Add compunits range adapter to objfile
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2019 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
71
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
74
75 template<int size>
76 class Mips_symbol;
77
78 template<int size, bool big_endian>
79 class Mips_got_info;
80
81 template<int size, bool big_endian>
82 class Mips_relobj;
83
84 class Mips16_stub_section_base;
85
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
88
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry.  Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache.  The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
95
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning.  We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
102
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values.  Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
106
107 enum Global_got_area
108 {
109   GGA_NORMAL = 0,
110   GGA_RELOC_ONLY = 1,
111   GGA_NONE = 2
112 };
113
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
119 {
120   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
121   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
122   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
123
124   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125   GOT_TYPE_STANDARD_MULTIGOT = 3,
126   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
128 };
129
130 // TLS type of GOT entry.
131 enum Got_tls_type
132 {
133   GOT_TLS_NONE = 0,
134   GOT_TLS_GD = 1,
135   GOT_TLS_LDM = 2,
136   GOT_TLS_IE = 4
137 };
138
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
141 {
142   RSS_UNDEF = 0,    // None - value is zero.
143   RSS_GP = 1,       // Value of GP.
144   RSS_GP0 = 2,      // Value of GP in object being relocated.
145   RSS_LOC = 3       // Address of location being relocated.
146 };
147
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
151 {
152   elfcpp::Elf_Xword section_flags = output_section->flags();
153   elfcpp::Elf_Word section_type = output_section->type();
154
155   if (section_type == elfcpp::SHT_NOBITS)
156     return false;
157
158   if (section_flags & elfcpp::SHF_WRITE)
159     return false;
160
161   return true;
162 }
163
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub.  See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170                            unsigned int r_type, bool target_is_16_bit_code)
171 {
172   // We specifically ignore branches and jumps from EF_PIC objects,
173   // where the onus is on the compiler or programmer to perform any
174   // necessary initialization of $25.  Sometimes such initialization
175   // is unnecessary; for example, -mno-shared functions do not use
176   // the incoming value of $25, and may therefore be called directly.
177   if (object->is_pic())
178     return false;
179
180   switch (r_type)
181     {
182     case elfcpp::R_MIPS_26:
183     case elfcpp::R_MIPS_PC16:
184     case elfcpp::R_MIPS_PC21_S2:
185     case elfcpp::R_MIPS_PC26_S2:
186     case elfcpp::R_MICROMIPS_26_S1:
187     case elfcpp::R_MICROMIPS_PC7_S1:
188     case elfcpp::R_MICROMIPS_PC10_S1:
189     case elfcpp::R_MICROMIPS_PC16_S1:
190     case elfcpp::R_MICROMIPS_PC23_S2:
191       return true;
192
193     case elfcpp::R_MIPS16_26:
194       return !target_is_16_bit_code;
195
196     default:
197       return false;
198     }
199 }
200
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid.  Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
209 {
210   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211                       && !sym->object()->is_dynamic()
212                       && !sym->is_undefined());
213
214   if (sym->is_defined() && def_regular)
215     {
216       Mips_relobj<size, big_endian>* object =
217         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
218
219       if ((object->is_pic() || sym->is_pic())
220           && (!sym->is_mips16()
221               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222         return true;
223     }
224   return false;
225 }
226
227 static inline bool
228 hi16_reloc(int r_type)
229 {
230   return (r_type == elfcpp::R_MIPS_HI16
231           || r_type == elfcpp::R_MIPS16_HI16
232           || r_type == elfcpp::R_MICROMIPS_HI16
233           || r_type == elfcpp::R_MIPS_PCHI16);
234 }
235
236 static inline bool
237 lo16_reloc(int r_type)
238 {
239   return (r_type == elfcpp::R_MIPS_LO16
240           || r_type == elfcpp::R_MIPS16_LO16
241           || r_type == elfcpp::R_MICROMIPS_LO16
242           || r_type == elfcpp::R_MIPS_PCLO16);
243 }
244
245 static inline bool
246 got16_reloc(unsigned int r_type)
247 {
248   return (r_type == elfcpp::R_MIPS_GOT16
249           || r_type == elfcpp::R_MIPS16_GOT16
250           || r_type == elfcpp::R_MICROMIPS_GOT16);
251 }
252
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
255 {
256   return (r_type == elfcpp::R_MIPS_CALL_LO16
257           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 }
259
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
262 {
263   return (r_type == elfcpp::R_MIPS_GOT_LO16
264           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 }
266
267 static inline bool
268 eh_reloc(unsigned int r_type)
269 {
270   return (r_type == elfcpp::R_MIPS_EH);
271 }
272
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
275 {
276   return (r_type == elfcpp::R_MIPS_GOT_DISP
277           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 }
279
280 static inline bool
281 got_page_reloc(unsigned int r_type)
282 {
283   return (r_type == elfcpp::R_MIPS_GOT_PAGE
284           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 }
286
