym; }
412
413   // Return whether this entry is for a local symbol.
414   bool
415   is_for_local_symbol() const
416   { return this->symndx_ != -1U; }
417
418   // Return whether this entry is for a global symbol.
419   bool
420   is_for_global_symbol() const
421   { return this->symndx_ == -1U; }
422
423   // Return the hash of this entry.
424   size_t
425   hash() const
426   {
427     if (this->tls_type_ == GOT_TLS_LDM)
428       return this->symndx_ + (1 << 18);
429     if (this->symndx_ != -1U)
430       {
431         uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
432         return this->symndx_ + object_id + this->d.addend;
433       }
434     else
435       {
436         uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
437         return this->symndx_ + sym_id;
438       }
439   }
440
441   // Return whether this entry is equal to OTHER.
442   bool
443   equals(Mips_got_entry<size, big_endian>* other) const
444   {
445     if (this->symndx_ != other->symndx_
446         || this->tls_type_ != other->tls_type_)
447       return false;
448     if (this->tls_type_ == GOT_TLS_LDM)
449       return true;
450     if (this->symndx_ != -1U)
451       return (this->object() == other->object()
452               && this->d.addend == other->d.addend);
453     else
454       return this->d.sym == other->d.sym;
455   }
456
457   // Return input object that needs this GOT entry.
458   Mips_relobj<size, big_endian>*
459   object() const
460   {
461     gold_assert(this->object_ != NULL);
462     return this->object_;
463   }
464
465   // Return local symbol index for local GOT entries.
466   unsigned int
467   symndx() const
468   {
469     gold_assert(this->symndx_ != -1U);
470     return this->symndx_;
471   }
472
473   // Return the relocation addend for local GOT entries.
474   Mips_address
475   addend() const
476   {
477     gold_assert(this->symndx_ != -1U);
478     return this->d.addend;
479   }
480
481   // Return global symbol for global GOT entries.
482   Mips_symbol<size>*
483   sym() const
484   {
485     gold_assert(this->symndx_ == -1U);
486     return this->d.sym;
487   }
488
489   // Return whether this is a TLS GOT entry.
490   bool
491   is_tls_entry() const
492   { return this->tls_type_ != GOT_TLS_NONE; }
493
494   // Return TLS type of this GOT entry.
495   unsigned char
496   tls_type() const
497   { return this->tls_type_; }
498
499   // Return section index of the local symbol for local GOT entries.
500   unsigned int
501   shndx() const
502   { return this->shndx_; }
503
504  private:
505   // The input object that needs the GOT entry.
506   Mips_relobj<size, big_endian>* object_;
507   // The index of the symbol if we have a local symbol; -1 otherwise.
508   unsigned int symndx_;
509
510   union
511   {
512     // If symndx != -1, the addend of the relocation that should be added to the
513     // symbol value.
514     Mips_address addend;
515     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
516     // symbol's entry is in the local area if mips_sym->global_got_area is
517     // GGA_NONE, otherwise it is in the global area.
518     Mips_symbol<size>* sym;
519   } d;
520
521   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
522   // symbol entry with r_symndx == 0.
523   unsigned char tls_type_;
524
525   // For local GOT entries, section index of the local symbol.
526   unsigned int shndx_;
527 };
528
529 // Hash for Mips_got_entry.
530
531 template<int size, bool big_endian>
532 class Mips_got_entry_hash
533 {
534  public:
535   size_t
536   operator()(Mips_got_entry<size, big_endian>* entry) const
537   { return entry->hash(); }
538 };
539
540 // Equality for Mips_got_entry.
541
542 template<int size, bool big_endian>
543 class Mips_got_entry_eq
544 {
545  public:
546   bool
547   operator()(Mips_got_entry<size, big_endian>* e1,
548              Mips_got_entry<size, big_endian>* e2) const
549   { return e1->equals(e2); }
550 };
551
552 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
553 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
554 // increasing MIN_ADDEND.
555
556 struct Got_page_range
557 {
558   Got_page_range()
559     : next(NULL), min_addend(0), max_addend(0)
560   { }
561
562   Got_page_range* next;
563   int min_addend;
564   int max_addend;
565
566   // Return the maximum number of GOT page entries required.
567   int
568   get_max_pages()
569   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
570 };
571
572 // Got_page_entry.  This class describes the range of addends that are applied
573 // to page relocations against a given symbol.
574
575 struct Got_page_entry
576 {
577   Got_page_entry()
578     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
579   { }
580
581   Got_page_entry(Object* object_, unsigned int symndx_)
582     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
583   { }
584
585   // The input object that needs the GOT page entry.
586   Object* object;
587   // The index of the symbol, as stored in the relocation r_info.
588   unsigned int symndx;
589   // The ranges for this page entry.
590   Got_page_range* ranges;
591   // The maximum number of page entries needed for RANGES.
592   unsigned int num_pages;
593 };
594
595 // Hash for Got_page_entry.
596
597 struct Got_page_entry_hash
598 {
599   size_t
600   operator()(Got_page_entry* entry) const
601   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
602 };
603
604 // Equality for Got_page_entry.
605
606 struct Got_page_entry_eq
607 {
608   bool
609   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
610   {
611     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
612   }
613 };
614
615 // This class is used to hold .got information when linking.
616
617 template<int size, bool big_endian>
618 class Mips_got_info
619 {
620   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
621   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
622     Reloc_section;
623   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
624
625   // Unordered set of GOT entries.
626   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
627       Mips_got_entry_hash<size, big_endian>,
628       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
629
630   // Unordered set of GOT page entries.
631   typedef Unordered_set<Got_page_entry*,
632       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
633
634  public:
635   Mips_got_info()
636     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
637       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
638       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
639       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
640       offset_(0)
641   { }
642
643   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
644   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
645   void
646   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
647                           unsigned int symndx, Mips_address addend,
648                           unsigned int r_type, unsigned int shndx);
649
650   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
651   // in OBJECT.  FOR_CALL is true if the caller is only interested in
652   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
653   // relocation.
654   void
655   record_global_got_symbol(Mips_symbol<size>* mips_sym,
656                            Mips_relobj<size, big_endian>* object,
657                            unsigned int r_type, bool dyn_reloc, bool for_call);
658
659   // Add ENTRY to master GOT and to OBJECT's GOT.
660   void
661   record_got_entry(Mips_got_entry<size, big_endian>* entry,
662                    Mips_relobj<size, big_endian>* object);
663
664   // Record that OBJECT has a page relocation against symbol SYMNDX and
665   // that ADDEND is the addend for that relocation.
666   void
667   record_got_page_entry(Mips_relobj<size, big_endian>* object,
668                         unsigned int symndx, int addend);
669
670   // Create all entries that should be in the local part of the GOT.
671   void
672   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
673
674   // Create GOT page entries.
675   void
676   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
677
678   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
679   void
680   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
681                      unsigned int non_reloc_only_global_gotno);
682
683   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
684   void
685   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
686
687   // Create TLS GOT entries.
688   void
689   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
690
691   // Decide whether the symbol needs an entry in the global part of the primary
692   // GOT, setting global_got_area accordingly.  Count the number of global
693   // symbols that are in the primary GOT only because they have dynamic
694   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
695   void
696   count_got_symbols(Symbol_table* symtab);
697
698   // Return the offset of GOT page entry for VALUE.
699   unsigned int
700   get_got_page_offset(Mips_address value,
701                       Mips_output_data_got<size, big_endian>* got);
702
703   // Count the number of GOT entries required.
704   void
705   count_got_entries();
706
707   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
708   void
709   count_got_entry(Mips_got_entry<size, big_endian>* entry);
710
711   // Add FROM's GOT entries.
712   void
713   add_got_entries(Mips_got_info<size, big_endian>* from);
714
715   // Add FROM's GOT page entries.
716   void
717   add_got_page_entries(Mips_got_info<size, big_endian>* from);
718
719   // Return GOT size.
720   unsigned int
721   got_size() const
722   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
723              + this->tls_gotno_) * size/8);
724   }
725
726   // Return the number of local GOT entries.
727   unsigned int
728   local_gotno() const
729   { return this->local_gotno_; }
730
731   // Return the maximum number of page GOT entries needed.
732   unsigned int
733   page_gotno() const
734   { return this->page_gotno_; }
735
736   // Return the number of global GOT entries.
737   unsigned int
738   global_gotno() const
739   { return this->global_gotno_; }
740
741   // Set the number of global GOT entries.
742   void
743   set_global_gotno(unsigned int global_gotno)
744   { this->global_gotno_ = global_gotno; }
745
746   // Return the number of GGA_RELOC_ONLY global GOT entries.
747   unsigned int
748   reloc_only_gotno() const
749   { return this->reloc_only_gotno_; }
750
751   // Return the number of TLS GOT entries.
752   unsigned int
753   tls_gotno() const
754   { return this->tls_gotno_; }
755
756   // Return the GOT type for this GOT.  Used for multi-GOT links only.
757   unsigned int
758   multigot_got_type(unsigned int got_type) const
759   {
760     switch (got_type)
761       {
762       case GOT_TYPE_STANDARD:
763         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
764       case GOT_TYPE_TLS_OFFSET:
765         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
766       case GOT_TYPE_TLS_PAIR:
767         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
768       default:
769         gold_unreachable();
770       }
771   }
772
773   // Remove lazy-binding stubs for global symbols in this GOT.
774   void
775   remove_lazy_stubs(Target_mips<size, big_endian>* target);
776
777   // Return offset of this GOT from the start of .got section.
778   unsigned int
779   offset() const
780   { return this->offset_; }
781
782   // Set offset of this GOT from the start of .got section.
783   void
784   set_offset(unsigned int offset)
785   { this->offset_ = offset; }
786
787   // Set index of this GOT in multi-GOT links.
788   void
789   set_index(unsigned int index)
790   { this->index_ = index; }
791
792   // Return next GOT in multi-GOT links.
793   Mips_got_info<size, big_endian>*
794   next() const
795   { return this->next_; }
796
797   // Set next GOT in multi-GOT links.
798   void
799   set_next(Mips_got_info<size, big_endian>* next)
800   { this->next_ = next; }
801
802   // Return the offset of TLS LDM entry for this GOT.
803   unsigned int
804   tls_ldm_offset() const
805   { return this->tls_ldm_offset_; }
806
807   // Set the offset of TLS LDM entry for this GOT.
808   void
809   set_tls_ldm_offset(unsigned int tls_ldm_offset)
810   { this->tls_ldm_offset_ = tls_ldm_offset; }
811
812   Unordered_set<Mips_symbol<size>*>&
813   global_got_symbols()
814   { return this->global_got_symbols_; }
815
816   // Return the GOT_TLS_* type required by relocation type R_TYPE.
817   static int
818   mips_elf_reloc_tls_type(unsigned int r_type)
819   {
820     if (tls_gd_reloc(r_type))
821       return GOT_TLS_GD;
822
823     if (tls_ldm_reloc(r_type))
824       return GOT_TLS_LDM;
825
826     if (tls_gottprel_reloc(r_type))
827       return GOT_TLS_IE;
828
829     return GOT_TLS_NONE;
830   }
831
832   // Return the number of GOT slots needed for GOT TLS type TYPE.
833   static int
834   mips_tls_got_entries(unsigned int type)
835   {
836     switch (type)
837       {
838       case GOT_TLS_GD:
839       case GOT_TLS_LDM:
840         return 2;
841
842       case GOT_TLS_IE:
843         return 1;
844
845       case GOT_TLS_NONE:
846         return 0;
847
848       default:
849         gold_unreachable();
850       }
851   }
852
853  private:
854   // The number of local GOT entries.
855   unsigned int local_gotno_;
856   // The maximum number of page GOT entries needed.
857   unsigned int page_gotno_;
858   // The number of global GOT entries.
859   unsigned int global_gotno_;
860   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
861   unsigned int reloc_only_gotno_;
862   // The number of TLS GOT entries.
863   unsigned int tls_gotno_;
864   // The offset of TLS LDM entry for this GOT.
865   unsigned int tls_ldm_offset_;
866   // All symbols that have global GOT entry.
867   Unordered_set<Mips_symbol<size>*> global_got_symbols_;
868   // A hash table holding GOT entries.
869   Got_entry_set got_entries_;
870   // A hash table of GOT page entries.
871   Got_page_entry_set got_page_entries_;
872   // The offset of first GOT page entry for this GOT.
873   unsigned int got_page_offset_start_;
874   // The offset of next available GOT page entry for this GOT.
875   unsigned int got_page_offset_next_;
876   // A hash table that maps GOT page entry value to the GOT offset where
877   // the entry is located.
878   Got_page_offsets got_page_offsets_;
879   // In multi-GOT links, a pointer to the next GOT.
880   Mips_got_info<size, big_endian>* next_;
881   // Index of this GOT in multi-GOT links.
882   unsigned int index_;
883   // The offset of this GOT in multi-GOT links.
884   unsigned int offset_;
885 };
886
887 // This is a helper class used during relocation scan.  It records GOT16 addend.
888
889 template<int size, bool big_endian>
890 struct got16_addend
891 {
892   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
893
894   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
895                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
896                Mips_address _addend)
897     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
898       addend(_addend)
899   { }
900
901   const Sized_relobj_file<size, big_endian>* object;
902   unsigned int shndx;
903   unsigned int r_type;
904   unsigned int r_sym;
905   Mips_address addend;
906 };
907
908 // Mips_symbol class.  Holds additional symbol information needed for Mips.
909
910 template<int size>
911 class Mips_symbol : public Sized_symbol<size>
912 {
913  public:
914   Mips_symbol()
915     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
916       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
917       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
918       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
919       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
920       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
921       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
922   { }
923
924   // Return whether this is a MIPS16 symbol.
925   bool
926   is_mips16() const
927   {
928     // (st_other & STO_MIPS16) == STO_MIPS16
929     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
930             == elfcpp::STO_MIPS16 >> 2);
931   }
932
933   // Return whether this is a microMIPS symbol.
934   bool
935   is_micromips() const
936   {
937     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
938     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
939             == elfcpp::STO_MICROMIPS >> 2);
940   }
941
942   // Return whether the symbol needs MIPS16 fn_stub.
943   bool
944   need_fn_stub() const
945   { return this->need_fn_stub_; }
946
947   // Set that the symbol needs MIPS16 fn_stub.
948   void
949   set_need_fn_stub()
950   { this->need_fn_stub_ = true; }
951
952   // Return whether this symbol is referenced by branch relocations from
953   // any non-PIC input file.
954   bool
955   has_nonpic_branches() const
956   { return this->has_nonpic_branches_; }
957
958   // Set that this symbol is referenced by branch relocations from
959   // any non-PIC input file.
960   void
961   set_has_nonpic_branches()
962   { this->has_nonpic_branches_ = true; }
963
964   // Return the offset of the la25 stub for this symbol from the start of the
965   // la25 stub section.
966   unsigned int
967   la25_stub_offset() const
968   { return this->la25_stub_offset_; }
969
970   // Set the offset of the la25 stub for this symbol from the start of the
971   // la25 stub section.
972   void
973   set_la25_stub_offset(unsigned int offset)
974   { this->la25_stub_offset_ = offset; }
975
976   // Return whether the symbol has la25 stub.  This is true if this symbol is
977   // for a PIC function, and there are non-PIC branches and jumps to it.
978   bool
979   has_la25_stub() const
980   { return this->la25_stub_offset_ != -1U; }
981
982   // Return whether there is a relocation against this symbol that must be
983   // resolved by the static linker (that is, the relocation cannot possibly
984   // be made dynamic).
985   bool
986   has_static_relocs() const
987   { return this->has_static_relocs_; }
988
989   // Set that there is a relocation against this symbol that must be resolved
990   // by the static linker (that is, the relocation cannot possibly be made
991   // dynamic).
992   void
993   set_has_static_relocs()
994   { this->has_static_relocs_ = true; }
995
996   // Return whether we must not create a lazy-binding stub for this symbol.
997   bool
998   no_lazy_stub() const
999   { return this->no_lazy_stub_; }
1000
1001   // Set that we must not create a lazy-binding stub for this symbol.
1002   void
1003   set_no_lazy_stub()
1004   { this->no_lazy_stub_ = true; }
1005
1006   // Return the offset of the lazy-binding stub for this symbol from the start
1007   // of .MIPS.stubs section.
1008   unsigned int
1009   lazy_stub_offset() const
1010   { return this->lazy_stub_offset_; }
1011
1012   // Set the offset of the lazy-binding stub for this symbol from the start
1013   // of .MIPS.stubs section.
1014   void
1015   set_lazy_stub_offset(unsigned int offset)
1016   { this->lazy_stub_offset_ = offset; }
1017
1018   // Return whether there are any relocations for this symbol where
1019   // pointer equality matters.
1020   bool
1021   pointer_equality_needed() const
1022   { return this->pointer_equality_needed_; }
1023
1024   // Set that there are relocations for this symbol where pointer equality
1025   // matters.
1026   void
1027   set_pointer_equality_needed()
1028   { this->pointer_equality_needed_ = true; }
1029
1030   // Return global GOT area where this symbol in located.
1031   Global_got_area
1032   global_got_area() const
1033   { return this->global_got_area_; }
1034
1035   // Set global GOT area where this symbol in located.
1036   void
1037   set_global_got_area(Global_got_area global_got_area)
1038   { this->global_got_area_ = global_got_area; }
1039
1040   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1041   // returns the offset from the start of .got section to the first GOT entry
1042   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1043   // in more than one GOT.
1044   unsigned int
1045   global_gotoffset() const
1046   { return this->global_gotoffset_; }
1047
1048   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1049   // the symbol can have entry in more than one GOT.  This method will set
1050   // the offset only if it is less than current offset.
1051   void
1052   set_global_gotoffset(unsigned int offset)
1053   {
1054     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1055       this->global_gotoffset_ = offset;
1056   }
1057
1058   // Return whether all GOT relocations for this symbol are for calls.
1059   bool
1060   got_only_for_calls() const
1061   { return this->got_only_for_calls_; }
1062
1063   // Set that there is a GOT relocation for this symbol that is not for call.
1064   void
1065   set_got_not_only_for_calls()
1066   { this->got_only_for_calls_ = false; }
1067
1068   // Return whether this is a PIC symbol.
1069   bool
1070   is_pic() const
1071   {
1072     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1073     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1074             == (elfcpp::STO_MIPS_PIC >> 2));
1075   }
1076
1077   // Set the flag in st_other field that marks this symbol as PIC.
1078   void
1079   set_pic()
1080   {
1081     if (this->is_mips16())
1082       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1083       this->set_nonvis((this->nonvis()
1084                         & ~((elfcpp::STO_MIPS16 >> 2)
1085                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1086                        | (elfcpp::STO_MIPS_PIC >> 2));
1087     else
1088       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1089       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1090                        | (elfcpp::STO_MIPS_PIC >> 2));
1091   }
1092
1093   // Set the flag in st_other field that marks this symbol as PLT.
1094   void
1095   set_mips_plt()
1096   {
1097     if (this->is_mips16())
1098       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1099       this->set_nonvis((this->nonvis()
1100                         & ((elfcpp::STO_MIPS16 >> 2)
1101                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1102                        | (elfcpp::STO_MIPS_PLT >> 2));
1103
1104     else
1105       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1106       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1107                        | (elfcpp::STO_MIPS_PLT >> 2));
1108   }
1109
1110   // Downcast a base pointer to a Mips_symbol pointer.
1111   static Mips_symbol<size>*
1112   as_mips_sym(Symbol* sym)
1113   { return static_cast<Mips_symbol<size>*>(sym); }
1114
1115   // Downcast a base pointer to a Mips_symbol pointer.
1116   static const Mips_symbol<size>*
1117   as_mips_sym(const Symbol* sym)
1118   { return static_cast<const Mips_symbol<size>*>(sym); }
1119
1120   // Return whether the symbol has lazy-binding stub.
1121   bool
1122   has_lazy_stub() const
1123   { return this->has_lazy_stub_; }
1124
1125   // Set whether the symbol has lazy-binding stub.
1126   void
1127   set_has_lazy_stub(bool has_lazy_stub)
1128   { this->has_lazy_stub_ = has_lazy_stub; }
1129
1130   // Return whether the symbol needs a standard PLT entry.
1131   bool
1132   needs_mips_plt() const
1133   { return this->needs_mips_plt_; }
1134
1135   // Set whether the symbol needs a standard PLT entry.
1136   void
1137   set_needs_mips_plt(bool needs_mips_plt)
1138   { this->needs_mips_plt_ = needs_mips_plt; }
1139
1140   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1141   // entry.
1142   bool
1143   needs_comp_plt() const
1144   { return this->needs_comp_plt_; }
1145
1146   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1147   void
1148   set_needs_comp_plt(bool needs_comp_plt)
1149   { this->needs_comp_plt_ = needs_comp_plt; }
1150
1151   // Return standard PLT entry offset, or -1 if none.
1152   unsigned int
1153   mips_plt_offset() const
1154   { return this->mips_plt_offset_; }
1155
1156   // Set standard PLT entry offset.
1157   void
1158   set_mips_plt_offset(unsigned int mips_plt_offset)
1159   { this->mips_plt_offset_ = mips_plt_offset; }
1160
1161   // Return whether the symbol has standard PLT entry.
1162   bool
1163   has_mips_plt_offset() const
1164   { return this->mips_plt_offset_ != -1U; }
1165
1166   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1167   unsigned int
1168   comp_plt_offset() const
1169   { return this->comp_plt_offset_; }
1170
1171   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1172   void
1173   set_comp_plt_offset(unsigned int comp_plt_offset)
1174   { this->comp_plt_offset_ = comp_plt_offset; }
1175
1176   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1177   bool
1178   has_comp_plt_offset() const
1179   { return this->comp_plt_offset_ != -1U; }
1180
1181   // Return MIPS16 fn stub for a symbol.
1182   template<bool big_endian>
1183   Mips16_stub_section<size, big_endian>*
1184   get_mips16_fn_stub() const
1185   {
1186     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1187   }
1188
1189   // Set MIPS16 fn stub for a symbol.
1190   void
1191   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1192   { this->mips16_fn_stub_ = stub; }
1193
1194   // Return whether symbol has MIPS16 fn stub.
1195   bool
1196   has_mips16_fn_stub() const
1197   { return this->mips16_fn_stub_ != NULL; }
1198
1199   // Return MIPS16 call stub for a symbol.
1200   template<bool big_endian>
1201   Mips16_stub_section<size, big_endian>*
1202   get_mips16_call_stub() const
1203   {
1204     return static_cast<Mips16_stub_section<size, big_endian>*>(
1205       mips16_call_stub_);
1206   }
1207
1208   // Set MIPS16 call stub for a symbol.
1209   void
1210   set_mips16_call_stub(Mips16_stub_section_base* stub)
1211   { this->mips16_call_stub_ = stub; }
1212
1213   // Return whether symbol has MIPS16 call stub.
1214   bool
1215   has_mips16_call_stub() const
1216   { return this->mips16_call_stub_ != NULL; }
1217
1218   // Return MIPS16 call_fp stub for a symbol.
1219   template<bool big_endian>
1220   Mips16_stub_section<size, big_endian>*
1221   get_mips16_call_fp_stub() const
1222   {
1223     return static_cast<Mips16_stub_section<size, big_endian>*>(
1224       mips16_call_fp_stub_);
1225   }
1226
1227   // Set MIPS16 call_fp stub for a symbol.
1228   void
1229   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1230   { this->mips16_call_fp_stub_ = stub; }
1231
1232   // Return whether symbol has MIPS16 call_fp stub.
1233   bool
1234   has_mips16_call_fp_stub() const
1235   { return this->mips16_call_fp_stub_ != NULL; }
1236
1237   bool
1238   get_applied_secondary_got_fixup() const
1239   { return applied_secondary_got_fixup_; }
1240
1241   void
1242   set_applied_secondary_got_fixup()
1243   { this->applied_secondary_got_fixup_ = true; }
1244
1245  private:
1246   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1247   // appears in any relocs other than a 16 bit call.
1248   bool need_fn_stub_;
1249
1250   // True if this symbol is referenced by branch relocations from
1251   // any non-PIC input file.  This is used to determine whether an
1252   // la25 stub is required.
1253   bool has_nonpic_branches_;
1254
1255   // The offset of the la25 stub for this symbol from the start of the
1256   // la25 stub section.
1257   unsigned int la25_stub_offset_;
1258
1259   // True if there is a relocation against this symbol that must be
1260   // resolved by the static linker (that is, the relocation cannot
1261   // possibly be made dynamic).
1262   bool has_static_relocs_;
1263
1264   // Whether we must not create a lazy-binding stub for this symbol.
1265   // This is true if the symbol has relocations related to taking the
1266   // function's address.
1267   bool no_lazy_stub_;
1268
1269   // The offset of the lazy-binding stub for this symbol from the start of
1270   // .MIPS.stubs section.
1271   unsigned int lazy_stub_offset_;
1272
1273   // True if there are any relocations for this symbol where pointer equality
1274   // matters.
1275   bool pointer_equality_needed_;
1276
1277   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1278   // in the global part of the GOT.
1279   Global_got_area global_got_area_;
1280
1281   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1282   // from the start of .got section to the first GOT entry for the symbol.
1283   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1284   unsigned int global_gotoffset_;
1285
1286   // Whether all GOT relocations for this symbol are for calls.
1287   bool got_only_for_calls_;
1288   // Whether the symbol has lazy-binding stub.
1289   bool has_lazy_stub_;
1290   // Whether the symbol needs a standard PLT entry.
1291   bool needs_mips_plt_;
1292   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1293   bool needs_comp_plt_;
1294   // Standard PLT entry offset, or -1 if none.
1295   unsigned int mips_plt_offset_;
1296   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1297   unsigned int comp_plt_offset_;
1298   // MIPS16 fn stub for a symbol.
1299   Mips16_stub_section_base* mips16_fn_stub_;
1300   // MIPS16 call stub for a symbol.
1301   Mips16_stub_section_base* mips16_call_stub_;
1302   // MIPS16 call_fp stub for a symbol.
1303   Mips16_stub_section_base* mips16_call_fp_stub_;
1304
1305   bool applied_secondary_got_fixup_;
1306 };
1307
1308 // Mips16_stub_section class.
1309
1310 // The mips16 compiler uses a couple of special sections to handle
1311 // floating point arguments.
1312
1313 // Section names that look like .mips16.fn.FNNAME contain stubs that
1314 // copy floating point arguments from the fp regs to the gp regs and
1315 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1316 // call should be redirected to the stub instead.  If no 32 bit
1317 // function calls FNNAME, the stub should be discarded.  We need to
1318 // consider any reference to the function, not just a call, because
1319 // if the address of the function is taken we will need the stub,
1320 // since the address might be passed to a 32 bit function.
1321
1322 // Section names that look like .mips16.call.FNNAME contain stubs
1323 // that copy floating point arguments from the gp regs to the fp
1324 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1325 // then any 16 bit function that calls FNNAME should be redirected
1326 // to the stub instead.  If FNNAME is not a 32 bit function, the
1327 // stub should be discarded.
1328
1329 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1330 // which call FNNAME and then copy the return value from the fp regs
1331 // to the gp regs.  These stubs store the return address in $18 while
1332 // calling FNNAME; any function which might call one of these stubs
1333 // must arrange to save $18 around the call.  (This case is not
1334 // needed for 32 bit functions that call 16 bit functions, because
1335 // 16 bit functions always return floating point values in both
1336 // $f0/$f1 and $2/$3.)
1337
1338 // Note that in all cases FNNAME might be defined statically.
1339 // Therefore, FNNAME is not used literally.  Instead, the relocation
1340 // information will indicate which symbol the section is for.
1341
1342 // We record any stubs that we find in the symbol table.
1343
1344 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1345
1346 class Mips16_stub_section_base { };
1347
1348 template<int size, bool big_endian>
1349 class Mips16_stub_section : public Mips16_stub_section_base
1350 {
1351   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1352
1353  public:
1354   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1355     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1356       found_r_mips_none_(false)
1357   {
1358     gold_assert(object->is_mips16_fn_stub_section(shndx)
1359                 || object->is_mips16_call_stub_section(shndx)
1360                 || object->is_mips16_call_fp_stub_section(shndx));
1361   }
1362
1363   // Return the object of this stub section.
1364   Mips_relobj<size, big_endian>*
1365   object() const
1366   { return this->object_; }
1367
1368   // Return the size of a section.
1369   uint64_t
1370   section_size() const
1371   { return this->object_->section_size(this->shndx_); }
1372
1373   // Return section index of this stub section.
1374   unsigned int
1375   shndx() const
1376   { return this->shndx_; }
1377
1378   // Return symbol index, if stub is for a local function.
1379   unsigned int
1380   r_sym() const
1381   { return this->r_sym_; }
1382
1383   // Return symbol, if stub is for a global function.
1384   Mips_symbol<size>*
1385   gsym() const
1386   { return this->gsym_; }
1387
1388   // Return whether stub is for a local function.
1389   bool
1390   is_for_local_function() const
1391   { return this->gsym_ == NULL; }
1392
1393   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1394   // is found in the stub section.  Try to find stub target.
1395   void
1396   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1397   {
1398     // To find target symbol for this stub, trust the first R_MIPS_NONE
1399     // relocation, if any.  Otherwise trust the first relocation, whatever
1400     // its kind.
1401     if (this->found_r_mips_none_)
1402       return;
1403     if (r_type == elfcpp::R_MIPS_NONE)
1404       {
1405         this->r_sym_ = r_sym;
1406         this->gsym_ = NULL;
1407         this->found_r_mips_none_ = true;
1408       }
1409     else if (!is_target_found())
1410       this->r_sym_ = r_sym;
1411   }
1412
1413   // This method is called when a new relocation R_TYPE for global symbol GSYM
1414   // is found in the stub section.  Try to find stub target.
1415   void
1416   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1417   {
1418     // To find target symbol for this stub, trust the first R_MIPS_NONE
1419     // relocation, if any.  Otherwise trust the first relocation, whatever
1420     // its kind.
1421     if (this->found_r_mips_none_)
1422       return;
1423     if (r_type == elfcpp::R_MIPS_NONE)
1424       {
1425         this->gsym_ = gsym;
1426         this->r_sym_ = 0;
1427         this->found_r_mips_none_ = true;
1428       }
1429     else if (!is_target_found())
1430       this->gsym_ = gsym;
1431   }
1432
1433   // Return whether we found the stub target.
1434   bool
1435   is_target_found() const
1436   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1437
1438   // Return whether this is a fn stub.
1439   bool
1440   is_fn_stub() const
1441   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1442
1443   // Return whether this is a call stub.
1444   bool
1445   is_call_stub() const
1446   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1447
1448   // Return whether this is a call_fp stub.
1449   bool
1450   is_call_fp_stub() const
1451   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1452
1453   // Return the output address.
1454   Mips_address
1455   output_address() const
1456   {
1457     return (this->object_->output_section(this->shndx_)->address()
1458             + this->object_->output_section_offset(this->shndx_));
1459   }
1460
1461  private:
1462   // The object of this stub section.
1463   Mips_relobj<size, big_endian>* object_;
1464   // The section index of this stub section.
1465   unsigned int shndx_;
1466   // The symbol index, if stub is for a local function.
1467   unsigned int r_sym_;
1468   // The symbol, if stub is for a global function.
1469   Mips_symbol<size>* gsym_;
1470   // True if we found R_MIPS_NONE relocation in this stub.
1471   bool found_r_mips_none_;
1472 };
1473
1474 // Mips_relobj class.
1475
1476 template<int size, bool big_endian>
1477 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1478 {
1479   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1480   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1481     Mips16_stubs_int_map;
1482   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1483
1484  public:
1485   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1486               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1487     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1488       processor_specific_flags_(0), local_symbol_is_mips16_(),
1489       local_symbol_is_micromips_(), mips16_stub_sections_(),
1490       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1491       local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1492       section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1493       section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1494       cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1495   {
1496     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1497     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1498     this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1499   }
1500
1501   ~Mips_relobj()
1502   { }
1503
1504   // Downcast a base pointer to a Mips_relobj pointer.  This is
1505   // not type-safe but we only use Mips_relobj not the base class.
1506   static Mips_relobj<size, big_endian>*
1507   as_mips_relobj(Relobj* relobj)
1508   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1509
1510   // Downcast a base pointer to a Mips_relobj pointer.  This is
1511   // not type-safe but we only use Mips_relobj not the base class.
1512   static const Mips_relobj<size, big_endian>*
1513   as_mips_relobj(const Relobj* relobj)
1514   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1515
1516   // Processor-specific flags in ELF file header.  This is valid only after
1517   // reading symbols.
1518   elfcpp::Elf_Word
1519   processor_specific_flags() const
1520   { return this->processor_specific_flags_; }
1521
1522   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1523   // index.  This is only valid after do_count_local_symbol is called.
1524   bool
1525   local_symbol_is_mips16(unsigned int r_sym) const
1526   {
1527     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1528     return this->local_symbol_is_mips16_[r_sym];
1529   }
1530
1531   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1532   // index.  This is only valid after do_count_local_symbol is called.
1533   bool
1534   local_symbol_is_micromips(unsigned int r_sym) const
1535   {
1536     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1537     return this->local_symbol_is_micromips_[r_sym];
1538   }
1539
1540   // Get or create MIPS16 stub section.
1541   Mips16_stub_section<size, big_endian>*
1542   get_mips16_stub_section(unsigned int shndx)
1543   {
1544     typename Mips16_stubs_int_map::const_iterator it =
1545       this->mips16_stub_sections_.find(shndx);
1546     if (it != this->mips16_stub_sections_.end())
1547       return (*it).second;
1548
1549     Mips16_stub_section<size, big_endian>* stub_section =
1550       new Mips16_stub_section<size, big_endian>(this, shndx);
1551     this->mips16_stub_sections_.insert(
1552       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1553         stub_section->shndx(), stub_section));
1554     return stub_section;
1555   }
1556
1557   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1558   // object doesn't have fn stub for R_SYM.
1559   Mips16_stub_section<size, big_endian>*
1560   get_local_mips16_fn_stub(unsigned int r_sym) const
1561   {
1562     typename Mips16_stubs_int_map::const_iterator it =
1563       this->local_mips16_fn_stubs_.find(r_sym);
1564     if (it != this->local_mips16_fn_stubs_.end())
1565       return (*it).second;
1566     return NULL;
1567   }
1568
1569   // Record that this object has MIPS16 fn stub for local symbol.  This method
1570   // is only called if we decided not to discard the stub.
1571   void
1572   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1573   {
1574     gold_assert(stub->is_for_local_function());
1575     unsigned int r_sym = stub->r_sym();
1576     this->local_mips16_fn_stubs_.insert(
1577       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1578         r_sym, stub));
1579   }
1580
1581   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1582   // object doesn't have call stub for R_SYM.
1583   Mips16_stub_section<size, big_endian>*
1584   get_local_mips16_call_stub(unsigned int r_sym) const
1585   {
1586     typename Mips16_stubs_int_map::const_iterator it =
1587       this->local_mips16_call_stubs_.find(r_sym);
1588     if (it != this->local_mips16_call_stubs_.end())
1589       return (*it).second;
1590     return NULL;
1591   }
1592
1593   // Record that this object has MIPS16 call stub for local symbol.  This method
1594   // is only called if we decided not to discard the stub.
1595   void
1596   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1597   {
1598     gold_assert(stub->is_for_local_function());
1599     unsigned int r_sym = stub->r_sym();
1600     this->local_mips16_call_stubs_.insert(
1601       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1602         r_sym, stub));
1603   }
1604
1605   // Record that we found "non 16-bit" call relocation against local symbol
1606   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1607   // is one.
1608   void
1609   add_local_non_16bit_call(unsigned int symndx)
1610   { this->local_non_16bit_calls_.insert(symndx); }
1611
1612   // Return true if there is any "non 16-bit" call relocation against local
1613   // symbol SYMNDX in this object.
1614   bool
1615   has_local_non_16bit_call_relocs(unsigned int symndx)
1616   {
1617     return (this->local_non_16bit_calls_.find(symndx)
1618             != this->local_non_16bit_calls_.end());
1619   }
1620
1621   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1622   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1623   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1624   void
1625   add_local_16bit_call(unsigned int symndx)
1626   { this->local_16bit_calls_.insert(symndx); }
1627
1628   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1629   // symbol SYMNDX in this object.
1630   bool
1631   has_local_16bit_call_relocs(unsigned int symndx)
1632   {
1633     return (this->local_16bit_calls_.find(symndx)
1634             != this->local_16bit_calls_.end());
1635   }
1636
1637   // Get gp value that was used to create this object.
1638   Mips_address
1639   gp_value() const
1640   { return this->gp_; }
1641
1642   // Return whether the object is a PIC object.
1643   bool
1644   is_pic() const
1645   { return this->is_pic_; }
1646
1647   // Return whether the object uses N32 ABI.
1648   bool
1649   is_n32() const
1650   { return this->is_n32_; }
1651
1652   // Return whether the object uses N64 ABI.
1653   bool
1654   is_n64() const
1655   { return this->is_n64_; }
1656
1657   // Return whether the object uses NewABI conventions.
1658   bool
1659   is_newabi() const
1660   { return this->is_n32_ || this->is_n64_; }
1661
1662   // Return Mips_got_info for this object.
1663   Mips_got_info<size, big_endian>*
1664   get_got_info() const
1665   { return this->got_info_; }
1666
1667   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1668   Mips_got_info<size, big_endian>*
1669   get_or_create_got_info()
1670   {
1671     if (!this->got_info_)
1672       this->got_info_ = new Mips_got_info<size, big_endian>();
1673     return this->got_info_;
1674   }
1675
1676   // Set Mips_got_info for this object.
1677   void
1678   set_got_info(Mips_got_info<size, big_endian>* got_info)
1679   { this->got_info_ = got_info; }
1680
1681   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1682   // after do_read_symbols is called.
1683   bool
1684   is_mips16_stub_section(unsigned int shndx)
1685   {
1686     return (is_mips16_fn_stub_section(shndx)
1687             || is_mips16_call_stub_section(shndx)
1688             || is_mips16_call_fp_stub_section(shndx));
1689   }
1690
1691   // Return TRUE if relocations in section SHNDX can refer directly to a
1692   // MIPS16 function rather than to a hard-float stub.  This is only valid
1693   // after do_read_symbols is called.
1694   bool
1695   section_allows_mips16_refs(unsigned int shndx)
1696   {
1697     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1698   }
1699
1700   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1701   // after do_read_symbols is called.
1702   bool
1703   is_mips16_fn_stub_section(unsigned int shndx)
1704   {
1705     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1706     return this->section_is_mips16_fn_stub_[shndx];
1707   }
1708
1709   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1710   // after do_read_symbols is called.
1711   bool
1712   is_mips16_call_stub_section(unsigned int shndx)
1713   {
1714     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1715     return this->section_is_mips16_call_stub_[shndx];
1716   }
1717
1718   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1719   // valid after do_read_symbols is called.
1720   bool
1721   is_mips16_call_fp_stub_section(unsigned int shndx)
1722   {
1723     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1724     return this->section_is_mips16_call_fp_stub_[shndx];
1725   }
1726
1727   // Discard MIPS16 stub secions that are not needed.
1728   void
1729   discard_mips16_stub_sections(Symbol_table* symtab);
1730
1731   // Return gprmask from the .reginfo section of this object.
1732   Valtype
1733   gprmask() const
1734   { return this->gprmask_; }
1735
1736   // Return cprmask1 from the .reginfo section of this object.
1737   Valtype
1738   cprmask1() const
1739   { return this->cprmask1_; }
1740
1741   // Return cprmask2 from the .reginfo section of this object.
1742   Valtype
1743   cprmask2() const
1744   { return this->cprmask2_; }
1745
1746   // Return cprmask3 from the .reginfo section of this object.
1747   Valtype
1748   cprmask3() const
1749   { return this->cprmask3_; }
1750
1751   // Return cprmask4 from the .reginfo section of this object.
1752   Valtype
1753   cprmask4() const
1754   { return this->cprmask4_; }
1755
1756  protected:
1757   // Count the local symbols.
1758   void
1759   do_count_local_symbols(Stringpool_template<char>*,
1760                          Stringpool_template<char>*);
1761
1762   // Read the symbol information.
1763   void
1764   do_read_symbols(Read_symbols_data* sd);
1765
1766  private:
1767   // processor-specific flags in ELF file header.
1768   elfcpp::Elf_Word processor_specific_flags_;
1769
1770   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1771   // This is only valid after do_count_local_symbol is called.
1772   std::vector<bool> local_symbol_is_mips16_;
1773
1774   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1775   // This is only valid after do_count_local_symbol is called.
1776   std::vector<bool> local_symbol_is_micromips_;
1777
1778   // Map from section index to the MIPS16 stub for that section.  This contains
1779   // all stubs found in this object.