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
289 {
290   return (r_type == elfcpp::R_MIPS_TLS_GD
291           || r_type == elfcpp::R_MIPS16_TLS_GD
292           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 }
294
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
297 {
298   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 }
302
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
305 {
306   return (r_type == elfcpp::R_MIPS_TLS_LDM
307           || r_type == elfcpp::R_MIPS16_TLS_LDM
308           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 }
310
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
313 {
314   return (r_type == elfcpp::R_MIPS16_26
315           || r_type == elfcpp::R_MIPS16_CALL16);
316 }
317
318 static inline bool
319 jal_reloc(unsigned int r_type)
320 {
321   return (r_type == elfcpp::R_MIPS_26
322           || r_type == elfcpp::R_MIPS16_26
323           || r_type == elfcpp::R_MICROMIPS_26_S1);
324 }
325
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
328 {
329   return (r_type == elfcpp::R_MICROMIPS_26_S1
330           || r_type == elfcpp::R_MICROMIPS_PC16_S1
331           || r_type == elfcpp::R_MICROMIPS_PC10_S1
332           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
333 }
334
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
338 {
339   switch (r_type)
340     {
341     case elfcpp::R_MIPS16_26:
342     case elfcpp::R_MIPS16_GPREL:
343     case elfcpp::R_MIPS16_GOT16:
344     case elfcpp::R_MIPS16_CALL16:
345     case elfcpp::R_MIPS16_HI16:
346     case elfcpp::R_MIPS16_LO16:
347     case elfcpp::R_MIPS16_TLS_GD:
348     case elfcpp::R_MIPS16_TLS_LDM:
349     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351     case elfcpp::R_MIPS16_TLS_GOTTPREL:
352     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354       return true;
355
356     default:
357       return false;
358     }
359 }
360
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
364 {
365   switch (r_type)
366     {
367     case elfcpp::R_MICROMIPS_26_S1:
368     case elfcpp::R_MICROMIPS_HI16:
369     case elfcpp::R_MICROMIPS_LO16:
370     case elfcpp::R_MICROMIPS_GPREL16:
371     case elfcpp::R_MICROMIPS_LITERAL:
372     case elfcpp::R_MICROMIPS_GOT16:
373     case elfcpp::R_MICROMIPS_PC7_S1:
374     case elfcpp::R_MICROMIPS_PC10_S1:
375     case elfcpp::R_MICROMIPS_PC16_S1:
376     case elfcpp::R_MICROMIPS_CALL16:
377     case elfcpp::R_MICROMIPS_GOT_DISP:
378     case elfcpp::R_MICROMIPS_GOT_PAGE:
379     case elfcpp::R_MICROMIPS_GOT_OFST:
380     case elfcpp::R_MICROMIPS_GOT_HI16:
381     case elfcpp::R_MICROMIPS_GOT_LO16:
382     case elfcpp::R_MICROMIPS_SUB:
383     case elfcpp::R_MICROMIPS_HIGHER:
384     case elfcpp::R_MICROMIPS_HIGHEST:
385     case elfcpp::R_MICROMIPS_CALL_HI16:
386     case elfcpp::R_MICROMIPS_CALL_LO16:
387     case elfcpp::R_MICROMIPS_SCN_DISP:
388     case elfcpp::R_MICROMIPS_JALR:
389     case elfcpp::R_MICROMIPS_HI0_LO16:
390     case elfcpp::R_MICROMIPS_TLS_GD:
391     case elfcpp::R_MICROMIPS_TLS_LDM:
392     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397     case elfcpp::R_MICROMIPS_GPREL7_S2:
398     case elfcpp::R_MICROMIPS_PC23_S2:
399       return true;
400
401     default:
402       return false;
403     }
404 }
405
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 {
409   switch (high_reloc)
410     {
411     case elfcpp::R_MIPS_HI16:
412     case elfcpp::R_MIPS_GOT16:
413       return lo16_reloc == elfcpp::R_MIPS_LO16;
414     case elfcpp::R_MIPS_PCHI16:
415       return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416     case elfcpp::R_MIPS16_HI16:
417     case elfcpp::R_MIPS16_GOT16:
418       return lo16_reloc == elfcpp::R_MIPS16_LO16;
419     case elfcpp::R_MICROMIPS_HI16:
420     case elfcpp::R_MICROMIPS_GOT16:
421       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422     default:
423       return false;
424     }
425 }
426
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
429 //
430 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
433 //          (sym != NULL, symndx == -1)
434 //    (3) a TLS LDM slot (there's only one of these per GOT.)
435 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
436
437 template<int size, bool big_endian>
438 class Mips_got_entry
439 {
440   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
441
442  public:
443   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444                  Mips_address addend, unsigned char tls_type,
445                  unsigned int shndx, bool is_section_symbol)
446     : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447       is_section_symbol_(is_section_symbol), shndx_(shndx)
448   { this->d.object = object; }
449
450   Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451     : addend_(0), symndx_(-1U), tls_type_(tls_type),
452       is_section_symbol_(false), shndx_(-1U)
453   { this->d.sym = sym; }
454
455   // Return whether this entry is for a local symbol.
456   bool
457   is_for_local_symbol() const
458   { return this->symndx_ != -1U; }
459
460   // Return whether this entry is for a global symbol.
461   bool
462   is_for_global_symbol() const
463   { return this->symndx_ == -1U; }
464
465   // Return the hash of this entry.
466   size_t
467   hash() const
468   {
469     if (this->tls_type_ == GOT_TLS_LDM)
470       return this->symndx_ + (1 << 18);
471
472     size_t name_hash_value = gold::string_hash<char>(
473         (this->symndx_ != -1U)
474          ? this->d.object->name().c_str()
475          : this->d.sym->name());
476     size_t addend = this->addend_;
477     return name_hash_value ^ this->symndx_ ^ (addend << 16);
478   }
479
480   // Return whether this entry is equal to OTHER.