1780   Mips16_stubs_int_map mips16_stub_sections_;
1781
1782   // Local symbols that have "non 16-bit" call relocation.  This relocation
1783   // would need to refer to a MIPS16 fn stub, if there is one.
1784   std::set<unsigned int> local_non_16bit_calls_;
1785
1786   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1787   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1788   // relocation that refers to the stub symbol.
1789   std::set<unsigned int> local_16bit_calls_;
1790
1791   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1792   // This contains only the stubs that we decided not to discard.
1793   Mips16_stubs_int_map local_mips16_fn_stubs_;
1794
1795   // Map from local symbol index to the MIPS16 call stub for that symbol.
1796   // This contains only the stubs that we decided not to discard.
1797   Mips16_stubs_int_map local_mips16_call_stubs_;
1798
1799   // gp value that was used to create this object.
1800   Mips_address gp_;
1801   // Whether the object is a PIC object.
1802   bool is_pic_ : 1;
1803   // Whether the object uses N32 ABI.
1804   bool is_n32_ : 1;
1805   // Whether the object uses N64 ABI.
1806   bool is_n64_ : 1;
1807   // The Mips_got_info for this object.
1808   Mips_got_info<size, big_endian>* got_info_;
1809
1810   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1811   // This is only valid after do_read_symbols is called.
1812   std::vector<bool> section_is_mips16_fn_stub_;
1813
1814   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1815   // This is only valid after do_read_symbols is called.
1816   std::vector<bool> section_is_mips16_call_stub_;
1817
1818   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1819   // This is only valid after do_read_symbols is called.
1820   std::vector<bool> section_is_mips16_call_fp_stub_;
1821
1822   // .pdr section index.
1823   unsigned int pdr_shndx_;
1824
1825   // gprmask from the .reginfo section of this object.
1826   Valtype gprmask_;
1827   // cprmask1 from the .reginfo section of this object.
1828   Valtype cprmask1_;
1829   // cprmask2 from the .reginfo section of this object.
1830   Valtype cprmask2_;
1831   // cprmask3 from the .reginfo section of this object.
1832   Valtype cprmask3_;
1833   // cprmask4 from the .reginfo section of this object.
1834   Valtype cprmask4_;
1835 };
1836
1837 // Mips_output_data_got class.
1838
1839 template<int size, bool big_endian>
1840 class Mips_output_data_got : public Output_data_got<size, big_endian>
1841 {
1842   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1843   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1844     Reloc_section;
1845   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1846
1847  public:
1848   Mips_output_data_got(Target_mips<size, big_endian>* target,
1849       Symbol_table* symtab, Layout* layout)
1850     : Output_data_got<size, big_endian>(), target_(target),
1851       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1852       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1853       secondary_got_relocs_()
1854   {
1855     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1856     this->set_addralign(16);
1857   }
1858
1859   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1860   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1861   void
1862   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1863                           unsigned int symndx, Mips_address addend,
1864                           unsigned int r_type, unsigned int shndx)
1865   {
1866     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1867                                                     r_type, shndx);
1868   }
1869
1870   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1871   // in OBJECT.  FOR_CALL is true if the caller is only interested in
1872   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
1873   // relocation.
1874   void
1875   record_global_got_symbol(Mips_symbol<size>* mips_sym,
1876                            Mips_relobj<size, big_endian>* object,
1877                            unsigned int r_type, bool dyn_reloc, bool for_call)
1878   {
1879     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1880                                                      dyn_reloc, for_call);
1881   }
1882
1883   // Record that OBJECT has a page relocation against symbol SYMNDX and
1884   // that ADDEND is the addend for that relocation.
1885   void
1886   record_got_page_entry(Mips_relobj<size, big_endian>* object,
1887                         unsigned int symndx, int addend)
1888   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1889
1890   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1891   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1892   // applied in a static link.
1893   void
1894   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1895                    Mips_symbol<size>* gsym)
1896   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1897
1898   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1899   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1900   // relocation that needs to be applied in a static link.
1901   void
1902   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1903                    Sized_relobj_file<size, big_endian>* relobj,
1904                    unsigned int index)
1905   {
1906     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1907                                                 index));
1908   }
1909
1910   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1911   // secondary GOT at OFFSET.
1912   void
1913   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1914                           Mips_symbol<size>* gsym)
1915   {
1916     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1917                                                        r_type, gsym));
1918   }
1919
1920   // Update GOT entry at OFFSET with VALUE.
1921   void
1922   update_got_entry(unsigned int offset, Mips_address value)
1923   {
1924     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1925   }
1926
1927   // Return the number of entries in local part of the GOT.  This includes
1928   // local entries, page entries and 2 reserved entries.
1929   unsigned int
1930   get_local_gotno() const
1931   {
1932     if (!this->multi_got())
1933       {
1934         return (2 + this->master_got_info_->local_gotno()
1935                 + this->master_got_info_->page_gotno());
1936       }
1937     else
1938       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1939   }
1940
1941   // Return dynamic symbol table index of the first symbol with global GOT
1942   // entry.
1943   unsigned int
1944   first_global_got_dynsym_index() const
1945   { return this->first_global_got_dynsym_index_; }
1946
1947   // Set dynamic symbol table index of the first symbol with global GOT entry.
1948   void
1949   set_first_global_got_dynsym_index(unsigned int index)
1950   { this->first_global_got_dynsym_index_ = index; }
1951
1952   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
1953   // larger than 64K, create multi-GOT.
1954   void
1955   lay_out_got(Layout* layout, Symbol_table* symtab,
1956               const Input_objects* input_objects);
1957
1958   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
1959   void
1960   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1961
1962   // Attempt to merge GOTs of different input objects.
1963   void
1964   merge_gots(const Input_objects* input_objects);
1965
1966   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
1967   // this would lead to overflow, true if they were merged successfully.
1968   bool
1969   merge_got_with(Mips_got_info<size, big_endian>* from,
1970                  Mips_relobj<size, big_endian>* object,
1971                  Mips_got_info<size, big_endian>* to);
1972
1973   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
1974   // use OBJECT's GOT.
1975   unsigned int
1976   get_got_page_offset(Mips_address value,
1977                       const Mips_relobj<size, big_endian>* object)
1978   {
1979     Mips_got_info<size, big_endian>* g = (!this->multi_got()
1980                                           ? this->master_got_info_
1981                                           : object->get_got_info());
1982     gold_assert(g != NULL);
1983     return g->get_got_page_offset(value, this);
1984   }
1985
1986   // Return the GOT offset of type GOT_TYPE of the global symbol
1987   // GSYM.  For multi-GOT links, use OBJECT's GOT.
1988   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1989                           Mips_relobj<size, big_endian>* object) const
1990   {
1991     if (!this->multi_got())
1992       return gsym->got_offset(got_type);
1993     else
1994       {
1995         Mips_got_info<size, big_endian>* g = object->get_got_info();
1996         gold_assert(g != NULL);
1997         return gsym->got_offset(g->multigot_got_type(got_type));
1998       }
1999   }
2000
2001   // Return the GOT offset of type GOT_TYPE of the local symbol
2002   // SYMNDX.
2003   unsigned int
2004   got_offset(unsigned int symndx, unsigned int got_type,
2005              Sized_relobj_file<size, big_endian>* object) const
2006   { return object->local_got_offset(symndx, got_type); }
2007
2008   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2009   unsigned int
2010   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2011   {
2012     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2013                                           ? this->master_got_info_
2014                                           : object->get_got_info());
2015     gold_assert(g != NULL);
2016     return g->tls_ldm_offset();
2017   }
2018
2019   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2020   void
2021   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2022                      Mips_relobj<size, big_endian>* object)
2023   {
2024     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2025                                           ? this->master_got_info_
2026                                           : object->get_got_info());
2027     gold_assert(g != NULL);
2028     g->set_tls_ldm_offset(tls_ldm_offset);
2029   }
2030
2031   // Return true for multi-GOT links.
2032   bool
2033   multi_got() const
2034   { return this->primary_got_ != NULL; }
2035
2036   // Return the offset of OBJECT's GOT from the start of .got section.
2037   unsigned int
2038   get_got_offset(const Mips_relobj<size, big_endian>* object)
2039   {
2040     if (!this->multi_got())
2041       return 0;
2042     else
2043       {
2044         Mips_got_info<size, big_endian>* g = object->get_got_info();
2045         return g != NULL ? g->offset() : 0;
2046       }
2047   }
2048
2049   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2050   void
2051   add_reloc_only_entries()
2052   { this->master_got_info_->add_reloc_only_entries(this); }
2053
2054   // Return offset of the primary GOT's entry for global symbol.
2055   unsigned int
2056   get_primary_got_offset(const Mips_symbol<size>* sym) const
2057   {
2058     gold_assert(sym->global_got_area() != GGA_NONE);
2059     return (this->get_local_gotno() + sym->dynsym_index()
2060             - this->first_global_got_dynsym_index()) * size/8;
2061   }
2062
2063   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2064   // Input argument GOT_OFFSET is always global offset from the start of
2065   // .got section, for both single and multi-GOT links.
2066   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2067   // links, the return value is object_got_offset - 0x7FF0, where
2068   // object_got_offset is offset in the OBJECT's GOT.
2069   int
2070   gp_offset(unsigned int got_offset,
2071             const Mips_relobj<size, big_endian>* object) const
2072   {
2073     return (this->address() + got_offset
2074             - this->target_->adjusted_gp_value(object));
2075   }
2076
2077  protected:
2078   // Write out the GOT table.
2079   void
2080   do_write(Output_file*);
2081
2082  private:
2083
2084   // This class represent dynamic relocations that need to be applied by
2085   // gold because we are using TLS relocations in a static link.
2086   class Static_reloc
2087   {
2088    public:
2089     Static_reloc(unsigned int got_offset, unsigned int r_type,
2090                  Mips_symbol<size>* gsym)
2091       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2092     { this->u_.global.symbol = gsym; }
2093
2094     Static_reloc(unsigned int got_offset, unsigned int r_type,
2095           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2096       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2097     {
2098       this->u_.local.relobj = relobj;
2099       this->u_.local.index = index;
2100     }
2101
2102     // Return the GOT offset.
2103     unsigned int
2104     got_offset() const
2105     { return this->got_offset_; }
2106
2107     // Relocation type.
2108     unsigned int
2109     r_type() const
2110     { return this->r_type_; }
2111
2112     // Whether the symbol is global or not.
2113     bool
2114     symbol_is_global() const
2115     { return this->symbol_is_global_; }
2116
2117     // For a relocation against a global symbol, the global symbol.
2118     Mips_symbol<size>*
2119     symbol() const
2120     {
2121       gold_assert(this->symbol_is_global_);
2122       return this->u_.global.symbol;
2123     }
2124
2125     // For a relocation against a local symbol, the defining object.
2126     Sized_relobj_file<size, big_endian>*
2127     relobj() const
2128     {
2129       gold_assert(!this->symbol_is_global_);
2130       return this->u_.local.relobj;
2131     }
2132
2133     // For a relocation against a local symbol, the local symbol index.
2134     unsigned int
2135     index() const
2136     {
2137       gold_assert(!this->symbol_is_global_);
2138       return this->u_.local.index;
2139     }
2140
2141    private:
2142     // GOT offset of the entry to which this relocation is applied.
2143     unsigned int got_offset_;
2144     // Type of relocation.
2145     unsigned int r_type_;
2146     // Whether this relocation is against a global symbol.
2147     bool symbol_is_global_;
2148     // A global or local symbol.
2149     union
2150     {
2151       struct
2152       {
2153         // For a global symbol, the symbol itself.
2154         Mips_symbol<size>* symbol;
2155       } global;
2156       struct
2157       {
2158         // For a local symbol, the object defining object.
2159         Sized_relobj_file<size, big_endian>* relobj;
2160         // For a local symbol, the symbol index.
2161         unsigned int index;
2162       } local;
2163     } u_;
2164   };
2165
2166   // The target.
2167   Target_mips<size, big_endian>* target_;
2168   // The symbol table.
2169   Symbol_table* symbol_table_;
2170   // The layout.
2171   Layout* layout_;
2172   // Static relocs to be applied to the GOT.
2173   std::vector<Static_reloc> static_relocs_;
2174   // .got section view.
2175   unsigned char* got_view_;
2176   // The dynamic symbol table index of the first symbol with global GOT entry.
2177   unsigned int first_global_got_dynsym_index_;
2178   // The master GOT information.
2179   Mips_got_info<size, big_endian>* master_got_info_;
2180   // The  primary GOT information.
2181   Mips_got_info<size, big_endian>* primary_got_;
2182   // Secondary GOT fixups.
2183   std::vector<Static_reloc> secondary_got_relocs_;
2184 };
2185
2186 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2187 // two ways of creating these interfaces.  The first is to add:
2188 //
2189 //      lui     $25,%hi(func)
2190 //      j       func
2191 //      addiu   $25,$25,%lo(func)
2192 //
2193 // to a separate trampoline section.  The second is to add:
2194 //
2195 //      lui     $25,%hi(func)
2196 //      addiu   $25,$25,%lo(func)
2197 //
2198 // immediately before a PIC function "func", but only if a function is at the
2199 // beginning of the section, and the section is not too heavily aligned (i.e we
2200 // would need to add no more than 2 nops before the stub.)
2201 //
2202 // We only create stubs of the first type.
2203
2204 template<int size, bool big_endian>
2205 class Mips_output_data_la25_stub : public Output_section_data
2206 {
2207   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2208
2209  public:
2210   Mips_output_data_la25_stub()
2211   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2212   { }
2213
2214   // Create LA25 stub for a symbol.
2215   void
2216   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2217                    Mips_symbol<size>* gsym);
2218
2219   // Return output address of a stub.
2220   Mips_address
2221   stub_address(const Mips_symbol<size>* sym) const
2222   {
2223     gold_assert(sym->has_la25_stub());
2224     return this->address() + sym->la25_stub_offset();
2225   }
2226
2227  protected:
2228   void
2229   do_adjust_output_section(Output_section* os)
2230   { os->set_entsize(0); }
2231
2232  private:
2233   // Template for standard LA25 stub.
2234   static const uint32_t la25_stub_entry[];
2235   // Template for microMIPS LA25 stub.
2236   static const uint32_t la25_stub_micromips_entry[];
2237
2238   // Set the final size.
2239   void
2240   set_final_data_size()
2241   { this->set_data_size(this->symbols_.size() * 16); }
2242
2243   // Create a symbol for SYM stub's value and size, to help make the
2244   // disassembly easier to read.
2245   void
2246   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2247                      Target_mips<size, big_endian>* target, uint64_t symsize);
2248
2249   // Write out the LA25 stub section.
2250   void
2251   do_write(Output_file*);
2252
2253   // Symbols that have LA25 stubs.
2254   Unordered_set<Mips_symbol<size>*> symbols_;
2255 };
2256
2257 // A class to handle the PLT data.
2258
2259 template<int size, bool big_endian>
2260 class Mips_output_data_plt : public Output_section_data
2261 {
2262   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2263   typedef Output_data_reloc<elfcpp::SHT_REL, true,
2264                             size, big_endian> Reloc_section;
2265
2266  public:
2267   // Create the PLT section.  The ordinary .got section is an argument,
2268   // since we need to refer to the start.
2269   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2270                        Target_mips<size, big_endian>* target)
2271     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2272       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2273       target_(target)
2274   {
2275     this->rel_ = new Reloc_section(false);
2276     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2277                                     elfcpp::SHF_ALLOC, this->rel_,
2278                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2279   }
2280
2281   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2282   void
2283   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2284
2285   // Return the .rel.plt section data.
2286   const Reloc_section*
2287   rel_plt() const
2288   { return this->rel_; }
2289
2290   // Return the number of PLT entries.
2291   unsigned int
2292   entry_count() const
2293   { return this->symbols_.size(); }
2294
2295   // Return the offset of the first non-reserved PLT entry.
2296   unsigned int
2297   first_plt_entry_offset() const
2298   { return sizeof(plt0_entry_o32); }
2299
2300   // Return the size of a PLT entry.
2301   unsigned int
2302   plt_entry_size() const
2303   { return sizeof(plt_entry); }
2304
2305   // Set final PLT offsets.  For each symbol, determine whether standard or
2306   // compressed (MIPS16 or microMIPS) PLT entry is used.
2307   void
2308   set_plt_offsets();
2309
2310   // Return the offset of the first standard PLT entry.
2311   unsigned int
2312   first_mips_plt_offset() const
2313   { return this->plt_header_size_; }
2314
2315   // Return the offset of the first compressed PLT entry.
2316   unsigned int
2317   first_comp_plt_offset() const
2318   { return this->plt_header_size_ + this->plt_mips_offset_; }
2319
2320   // Return whether there are any standard PLT entries.
2321   bool
2322   has_standard_entries() const
2323   { return this->plt_mips_offset_ > 0; }
2324
2325   // Return the output address of standard PLT entry.
2326   Mips_address
2327   mips_entry_address(const Mips_symbol<size>* sym) const
2328   {
2329     gold_assert (sym->has_mips_plt_offset());
2330     return (this->address() + this->first_mips_plt_offset()
2331             + sym->mips_plt_offset());
2332   }
2333
2334   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2335   Mips_address
2336   comp_entry_address(const Mips_symbol<size>* sym) const
2337   {
2338     gold_assert (sym->has_comp_plt_offset());
2339     return (this->address() + this->first_comp_plt_offset()
2340             + sym->comp_plt_offset());
2341   }
2342
2343  protected:
2344   void
2345   do_adjust_output_section(Output_section* os)
2346   { os->set_entsize(0); }
2347
2348   // Write to a map file.
2349   void
2350   do_print_to_mapfile(Mapfile* mapfile) const
2351   { mapfile->print_output_data(this, _(".plt")); }
2352
2353  private:
2354   // Template for the first PLT entry.
2355   static const uint32_t plt0_entry_o32[];
2356   static const uint32_t plt0_entry_n32[];
2357   static const uint32_t plt0_entry_n64[];
2358   static const uint32_t plt0_entry_micromips_o32[];
2359   static const uint32_t plt0_entry_micromips32_o32[];
2360
2361   // Template for subsequent PLT entries.
2362   static const uint32_t plt_entry[];
2363   static const uint32_t plt_entry_mips16_o32[];
2364   static const uint32_t plt_entry_micromips_o32[];
2365   static const uint32_t plt_entry_micromips32_o32[];
2366
2367   // Set the final size.
2368   void
2369   set_final_data_size()
2370   {
2371     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2372                         + this->plt_comp_offset_);
2373   }
2374
2375   // Write out the PLT data.
2376   void
2377   do_write(Output_file*);
2378
2379   // Return whether the plt header contains microMIPS code.  For the sake of
2380   // cache alignment always use a standard header whenever any standard entries
2381   // are present even if microMIPS entries are present as well.  This also lets
2382   // the microMIPS header rely on the value of $v0 only set by microMIPS
2383   // entries, for a small size reduction.
2384   bool
2385   is_plt_header_compressed() const
2386   {
2387     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2388     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2389   }
2390
2391   // Return the size of the PLT header.
2392   unsigned int
2393   get_plt_header_size() const
2394   {
2395     if (this->target_->is_output_n64())
2396       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2397     else if (this->target_->is_output_n32())
2398       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2399     else if (!this->is_plt_header_compressed())
2400       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2401     else if (this->target_->use_32bit_micromips_instructions())
2402       return (2 * sizeof(plt0_entry_micromips32_o32)
2403               / sizeof(plt0_entry_micromips32_o32[0]));
2404     else
2405       return (2 * sizeof(plt0_entry_micromips_o32)
2406               / sizeof(plt0_entry_micromips_o32[0]));
2407   }
2408
2409   // Return the PLT header entry.
2410   const uint32_t*
2411   get_plt_header_entry() const
2412   {
2413     if (this->target_->is_output_n64())
2414       return plt0_entry_n64;
2415     else if (this->target_->is_output_n32())
2416       return plt0_entry_n32;
2417     else if (!this->is_plt_header_compressed())
2418       return plt0_entry_o32;
2419     else if (this->target_->use_32bit_micromips_instructions())
2420       return plt0_entry_micromips32_o32;
2421     else
2422       return plt0_entry_micromips_o32;
2423   }
2424
2425   // Return the size of the standard PLT entry.
2426   unsigned int
2427   standard_plt_entry_size() const
2428   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2429
2430   // Return the size of the compressed PLT entry.
2431   unsigned int
2432   compressed_plt_entry_size() const
2433   {
2434     gold_assert(!this->target_->is_output_newabi());
2435
2436     if (!this->target_->is_output_micromips())
2437       return (2 * sizeof(plt_entry_mips16_o32)
2438               / sizeof(plt_entry_mips16_o32[0]));
2439     else if (this->target_->use_32bit_micromips_instructions())
2440       return (2 * sizeof(plt_entry_micromips32_o32)
2441               / sizeof(plt_entry_micromips32_o32[0]));
2442     else
2443       return (2 * sizeof(plt_entry_micromips_o32)
2444               / sizeof(plt_entry_micromips_o32[0]));
2445   }
2446
2447   // The reloc section.
2448   Reloc_section* rel_;
2449   // The .got.plt section.
2450   Output_data_space* got_plt_;
2451   // Symbols that have PLT entry.
2452   std::vector<Mips_symbol<size>*> symbols_;
2453   // The offset of the next standard PLT entry to create.
2454   unsigned int plt_mips_offset_;
2455   // The offset of the next compressed PLT entry to create.
2456   unsigned int plt_comp_offset_;
2457   // The size of the PLT header in bytes.
2458   unsigned int plt_header_size_;
2459   // The target.
2460   Target_mips<size, big_endian>* target_;
2461 };
2462
2463 // A class to handle the .MIPS.stubs data.
2464
2465 template<int size, bool big_endian>
2466 class Mips_output_data_mips_stubs : public Output_section_data
2467 {
2468   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2469
2470  public:
2471    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2472      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2473        stub_offsets_are_set_(false), target_(target)
2474    { }
2475
2476   // Create entry for a symbol.
2477   void
2478   make_entry(Mips_symbol<size>*);
2479
2480   // Remove entry for a symbol.
2481   void
2482   remove_entry(Mips_symbol<size>* gsym);
2483
2484   // Set stub offsets for symbols.  This method expects that the number of
2485   // entries in dynamic symbol table is set.
2486   void
2487   set_lazy_stub_offsets();
2488
2489   void
2490   set_needs_dynsym_value();
2491
2492    // Set the number of entries in dynamic symbol table.
2493   void
2494   set_dynsym_count(unsigned int dynsym_count)
2495   { this->dynsym_count_ = dynsym_count; }
2496
2497   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2498   // count is greater than 0x10000.  If the dynamic symbol count is less than
2499   // 0x10000, the stub will be 4 bytes smaller.
2500   // There's no disadvantage from using microMIPS code here, so for the sake of
2501   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2502   // output produced at all.  This has a benefit of stubs being shorter by
2503   // 4 bytes each too, unless in the insn32 mode.
2504   unsigned int
2505   stub_max_size() const
2506   {
2507     if (!this->target_->is_output_micromips()
2508         || this->target_->use_32bit_micromips_instructions())
2509       return 20;
2510     else
2511       return 16;
2512   }
2513
2514   // Return the size of the stub.  This method expects that the final dynsym
2515   // count is set.
2516   unsigned int
2517   stub_size() const
2518   {
2519     gold_assert(this->dynsym_count_ != -1U);
2520     if (this->dynsym_count_ > 0x10000)
2521       return this->stub_max_size();
2522     else
2523       return this->stub_max_size() - 4;
2524   }
2525
2526   // Return output address of a stub.
2527   Mips_address
2528   stub_address(const Mips_symbol<size>* sym) const
2529   {
2530     gold_assert(sym->has_lazy_stub());
2531     return this->address() + sym->lazy_stub_offset();
2532   }
2533
2534  protected:
2535   void
2536   do_adjust_output_section(Output_section* os)
2537   { os->set_entsize(0); }
2538
2539   // Write to a map file.
2540   void
2541   do_print_to_mapfile(Mapfile* mapfile) const
2542   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2543
2544  private:
2545   static const uint32_t lazy_stub_normal_1[];
2546   static const uint32_t lazy_stub_normal_1_n64[];
2547   static const uint32_t lazy_stub_normal_2[];
2548   static const uint32_t lazy_stub_normal_2_n64[];
2549   static const uint32_t lazy_stub_big[];
2550   static const uint32_t lazy_stub_big_n64[];
2551
2552   static const uint32_t lazy_stub_micromips_normal_1[];
2553   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2554   static const uint32_t lazy_stub_micromips_normal_2[];
2555   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2556   static const uint32_t lazy_stub_micromips_big[];
2557   static const uint32_t lazy_stub_micromips_big_n64[];
2558
2559   static const uint32_t lazy_stub_micromips32_normal_1[];
2560   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2561   static const uint32_t lazy_stub_micromips32_normal_2[];
2562   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2563   static const uint32_t lazy_stub_micromips32_big[];
2564   static const uint32_t lazy_stub_micromips32_big_n64[];
2565
2566   // Set the final size.
2567   void
2568   set_final_data_size()
2569   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2570
2571   // Write out the .MIPS.stubs data.
2572   void
2573   do_write(Output_file*);
2574
2575   // .MIPS.stubs symbols
2576   Unordered_set<Mips_symbol<size>*> symbols_;
2577   // Number of entries in dynamic symbol table.
2578   unsigned int dynsym_count_;
2579   // Whether the stub offsets are set.
2580   bool stub_offsets_are_set_;
2581   // The target.
2582   Target_mips<size, big_endian>* target_;
2583 };
2584
2585 // This class handles Mips .reginfo output section.
2586
2587 template<int size, bool big_endian>
2588 class Mips_output_section_reginfo : public Output_section
2589 {
2590   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2591
2592  public:
2593   Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2594                               elfcpp::Elf_Xword flags,
2595                               Target_mips<size, big_endian>* target)
2596     : Output_section(name, type, flags), target_(target), gprmask_(0),
2597       cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2598   { }
2599
2600   // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2601   static Mips_output_section_reginfo<size, big_endian>*
2602   as_mips_output_section_reginfo(Output_section* os)
2603   { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2604
2605   // Set masks of the output .reginfo section.
2606   void
2607   set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2608             Valtype cprmask3, Valtype cprmask4)
2609   {
2610     this->gprmask_ = gprmask;
2611     this->cprmask1_ = cprmask1;
2612     this->cprmask2_ = cprmask2;
2613     this->cprmask3_ = cprmask3;
2614     this->cprmask4_ = cprmask4;
2615   }
2616
2617  protected:
2618   // Set the final data size.
2619   void
2620   set_final_data_size()
2621   { this->set_data_size(24); }
2622
2623   // Write out reginfo section.
2624   void
2625   do_write(Output_file* of);
2626
2627  private:
2628   Target_mips<size, big_endian>* target_;
2629
2630   // gprmask of the output .reginfo section.
2631   Valtype gprmask_;
2632   // cprmask1 of the output .reginfo section.
2633   Valtype cprmask1_;
2634   // cprmask2 of the output .reginfo section.
2635   Valtype cprmask2_;
2636   // cprmask3 of the output .reginfo section.
2637   Valtype cprmask3_;
2638   // cprmask4 of the output .reginfo section.
2639   Valtype cprmask4_;
2640 };
2641
2642 // The MIPS target has relocation types which default handling of relocatable
2643 // relocation cannot process.  So we have to extend the default code.
2644
2645 template<bool big_endian, int sh_type, typename Classify_reloc>
2646 class Mips_scan_relocatable_relocs :
2647   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2648 {
2649  public:
2650   // Return the strategy to use for a local symbol which is a section
2651   // symbol, given the relocation type.
2652   inline Relocatable_relocs::Reloc_strategy
2653   local_section_strategy(unsigned int r_type, Relobj* object)
2654   {
2655     if (sh_type == elfcpp::SHT_RELA)
2656       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2657     else
2658       {
2659         switch (r_type)
2660           {
2661           case elfcpp::R_MIPS_26:
2662             return Relocatable_relocs::RELOC_SPECIAL;
2663
2664           default:
2665             return Default_scan_relocatable_relocs<sh_type, Classify_reloc>::
2666                 local_section_strategy(r_type, object);
2667           }
2668       }
2669   }
2670 };
2671
2672 // Mips_copy_relocs class.  The only difference from the base class is the
2673 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2674 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2675 // cannot be made dynamic, a COPY reloc is emitted.
2676
2677 template<int sh_type, int size, bool big_endian>
2678 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2679 {
2680  public:
2681   Mips_copy_relocs()
2682     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2683   { }
2684
2685   // Emit any saved relocations which turn out to be needed.  This is
2686   // called after all the relocs have been scanned.
2687   void
2688   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2689             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2690
2691  private:
2692   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2693     Copy_reloc_entry;
2694
2695   // Emit this reloc if appropriate.  This is called after we have
2696   // scanned all the relocations, so we know whether we emitted a
2697   // COPY relocation for SYM_.
2698   void
2699   emit_entry(Copy_reloc_entry& entry,
2700              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2701              Symbol_table* symtab, Layout* layout,
2702              Target_mips<size, big_endian>* target);
2703 };
2704
2705
2706 // Return true if the symbol SYM should be considered to resolve local
2707 // to the current module, and false otherwise.  The logic is taken from
2708 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2709 static bool
2710 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2711                   bool local_protected)
2712 {
2713   // If it's a local sym, of course we resolve locally.
2714   if (sym == NULL)
2715     return true;
2716
2717   // STV_HIDDEN or STV_INTERNAL ones must be local.
2718   if (sym->visibility() == elfcpp::STV_HIDDEN
2719       || sym->visibility() == elfcpp::STV_INTERNAL)
2720     return true;
2721
2722   // If we don't have a definition in a regular file, then we can't
2723   // resolve locally.  The sym is either undefined or dynamic.
2724   if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2725       || sym->is_undefined())
2726     return false;
2727
2728   // Forced local symbols resolve locally.
2729   if (sym->is_forced_local())
2730     return true;
2731
2732   // As do non-dynamic symbols.
2733   if (!has_dynsym_entry)
2734     return true;
2735
2736   // At this point, we know the symbol is defined and dynamic.  In an
2737   // executable it must resolve locally, likewise when building symbolic
2738   // shared libraries.
2739   if (parameters->options().output_is_executable()
2740       || parameters->options().Bsymbolic())
2741     return true;
2742
2743   // Now deal with defined dynamic symbols in shared libraries.  Ones
2744   // with default visibility might not resolve locally.
2745   if (sym->visibility() == elfcpp::STV_DEFAULT)
2746     return false;
2747
2748   // STV_PROTECTED non-function symbols are local.
2749   if (sym->type() != elfcpp::STT_FUNC)
2750     return true;
2751
2752   // Function pointer equality tests may require that STV_PROTECTED
2753   // symbols be treated as dynamic symbols.  If the address of a
2754   // function not defined in an executable is set to that function's
2755   // plt entry in the executable, then the address of the function in
2756   // a shared library must also be the plt entry in the executable.
2757   return local_protected;
2758 }
2759
2760 // Return TRUE if references to this symbol always reference the symbol in this
2761 // object.
2762 static bool
2763 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2764 {
2765   return symbol_refs_local(sym, has_dynsym_entry, false);
2766 }
2767
2768 // Return TRUE if calls to this symbol always call the version in this object.
2769 static bool
2770 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2771 {
2772   return symbol_refs_local(sym, has_dynsym_entry, true);
2773 }
2774
2775 // Compare GOT offsets of two symbols.
2776
2777 template<int size, bool big_endian>
2778 static bool
2779 got_offset_compare(Symbol* sym1, Symbol* sym2)
2780 {
2781   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2782   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2783   unsigned int area1 = mips_sym1->global_got_area();
2784   unsigned int area2 = mips_sym2->global_got_area();
2785   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2786
2787   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2788   if (area1 != area2)
2789     return area1 < area2;
2790
2791   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2792 }
2793
2794 // This method divides dynamic symbols into symbols that have GOT entry, and
2795 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
2796 // Mips ABI requires that symbols with the GOT entry must be at the end of
2797 // dynamic symbol table, and the order in dynamic symbol table must match the
2798 // order in GOT.
2799
2800 template<int size, bool big_endian>
2801 static void
2802 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2803                     std::vector<Symbol*>* non_got_symbols,
2804                     std::vector<Symbol*>* got_symbols)
2805 {
2806   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2807        p != dyn_symbols->end();
2808        ++p)
2809     {
2810       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2811       if (mips_sym->global_got_area() == GGA_NORMAL
2812           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2813         got_symbols->push_back(mips_sym);
2814       else
2815         non_got_symbols->push_back(mips_sym);
2816     }
2817
2818   std::sort(got_symbols->begin(), got_symbols->end(),
2819             got_offset_compare<size, big_endian>);
2820 }
2821
2822 // Functor class for processing the global symbol table.
2823
2824 template<int size, bool big_endian>
2825 class Symbol_visitor_check_symbols
2826 {
2827  public:
2828   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2829     Layout* layout, Symbol_table* symtab)
2830     : target_(target), layout_(layout), symtab_(symtab)
2831   { }
2832
2833   void
2834   operator()(Sized_symbol<size>* sym)
2835   {
2836     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2837     if (local_pic_function<size, big_endian>(mips_sym))
2838       {
2839         // SYM is a function that might need $25 to be valid on entry.
2840         // If we're creating a non-PIC relocatable object, mark SYM as
2841         // being PIC.  If we're creating a non-relocatable object with
2842         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2843         // stub.
2844         if (parameters->options().relocatable())
2845           {
2846             if (!parameters->options().output_is_position_independent())
2847               mips_sym->set_pic();
2848           }
2849         else if (mips_sym->has_nonpic_branches())
2850           {
2851             this->target_->la25_stub_section(layout_)
2852                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2853           }
2854       }
2855   }
2856
2857  private:
2858   Target_mips<size, big_endian>* target_;
2859   Layout* layout_;
2860   Symbol_table* symtab_;
2861 };
2862
2863 template<int size, bool big_endian>
2864 class Target_mips : public Sized_target<size, big_endian>
2865 {
2866   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2867   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
2868     Reloc_section;
2869   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2870     Reloca_section;
2871   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
2872   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2873
2874  public:
2875   Target_mips(const Target::Target_info* info = &mips_info)
2876     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
2877       got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
2878       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
2879       mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
2880       got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
2881   {
2882     this->add_machine_extensions();
2883   }
2884
2885   // The offset of $gp from the beginning of the .got section.
2886   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
2887
2888   // The maximum size of the GOT for it to be addressable using 16-bit
2889   // offsets from $gp.
2890   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
2891
2892   // Make a new symbol table entry for the Mips target.
2893   Sized_symbol<size>*
2894   make_symbol() const
2895   { return new Mips_symbol<size>(); }
2896
2897   // Process the relocations to determine unreferenced sections for
2898   // garbage collection.
2899   void
2900   gc_process_relocs(Symbol_table* symtab,
2901                     Layout* layout,
2902                     Sized_relobj_file<size, big_endian>* object,
2903                     unsigned int data_shndx,
2904                     unsigned int sh_type,
2905                     const unsigned char* prelocs,
2906                     size_t reloc_count,
2907                     Output_section* output_section,
2908                     bool needs_special_offset_handling,
2909                     size_t local_symbol_count,
2910                     const unsigned char* plocal_symbols);
2911
2912   // Scan the relocations to look for symbol adjustments.
2913   void
2914   scan_relocs(Symbol_table* symtab,
2915               Layout* layout,
2916               Sized_relobj_file<size, big_endian>* object,
2917               unsigned int data_shndx,
2918               unsigned int sh_type,
2919               const unsigned char* prelocs,
2920               size_t reloc_count,
2921               Output_section* output_section,
2922               bool needs_special_offset_handling,
2923               size_t local_symbol_count,
2924               const unsigned char* plocal_symbols);
2925
2926   // Finalize the sections.
2927   void
2928   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2929
2930   // Relocate a section.
2931   void
2932   relocate_section(const Relocate_info<size, big_endian>*,
2933                    unsigned int sh_type,
2934                    const unsigned char* prelocs,
2935                    size_t reloc_count,
2936                    Output_section* output_section,
2937                    bool needs_special_offset_handling,
2938                    unsigned char* view,
2939                    Mips_address view_address,
2940                    section_size_type view_size,
2941                    const Reloc_symbol_changes*);
2942
2943   // Scan the relocs during a relocatable link.
2944   void
2945   scan_relocatable_relocs(Symbol_table* symtab,
2946                           Layout* layout,
2947                           Sized_relobj_file<size, big_endian>* object,
2948                           unsigned int data_shndx,
2949                           unsigned int sh_type,
2950                           const unsigned char* prelocs,
2951                           size_t reloc_count,
2952                           Output_section* output_section,
2953                           bool needs_special_offset_handling,
2954                           size_t local_symbol_count,
2955                           const unsigned char* plocal_symbols,
2956                           Relocatable_relocs*);
2957
2958   // Emit relocations for a section.
2959   void
2960   relocate_relocs(const Relocate_info<size, big_endian>*,
2961                   unsigned int sh_type,
2962                   const unsigned char* prelocs,
2963                   size_t reloc_count,
2964                   Output_section* output_section,
2965                   typename elfcpp::Elf_types<size>::Elf_Off
2966                     offset_in_output_section,
2967                   unsigned char* view,
2968                   Mips_address view_address,
2969                   section_size_type view_size,
2970                   unsigned char* reloc_view,
2971                   section_size_type reloc_view_size);
2972
2973   // Perform target-specific processing in a relocatable link.  This is
2974   // only used if we use the relocation strategy RELOC_SPECIAL.
2975   void
2976   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
2977                                unsigned int sh_type,
2978                                const unsigned char* preloc_in,
2979                                size_t relnum,
2980                                Output_section* output_section,
2981                                typename elfcpp::Elf_types<size>::Elf_Off
2982                                  offset_in_output_section,
2983                                unsigned char* view,
2984                                Mips_address view_address,
2985                                section_size_type view_size,
2986                                unsigned char* preloc_out);
2987
2988   // Return whether SYM is defined by the ABI.
2989   bool
2990   do_is_defined_by_abi(const Symbol* sym) const
2991   {
2992     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
2993             || (strcmp(sym->name(), "_gp_disp") == 0)
2994             || (strcmp(sym->name(), "___tls_get_addr") == 0));
2995   }
2996
2997   // Return the number of entries in the GOT.
2998   unsigned int
2999   got_entry_count() const
3000   {
3001     if (!this->has_got_section())
3002       return 0;
3003     return this->got_size() / (size/8);
3004   }
3005
3006   // Return the number of entries in the PLT.
3007   unsigned int
3008   plt_entry_count() const
3009   {
3010     if (this->plt_ == NULL)
3011       return 0;
3012     return this->plt_->entry_count();
3013   }
3014
3015   // Return the offset of the first non-reserved PLT entry.
3016   unsigned int
3017   first_plt_entry_offset() const
3018   { return this->plt_->first_plt_entry_offset(); }
3019
3020   // Return the size of each PLT entry.
3021   unsigned int
3022   plt_entry_size() const
3023   { return this->plt_->plt_entry_size(); }
3024
3025   // Get the GOT section, creating it if necessary.
3026   Mips_output_data_got<size, big_endian>*
3027   got_section(Symbol_table*, Layout*);
3028
3029   // Get the GOT section.
3030   Mips_output_data_got<size, big_endian>*
3031   got_section() const
3032   {
3033     gold_assert(this->got_ != NULL);
3034     return this->got_;
3035   }
3036
3037   // Get the .MIPS.stubs section, creating it if necessary.
3038   Mips_output_data_mips_stubs<size, big_endian>*
3039   mips_stubs_section(Layout* layout);
3040
3041   // Get the .MIPS.stubs section.
3042   Mips_output_data_mips_stubs<size, big_endian>*
3043   mips_stubs_section() const
3044   {
3045     gold_assert(this->mips_stubs_ != NULL);
3046     return this->mips_stubs_;
3047   }
3048
3049   // Get the LA25 stub section, creating it if necessary.
3050   Mips_output_data_la25_stub<size, big_endian>*
3051   la25_stub_section(Layout*);
3052
3053   // Get the LA25 stub section.
3054   Mips_output_data_la25_stub<size, big_endian>*
3055   la25_stub_section()
3056   {
3057     gold_assert(this->la25_stub_ != NULL);
3058     return this->la25_stub_;
3059   }
3060
3061   // Get gp value.  It has the value of .got + 0x7FF0.
3062   Mips_address
3063   gp_value() const
3064   {
3065     if (this->gp_ != NULL)
3066       return this->gp_->value();
3067     return 0;
3068   }
3069
3070   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3071   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3072   Mips_address
3073   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3074   {
3075     if (this->gp_ == NULL)
3076       return 0;
3077
3078     bool multi_got = false;
3079     if (this->has_got_section())
3080       multi_got = this->got_section()->multi_got();
3081     if (!multi_got)
3082       return this->gp_->value();
3083     else
3084       return this->gp_->value() + this->got_section()->get_got_offset(object);
3085   }
3086
3087   // Get the dynamic reloc section, creating it if necessary.
3088   Reloc_section*
3089   rel_dyn_section(Layout*);
3090
3091   bool
3092   do_has_custom_set_dynsym_indexes() const
3093   { return true; }
3094
3095   // Don't emit input .reginfo sections to output .reginfo.
3096   bool
3097   do_should_include_section(elfcpp::Elf_Word sh_type) const
3098   { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3099
3100   // Set the dynamic symbol indexes.  INDEX is the index of the first
3101   // global dynamic symbol.  Pointers to the symbols are stored into the
3102   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3103   // updated dynamic symbol index.
3104   unsigned int
3105   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3106                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3107                         Versions* versions, Symbol_table* symtab) const;
3108
3109   // Remove .MIPS.stubs entry for a symbol.
3110   void
3111   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3112   {
3113     if (this->mips_stubs_ != NULL)
3114       this->mips_stubs_->remove_entry(sym);
3115   }
3116
3117   // The value to write into got[1] for SVR4 targets, to identify it is
3118   // a GNU object.  The dynamic linker can then use got[1] to store the
3119   // module pointer.
3120   uint64_t
3121   mips_elf_gnu_got1_mask()
3122   {
3123     if (this->is_output_n64())
3124       return (uint64_t)1 << 63;
3125     else
3126       return 1 << 31;
3127   }
3128
3129   // Whether the output has microMIPS code.  This is valid only after
3130   // merge_processor_specific_flags() is called.
3131   bool
3132   is_output_micromips() const
3133   {
3134     gold_assert(this->are_processor_specific_flags_set());
3135     return elfcpp::is_micromips(this->processor_specific_flags());
3136   }
3137
3138   // Whether the output uses N32 ABI.  This is valid only after
3139   // merge_processor_specific_flags() is called.
3140   bool
3141   is_output_n32() const
3142   {
3143     gold_assert(this->are_processor_specific_flags_set());
3144     return elfcpp::abi_n32(this->processor_specific_flags());
3145   }
3146
3147   // Whether the output uses N64 ABI.  This is valid only after
3148   // merge_processor_specific_flags() is called.
3149   bool
3150   is_output_n64() const
3151   {
3152     gold_assert(this->are_processor_specific_flags_set());
3153     return elfcpp::abi_64(this->ei_class_);
3154   }
3155
3156   // Whether the output uses NEWABI.  This is valid only after
3157   // merge_processor_specific_flags() is called.
3158   bool
3159   is_output_newabi() const
3160   { return this->is_output_n32() || this->is_output_n64(); }
3161
3162   // Whether we can only use 32-bit microMIPS instructions.
3163   bool
3164   use_32bit_micromips_instructions() const
3165   { return this->insn32_; }
3166
3167  protected:
3168   // Return the value to use for a dynamic symbol which requires special
3169   // treatment.  This is how we support equality comparisons of function
3170   // pointers across shared library boundaries, as described in the
3171   // processor specific ABI supplement.
3172   uint64_t
3173   do_dynsym_value(const Symbol* gsym) const;
3174
3175   // Make an ELF object.
3176   Object*
3177   do_make_elf_object(const std::string&, Input_file*, off_t,
3178                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3179
3180   Object*
3181   do_make_elf_object(const std::string&, Input_file*, off_t,
3182                      const elfcpp::Ehdr<size, !big_endian>&)
3183   { gold_unreachable(); }
3184
3185   // Make an output section.
3186   Output_section*
3187   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3188                          elfcpp::Elf_Xword flags)
3189     {
3190       if (type == elfcpp::SHT_MIPS_REGINFO)
3191         return new Mips_output_section_reginfo<size, big_endian>(name, type,
3192                                                                  flags, this);
3193       else
3194         return new Output_section(name, type, flags);
3195     }
3196
3197   // Adjust ELF file header.
3198   void
3199   do_adjust_elf_header(unsigned char* view, int len);
3200
3201   // Get the custom dynamic tag value.
3202   unsigned int
3203   do_dynamic_tag_custom_value(elfcpp::DT) const;
3204
3205   // Adjust the value written to the dynamic symbol table.
3206   virtual void
3207   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3208   {
3209     elfcpp::Sym<size, big_endian> isym(view);
3210     elfcpp::Sym_write<size, big_endian> osym(view);
3211     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3212
3213     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3214     // to treat compressed symbols like any other.
3215     Mips_address value = isym.get_st_value();
3216     if (mips_sym->is_mips16() && value != 0)
3217       {
3218         if (!mips_sym->has_mips16_fn_stub())
3219           value |= 1;
3220         else
3221           {
3222             // If we have a MIPS16 function with a stub, the dynamic symbol
3223             // must refer to the stub, since only the stub uses the standard
3224             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3225             // in this case.
3226
3227             // There is a code which does this in the method
3228             // Target_mips::do_dynsym_value, but that code will only be
3229             // executed if the symbol is from dynobj.
3230             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3231             // table.
3232
3233             Mips16_stub_section<size, big_endian>* fn_stub =
3234               mips_sym->template get_mips16_fn_stub<big_endian>();
3235             value = fn_stub->output_address();
3236             osym.put_st_size(fn_stub->section_size());
3237           }
3238
3239         osym.put_st_value(value);
3240         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3241                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3242       }
3243     else if ((mips_sym->is_micromips()
3244               // Stubs are always microMIPS if there is any microMIPS code in
3245               // the output.
3246               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3247              && value != 0)
3248       {
3249         osym.put_st_value(value | 1);
3250         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3251                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3252       }
3253   }
3254
3255  private:
3256   // The class which scans relocations.
3257   class Scan
3258   {
3259    public:
3260     Scan()
3261     { }
3262
3263     static inline int
3264     get_reference_flags(unsigned int r_type);
3265
3266     inline void
3267     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3268           Sized_relobj_file<size, big_endian>* object,
3269           unsigned int data_shndx,
3270           Output_section* output_section,
3271           const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3272           const elfcpp::Sym<size, big_endian>& lsym,
3273           bool is_discarded);
3274
3275     inline void
3276     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3277           Sized_relobj_file<size, big_endian>* object,
3278           unsigned int data_shndx,
3279           Output_section* output_section,
3280           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3281           const elfcpp::Sym<size, big_endian>& lsym,
3282           bool is_discarded);
3283
3284     inline void
3285     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3286           Sized_relobj_file<size, big_endian>* object,
3287           unsigned int data_shndx,
3288           Output_section* output_section,
3289           const elfcpp::Rela<size, big_endian>* rela,
3290           const elfcpp::Rel<size, big_endian>* rel,
3291           unsigned int rel_type,
3292           unsigned int r_type,
3293           const elfcpp::Sym<size, big_endian>& lsym,
3294           bool is_discarded);
3295
3296     inline void
3297     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3298            Sized_relobj_file<size, big_endian>* object,
3299            unsigned int data_shndx,
3300            Output_section* output_section,
3301            const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3302            Symbol* gsym);
3303
3304     inline void
3305     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3306            Sized_relobj_file<size, big_endian>* object,
3307            unsigned int data_shndx,
3308            Output_section* output_section,
3309            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3310            Symbol* gsym);
3311
3312     inline void
3313     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3314            Sized_relobj_file<size, big_endian>* object,
3315            unsigned int data_shndx,
3316            Output_section* output_section,
3317            const elfcpp::Rela<size, big_endian>* rela,
3318            const elfcpp::Rel<size, big_endian>* rel,
3319            unsigned int rel_type,
3320            unsigned int r_type,
3321            Symbol* gsym);
3322
3323     inline bool
3324     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3325                                         Target_mips*,
3326                                         Sized_relobj_file<size, big_endian>*,
3327                                         unsigned int,
3328                                         Output_section*,
3329                                         const elfcpp::Rel<size, big_endian>&,
3330                                         unsigned int,
3331                                         const elfcpp::Sym<size, big_endian>&)
3332     { return false; }
3333
3334     inline bool
3335     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3336                                          Target_mips*,
3337                                          Sized_relobj_file<size, big_endian>*,
3338                                          unsigned int,
3339                                          Output_section*,
3340                                          const elfcpp::Rel<size, big_endian>&,
3341                                          unsigned int, Symbol*)
3342     { return false; }
3343
3344     inline bool
3345     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3346                                         Target_mips*,
3347                                         Sized_relobj_file<size, big_endian>*,
3348                                         unsigned int,
3349                                         Output_section*,
3350                                         const elfcpp::Rela<size, big_endian>&,
3351                                         unsigned int,
3352                                         const elfcpp::Sym<size, big_endian>&)
3353     { return false; }
3354
3355     inline bool
3356     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3357                                          Target_mips*,
3358                                          Sized_relobj_file<size, big_endian>*,
3359                                          unsigned int,
3360                                          Output_section*,
3361                                          const elfcpp::Rela<size, big_endian>&,
3362                                          unsigned int, Symbol*)
3363     { return false; }
3364    private:
3365     static void
3366     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3367                             unsigned int r_type);
3368
3369     static void
3370     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3371                              unsigned int r_type, Symbol*);
3372   };
3373
3374   // The class which implements relocation.
3375   class Relocate
3376   {
3377    public:
3378     Relocate()
3379     { }
3380
3381     ~Relocate()
3382     { }
3383
3384     // Return whether the R_MIPS_32 relocation needs to be applied.
3385     inline bool
3386     should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3387                                  unsigned int r_type,
3388                                  Output_section* output_section,
3389                                  Target_mips* target);
3390
3391     // Do a relocation.  Return false if the caller should not issue
3392     // any warnings about this relocation.
3393     inline bool
3394     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3395              Target_mips*, Output_section*, size_t, const unsigned char*,
3396              const Sized_symbol<size>*, const Symbol_value<size>*,
3397              unsigned char*, Mips_address, section_size_type);
3398   };
3399
3400   // A class which returns the size required for a relocation type,
3401   // used while scanning relocs during a relocatable link.
3402   class Relocatable_size_for_reloc
3403   {
3404    public:
3405     unsigned int
3406     get_size_for_reloc(unsigned int, Relobj*);
3407   };
3408
3409   // This POD class holds the dynamic relocations that should be emitted instead
3410   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3411   // relocations if it turns out that the symbol does not have static
3412   // relocations.
3413   class Dyn_reloc
3414   {
3415    public:
3416     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3417               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3418               Output_section* output_section, Mips_address r_offset)
3419       : sym_(sym), r_type_(r_type), relobj_(relobj),
3420         shndx_(shndx), output_section_(output_section),
3421         r_offset_(r_offset)
3422     { }
3423
3424     // Emit this reloc if appropriate.  This is called after we have
3425     // scanned all the relocations, so we know whether the symbol has
3426     // static relocations.
3427     void
3428     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3429          Symbol_table* symtab)
3430     {
3431       if (!this->sym_->has_static_relocs())
3432         {
3433           got->record_global_got_symbol(this->sym_, this->relobj_,
3434                                         this->r_type_, true, false);
3435           if (!symbol_references_local(this->sym_,
3436                                 this->sym_->should_add_dynsym_entry(symtab)))
3437             rel_dyn->add_global(this->sym_, this->r_type_,
3438                                 this->output_section_, this->relobj_,
3439                                 this->shndx_, this->r_offset_);
3440           else
3441             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3442                                           this->output_section_, this->relobj_,
3443                                           this->shndx_, this->r_offset_);
3444         }
3445     }
3446
3447    private:
3448     Mips_symbol<size>* sym_;
3449     unsigned int r_type_;
3450     Mips_relobj<size, big_endian>* relobj_;
3451     unsigned int shndx_;
3452     Output_section* output_section_;
3453     Mips_address r_offset_;
3454   };
3455
3456   // Adjust TLS relocation type based on the options and whether this
3457   // is a local symbol.
3458   static tls::Tls_optimization
3459   optimize_tls_reloc(bool is_final, int r_type);
3460
3461   // Return whether there is a GOT section.
3462   bool
3463   has_got_section() const
3464   { return this->got_ != NULL; }
3465
3466   // Check whether the given ELF header flags describe a 32-bit binary.
3467   bool
3468   mips_32bit_flags(elfcpp::Elf_Word);
3469
3470   enum Mips_mach {
3471     mach_mips3000             = 3000,
3472     mach_mips3900             = 3900,
3473     mach_mips4000             = 4000,
3474     mach_mips4010             = 4010,
3475     mach_mips4100             = 4100,
3476     mach_mips4111             = 4111,
3477     mach_mips4120             = 4120,
3478     mach_mips4300             = 4300,
3479     mach_mips4400             = 4400,
3480     mach_mips4600             = 4600,
3481     mach_mips4650             = 4650,
3482     mach_mips5000             = 5000,
3483     mach_mips5400             = 5400,
3484     mach_mips5500             = 5500,
3485     mach_mips6000             = 6000,
3486     mach_mips7000             = 7000,
3487     mach_mips8000             = 8000,
3488     mach_mips9000             = 9000,
3489     mach_mips10000            = 10000,
3490     mach_mips12000            = 12000,
3491     mach_mips14000            = 14000,
3492     mach_mips16000            = 16000,
3493     mach_mips16               = 16,
3494     mach_mips5                = 5,
3495     mach_mips_loongson_2e     = 3001,
3496     mach_mips_loongson_2f     = 3002,
3497     mach_mips_loongson_3a     = 3003,
3498     mach_mips_sb1             = 12310201, // octal 'SB', 01
3499     mach_mips_octeon          = 6501,
3500     mach_mips_octeonp         = 6601,
3501     mach_mips_octeon2         = 6502,
3502     mach_mips_xlr             = 887682,   // decimal 'XLR'
3503     mach_mipsisa32            = 32,
3504     mach_mipsisa32r2          = 33,
3505     mach_mipsisa64            = 64,
3506     mach_mipsisa64r2          = 65,
3507     mach_mips_micromips       = 96
3508   };
3509
3510   // Return the MACH for a MIPS e_flags value.
3511   unsigned int
3512   elf_mips_mach(elfcpp::Elf_Word);
3513
3514   // Check whether machine EXTENSION is an extension of machine BASE.
3515   bool
3516   mips_mach_extends(unsigned int, unsigned int);
3517
3518   // Merge processor specific flags.
3519   void
3520   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3521                                  unsigned char, bool);
3522
3523   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3524   static inline bool
3525   jal_to_bal()
3526   { return false; }
3527
3528   // True if we are linking for CPUs that are faster if JALR is converted to
3529   // BAL.  This should be safe for all architectures.  We enable this predicate
3530   // for all CPUs.
3531   static inline bool
3532   jalr_to_bal()
3533   { return true; }
3534
3535   // True if we are linking for CPUs that are faster if JR is converted to B.
3536   // This should be safe for all architectures.  We enable this predicate for
3537   // all CPUs.
3538   static inline bool
3539   jr_to_b()
3540   { return true; }
3541
3542   // Return the size of the GOT section.
3543   section_size_type
3544   got_size() const
3545   {
3546     gold_assert(this->got_ != NULL);
3547     return this->got_->data_size();
3548   }
3549
3550   // Create a PLT entry for a global symbol referenced by r_type relocation.
3551   void
3552   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3553                  unsigned int r_type);
3554
3555   // Get the PLT section.
3556   Mips_output_data_plt<size, big_endian>*
3557   plt_section() const
3558   {
3559     gold_assert(this->plt_ != NULL);
3560     return this->plt_;
3561   }
3562
3563   // Get the GOT PLT section.
3564   const Mips_output_data_plt<size, big_endian>*
3565   got_plt_section() const
3566   {
3567     gold_assert(this->got_plt_ != NULL);
3568     return this->got_plt_;
3569   }
3570
3571   // Copy a relocation against a global symbol.
3572   void
3573   copy_reloc(Symbol_table* symtab, Layout* layout,
3574              Sized_relobj_file<size, big_endian>* object,
3575              unsigned int shndx, Output_section* output_section,
3576              Symbol* sym, const elfcpp::Rel<size, big_endian>& reloc)
3577   {
3578     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3579     this->copy_relocs_.copy_reloc(symtab, layout,
3580                                   symtab->get_sized_symbol<size>(sym),
3581                                   object, shndx, output_section,
3582                                   r_type, reloc.get_r_offset(), 0,
3583                                   this->rel_dyn_section(layout));
3584   }
3585
3586   void
3587   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3588                 Mips_relobj<size, big_endian>* relobj,
3589                 unsigned int shndx, Output_section* output_section,
3590                 Mips_address r_offset)
3591   {
3592     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3593                                           output_section, r_offset));
3594   }
3595
3596   // Calculate value of _gp symbol.
3597   void
3598   set_gp(Layout*, Symbol_table*);
3599
3600   const char*
3601   elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3602   const char*
3603   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3604
3605   // Adds entries that describe how machines relate to one another.  The entries
3606   // are ordered topologically with MIPS I extensions listed last.  First
3607   // element is extension, second element is base.
3608   void
3609   add_machine_extensions()
3610   {
3611     // MIPS64r2 extensions.
3612     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3613     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3614     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3615
3616     // MIPS64 extensions.
3617     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3618     this->add_extension(mach_mips_sb1, mach_mipsisa64);
3619     this->add_extension(mach_mips_xlr, mach_mipsisa64);
3620     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3621
3622     // MIPS V extensions.
3623     this->add_extension(mach_mipsisa64, mach_mips5);
3624
3625     // R10000 extensions.
3626     this->add_extension(mach_mips12000, mach_mips10000);
3627     this->add_extension(mach_mips14000, mach_mips10000);
3628     this->add_extension(mach_mips16000, mach_mips10000);
3629
3630     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
3631     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
3632     // better to allow vr5400 and vr5500 code to be merged anyway, since
3633     // many libraries will just use the core ISA.  Perhaps we could add
3634     // some sort of ASE flag if this ever proves a problem.
3635     this->add_extension(mach_mips5500, mach_mips5400);
3636     this->add_extension(mach_mips5400, mach_mips5000);
3637
3638     // MIPS IV extensions.
3639     this->add_extension(mach_mips5, mach_mips8000);
3640     this->add_extension(mach_mips10000, mach_mips8000);
3641     this->add_extension(mach_mips5000, mach_mips8000);
3642     this->add_extension(mach_mips7000, mach_mips8000);
3643     this->add_extension(mach_mips9000, mach_mips8000);
3644
3645     // VR4100 extensions.
3646     this->add_extension(mach_mips4120, mach_mips4100);
3647     this->add_extension(mach_mips4111, mach_mips4100);
3648
3649     // MIPS III extensions.
3650     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3651     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3652     this->add_extension(mach_mips8000, mach_mips4000);
3653     this->add_extension(mach_mips4650, mach_mips4000);
3654     this->add_extension(mach_mips4600, mach_mips4000);
3655     this->add_extension(mach_mips4400, mach_mips4000);
3656     this->add_extension(mach_mips4300, mach_mips4000);
3657     this->add_extension(mach_mips4100, mach_mips4000);
3658     this->add_extension(mach_mips4010, mach_mips4000);
3659
3660     // MIPS32 extensions.
3661     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3662
3663     // MIPS II extensions.
3664     this->add_extension(mach_mips4000, mach_mips6000);
3665     this->add_extension(mach_mipsisa32, mach_mips6000);
3666
3667     // MIPS I extensions.
3668     this->add_extension(mach_mips6000, mach_mips3000);
3669     this->add_extension(mach_mips3900, mach_mips3000);
3670   }
3671
3672   // Add value to MIPS extenstions.
3673   void
3674   add_extension(unsigned int base, unsigned int extension)
3675   {
3676     std::pair<unsigned int, unsigned int> ext(base, extension);
3677     this->mips_mach_extensions_.push_back(ext);
3678   }
3679
3680   // Return the number of entries in the .dynsym section.
3681   unsigned int get_dt_mips_symtabno() const
3682   {
3683     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3684                            / elfcpp::Elf_sizes<size>::sym_size));
3685     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3686   }
3687
3688   // Information about this specific target which we pass to the
3689   // general Target structure.
3690   static const Target::Target_info mips_info;
3691   // The GOT section.
3692   Mips_output_data_got<size, big_endian>* got_;
3693   // gp symbol.  It has the value of .got + 0x7FF0.
3694   Sized_symbol<size>* gp_;
3695   // The PLT section.
3696   Mips_output_data_plt<size, big_endian>* plt_;
3697   // The GOT PLT section.
3698   Output_data_space* got_plt_;
3699   // The dynamic reloc section.
3700   Reloc_section* rel_dyn_;
3701   // Relocs saved to avoid a COPY reloc.
3702   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3703
3704   // A list of dyn relocs to be saved.
3705   std::vector<Dyn_reloc> dyn_relocs_;
3706
3707   // The LA25 stub section.
3708   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3709   // Architecture extensions.
3710   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3711   // .MIPS.stubs
3712   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3713
3714   unsigned char ei_class_;
3715   unsigned int mach_;
3716   Layout* layout_;
3717
3718   typename std::list<got16_addend<size, big_endian> > got16_addends_;
3719
3720   // Whether the entry symbol is mips16 or micromips.
3721   bool entry_symbol_is_compressed_;
3722
3723   // Whether we can use only 32-bit microMIPS instructions.
3724   // TODO(sasa): This should be a linker option.
3725   bool insn32_;
3726 };
3727
3728
3729 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3730 // It records high part of the relocation pair.
3731
3732 template<int size, bool big_endian>
3733 struct reloc_high
3734 {
3735   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3736
3737   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3738              const Symbol_value<size>* _psymval, Mips_address _addend,
3739              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
3740              Mips_address _address = 0, bool _gp_disp = false)
3741     : view(_view), object(_object), psymval(_psymval), addend(_addend),
3742       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
3743       address(_address), gp_disp(_gp_disp)
3744   { }
3745
3746   unsigned char* view;
3747   const Mips_relobj<size, big_endian>* object;
3748   const Symbol_value<size>* psymval;
3749   Mips_address addend;
3750   unsigned int r_type;
3751   unsigned int r_sym;
3752   bool extract_addend;
3753   Mips_address address;
3754   bool gp_disp;
3755 };
3756
3757 template<int size, bool big_endian>
3758 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3759 {
3760   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3761   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3762   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3763
3764  public:
3765   typedef enum
3766   {
3767     STATUS_OKAY,        // No error during relocation.
3768     STATUS_OVERFLOW,    // Relocation overflow.
3769     STATUS_BAD_RELOC    // Relocation cannot be applied.
3770   } Status;
3771
3772  private:
3773   typedef Relocate_functions<size, big_endian> Base;
3774   typedef Mips_relocate_functions<size, big_endian> This;
3775
3776   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3777   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3778
3779   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3780   //   Most mips16 instructions are 16 bits, but these instructions
3781   //   are 32 bits.
3782   //
3783   //   The format of these instructions is:
3784   //
3785   //   +--------------+--------------------------------+
3786   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
3787   //   +--------------+--------------------------------+
3788   //   |                Immediate  15:0                |
3789   //   +-----------------------------------------------+
3790   //
3791   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
3792   //   Note that the immediate value in the first word is swapped.
3793   //
3794   //   When producing a relocatable object file, R_MIPS16_26 is
3795   //   handled mostly like R_MIPS_26.  In particular, the addend is
3796   //   stored as a straight 26-bit value in a 32-bit instruction.
3797   //   (gas makes life simpler for itself by never adjusting a
3798   //   R_MIPS16_26 reloc to be against a section, so the addend is
3799   //   always zero).  However, the 32 bit instruction is stored as 2
3800   //   16-bit values, rather than a single 32-bit value.  In a
3801   //   big-endian file, the result is the same; in a little-endian
3802   //   file, the two 16-bit halves of the 32 bit value are swapped.
3803   //   This is so that a disassembler can recognize the jal
3804   //   instruction.
3805   //
3806   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
3807   //   instruction stored as two 16-bit values.  The addend A is the
3808   //   contents of the targ26 field.  The calculation is the same as
3809   //   R_MIPS_26.  When storing the calculated value, reorder the
3810   //   immediate value as shown above, and don't forget to store the
3811   //   value as two 16-bit values.
3812   //
3813   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3814   //   defined as
3815   //
3816   //   big-endian:
3817   //   +--------+----------------------+
3818   //   |        |                      |
3819   //   |        |    targ26-16         |
3820   //   |31    26|25                   0|
3821   //   +--------+----------------------+
3822   //
3823   //   little-endian:
3824   //   +----------+------+-------------+
3825   //   |          |      |             |
3826   //   |  sub1    |      |     sub2    |
3827   //   |0        9|10  15|16         31|
3828   //   +----------+--------------------+
3829   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3830   //   ((sub1 << 16) | sub2)).
3831   //
3832   //   When producing a relocatable object file, the calculation is
3833   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3834   //   When producing a fully linked file, the calculation is
3835   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3836   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
3837   //
3838   //   The table below lists the other MIPS16 instruction relocations.
3839   //   Each one is calculated in the same way as the non-MIPS16 relocation
3840   //   given on the right, but using the extended MIPS16 layout of 16-bit
3841   //   immediate fields:
3842   //
3843   //      R_MIPS16_GPREL          R_MIPS_GPREL16
3844   //      R_MIPS16_GOT16          R_MIPS_GOT16
3845   //      R_MIPS16_CALL16         R_MIPS_CALL16
3846   //      R_MIPS16_HI16           R_MIPS_HI16
3847   //      R_MIPS16_LO16           R_MIPS_LO16
3848   //
3849   //   A typical instruction will have a format like this:
3850   //
3851   //   +--------------+--------------------------------+
3852   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
3853   //   +--------------+--------------------------------+
3854   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
3855   //   +--------------+--------------------------------+
3856   //
3857   //   EXTEND is the five bit value 11110.  Major is the instruction
3858   //   opcode.
3859   //
3860   //   All we need to do here is shuffle the bits appropriately.
3861   //   As above, the two 16-bit halves must be swapped on a
3862   //   little-endian system.
3863
3864   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
3865   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
3866   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
3867
3868   static inline bool
3869   should_shuffle_micromips_reloc(unsigned int r_type)
3870   {
3871     return (micromips_reloc(r_type)
3872             && r_type != elfcpp::R_MICROMIPS_PC7_S1
3873             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
3874   }
3875
3876   static void
3877   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
3878                        bool jal_shuffle)
3879   {
3880     if (!mips16_reloc(r_type)
3881         && !should_shuffle_micromips_reloc(r_type))
3882       return;
3883
3884     // Pick up the first and second halfwords of the instruction.
3885     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
3886     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
3887     Valtype32 val;
3888
3889     if (micromips_reloc(r_type)
3890         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3891       val = first << 16 | second;
3892     else if (r_type != elfcpp::R_MIPS16_26)
3893       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
3894              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
3895     else
3896       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
3897              | ((first & 0x1f) << 21) | second);
3898
3899     elfcpp::Swap<32, big_endian>::writeval(view, val);
3900   }
3901
3902   static void
3903   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
3904   {
3905     if (!mips16_reloc(r_type)
3906         && !should_shuffle_micromips_reloc(r_type))
3907       return;
3908
3909     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
3910     Valtype16 first, second;
3911
3912     if (micromips_reloc(r_type)
3913         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3914       {
3915         second = val & 0xffff;
3916         first = val >> 16;
3917       }
3918     else if (r_type != elfcpp::R_MIPS16_26)
3919       {
3920         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
3921         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
3922       }
3923     else
3924       {
3925         second = val & 0xffff;
3926         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
3927                  | ((val >> 21) & 0x1f);
3928       }
3929
3930     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
3931     elfcpp::Swap<16, big_endian>::writeval(view, first);
3932   }
3933
3934  public:
3935   // R_MIPS_16: S + sign-extend(A)
3936   static inline typename This::Status
3937   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3938         const Symbol_value<size>* psymval, Mips_address addend_a,
3939         bool extract_addend, unsigned int r_type)
3940   {
3941     mips_reloc_unshuffle(view, r_type, false);
3942     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
3943     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
3944
3945     Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
3946                                        : Bits<16>::sign_extend32(addend_a));
3947
3948     Valtype32 x = psymval->value(object, addend);
3949     val = Bits<16>::bit_select32(val, x, 0xffffU);
3950     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3951     mips_reloc_shuffle(view, r_type, false);
3952     return (Bits<16>::has_overflow32(x)
3953             ? This::STATUS_OVERFLOW
3954             : This::STATUS_OKAY);
3955   }
3956
3957   // R_MIPS_32: S + A
3958   static inline typename This::Status
3959   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3960         const Symbol_value<size>* psymval, Mips_address addend_a,
3961         bool extract_addend, unsigned int r_type)
3962   {
3963     mips_reloc_unshuffle(view, r_type, false);
3964     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3965     Valtype32 addend = (extract_addend
3966                         ? elfcpp::Swap<32, big_endian>::readval(wv)
3967                         : Bits<32>::sign_extend32(addend_a));
3968     Valtype32 x = psymval->value(object, addend);
3969     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3970     mips_reloc_shuffle(view, r_type, false);
3971     return This::STATUS_OKAY;
3972   }
3973
3974   // R_MIPS_JALR, R_MICROMIPS_JALR
3975   static inline typename This::Status
3976   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3977           const Symbol_value<size>* psymval, Mips_address address,
3978           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
3979           unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
3980   {
3981     mips_reloc_unshuffle(view, r_type, false);
3982     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3983     Valtype32 addend = extract_addend ? 0 : addend_a;
3984     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
3985
3986     // Try converting J(AL)R to B(AL), if the target is in range.
3987     if (!parameters->options().relocatable()
3988         && r_type == elfcpp::R_MIPS_JALR
3989         && !cross_mode_jump
3990         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
3991             || (jr_to_b && val == 0x03200008)))   // jr t9
3992       {
3993         int offset = psymval->value(object, addend) - (address + 4);
3994         if (!Bits<18>::has_overflow32(offset))
3995           {
3996             if (val == 0x03200008)   // jr t9
3997               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
3998             else
3999               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4000           }
4001       }
4002
4003     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4004     mips_reloc_shuffle(view, r_type, false);
4005     return This::STATUS_OKAY;
4006   }
4007
4008   // R_MIPS_PC32: S + A - P
4009   static inline typename This::Status
4010   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4011           const Symbol_value<size>* psymval, Mips_address address,
4012           Mips_address addend_a, bool extract_addend, unsigned int r_type)
4013   {
4014     mips_reloc_unshuffle(view, r_type, false);
4015     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4016     Valtype32 addend = (extract_addend
4017                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4018                         : Bits<32>::sign_extend32(addend_a));
4019     Valtype32 x = psymval->value(object, addend) - address;
4020     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4021     mips_reloc_shuffle(view, r_type, false);
4022     return This::STATUS_OKAY;
4023   }
4024
4025   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4026   static inline typename This::Status
4027   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4028         const Symbol_value<size>* psymval, Mips_address address,
4029         bool local, Mips_address addend_a, bool extract_addend,
4030         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4031         bool jal_to_bal)
4032   {
4033     mips_reloc_unshuffle(view, r_type, false);
4034     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4035     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4036
4037     Valtype32 addend;
4038     if (extract_addend)
4039       {
4040         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4041           addend = (val & 0x03ffffff) << 1;
4042         else
4043           addend = (val & 0x03ffffff) << 2;
4044       }
4045     else
4046       addend = addend_a;
4047
4048     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4049     // the correct ISA mode selector and bit 1 must be 0.
4050     if (cross_mode_jump
4051         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4052       {
4053         gold_warning(_("JALX to a non-word-aligned address"));
4054         mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4055         return This::STATUS_BAD_RELOC;
4056       }
4057
4058     // Shift is 2, unusually, for microMIPS JALX.
4059     unsigned int shift =
4060         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4061
4062     Valtype32 x;
4063     if (local)
4064       x = addend | ((address + 4) & (0xfc000000 << shift));
4065     else
4066       {
4067         if (shift == 1)
4068           x = Bits<27>::sign_extend32(addend);
4069         else
4070           x = Bits<28>::sign_extend32(addend);
4071       }
4072     x = psymval->value(object, x) >> shift;
4073
4074     if (!local && !gsym->is_weak_undefined())
4075       {
4076         if ((x >> 26) != ((address + 4) >> (26 + shift)))
4077           {
4078             gold_error(_("relocation truncated to fit: %u against '%s'"),
4079                        r_type, gsym->name());
4080             return This::STATUS_OVERFLOW;
4081           }
4082       }
4083
4084     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4085
4086     // If required, turn JAL into JALX.
4087     if (cross_mode_jump)
4088       {
4089         bool ok;
4090         Valtype32 opcode = val >> 26;
4091         Valtype32 jalx_opcode;
4092
4093         // Check to see if the opcode is already JAL or JALX.
4094         if (r_type == elfcpp::R_MIPS16_26)
4095           {
4096             ok = (opcode == 0x6) || (opcode == 0x7);
4097             jalx_opcode = 0x7;
4098           }
4099         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4100           {
4101             ok = (opcode == 0x3d) || (opcode == 0x3c);
4102             jalx_opcode = 0x3c;
4103           }
4104         else
4105           {
4106             ok = (opcode == 0x3) || (opcode == 0x1d);
4107             jalx_opcode = 0x1d;
4108           }
4109
4110         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4111         // convert J or JALS to JALX.
4112         if (!ok)
4113           {
4114             gold_error(_("Unsupported jump between ISA modes; consider "
4115                          "recompiling with interlinking enabled."));
4116             return This::STATUS_BAD_RELOC;
4117           }
4118
4119         // Make this the JALX opcode.
4120         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4121       }
4122
4123     // Try converting JAL to BAL, if the target is in range.
4124     if (!parameters->options().relocatable()
4125         && !cross_mode_jump
4126         && ((jal_to_bal
4127             && r_type == elfcpp::R_MIPS_26
4128             && (val >> 26) == 0x3)))    // jal addr
4129       {
4130         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4131         int offset = dest - (address + 4);
4132         if (!Bits<18>::has_overflow32(offset))
4133           {
4134             if (val == 0x03200008)   // jr t9
4135               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4136             else
4137               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4138           }
4139       }
4140
4141     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4142     mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4143     return This::STATUS_OKAY;
4144   }
4145
4146   // R_MIPS_PC16
4147   static inline typename This::Status
4148   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4149           const Symbol_value<size>* psymval, Mips_address address,
4150           Mips_address addend_a, bool extract_addend, unsigned int r_type)
4151   {
4152     mips_reloc_unshuffle(view, r_type, false);
4153     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4154     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4155
4156     Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4157     addend = Bits<18>::sign_extend32(addend);
4158
4159     Valtype32 x = psymval->value(object, addend) - address;
4160     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4161     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4162     mips_reloc_shuffle(view, r_type, false);
4163     return (Bits<18>::has_overflow32(x)
4164             ? This::STATUS_OVERFLOW
4165             : This::STATUS_OKAY);
4166   }
4167
4168   // R_MICROMIPS_PC7_S1
4169   static inline typename This::Status
4170   relmicromips_pc7_s1(unsigned char* view,
4171                       const Mips_relobj<size, big_endian>* object,
4172                       const Symbol_value<size>* psymval, Mips_address address,
4173                       Mips_address addend_a, bool extract_addend,
4174                       unsigned int r_type)
4175   {
4176     mips_reloc_unshuffle(view, r_type, false);
4177     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4178     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4179
4180     Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4181     addend = Bits<8>::sign_extend32(addend);
4182
4183     Valtype32 x = psymval->value(object, addend) - address;
4184     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4185     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4186     mips_reloc_shuffle(view, r_type, false);
4187     return (Bits<8>::has_overflow32(x)
4188             ? This::STATUS_OVERFLOW
4189             : This::STATUS_OKAY);
4190   }
4191
4192   // R_MICROMIPS_PC10_S1
4193   static inline typename This::Status
4194   relmicromips_pc10_s1(unsigned char* view,
4195                        const Mips_relobj<size, big_endian>* object,
4196                        const Symbol_value<size>* psymval, Mips_address address,
4197                        Mips_address addend_a, bool extract_addend,
4198                        unsigned int r_type)
4199   {
4200     mips_reloc_unshuffle(view, r_type, false);
4201     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4202     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4203
4204     Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4205     addend = Bits<11>::sign_extend32(addend);
4206
4207     Valtype32 x = psymval->value(object, addend) - address;
4208     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4209     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4210     mips_reloc_shuffle(view, r_type, false);
4211     return (Bits<11>::has_overflow32(x)
4212             ? This::STATUS_OVERFLOW
4213             : This::STATUS_OKAY);
4214   }
4215
4216   // R_MICROMIPS_PC16_S1
4217   static inline typename This::Status
4218   relmicromips_pc16_s1(unsigned char* view,
4219                        const Mips_relobj<size, big_endian>* object,
4220                        const Symbol_value<size>* psymval, Mips_address address,
4221                        Mips_address addend_a, bool extract_addend,
4222                        unsigned int r_type)
4223   {
4224     mips_reloc_unshuffle(view, r_type, false);
4225     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4226     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4227
4228     Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4229     addend = Bits<17>::sign_extend32(addend);
4230
4231     Valtype32 x = psymval->value(object, addend) - address;
4232     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4233     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4234     mips_reloc_shuffle(view, r_type, false);
4235     return (Bits<17>::has_overflow32(x)
4236             ? This::STATUS_OVERFLOW
4237             : This::STATUS_OKAY);
4238   }
4239
4240   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4241   static inline typename This::Status
4242   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4243           const Symbol_value<size>* psymval, Mips_address addend,
4244           Mips_address address, bool gp_disp, unsigned int r_type,
4245           unsigned int r_sym, bool extract_addend)
4246   {
4247     // Record the relocation.  It will be resolved when we find lo16 part.
4248     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4249                           addend, r_type, r_sym, extract_addend, address,
4250                           gp_disp));
4251     return This::STATUS_OKAY;
4252   }
4253
4254   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4255   static inline typename This::Status
4256   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4257              const Symbol_value<size>* psymval, Mips_address addend_hi,
4258              Mips_address address, bool is_gp_disp, unsigned int r_type,
4259              bool extract_addend, Valtype32 addend_lo,
4260              Target_mips<size, big_endian>* target)
4261   {
4262     mips_reloc_unshuffle(view, r_type, false);
4263     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4264     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4265
4266     Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4267                                        : addend_hi);
4268
4269     Valtype32 value;
4270     if (!is_gp_disp)
4271       value = psymval->value(object, addend);
4272     else
4273       {
4274         // For MIPS16 ABI code we generate this sequence
4275         //    0: li      $v0,%hi(_gp_disp)
4276         //    4: addiupc $v1,%lo(_gp_disp)
4277         //    8: sll     $v0,16
4278         //   12: addu    $v0,$v1
4279         //   14: move    $gp,$v0
4280         // So the offsets of hi and lo relocs are the same, but the
4281         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4282         // ADDIUPC clears the low two bits of the instruction address,
4283         // so the base is ($t9 + 4) & ~3.
4284         Valtype32 gp_disp;
4285         if (r_type == elfcpp::R_MIPS16_HI16)
4286           gp_disp = (target->adjusted_gp_value(object)
4287                      - ((address + 4) & ~0x3));
4288         // The microMIPS .cpload sequence uses the same assembly
4289         // instructions as the traditional psABI version, but the
4290         // incoming $t9 has the low bit set.
4291         else if (r_type == elfcpp::R_MICROMIPS_HI16)
4292           gp_disp = target->adjusted_gp_value(object) - address - 1;
4293         else
4294           gp_disp = target->adjusted_gp_value(object) - address;
4295         value = gp_disp + addend;
4296       }
4297     Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4298     val = Bits<32>::bit_select32(val, x, 0xffff);
4299     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4300     mips_reloc_shuffle(view, r_type, false);
4301     return (is_gp_disp && Bits<16>::has_overflow32(x)
4302             ? This::STATUS_OVERFLOW
4303             : This::STATUS_OKAY);
4304   }
4305
4306   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4307   static inline typename This::Status
4308   relgot16_local(unsigned char* view,
4309                  const Mips_relobj<size, big_endian>* object,
4310                  const Symbol_value<size>* psymval, Mips_address addend_a,
4311                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
4312   {
4313     // Record the relocation.  It will be resolved when we find lo16 part.
4314     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4315                            addend_a, r_type, r_sym, extract_addend));
4316     return This::STATUS_OKAY;
4317   }
4318
4319   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4320   static inline typename This::Status
4321   do_relgot16_local(unsigned char* view,
4322                     const Mips_relobj<size, big_endian>* object,
4323                     const Symbol_value<size>* psymval, Mips_address addend_hi,
4324                     unsigned int r_type, bool extract_addend,
4325                     Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4326   {
4327     mips_reloc_unshuffle(view, r_type, false);
4328     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4329     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4330
4331     Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4332                                        : addend_hi);
4333
4334     // Find GOT page entry.
4335     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4336                           & 0xffff;
4337     value <<= 16;
4338     unsigned int got_offset =
4339       target->got_section()->get_got_page_offset(value, object);
4340
4341     // Resolve the relocation.