481   bool
482   equals(Mips_got_entry<size, big_endian>* other) const
483   {
484     if (this->symndx_ != other->symndx_
485         || this->tls_type_ != other->tls_type_)
486       return false;
487
488     if (this->tls_type_ == GOT_TLS_LDM)
489       return true;
490
491     return (((this->symndx_ != -1U)
492               ? (this->d.object == other->d.object)
493               : (this->d.sym == other->d.sym))
494             && (this->addend_ == other->addend_));
495   }
496
497   // Return input object that needs this GOT entry.
498   Mips_relobj<size, big_endian>*
499   object() const
500   {
501     gold_assert(this->symndx_ != -1U);
502     return this->d.object;
503   }
504
505   // Return local symbol index for local GOT entries.
506   unsigned int
507   symndx() const
508   {
509     gold_assert(this->symndx_ != -1U);
510     return this->symndx_;
511   }
512
513   // Return the relocation addend for local GOT entries.
514   Mips_address
515   addend() const
516   { return this->addend_; }
517
518   // Return global symbol for global GOT entries.
519   Mips_symbol<size>*
520   sym() const
521   {
522     gold_assert(this->symndx_ == -1U);
523     return this->d.sym;
524   }
525
526   // Return whether this is a TLS GOT entry.
527   bool
528   is_tls_entry() const
529   { return this->tls_type_ != GOT_TLS_NONE; }
530
531   // Return TLS type of this GOT entry.
532   unsigned char
533   tls_type() const
534   { return this->tls_type_; }
535
536   // Return section index of the local symbol for local GOT entries.
537   unsigned int
538   shndx() const
539   { return this->shndx_; }
540
541   // Return whether this is a STT_SECTION symbol.
542   bool
543   is_section_symbol() const
544   { return this->is_section_symbol_; }
545
546  private:
547   // The addend.
548   Mips_address addend_;
549
550   // The index of the symbol if we have a local symbol; -1 otherwise.
551   unsigned int symndx_;
552
553   union
554   {
555     // The input object for local symbols that needs the GOT entry.
556     Mips_relobj<size, big_endian>* object;
557     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
558     // symbol's entry is in the local area if mips_sym->global_got_area is
559     // GGA_NONE, otherwise it is in the global area.
560     Mips_symbol<size>* sym;
561   } d;
562
563   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
564   // symbol entry with r_symndx == 0.
565   unsigned char tls_type_;
566
567   // Whether this is a STT_SECTION symbol.
568   bool is_section_symbol_;
569
570   // For local GOT entries, section index of the local symbol.
571   unsigned int shndx_;
572 };
573
574 // Hash for Mips_got_entry.
575
576 template<int size, bool big_endian>
577 class Mips_got_entry_hash
578 {
579  public:
580   size_t
581   operator()(Mips_got_entry<size, big_endian>* entry) const
582   { return entry->hash(); }
583 };
584
585 // Equality for Mips_got_entry.
586
587 template<int size, bool big_endian>
588 class Mips_got_entry_eq
589 {
590  public:
591   bool
592   operator()(Mips_got_entry<size, big_endian>* e1,
593              Mips_got_entry<size, big_endian>* e2) const
594   { return e1->equals(e2); }
595 };
596
597 // Hash for Mips_symbol.
598
599 template<int size>
600 class Mips_symbol_hash
601 {
602  public:
603   size_t
604   operator()(Mips_symbol<size>* sym) const
605   { return sym->hash(); }
606 };
607
608 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
609 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
610 // increasing MIN_ADDEND.
611
612 struct Got_page_range
613 {
614   Got_page_range()
615     : next(NULL), min_addend(0), max_addend(0)
616   { }
617
618   Got_page_range* next;
619   int min_addend;
620   int max_addend;
621
622   // Return the maximum number of GOT page entries required.
623   int
624   get_max_pages()
625   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
626 };
627
628 // Got_page_entry.  This class describes the range of addends that are applied
629 // to page relocations against a given symbol.
630
631 struct Got_page_entry
632 {
633   Got_page_entry()
634     : object(NULL), symndx(-1U), ranges(NULL)
635   { }
636
637   Got_page_entry(Object* object_, unsigned int symndx_)
638     : object(object_), symndx(symndx_), ranges(NULL)
639   { }
640
641   // The input object that needs the GOT page entry.
642   Object* object;
643   // The index of the symbol, as stored in the relocation r_info.
644   unsigned int symndx;
645   // The ranges for this page entry.
646   Got_page_range* ranges;
647 };
648
649 // Hash for Got_page_entry.
650
651 struct Got_page_entry_hash
652 {
653   size_t
654   operator()(Got_page_entry* entry) const
655   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
656 };
657
658 // Equality for Got_page_entry.
659
660 struct Got_page_entry_eq
661 {
662   bool
663   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
664   {
665     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
666   }
667 };
668
669 // This class is used to hold .got information when linking.
670
671 template<int size, bool big_endian>
672 class Mips_got_info
673 {
674   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
676     Reloc_section;
677   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
678
679   // Unordered set of GOT entries.
680   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681       Mips_got_entry_hash<size, big_endian>,
682       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
683
684   // Unordered set of GOT page entries.
685   typedef Unordered_set<Got_page_entry*,
686       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
687
688   // Unordered set of global GOT entries.
689   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690       Global_got_entry_set;
691
692  public:
693   Mips_got_info()
694     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698       offset_(0)
699   { }
700
701   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
703   void
704   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705                           unsigned int symndx, Mips_address addend,
706                           unsigned int r_type, unsigned int shndx,
707                           bool is_section_symbol);
708
709   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710   // in OBJECT.  FOR_CALL is true if the caller is only interested in
711   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
712   // relocation.