4342     Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4343     val = Bits<32>::bit_select32(val, x, 0xffff);
4344     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4345     mips_reloc_shuffle(view, r_type, false);
4346     return (Bits<16>::has_overflow32(x)
4347             ? This::STATUS_OVERFLOW
4348             : This::STATUS_OKAY);
4349   }
4350
4351   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4352   static inline typename This::Status
4353   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4354           const Mips_relobj<size, big_endian>* object,
4355           const Symbol_value<size>* psymval, Mips_address addend_a,
4356           bool extract_addend, Mips_address address, bool is_gp_disp,
4357           unsigned int r_type, unsigned int r_sym)
4358   {
4359     mips_reloc_unshuffle(view, r_type, false);
4360     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4361     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4362
4363     Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4364                                        : addend_a);
4365
4366     // Resolve pending R_MIPS_HI16 relocations.
4367     typename std::list<reloc_high<size, big_endian> >::iterator it =
4368       hi16_relocs.begin();
4369     while (it != hi16_relocs.end())
4370       {
4371         reloc_high<size, big_endian> hi16 = *it;
4372         if (hi16.r_sym == r_sym
4373             && is_matching_lo16_reloc(hi16.r_type, r_type))
4374           {
4375             if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4376                            hi16.address, hi16.gp_disp, hi16.r_type,
4377                            hi16.extract_addend, addend, target)
4378                 == This::STATUS_OVERFLOW)
4379               return This::STATUS_OVERFLOW;
4380             it = hi16_relocs.erase(it);
4381           }
4382         else
4383           ++it;
4384       }
4385
4386     // Resolve pending local R_MIPS_GOT16 relocations.
4387     typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4388       got16_relocs.begin();
4389     while (it2 != got16_relocs.end())
4390       {
4391         reloc_high<size, big_endian> got16 = *it2;
4392         if (got16.r_sym == r_sym
4393             && is_matching_lo16_reloc(got16.r_type, r_type))
4394           {
4395             if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4396                                   got16.addend, got16.r_type,
4397                                   got16.extract_addend, addend,
4398                                   target) == This::STATUS_OVERFLOW)
4399               return This::STATUS_OVERFLOW;
4400             it2 = got16_relocs.erase(it2);
4401           }
4402         else
4403           ++it2;
4404       }
4405
4406     // Resolve R_MIPS_LO16 relocation.
4407     Valtype32 x;
4408     if (!is_gp_disp)
4409       x = psymval->value(object, addend);
4410     else
4411       {
4412         // See the comment for R_MIPS16_HI16 above for the reason
4413         // for this conditional.
4414         Valtype32 gp_disp;
4415         if (r_type == elfcpp::R_MIPS16_LO16)
4416           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4417         else if (r_type == elfcpp::R_MICROMIPS_LO16
4418                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4419           gp_disp = target->adjusted_gp_value(object) - address + 3;
4420         else
4421           gp_disp = target->adjusted_gp_value(object) - address + 4;
4422         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4423         // for overflow.  Relocations against _gp_disp are normally
4424         // generated from the .cpload pseudo-op.  It generates code
4425         // that normally looks like this:
4426
4427         //   lui    $gp,%hi(_gp_disp)
4428         //   addiu  $gp,$gp,%lo(_gp_disp)
4429         //   addu   $gp,$gp,$t9
4430
4431         // Here $t9 holds the address of the function being called,
4432         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
4433         // relocation can easily overflow in this situation, but the
4434         // R_MIPS_HI16 relocation will handle the overflow.
4435         // Therefore, we consider this a bug in the MIPS ABI, and do
4436         // not check for overflow here.
4437         x = gp_disp + addend;
4438       }
4439     val = Bits<32>::bit_select32(val, x, 0xffff);
4440     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4441     mips_reloc_shuffle(view, r_type, false);
4442     return This::STATUS_OKAY;
4443   }
4444
4445   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4446   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4447   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4448   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4449   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4450   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4451   static inline typename This::Status
4452   relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4453   {
4454     mips_reloc_unshuffle(view, r_type, false);
4455     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4456     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4457     Valtype32 x = gp_offset;
4458     val = Bits<32>::bit_select32(val, x, 0xffff);
4459     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4460     mips_reloc_shuffle(view, r_type, false);
4461     return (Bits<16>::has_overflow32(x)
4462             ? This::STATUS_OVERFLOW
4463             : This::STATUS_OKAY);
4464   }
4465
4466   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4467   static inline typename This::Status
4468   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4469              const Mips_relobj<size, big_endian>* object,
4470              const Symbol_value<size>* psymval, Mips_address addend_a,
4471              bool extract_addend, unsigned int r_type)
4472   {
4473     mips_reloc_unshuffle(view, r_type, false);
4474     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4475     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4476     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4477
4478     // Find a GOT page entry that points to within 32KB of symbol + addend.
4479     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4480     unsigned int  got_offset =
4481       target->got_section()->get_got_page_offset(value, object);
4482
4483     Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4484     val = Bits<32>::bit_select32(val, x, 0xffff);
4485     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4486     mips_reloc_shuffle(view, r_type, false);
4487     return (Bits<16>::has_overflow32(x)
4488             ? This::STATUS_OVERFLOW
4489             : This::STATUS_OKAY);
4490   }
4491
4492   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4493   static inline typename This::Status
4494   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4495              const Mips_relobj<size, big_endian>* object,
4496              const Symbol_value<size>* psymval, Mips_address addend_a,
4497              bool extract_addend, bool local, unsigned int r_type)
4498   {
4499     mips_reloc_unshuffle(view, r_type, false);
4500     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4501     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4502     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4503
4504     // For a local symbol, find a GOT page entry that points to within 32KB of
4505     // symbol + addend.  Relocation value is the offset of the GOT page entry's
4506     // value from symbol + addend.
4507     // For a global symbol, relocation value is addend.
4508     Valtype32 x;
4509     if (local)
4510       {
4511         // Find GOT page entry.
4512         Mips_address value = ((psymval->value(object, addend) + 0x8000)
4513                               & ~0xffff);
4514         target->got_section()->get_got_page_offset(value, object);
4515
4516         x = psymval->value(object, addend) - value;
4517       }
4518     else
4519       x = addend;
4520     val = Bits<32>::bit_select32(val, x, 0xffff);
4521     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4522     mips_reloc_shuffle(view, r_type, false);
4523     return (Bits<16>::has_overflow32(x)
4524             ? This::STATUS_OVERFLOW
4525             : This::STATUS_OKAY);
4526   }
4527
4528   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4529   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4530   static inline typename This::Status
4531   relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4532   {
4533     mips_reloc_unshuffle(view, r_type, false);
4534     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4535     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4536     Valtype32 x = gp_offset;
4537     x = ((x + 0x8000) >> 16) & 0xffff;
4538     val = Bits<32>::bit_select32(val, x, 0xffff);
4539     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4540     mips_reloc_shuffle(view, r_type, false);
4541     return This::STATUS_OKAY;
4542   }
4543
4544   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4545   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4546   static inline typename This::Status
4547   relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4548   {
4549     mips_reloc_unshuffle(view, r_type, false);
4550     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4551     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4552     Valtype32 x = gp_offset;
4553     val = Bits<32>::bit_select32(val, x, 0xffff);
4554     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4555     mips_reloc_shuffle(view, r_type, false);
4556     return This::STATUS_OKAY;
4557   }
4558
4559   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4560   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4561   static inline typename This::Status
4562   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4563            const Symbol_value<size>* psymval, Mips_address gp,
4564            Mips_address addend_a, bool extract_addend, bool local,
4565            unsigned int r_type)
4566   {
4567     mips_reloc_unshuffle(view, r_type, false);
4568     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4569     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4570
4571     Valtype32 addend;
4572     if (extract_addend)
4573       {
4574         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4575           addend = (val & 0x7f) << 2;
4576         else
4577           addend = val & 0xffff;
4578         // Only sign-extend the addend if it was extracted from the
4579         // instruction.  If the addend was separate, leave it alone,
4580         // otherwise we may lose significant bits.
4581         addend = Bits<16>::sign_extend32(addend);
4582       }
4583     else
4584       addend = addend_a;
4585
4586     Valtype32 x = psymval->value(object, addend) - gp;
4587
4588     // If the symbol was local, any earlier relocatable links will
4589     // have adjusted its addend with the gp offset, so compensate
4590     // for that now.  Don't do it for symbols forced local in this
4591     // link, though, since they won't have had the gp offset applied
4592     // to them before.
4593     if (local)
4594       x += object->gp_value();
4595
4596     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4597       val = Bits<32>::bit_select32(val, x, 0x7f);
4598     else
4599       val = Bits<32>::bit_select32(val, x, 0xffff);
4600     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4601     mips_reloc_shuffle(view, r_type, false);
4602     if (Bits<16>::has_overflow32(x))
4603       {
4604         gold_error(_("small-data section exceeds 64KB; lower small-data size "
4605                      "limit (see option -G)"));
4606         return This::STATUS_OVERFLOW;
4607       }
4608     return This::STATUS_OKAY;
4609   }
4610
4611   // R_MIPS_GPREL32
4612   static inline typename This::Status
4613   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4614              const Symbol_value<size>* psymval, Mips_address gp,
4615              Mips_address addend_a, bool extract_addend, unsigned int r_type)
4616   {
4617     mips_reloc_unshuffle(view, r_type, false);
4618     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4619     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4620     Valtype32 addend = extract_addend ? val : addend_a;
4621
4622     // R_MIPS_GPREL32 relocations are defined for local symbols only.
4623     Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4624     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4625     mips_reloc_shuffle(view, r_type, false);
4626     return This::STATUS_OKAY;
4627  }
4628
4629   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4630   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4631   // R_MICROMIPS_TLS_DTPREL_HI16
4632   static inline typename This::Status
4633   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4634              const Symbol_value<size>* psymval, Valtype32 tp_offset,
4635              Mips_address addend_a, bool extract_addend, unsigned int r_type)
4636   {
4637     mips_reloc_unshuffle(view, r_type, false);
4638     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4639     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4640     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4641
4642     // tls symbol values are relative to tls_segment()->vaddr()
4643     Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4644     val = Bits<32>::bit_select32(val, x, 0xffff);
4645     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4646     mips_reloc_shuffle(view, r_type, false);
4647     return This::STATUS_OKAY;
4648   }
4649
4650   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4651   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4652   // R_MICROMIPS_TLS_DTPREL_LO16,
4653   static inline typename This::Status
4654   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4655              const Symbol_value<size>* psymval, Valtype32 tp_offset,
4656              Mips_address addend_a, bool extract_addend, unsigned int r_type)
4657   {
4658     mips_reloc_unshuffle(view, r_type, false);
4659     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4660     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4661     Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4662
4663     // tls symbol values are relative to tls_segment()->vaddr()
4664     Valtype32 x = psymval->value(object, addend) - tp_offset;
4665     val = Bits<32>::bit_select32(val, x, 0xffff);
4666     elfcpp::Swap<32, big_endian>::writeval(wv, val);
4667     mips_reloc_shuffle(view, r_type, false);
4668     return This::STATUS_OKAY;
4669   }
4670
4671   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4672   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4673   static inline typename This::Status
4674   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4675            const Symbol_value<size>* psymval, Valtype32 tp_offset,
4676            Mips_address addend_a, bool extract_addend, unsigned int r_type)
4677   {
4678     mips_reloc_unshuffle(view, r_type, false);
4679     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4680     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4681     Valtype32 addend = extract_addend ? val : addend_a;
4682
4683     // tls symbol values are relative to tls_segment()->vaddr()
4684     Valtype32 x = psymval->value(object, addend) - tp_offset;
4685     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4686     mips_reloc_shuffle(view, r_type, false);
4687     return This::STATUS_OKAY;
4688   }
4689
4690   // R_MIPS_SUB, R_MICROMIPS_SUB
4691   static inline typename This::Status
4692   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4693          const Symbol_value<size>* psymval, Mips_address addend_a,
4694          bool extract_addend, unsigned int r_type)
4695   {
4696     mips_reloc_unshuffle(view, r_type, false);
4697     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4698     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4699     Valtype32 addend = extract_addend ? val : addend_a;
4700
4701     Valtype32 x = psymval->value(object, -addend);
4702     elfcpp::Swap<32, big_endian>::writeval(wv, x);
4703     mips_reloc_shuffle(view, r_type, false);
4704     return This::STATUS_OKAY;
4705  }
4706 };
4707
4708 template<int size, bool big_endian>
4709 typename std::list<reloc_high<size, big_endian> >
4710     Mips_relocate_functions<size, big_endian>::hi16_relocs;
4711
4712 template<int size, bool big_endian>
4713 typename std::list<reloc_high<size, big_endian> >
4714     Mips_relocate_functions<size, big_endian>::got16_relocs;
4715
4716 // Mips_got_info methods.
4717
4718 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4719 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4720
4721 template<int size, bool big_endian>
4722 void
4723 Mips_got_info<size, big_endian>::record_local_got_symbol(
4724     Mips_relobj<size, big_endian>* object, unsigned int symndx,
4725     Mips_address addend, unsigned int r_type, unsigned int shndx)
4726 {
4727   Mips_got_entry<size, big_endian>* entry =
4728     new Mips_got_entry<size, big_endian>(object, symndx, addend,
4729                                          mips_elf_reloc_tls_type(r_type),
4730                                          shndx);
4731   this->record_got_entry(entry, object);
4732 }
4733
4734 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4735 // in OBJECT.  FOR_CALL is true if the caller is only interested in
4736 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
4737 // relocation.
4738
4739 template<int size, bool big_endian>
4740 void
4741 Mips_got_info<size, big_endian>::record_global_got_symbol(
4742     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4743     unsigned int r_type, bool dyn_reloc, bool for_call)
4744 {
4745   if (!for_call)
4746     mips_sym->set_got_not_only_for_calls();
4747
4748   // A global symbol in the GOT must also be in the dynamic symbol table.
4749   if (!mips_sym->needs_dynsym_entry())
4750     {
4751       switch (mips_sym->visibility())
4752         {
4753         case elfcpp::STV_INTERNAL:
4754         case elfcpp::STV_HIDDEN:
4755           mips_sym->set_is_forced_local();
4756           break;
4757         default:
4758           mips_sym->set_needs_dynsym_entry();
4759           break;
4760         }
4761     }
4762
4763   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4764   if (tls_type == GOT_TLS_NONE)
4765     this->global_got_symbols_.insert(mips_sym);
4766
4767   if (dyn_reloc)
4768     {
4769       if (mips_sym->global_got_area() == GGA_NONE)
4770         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4771       return;
4772     }
4773
4774   Mips_got_entry<size, big_endian>* entry =
4775     new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4776
4777   this->record_got_entry(entry, object);
4778 }
4779
4780 // Add ENTRY to master GOT and to OBJECT's GOT.
4781
4782 template<int size, bool big_endian>
4783 void
4784 Mips_got_info<size, big_endian>::record_got_entry(
4785     Mips_got_entry<size, big_endian>* entry,
4786     Mips_relobj<size, big_endian>* object)
4787 {
4788   if (this->got_entries_.find(entry) == this->got_entries_.end())
4789     this->got_entries_.insert(entry);
4790
4791   // Create the GOT entry for the OBJECT's GOT.
4792   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
4793   Mips_got_entry<size, big_endian>* entry2 =
4794     new Mips_got_entry<size, big_endian>(*entry);
4795
4796   if (g->got_entries_.find(entry2) == g->got_entries_.end())
4797     g->got_entries_.insert(entry2);
4798 }
4799
4800 // Record that OBJECT has a page relocation against symbol SYMNDX and
4801 // that ADDEND is the addend for that relocation.
4802 // This function creates an upper bound on the number of GOT slots
4803 // required; no attempt is made to combine references to non-overridable
4804 // global symbols across multiple input files.
4805
4806 template<int size, bool big_endian>
4807 void
4808 Mips_got_info<size, big_endian>::record_got_page_entry(
4809     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
4810 {
4811   struct Got_page_range **range_ptr, *range;
4812   int old_pages, new_pages;
4813
4814   // Find the Got_page_entry for this symbol.
4815   Got_page_entry* entry = new Got_page_entry(object, symndx);
4816   typename Got_page_entry_set::iterator it =
4817     this->got_page_entries_.find(entry);
4818   if (it != this->got_page_entries_.end())
4819     entry = *it;
4820   else
4821     this->got_page_entries_.insert(entry);
4822
4823   // Add the same entry to the OBJECT's GOT.
4824   Got_page_entry* entry2 = NULL;
4825   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
4826   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
4827     {
4828       entry2 = new Got_page_entry(*entry);
4829       g2->got_page_entries_.insert(entry2);
4830     }
4831
4832   // Skip over ranges whose maximum extent cannot share a page entry
4833   // with ADDEND.
4834   range_ptr = &entry->ranges;
4835   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4836     range_ptr = &(*range_ptr)->next;
4837
4838   // If we scanned to the end of the list, or found a range whose
4839   // minimum extent cannot share a page entry with ADDEND, create
4840   // a new singleton range.
4841   range = *range_ptr;
4842   if (!range || addend < range->min_addend - 0xffff)
4843     {
4844       range = new Got_page_range();
4845       range->next = *range_ptr;
4846       range->min_addend = addend;
4847       range->max_addend = addend;
4848
4849       *range_ptr = range;
4850       ++entry->num_pages;
4851       if (entry2 != NULL)
4852         ++entry2->num_pages;
4853       ++this->page_gotno_;
4854       ++g2->page_gotno_;
4855       return;
4856     }
4857
4858   // Remember how many pages the old range contributed.
4859   old_pages = range->get_max_pages();
4860
4861   // Update the ranges.
4862   if (addend < range->min_addend)
4863     range->min_addend = addend;
4864   else if (addend > range->max_addend)
4865     {
4866       if (range->next && addend >= range->next->min_addend - 0xffff)
4867         {
4868           old_pages += range->next->get_max_pages();
4869           range->max_addend = range->next->max_addend;
4870           range->next = range->next->next;
4871         }
4872       else
4873         range->max_addend = addend;
4874     }
4875
4876   // Record any change in the total estimate.
4877   new_pages = range->get_max_pages();
4878   if (old_pages != new_pages)
4879     {
4880       entry->num_pages += new_pages - old_pages;
4881       if (entry2 != NULL)
4882         entry2->num_pages += new_pages - old_pages;
4883       this->page_gotno_ += new_pages - old_pages;
4884       g2->page_gotno_ += new_pages - old_pages;
4885     }
4886 }
4887
4888 // Create all entries that should be in the local part of the GOT.
4889
4890 template<int size, bool big_endian>
4891 void
4892 Mips_got_info<size, big_endian>::add_local_entries(
4893     Target_mips<size, big_endian>* target, Layout* layout)
4894 {
4895   Mips_output_data_got<size, big_endian>* got = target->got_section();
4896   // First two GOT entries are reserved.  The first entry will be filled at
4897   // runtime.  The second entry will be used by some runtime loaders.
4898   got->add_constant(0);
4899   got->add_constant(target->mips_elf_gnu_got1_mask());
4900
4901   for (typename Got_entry_set::iterator
4902        p = this->got_entries_.begin();
4903        p != this->got_entries_.end();
4904        ++p)
4905     {
4906       Mips_got_entry<size, big_endian>* entry = *p;
4907       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
4908         {
4909           got->add_local(entry->object(), entry->symndx(),
4910                          GOT_TYPE_STANDARD);
4911           unsigned int got_offset = entry->object()->local_got_offset(
4912               entry->symndx(), GOT_TYPE_STANDARD);
4913           if (got->multi_got() && this->index_ > 0
4914               && parameters->options().output_is_position_independent())
4915             target->rel_dyn_section(layout)->add_local(entry->object(),
4916                 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
4917         }
4918     }
4919
4920   this->add_page_entries(target, layout);
4921
4922   // Add global entries that should be in the local area.
4923   for (typename Got_entry_set::iterator
4924        p = this->got_entries_.begin();
4925        p != this->got_entries_.end();
4926        ++p)
4927     {
4928       Mips_got_entry<size, big_endian>* entry = *p;
4929       if (!entry->is_for_global_symbol())
4930         continue;
4931
4932       Mips_symbol<size>* mips_sym = entry->sym();
4933       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
4934         {
4935           unsigned int got_type;
4936           if (!got->multi_got())
4937             got_type = GOT_TYPE_STANDARD;
4938           else
4939             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
4940           if (got->add_global(mips_sym, got_type))
4941             {
4942               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
4943               if (got->multi_got() && this->index_ > 0
4944                   && parameters->options().output_is_position_independent())
4945                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
4946                     mips_sym, elfcpp::R_MIPS_REL32, got,
4947                     mips_sym->got_offset(got_type));
4948             }
4949         }
4950     }
4951 }
4952
4953 // Create GOT page entries.
4954
4955 template<int size, bool big_endian>
4956 void
4957 Mips_got_info<size, big_endian>::add_page_entries(
4958     Target_mips<size, big_endian>* target, Layout* layout)
4959 {
4960   if (this->page_gotno_ == 0)
4961     return;
4962
4963   Mips_output_data_got<size, big_endian>* got = target->got_section();
4964   this->got_page_offset_start_ = got->add_constant(0);
4965   if (got->multi_got() && this->index_ > 0
4966       && parameters->options().output_is_position_independent())
4967     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4968                                                   this->got_page_offset_start_);
4969   int num_entries = this->page_gotno_;
4970   unsigned int prev_offset = this->got_page_offset_start_;
4971   while (--num_entries > 0)
4972     {
4973       unsigned int next_offset = got->add_constant(0);
4974       if (got->multi_got() && this->index_ > 0
4975           && parameters->options().output_is_position_independent())
4976         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4977                                                       next_offset);
4978       gold_assert(next_offset == prev_offset + size/8);
4979       prev_offset = next_offset;
4980     }
4981   this->got_page_offset_next_ = this->got_page_offset_start_;
4982 }
4983
4984 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
4985
4986 template<int size, bool big_endian>
4987 void
4988 Mips_got_info<size, big_endian>::add_global_entries(
4989     Target_mips<size, big_endian>* target, Layout* layout,
4990     unsigned int non_reloc_only_global_gotno)
4991 {
4992   Mips_output_data_got<size, big_endian>* got = target->got_section();
4993   // Add GGA_NORMAL entries.
4994   unsigned int count = 0;
4995   for (typename Got_entry_set::iterator
4996        p = this->got_entries_.begin();
4997        p != this->got_entries_.end();
4998        ++p)
4999     {
5000       Mips_got_entry<size, big_endian>* entry = *p;
5001       if (!entry->is_for_global_symbol())
5002         continue;
5003
5004       Mips_symbol<size>* mips_sym = entry->sym();
5005       if (mips_sym->global_got_area() != GGA_NORMAL)
5006         continue;
5007
5008       unsigned int got_type;
5009       if (!got->multi_got())
5010         got_type = GOT_TYPE_STANDARD;
5011       else
5012         // In multi-GOT links, global symbol can be in both primary and
5013         // secondary GOT(s).  By creating custom GOT type
5014         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5015         // is added to secondary GOT(s).
5016         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5017       if (!got->add_global(mips_sym, got_type))
5018         continue;
5019
5020       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5021       if (got->multi_got() && this->index_ == 0)
5022         count++;
5023       if (got->multi_got() && this->index_ > 0)
5024         {
5025           if (parameters->options().output_is_position_independent()
5026               || (!parameters->doing_static_link()
5027                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5028             {
5029               target->rel_dyn_section(layout)->add_global(
5030                   mips_sym, elfcpp::R_MIPS_REL32, got,
5031                   mips_sym->got_offset(got_type));
5032               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5033                                            elfcpp::R_MIPS_REL32, mips_sym);
5034             }
5035         }
5036     }
5037
5038   if (!got->multi_got() || this->index_ == 0)
5039     {
5040       if (got->multi_got())
5041         {
5042           // We need to allocate space in the primary GOT for GGA_NORMAL entries
5043           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5044           // entries correspond to dynamic symbol indexes.
5045           while (count < non_reloc_only_global_gotno)
5046             {
5047               got->add_constant(0);
5048               ++count;
5049             }
5050         }
5051
5052       // Add GGA_RELOC_ONLY entries.
5053       got->add_reloc_only_entries();
5054     }
5055 }
5056
5057 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5058
5059 template<int size, bool big_endian>
5060 void
5061 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5062     Mips_output_data_got<size, big_endian>* got)
5063 {
5064   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5065        p = this->global_got_symbols_.begin();
5066        p != this->global_got_symbols_.end();
5067        ++p)
5068     {
5069       Mips_symbol<size>* mips_sym = *p;
5070       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5071         {
5072           unsigned int got_type;
5073           if (!got->multi_got())
5074             got_type = GOT_TYPE_STANDARD;
5075           else
5076             got_type = GOT_TYPE_STANDARD_MULTIGOT;
5077           if (got->add_global(mips_sym, got_type))
5078             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5079         }
5080     }
5081 }
5082
5083 // Create TLS GOT entries.
5084
5085 template<int size, bool big_endian>
5086 void
5087 Mips_got_info<size, big_endian>::add_tls_entries(
5088     Target_mips<size, big_endian>* target, Layout* layout)
5089 {
5090   Mips_output_data_got<size, big_endian>* got = target->got_section();
5091   // Add local tls entries.
5092   for (typename Got_entry_set::iterator
5093        p = this->got_entries_.begin();
5094        p != this->got_entries_.end();
5095        ++p)
5096     {
5097       Mips_got_entry<size, big_endian>* entry = *p;
5098       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5099         continue;
5100
5101       if (entry->tls_type() == GOT_TLS_GD)
5102         {
5103           unsigned int got_type = GOT_TYPE_TLS_PAIR;
5104           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5105                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5106           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5107                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5108
5109           if (!parameters->doing_static_link())
5110             {
5111               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5112                                            entry->shndx(), got_type,
5113                                            target->rel_dyn_section(layout),
5114                                            r_type1);
5115               unsigned int got_offset =
5116                 entry->object()->local_got_offset(entry->symndx(), got_type);
5117               got->add_static_reloc(got_offset + size/8, r_type2,
5118                                     entry->object(), entry->symndx());
5119             }
5120           else
5121             {
5122               // We are doing a static link.  Mark it as belong to module 1,
5123               // the executable.
5124               unsigned int got_offset = got->add_constant(1);
5125               entry->object()->set_local_got_offset(entry->symndx(), got_type,
5126                                                     got_offset);
5127               got->add_constant(0);
5128               got->add_static_reloc(got_offset + size/8, r_type2,
5129                                     entry->object(), entry->symndx());
5130             }
5131         }
5132       else if (entry->tls_type() == GOT_TLS_IE)
5133         {
5134           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5135           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5136                                             : elfcpp::R_MIPS_TLS_TPREL64);
5137           if (!parameters->doing_static_link())
5138             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5139                                     target->rel_dyn_section(layout), r_type);
5140           else
5141             {
5142               got->add_local(entry->object(), entry->symndx(), got_type);
5143               unsigned int got_offset =
5144                   entry->object()->local_got_offset(entry->symndx(), got_type);
5145               got->add_static_reloc(got_offset, r_type, entry->object(),
5146                                     entry->symndx());
5147             }
5148         }
5149       else if (entry->tls_type() == GOT_TLS_LDM)
5150         {
5151           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5152                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
5153           unsigned int got_offset;
5154           if (!parameters->doing_static_link())
5155             {
5156               got_offset = got->add_constant(0);
5157               target->rel_dyn_section(layout)->add_local(
5158                   entry->object(), 0, r_type, got, got_offset);
5159             }
5160           else
5161             // We are doing a static link.  Just mark it as belong to module 1,
5162             // the executable.
5163             got_offset = got->add_constant(1);
5164
5165           got->add_constant(0);
5166           got->set_tls_ldm_offset(got_offset, entry->object());
5167         }
5168       else
5169         gold_unreachable();
5170     }
5171
5172   // Add global tls entries.
5173   for (typename Got_entry_set::iterator
5174        p = this->got_entries_.begin();
5175        p != this->got_entries_.end();
5176        ++p)
5177     {
5178       Mips_got_entry<size, big_endian>* entry = *p;
5179       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5180         continue;
5181
5182       Mips_symbol<size>* mips_sym = entry->sym();
5183       if (entry->tls_type() == GOT_TLS_GD)
5184         {
5185           unsigned int got_type;
5186           if (!got->multi_got())
5187             got_type = GOT_TYPE_TLS_PAIR;
5188           else
5189             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5190           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5191                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5192           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5193                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5194           if (!parameters->doing_static_link())
5195             got->add_global_pair_with_rel(mips_sym, got_type,
5196                              target->rel_dyn_section(layout), r_type1, r_type2);
5197           else
5198             {
5199               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
5200               // GOT entries.  The first one is initialized to be 1, which is the
5201               // module index for the main executable and the second one 0.  A
5202               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5203               // the second GOT entry and will be applied by gold.
5204               unsigned int got_offset = got->add_constant(1);
5205               mips_sym->set_got_offset(got_type, got_offset);
5206               got->add_constant(0);
5207               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5208             }
5209         }
5210       else if (entry->tls_type() == GOT_TLS_IE)
5211         {
5212           unsigned int got_type;
5213           if (!got->multi_got())
5214             got_type = GOT_TYPE_TLS_OFFSET;
5215           else
5216             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5217           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5218                                             : elfcpp::R_MIPS_TLS_TPREL64);
5219           if (!parameters->doing_static_link())
5220             got->add_global_with_rel(mips_sym, got_type,
5221                                      target->rel_dyn_section(layout), r_type);
5222           else
5223             {
5224               got->add_global(mips_sym, got_type);
5225               unsigned int got_offset = mips_sym->got_offset(got_type);
5226               got->add_static_reloc(got_offset, r_type, mips_sym);
5227             }
5228         }
5229       else
5230         gold_unreachable();
5231     }
5232 }
5233
5234 // Decide whether the symbol needs an entry in the global part of the primary
5235 // GOT, setting global_got_area accordingly.  Count the number of global
5236 // symbols that are in the primary GOT only because they have dynamic
5237 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
5238
5239 template<int size, bool big_endian>
5240 void
5241 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5242 {
5243   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5244        p = this->global_got_symbols_.begin();
5245        p != this->global_got_symbols_.end();
5246        ++p)
5247     {
5248       Mips_symbol<size>* sym = *p;
5249       // Make a final decision about whether the symbol belongs in the
5250       // local or global GOT.  Symbols that bind locally can (and in the
5251       // case of forced-local symbols, must) live in the local GOT.
5252       // Those that are aren't in the dynamic symbol table must also
5253       // live in the local GOT.
5254
5255       if (!sym->should_add_dynsym_entry(symtab)
5256           || (sym->got_only_for_calls()
5257               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5258               : symbol_references_local(sym,
5259                                         sym->should_add_dynsym_entry(symtab))))
5260         // The symbol belongs in the local GOT.  We no longer need this
5261         // entry if it was only used for relocations; those relocations
5262         // will be against the null or section symbol instead.
5263         sym->set_global_got_area(GGA_NONE);
5264       else if (sym->global_got_area() == GGA_RELOC_ONLY)
5265         {
5266           ++this->reloc_only_gotno_;
5267           ++this->global_gotno_ ;
5268         }
5269     }
5270 }
5271
5272 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
5273 // VALUE if it is not initialized.
5274
5275 template<int size, bool big_endian>
5276 unsigned int
5277 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5278     Mips_output_data_got<size, big_endian>* got)
5279 {
5280   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5281   if (it != this->got_page_offsets_.end())
5282     return it->second;
5283
5284   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5285               + (size/8) * this->page_gotno_);
5286
5287   unsigned int got_offset = this->got_page_offset_next_;
5288   this->got_page_offsets_[value] = got_offset;
5289   this->got_page_offset_next_ += size/8;
5290   got->update_got_entry(got_offset, value);
5291   return got_offset;
5292 }
5293
5294 // Remove lazy-binding stubs for global symbols in this GOT.
5295
5296 template<int size, bool big_endian>
5297 void
5298 Mips_got_info<size, big_endian>::remove_lazy_stubs(
5299     Target_mips<size, big_endian>* target)
5300 {
5301   for (typename Got_entry_set::iterator
5302        p = this->got_entries_.begin();
5303        p != this->got_entries_.end();
5304        ++p)
5305     {
5306       Mips_got_entry<size, big_endian>* entry = *p;
5307       if (entry->is_for_global_symbol())
5308         target->remove_lazy_stub_entry(entry->sym());
5309     }
5310 }
5311
5312 // Count the number of GOT entries required.
5313
5314 template<int size, bool big_endian>
5315 void
5316 Mips_got_info<size, big_endian>::count_got_entries()
5317 {
5318   for (typename Got_entry_set::iterator
5319        p = this->got_entries_.begin();
5320        p != this->got_entries_.end();
5321        ++p)
5322     {
5323       this->count_got_entry(*p);
5324     }
5325 }
5326
5327 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
5328
5329 template<int size, bool big_endian>
5330 void
5331 Mips_got_info<size, big_endian>::count_got_entry(
5332     Mips_got_entry<size, big_endian>* entry)
5333 {
5334   if (entry->is_tls_entry())
5335     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5336   else if (entry->is_for_local_symbol()
5337            || entry->sym()->global_got_area() == GGA_NONE)
5338     ++this->local_gotno_;
5339   else
5340     ++this->global_gotno_;
5341 }
5342
5343 // Add FROM's GOT entries.
5344
5345 template<int size, bool big_endian>
5346 void
5347 Mips_got_info<size, big_endian>::add_got_entries(
5348     Mips_got_info<size, big_endian>* from)
5349 {
5350   for (typename Got_entry_set::iterator
5351        p = from->got_entries_.begin();
5352        p != from->got_entries_.end();
5353        ++p)
5354     {
5355       Mips_got_entry<size, big_endian>* entry = *p;
5356       if (this->got_entries_.find(entry) == this->got_entries_.end())
5357         {
5358           Mips_got_entry<size, big_endian>* entry2 =
5359             new Mips_got_entry<size, big_endian>(*entry);
5360           this->got_entries_.insert(entry2);
5361           this->count_got_entry(entry);
5362         }
5363     }
5364 }
5365
5366 // Add FROM's GOT page entries.
5367
5368 template<int size, bool big_endian>
5369 void
5370 Mips_got_info<size, big_endian>::add_got_page_entries(
5371     Mips_got_info<size, big_endian>* from)
5372 {
5373   for (typename Got_page_entry_set::iterator
5374        p = from->got_page_entries_.begin();
5375        p != from->got_page_entries_.end();
5376        ++p)
5377     {
5378       Got_page_entry* entry = *p;
5379       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5380         {
5381           Got_page_entry* entry2 = new Got_page_entry(*entry);
5382           this->got_page_entries_.insert(entry2);
5383           this->page_gotno_ += entry->num_pages;
5384         }
5385     }
5386 }
5387
5388 // Mips_output_data_got methods.
5389
5390 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
5391 // larger than 64K, create multi-GOT.
5392
5393 template<int size, bool big_endian>
5394 void
5395 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5396     Symbol_table* symtab, const Input_objects* input_objects)
5397 {
5398   // Decide which symbols need to go in the global part of the GOT and
5399   // count the number of reloc-only GOT symbols.
5400   this->master_got_info_->count_got_symbols(symtab);
5401
5402   // Count the number of GOT entries.
5403   this->master_got_info_->count_got_entries();
5404
5405   unsigned int got_size = this->master_got_info_->got_size();
5406   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5407     this->lay_out_multi_got(layout, input_objects);
5408   else
5409     {
5410       // Record that all objects use single GOT.
5411       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5412            p != input_objects->relobj_end();
5413            ++p)
5414         {
5415           Mips_relobj<size, big_endian>* object =
5416             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5417           if (object->get_got_info() != NULL)
5418             object->set_got_info(this->master_got_info_);
5419         }
5420
5421       this->master_got_info_->add_local_entries(this->target_, layout);
5422       this->master_got_info_->add_global_entries(this->target_, layout,
5423                                                  /*not used*/-1U);
5424       this->master_got_info_->add_tls_entries(this->target_, layout);
5425     }
5426 }
5427
5428 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
5429
5430 template<int size, bool big_endian>
5431 void
5432 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5433     const Input_objects* input_objects)
5434 {
5435   // Try to merge the GOTs of input objects together, as long as they
5436   // don't seem to exceed the maximum GOT size, choosing one of them
5437   // to be the primary GOT.
5438   this->merge_gots(input_objects);
5439
5440   // Every symbol that is referenced in a dynamic relocation must be
5441   // present in the primary GOT.
5442   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5443
5444   // Add GOT entries.
5445   unsigned int i = 0;
5446   unsigned int offset = 0;
5447   Mips_got_info<size, big_endian>* g = this->primary_got_;
5448   do
5449     {
5450       g->set_index(i);
5451       g->set_offset(offset);
5452
5453       g->add_local_entries(this->target_, layout);
5454       if (i == 0)
5455         g->add_global_entries(this->target_, layout,
5456                               (this->master_got_info_->global_gotno()
5457                                - this->master_got_info_->reloc_only_gotno()));
5458       else
5459         g->add_global_entries(this->target_, layout, /*not used*/-1U);
5460       g->add_tls_entries(this->target_, layout);
5461
5462       // Forbid global symbols in every non-primary GOT from having
5463       // lazy-binding stubs.
5464       if (i > 0)
5465         g->remove_lazy_stubs(this->target_);
5466
5467       ++i;
5468       offset += g->got_size();
5469       g = g->next();
5470     }
5471   while (g);
5472 }
5473
5474 // Attempt to merge GOTs of different input objects.  Try to use as much as
5475 // possible of the primary GOT, since it doesn't require explicit dynamic
5476 // relocations, but don't use objects that would reference global symbols
5477 // out of the addressable range.  Failing the primary GOT, attempt to merge
5478 // with the current GOT, or finish the current GOT and then make make the new
5479 // GOT current.
5480
5481 template<int size, bool big_endian>
5482 void
5483 Mips_output_data_got<size, big_endian>::merge_gots(
5484     const Input_objects* input_objects)
5485 {
5486   gold_assert(this->primary_got_ == NULL);
5487   Mips_got_info<size, big_endian>* current = NULL;
5488
5489   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5490        p != input_objects->relobj_end();
5491        ++p)
5492     {
5493       Mips_relobj<size, big_endian>* object =
5494         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5495
5496       Mips_got_info<size, big_endian>* g = object->get_got_info();
5497       if (g == NULL)
5498         continue;
5499
5500       g->count_got_entries();
5501
5502       // Work out the number of page, local and TLS entries.
5503       unsigned int estimate = this->master_got_info_->page_gotno();
5504       if (estimate > g->page_gotno())
5505         estimate = g->page_gotno();
5506       estimate += g->local_gotno() + g->tls_gotno();
5507
5508       // We place TLS GOT entries after both locals and globals.  The globals
5509       // for the primary GOT may overflow the normal GOT size limit, so be
5510       // sure not to merge a GOT which requires TLS with the primary GOT in that
5511       // case.  This doesn't affect non-primary GOTs.
5512       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5513                                       : g->global_gotno());
5514
5515       unsigned int max_count =
5516         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5517       if (estimate <= max_count)
5518         {
5519           // If we don't have a primary GOT, use it as
5520           // a starting point for the primary GOT.
5521           if (!this->primary_got_)
5522             {
5523               this->primary_got_ = g;
5524               continue;
5525             }
5526
5527           // Try merging with the primary GOT.
5528           if (this->merge_got_with(g, object, this->primary_got_))
5529             continue;
5530         }
5531
5532       // If we can merge with the last-created GOT, do it.
5533       if (current && this->merge_got_with(g, object, current))
5534         continue;
5535
5536       // Well, we couldn't merge, so create a new GOT.  Don't check if it
5537       // fits; if it turns out that it doesn't, we'll get relocation
5538       // overflows anyway.
5539       g->set_next(current);
5540       current = g;
5541     }
5542
5543   // If we do not find any suitable primary GOT, create an empty one.
5544   if (this->primary_got_ == NULL)
5545     this->primary_got_ = new Mips_got_info<size, big_endian>();
5546
5547   // Link primary GOT with secondary GOTs.
5548   this->primary_got_->set_next(current);
5549 }
5550
5551 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
5552 // this would lead to overflow, true if they were merged successfully.
5553
5554 template<int size, bool big_endian>
5555 bool
5556 Mips_output_data_got<size, big_endian>::merge_got_with(
5557     Mips_got_info<size, big_endian>* from,
5558     Mips_relobj<size, big_endian>* object,
5559     Mips_got_info<size, big_endian>* to)
5560 {
5561   // Work out how many page entries we would need for the combined GOT.
5562   unsigned int estimate = this->master_got_info_->page_gotno();
5563   if (estimate >= from->page_gotno() + to->page_gotno())
5564     estimate = from->page_gotno() + to->page_gotno();
5565
5566   // Conservatively estimate how many local and TLS entries would be needed.
5567   estimate += from->local_gotno() + to->local_gotno();
5568   estimate += from->tls_gotno() + to->tls_gotno();
5569
5570   // If we're merging with the primary got, any TLS relocations will
5571   // come after the full set of global entries.  Otherwise estimate those
5572   // conservatively as well.
5573   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5574     estimate += this->master_got_info_->global_gotno();
5575   else
5576     estimate += from->global_gotno() + to->global_gotno();
5577
5578   // Bail out if the combined GOT might be too big.
5579   unsigned int max_count =
5580     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5581   if (estimate > max_count)
5582     return false;
5583
5584   // Transfer the object's GOT information from FROM to TO.
5585   to->add_got_entries(from);
5586   to->add_got_page_entries(from);
5587
5588   // Record that OBJECT should use output GOT TO.
5589   object->set_got_info(to);
5590
5591   return true;
5592 }
5593
5594 // Write out the GOT.
5595
5596 template<int size, bool big_endian>
5597 void
5598 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5599 {
5600   // Call parent to write out GOT.
5601   Output_data_got<size, big_endian>::do_write(of);
5602
5603   const off_t offset = this->offset();
5604   const section_size_type oview_size =
5605     convert_to_section_size_type(this->data_size());
5606   unsigned char* const oview = of->get_output_view(offset, oview_size);
5607
5608   // Needed for fixing values of .got section.
5609   this->got_view_ = oview;
5610
5611   // Write lazy stub addresses.
5612   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5613        p = this->master_got_info_->global_got_symbols().begin();
5614        p != this->master_got_info_->global_got_symbols().end();
5615        ++p)
5616     {
5617       Mips_symbol<size>* mips_sym = *p;
5618       if (mips_sym->has_lazy_stub())
5619         {
5620           Valtype* wv = reinterpret_cast<Valtype*>(
5621             oview + this->get_primary_got_offset(mips_sym));
5622           Valtype value =
5623             this->target_->mips_stubs_section()->stub_address(mips_sym);
5624           elfcpp::Swap<size, big_endian>::writeval(wv, value);
5625         }
5626     }
5627
5628   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5629   for (typename Unordered_set<Mips_symbol<size>*>::iterator
5630        p = this->master_got_info_->global_got_symbols().begin();
5631        p != this->master_got_info_->global_got_symbols().end();
5632        ++p)
5633     {
5634       Mips_symbol<size>* mips_sym = *p;
5635       if (!this->multi_got()
5636           && (mips_sym->is_mips16() || mips_sym->is_micromips())
5637           && mips_sym->global_got_area() == GGA_NONE
5638           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5639         {
5640           Valtype* wv = reinterpret_cast<Valtype*>(
5641             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5642           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5643           if (value != 0)
5644             {
5645               value |= 1;
5646               elfcpp::Swap<size, big_endian>::writeval(wv, value);
5647             }
5648         }
5649     }
5650
5651   if (!this->secondary_got_relocs_.empty())
5652     {
5653       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
5654       // secondary GOT entries with non-zero initial value copy the value
5655       // to the corresponding primary GOT entry, and set the secondary GOT
5656       // entry to zero.
5657       // TODO(sasa): This is workaround.  It needs to be investigated further.
5658
5659       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5660         {
5661           Static_reloc& reloc(this->secondary_got_relocs_[i]);
5662           if (reloc.symbol_is_global())
5663             {
5664               Mips_symbol<size>* gsym = reloc.symbol();
5665               gold_assert(gsym != NULL);
5666
5667               unsigned got_offset = reloc.got_offset();
5668               gold_assert(got_offset < oview_size);
5669
5670               // Find primary GOT entry.
5671               Valtype* wv_prim = reinterpret_cast<Valtype*>(
5672                 oview + this->get_primary_got_offset(gsym));
5673
5674               // Find secondary GOT entry.
5675               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5676
5677               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5678               if (value != 0)
5679                 {
5680                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5681                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5682                   gsym->set_applied_secondary_got_fixup();
5683                 }
5684             }
5685         }
5686
5687       of->write_output_view(offset, oview_size, oview);
5688     }
5689
5690   // We are done if there is no fix up.
5691   if (this->static_relocs_.empty())
5692     return;
5693
5694   Output_segment* tls_segment = this->layout_->tls_segment();
5695   gold_assert(tls_segment != NULL);
5696
5697   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5698     {
5699       Static_reloc& reloc(this->static_relocs_[i]);
5700
5701       Mips_address value;
5702       if (!reloc.symbol_is_global())
5703         {
5704           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5705           const Symbol_value<size>* psymval =
5706             object->local_symbol(reloc.index());
5707
5708           // We are doing static linking.  Issue an error and skip this
5709           // relocation if the symbol is undefined or in a discarded_section.
5710           bool is_ordinary;
5711           unsigned int shndx = psymval->input_shndx(&is_ordinary);
5712           if ((shndx == elfcpp::SHN_UNDEF)
5713               || (is_ordinary
5714                   && shndx != elfcpp::SHN_UNDEF
5715                   && !object->is_section_included(shndx)
5716                   && !this->symbol_table_->is_section_folded(object, shndx)))
5717             {
5718               gold_error(_("undefined or discarded local symbol %u from "
5719                            " object %s in GOT"),
5720                          reloc.index(), reloc.relobj()->name().c_str());
5721               continue;
5722             }
5723
5724           value = psymval->value(object, 0);
5725         }
5726       else
5727         {
5728           const Mips_symbol<size>* gsym = reloc.symbol();
5729           gold_assert(gsym != NULL);
5730
5731           // We are doing static linking.  Issue an error and skip this
5732           // relocation if the symbol is undefined or in a discarded_section
5733           // unless it is a weakly_undefined symbol.
5734           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5735               && !gsym->is_weak_undefined())
5736             {
5737               gold_error(_("undefined or discarded symbol %s in GOT"),
5738                          gsym->name());
5739               continue;
5740             }
5741
5742           if (!gsym->is_weak_undefined())
5743             value = gsym->value();
5744           else
5745             value = 0;
5746         }
5747
5748       unsigned got_offset = reloc.got_offset();
5749       gold_assert(got_offset < oview_size);
5750
5751       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5752       Valtype x;
5753
5754       switch (reloc.r_type())
5755         {
5756         case elfcpp::R_MIPS_TLS_DTPMOD32:
5757         case elfcpp::R_MIPS_TLS_DTPMOD64:
5758           x = value;
5759           break;
5760         case elfcpp::R_MIPS_TLS_DTPREL32:
5761         case elfcpp::R_MIPS_TLS_DTPREL64:
5762           x = value - elfcpp::DTP_OFFSET;
5763           break;
5764         case elfcpp::R_MIPS_TLS_TPREL32:
5765         case elfcpp::R_MIPS_TLS_TPREL64:
5766           x = value - elfcpp::TP_OFFSET;
5767           break;
5768         default:
5769           gold_unreachable();
5770           break;
5771         }
5772
5773       elfcpp::Swap<size, big_endian>::writeval(wv, x);
5774     }
5775
5776   of->write_output_view(offset, oview_size, oview);
5777 }
5778
5779 // Mips_relobj methods.
5780
5781 // Count the local symbols.  The Mips backend needs to know if a symbol
5782 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
5783 // because the Symbol object keeps the ELF symbol type and st_other field.
5784 // For local symbol it is harder because we cannot access this information.
5785 // So we override the do_count_local_symbol in parent and scan local symbols to
5786 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
5787 // I do not want to slow down other ports by calling a per symbol target hook
5788 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
5789
5790 template<int size, bool big_endian>
5791 void
5792 Mips_relobj<size, big_endian>::do_count_local_symbols(
5793     Stringpool_template<char>* pool,
5794     Stringpool_template<char>* dynpool)
5795 {
5796   // Ask parent to count the local symbols.
5797   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
5798   const unsigned int loccount = this->local_symbol_count();
5799   if (loccount == 0)
5800     return;
5801
5802   // Initialize the mips16 and micromips function bit-vector.
5803   this->local_symbol_is_mips16_.resize(loccount, false);
5804   this->local_symbol_is_micromips_.resize(loccount, false);
5805
5806   // Read the symbol table section header.
5807   const unsigned int symtab_shndx = this->symtab_shndx();
5808   elfcpp::Shdr<size, big_endian>
5809     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
5810   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
5811
5812   // Read the local symbols.
5813   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
5814   gold_assert(loccount == symtabshdr.get_sh_info());
5815   off_t locsize = loccount * sym_size;
5816   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
5817                                               locsize, true, true);
5818
5819   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
5820
5821   // Skip the first dummy symbol.
5822   psyms += sym_size;
5823   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
5824     {
5825       elfcpp::Sym<size, big_endian> sym(psyms);
5826       unsigned char st_other = sym.get_st_other();
5827       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
5828       this->local_symbol_is_micromips_[i] =
5829         elfcpp::elf_st_is_micromips(st_other);
5830     }
5831 }
5832
5833 // Read the symbol information.
5834
5835 template<int size, bool big_endian>
5836 void
5837 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
5838 {
5839   // Call parent class to read symbol information.
5840   this->base_read_symbols(sd);
5841
5842   // Read processor-specific flags in ELF file header.
5843   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
5844                                             elfcpp::Elf_sizes<size>::ehdr_size,
5845                                             true, false);
5846   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
5847   this->processor_specific_flags_ = ehdr.get_e_flags();
5848
5849   // Get the section names.
5850   const unsigned char* pnamesu = sd->section_names->data();
5851   const char* pnames = reinterpret_cast<const char*>(pnamesu);
5852
5853   // Initialize the mips16 stub section bit-vectors.
5854   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
5855   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
5856   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
5857
5858   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
5859   const unsigned char* pshdrs = sd->section_headers->data();
5860   const unsigned char* ps = pshdrs + shdr_size;
5861   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
5862     {
5863       elfcpp::Shdr<size, big_endian> shdr(ps);
5864
5865       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
5866         {
5867           // Read the gp value that was used to create this object.  We need the
5868           // gp value while processing relocs.  The .reginfo section is not used
5869           // in the 64-bit MIPS ELF ABI.
5870           section_offset_type section_offset = shdr.get_sh_offset();
5871           section_size_type section_size =
5872             convert_to_section_size_type(shdr.get_sh_size());
5873           const unsigned char* view =
5874              this->get_view(section_offset, section_size, true, false);
5875
5876           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
5877
5878           // Read the rest of .reginfo.
5879           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
5880           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
5881           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
5882           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
5883           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
5884         }
5885
5886       const char* name = pnames + shdr.get_sh_name();
5887       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
5888       this->section_is_mips16_call_stub_[i] =
5889         is_prefix_of(".mips16.call.", name);
5890       this->section_is_mips16_call_fp_stub_[i] =
5891         is_prefix_of(".mips16.call.fp.", name);
5892
5893       if (strcmp(name, ".pdr") == 0)
5894         {
5895           gold_assert(this->pdr_shndx_ == -1U);
5896           this->pdr_shndx_ = i;
5897         }
5898     }
5899 }
5900
5901 // Discard MIPS16 stub secions that are not needed.
5902
5903 template<int size, bool big_endian>
5904 void
5905 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
5906 {
5907   for (typename Mips16_stubs_int_map::const_iterator
5908        it = this->mips16_stub_sections_.begin();
5909        it != this->mips16_stub_sections_.end(); ++it)
5910     {
5911       Mips16_stub_section<size, big_endian>* stub_section = it->second;
5912       if (!stub_section->is_target_found())
5913         {
5914           gold_error(_("no relocation found in mips16 stub section '%s'"),
5915                      stub_section->object()
5916                        ->section_name(stub_section->shndx()).c_str());
5917         }
5918
5919       bool discard = false;
5920       if (stub_section->is_for_local_function())
5921         {
5922           if (stub_section->is_fn_stub())
5923             {
5924               // This stub is for a local symbol.  This stub will only
5925               // be needed if there is some relocation in this object,
5926               // other than a 16 bit function call, which refers to this
5927               // symbol.
5928               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
5929                 discard = true;
5930               else
5931                 this->add_local_mips16_fn_stub(stub_section);
5932             }
5933           else
5934             {
5935               // This stub is for a local symbol.  This stub will only
5936               // be needed if there is some relocation (R_MIPS16_26) in
5937               // this object that refers to this symbol.
5938               gold_assert(stub_section->is_call_stub()
5939                           || stub_section->is_call_fp_stub());
5940               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
5941                 discard = true;
5942               else
5943                 this->add_local_mips16_call_stub(stub_section);
5944             }
5945         }
5946       else
5947         {
5948           Mips_symbol<size>* gsym = stub_section->gsym();
5949           if (stub_section->is_fn_stub())
5950             {
5951               if (gsym->has_mips16_fn_stub())
5952                 // We already have a stub for this function.
5953                 discard = true;
5954               else
5955                 {
5956                   gsym->set_mips16_fn_stub(stub_section);
5957                   if (gsym->should_add_dynsym_entry(symtab))
5958                     {
5959                       // If we have a MIPS16 function with a stub, the
5960                       // dynamic symbol must refer to the stub, since only
5961                       // the stub uses the standard calling conventions.
5962                       gsym->set_need_fn_stub();
5963                       if (gsym->is_from_dynobj())
5964                         gsym->set_needs_dynsym_value();
5965                     }
5966                 }
5967               if (!gsym->need_fn_stub())
5968                 discard = true;
5969             }
5970           else if (stub_section->is_call_stub())
5971             {
5972               if (gsym->is_mips16())
5973                 // We don't need the call_stub; this is a 16 bit
5974                 // function, so calls from other 16 bit functions are
5975                 // OK.
5976                 discard = true;
5977               else if (gsym->has_mips16_call_stub())
5978                 // We already have a stub for this function.
5979                 discard = true;
5980               else
5981                 gsym->set_mips16_call_stub(stub_section);
5982             }
5983           else
5984             {
5985               gold_assert(stub_section->is_call_fp_stub());
5986               if (gsym->is_mips16())
5987                 // We don't need the call_stub; this is a 16 bit
5988                 // function, so calls from other 16 bit functions are
5989                 // OK.
5990                 discard = true;
5991               else if (gsym->has_mips16_call_fp_stub())
5992                 // We already have a stub for this function.
5993                 discard = true;
5994               else
5995                 gsym->set_mips16_call_fp_stub(stub_section);
5996             }
5997         }
5998       if (discard)
5999         this->set_output_section(stub_section->shndx(), NULL);
6000    }
6001 }
6002
6003 // Mips_output_data_la25_stub methods.
6004
6005 // Template for standard LA25 stub.
6006 template<int size, bool big_endian>
6007 const uint32_t
6008 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6009 {
6010   0x3c190000,           // lui $25,%hi(func)
6011   0x08000000,           // j func
6012   0x27390000,           // add $25,$25,%lo(func)
6013   0x00000000            // nop
6014 };
6015
6016 // Template for microMIPS LA25 stub.
6017 template<int size, bool big_endian>
6018 const uint32_t
6019 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6020 {
6021   0x41b9, 0x0000,       // lui t9,%hi(func)
6022   0xd400, 0x0000,       // j func
6023   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
6024   0x0000, 0x0000        // nop
6025 };
6026
6027 // Create la25 stub for a symbol.
6028
6029 template<int size, bool big_endian>
6030 void
6031 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6032     Symbol_table* symtab, Target_mips<size, big_endian>* target,
6033     Mips_symbol<size>* gsym)
6034 {
6035   if (!gsym->has_la25_stub())
6036     {
6037       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6038       this->symbols_.insert(gsym);
6039       this->create_stub_symbol(gsym, symtab, target, 16);
6040     }
6041 }
6042
6043 // Create a symbol for SYM stub's value and size, to help make the disassembly
6044 // easier to read.
6045
6046 template<int size, bool big_endian>
6047 void
6048 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6049     Mips_symbol<size>* sym, Symbol_table* symtab,
6050     Target_mips<size, big_endian>* target, uint64_t symsize)
6051 {
6052   std::string name(".pic.");
6053   name += sym->name();
6054
6055   unsigned int offset = sym->la25_stub_offset();
6056   if (sym->is_micromips())
6057     offset |= 1;
6058
6059   // Make it a local function.
6060   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6061                                       Symbol_table::PREDEFINED,
6062                                       target->la25_stub_section(),
6063                                       offset, symsize, elfcpp::STT_FUNC,
6064                                       elfcpp::STB_LOCAL,
6065                                       elfcpp::STV_DEFAULT, 0,
6066                                       false, false);
6067   new_sym->set_is_forced_local();
6068 }
6069
6070 // Write out la25 stubs.  This uses the hand-coded instructions above,
6071 // and adjusts them as needed.
6072
6073 template<int size, bool big_endian>
6074 void
6075 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6076 {
6077   const off_t offset = this->offset();
6078   const section_size_type oview_size =
6079     convert_to_section_size_type(this->data_size());
6080   unsigned char* const oview = of->get_output_view(offset, oview_size);
6081
6082   for (typename Unordered_set<Mips_symbol<size>*>::iterator
6083        p = this->symbols_.begin();
6084        p != this->symbols_.end();
6085        ++p)
6086     {
6087       Mips_symbol<size>* sym = *p;
6088       unsigned char* pov = oview + sym->la25_stub_offset();
6089
6090       Mips_address target = sym->value();
6091       if (!sym->is_micromips())
6092         {
6093           elfcpp::Swap<32, big_endian>::writeval(pov,
6094               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6095           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6096               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6097           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6098               la25_stub_entry[2] | (target & 0xffff));
6099           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6100         }
6101       else
6102         {
6103           target |= 1;
6104           // First stub instruction.  Paste high 16-bits of the target.
6105           elfcpp::Swap<16, big_endian>::writeval(pov,
6106                                                  la25_stub_micromips_entry[0]);
6107           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6108               ((target + 0x8000) >> 16) & 0xffff);
6109           // Second stub instruction.  Paste low 26-bits of the target, shifted
6110           // right by 1.
6111           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6112               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6113           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6114               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6115           // Third stub instruction.  Paste low 16-bits of the target.
6116           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6117                                                  la25_stub_micromips_entry[4]);
6118           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6119           // Fourth stub instruction.
6120           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6121                                                  la25_stub_micromips_entry[6]);
6122           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6123                                                  la25_stub_micromips_entry[7]);
6124         }
6125     }
6126
6127   of->write_output_view(offset, oview_size, oview);
6128 }
6129
6130 // Mips_output_data_plt methods.
6131
6132 // The format of the first PLT entry in an O32 executable.
6133 template<int size, bool big_endian>
6134 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6135 {
6136   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
6137   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
6138   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
6139   0x031cc023,         // subu $24, $24, $28
6140   0x03e07825,         // or $15, $31, zero
6141   0x0018c082,         // srl $24, $24, 2
6142   0x0320f809,         // jalr $25
6143   0x2718fffe          // subu $24, $24, 2
6144 };
6145
6146 // The format of the first PLT entry in an N32 executable.  Different
6147 // because gp ($28) is not available; we use t2 ($14) instead.
6148 template<int size, bool big_endian>
6149 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6150 {
6151   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
6152   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
6153   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
6154   0x030ec023,         // subu $24, $24, $14
6155   0x03e07825,         // or $15, $31, zero
6156   0x0018c082,         // srl $24, $24, 2
6157   0x0320f809,         // jalr $25
6158   0x2718fffe          // subu $24, $24, 2
6159 };
6160
6161 // The format of the first PLT entry in an N64 executable.  Different
6162 // from N32 because of the increased size of GOT entries.
6163 template<int size, bool big_endian>
6164 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6165 {
6166   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
6167   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
6168   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
6169   0x030ec023,         // subu $24, $24, $14
6170   0x03e07825,         // or $15, $31, zero
6171   0x0018c0c2,         // srl $24, $24, 3
6172   0x0320f809,         // jalr $25
6173   0x2718fffe          // subu $24, $24, 2
6174 };
6175
6176 // The format of the microMIPS first PLT entry in an O32 executable.
6177 // We rely on v0 ($2) rather than t8 ($24) to contain the address
6178 // of the GOTPLT entry handled, so this stub may only be used when
6179 // all the subsequent PLT entries are microMIPS code too.
6180 //
6181 // The trailing NOP is for alignment and correct disassembly only.
6182 template<int size, bool big_endian>
6183 const uint32_t Mips_output_data_plt<size, big_endian>::
6184 plt0_entry_micromips_o32[] =
6185 {
6186   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
6187   0xff23, 0x0000,      // lw $25, 0($3)
6188   0x0535,              // subu $2, $2, $3
6189   0x2525,              // srl $2, $2, 2
6190   0x3302, 0xfffe,      // subu $24, $2, 2
6191   0x0dff,              // move $15, $31
6192   0x45f9,              // jalrs $25
6193   0x0f83,              // move $28, $3
6194   0x0c00               // nop
6195 };
6196
6197 // The format of the microMIPS first PLT entry in an O32 executable
6198 // in the insn32 mode.
6199 template<int size, bool big_endian>
6200 const uint32_t Mips_output_data_plt<size, big_endian>::
6201 plt0_entry_micromips32_o32[] =
6202 {
6203   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
6204   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
6205   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
6206   0x0398, 0xc1d0,      // subu $24, $24, $28
6207   0x001f, 0x7a90,      // or $15, $31, zero
6208   0x0318, 0x1040,      // srl $24, $24, 2
6209   0x03f9, 0x0f3c,      // jalr $25
6210   0x3318, 0xfffe       // subu $24, $24, 2
6211 };
6212
6213 // The format of subsequent standard entries in the PLT.
6214 template<int size, bool big_endian>
6215 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6216 {
6217   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
6218   0x8df90000,           // l[wd] $25, %lo(.got.plt entry)($15)
6219   0x03200008,           // jr $25
6220   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
6221 };
6222
6223 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
6224 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
6225 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6226 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6227 // target function address in register v0.
6228 template<int size, bool big_endian>
6229 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6230 {
6231   0xb303,              // lw $3, 12($pc)
6232   0x651b,              // move $24, $3
6233   0x9b60,              // lw $3, 0($3)
6234   0xeb00,              // jr $3
6235   0x653b,              // move $25, $3
6236   0x6500,              // nop
6237   0x0000, 0x0000       // .word (.got.plt entry)
6238 };
6239
6240 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
6241 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
6242 template<int size, bool big_endian>
6243 const uint32_t Mips_output_data_plt<size, big_endian>::
6244 plt_entry_micromips_o32[] =
6245 {
6246   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
6247   0xff22, 0x0000,      // lw $25, 0($2)
6248   0x4599,              // jr $25
6249   0x0f02               // move $24, $2
6250 };
6251
6252 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6253 template<int size, bool big_endian>
6254 const uint32_t Mips_output_data_plt<size, big_endian>::
6255 plt_entry_micromips32_o32[] =
6256 {
6257   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
6258   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
6259   0x0019, 0x0f3c,      // jr $25
6260   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
6261 };
6262
6263 // Add an entry to the PLT for a symbol referenced by r_type relocation.
6264
6265 template<int size, bool big_endian>
6266 void
6267 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6268                                                   unsigned int r_type)
6269 {
6270   gold_assert(!gsym->has_plt_offset());
6271
6272   // Final PLT offset for a symbol will be set in method set_plt_offsets().
6273   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6274                        + sizeof(plt0_entry_o32));
6275   this->symbols_.push_back(gsym);
6276
6277   // Record whether the relocation requires a standard MIPS
6278   // or a compressed code entry.
6279   if (jal_reloc(r_type))
6280    {
6281      if (r_type == elfcpp::R_MIPS_26)
6282        gsym->set_needs_mips_plt(true);
6283      else
6284        gsym->set_needs_comp_plt(true);
6285    }
6286
6287   section_offset_type got_offset = this->got_plt_->current_data_size();
6288
6289   // Every PLT entry needs a GOT entry which points back to the PLT
6290   // entry (this will be changed by the dynamic linker, normally
6291   // lazily when the function is called).
6292   this->got_plt_->set_current_data_size(got_offset + size/8);
6293
6294   gsym->set_needs_dynsym_entry();
6295   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6296                          got_offset);
6297 }
6298
6299 // Set final PLT offsets.  For each symbol, determine whether standard or
6300 // compressed (MIPS16 or microMIPS) PLT entry is used.
6301
6302 template<int size, bool big_endian>
6303 void
6304 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6305 {
6306   // The sizes of individual PLT entries.
6307   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6308   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6309                                       ? this->compressed_plt_entry_size() : 0);
6310
6311   for (typename std::vector<Mips_symbol<size>*>::const_iterator
6312        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6313     {
6314       Mips_symbol<size>* mips_sym = *p;
6315
6316       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6317       // so always use a standard entry there.
6318       //
6319       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6320       // all MIPS16 calls will go via that stub, and there is no benefit
6321       // to having a MIPS16 entry.  And in the case of call_stub a
6322       // standard entry actually has to be used as the stub ends with a J
6323       // instruction.
6324       if (this->target_->is_output_newabi()
6325           || mips_sym->has_mips16_call_stub()
6326           || mips_sym->has_mips16_call_fp_stub())
6327         {
6328           mips_sym->set_needs_mips_plt(true);
6329           mips_sym->set_needs_comp_plt(false);
6330         }
6331
6332       // Otherwise, if there are no direct calls to the function, we
6333       // have a free choice of whether to use standard or compressed
6334       // entries.  Prefer microMIPS entries if the object is known to
6335       // contain microMIPS code, so that it becomes possible to create
6336       // pure microMIPS binaries.  Prefer standard entries otherwise,
6337       // because MIPS16 ones are no smaller and are usually slower.
6338       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6339         {
6340           if (this->target_->is_output_micromips())
6341             mips_sym->set_needs_comp_plt(true);
6342           else
6343             mips_sym->set_needs_mips_plt(true);
6344         }
6345
6346       if (mips_sym->needs_mips_plt())
6347         {
6348           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6349           this->plt_mips_offset_ += plt_mips_entry_size;
6350         }
6351       if (mips_sym->needs_comp_plt())
6352         {
6353           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6354           this->plt_comp_offset_ += plt_comp_entry_size;
6355         }
6356     }
6357
6358     // Figure out the size of the PLT header if we know that we are using it.
6359     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6360       this->plt_header_size_ = this->get_plt_header_size();
6361 }
6362
6363 // Write out the PLT.  This uses the hand-coded instructions above,
6364 // and adjusts them as needed.
6365
6366 template<int size, bool big_endian>
6367 void
6368 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6369 {
6370   const off_t offset = this->offset();
6371   const section_size_type oview_size =
6372     convert_to_section_size_type(this->data_size());
6373   unsigned char* const oview = of->get_output_view(offset, oview_size);
6374
6375   const off_t gotplt_file_offset = this->got_plt_->offset();
6376   const section_size_type gotplt_size =
6377     convert_to_section_size_type(this->got_plt_->data_size());
6378   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6379                                                          gotplt_size);
6380   unsigned char* pov = oview;
6381
6382   Mips_address plt_address = this->address();
6383
6384   // Calculate the address of .got.plt.
6385   Mips_address gotplt_addr = this->got_plt_->address();
6386   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6387   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6388
6389   // The PLT sequence is not safe for N64 if .got.plt's address can
6390   // not be loaded in two instructions.
6391   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6392               || ~(gotplt_addr | 0x7fffffff) == 0);
6393
6394   // Write the PLT header.
6395   const uint32_t* plt0_entry = this->get_plt_header_entry();
6396   if (plt0_entry == plt0_entry_micromips_o32)
6397     {
6398       // Write microMIPS PLT header.
6399       gold_assert(gotplt_addr % 4 == 0);
6400
6401       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6402
6403       // ADDIUPC has a span of +/-16MB, check we're in range.
6404       if (gotpc_offset + 0x1000000 >= 0x2000000)
6405        {
6406          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6407                     "ADDIUPC"), (long)gotpc_offset);
6408          return;
6409        }
6410
6411       elfcpp::Swap<16, big_endian>::writeval(pov,
6412                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6413       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6414                                              (gotpc_offset >> 2) & 0xffff);
6415       pov += 4;
6416       for (unsigned int i = 2;
6417            i < (sizeof(plt0_entry_micromips_o32)
6418                 / sizeof(plt0_entry_micromips_o32[0]));
6419            i++)
6420         {
6421           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6422           pov += 2;
6423         }
6424     }
6425   else if (plt0_entry == plt0_entry_micromips32_o32)
6426     {
6427       // Write microMIPS PLT header in insn32 mode.
6428       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6429       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6430       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6431       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6432       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6433       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6434       pov += 12;
6435       for (unsigned int i = 6;
6436            i < (sizeof(plt0_entry_micromips32_o32)
6437                 / sizeof(plt0_entry_micromips32_o32[0]));
6438            i++)
6439         {
6440           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6441           pov += 2;
6442         }
6443     }
6444   else
6445     {
6446       // Write standard PLT header.
6447       elfcpp::Swap<32, big_endian>::writeval(pov,
6448                                              plt0_entry[0] | gotplt_addr_high);
6449       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6450                                              plt0_entry[1] | gotplt_addr_low);
6451       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6452                                              plt0_entry[2] | gotplt_addr_low);
6453       pov += 12;
6454       for (int i = 3; i < 8; i++)
6455         {
6456           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6457           pov += 4;
6458         }
6459     }
6460
6461
6462   unsigned char* gotplt_pov = gotplt_view;
6463   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6464
6465   // The first two entries in .got.plt are reserved.
6466   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6467   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6468
6469   unsigned int gotplt_offset = 2 * got_entry_size;
6470   gotplt_pov += 2 * got_entry_size;
6471
6472   // Calculate the address of the PLT header.
6473   Mips_address header_address = (plt_address
6474                                  + (this->is_plt_header_compressed() ? 1 : 0));
6475
6476   // Initialize compressed PLT area view.
6477   unsigned char* pov2 = pov + this->plt_mips_offset_;
6478
6479   // Write the PLT entries.
6480   for (typename std::vector<Mips_symbol<size>*>::const_iterator
6481        p = this->symbols_.begin();
6482        p != this->symbols_.end();
6483        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6484     {
6485       Mips_symbol<size>* mips_sym = *p;
6486
6487       // Calculate the address of the .got.plt entry.
6488       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6489       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6490                                        & 0xffff);
6491       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6492
6493       // Initially point the .got.plt entry at the PLT header.
6494       if (this->target_->is_output_n64())
6495         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6496       else
6497         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6498
6499       // Now handle the PLT itself.  First the standard entry.
6500       if (mips_sym->has_mips_plt_offset())
6501         {
6502           // Pick the load opcode (LW or LD).
6503           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6504                                                          : 0x8c000000;
6505
6506           // Fill in the PLT entry itself.
6507           elfcpp::Swap<32, big_endian>::writeval(pov,
6508               plt_entry[0] | gotplt_entry_addr_hi);
6509           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6510               plt_entry[1] | gotplt_entry_addr_lo | load);
6511           elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6512           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6513               plt_entry[3] | gotplt_entry_addr_lo);
6514           pov += 16;
6515         }
6516
6517       // Now the compressed entry.  They come after any standard ones.
6518       if (mips_sym->has_comp_plt_offset())
6519         {
6520           if (!this->target_->is_output_micromips())
6521             {
6522               // Write MIPS16 PLT entry.
6523               const uint32_t* plt_entry = plt_entry_mips16_o32;
6524
6525               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6526               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6527               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6528               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6529               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6530               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6531               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6532                                                      gotplt_entry_addr);
6533               pov2 += 16;
6534             }
6535           else if (this->target_->use_32bit_micromips_instructions())
6536             {
6537               // Write microMIPS PLT entry in insn32 mode.
6538               const uint32_t* plt_entry = plt_entry_micromips32_o32;
6539
6540               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6541               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6542                                                      gotplt_entry_addr_hi);
6543               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6544               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6545                                                      gotplt_entry_addr_lo);
6546               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6547               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6548               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6549               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6550                                                      gotplt_entry_addr_lo);
6551               pov2 += 16;
6552             }
6553           else
6554             {
6555               // Write microMIPS PLT entry.
6556               const uint32_t* plt_entry = plt_entry_micromips_o32;
6557
6558               gold_assert(gotplt_entry_addr % 4 == 0);
6559
6560               Mips_address loc_address = plt_address + pov2 - oview;
6561               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6562
6563               // ADDIUPC has a span of +/-16MB, check we're in range.
6564               if (gotpc_offset + 0x1000000 >= 0x2000000)
6565                 {
6566                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
6567                              "range of ADDIUPC"), (long)gotpc_offset);
6568                   return;
6569                 }
6570
6571               elfcpp::Swap<16, big_endian>::writeval(pov2,
6572                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6573               elfcpp::Swap<16, big_endian>::writeval(
6574                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6575               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6576               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6577               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6578               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6579               pov2 += 12;
6580             }
6581         }
6582     }
6583
6584   // Check the number of bytes written for standard entries.
6585   gold_assert(static_cast<section_size_type>(
6586       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6587   // Check the number of bytes written for compressed entries.
6588   gold_assert((static_cast<section_size_type>(pov2 - pov)
6589                == this->plt_comp_offset_));
6590   // Check the total number of bytes written.
6591   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6592
6593   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6594               == gotplt_size);
6595
6596   of->write_output_view(offset, oview_size, oview);
6597   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6598 }
6599
6600 // Mips_output_data_mips_stubs methods.
6601
6602 // The format of the lazy binding stub when dynamic symbol count is less than
6603 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6604 template<int size, bool big_endian>
6605 const uint32_t
6606 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6607 {
6608   0x8f998010,         // lw t9,0x8010(gp)
6609   0x03e07825,         // or t7,ra,zero
6610   0x0320f809,         // jalr t9,ra
6611   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
6612 };
6613
6614 // The format of the lazy binding stub when dynamic symbol count is less than
6615 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
6616 template<int size, bool big_endian>
6617 const uint32_t
6618 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6619 {
6620   0xdf998010,         // ld t9,0x8010(gp)
6621   0x03e07825,         // or t7,ra,zero
6622   0x0320f809,         // jalr t9,ra
6623   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
6624 };
6625
6626 // The format of the lazy binding stub when dynamic symbol count is less than
6627 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6628 template<int size, bool big_endian>
6629 const uint32_t
6630 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6631 {
6632   0x8f998010,         // lw t9,0x8010(gp)
6633   0x03e07825,         // or t7,ra,zero
6634   0x0320f809,         // jalr t9,ra
6635   0x34180000          // ori t8,zero,DYN_INDEX unsigned
6636 };
6637
6638 // The format of the lazy binding stub when dynamic symbol count is less than
6639 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6640 template<int size, bool big_endian>
6641 const uint32_t
6642 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6643 {
6644   0xdf998010,         // ld t9,0x8010(gp)
6645   0x03e07825,         // or t7,ra,zero
6646   0x0320f809,         // jalr t9,ra
6647   0x34180000          // ori t8,zero,DYN_INDEX unsigned
6648 };
6649
6650 // The format of the lazy binding stub when dynamic symbol count is greater than
6651 // 64K, and ABI is not N64.
6652 template<int size, bool big_endian>
6653 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6654 {
6655   0x8f998010,         // lw t9,0x8010(gp)
6656   0x03e07825,         // or t7,ra,zero
6657   0x3c180000,         // lui t8,DYN_INDEX
6658   0x0320f809,         // jalr t9,ra
6659   0x37180000          // ori t8,t8,DYN_INDEX
6660 };
6661
6662 // The format of the lazy binding stub when dynamic symbol count is greater than
6663 // 64K, and ABI is N64.
6664 template<int size, bool big_endian>
6665 const uint32_t
6666 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6667 {
6668   0xdf998010,         // ld t9,0x8010(gp)
6669   0x03e07825,         // or t7,ra,zero
6670   0x3c180000,         // lui t8,DYN_INDEX
6671   0x0320f809,         // jalr t9,ra
6672   0x37180000          // ori t8,t8,DYN_INDEX
6673 };
6674
6675 // microMIPS stubs.
6676
6677 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6678 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6679 template<int size, bool big_endian>
6680 const uint32_t
6681 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6682 {
6683   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6684   0x0dff,             // move t7,ra
6685   0x45d9,             // jalr t9
6686   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
6687 };
6688
6689 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6690 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6691 template<int size, bool big_endian>
6692 const uint32_t
6693 Mips_output_data_mips_stubs<size, big_endian>::
6694 lazy_stub_micromips_normal_1_n64[] =
6695 {
6696   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6697   0x0dff,             // move t7,ra
6698   0x45d9,             // jalr t9
6699   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
6700 };
6701
6702 // The format of the microMIPS lazy binding stub when dynamic symbol
6703 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6704 // and ABI is not N64.
6705 template<int size, bool big_endian>
6706 const uint32_t
6707 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6708 {
6709   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6710   0x0dff,             // move t7,ra
6711   0x45d9,             // jalr t9
6712   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
6713 };
6714
6715 // The format of the microMIPS lazy binding stub when dynamic symbol
6716 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6717 // and ABI is N64.
6718 template<int size, bool big_endian>
6719 const uint32_t
6720 Mips_output_data_mips_stubs<size, big_endian>::
6721 lazy_stub_micromips_normal_2_n64[] =
6722 {
6723   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6724   0x0dff,             // move t7,ra
6725   0x45d9,             // jalr t9
6726   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
6727 };
6728
6729 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6730 // greater than 64K, and ABI is not N64.
6731 template<int size, bool big_endian>
6732 const uint32_t
6733 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6734 {
6735   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6736   0x0dff,             // move t7,ra
6737   0x41b8, 0x0000,     // lui t8,DYN_INDEX
6738   0x45d9,             // jalr t9
6739   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
6740 };
6741
6742 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6743 // greater than 64K, and ABI is N64.
6744 template<int size, bool big_endian>
6745 const uint32_t
6746 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6747 {
6748   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6749   0x0dff,             // move t7,ra
6750   0x41b8, 0x0000,     // lui t8,DYN_INDEX
6751   0x45d9,             // jalr t9
6752   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
6753 };
6754
6755 // 32-bit microMIPS stubs.
6756
6757 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6758 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6759 // can use only 32-bit instructions.
6760 template<int size, bool big_endian>
6761 const uint32_t
6762 Mips_output_data_mips_stubs<size, big_endian>::
6763 lazy_stub_micromips32_normal_1[] =
6764 {
6765   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6766   0x001f, 0x7a90,     // or t7,ra,zero
6767   0x03f9, 0x0f3c,     // jalr ra,t9
6768   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
6769 };
6770
6771 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6772 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6773 // use only 32-bit instructions.
6774 template<int size, bool big_endian>
6775 const uint32_t
6776 Mips_output_data_mips_stubs<size, big_endian>::
6777 lazy_stub_micromips32_normal_1_n64[] =
6778 {
6779   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6780   0x001f, 0x7a90,     // or t7,ra,zero
6781   0x03f9, 0x0f3c,     // jalr ra,t9
6782   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
6783 };
6784
6785 // The format of the microMIPS lazy binding stub when dynamic symbol
6786 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6787 // ABI is not N64, and we can use only 32-bit instructions.
6788 template<int size, bool big_endian>
6789 const uint32_t
6790 Mips_output_data_mips_stubs<size, big_endian>::
6791 lazy_stub_micromips32_normal_2[] =
6792 {
6793   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6794   0x001f, 0x7a90,     // or t7,ra,zero
6795   0x03f9, 0x0f3c,     // jalr ra,t9
6796   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
6797 };
6798
6799 // The format of the microMIPS lazy binding stub when dynamic symbol
6800 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6801 // ABI is N64, and we can use only 32-bit instructions.
6802 template<int size, bool big_endian>
6803 const uint32_t
6804 Mips_output_data_mips_stubs<size, big_endian>::
6805 lazy_stub_micromips32_normal_2_n64[] =
6806 {
6807   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6808   0x001f, 0x7a90,     // or t7,ra,zero
6809   0x03f9, 0x0f3c,     // jalr ra,t9
6810   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
6811 };
6812
6813 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6814 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
6815 template<int size, bool big_endian>
6816 const uint32_t
6817 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
6818 {
6819   0xff3c, 0x8010,     // lw t9,0x8010(gp)
6820   0x001f, 0x7a90,     // or t7,ra,zero
6821   0x41b8, 0x0000,     // lui t8,DYN_INDEX
6822   0x03f9, 0x0f3c,     // jalr ra,t9
6823   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
6824 };
6825
6826 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6827 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
6828 template<int size, bool big_endian>
6829 const uint32_t
6830 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
6831 {
6832   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
6833   0x001f, 0x7a90,     // or t7,ra,zero
6834   0x41b8, 0x0000,     // lui t8,DYN_INDEX
6835   0x03f9, 0x0f3c,     // jalr ra,t9
6836   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
6837 };
6838
6839 // Create entry for a symbol.
6840
6841 template<int size, bool big_endian>
6842 void
6843 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
6844     Mips_symbol<size>* gsym)
6845 {
6846   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
6847     {
6848       this->symbols_.insert(gsym);
6849       gsym->set_has_lazy_stub(true);
6850     }
6851 }
6852
6853 // Remove entry for a symbol.