713   void
714   record_global_got_symbol(Mips_symbol<size>* mips_sym,
715                            Mips_relobj<size, big_endian>* object,
716                            unsigned int r_type, bool dyn_reloc, bool for_call);
717
718   // Add ENTRY to master GOT and to OBJECT's GOT.
719   void
720   record_got_entry(Mips_got_entry<size, big_endian>* entry,
721                    Mips_relobj<size, big_endian>* object);
722
723   // Record that OBJECT has a page relocation against symbol SYMNDX and
724   // that ADDEND is the addend for that relocation.
725   void
726   record_got_page_entry(Mips_relobj<size, big_endian>* object,
727                         unsigned int symndx, int addend);
728
729   // Create all entries that should be in the local part of the GOT.
730   void
731   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
732
733   // Create GOT page entries.
734   void
735   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
736
737   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
738   void
739   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740                      unsigned int non_reloc_only_global_gotno);
741
742   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
743   void
744   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
745
746   // Create TLS GOT entries.
747   void
748   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
749
750   // Decide whether the symbol needs an entry in the global part of the primary
751   // GOT, setting global_got_area accordingly.  Count the number of global
752   // symbols that are in the primary GOT only because they have dynamic
753   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
754   void
755   count_got_symbols(Symbol_table* symtab);
756
757   // Return the offset of GOT page entry for VALUE.
758   unsigned int
759   get_got_page_offset(Mips_address value,
760                       Mips_output_data_got<size, big_endian>* got);
761
762   // Count the number of GOT entries required.
763   void
764   count_got_entries();
765
766   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
767   void
768   count_got_entry(Mips_got_entry<size, big_endian>* entry);
769
770   // Add FROM's GOT entries.
771   void
772   add_got_entries(Mips_got_info<size, big_endian>* from);
773
774   // Add FROM's GOT page entries.
775   void
776   add_got_page_count(Mips_got_info<size, big_endian>* from);
777
778   // Return GOT size.
779   unsigned int
780   got_size() const
781   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782              + this->tls_gotno_) * size/8);
783   }
784
785   // Return the number of local GOT entries.
786   unsigned int
787   local_gotno() const
788   { return this->local_gotno_; }
789
790   // Return the maximum number of page GOT entries needed.
791   unsigned int
792   page_gotno() const
793   { return this->page_gotno_; }
794
795   // Return the number of global GOT entries.
796   unsigned int
797   global_gotno() const
798   { return this->global_gotno_; }
799
800   // Set the number of global GOT entries.
801   void
802   set_global_gotno(unsigned int global_gotno)
803   { this->global_gotno_ = global_gotno; }
804
805   // Return the number of GGA_RELOC_ONLY global GOT entries.
806   unsigned int
807   reloc_only_gotno() const
808   { return this->reloc_only_gotno_; }
809
810   // Return the number of TLS GOT entries.
811   unsigned int
812   tls_gotno() const
813   { return this->tls_gotno_; }
814
815   // Return the GOT type for this GOT.  Used for multi-GOT links only.
816   unsigned int
817   multigot_got_type(unsigned int got_type) const
818   {
819     switch (got_type)
820       {
821       case GOT_TYPE_STANDARD:
822         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823       case GOT_TYPE_TLS_OFFSET:
824         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825       case GOT_TYPE_TLS_PAIR:
826         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
827       default:
828         gold_unreachable();
829       }
830   }
831
832   // Remove lazy-binding stubs for global symbols in this GOT.
833   void
834   remove_lazy_stubs(Target_mips<size, big_endian>* target);
835
836   // Return offset of this GOT from the start of .got section.
837   unsigned int
838   offset() const
839   { return this->offset_; }
840
841   // Set offset of this GOT from the start of .got section.
842   void
843   set_offset(unsigned int offset)
844   { this->offset_ = offset; }
845
846   // Set index of this GOT in multi-GOT links.
847   void
848   set_index(unsigned int index)
849   { this->index_ = index; }
850
851   // Return next GOT in multi-GOT links.
852   Mips_got_info<size, big_endian>*
853   next() const
854   { return this->next_; }
855
856   // Set next GOT in multi-GOT links.
857   void
858   set_next(Mips_got_info<size, big_endian>* next)
859   { this->next_ = next; }
860
861   // Return the offset of TLS LDM entry for this GOT.
862   unsigned int
863   tls_ldm_offset() const
864   { return this->tls_ldm_offset_; }
865
866   // Set the offset of TLS LDM entry for this GOT.
867   void
868   set_tls_ldm_offset(unsigned int tls_ldm_offset)
869   { this->tls_ldm_offset_ = tls_ldm_offset; }
870
871   Global_got_entry_set&
872   global_got_symbols()
873   { return this->global_got_symbols_; }
874
875   // Return the GOT_TLS_* type required by relocation type R_TYPE.
876   static int
877   mips_elf_reloc_tls_type(unsigned int r_type)
878   {
879     if (tls_gd_reloc(r_type))
880       return GOT_TLS_GD;
881
882     if (tls_ldm_reloc(r_type))
883       return GOT_TLS_LDM;
884
885     if (tls_gottprel_reloc(r_type))
886       return GOT_TLS_IE;
887
888     return GOT_TLS_NONE;
889   }
890
891   // Return the number of GOT slots needed for GOT TLS type TYPE.