6854
6855 template<int size, bool big_endian>
6856 void
6857 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
6858     Mips_symbol<size>* gsym)
6859 {
6860   if (gsym->has_lazy_stub())
6861     {
6862       this->symbols_.erase(gsym);
6863       gsym->set_has_lazy_stub(false);
6864     }
6865 }
6866
6867 // Set stub offsets for symbols.  This method expects that the number of
6868 // entries in dynamic symbol table is set.
6869
6870 template<int size, bool big_endian>
6871 void
6872 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
6873 {
6874   gold_assert(this->dynsym_count_ != -1U);
6875
6876   if (this->stub_offsets_are_set_)
6877     return;
6878
6879   unsigned int stub_size = this->stub_size();
6880   unsigned int offset = 0;
6881   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6882        p = this->symbols_.begin();
6883        p != this->symbols_.end();
6884        ++p, offset += stub_size)
6885     {
6886       Mips_symbol<size>* mips_sym = *p;
6887       mips_sym->set_lazy_stub_offset(offset);
6888     }
6889   this->stub_offsets_are_set_ = true;
6890 }
6891
6892 template<int size, bool big_endian>
6893 void
6894 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
6895 {
6896   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6897        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6898     {
6899       Mips_symbol<size>* sym = *p;
6900       if (sym->is_from_dynobj())
6901         sym->set_needs_dynsym_value();
6902     }
6903 }
6904
6905 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
6906 // adjusts them as needed.
6907
6908 template<int size, bool big_endian>
6909 void
6910 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
6911 {
6912   const off_t offset = this->offset();
6913   const section_size_type oview_size =
6914     convert_to_section_size_type(this->data_size());
6915   unsigned char* const oview = of->get_output_view(offset, oview_size);
6916
6917   bool big_stub = this->dynsym_count_ > 0x10000;
6918
6919   unsigned char* pov = oview;
6920   for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6921        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6922     {
6923       Mips_symbol<size>* sym = *p;
6924       const uint32_t* lazy_stub;
6925       bool n64 = this->target_->is_output_n64();
6926
6927       if (!this->target_->is_output_micromips())
6928         {
6929           // Write standard (non-microMIPS) stub.
6930           if (!big_stub)
6931             {
6932               if (sym->dynsym_index() & ~0x7fff)
6933                 // Dynsym index is between 32K and 64K.
6934                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
6935               else
6936                 // Dynsym index is less than 32K.
6937                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
6938             }
6939           else
6940             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
6941
6942           unsigned int i = 0;
6943           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6944           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
6945           pov += 8;
6946
6947           i += 2;
6948           if (big_stub)
6949             {
6950               // LUI instruction of the big stub.  Paste high 16 bits of the
6951               // dynsym index.
6952               elfcpp::Swap<32, big_endian>::writeval(pov,
6953                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
6954               pov += 4;
6955               i += 1;
6956             }
6957           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6958           // Last stub instruction.  Paste low 16 bits of the dynsym index.
6959           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6960               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
6961           pov += 8;
6962         }
6963       else if (this->target_->use_32bit_micromips_instructions())
6964         {
6965           // Write microMIPS stub in insn32 mode.
6966           if (!big_stub)
6967             {
6968               if (sym->dynsym_index() & ~0x7fff)
6969                 // Dynsym index is between 32K and 64K.
6970                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
6971                                 : lazy_stub_micromips32_normal_2;
6972               else
6973                 // Dynsym index is less than 32K.
6974                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
6975                                 : lazy_stub_micromips32_normal_1;
6976             }
6977           else
6978             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
6979                             : lazy_stub_micromips32_big;
6980
6981           unsigned int i = 0;
6982           // First stub instruction.  We emit 32-bit microMIPS instructions by
6983           // emitting two 16-bit parts because on microMIPS the 16-bit part of
6984           // the instruction where the opcode is must always come first, for
6985           // both little and big endian.
6986           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
6987           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
6988           // Second stub instruction.
6989           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
6990           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
6991           pov += 8;
6992           i += 4;
6993           if (big_stub)
6994             {
6995               // LUI instruction of the big stub.  Paste high 16 bits of the
6996               // dynsym index.
6997               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
6998               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6999                   (sym->dynsym_index() >> 16) & 0x7fff);
7000               pov += 4;
7001               i += 2;
7002             }
7003           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7004           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7005           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7006           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7007           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7008               sym->dynsym_index() & 0xffff);
7009           pov += 8;
7010         }
7011       else
7012         {
7013           // Write microMIPS stub.
7014           if (!big_stub)
7015             {
7016               if (sym->dynsym_index() & ~0x7fff)
7017                 // Dynsym index is between 32K and 64K.
7018                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7019                                 : lazy_stub_micromips_normal_2;
7020               else
7021                 // Dynsym index is less than 32K.
7022                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7023                                 : lazy_stub_micromips_normal_1;
7024             }
7025           else
7026             lazy_stub = n64 ? lazy_stub_micromips_big_n64
7027                             : lazy_stub_micromips_big;
7028
7029           unsigned int i = 0;
7030           // First stub instruction.  We emit 32-bit microMIPS instructions by
7031           // emitting two 16-bit parts because on microMIPS the 16-bit part of
7032           // the instruction where the opcode is must always come first, for
7033           // both little and big endian.
7034           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7035           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7036           // Second stub instruction.
7037           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7038           pov += 6;
7039           i += 3;
7040           if (big_stub)
7041             {
7042               // LUI instruction of the big stub.  Paste high 16 bits of the
7043               // dynsym index.
7044               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7045               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7046                   (sym->dynsym_index() >> 16) & 0x7fff);
7047               pov += 4;
7048               i += 2;
7049             }
7050           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7051           // Last stub instruction.  Paste low 16 bits of the dynsym index.
7052           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7053           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7054               sym->dynsym_index() & 0xffff);
7055           pov += 6;
7056         }
7057     }
7058
7059   // We always allocate 20 bytes for every stub, because final dynsym count is
7060   // not known in method do_finalize_sections.  There are 4 unused bytes per
7061   // stub if final dynsym count is less than 0x10000.
7062   unsigned int used = pov - oview;
7063   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7064   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7065
7066   // Fill the unused space with zeroes.
7067   // TODO(sasa): Can we strip unused bytes during the relaxation?
7068   if (unused > 0)
7069     memset(pov, 0, unused);
7070
7071   of->write_output_view(offset, oview_size, oview);
7072 }
7073
7074 // Mips_output_section_reginfo methods.
7075
7076 template<int size, bool big_endian>
7077 void
7078 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7079 {
7080   off_t offset = this->offset();
7081   off_t data_size = this->data_size();
7082
7083   unsigned char* view = of->get_output_view(offset, data_size);
7084   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7085   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7086   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7087   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7088   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7089   // Write the gp value.
7090   elfcpp::Swap<size, big_endian>::writeval(view + 20,
7091                                            this->target_->gp_value());
7092
7093   of->write_output_view(offset, data_size, view);
7094 }
7095
7096 // Mips_copy_relocs methods.
7097
7098 // Emit any saved relocs.
7099
7100 template<int sh_type, int size, bool big_endian>
7101 void
7102 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7103     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7104     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7105 {
7106   for (typename Copy_relocs<sh_type, size, big_endian>::
7107        Copy_reloc_entries::iterator p = this->entries_.begin();
7108        p != this->entries_.end();
7109        ++p)
7110     emit_entry(*p, reloc_section, symtab, layout, target);
7111
7112   // We no longer need the saved information.
7113   this->entries_.clear();
7114 }
7115
7116 // Emit the reloc if appropriate.
7117
7118 template<int sh_type, int size, bool big_endian>
7119 void
7120 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7121     Copy_reloc_entry& entry,
7122     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7123     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7124 {
7125   // If the symbol is no longer defined in a dynamic object, then we
7126   // emitted a COPY relocation, and we do not want to emit this
7127   // dynamic relocation.
7128   if (!entry.sym_->is_from_dynobj())
7129     return;
7130
7131   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7132                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7133                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
7134
7135   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7136   if (can_make_dynamic && !sym->has_static_relocs())
7137     {
7138       Mips_relobj<size, big_endian>* object =
7139         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7140       target->got_section(symtab, layout)->record_global_got_symbol(
7141                           sym, object, entry.reloc_type_, true, false);
7142       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7143         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7144             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7145       else
7146         target->rel_dyn_section(layout)->add_symbolless_global_addend(
7147             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7148             entry.shndx_, entry.address_);
7149     }
7150   else
7151     this->make_copy_reloc(symtab, layout,
7152                           static_cast<Sized_symbol<size>*>(entry.sym_),
7153                           reloc_section);
7154 }
7155
7156 // Target_mips methods.
7157
7158 // Return the value to use for a dynamic symbol which requires special
7159 // treatment.  This is how we support equality comparisons of function
7160 // pointers across shared library boundaries, as described in the
7161 // processor specific ABI supplement.
7162
7163 template<int size, bool big_endian>
7164 uint64_t
7165 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7166 {
7167   uint64_t value = 0;
7168   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7169
7170   if (!mips_sym->has_lazy_stub())
7171     {
7172       if (mips_sym->has_plt_offset())
7173         {
7174           // We distinguish between PLT entries and lazy-binding stubs by
7175           // giving the former an st_other value of STO_MIPS_PLT.  Set the
7176           // value to the stub address if there are any relocations in the
7177           // binary where pointer equality matters.
7178           if (mips_sym->pointer_equality_needed())
7179             {
7180               // Prefer a standard MIPS PLT entry.
7181               if (mips_sym->has_mips_plt_offset())
7182                 value = this->plt_section()->mips_entry_address(mips_sym);
7183               else
7184                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7185             }
7186           else
7187             value = 0;
7188         }
7189     }
7190   else
7191     {
7192       // First, set stub offsets for symbols.  This method expects that the
7193       // number of entries in dynamic symbol table is set.
7194       this->mips_stubs_section()->set_lazy_stub_offsets();
7195
7196       // The run-time linker uses the st_value field of the symbol
7197       // to reset the global offset table entry for this external
7198       // to its stub address when unlinking a shared object.
7199       value = this->mips_stubs_section()->stub_address(mips_sym);
7200     }
7201
7202   if (mips_sym->has_mips16_fn_stub())
7203     {
7204       // If we have a MIPS16 function with a stub, the dynamic symbol must
7205       // refer to the stub, since only the stub uses the standard calling
7206       // conventions.
7207       value = mips_sym->template
7208               get_mips16_fn_stub<big_endian>()->output_address();
7209     }
7210
7211   return value;
7212 }
7213
7214 // Get the dynamic reloc section, creating it if necessary.  It's always
7215 // .rel.dyn, even for MIPS64.
7216
7217 template<int size, bool big_endian>
7218 typename Target_mips<size, big_endian>::Reloc_section*
7219 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7220 {
7221   if (this->rel_dyn_ == NULL)
7222     {
7223       gold_assert(layout != NULL);
7224       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7225       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7226                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
7227                                       ORDER_DYNAMIC_RELOCS, false);
7228
7229       // First entry in .rel.dyn has to be null.
7230       // This is hack - we define dummy output data and set its address to 0,
7231       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7232       // This ensures that the entry is null.
7233       Output_data* od = new Output_data_zero_fill(0, 0);
7234       od->set_address(0);
7235       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7236     }
7237   return this->rel_dyn_;
7238 }
7239
7240 // Get the GOT section, creating it if necessary.
7241
7242 template<int size, bool big_endian>
7243 Mips_output_data_got<size, big_endian>*
7244 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7245                                            Layout* layout)
7246 {
7247   if (this->got_ == NULL)
7248     {
7249       gold_assert(symtab != NULL && layout != NULL);
7250
7251       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7252                                                               layout);
7253       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7254                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7255                                       elfcpp::SHF_MIPS_GPREL),
7256                                       this->got_, ORDER_DATA, false);
7257
7258       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7259       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7260                                     Symbol_table::PREDEFINED,
7261                                     this->got_,
7262                                     0, 0, elfcpp::STT_OBJECT,
7263                                     elfcpp::STB_GLOBAL,
7264                                     elfcpp::STV_DEFAULT, 0,
7265                                     false, false);
7266     }
7267
7268   return this->got_;
7269 }
7270
7271 // Calculate value of _gp symbol.
7272
7273 template<int size, bool big_endian>
7274 void
7275 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7276 {
7277   if (this->gp_ != NULL)
7278     return;
7279
7280   Output_data* section = layout->find_output_section(".got");
7281   if (section == NULL)
7282     {
7283       // If there is no .got section, gp should be based on .sdata.
7284       // TODO(sasa): This is probably not needed.  This was needed for older
7285       // MIPS architectures which accessed both GOT and .sdata section using
7286       // gp-relative addressing.  Modern Mips Linux ELF architectures don't
7287       // access .sdata using gp-relative addressing.
7288       for (Layout::Section_list::const_iterator
7289            p = layout->section_list().begin();
7290            p != layout->section_list().end();
7291            ++p)
7292         {
7293           if (strcmp((*p)->name(), ".sdata") == 0)
7294             {
7295               section = *p;
7296               break;
7297             }
7298         }
7299     }
7300
7301   Sized_symbol<size>* gp =
7302     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7303   if (gp != NULL)
7304     {
7305       if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7306         gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7307                              elfcpp::STT_OBJECT,
7308                              elfcpp::STB_GLOBAL,
7309                              elfcpp::STV_DEFAULT, 0,
7310                              false, false);
7311       this->gp_ = gp;
7312     }
7313   else if (section != NULL)
7314     {
7315       gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7316                                       "_gp", NULL, Symbol_table::PREDEFINED,
7317                                       section, MIPS_GP_OFFSET, 0,
7318                                       elfcpp::STT_OBJECT,
7319                                       elfcpp::STB_GLOBAL,
7320                                       elfcpp::STV_DEFAULT,
7321                                       0, false, false));
7322       this->gp_ = gp;
7323     }
7324 }
7325
7326 // Set the dynamic symbol indexes.  INDEX is the index of the first
7327 // global dynamic symbol.  Pointers to the symbols are stored into the
7328 // vector SYMS.  The names are added to DYNPOOL.  This returns an
7329 // updated dynamic symbol index.
7330
7331 template<int size, bool big_endian>
7332 unsigned int
7333 Target_mips<size, big_endian>::do_set_dynsym_indexes(
7334     std::vector<Symbol*>* dyn_symbols, unsigned int index,
7335     std::vector<Symbol*>* syms, Stringpool* dynpool,
7336     Versions* versions, Symbol_table* symtab) const
7337 {
7338   std::vector<Symbol*> non_got_symbols;
7339   std::vector<Symbol*> got_symbols;
7340
7341   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7342                                         &got_symbols);
7343
7344   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7345        p != non_got_symbols.end();
7346        ++p)
7347     {
7348       Symbol* sym = *p;
7349
7350       // Note that SYM may already have a dynamic symbol index, since
7351       // some symbols appear more than once in the symbol table, with
7352       // and without a version.
7353
7354       if (!sym->has_dynsym_index())
7355         {
7356           sym->set_dynsym_index(index);
7357           ++index;
7358           syms->push_back(sym);
7359           dynpool->add(sym->name(), false, NULL);
7360
7361           // Record any version information.
7362           if (sym->version() != NULL)
7363             versions->record_version(symtab, dynpool, sym);
7364
7365           // If the symbol is defined in a dynamic object and is
7366           // referenced in a regular object, then mark the dynamic
7367           // object as needed.  This is used to implement --as-needed.
7368           if (sym->is_from_dynobj() && sym->in_reg())
7369             sym->object()->set_is_needed();
7370         }
7371     }
7372
7373   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7374        p != got_symbols.end();
7375        ++p)
7376     {
7377       Symbol* sym = *p;
7378       if (!sym->has_dynsym_index())
7379         {
7380           // Record any version information.
7381           if (sym->version() != NULL)
7382             versions->record_version(symtab, dynpool, sym);
7383         }
7384     }
7385
7386   index = versions->finalize(symtab, index, syms);
7387
7388   int got_sym_count = 0;
7389   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7390        p != got_symbols.end();
7391        ++p)
7392     {
7393       Symbol* sym = *p;
7394
7395       if (!sym->has_dynsym_index())
7396         {
7397           ++got_sym_count;
7398           sym->set_dynsym_index(index);
7399           ++index;
7400           syms->push_back(sym);
7401           dynpool->add(sym->name(), false, NULL);
7402
7403           // If the symbol is defined in a dynamic object and is
7404           // referenced in a regular object, then mark the dynamic
7405           // object as needed.  This is used to implement --as-needed.
7406           if (sym->is_from_dynobj() && sym->in_reg())
7407             sym->object()->set_is_needed();
7408         }
7409     }
7410
7411   // Set index of the first symbol that has .got entry.
7412   this->got_->set_first_global_got_dynsym_index(
7413     got_sym_count > 0 ? index - got_sym_count : -1U);
7414
7415   if (this->mips_stubs_ != NULL)
7416     this->mips_stubs_->set_dynsym_count(index);
7417
7418   return index;
7419 }
7420
7421 // Create a PLT entry for a global symbol referenced by r_type relocation.
7422
7423 template<int size, bool big_endian>
7424 void
7425 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7426                                               Layout* layout,
7427                                               Mips_symbol<size>* gsym,
7428                                               unsigned int r_type)
7429 {
7430   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7431     return;
7432
7433   if (this->plt_ == NULL)
7434     {
7435       // Create the GOT section first.
7436       this->got_section(symtab, layout);
7437
7438       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7439       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7440                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7441                                       this->got_plt_, ORDER_DATA, false);
7442
7443       // The first two entries are reserved.
7444       this->got_plt_->set_current_data_size(2 * size/8);
7445
7446       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7447                                                               this->got_plt_,
7448                                                               this);
7449       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7450                                       (elfcpp::SHF_ALLOC
7451                                        | elfcpp::SHF_EXECINSTR),
7452                                       this->plt_, ORDER_PLT, false);
7453     }
7454
7455   this->plt_->add_entry(gsym, r_type);
7456 }
7457
7458
7459 // Get the .MIPS.stubs section, creating it if necessary.
7460
7461 template<int size, bool big_endian>
7462 Mips_output_data_mips_stubs<size, big_endian>*
7463 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7464 {
7465   if (this->mips_stubs_ == NULL)
7466     {
7467       this->mips_stubs_ =
7468         new Mips_output_data_mips_stubs<size, big_endian>(this);
7469       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7470                                       (elfcpp::SHF_ALLOC
7471                                        | elfcpp::SHF_EXECINSTR),
7472                                       this->mips_stubs_, ORDER_PLT, false);
7473     }
7474   return this->mips_stubs_;
7475 }
7476
7477 // Get the LA25 stub section, creating it if necessary.
7478
7479 template<int size, bool big_endian>
7480 Mips_output_data_la25_stub<size, big_endian>*
7481 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7482 {
7483   if (this->la25_stub_ == NULL)
7484     {
7485       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7486       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7487                                       (elfcpp::SHF_ALLOC
7488                                        | elfcpp::SHF_EXECINSTR),
7489                                       this->la25_stub_, ORDER_TEXT, false);
7490     }
7491   return this->la25_stub_;
7492 }
7493
7494 // Process the relocations to determine unreferenced sections for
7495 // garbage collection.
7496
7497 template<int size, bool big_endian>
7498 void
7499 Target_mips<size, big_endian>::gc_process_relocs(
7500                         Symbol_table* symtab,
7501                         Layout* layout,
7502                         Sized_relobj_file<size, big_endian>* object,
7503                         unsigned int data_shndx,
7504                         unsigned int,
7505                         const unsigned char* prelocs,
7506                         size_t reloc_count,
7507                         Output_section* output_section,
7508                         bool needs_special_offset_handling,
7509                         size_t local_symbol_count,
7510                         const unsigned char* plocal_symbols)
7511 {
7512   typedef Target_mips<size, big_endian> Mips;
7513   typedef typename Target_mips<size, big_endian>::Scan Scan;
7514
7515   gold::gc_process_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan,
7516                           typename Target_mips::Relocatable_size_for_reloc>(
7517     symtab,
7518     layout,
7519     this,
7520     object,
7521     data_shndx,
7522     prelocs,
7523     reloc_count,
7524     output_section,
7525     needs_special_offset_handling,
7526     local_symbol_count,
7527     plocal_symbols);
7528 }
7529
7530 // Scan relocations for a section.
7531
7532 template<int size, bool big_endian>
7533 void
7534 Target_mips<size, big_endian>::scan_relocs(
7535                         Symbol_table* symtab,
7536                         Layout* layout,
7537                         Sized_relobj_file<size, big_endian>* object,
7538                         unsigned int data_shndx,
7539                         unsigned int sh_type,
7540                         const unsigned char* prelocs,
7541                         size_t reloc_count,
7542                         Output_section* output_section,
7543                         bool needs_special_offset_handling,
7544                         size_t local_symbol_count,
7545                         const unsigned char* plocal_symbols)
7546 {
7547   typedef Target_mips<size, big_endian> Mips;
7548   typedef typename Target_mips<size, big_endian>::Scan Scan;
7549
7550   if (sh_type == elfcpp::SHT_REL)
7551     gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan>(
7552       symtab,
7553       layout,
7554       this,
7555       object,
7556       data_shndx,
7557       prelocs,
7558       reloc_count,
7559       output_section,
7560       needs_special_offset_handling,
7561       local_symbol_count,
7562       plocal_symbols);
7563   else if (sh_type == elfcpp::SHT_RELA)
7564     gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_RELA, Scan>(
7565       symtab,
7566       layout,
7567       this,
7568       object,
7569       data_shndx,
7570       prelocs,
7571       reloc_count,
7572       output_section,
7573       needs_special_offset_handling,
7574       local_symbol_count,
7575       plocal_symbols);
7576 }
7577
7578 template<int size, bool big_endian>
7579 bool
7580 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7581 {
7582   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7583           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7584           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7585           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7586           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7587           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7588           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7589 }
7590
7591 // Return the MACH for a MIPS e_flags value.
7592 template<int size, bool big_endian>
7593 unsigned int
7594 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7595 {
7596   switch (flags & elfcpp::EF_MIPS_MACH)
7597     {
7598     case elfcpp::E_MIPS_MACH_3900:
7599       return mach_mips3900;
7600
7601     case elfcpp::E_MIPS_MACH_4010:
7602       return mach_mips4010;
7603
7604     case elfcpp::E_MIPS_MACH_4100:
7605       return mach_mips4100;
7606
7607     case elfcpp::E_MIPS_MACH_4111:
7608       return mach_mips4111;
7609
7610     case elfcpp::E_MIPS_MACH_4120:
7611       return mach_mips4120;
7612
7613     case elfcpp::E_MIPS_MACH_4650:
7614       return mach_mips4650;
7615
7616     case elfcpp::E_MIPS_MACH_5400:
7617       return mach_mips5400;
7618
7619     case elfcpp::E_MIPS_MACH_5500:
7620       return mach_mips5500;
7621
7622     case elfcpp::E_MIPS_MACH_9000:
7623       return mach_mips9000;
7624
7625     case elfcpp::E_MIPS_MACH_SB1:
7626       return mach_mips_sb1;
7627
7628     case elfcpp::E_MIPS_MACH_LS2E:
7629       return mach_mips_loongson_2e;
7630
7631     case elfcpp::E_MIPS_MACH_LS2F:
7632       return mach_mips_loongson_2f;
7633
7634     case elfcpp::E_MIPS_MACH_LS3A:
7635       return mach_mips_loongson_3a;
7636
7637     case elfcpp::E_MIPS_MACH_OCTEON2:
7638       return mach_mips_octeon2;
7639
7640     case elfcpp::E_MIPS_MACH_OCTEON:
7641       return mach_mips_octeon;
7642
7643     case elfcpp::E_MIPS_MACH_XLR:
7644       return mach_mips_xlr;
7645
7646     default:
7647       switch (flags & elfcpp::EF_MIPS_ARCH)
7648         {
7649         default:
7650         case elfcpp::E_MIPS_ARCH_1:
7651           return mach_mips3000;
7652
7653         case elfcpp::E_MIPS_ARCH_2:
7654           return mach_mips6000;
7655
7656         case elfcpp::E_MIPS_ARCH_3:
7657           return mach_mips4000;
7658
7659         case elfcpp::E_MIPS_ARCH_4:
7660           return mach_mips8000;
7661
7662         case elfcpp::E_MIPS_ARCH_5:
7663           return mach_mips5;
7664
7665         case elfcpp::E_MIPS_ARCH_32:
7666           return mach_mipsisa32;
7667
7668         case elfcpp::E_MIPS_ARCH_64:
7669           return mach_mipsisa64;
7670
7671         case elfcpp::E_MIPS_ARCH_32R2:
7672           return mach_mipsisa32r2;
7673
7674         case elfcpp::E_MIPS_ARCH_64R2:
7675           return mach_mipsisa64r2;
7676         }
7677     }
7678
7679   return 0;
7680 }
7681
7682 // Check whether machine EXTENSION is an extension of machine BASE.
7683 template<int size, bool big_endian>
7684 bool
7685 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7686                                                  unsigned int extension)
7687 {
7688   if (extension == base)
7689     return true;
7690
7691   if ((base == mach_mipsisa32)
7692       && this->mips_mach_extends(mach_mipsisa64, extension))
7693     return true;
7694
7695   if ((base == mach_mipsisa32r2)
7696       && this->mips_mach_extends(mach_mipsisa64r2, extension))
7697     return true;
7698
7699   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7700     if (extension == this->mips_mach_extensions_[i].first)
7701       {
7702         extension = this->mips_mach_extensions_[i].second;
7703         if (extension == base)
7704           return true;
7705       }
7706
7707   return false;
7708 }
7709
7710 template<int size, bool big_endian>
7711 void
7712 Target_mips<size, big_endian>::merge_processor_specific_flags(
7713     const std::string& name, elfcpp::Elf_Word in_flags,
7714     unsigned char in_ei_class, bool dyn_obj)
7715 {
7716   // If flags are not set yet, just copy them.
7717   if (!this->are_processor_specific_flags_set())
7718     {
7719       this->set_processor_specific_flags(in_flags);
7720       this->ei_class_ = in_ei_class;
7721       this->mach_ = this->elf_mips_mach(in_flags);
7722       return;
7723     }
7724
7725   elfcpp::Elf_Word new_flags = in_flags;
7726   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7727   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7728   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7729
7730   // Check flag compatibility.
7731   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7732   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7733
7734   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
7735   // doesn't seem to matter.
7736   new_flags &= ~elfcpp::EF_MIPS_XGOT;
7737   old_flags &= ~elfcpp::EF_MIPS_XGOT;
7738
7739   // MIPSpro generates ucode info in n64 objects.  Again, we should
7740   // just be able to ignore this.
7741   new_flags &= ~elfcpp::EF_MIPS_UCODE;
7742   old_flags &= ~elfcpp::EF_MIPS_UCODE;
7743
7744   // DSOs should only be linked with CPIC code.
7745   if (dyn_obj)
7746     new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7747
7748   if (new_flags == old_flags)
7749     {
7750       this->set_processor_specific_flags(merged_flags);
7751       return;
7752     }
7753
7754   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7755       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7756     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7757                  name.c_str());
7758
7759   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7760     merged_flags |= elfcpp::EF_MIPS_CPIC;
7761   if (!(new_flags & elfcpp::EF_MIPS_PIC))
7762     merged_flags &= ~elfcpp::EF_MIPS_PIC;
7763
7764   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7765   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7766
7767   // Compare the ISAs.
7768   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7769     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7770   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7771     {
7772       // Output ISA isn't the same as, or an extension of, input ISA.
7773       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7774         {
7775           // Copy the architecture info from input object to output.  Also copy
7776           // the 32-bit flag (if set) so that we continue to recognise
7777           // output as a 32-bit binary.
7778           this->mach_ = this->elf_mips_mach(in_flags);
7779           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
7780           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
7781                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
7782
7783           // Copy across the ABI flags if output doesn't use them
7784           // and if that was what caused us to treat input object as 32-bit.
7785           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
7786               && this->mips_32bit_flags(new_flags)
7787               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
7788             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
7789         }
7790       else
7791         // The ISAs aren't compatible.
7792         gold_error(_("%s: linking %s module with previous %s modules"),
7793                    name.c_str(), this->elf_mips_mach_name(in_flags),
7794                    this->elf_mips_mach_name(merged_flags));
7795     }
7796
7797   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7798                 | elfcpp::EF_MIPS_32BITMODE));
7799   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7800                 | elfcpp::EF_MIPS_32BITMODE));
7801
7802   // Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
7803   // EI_CLASS differently from any 32-bit ABI.
7804   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
7805       || (in_ei_class != this->ei_class_))
7806     {
7807       // Only error if both are set (to different values).
7808       if (((new_flags & elfcpp::EF_MIPS_ABI)
7809            && (old_flags & elfcpp::EF_MIPS_ABI))
7810           || (in_ei_class != this->ei_class_))
7811         gold_error(_("%s: ABI mismatch: linking %s module with "
7812                      "previous %s modules"), name.c_str(),
7813                    this->elf_mips_abi_name(in_flags, in_ei_class),
7814                    this->elf_mips_abi_name(merged_flags, this->ei_class_));
7815
7816       new_flags &= ~elfcpp::EF_MIPS_ABI;
7817       old_flags &= ~elfcpp::EF_MIPS_ABI;
7818     }
7819
7820   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
7821   // and allow arbitrary mixing of the remaining ASEs (retain the union).
7822   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
7823       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
7824     {
7825       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7826       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7827       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7828       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7829       int micro_mis = old_m16 && new_micro;
7830       int m16_mis = old_micro && new_m16;
7831
7832       if (m16_mis || micro_mis)
7833         gold_error(_("%s: ASE mismatch: linking %s module with "
7834                      "previous %s modules"), name.c_str(),
7835                    m16_mis ? "MIPS16" : "microMIPS",
7836                    m16_mis ? "microMIPS" : "MIPS16");
7837
7838       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
7839
7840       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7841       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7842     }
7843
7844   // Warn about any other mismatches.
7845   if (new_flags != old_flags)
7846     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
7847                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
7848
7849   this->set_processor_specific_flags(merged_flags);
7850 }
7851
7852 // Adjust ELF file header.
7853
7854 template<int size, bool big_endian>
7855 void
7856 Target_mips<size, big_endian>::do_adjust_elf_header(
7857     unsigned char* view,
7858     int len)
7859 {
7860   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
7861
7862   elfcpp::Ehdr<size, big_endian> ehdr(view);
7863   unsigned char e_ident[elfcpp::EI_NIDENT];
7864   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
7865
7866   e_ident[elfcpp::EI_CLASS] = this->ei_class_;
7867
7868   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
7869   oehdr.put_e_ident(e_ident);
7870   if (this->entry_symbol_is_compressed_)
7871     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
7872 }
7873
7874 // do_make_elf_object to override the same function in the base class.
7875 // We need to use a target-specific sub-class of
7876 // Sized_relobj_file<size, big_endian> to store Mips specific information.
7877 // Hence we need to have our own ELF object creation.
7878
7879 template<int size, bool big_endian>
7880 Object*
7881 Target_mips<size, big_endian>::do_make_elf_object(
7882     const std::string& name,
7883     Input_file* input_file,
7884     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
7885 {
7886   int et = ehdr.get_e_type();
7887   // ET_EXEC files are valid input for --just-symbols/-R,
7888   // and we treat them as relocatable objects.
7889   if (et == elfcpp::ET_REL
7890       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
7891     {
7892       Mips_relobj<size, big_endian>* obj =
7893         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
7894       obj->setup();
7895       return obj;
7896     }
7897   else if (et == elfcpp::ET_DYN)
7898     {
7899       // TODO(sasa): Should we create Mips_dynobj?
7900       return Target::do_make_elf_object(name, input_file, offset, ehdr);
7901     }
7902   else
7903     {
7904       gold_error(_("%s: unsupported ELF file type %d"),
7905                  name.c_str(), et);
7906       return NULL;
7907     }
7908 }
7909
7910 // Finalize the sections.
7911
7912 template <int size, bool big_endian>
7913 void
7914 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
7915                                         const Input_objects* input_objects,
7916                                         Symbol_table* symtab)
7917 {
7918   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
7919   // DT_FINI have correct values.
7920   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
7921       symtab->lookup(parameters->options().init()));
7922   if (init != NULL && (init->is_mips16() || init->is_micromips()))
7923     init->set_value(init->value() | 1);
7924   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
7925       symtab->lookup(parameters->options().fini()));
7926   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
7927     fini->set_value(fini->value() | 1);
7928
7929   // Check whether the entry symbol is mips16 or micromips.  This is needed to
7930   // adjust entry address in ELF header.
7931   Mips_symbol<size>* entry =
7932     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
7933   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
7934                                        || entry->is_micromips()));
7935
7936   if (!parameters->doing_static_link()
7937       && (strcmp(parameters->options().hash_style(), "gnu") == 0
7938           || strcmp(parameters->options().hash_style(), "both") == 0))
7939     {
7940       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
7941       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
7942       // MIPS ABI requires a mapping between the GOT and the symbol table.
7943       gold_error(".gnu.hash is incompatible with the MIPS ABI");
7944     }
7945
7946   // Check whether the final section that was scanned has HI16 or GOT16
7947   // relocations without the corresponding LO16 part.
7948   if (this->got16_addends_.size() > 0)
7949       gold_error("Can't find matching LO16 reloc");
7950
7951   // Set _gp value.
7952   this->set_gp(layout, symtab);
7953
7954   // Check for any mips16 stub sections that we can discard.
7955   if (!parameters->options().relocatable())
7956     {
7957       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7958           p != input_objects->relobj_end();
7959           ++p)
7960         {
7961           Mips_relobj<size, big_endian>* object =
7962             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7963           object->discard_mips16_stub_sections(symtab);
7964         }
7965     }
7966
7967   // Merge processor-specific flags.
7968   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7969        p != input_objects->relobj_end();
7970        ++p)
7971     {
7972       Mips_relobj<size, big_endian>* relobj =
7973         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7974
7975       Input_file::Format format = relobj->input_file()->format();
7976       if (format == Input_file::FORMAT_ELF)
7977         {
7978           // Read processor-specific flags in ELF file header.
7979           const unsigned char* pehdr = relobj->get_view(
7980                                             elfcpp::file_header_offset,
7981                                             elfcpp::Elf_sizes<size>::ehdr_size,
7982                                             true, false);
7983
7984           elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
7985           elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
7986           unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
7987
7988           this->merge_processor_specific_flags(relobj->name(), in_flags,
7989                                                ei_class, false);
7990         }
7991     }
7992
7993   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
7994        p != input_objects->dynobj_end();
7995        ++p)
7996     {
7997       Sized_dynobj<size, big_endian>* dynobj =
7998         static_cast<Sized_dynobj<size, big_endian>*>(*p);
7999
8000       // Read processor-specific flags.
8001       const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8002                                            elfcpp::Elf_sizes<size>::ehdr_size,
8003                                            true, false);
8004
8005       elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8006       elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8007       unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8008
8009       this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8010                                            true);
8011     }
8012
8013   // Merge .reginfo contents of input objects.
8014   Valtype gprmask = 0;
8015   Valtype cprmask1 = 0;
8016   Valtype cprmask2 = 0;
8017   Valtype cprmask3 = 0;
8018   Valtype cprmask4 = 0;
8019   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8020        p != input_objects->relobj_end();
8021        ++p)
8022     {
8023       Mips_relobj<size, big_endian>* relobj =
8024         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8025
8026       gprmask |= relobj->gprmask();
8027       cprmask1 |= relobj->cprmask1();
8028       cprmask2 |= relobj->cprmask2();
8029       cprmask3 |= relobj->cprmask3();
8030       cprmask4 |= relobj->cprmask4();
8031     }
8032
8033   if (this->plt_ != NULL)
8034     {
8035       // Set final PLT offsets for symbols.
8036       this->plt_section()->set_plt_offsets();
8037
8038       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8039       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8040       // there are no standard PLT entries present.
8041       unsigned char nonvis = 0;
8042       if (this->is_output_micromips()
8043           && !this->plt_section()->has_standard_entries())
8044         nonvis = elfcpp::STO_MICROMIPS >> 2;
8045       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8046                                     Symbol_table::PREDEFINED,
8047                                     this->plt_,
8048                                     0, 0, elfcpp::STT_FUNC,
8049                                     elfcpp::STB_LOCAL,
8050                                     elfcpp::STV_DEFAULT, nonvis,
8051                                     false, false);
8052     }
8053
8054   if (this->mips_stubs_ != NULL)
8055     {
8056       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8057       unsigned char nonvis = 0;
8058       if (this->is_output_micromips())
8059         nonvis = elfcpp::STO_MICROMIPS >> 2;
8060       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8061                                     Symbol_table::PREDEFINED,
8062                                     this->mips_stubs_,
8063                                     0, 0, elfcpp::STT_FUNC,
8064                                     elfcpp::STB_LOCAL,
8065                                     elfcpp::STV_DEFAULT, nonvis,
8066                                     false, false);
8067     }
8068
8069   if (!parameters->options().relocatable() && !parameters->doing_static_link())
8070     // In case there is no .got section, create one.
8071     this->got_section(symtab, layout);
8072
8073   // Emit any relocs we saved in an attempt to avoid generating COPY
8074   // relocs.
8075   if (this->copy_relocs_.any_saved_relocs())
8076     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8077                                  this);
8078
8079   // Emit dynamic relocs.
8080   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8081        p != this->dyn_relocs_.end();
8082        ++p)
8083     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8084
8085   if (this->has_got_section())
8086     this->got_section()->lay_out_got(layout, symtab, input_objects);
8087
8088   if (this->mips_stubs_ != NULL)
8089     this->mips_stubs_->set_needs_dynsym_value();
8090
8091   // Check for functions that might need $25 to be valid on entry.
8092   // TODO(sasa): Can we do this without iterating over all symbols?
8093   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8094   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8095                                                                symtab));
8096
8097   // Add NULL segment.
8098   if (!parameters->options().relocatable())
8099     layout->make_output_segment(elfcpp::PT_NULL, 0);
8100
8101   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8102        p != layout->section_list().end();
8103        ++p)
8104     {
8105       if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8106         {
8107           Mips_output_section_reginfo<size, big_endian>* reginfo =
8108             Mips_output_section_reginfo<size, big_endian>::
8109               as_mips_output_section_reginfo(*p);
8110
8111           reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8112
8113           if (!parameters->options().relocatable())
8114             {
8115               Output_segment* reginfo_segment =
8116                 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8117                                             elfcpp::PF_R);
8118               reginfo_segment->add_output_section_to_nonload(reginfo,
8119                                                              elfcpp::PF_R);
8120             }
8121         }
8122     }
8123
8124   // Fill in some more dynamic tags.
8125   // TODO(sasa): Add more dynamic tags.
8126   const Reloc_section* rel_plt = (this->plt_ == NULL
8127                                   ? NULL : this->plt_->rel_plt());
8128   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8129                                   this->rel_dyn_, true, false);
8130
8131   Output_data_dynamic* const odyn = layout->dynamic_data();
8132   if (odyn != NULL
8133       && !parameters->options().relocatable()
8134       && !parameters->doing_static_link())
8135   {
8136     unsigned int d_val;
8137     // This element holds a 32-bit version id for the Runtime
8138     // Linker Interface.  This will start at integer value 1.
8139     d_val = 0x01;
8140     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8141
8142     // Dynamic flags
8143     d_val = elfcpp::RHF_NOTPOT;
8144     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8145
8146     // Save layout for using when emiting custom dynamic tags.
8147     this->layout_ = layout;
8148
8149     // This member holds the base address of the segment.
8150     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8151
8152     // This member holds the number of entries in the .dynsym section.
8153     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8154
8155     // This member holds the index of the first dynamic symbol
8156     // table entry that corresponds to an entry in the global offset table.
8157     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8158
8159     // This member holds the number of local GOT entries.
8160     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8161                        this->got_->get_local_gotno());
8162
8163     if (this->plt_ != NULL)
8164       // DT_MIPS_PLTGOT dynamic tag
8165       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8166   }
8167  }
8168
8169 // Get the custom dynamic tag value.
8170 template<int size, bool big_endian>
8171 unsigned int
8172 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8173 {
8174   switch (tag)
8175     {
8176     case elfcpp::DT_MIPS_BASE_ADDRESS:
8177       {
8178         // The base address of the segment.
8179         // At this point, the segment list has been sorted into final order,
8180         // so just return vaddr of the first readable PT_LOAD segment.
8181         Output_segment* seg =
8182           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8183         gold_assert(seg != NULL);
8184         return seg->vaddr();
8185       }
8186
8187     case elfcpp::DT_MIPS_SYMTABNO:
8188       // The number of entries in the .dynsym section.