892   static int
893   mips_tls_got_entries(unsigned int type)
894   {
895     switch (type)
896       {
897       case GOT_TLS_GD:
898       case GOT_TLS_LDM:
899         return 2;
900
901       case GOT_TLS_IE:
902         return 1;
903
904       case GOT_TLS_NONE:
905         return 0;
906
907       default:
908         gold_unreachable();
909       }
910   }
911
912  private:
913   // The number of local GOT entries.
914   unsigned int local_gotno_;
915   // The maximum number of page GOT entries needed.
916   unsigned int page_gotno_;
917   // The number of global GOT entries.
918   unsigned int global_gotno_;
919   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920   unsigned int reloc_only_gotno_;
921   // The number of TLS GOT entries.
922   unsigned int tls_gotno_;
923   // The offset of TLS LDM entry for this GOT.
924   unsigned int tls_ldm_offset_;
925   // All symbols that have global GOT entry.
926   Global_got_entry_set global_got_symbols_;
927   // A hash table holding GOT entries.
928   Got_entry_set got_entries_;
929   // A hash table of GOT page entries (only used in master GOT).
930   Got_page_entry_set got_page_entries_;
931   // The offset of first GOT page entry for this GOT.
932   unsigned int got_page_offset_start_;
933   // The offset of next available GOT page entry for this GOT.
934   unsigned int got_page_offset_next_;
935   // A hash table that maps GOT page entry value to the GOT offset where
936   // the entry is located.
937   Got_page_offsets got_page_offsets_;
938   // In multi-GOT links, a pointer to the next GOT.
939   Mips_got_info<size, big_endian>* next_;
940   // Index of this GOT in multi-GOT links.
941   unsigned int index_;
942   // The offset of this GOT in multi-GOT links.
943   unsigned int offset_;
944 };
945
946 // This is a helper class used during relocation scan.  It records GOT16 addend.
947
948 template<int size, bool big_endian>
949 struct got16_addend
950 {
951   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
952
953   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955                Mips_address _addend)
956     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957       addend(_addend)
958   { }
959
960   const Sized_relobj_file<size, big_endian>* object;
961   unsigned int shndx;
962   unsigned int r_type;
963   unsigned int r_sym;
964   Mips_address addend;
965 };
966
967 // .MIPS.abiflags section content
968
969 template<bool big_endian>
970 struct Mips_abiflags
971 {
972   typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
975
976   Mips_abiflags()
977     : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978       cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
979   { }
980
981   // Version of flags structure.
982   Valtype16 version;
983   // The level of the ISA: 1-5, 32, 64.
984   Valtype8 isa_level;
985   // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
986   Valtype8 isa_rev;
987   // The size of general purpose registers.
988   Valtype8 gpr_size;
989   // The size of co-processor 1 registers.
990   Valtype8 cpr1_size;
991   // The size of co-processor 2 registers.
992   Valtype8 cpr2_size;
993   // The floating-point ABI.
994   Valtype8 fp_abi;
995   // Processor-specific extension.
996   Valtype32 isa_ext;
997   // Mask of ASEs used.
998   Valtype32 ases;
999   // Mask of general flags.
1000   Valtype32 flags1;
1001   Valtype32 flags2;
1002 };
1003
1004 // Mips_symbol class.  Holds additional symbol information needed for Mips.
1005
1006 template<int size>
1007 class Mips_symbol : public Sized_symbol<size>
1008 {
1009  public:
1010   Mips_symbol()
1011     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1018   { }
1019
1020   // Return whether this is a MIPS16 symbol.
1021   bool
1022   is_mips16() const
1023   {
1024     // (st_other & STO_MIPS16) == STO_MIPS16
1025     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026             == elfcpp::STO_MIPS16 >> 2);
1027   }
1028
1029   // Return whether this is a microMIPS symbol.
1030   bool
1031   is_micromips() const
1032   {
1033     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035             == elfcpp::STO_MICROMIPS >> 2);
1036   }
1037
1038   // Return whether the symbol needs MIPS16 fn_stub.
1039   bool
1040   need_fn_stub() const
1041   { return this->need_fn_stub_; }
1042
1043   // Set that the symbol needs MIPS16 fn_stub.
1044   void
1045   set_need_fn_stub()
1046   { this->need_fn_stub_ = true; }
1047
1048   // Return whether this symbol is referenced by branch relocations from
1049   // any non-PIC input file.
1050   bool
1051   has_nonpic_branches() const
1052   { return this->has_nonpic_branches_; }
1053
1054   // Set that this symbol is referenced by branch relocations from
1055   // any non-PIC input file.
1056   void
1057   set_has_nonpic_branches()
1058   { this->has_nonpic_branches_ = true; }
1059
1060   // Return the offset of the la25 stub for this symbol from the start of the
1061   // la25 stub section.
1062   unsigned int
1063   la25_stub_offset() const
1064   { return this->la25_stub_offset_; }
1065
1066   // Set the offset of the la25 stub for this symbol from the start of the
1067   // la25 stub section.
1068   void
1069   set_la25_stub_offset(unsigned int offset)
1070   { this->la25_stub_offset_ = offset; }
1071
1072   // Return whether the symbol has la25 stub.  This is true if this symbol is
1073   // for a PIC function, and there are non-PIC branches and jumps to it.
1074   bool
1075   has_la25_stub() const
1076   { return this->la25_stub_offset_ != -1U; }
1077
1078   // Return whether there is a relocation against this symbol that must be
1079   // resolved by the static linker (that is, the relocation cannot possibly
1080   // be made dynamic).
1081   bool
1082   has_static_relocs() const
1083   { return this->has_static_relocs_; }
1084
1085   // Set that there is a relocation against this symbol that must be resolved
1086   // by the static linker (that is, the relocation cannot possibly be made
1087   // dynamic).
1088   void
1089   set_has_static_relocs()
1090   { this->has_static_relocs_ = true; }
1091
1092   // Return whether we must not create a lazy-binding stub for this symbol.
1093   bool
1094   no_lazy_stub() const
1095   { return this->no_lazy_stub_; }
1096
1097   // Set that we must not create a lazy-binding stub for this symbol.
1098   void
1099   set_no_lazy_stub()
1100   { this->no_lazy_stub_ = true; }
1101
1102   // Return the offset of the lazy-binding stub for this symbol from the start
1103   // of .MIPS.stubs section.
1104   unsigned int
1105   lazy_stub_offset() const
1106   { return this->lazy_stub_offset_; }
1107
1108   // Set the offset of the lazy-binding stub for this symbol from the start
1109   // of .MIPS.stubs section.
1110   void
1111   set_lazy_stub_offset(unsigned int offset)
1112   { this->lazy_stub_offset_ = offset; }
1113
1114   // Return whether there are any relocations for this symbol where
1115   // pointer equality matters.
1116   bool
1117   pointer_equality_needed() const
1118   { return this->pointer_equality_needed_; }
1119
1120   // Set that there are relocations for this symbol where pointer equality
1121   // matters.
1122   void
1123   set_pointer_equality_needed()
1124   { this->pointer_equality_needed_ = true; }
1125
1126   // Return global GOT area where this symbol in located.
1127   Global_got_area
1128   global_got_area() const
1129   { return this->global_got_area_; }
1130
1131   // Set global GOT area where this symbol in located.
1132   void
1133   set_global_got_area(Global_got_area global_got_area)
1134   { this->global_got_area_ = global_got_area; }
1135
1136   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1137   // returns the offset from the start of .got section to the first GOT entry
1138   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1139   // in more than one GOT.
1140   unsigned int
1141   global_gotoffset() const
1142   { return this->global_gotoffset_; }
1143
1144   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1145   // the symbol can have entry in more than one GOT.  This method will set
1146   // the offset only if it is less than current offset.
1147   void
1148   set_global_gotoffset(unsigned int offset)
1149   {
1150     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151       this->global_gotoffset_ = offset;
1152   }
1153
1154   // Return whether all GOT relocations for this symbol are for calls.
1155   bool
1156   got_only_for_calls() const
1157   { return this->got_only_for_calls_; }
1158
1159   // Set that there is a GOT relocation for this symbol that is not for call.
1160   void
1161   set_got_not_only_for_calls()
1162   { this->got_only_for_calls_ = false; }
1163
1164   // Return whether this is a PIC symbol.
1165   bool
1166   is_pic() const
1167   {
1168     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170             == (elfcpp::STO_MIPS_PIC >> 2));
1171   }
1172
1173   // Set the flag in st_other field that marks this symbol as PIC.
1174   void
1175   set_pic()
1176   {
1177     if (this->is_mips16())
1178       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179       this->set_nonvis((this->nonvis()
1180                         & ~((elfcpp::STO_MIPS16 >> 2)
1181                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182                        | (elfcpp::STO_MIPS_PIC >> 2));
1183     else
1184       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186                        | (elfcpp::STO_MIPS_PIC >> 2));
1187   }
1188
1189   // Set the flag in st_other field that marks this symbol as PLT.
1190   void
1191   set_mips_plt()
1192   {
1193     if (this->is_mips16())
1194       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195       this->set_nonvis((this->nonvis()
1196                         & ((elfcpp::STO_MIPS16 >> 2)
1197                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198                        | (elfcpp::STO_MIPS_PLT >> 2));
1199
1200     else
1201       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203                        | (elfcpp::STO_MIPS_PLT >> 2));
1204   }
1205
1206   // Downcast a base pointer to a Mips_symbol pointer.
1207   static Mips_symbol<size>*
1208   as_mips_sym(Symbol* sym)
1209   { return static_cast<Mips_symbol<size>*>(sym); }
1210
1211   // Downcast a base pointer to a Mips_symbol pointer.
1212   static const Mips_symbol<size>*
1213   as_mips_sym(const Symbol* sym)
1214   { return static_cast<const Mips_symbol<size>*>(sym); }
1215
1216   // Return whether the symbol has lazy-binding stub.
1217   bool
1218   has_lazy_stub() const
1219   { return this->has_lazy_stub_; }
1220
1221   // Set whether the symbol has lazy-binding stub.
1222   void
1223   set_has_lazy_stub(bool has_lazy_stub)
1224   { this->has_lazy_stub_ = has_lazy_stub; }
1225
1226   // Return whether the symbol needs a standard PLT entry.
1227   bool
1228   needs_mips_plt() const
1229   { return this->needs_mips_plt_; }
1230
1231   // Set whether the symbol needs a standard PLT entry.
1232   void
1233   set_needs_mips_plt(bool needs_mips_plt)
1234   { this->needs_mips_plt_ = needs_mips_plt; }
1235
1236   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1237   // entry.