8189       return this->get_dt_mips_symtabno();
8190
8191     case elfcpp::DT_MIPS_GOTSYM:
8192       {
8193         // The index of the first dynamic symbol table entry that corresponds
8194         // to an entry in the GOT.
8195         if (this->got_->first_global_got_dynsym_index() != -1U)
8196           return this->got_->first_global_got_dynsym_index();
8197         else
8198           // In case if we don't have global GOT symbols we default to setting
8199           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8200           return this->get_dt_mips_symtabno();
8201       }
8202
8203     default:
8204       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8205     }
8206
8207   return (unsigned int)-1;
8208 }
8209
8210 // Relocate section data.
8211
8212 template<int size, bool big_endian>
8213 void
8214 Target_mips<size, big_endian>::relocate_section(
8215                         const Relocate_info<size, big_endian>* relinfo,
8216                         unsigned int sh_type,
8217                         const unsigned char* prelocs,
8218                         size_t reloc_count,
8219                         Output_section* output_section,
8220                         bool needs_special_offset_handling,
8221                         unsigned char* view,
8222                         Mips_address address,
8223                         section_size_type view_size,
8224                         const Reloc_symbol_changes* reloc_symbol_changes)
8225 {
8226   typedef Target_mips<size, big_endian> Mips;
8227   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8228
8229   if (sh_type == elfcpp::SHT_REL)
8230     gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_REL,
8231       Mips_relocate, gold::Default_comdat_behavior>(
8232       relinfo,
8233       this,
8234       prelocs,
8235       reloc_count,
8236       output_section,
8237       needs_special_offset_handling,
8238       view,
8239       address,
8240       view_size,
8241       reloc_symbol_changes);
8242   else if (sh_type == elfcpp::SHT_RELA)
8243     gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_RELA,
8244       Mips_relocate, gold::Default_comdat_behavior>(
8245       relinfo,
8246       this,
8247       prelocs,
8248       reloc_count,
8249       output_section,
8250       needs_special_offset_handling,
8251       view,
8252       address,
8253       view_size,
8254       reloc_symbol_changes);
8255 }
8256
8257 // Return the size of a relocation while scanning during a relocatable
8258 // link.
8259
8260 template<int size, bool big_endian>
8261 unsigned int
8262 Target_mips<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8263     unsigned int r_type,
8264     Relobj* object)
8265 {
8266   switch (r_type)
8267     {
8268     case elfcpp::R_MIPS_NONE:
8269     case elfcpp::R_MIPS_TLS_DTPMOD64:
8270     case elfcpp::R_MIPS_TLS_DTPREL64:
8271     case elfcpp::R_MIPS_TLS_TPREL64:
8272       return 0;
8273
8274     case elfcpp::R_MIPS_32:
8275     case elfcpp::R_MIPS_TLS_DTPMOD32:
8276     case elfcpp::R_MIPS_TLS_DTPREL32:
8277     case elfcpp::R_MIPS_TLS_TPREL32:
8278     case elfcpp::R_MIPS_REL32:
8279     case elfcpp::R_MIPS_PC32:
8280     case elfcpp::R_MIPS_GPREL32:
8281     case elfcpp::R_MIPS_JALR:
8282       return 4;
8283
8284     case elfcpp::R_MIPS_16:
8285     case elfcpp::R_MIPS_HI16:
8286     case elfcpp::R_MIPS_LO16:
8287     case elfcpp::R_MIPS_GPREL16:
8288     case elfcpp::R_MIPS16_HI16:
8289     case elfcpp::R_MIPS16_LO16:
8290     case elfcpp::R_MIPS_PC16:
8291     case elfcpp::R_MIPS_GOT16:
8292     case elfcpp::R_MIPS16_GOT16:
8293     case elfcpp::R_MIPS_CALL16:
8294     case elfcpp::R_MIPS16_CALL16:
8295     case elfcpp::R_MIPS_GOT_HI16:
8296     case elfcpp::R_MIPS_CALL_HI16:
8297     case elfcpp::R_MIPS_GOT_LO16:
8298     case elfcpp::R_MIPS_CALL_LO16:
8299     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8300     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8301     case elfcpp::R_MIPS_TLS_TPREL_HI16:
8302     case elfcpp::R_MIPS_TLS_TPREL_LO16:
8303     case elfcpp::R_MIPS16_GPREL:
8304     case elfcpp::R_MIPS_GOT_DISP:
8305     case elfcpp::R_MIPS_LITERAL:
8306     case elfcpp::R_MIPS_GOT_PAGE:
8307     case elfcpp::R_MIPS_GOT_OFST:
8308     case elfcpp::R_MIPS_TLS_GD:
8309     case elfcpp::R_MIPS_TLS_LDM:
8310     case elfcpp::R_MIPS_TLS_GOTTPREL:
8311       return 2;
8312
8313     // These relocations are not byte sized
8314     case elfcpp::R_MIPS_26:
8315     case elfcpp::R_MIPS16_26:
8316       return 4;
8317
8318     case elfcpp::R_MIPS_COPY:
8319     case elfcpp::R_MIPS_JUMP_SLOT:
8320       object->error(_("unexpected reloc %u in object file"), r_type);
8321       return 0;
8322
8323     default:
8324       object->error(_("unsupported reloc %u in object file"), r_type);
8325       return 0;
8326   }
8327 }
8328
8329 // Scan the relocs during a relocatable link.
8330
8331 template<int size, bool big_endian>
8332 void
8333 Target_mips<size, big_endian>::scan_relocatable_relocs(
8334                         Symbol_table* symtab,
8335                         Layout* layout,
8336                         Sized_relobj_file<size, big_endian>* object,
8337                         unsigned int data_shndx,
8338                         unsigned int sh_type,
8339                         const unsigned char* prelocs,
8340                         size_t reloc_count,
8341                         Output_section* output_section,
8342                         bool needs_special_offset_handling,
8343                         size_t local_symbol_count,
8344                         const unsigned char* plocal_symbols,
8345                         Relocatable_relocs* rr)
8346 {
8347   gold_assert(sh_type == elfcpp::SHT_REL);
8348
8349   typedef Mips_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
8350     Relocatable_size_for_reloc> Scan_relocatable_relocs;
8351
8352   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_REL,
8353     Scan_relocatable_relocs>(
8354     symtab,
8355     layout,
8356     object,
8357     data_shndx,
8358     prelocs,
8359     reloc_count,
8360     output_section,
8361     needs_special_offset_handling,
8362     local_symbol_count,
8363     plocal_symbols,
8364     rr);
8365 }
8366
8367 // Emit relocations for a section.
8368
8369 template<int size, bool big_endian>
8370 void
8371 Target_mips<size, big_endian>::relocate_relocs(
8372                         const Relocate_info<size, big_endian>* relinfo,
8373                         unsigned int sh_type,
8374                         const unsigned char* prelocs,
8375                         size_t reloc_count,
8376                         Output_section* output_section,
8377                         typename elfcpp::Elf_types<size>::Elf_Off
8378                           offset_in_output_section,
8379                         unsigned char* view,
8380                         Mips_address view_address,
8381                         section_size_type view_size,
8382                         unsigned char* reloc_view,
8383                         section_size_type reloc_view_size)
8384 {
8385   gold_assert(sh_type == elfcpp::SHT_REL);
8386
8387   gold::relocate_relocs<size, big_endian, elfcpp::SHT_REL>(
8388     relinfo,
8389     prelocs,
8390     reloc_count,
8391     output_section,
8392     offset_in_output_section,
8393     view,
8394     view_address,
8395     view_size,
8396     reloc_view,
8397     reloc_view_size);
8398 }
8399
8400 // Perform target-specific processing in a relocatable link.  This is
8401 // only used if we use the relocation strategy RELOC_SPECIAL.
8402
8403 template<int size, bool big_endian>
8404 void
8405 Target_mips<size, big_endian>::relocate_special_relocatable(
8406     const Relocate_info<size, big_endian>* relinfo,
8407     unsigned int sh_type,
8408     const unsigned char* preloc_in,
8409     size_t relnum,
8410     Output_section* output_section,
8411     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8412     unsigned char* view,
8413     Mips_address view_address,
8414     section_size_type,
8415     unsigned char* preloc_out)
8416 {
8417   // We can only handle REL type relocation sections.
8418   gold_assert(sh_type == elfcpp::SHT_REL);
8419
8420   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8421     Reltype;
8422   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8423     Reltype_write;
8424
8425   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8426
8427   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8428
8429   Mips_relobj<size, big_endian>* object =
8430     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8431   const unsigned int local_count = object->local_symbol_count();
8432
8433   Reltype reloc(preloc_in);
8434   Reltype_write reloc_write(preloc_out);
8435
8436   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8437   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8438   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8439
8440   // Get the new symbol index.
8441   // We only use RELOC_SPECIAL strategy in local relocations.
8442   gold_assert(r_sym < local_count);
8443
8444   // We are adjusting a section symbol.  We need to find
8445   // the symbol table index of the section symbol for
8446   // the output section corresponding to input section
8447   // in which this symbol is defined.
8448   bool is_ordinary;
8449   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8450   gold_assert(is_ordinary);
8451   Output_section* os = object->output_section(shndx);
8452   gold_assert(os != NULL);
8453   gold_assert(os->needs_symtab_index());
8454   unsigned int new_symndx = os->symtab_index();
8455
8456   // Get the new offset--the location in the output section where
8457   // this relocation should be applied.
8458
8459   Mips_address offset = reloc.get_r_offset();
8460   Mips_address new_offset;
8461   if (offset_in_output_section != invalid_address)
8462     new_offset = offset + offset_in_output_section;
8463   else
8464     {
8465       section_offset_type sot_offset =
8466         convert_types<section_offset_type, Mips_address>(offset);
8467       section_offset_type new_sot_offset =
8468         output_section->output_offset(object, relinfo->data_shndx,
8469                                       sot_offset);
8470       gold_assert(new_sot_offset != -1);
8471       new_offset = new_sot_offset;
8472     }
8473
8474   // In an object file, r_offset is an offset within the section.
8475   // In an executable or dynamic object, generated by
8476   // --emit-relocs, r_offset is an absolute address.
8477   if (!parameters->options().relocatable())
8478     {
8479       new_offset += view_address;
8480       if (offset_in_output_section != invalid_address)
8481         new_offset -= offset_in_output_section;
8482     }
8483
8484   reloc_write.put_r_offset(new_offset);
8485   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8486
8487   // Handle the reloc addend.
8488   // The relocation uses a section symbol in the input file.
8489   // We are adjusting it to use a section symbol in the output
8490   // file.  The input section symbol refers to some address in
8491   // the input section.  We need the relocation in the output
8492   // file to refer to that same address.  This adjustment to
8493   // the addend is the same calculation we use for a simple
8494   // absolute relocation for the input section symbol.
8495
8496   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8497
8498   unsigned char* paddend = view + offset;
8499   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8500   switch (r_type)
8501     {
8502     case elfcpp::R_MIPS_26:
8503       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8504           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8505           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8506       break;
8507
8508     default:
8509       gold_unreachable();
8510     }
8511
8512   // Report any errors.
8513   switch (reloc_status)
8514     {
8515     case Reloc_funcs::STATUS_OKAY:
8516       break;
8517     case Reloc_funcs::STATUS_OVERFLOW:
8518       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8519                              _("relocation overflow"));
8520       break;
8521     case Reloc_funcs::STATUS_BAD_RELOC:
8522       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8523         _("unexpected opcode while processing relocation"));
8524       break;
8525     default:
8526       gold_unreachable();
8527     }
8528 }
8529
8530 // Optimize the TLS relocation type based on what we know about the
8531 // symbol.  IS_FINAL is true if the final address of this symbol is
8532 // known at link time.
8533
8534 template<int size, bool big_endian>
8535 tls::Tls_optimization
8536 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8537 {
8538   // FIXME: Currently we do not do any TLS optimization.
8539   return tls::TLSOPT_NONE;
8540 }
8541
8542 // Scan a relocation for a local symbol.
8543
8544 template<int size, bool big_endian>
8545 inline void
8546 Target_mips<size, big_endian>::Scan::local(
8547                         Symbol_table* symtab,
8548                         Layout* layout,
8549                         Target_mips<size, big_endian>* target,
8550                         Sized_relobj_file<size, big_endian>* object,
8551                         unsigned int data_shndx,
8552                         Output_section* output_section,
8553                         const elfcpp::Rela<size, big_endian>* rela,
8554                         const elfcpp::Rel<size, big_endian>* rel,
8555                         unsigned int rel_type,
8556                         unsigned int r_type,
8557                         const elfcpp::Sym<size, big_endian>& lsym,
8558                         bool is_discarded)
8559 {
8560   if (is_discarded)
8561     return;
8562
8563   Mips_address r_offset;
8564   typename elfcpp::Elf_types<size>::Elf_WXword r_info;
8565   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8566
8567   if (rel_type == elfcpp::SHT_RELA)
8568     {
8569       r_offset = rela->get_r_offset();
8570       r_info = rela->get_r_info();
8571       r_addend = rela->get_r_addend();
8572     }
8573   else
8574     {
8575       r_offset = rel->get_r_offset();
8576       r_info = rel->get_r_info();
8577       r_addend = 0;
8578     }
8579
8580   unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8581   Mips_relobj<size, big_endian>* mips_obj =
8582     Mips_relobj<size, big_endian>::as_mips_relobj(object);
8583
8584   if (mips_obj->is_mips16_stub_section(data_shndx))
8585     {
8586       mips_obj->get_mips16_stub_section(data_shndx)
8587               ->new_local_reloc_found(r_type, r_sym);
8588     }
8589
8590   if (r_type == elfcpp::R_MIPS_NONE)
8591     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8592     // mips16 stub.
8593     return;
8594
8595   if (!mips16_call_reloc(r_type)
8596       && !mips_obj->section_allows_mips16_refs(data_shndx))
8597     // This reloc would need to refer to a MIPS16 hard-float stub, if
8598     // there is one.  We ignore MIPS16 stub sections and .pdr section when
8599     // looking for relocs that would need to refer to MIPS16 stubs.
8600     mips_obj->add_local_non_16bit_call(r_sym);
8601
8602   if (r_type == elfcpp::R_MIPS16_26
8603       && !mips_obj->section_allows_mips16_refs(data_shndx))
8604     mips_obj->add_local_16bit_call(r_sym);
8605
8606   switch (r_type)
8607     {
8608     case elfcpp::R_MIPS_GOT16:
8609     case elfcpp::R_MIPS_CALL16:
8610     case elfcpp::R_MIPS_CALL_HI16:
8611     case elfcpp::R_MIPS_CALL_LO16:
8612     case elfcpp::R_MIPS_GOT_HI16:
8613     case elfcpp::R_MIPS_GOT_LO16:
8614     case elfcpp::R_MIPS_GOT_PAGE:
8615     case elfcpp::R_MIPS_GOT_OFST:
8616     case elfcpp::R_MIPS_GOT_DISP:
8617     case elfcpp::R_MIPS_TLS_GOTTPREL:
8618     case elfcpp::R_MIPS_TLS_GD:
8619     case elfcpp::R_MIPS_TLS_LDM:
8620     case elfcpp::R_MIPS16_GOT16:
8621     case elfcpp::R_MIPS16_CALL16:
8622     case elfcpp::R_MIPS16_TLS_GOTTPREL:
8623     case elfcpp::R_MIPS16_TLS_GD:
8624     case elfcpp::R_MIPS16_TLS_LDM:
8625     case elfcpp::R_MICROMIPS_GOT16:
8626     case elfcpp::R_MICROMIPS_CALL16:
8627     case elfcpp::R_MICROMIPS_CALL_HI16:
8628     case elfcpp::R_MICROMIPS_CALL_LO16:
8629     case elfcpp::R_MICROMIPS_GOT_HI16:
8630     case elfcpp::R_MICROMIPS_GOT_LO16:
8631     case elfcpp::R_MICROMIPS_GOT_PAGE:
8632     case elfcpp::R_MICROMIPS_GOT_OFST:
8633     case elfcpp::R_MICROMIPS_GOT_DISP:
8634     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8635     case elfcpp::R_MICROMIPS_TLS_GD:
8636     case elfcpp::R_MICROMIPS_TLS_LDM:
8637       // We need a GOT section.
8638       target->got_section(symtab, layout);
8639       break;
8640
8641     default:
8642       break;
8643     }
8644
8645   if (call_lo16_reloc(r_type)
8646       || got_lo16_reloc(r_type)
8647       || got_disp_reloc(r_type))
8648     {
8649       // We may need a local GOT entry for this relocation.  We
8650       // don't count R_MIPS_GOT_PAGE because we can estimate the
8651       // maximum number of pages needed by looking at the size of
8652       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
8653       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
8654       // R_MIPS_CALL_HI16 because these are always followed by an
8655       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8656       Mips_output_data_got<size, big_endian>* got =
8657         target->got_section(symtab, layout);
8658       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8659       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8660     }
8661
8662   switch (r_type)
8663     {
8664     case elfcpp::R_MIPS_CALL16:
8665     case elfcpp::R_MIPS16_CALL16:
8666     case elfcpp::R_MICROMIPS_CALL16:
8667       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8668                  (unsigned long)r_offset);
8669       return;
8670
8671     case elfcpp::R_MIPS_GOT_PAGE:
8672     case elfcpp::R_MICROMIPS_GOT_PAGE:
8673     case elfcpp::R_MIPS16_GOT16:
8674     case elfcpp::R_MIPS_GOT16:
8675     case elfcpp::R_MIPS_GOT_HI16:
8676     case elfcpp::R_MIPS_GOT_LO16:
8677     case elfcpp::R_MICROMIPS_GOT16:
8678     case elfcpp::R_MICROMIPS_GOT_HI16:
8679     case elfcpp::R_MICROMIPS_GOT_LO16:
8680       {
8681         // This relocation needs a page entry in the GOT.
8682         // Get the section contents.
8683         section_size_type view_size = 0;
8684         const unsigned char* view = object->section_contents(data_shndx,
8685                                                              &view_size, false);
8686         view += r_offset;
8687
8688         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8689         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8690                                                         : r_addend);
8691
8692         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8693           target->got16_addends_.push_back(got16_addend<size, big_endian>(
8694               object, data_shndx, r_type, r_sym, addend));
8695         else
8696           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8697         break;
8698       }
8699
8700     case elfcpp::R_MIPS_HI16:
8701     case elfcpp::R_MIPS16_HI16:
8702     case elfcpp::R_MICROMIPS_HI16:
8703       // Record the reloc so that we can check whether the corresponding LO16
8704       // part exists.
8705       if (rel_type == elfcpp::SHT_REL)
8706         target->got16_addends_.push_back(got16_addend<size, big_endian>(
8707             object, data_shndx, r_type, r_sym, 0));
8708       break;
8709
8710     case elfcpp::R_MIPS_LO16:
8711     case elfcpp::R_MIPS16_LO16:
8712     case elfcpp::R_MICROMIPS_LO16:
8713       {
8714         if (rel_type != elfcpp::SHT_REL)
8715           break;
8716
8717         // Find corresponding GOT16/HI16 relocation.
8718
8719         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8720         // be immediately following.  However, for the IRIX6 ABI, the next
8721         // relocation may be a composed relocation consisting of several
8722         // relocations for the same address.  In that case, the R_MIPS_LO16
8723         // relocation may occur as one of these.  We permit a similar
8724         // extension in general, as that is useful for GCC.
8725
8726         // In some cases GCC dead code elimination removes the LO16 but
8727         // keeps the corresponding HI16.  This is strictly speaking a
8728         // violation of the ABI but not immediately harmful.
8729
8730         typename std::list<got16_addend<size, big_endian> >::iterator it =
8731           target->got16_addends_.begin();
8732         while (it != target->got16_addends_.end())
8733           {
8734             got16_addend<size, big_endian> _got16_addend = *it;
8735
8736             // TODO(sasa): Split got16_addends_ list into two lists - one for
8737             // GOT16 relocs and the other for HI16 relocs.
8738
8739             // Report an error if we find HI16 or GOT16 reloc from the
8740             // previous section without the matching LO16 part.
8741             if (_got16_addend.object != object
8742                 || _got16_addend.shndx != data_shndx)
8743               {
8744                 gold_error("Can't find matching LO16 reloc");
8745                 break;
8746               }
8747
8748             if (_got16_addend.r_sym != r_sym
8749                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
8750               {
8751                 ++it;
8752                 continue;
8753               }
8754
8755             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
8756             // For GOT16, we need to calculate combined addend and record GOT page
8757             // entry.
8758             if (got16_reloc(_got16_addend.r_type))
8759               {
8760
8761                 section_size_type view_size = 0;
8762                 const unsigned char* view = object->section_contents(data_shndx,
8763                                                                      &view_size,
8764                                                                      false);
8765                 view += r_offset;
8766
8767                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8768                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
8769
8770                 addend = (_got16_addend.addend << 16) + addend;
8771                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
8772                                                              addend);
8773               }
8774
8775             it = target->got16_addends_.erase(it);
8776           }
8777         break;
8778       }
8779     }
8780
8781   switch (r_type)
8782     {
8783     case elfcpp::R_MIPS_32:
8784     case elfcpp::R_MIPS_REL32:
8785     case elfcpp::R_MIPS_64:
8786       {
8787         if (parameters->options().output_is_position_independent())
8788           {
8789             // If building a shared library (or a position-independent
8790             // executable), we need to create a dynamic relocation for
8791             // this location.
8792             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8793             unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8794             rel_dyn->add_symbolless_local_addend(object, r_sym,
8795                                                  elfcpp::R_MIPS_REL32,
8796                                                  output_section, data_shndx,
8797                                                  r_offset);
8798           }
8799         break;
8800       }
8801
8802     case elfcpp::R_MIPS_TLS_GOTTPREL:
8803     case elfcpp::R_MIPS16_TLS_GOTTPREL:
8804     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8805     case elfcpp::R_MIPS_TLS_LDM:
8806     case elfcpp::R_MIPS16_TLS_LDM:
8807     case elfcpp::R_MICROMIPS_TLS_LDM:
8808     case elfcpp::R_MIPS_TLS_GD:
8809     case elfcpp::R_MIPS16_TLS_GD:
8810     case elfcpp::R_MICROMIPS_TLS_GD:
8811       {
8812         unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8813         bool output_is_shared = parameters->options().shared();
8814         const tls::Tls_optimization optimized_type
8815             = Target_mips<size, big_endian>::optimize_tls_reloc(
8816                                              !output_is_shared, r_type);
8817         switch (r_type)
8818           {
8819           case elfcpp::R_MIPS_TLS_GD:
8820           case elfcpp::R_MIPS16_TLS_GD:
8821           case elfcpp::R_MICROMIPS_TLS_GD:
8822             if (optimized_type == tls::TLSOPT_NONE)
8823               {
8824                 // Create a pair of GOT entries for the module index and
8825                 // dtv-relative offset.
8826                 Mips_output_data_got<size, big_endian>* got =
8827                   target->got_section(symtab, layout);
8828                 unsigned int shndx = lsym.get_st_shndx();
8829                 bool is_ordinary;
8830                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8831                 if (!is_ordinary)
8832                   {
8833                     object->error(_("local symbol %u has bad shndx %u"),
8834                                   r_sym, shndx);
8835                     break;
8836                   }
8837                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8838                                              shndx);
8839               }
8840             else
8841               {
8842                 // FIXME: TLS optimization not supported yet.
8843                 gold_unreachable();
8844               }
8845             break;
8846
8847           case elfcpp::R_MIPS_TLS_LDM:
8848           case elfcpp::R_MIPS16_TLS_LDM:
8849           case elfcpp::R_MICROMIPS_TLS_LDM:
8850             if (optimized_type == tls::TLSOPT_NONE)
8851               {
8852                 // We always record LDM symbols as local with index 0.
8853                 target->got_section()->record_local_got_symbol(mips_obj, 0,
8854                                                                r_addend, r_type,
8855                                                                -1U);
8856               }
8857             else
8858               {
8859                 // FIXME: TLS optimization not supported yet.
8860                 gold_unreachable();
8861               }
8862             break;
8863           case elfcpp::R_MIPS_TLS_GOTTPREL:
8864           case elfcpp::R_MIPS16_TLS_GOTTPREL:
8865           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8866             layout->set_has_static_tls();
8867             if (optimized_type == tls::TLSOPT_NONE)
8868               {
8869                 // Create a GOT entry for the tp-relative offset.
8870                 Mips_output_data_got<size, big_endian>* got =
8871                   target->got_section(symtab, layout);
8872                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8873                                              -1U);
8874               }
8875             else
8876               {
8877                 // FIXME: TLS optimization not supported yet.
8878                 gold_unreachable();
8879               }
8880             break;
8881
8882           default:
8883             gold_unreachable();
8884         }
8885       }
8886       break;
8887
8888     default:
8889       break;
8890     }
8891
8892   // Refuse some position-dependent relocations when creating a
8893   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
8894   // not PIC, but we can create dynamic relocations and the result
8895   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
8896   // combined with R_MIPS_GOT16.
8897   if (parameters->options().shared())
8898     {
8899       switch (r_type)
8900         {
8901         case elfcpp::R_MIPS16_HI16:
8902         case elfcpp::R_MIPS_HI16:
8903         case elfcpp::R_MICROMIPS_HI16:
8904           // Don't refuse a high part relocation if it's against
8905           // no symbol (e.g. part of a compound relocation).
8906           if (r_sym == 0)
8907             break;
8908
8909           // FALLTHROUGH
8910
8911         case elfcpp::R_MIPS16_26:
8912         case elfcpp::R_MIPS_26:
8913         case elfcpp::R_MICROMIPS_26_S1:
8914           gold_error(_("%s: relocation %u against `%s' can not be used when "
8915                        "making a shared object; recompile with -fPIC"),
8916                      object->name().c_str(), r_type, "a local symbol");
8917         default:
8918           break;
8919         }
8920     }
8921 }
8922
8923 template<int size, bool big_endian>
8924 inline void
8925 Target_mips<size, big_endian>::Scan::local(
8926                         Symbol_table* symtab,
8927                         Layout* layout,
8928                         Target_mips<size, big_endian>* target,
8929                         Sized_relobj_file<size, big_endian>* object,
8930                         unsigned int data_shndx,
8931                         Output_section* output_section,
8932                         const elfcpp::Rel<size, big_endian>& reloc,
8933                         unsigned int r_type,
8934                         const elfcpp::Sym<size, big_endian>& lsym,
8935                         bool is_discarded)
8936 {
8937   if (is_discarded)
8938     return;
8939
8940   local(
8941     symtab,
8942     layout,
8943     target,
8944     object,
8945     data_shndx,
8946     output_section,
8947     (const elfcpp::Rela<size, big_endian>*) NULL,
8948     &reloc,
8949     elfcpp::SHT_REL,
8950     r_type,
8951     lsym, is_discarded);
8952 }
8953
8954
8955 template<int size, bool big_endian>
8956 inline void
8957 Target_mips<size, big_endian>::Scan::local(
8958                         Symbol_table* symtab,
8959                         Layout* layout,
8960                         Target_mips<size, big_endian>* target,
8961                         Sized_relobj_file<size, big_endian>* object,
8962                         unsigned int data_shndx,
8963                         Output_section* output_section,
8964                         const elfcpp::Rela<size, big_endian>& reloc,
8965                         unsigned int r_type,
8966                         const elfcpp::Sym<size, big_endian>& lsym,
8967                         bool is_discarded)
8968 {
8969   if (is_discarded)
8970     return;
8971
8972   local(
8973     symtab,
8974     layout,
8975     target,
8976     object,
8977     data_shndx,
8978     output_section,
8979     &reloc,
8980     (const elfcpp::Rel<size, big_endian>*) NULL,
8981     elfcpp::SHT_RELA,
8982     r_type,
8983     lsym, is_discarded);
8984 }
8985
8986 // Scan a relocation for a global symbol.
8987
8988 template<int size, bool big_endian>
8989 inline void
8990 Target_mips<size, big_endian>::Scan::global(
8991                                 Symbol_table* symtab,
8992                                 Layout* layout,
8993                                 Target_mips<size, big_endian>* target,
8994                                 Sized_relobj_file<size, big_endian>* object,
8995                                 unsigned int data_shndx,
8996                                 Output_section* output_section,
8997                                 const elfcpp::Rela<size, big_endian>* rela,
8998                                 const elfcpp::Rel<size, big_endian>* rel,
8999                                 unsigned int rel_type,
9000                                 unsigned int r_type,
9001                                 Symbol* gsym)
9002 {
9003   Mips_address r_offset;
9004   typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9005   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9006
9007   if (rel_type == elfcpp::SHT_RELA)
9008     {
9009       r_offset = rela->get_r_offset();
9010       r_info = rela->get_r_info();
9011       r_addend = rela->get_r_addend();
9012     }
9013   else
9014     {
9015       r_offset = rel->get_r_offset();
9016       r_info = rel->get_r_info();
9017       r_addend = 0;
9018     }
9019
9020   unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9021   Mips_relobj<size, big_endian>* mips_obj =
9022     Mips_relobj<size, big_endian>::as_mips_relobj(object);
9023   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9024
9025   if (mips_obj->is_mips16_stub_section(data_shndx))
9026     {
9027       mips_obj->get_mips16_stub_section(data_shndx)
9028               ->new_global_reloc_found(r_type, mips_sym);
9029     }
9030
9031   if (r_type == elfcpp::R_MIPS_NONE)
9032     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9033     // mips16 stub.
9034     return;
9035
9036   if (!mips16_call_reloc(r_type)
9037       && !mips_obj->section_allows_mips16_refs(data_shndx))
9038     // This reloc would need to refer to a MIPS16 hard-float stub, if
9039     // there is one.  We ignore MIPS16 stub sections and .pdr section when
9040     // looking for relocs that would need to refer to MIPS16 stubs.
9041     mips_sym->set_need_fn_stub();
9042
9043   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9044   // section.  We check here to avoid creating a dynamic reloc against
9045   // _GLOBAL_OFFSET_TABLE_.
9046   if (!target->has_got_section()
9047       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9048     target->got_section(symtab, layout);
9049
9050   // We need PLT entries if there are static-only relocations against
9051   // an externally-defined function.  This can technically occur for
9052   // shared libraries if there are branches to the symbol, although it
9053   // is unlikely that this will be used in practice due to the short
9054   // ranges involved.  It can occur for any relative or absolute relocation
9055   // in executables; in that case, the PLT entry becomes the function's
9056   // canonical address.
9057   bool static_reloc = false;
9058
9059   // Set CAN_MAKE_DYNAMIC to true if we can convert this
9060   // relocation into a dynamic one.
9061   bool can_make_dynamic = false;
9062   switch (r_type)
9063     {
9064     case elfcpp::R_MIPS_GOT16:
9065     case elfcpp::R_MIPS_CALL16:
9066     case elfcpp::R_MIPS_CALL_HI16:
9067     case elfcpp::R_MIPS_CALL_LO16:
9068     case elfcpp::R_MIPS_GOT_HI16:
9069     case elfcpp::R_MIPS_GOT_LO16:
9070     case elfcpp::R_MIPS_GOT_PAGE:
9071     case elfcpp::R_MIPS_GOT_OFST:
9072     case elfcpp::R_MIPS_GOT_DISP:
9073     case elfcpp::R_MIPS_TLS_GOTTPREL:
9074     case elfcpp::R_MIPS_TLS_GD:
9075     case elfcpp::R_MIPS_TLS_LDM:
9076     case elfcpp::R_MIPS16_GOT16:
9077     case elfcpp::R_MIPS16_CALL16:
9078     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9079     case elfcpp::R_MIPS16_TLS_GD:
9080     case elfcpp::R_MIPS16_TLS_LDM:
9081     case elfcpp::R_MICROMIPS_GOT16:
9082     case elfcpp::R_MICROMIPS_CALL16:
9083     case elfcpp::R_MICROMIPS_CALL_HI16:
9084     case elfcpp::R_MICROMIPS_CALL_LO16:
9085     case elfcpp::R_MICROMIPS_GOT_HI16:
9086     case elfcpp::R_MICROMIPS_GOT_LO16:
9087     case elfcpp::R_MICROMIPS_GOT_PAGE:
9088     case elfcpp::R_MICROMIPS_GOT_OFST:
9089     case elfcpp::R_MICROMIPS_GOT_DISP:
9090     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9091     case elfcpp::R_MICROMIPS_TLS_GD:
9092     case elfcpp::R_MICROMIPS_TLS_LDM:
9093       // We need a GOT section.
9094       target->got_section(symtab, layout);
9095       break;
9096
9097     // This is just a hint; it can safely be ignored.  Don't set
9098     // has_static_relocs for the corresponding symbol.
9099     case elfcpp::R_MIPS_JALR:
9100     case elfcpp::R_MICROMIPS_JALR:
9101       break;
9102
9103     case elfcpp::R_MIPS_GPREL16:
9104     case elfcpp::R_MIPS_GPREL32:
9105     case elfcpp::R_MIPS16_GPREL:
9106     case elfcpp::R_MICROMIPS_GPREL16:
9107       // TODO(sasa)
9108       // GP-relative relocations always resolve to a definition in a
9109       // regular input file, ignoring the one-definition rule.  This is
9110       // important for the GP setup sequence in NewABI code, which
9111       // always resolves to a local function even if other relocations
9112       // against the symbol wouldn't.
9113       //constrain_symbol_p = FALSE;
9114       break;
9115
9116     case elfcpp::R_MIPS_32:
9117     case elfcpp::R_MIPS_REL32:
9118     case elfcpp::R_MIPS_64:
9119       if (parameters->options().shared()
9120           || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9121         {
9122           if (r_type != elfcpp::R_MIPS_REL32)
9123             {
9124               static_reloc = true;
9125               mips_sym->set_pointer_equality_needed();
9126             }
9127           can_make_dynamic = true;
9128           break;
9129         }
9130       // Fall through.
9131
9132     default:
9133       // Most static relocations require pointer equality, except
9134       // for branches.
9135       mips_sym->set_pointer_equality_needed();
9136
9137       // Fall through.
9138
9139     case elfcpp::R_MIPS_26:
9140     case elfcpp::R_MIPS_PC16:
9141     case elfcpp::R_MIPS16_26:
9142     case elfcpp::R_MICROMIPS_26_S1:
9143     case elfcpp::R_MICROMIPS_PC7_S1:
9144     case elfcpp::R_MICROMIPS_PC10_S1:
9145     case elfcpp::R_MICROMIPS_PC16_S1:
9146     case elfcpp::R_MICROMIPS_PC23_S2:
9147       static_reloc = true;
9148       mips_sym->set_has_static_relocs();
9149       break;
9150     }
9151
9152   // If there are call relocations against an externally-defined symbol,
9153   // see whether we can create a MIPS lazy-binding stub for it.  We can
9154   // only do this if all references to the function are through call
9155   // relocations, and in that case, the traditional lazy-binding stubs
9156   // are much more efficient than PLT entries.
9157   switch (r_type)
9158     {
9159     case elfcpp::R_MIPS16_CALL16:
9160     case elfcpp::R_MIPS_CALL16:
9161     case elfcpp::R_MIPS_CALL_HI16:
9162     case elfcpp::R_MIPS_CALL_LO16:
9163     case elfcpp::R_MIPS_JALR:
9164     case elfcpp::R_MICROMIPS_CALL16:
9165     case elfcpp::R_MICROMIPS_CALL_HI16:
9166     case elfcpp::R_MICROMIPS_CALL_LO16:
9167     case elfcpp::R_MICROMIPS_JALR:
9168       if (!mips_sym->no_lazy_stub())
9169         {
9170           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9171               // Calls from shared objects to undefined symbols of type
9172               // STT_NOTYPE need lazy-binding stub.
9173               || (mips_sym->is_undefined() && parameters->options().shared()))
9174             target->mips_stubs_section(layout)->make_entry(mips_sym);
9175         }
9176       break;
9177     default:
9178       {
9179         // We must not create a stub for a symbol that has relocations
9180         // related to taking the function's address.
9181         mips_sym->set_no_lazy_stub();
9182         target->remove_lazy_stub_entry(mips_sym);
9183         break;
9184       }
9185   }
9186
9187   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9188                                                    mips_sym->is_mips16()))
9189     mips_sym->set_has_nonpic_branches();
9190
9191   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9192   // and has a special meaning.
9193   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9194                                && strcmp(gsym->name(), "_gp_disp") == 0
9195                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9196   if (static_reloc && gsym->needs_plt_entry())
9197     {
9198       target->make_plt_entry(symtab, layout, mips_sym, r_type);
9199
9200       // Since this is not a PC-relative relocation, we may be
9201       // taking the address of a function.  In that case we need to
9202       // set the entry in the dynamic symbol table to the address of
9203       // the PLT entry.
9204       if (gsym->is_from_dynobj() && !parameters->options().shared())
9205         {
9206           gsym->set_needs_dynsym_value();
9207           // We distinguish between PLT entries and lazy-binding stubs by
9208           // giving the former an st_other value of STO_MIPS_PLT.  Set the
9209           // flag if there are any relocations in the binary where pointer
9210           // equality matters.
9211           if (mips_sym->pointer_equality_needed())
9212             mips_sym->set_mips_plt();
9213         }
9214     }
9215   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9216     {
9217       // Absolute addressing relocations.
9218       // Make a dynamic relocation if necessary.
9219       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9220         {
9221           if (gsym->may_need_copy_reloc())
9222             {
9223               target->copy_reloc(symtab, layout, object,
9224                                  data_shndx, output_section, gsym, *rel);
9225             }
9226           else if (can_make_dynamic)
9227             {
9228               // Create .rel.dyn section.
9229               target->rel_dyn_section(layout);
9230               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9231                                     data_shndx, output_section, r_offset);
9232             }
9233           else
9234             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9235                        gsym->name());
9236         }
9237     }
9238
9239   bool for_call = false;
9240   switch (r_type)
9241     {
9242     case elfcpp::R_MIPS_CALL16:
9243     case elfcpp::R_MIPS16_CALL16:
9244     case elfcpp::R_MICROMIPS_CALL16:
9245     case elfcpp::R_MIPS_CALL_HI16:
9246     case elfcpp::R_MIPS_CALL_LO16:
9247     case elfcpp::R_MICROMIPS_CALL_HI16:
9248     case elfcpp::R_MICROMIPS_CALL_LO16:
9249       for_call = true;
9250       // Fall through.
9251
9252     case elfcpp::R_MIPS16_GOT16:
9253     case elfcpp::R_MIPS_GOT16:
9254     case elfcpp::R_MIPS_GOT_HI16:
9255     case elfcpp::R_MIPS_GOT_LO16:
9256     case elfcpp::R_MICROMIPS_GOT16:
9257     case elfcpp::R_MICROMIPS_GOT_HI16:
9258     case elfcpp::R_MICROMIPS_GOT_LO16:
9259     case elfcpp::R_MIPS_GOT_DISP:
9260     case elfcpp::R_MICROMIPS_GOT_DISP:
9261       {
9262         // The symbol requires a GOT entry.
9263         Mips_output_data_got<size, big_endian>* got =
9264           target->got_section(symtab, layout);
9265         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9266                                       for_call);
9267         mips_sym->set_global_got_area(GGA_NORMAL);
9268       }
9269       break;
9270
9271     case elfcpp::R_MIPS_GOT_PAGE:
9272     case elfcpp::R_MICROMIPS_GOT_PAGE:
9273       {
9274         // This relocation needs a page entry in the GOT.
9275         // Get the section contents.
9276         section_size_type view_size = 0;
9277         const unsigned char* view =
9278           object->section_contents(data_shndx, &view_size, false);
9279         view += r_offset;
9280
9281         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9282         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9283                                                         : r_addend);
9284         Mips_output_data_got<size, big_endian>* got =
9285           target->got_section(symtab, layout);
9286         got->record_got_page_entry(mips_obj, r_sym, addend);
9287
9288         // If this is a global, overridable symbol, GOT_PAGE will
9289         // decay to GOT_DISP, so we'll need a GOT entry for it.
9290         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9291                             && !mips_sym->object()->is_dynamic()
9292                             && !mips_sym->is_undefined());
9293         if (!def_regular
9294             || (parameters->options().output_is_position_independent()
9295                 && !parameters->options().Bsymbolic()
9296                 && !mips_sym->is_forced_local()))
9297           {
9298             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9299                                           for_call);
9300             mips_sym->set_global_got_area(GGA_NORMAL);
9301           }
9302       }
9303       break;
9304
9305     case elfcpp::R_MIPS_TLS_GOTTPREL:
9306     case elfcpp::R_MIPS16_TLS_GOTTPREL:
9307     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9308     case elfcpp::R_MIPS_TLS_LDM:
9309     case elfcpp::R_MIPS16_TLS_LDM:
9310     case elfcpp::R_MICROMIPS_TLS_LDM:
9311     case elfcpp::R_MIPS_TLS_GD:
9312     case elfcpp::R_MIPS16_TLS_GD:
9313     case elfcpp::R_MICROMIPS_TLS_GD:
9314       {
9315         const bool is_final = gsym->final_value_is_known();
9316         const tls::Tls_optimization optimized_type =
9317           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9318
9319         switch (r_type)
9320           {
9321           case elfcpp::R_MIPS_TLS_GD:
9322           case elfcpp::R_MIPS16_TLS_GD:
9323           case elfcpp::R_MICROMIPS_TLS_GD:
9324             if (optimized_type == tls::TLSOPT_NONE)
9325               {
9326                 // Create a pair of GOT entries for the module index and
9327                 // dtv-relative offset.