1238   bool
1239   needs_comp_plt() const
1240   { return this->needs_comp_plt_; }
1241
1242   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1243   void
1244   set_needs_comp_plt(bool needs_comp_plt)
1245   { this->needs_comp_plt_ = needs_comp_plt; }
1246
1247   // Return standard PLT entry offset, or -1 if none.
1248   unsigned int
1249   mips_plt_offset() const
1250   { return this->mips_plt_offset_; }
1251
1252   // Set standard PLT entry offset.
1253   void
1254   set_mips_plt_offset(unsigned int mips_plt_offset)
1255   { this->mips_plt_offset_ = mips_plt_offset; }
1256
1257   // Return whether the symbol has standard PLT entry.
1258   bool
1259   has_mips_plt_offset() const
1260   { return this->mips_plt_offset_ != -1U; }
1261
1262   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1263   unsigned int
1264   comp_plt_offset() const
1265   { return this->comp_plt_offset_; }
1266
1267   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1268   void
1269   set_comp_plt_offset(unsigned int comp_plt_offset)
1270   { this->comp_plt_offset_ = comp_plt_offset; }
1271
1272   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1273   bool
1274   has_comp_plt_offset() const
1275   { return this->comp_plt_offset_ != -1U; }
1276
1277   // Return MIPS16 fn stub for a symbol.
1278   template<bool big_endian>
1279   Mips16_stub_section<size, big_endian>*
1280   get_mips16_fn_stub() const
1281   {
1282     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1283   }
1284
1285   // Set MIPS16 fn stub for a symbol.
1286   void
1287   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288   { this->mips16_fn_stub_ = stub; }
1289
1290   // Return whether symbol has MIPS16 fn stub.
1291   bool
1292   has_mips16_fn_stub() const
1293   { return this->mips16_fn_stub_ != NULL; }
1294
1295   // Return MIPS16 call stub for a symbol.
1296   template<bool big_endian>
1297   Mips16_stub_section<size, big_endian>*
1298   get_mips16_call_stub() const
1299   {
1300     return static_cast<Mips16_stub_section<size, big_endian>*>(
1301       mips16_call_stub_);
1302   }
1303
1304   // Set MIPS16 call stub for a symbol.
1305   void
1306   set_mips16_call_stub(Mips16_stub_section_base* stub)
1307   { this->mips16_call_stub_ = stub; }
1308
1309   // Return whether symbol has MIPS16 call stub.
1310   bool
1311   has_mips16_call_stub() const
1312   { return this->mips16_call_stub_ != NULL; }
1313
1314   // Return MIPS16 call_fp stub for a symbol.
1315   template<bool big_endian>
1316   Mips16_stub_section<size, big_endian>*
1317   get_mips16_call_fp_stub() const
1318   {
1319     return static_cast<Mips16_stub_section<size, big_endian>*>(
1320       mips16_call_fp_stub_);
1321   }
1322
1323   // Set MIPS16 call_fp stub for a symbol.
1324   void
1325   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326   { this->mips16_call_fp_stub_ = stub; }
1327
1328   // Return whether symbol has MIPS16 call_fp stub.
1329   bool
1330   has_mips16_call_fp_stub() const
1331   { return this->mips16_call_fp_stub_ != NULL; }
1332
1333   bool
1334   get_applied_secondary_got_fixup() const
1335   { return applied_secondary_got_fixup_; }
1336
1337   void
1338   set_applied_secondary_got_fixup()
1339   { this->applied_secondary_got_fixup_ = true; }
1340
1341   // Return the hash of this symbol.
1342   size_t
1343   hash() const
1344   {
1345     return gold::string_hash<char>(this->name());
1346   }
1347
1348  private:
1349   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1350   // appears in any relocs other than a 16 bit call.
1351   bool need_fn_stub_;
1352
1353   // True if this symbol is referenced by branch relocations from
1354   // any non-PIC input file.  This is used to determine whether an
1355   // la25 stub is required.
1356   bool has_nonpic_branches_;
1357
1358   // The offset of the la25 stub for this symbol from the start of the
1359   // la25 stub section.
1360   unsigned int la25_stub_offset_;
1361
1362   // True if there is a relocation against this symbol that must be
1363   // resolved by the static linker (that is, the relocation cannot
1364   // possibly be made dynamic).
1365   bool has_static_relocs_;
1366
1367   // Whether we must not create a lazy-binding stub for this symbol.
1368   // This is true if the symbol has relocations related to taking the
1369   // function's address.
1370   bool no_lazy_stub_;
1371
1372   // The offset of the lazy-binding stub for this symbol from the start of
1373   // .MIPS.stubs section.
1374   unsigned int lazy_stub_offset_;
1375
1376   // True if there are any relocations for this symbol where pointer equality
1377   // matters.
1378   bool pointer_equality_needed_;
1379
1380   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381   // in the global part of the GOT.
1382   Global_got_area global_got_area_;
1383
1384   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1385   // from the start of .got section to the first GOT entry for the symbol.
1386   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387   unsigned int global_gotoffset_;
1388
1389   // Whether all GOT relocations for this symbol are for calls.
1390   bool got_only_for_calls_;
1391   // Whether the symbol has lazy-binding stub.
1392   bool has_lazy_stub_;
1393   // Whether the symbol needs a standard PLT entry.
1394   bool needs_mips_plt_;
1395   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396   bool needs_comp_plt_;
1397   // Standard PLT entry offset, or -1 if none.