9328                 Mips_output_data_got<size, big_endian>* got =
9329                   target->got_section(symtab, layout);
9330                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9331                                               false);
9332               }
9333             else
9334               {
9335                 // FIXME: TLS optimization not supported yet.
9336                 gold_unreachable();
9337               }
9338             break;
9339
9340           case elfcpp::R_MIPS_TLS_LDM:
9341           case elfcpp::R_MIPS16_TLS_LDM:
9342           case elfcpp::R_MICROMIPS_TLS_LDM:
9343             if (optimized_type == tls::TLSOPT_NONE)
9344               {
9345                 // We always record LDM symbols as local with index 0.
9346                 target->got_section()->record_local_got_symbol(mips_obj, 0,
9347                                                                r_addend, r_type,
9348                                                                -1U);
9349               }
9350             else
9351               {
9352                 // FIXME: TLS optimization not supported yet.
9353                 gold_unreachable();
9354               }
9355             break;
9356           case elfcpp::R_MIPS_TLS_GOTTPREL:
9357           case elfcpp::R_MIPS16_TLS_GOTTPREL:
9358           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9359             layout->set_has_static_tls();
9360             if (optimized_type == tls::TLSOPT_NONE)
9361               {
9362                 // Create a GOT entry for the tp-relative offset.
9363                 Mips_output_data_got<size, big_endian>* got =
9364                   target->got_section(symtab, layout);
9365                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9366                                               false);
9367               }
9368             else
9369               {
9370                 // FIXME: TLS optimization not supported yet.
9371                 gold_unreachable();
9372               }
9373             break;
9374
9375           default:
9376             gold_unreachable();
9377         }
9378       }
9379       break;
9380     case elfcpp::R_MIPS_COPY:
9381     case elfcpp::R_MIPS_JUMP_SLOT:
9382       // These are relocations which should only be seen by the
9383       // dynamic linker, and should never be seen here.
9384       gold_error(_("%s: unexpected reloc %u in object file"),
9385                  object->name().c_str(), r_type);
9386       break;
9387
9388     default:
9389       break;
9390     }
9391
9392   // Refuse some position-dependent relocations when creating a
9393   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
9394   // not PIC, but we can create dynamic relocations and the result
9395   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
9396   // combined with R_MIPS_GOT16.
9397   if (parameters->options().shared())
9398     {
9399       switch (r_type)
9400         {
9401         case elfcpp::R_MIPS16_HI16:
9402         case elfcpp::R_MIPS_HI16:
9403         case elfcpp::R_MICROMIPS_HI16:
9404           // Don't refuse a high part relocation if it's against
9405           // no symbol (e.g. part of a compound relocation).
9406           if (r_sym == 0)
9407             break;
9408
9409           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9410           // and has a special meaning.
9411           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9412             break;
9413
9414           // FALLTHROUGH
9415
9416         case elfcpp::R_MIPS16_26:
9417         case elfcpp::R_MIPS_26:
9418         case elfcpp::R_MICROMIPS_26_S1:
9419           gold_error(_("%s: relocation %u against `%s' can not be used when "
9420                        "making a shared object; recompile with -fPIC"),
9421                      object->name().c_str(), r_type, gsym->name());
9422         default:
9423           break;
9424         }
9425     }
9426 }
9427
9428 template<int size, bool big_endian>
9429 inline void
9430 Target_mips<size, big_endian>::Scan::global(
9431                                 Symbol_table* symtab,
9432                                 Layout* layout,
9433                                 Target_mips<size, big_endian>* target,
9434                                 Sized_relobj_file<size, big_endian>* object,
9435                                 unsigned int data_shndx,
9436                                 Output_section* output_section,
9437                                 const elfcpp::Rela<size, big_endian>& reloc,
9438                                 unsigned int r_type,
9439                                 Symbol* gsym)
9440 {
9441   global(
9442     symtab,
9443     layout,
9444     target,
9445     object,
9446     data_shndx,
9447     output_section,
9448     &reloc,
9449     (const elfcpp::Rel<size, big_endian>*) NULL,
9450     elfcpp::SHT_RELA,
9451     r_type,
9452     gsym);
9453 }
9454
9455 template<int size, bool big_endian>
9456 inline void
9457 Target_mips<size, big_endian>::Scan::global(
9458                                 Symbol_table* symtab,
9459                                 Layout* layout,
9460                                 Target_mips<size, big_endian>* target,
9461                                 Sized_relobj_file<size, big_endian>* object,
9462                                 unsigned int data_shndx,
9463                                 Output_section* output_section,
9464                                 const elfcpp::Rel<size, big_endian>& reloc,
9465                                 unsigned int r_type,
9466                                 Symbol* gsym)
9467 {
9468   global(
9469     symtab,
9470     layout,
9471     target,
9472     object,
9473     data_shndx,
9474     output_section,
9475     (const elfcpp::Rela<size, big_endian>*) NULL,
9476     &reloc,
9477     elfcpp::SHT_REL,
9478     r_type,
9479     gsym);
9480 }
9481
9482 // Return whether a R_MIPS_32 relocation needs to be applied.
9483
9484 template<int size, bool big_endian>
9485 inline bool
9486 Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9487     const Mips_symbol<size>* gsym,
9488     unsigned int r_type,
9489     Output_section* output_section,
9490     Target_mips* target)
9491 {
9492   // If the output section is not allocated, then we didn't call
9493   // scan_relocs, we didn't create a dynamic reloc, and we must apply
9494   // the reloc here.
9495   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9496       return true;
9497
9498   if (gsym == NULL)
9499     return true;
9500   else
9501     {
9502       // For global symbols, we use the same helper routines used in the
9503       // scan pass.
9504       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9505           && !gsym->may_need_copy_reloc())
9506         {
9507           // We have generated dynamic reloc (R_MIPS_REL32).
9508
9509           bool multi_got = false;
9510           if (target->has_got_section())
9511             multi_got = target->got_section()->multi_got();
9512           bool has_got_offset;
9513           if (!multi_got)
9514             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9515           else
9516             has_got_offset = gsym->global_gotoffset() != -1U;
9517           if (!has_got_offset)
9518             return true;
9519           else
9520             // Apply the relocation only if the symbol is in the local got.
9521             // Do not apply the relocation if the symbol is in the global
9522             // got.
9523             return symbol_references_local(gsym, gsym->has_dynsym_index());
9524         }
9525       else
9526         // We have not generated dynamic reloc.
9527         return true;
9528     }
9529 }
9530
9531 // Perform a relocation.
9532
9533 template<int size, bool big_endian>
9534 inline bool
9535 Target_mips<size, big_endian>::Relocate::relocate(
9536                         const Relocate_info<size, big_endian>* relinfo,
9537                         unsigned int rel_type,
9538                         Target_mips* target,
9539                         Output_section* output_section,
9540                         size_t relnum,
9541                         const unsigned char* preloc,
9542                         const Sized_symbol<size>* gsym,
9543                         const Symbol_value<size>* psymval,
9544                         unsigned char* view,
9545                         Mips_address address,
9546                         section_size_type)
9547 {
9548   Mips_address r_offset;
9549   typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9550   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9551
9552   if (rel_type == elfcpp::SHT_RELA)
9553     {
9554       const elfcpp::Rela<size, big_endian> rela(preloc);
9555       r_offset = rela.get_r_offset();
9556       r_info = rela.get_r_info();
9557       r_addend = rela.get_r_addend();
9558     }
9559   else
9560     {
9561       const elfcpp::Rel<size, big_endian> rel(preloc);
9562       r_offset = rel.get_r_offset();
9563       r_info = rel.get_r_info();
9564       r_addend = 0;
9565     }
9566   unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9567
9568   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9569   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9570
9571   Mips_relobj<size, big_endian>* object =
9572     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9573
9574   unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9575   bool target_is_16_bit_code = false;
9576   bool target_is_micromips_code = false;
9577   bool cross_mode_jump;
9578
9579   Symbol_value<size> symval;
9580
9581   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9582
9583   bool changed_symbol_value = false;
9584   if (gsym == NULL)
9585     {
9586       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9587       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9588       if (target_is_16_bit_code || target_is_micromips_code)
9589         {
9590           // MIPS16/microMIPS text labels should be treated as odd.
9591           symval.set_output_value(psymval->value(object, 1));
9592           psymval = &symval;
9593           changed_symbol_value = true;
9594         }
9595     }
9596   else
9597     {
9598       target_is_16_bit_code = mips_sym->is_mips16();
9599       target_is_micromips_code = mips_sym->is_micromips();
9600
9601       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9602       // it odd.  This will cause something like .word SYM to come up with
9603       // the right value when it is loaded into the PC.
9604
9605       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9606           && psymval->value(object, 0) != 0)
9607         {
9608           symval.set_output_value(psymval->value(object, 0) | 1);
9609           psymval = &symval;
9610           changed_symbol_value = true;
9611         }
9612
9613       // Pick the value to use for symbols defined in shared objects.
9614       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9615           || mips_sym->has_lazy_stub())
9616         {
9617           Mips_address value;
9618           if (!mips_sym->has_lazy_stub())
9619             {
9620               // Prefer a standard MIPS PLT entry.
9621               if (mips_sym->has_mips_plt_offset())
9622                 {
9623                   value = target->plt_section()->mips_entry_address(mips_sym);
9624                   target_is_micromips_code = false;
9625                   target_is_16_bit_code = false;
9626                 }
9627               else
9628                 {
9629                   value = (target->plt_section()->comp_entry_address(mips_sym)
9630                            + 1);
9631                   if (target->is_output_micromips())
9632                     target_is_micromips_code = true;
9633                   else
9634                     target_is_16_bit_code = true;
9635                 }
9636             }
9637           else
9638             value = target->mips_stubs_section()->stub_address(mips_sym);
9639
9640           symval.set_output_value(value);
9641           psymval = &symval;
9642         }
9643     }
9644
9645   // TRUE if the symbol referred to by this relocation is "_gp_disp".
9646   // Note that such a symbol must always be a global symbol.
9647   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9648                   && !object->is_newabi());
9649
9650   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9651   // Note that such a symbol must always be a global symbol.
9652   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9653
9654
9655   if (gp_disp)
9656     {
9657       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9658         gold_error_at_location(relinfo, relnum, r_offset,
9659           _("relocations against _gp_disp are permitted only"
9660             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9661     }
9662   else if (gnu_local_gp)
9663     {
9664       // __gnu_local_gp is _gp symbol.
9665       symval.set_output_value(target->adjusted_gp_value(object));
9666       psymval = &symval;
9667     }
9668
9669   // If this is a reference to a 16-bit function with a stub, we need
9670   // to redirect the relocation to the stub unless:
9671   //
9672   // (a) the relocation is for a MIPS16 JAL;
9673   //
9674   // (b) the relocation is for a MIPS16 PIC call, and there are no
9675   //     non-MIPS16 uses of the GOT slot; or
9676   //
9677   // (c) the section allows direct references to MIPS16 functions.
9678   if (r_type != elfcpp::R_MIPS16_26
9679       && !parameters->options().relocatable()
9680       && ((mips_sym != NULL
9681            && mips_sym->has_mips16_fn_stub()
9682            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9683           || (mips_sym == NULL
9684               && object->get_local_mips16_fn_stub(r_sym) != NULL))
9685       && !object->section_allows_mips16_refs(relinfo->data_shndx))
9686     {
9687       // This is a 32- or 64-bit call to a 16-bit function.  We should
9688       // have already noticed that we were going to need the
9689       // stub.
9690       Mips_address value;
9691       if (mips_sym == NULL)
9692         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9693       else
9694         {
9695           gold_assert(mips_sym->need_fn_stub());
9696           if (mips_sym->has_la25_stub())
9697             value = target->la25_stub_section()->stub_address(mips_sym);
9698           else
9699             {
9700               value = mips_sym->template
9701                       get_mips16_fn_stub<big_endian>()->output_address();
9702             }
9703           }
9704       symval.set_output_value(value);
9705       psymval = &symval;
9706       changed_symbol_value = true;
9707
9708       // The target is 16-bit, but the stub isn't.
9709       target_is_16_bit_code = false;
9710     }
9711   // If this is a MIPS16 call with a stub, that is made through the PLT or
9712   // to a standard MIPS function, we need to redirect the call to the stub.
9713   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9714   // indirect calls should use an indirect stub instead.
9715   else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9716            && ((mips_sym != NULL
9717                 && (mips_sym->has_mips16_call_stub()
9718                     || mips_sym->has_mips16_call_fp_stub()))
9719                || (mips_sym == NULL
9720                    && object->get_local_mips16_call_stub(r_sym) != NULL))
9721            && ((mips_sym != NULL && mips_sym->has_plt_offset())
9722                || !target_is_16_bit_code))
9723     {
9724       Mips16_stub_section<size, big_endian>* call_stub;
9725       if (mips_sym == NULL)
9726         call_stub = object->get_local_mips16_call_stub(r_sym);
9727       else
9728         {
9729           // If both call_stub and call_fp_stub are defined, we can figure
9730           // out which one to use by checking which one appears in the input
9731           // file.
9732           if (mips_sym->has_mips16_call_stub()
9733               && mips_sym->has_mips16_call_fp_stub())
9734             {
9735               call_stub = NULL;
9736               for (unsigned int i = 1; i < object->shnum(); ++i)
9737                 {
9738                   if (object->is_mips16_call_fp_stub_section(i))
9739                     {
9740                       call_stub = mips_sym->template
9741                                   get_mips16_call_fp_stub<big_endian>();
9742                       break;
9743                     }
9744
9745                 }
9746               if (call_stub == NULL)
9747                 call_stub =
9748                   mips_sym->template get_mips16_call_stub<big_endian>();
9749             }
9750           else if (mips_sym->has_mips16_call_stub())
9751             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
9752           else
9753             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
9754         }
9755
9756       symval.set_output_value(call_stub->output_address());
9757       psymval = &symval;
9758       changed_symbol_value = true;
9759     }
9760   // If this is a direct call to a PIC function, redirect to the
9761   // non-PIC stub.
9762   else if (mips_sym != NULL
9763            && mips_sym->has_la25_stub()
9764            && relocation_needs_la25_stub<size, big_endian>(
9765                                        object, r_type, target_is_16_bit_code))
9766     {
9767       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
9768       if (mips_sym->is_micromips())
9769         value += 1;
9770       symval.set_output_value(value);
9771       psymval = &symval;
9772     }
9773   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
9774   // entry is used if a standard PLT entry has also been made.
9775   else if ((r_type == elfcpp::R_MIPS16_26
9776             || r_type == elfcpp::R_MICROMIPS_26_S1)
9777           && !parameters->options().relocatable()
9778           && mips_sym != NULL
9779           && mips_sym->has_plt_offset()
9780           && mips_sym->has_comp_plt_offset()
9781           && mips_sym->has_mips_plt_offset())
9782     {
9783       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
9784                             + 1);
9785       symval.set_output_value(value);
9786       psymval = &symval;
9787
9788       target_is_16_bit_code = !target->is_output_micromips();
9789       target_is_micromips_code = target->is_output_micromips();
9790     }
9791
9792   // Make sure MIPS16 and microMIPS are not used together.
9793   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
9794       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
9795    {
9796       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
9797    }
9798
9799   // Calls from 16-bit code to 32-bit code and vice versa require the
9800   // mode change.  However, we can ignore calls to undefined weak symbols,
9801   // which should never be executed at runtime.  This exception is important
9802   // because the assembly writer may have "known" that any definition of the
9803   // symbol would be 16-bit code, and that direct jumps were therefore
9804   // acceptable.
9805   cross_mode_jump =
9806     (!parameters->options().relocatable()
9807      && !(gsym != NULL && gsym->is_weak_undefined())
9808      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
9809          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
9810          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
9811              && (target_is_16_bit_code || target_is_micromips_code))));
9812
9813   bool local = (mips_sym == NULL
9814                 || (mips_sym->got_only_for_calls()
9815                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
9816                     : symbol_references_local(mips_sym,
9817                                               mips_sym->has_dynsym_index())));
9818
9819   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
9820   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
9821   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
9822   if (got_page_reloc(r_type) && !local)
9823     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
9824                                       : elfcpp::R_MIPS_GOT_DISP);
9825
9826   unsigned int got_offset = 0;
9827   int gp_offset = 0;
9828
9829   bool update_got_entry = false;
9830   bool extract_addend = rel_type == elfcpp::SHT_REL;
9831   switch (r_type)
9832     {
9833     case elfcpp::R_MIPS_NONE:
9834       break;
9835     case elfcpp::R_MIPS_16:
9836       reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
9837                                         extract_addend, r_type);
9838       break;
9839
9840     case elfcpp::R_MIPS_32:
9841       if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
9842                                        target))
9843         reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
9844                                           extract_addend, r_type);
9845       if (mips_sym != NULL
9846           && (mips_sym->is_mips16() || mips_sym->is_micromips())
9847           && mips_sym->global_got_area() == GGA_RELOC_ONLY)
9848         {
9849           // If mips_sym->has_mips16_fn_stub() is false, symbol value is
9850           // already updated by adding +1.
9851           if (mips_sym->has_mips16_fn_stub())
9852             {
9853               gold_assert(mips_sym->need_fn_stub());
9854               Mips16_stub_section<size, big_endian>* fn_stub =
9855                 mips_sym->template get_mips16_fn_stub<big_endian>();
9856
9857               symval.set_output_value(fn_stub->output_address());
9858               psymval = &symval;
9859             }
9860           got_offset = mips_sym->global_gotoffset();
9861           update_got_entry = true;
9862         }
9863       break;
9864
9865     case elfcpp::R_MIPS_REL32:
9866       gold_unreachable();
9867
9868     case elfcpp::R_MIPS_PC32:
9869       reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
9870                                           r_addend, extract_addend, r_type);
9871       break;
9872
9873     case elfcpp::R_MIPS16_26:
9874       // The calculation for R_MIPS16_26 is just the same as for an
9875       // R_MIPS_26.  It's only the storage of the relocated field into
9876       // the output file that's different.  So, we just fall through to the
9877       // R_MIPS_26 case here.
9878     case elfcpp::R_MIPS_26:
9879     case elfcpp::R_MICROMIPS_26_S1:
9880       reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
9881           gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
9882           target->jal_to_bal());
9883       break;
9884
9885     case elfcpp::R_MIPS_HI16:
9886     case elfcpp::R_MIPS16_HI16:
9887     case elfcpp::R_MICROMIPS_HI16:
9888       reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
9889                                           address, gp_disp, r_type, r_sym,
9890                                           extract_addend);
9891       break;
9892
9893     case elfcpp::R_MIPS_LO16:
9894     case elfcpp::R_MIPS16_LO16:
9895     case elfcpp::R_MICROMIPS_LO16:
9896     case elfcpp::R_MICROMIPS_HI0_LO16:
9897       reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
9898                                           r_addend, extract_addend, address,
9899                                           gp_disp, r_type, r_sym);
9900       break;
9901
9902     case elfcpp::R_MIPS_LITERAL:
9903     case elfcpp::R_MICROMIPS_LITERAL:
9904       // Because we don't merge literal sections, we can handle this
9905       // just like R_MIPS_GPREL16.  In the long run, we should merge
9906       // shared literals, and then we will need to additional work
9907       // here.
9908
9909       // Fall through.
9910
9911     case elfcpp::R_MIPS_GPREL16:
9912     case elfcpp::R_MIPS16_GPREL:
9913     case elfcpp::R_MICROMIPS_GPREL7_S2:
9914     case elfcpp::R_MICROMIPS_GPREL16:
9915       reloc_status = Reloc_funcs::relgprel(view, object, psymval,
9916                                            target->adjusted_gp_value(object),
9917                                            r_addend, extract_addend,
9918                                            gsym == NULL, r_type);
9919       break;
9920
9921     case elfcpp::R_MIPS_PC16:
9922       reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
9923                                           r_addend, extract_addend, r_type);
9924       break;
9925     case elfcpp::R_MICROMIPS_PC7_S1:
9926       reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
9927                                                       address, r_addend,
9928                                                       extract_addend, r_type);
9929       break;
9930     case elfcpp::R_MICROMIPS_PC10_S1:
9931       reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
9932                                                        address, r_addend,
9933                                                        extract_addend, r_type);
9934       break;
9935     case elfcpp::R_MICROMIPS_PC16_S1:
9936       reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
9937                                                        address, r_addend,
9938                                                        extract_addend, r_type);
9939       break;
9940     case elfcpp::R_MIPS_GPREL32:
9941       reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
9942                                              target->adjusted_gp_value(object),
9943                                              r_addend, extract_addend, r_type);
9944       break;
9945     case elfcpp::R_MIPS_GOT_HI16:
9946     case elfcpp::R_MIPS_CALL_HI16:
9947     case elfcpp::R_MICROMIPS_GOT_HI16:
9948     case elfcpp::R_MICROMIPS_CALL_HI16:
9949       if (gsym != NULL)
9950         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9951                                                        object);
9952       else
9953         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9954                                                        object);
9955       gp_offset = target->got_section()->gp_offset(got_offset, object);
9956       reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
9957       update_got_entry = changed_symbol_value;
9958       break;
9959
9960     case elfcpp::R_MIPS_GOT_LO16:
9961     case elfcpp::R_MIPS_CALL_LO16:
9962     case elfcpp::R_MICROMIPS_GOT_LO16:
9963     case elfcpp::R_MICROMIPS_CALL_LO16:
9964       if (gsym != NULL)
9965         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9966                                                        object);
9967       else
9968         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9969                                                        object);
9970       gp_offset = target->got_section()->gp_offset(got_offset, object);
9971       reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
9972       update_got_entry = changed_symbol_value;
9973       break;
9974
9975     case elfcpp::R_MIPS_GOT_DISP:
9976     case elfcpp::R_MICROMIPS_GOT_DISP:
9977       if (gsym != NULL)
9978         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9979                                                        object);
9980       else
9981         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9982                                                        object);
9983       gp_offset = target->got_section()->gp_offset(got_offset, object);
9984       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
9985       break;
9986
9987     case elfcpp::R_MIPS_CALL16:
9988     case elfcpp::R_MIPS16_CALL16:
9989     case elfcpp::R_MICROMIPS_CALL16:
9990       gold_assert(gsym != NULL);
9991       got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9992                                                      object);
9993       gp_offset = target->got_section()->gp_offset(got_offset, object);
9994       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
9995       // TODO(sasa): We should also initialize update_got_entry in other places
9996       // where relgot is called.
9997       update_got_entry = changed_symbol_value;
9998       break;
9999
10000     case elfcpp::R_MIPS_GOT16:
10001     case elfcpp::R_MIPS16_GOT16:
10002     case elfcpp::R_MICROMIPS_GOT16:
10003       if (gsym != NULL)
10004         {
10005           got_offset = target->got_section()->got_offset(gsym,
10006                                                          GOT_TYPE_STANDARD,
10007                                                          object);
10008           gp_offset = target->got_section()->gp_offset(got_offset, object);
10009           reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10010         }
10011       else
10012         reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10013                                                    r_addend, extract_addend,
10014                                                    r_type, r_sym);
10015       update_got_entry = changed_symbol_value;
10016       break;
10017
10018     case elfcpp::R_MIPS_TLS_GD:
10019     case elfcpp::R_MIPS16_TLS_GD:
10020     case elfcpp::R_MICROMIPS_TLS_GD:
10021       if (gsym != NULL)
10022         got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10023                                                        object);
10024       else
10025         got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10026                                                        object);
10027       gp_offset = target->got_section()->gp_offset(got_offset, object);
10028       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10029       break;
10030
10031     case elfcpp::R_MIPS_TLS_GOTTPREL:
10032     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10033     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10034       if (gsym != NULL)
10035         got_offset = target->got_section()->got_offset(gsym,
10036                                                        GOT_TYPE_TLS_OFFSET,
10037                                                        object);
10038       else
10039         got_offset = target->got_section()->got_offset(r_sym,
10040                                                        GOT_TYPE_TLS_OFFSET,
10041                                                        object);
10042       gp_offset = target->got_section()->gp_offset(got_offset, object);
10043       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10044       break;
10045
10046     case elfcpp::R_MIPS_TLS_LDM:
10047     case elfcpp::R_MIPS16_TLS_LDM:
10048     case elfcpp::R_MICROMIPS_TLS_LDM:
10049       // Relocate the field with the offset of the GOT entry for
10050       // the module index.
10051       got_offset = target->got_section()->tls_ldm_offset(object);
10052       gp_offset = target->got_section()->gp_offset(got_offset, object);
10053       reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10054       break;
10055
10056     case elfcpp::R_MIPS_GOT_PAGE:
10057     case elfcpp::R_MICROMIPS_GOT_PAGE:
10058       reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10059                                              r_addend, extract_addend, r_type);
10060       break;
10061
10062     case elfcpp::R_MIPS_GOT_OFST:
10063     case elfcpp::R_MICROMIPS_GOT_OFST:
10064       reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10065                                              r_addend, extract_addend, local,
10066                                              r_type);
10067       break;
10068
10069     case elfcpp::R_MIPS_JALR:
10070     case elfcpp::R_MICROMIPS_JALR:
10071       // This relocation is only a hint.  In some cases, we optimize
10072       // it into a bal instruction.  But we don't try to optimize
10073       // when the symbol does not resolve locally.
10074       if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10075         reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10076                                             r_addend, extract_addend,
10077                                             cross_mode_jump, r_type,
10078                                             target->jalr_to_bal(),
10079                                             target->jr_to_b());
10080       break;
10081
10082     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10083     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10084     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10085       reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10086                                              elfcpp::DTP_OFFSET, r_addend,
10087                                              extract_addend, r_type);
10088       break;
10089     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10090     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10091     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10092       reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10093                                              elfcpp::DTP_OFFSET, r_addend,
10094                                              extract_addend, r_type);
10095       break;
10096     case elfcpp::R_MIPS_TLS_DTPREL32:
10097     case elfcpp::R_MIPS_TLS_DTPREL64:
10098       reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10099                                            elfcpp::DTP_OFFSET, r_addend,
10100                                            extract_addend, r_type);
10101       break;
10102     case elfcpp::R_MIPS_TLS_TPREL_HI16:
10103     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10104     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10105       reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10106                                              elfcpp::TP_OFFSET, r_addend,
10107                                              extract_addend, r_type);
10108       break;
10109     case elfcpp::R_MIPS_TLS_TPREL_LO16:
10110     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10111     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10112       reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10113                                              elfcpp::TP_OFFSET, r_addend,
10114                                              extract_addend, r_type);
10115       break;
10116     case elfcpp::R_MIPS_TLS_TPREL32:
10117     case elfcpp::R_MIPS_TLS_TPREL64:
10118       reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10119                                            elfcpp::TP_OFFSET, r_addend,
10120                                            extract_addend, r_type);
10121       break;
10122     case elfcpp::R_MIPS_SUB:
10123     case elfcpp::R_MICROMIPS_SUB:
10124       reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10125                                          extract_addend, r_type);
10126       break;
10127     default:
10128       gold_error_at_location(relinfo, relnum, r_offset,
10129                              _("unsupported reloc %u"), r_type);
10130       break;
10131     }
10132
10133   if (update_got_entry)
10134     {
10135       Mips_output_data_got<size, big_endian>* got = target->got_section();
10136       if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10137         got->update_got_entry(got->get_primary_got_offset(mips_sym),
10138                               psymval->value(object, 0));
10139       else
10140         got->update_got_entry(got_offset, psymval->value(object, 0));
10141     }
10142
10143   // Report any errors.
10144   switch (reloc_status)
10145     {
10146     case Reloc_funcs::STATUS_OKAY:
10147       break;
10148     case Reloc_funcs::STATUS_OVERFLOW:
10149       gold_error_at_location(relinfo, relnum, r_offset,
10150                              _("relocation overflow"));
10151       break;
10152     case Reloc_funcs::STATUS_BAD_RELOC:
10153       gold_error_at_location(relinfo, relnum, r_offset,
10154         _("unexpected opcode while processing relocation"));
10155       break;
10156     default:
10157       gold_unreachable();
10158     }
10159
10160   return true;
10161 }
10162
10163 // Get the Reference_flags for a particular relocation.
10164
10165 template<int size, bool big_endian>
10166 int
10167 Target_mips<size, big_endian>::Scan::get_reference_flags(
10168                        unsigned int r_type)
10169 {
10170   switch (r_type)
10171     {
10172     case elfcpp::R_MIPS_NONE:
10173       // No symbol reference.
10174       return 0;
10175
10176     case elfcpp::R_MIPS_16:
10177     case elfcpp::R_MIPS_32:
10178     case elfcpp::R_MIPS_64:
10179     case elfcpp::R_MIPS_HI16:
10180     case elfcpp::R_MIPS_LO16:
10181     case elfcpp::R_MIPS16_HI16:
10182     case elfcpp::R_MIPS16_LO16:
10183     case elfcpp::R_MICROMIPS_HI16:
10184     case elfcpp::R_MICROMIPS_LO16:
10185       return Symbol::ABSOLUTE_REF;
10186
10187     case elfcpp::R_MIPS_26:
10188     case elfcpp::R_MIPS16_26:
10189     case elfcpp::R_MICROMIPS_26_S1:
10190       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10191
10192     case elfcpp::R_MIPS_GPREL32:
10193     case elfcpp::R_MIPS_GPREL16:
10194     case elfcpp::R_MIPS_REL32:
10195     case elfcpp::R_MIPS16_GPREL:
10196       return Symbol::RELATIVE_REF;
10197
10198     case elfcpp::R_MIPS_PC16:
10199     case elfcpp::R_MIPS_PC32:
10200     case elfcpp::R_MIPS_JALR:
10201     case elfcpp::R_MICROMIPS_JALR:
10202       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10203
10204     case elfcpp::R_MIPS_GOT16:
10205     case elfcpp::R_MIPS_CALL16:
10206     case elfcpp::R_MIPS_GOT_DISP:
10207     case elfcpp::R_MIPS_GOT_HI16:
10208     case elfcpp::R_MIPS_GOT_LO16:
10209     case elfcpp::R_MIPS_CALL_HI16:
10210     case elfcpp::R_MIPS_CALL_LO16:
10211     case elfcpp::R_MIPS_LITERAL:
10212     case elfcpp::R_MIPS_GOT_PAGE:
10213     case elfcpp::R_MIPS_GOT_OFST:
10214     case elfcpp::R_MIPS16_GOT16:
10215     case elfcpp::R_MIPS16_CALL16:
10216     case elfcpp::R_MICROMIPS_GOT16:
10217     case elfcpp::R_MICROMIPS_CALL16:
10218     case elfcpp::R_MICROMIPS_GOT_HI16:
10219     case elfcpp::R_MICROMIPS_GOT_LO16:
10220     case elfcpp::R_MICROMIPS_CALL_HI16:
10221     case elfcpp::R_MICROMIPS_CALL_LO16:
10222       // Absolute in GOT.
10223       return Symbol::RELATIVE_REF;
10224
10225     case elfcpp::R_MIPS_TLS_DTPMOD32:
10226     case elfcpp::R_MIPS_TLS_DTPREL32:
10227     case elfcpp::R_MIPS_TLS_DTPMOD64:
10228     case elfcpp::R_MIPS_TLS_DTPREL64:
10229     case elfcpp::R_MIPS_TLS_GD:
10230     case elfcpp::R_MIPS_TLS_LDM:
10231     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10232     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10233     case elfcpp::R_MIPS_TLS_GOTTPREL:
10234     case elfcpp::R_MIPS_TLS_TPREL32:
10235     case elfcpp::R_MIPS_TLS_TPREL64:
10236     case elfcpp::R_MIPS_TLS_TPREL_HI16:
10237     case elfcpp::R_MIPS_TLS_TPREL_LO16:
10238     case elfcpp::R_MIPS16_TLS_GD:
10239     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10240     case elfcpp::R_MICROMIPS_TLS_GD:
10241     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10242     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10243     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10244       return Symbol::TLS_REF;
10245
10246     case elfcpp::R_MIPS_COPY:
10247     case elfcpp::R_MIPS_JUMP_SLOT:
10248     default:
10249       gold_unreachable();
10250       // Not expected.  We will give an error later.
10251       return 0;
10252     }
10253 }
10254
10255 // Report an unsupported relocation against a local symbol.
10256
10257 template<int size, bool big_endian>
10258 void
10259 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10260                         Sized_relobj_file<size, big_endian>* object,
10261                         unsigned int r_type)
10262 {
10263   gold_error(_("%s: unsupported reloc %u against local symbol"),
10264              object->name().c_str(), r_type);
10265 }
10266
10267 // Report an unsupported relocation against a global symbol.
10268
10269 template<int size, bool big_endian>
10270 void
10271 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10272                         Sized_relobj_file<size, big_endian>* object,
10273                         unsigned int r_type,
10274                         Symbol* gsym)
10275 {
10276   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10277              object->name().c_str(), r_type, gsym->demangled_name().c_str());
10278 }
10279
10280 // Return printable name for ABI.
10281 template<int size, bool big_endian>
10282 const char*
10283 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10284                                                  unsigned char ei_class)
10285 {
10286   switch (e_flags & elfcpp::EF_MIPS_ABI)
10287     {
10288     case 0:
10289       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10290         return "N32";
10291       else if (elfcpp::abi_64(ei_class))
10292         return "64";
10293       else
10294         return "none";
10295     case elfcpp::E_MIPS_ABI_O32:
10296       return "O32";
10297     case elfcpp::E_MIPS_ABI_O64:
10298       return "O64";
10299     case elfcpp::E_MIPS_ABI_EABI32:
10300       return "EABI32";
10301     case elfcpp::E_MIPS_ABI_EABI64:
10302       return "EABI64";
10303     default:
10304       return "unknown abi";
10305     }
10306 }
10307
10308 template<int size, bool big_endian>
10309 const char*
10310 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10311 {
10312   switch (e_flags & elfcpp::EF_MIPS_MACH)
10313     {
10314     case elfcpp::E_MIPS_MACH_3900:
10315       return "mips:3900";
10316     case elfcpp::E_MIPS_MACH_4010:
10317       return "mips:4010";
10318     case elfcpp::E_MIPS_MACH_4100:
10319       return "mips:4100";
10320     case elfcpp::E_MIPS_MACH_4111:
10321       return "mips:4111";
10322     case elfcpp::E_MIPS_MACH_4120:
10323       return "mips:4120";
10324     case elfcpp::E_MIPS_MACH_4650:
10325       return "mips:4650";
10326     case elfcpp::E_MIPS_MACH_5400:
10327       return "mips:5400";
10328     case elfcpp::E_MIPS_MACH_5500:
10329       return "mips:5500";
10330     case elfcpp::E_MIPS_MACH_SB1:
10331       return "mips:sb1";
10332     case elfcpp::E_MIPS_MACH_9000:
10333       return "mips:9000";
10334     case elfcpp::E_MIPS_MACH_LS2E:
10335       return "mips:loongson-2e";
10336     case elfcpp::E_MIPS_MACH_LS2F:
10337       return "mips:loongson-2f";
10338     case elfcpp::E_MIPS_MACH_LS3A:
10339       return "mips:loongson-3a";
10340     case elfcpp::E_MIPS_MACH_OCTEON:
10341       return "mips:octeon";
10342     case elfcpp::E_MIPS_MACH_OCTEON2:
10343       return "mips:octeon2";
10344     case elfcpp::E_MIPS_MACH_XLR:
10345       return "mips:xlr";
10346     default:
10347       switch (e_flags & elfcpp::EF_MIPS_ARCH)
10348         {
10349         default:
10350         case elfcpp::E_MIPS_ARCH_1:
10351           return "mips:3000";
10352
10353         case elfcpp::E_MIPS_ARCH_2:
10354           return "mips:6000";
10355
10356         case elfcpp::E_MIPS_ARCH_3:
10357           return "mips:4000";
10358
10359         case elfcpp::E_MIPS_ARCH_4:
10360           return "mips:8000";
10361
10362         case elfcpp::E_MIPS_ARCH_5:
10363           return "mips:mips5";
10364
10365         case elfcpp::E_MIPS_ARCH_32:
10366           return "mips:isa32";
10367
10368         case elfcpp::E_MIPS_ARCH_64:
10369           return "mips:isa64";
10370
10371         case elfcpp::E_MIPS_ARCH_32R2:
10372           return "mips:isa32r2";
10373
10374         case elfcpp::E_MIPS_ARCH_64R2:
10375           return "mips:isa64r2";
10376         }
10377     }
10378     return "unknown CPU";
10379 }
10380
10381 template<int size, bool big_endian>
10382 const Target::Target_info Target_mips<size, big_endian>::mips_info =
10383 {
10384   size,                 // size
10385   big_endian,           // is_big_endian
10386   elfcpp::EM_MIPS,      // machine_code
10387   true,                 // has_make_symbol
10388   false,                // has_resolve
10389   false,                // has_code_fill
10390   true,                 // is_default_stack_executable
10391   false,                // can_icf_inline_merge_sections
10392   '\0',                 // wrap_char
10393   "/lib/ld.so.1",       // dynamic_linker
10394   0x400000,             // default_text_segment_address
10395   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
10396   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
10397   false,                // isolate_execinstr
10398   0,                    // rosegment_gap
10399   elfcpp::SHN_UNDEF,    // small_common_shndx
10400   elfcpp::SHN_UNDEF,    // large_common_shndx
10401   0,                    // small_common_section_flags
10402   0,                    // large_common_section_flags
10403   NULL,                 // attributes_section
10404   NULL,                 // attributes_vendor
10405   "__start",            // entry_symbol_name
10406   32,                   // hash_entry_size
10407 };
10408
10409 template<int size, bool big_endian>
10410 class Target_mips_nacl : public Target_mips<size, big_endian>
10411 {
10412  public:
10413   Target_mips_nacl()
10414     : Target_mips<size, big_endian>(&mips_nacl_info)
10415   { }
10416
10417  private:
10418   static const Target::Target_info mips_nacl_info;
10419 };
10420
10421 template<int size, bool big_endian>
10422 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
10423 {
10424   size,                 // size
10425   big_endian,           // is_big_endian
10426   elfcpp::EM_MIPS,      // machine_code
10427   true,                 // has_make_symbol
10428   false,                // has_resolve
10429   false,                // has_code_fill
10430   true,                 // is_default_stack_executable
10431   false,                // can_icf_inline_merge_sections
10432   '\0',                 // wrap_char
10433   "/lib/ld.so.1",       // dynamic_linker
10434   0x20000,              // default_text_segment_address
10435   0x10000,              // abi_pagesize (overridable by -z max-page-size)
10436   0x10000,              // common_pagesize (overridable by -z common-page-size)
10437   true,                 // isolate_execinstr
10438   0x10000000,           // rosegment_gap
10439   elfcpp::SHN_UNDEF,    // small_common_shndx
10440   elfcpp::SHN_UNDEF,    // large_common_shndx
10441   0,                    // small_common_section_flags
10442   0,                    // large_common_section_flags
10443   NULL,                 // attributes_section
10444   NULL,                 // attributes_vendor
10445   "_start",             // entry_symbol_name
10446   32,                   // hash_entry_size
10447 };
10448
10449 // Target selector for Mips.  Note this is never instantiated directly.
10450 // It's only used in Target_selector_mips_nacl, below.
10451
10452 template<int size, bool big_endian>
10453 class Target_selector_mips : public Target_selector
10454 {
10455 public:
10456   Target_selector_mips()
10457     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10458                 (size == 64 ?
10459                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10460                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10461                 (size == 64 ?
10462                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10463                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10464   { }
10465
10466   Target* do_instantiate_target()
10467   { return new Target_mips<size, big_endian>(); }
10468 };
10469
10470 template<int size, bool big_endian>
10471 class Target_selector_mips_nacl
10472   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
10473                                 Target_mips_nacl<size, big_endian> >
10474 {
10475  public:
10476   Target_selector_mips_nacl()
10477     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
10478                            Target_mips_nacl<size, big_endian> >(
10479         // NaCl currently supports only MIPS32 little-endian.
10480         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
10481   { }
10482 };
10483
10484 Target_selector_mips_nacl<32, true> target_selector_mips32;
10485 Target_selector_mips_nacl<32, false> target_selector_mips32el;
10486 Target_selector_mips_nacl<64, true> target_selector_mips64;
10487 Target_selector_mips_nacl<64, false> target_selector_mips64el;
10488
10489 } // End anonymous namespace.