1398   unsigned int mips_plt_offset_;
1399   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400   unsigned int comp_plt_offset_;
1401   // MIPS16 fn stub for a symbol.
1402   Mips16_stub_section_base* mips16_fn_stub_;
1403   // MIPS16 call stub for a symbol.
1404   Mips16_stub_section_base* mips16_call_stub_;
1405   // MIPS16 call_fp stub for a symbol.
1406   Mips16_stub_section_base* mips16_call_fp_stub_;
1407
1408   bool applied_secondary_got_fixup_;
1409 };
1410
1411 // Mips16_stub_section class.
1412
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1415
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead.  If no 32 bit
1420 // function calls FNNAME, the stub should be discarded.  We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1424
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead.  If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1431
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs.  These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call.  (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1440
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally.  Instead, the relocation
1443 // information will indicate which symbol the section is for.
1444
1445 // We record any stubs that we find in the symbol table.
1446
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1448
1449 class Mips16_stub_section_base { };
1450
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1453 {
1454   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1455
1456  public:
1457   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459       found_r_mips_none_(false)
1460   {
1461     gold_assert(object->is_mips16_fn_stub_section(shndx)
1462                 || object->is_mips16_call_stub_section(shndx)
1463                 || object->is_mips16_call_fp_stub_section(shndx));
1464   }
1465
1466   // Return the object of this stub section.
1467   Mips_relobj<size, big_endian>*
1468   object() const
1469   { return this->object_; }
1470
1471   // Return the size of a section.
1472   uint64_t
1473   section_size() const
1474   { return this->object_->section_size(this->shndx_); }
1475
1476   // Return section index of this stub section.
1477   unsigned int
1478   shndx() const
1479   { return this->shndx_; }
1480
1481   // Return symbol index, if stub is for a local function.
1482   unsigned int
1483   r_sym() const
1484   { return this->r_sym_; }
1485
1486   // Return symbol, if stub is for a global function.
1487   Mips_symbol<size>*
1488   gsym() const
1489   { return this->gsym_; }
1490
1491   // Return whether stub is for a local function.
1492   bool
1493   is_for_local_function() const
1494   { return this->gsym_ == NULL; }
1495
1496   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497   // is found in the stub section.  Try to find stub target.
1498   void
1499   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1500   {
1501     // To find target symbol for this stub, trust the first R_MIPS_NONE
1502     // relocation, if any.  Otherwise trust the first relocation, whatever
1503     // its kind.
1504     if (this->found_r_mips_none_)
1505       return;
1506     if (r_type == elfcpp::R_MIPS_NONE)
1507       {
1508         this->r_sym_ = r_sym;
1509         this->gsym_ = NULL;
1510         this->found_r_mips_none_ = true;
1511       }
1512     else if (!is_target_found())
1513       this->r_sym_ = r_sym;
1514   }
1515
1516   // This method is called when a new relocation R_TYPE for global symbol GSYM
1517   // is found in the stub section.  Try to find stub target.
1518   void
1519   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1520   {
1521     // To find target symbol for this stub, trust the first R_MIPS_NONE
1522     // relocation, if any.  Otherwise trust the first relocation, whatever
1523     // its kind.
1524     if (this->found_r_mips_none_)
1525       return;
1526     if (r_type == elfcpp::R_MIPS_NONE)
1527       {
1528         this->gsym_ = gsym;
1529         this->r_sym_ = 0;
1530         this->found_r_mips_none_ = true;
1531       }
1532     else if (!is_target_found())
1533       this->gsym_ = gsym;
1534   }
1535
1536   // Return whether we found the stub target.
1537   bool
1538   is_target_found() const
1539   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1540
1541   // Return whether this is a fn stub.
1542   bool
1543   is_fn_stub() const
1544   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1545
1546   // Return whether this is a call stub.
1547   bool
1548   is_call_stub() const
1549   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1550
1551   // Return whether this is a call_fp stub.
1552   bool
1553   is_call_fp_stub() const
1554   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1555
1556   // Return the output address.
1557   Mips_address
1558   output_address() const
1559   {
1560     return (this->object_->output_section(this->shndx_)->address()
1561             + this->object_->output_section_offset(this->shndx_));
1562   }
1563
1564  private:
1565   // The object of this stub section.
1566   Mips_relobj<size, big_endian>* object_;
1567   // The section index of this stub section.
1568   unsigned int shndx_;
1569   // The symbol index, if stub is for a local function.
1570   unsigned int r_sym_;
1571   // The symbol, if stub is for a global function.
1572   Mips_symbol<size>* gsym_;
1573   // True if we found R_MIPS_NONE relocation in this stub.
1574   bool found_r_mips_none_;
1575 };
1576
1577 // Mips_relobj class.
1578
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1581 {
1582   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584     Mips16_stubs_int_map;
1585   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1586
1587  public:
1588   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591       processor_specific_flags_(0), local_symbol_is_mips16_(),
1592       local_symbol_is_micromips_(), mips16_stub_sections_(),
1593       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594       local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595       merge_processor_specific_data_(true), got_info_(NULL),
1596       section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1597       section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U),
1598       attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0),
1599       cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1600   {
1601     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1602     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1603   }
1604
1605   ~Mips_relobj()
1606   { delete this->attributes_section_data_; }
1607
1608   // Downcast a base pointer to a Mips_relobj pointer.  This is
1609   // not type-safe but we only use Mips_relobj not the base class.
1610   static Mips_relobj<size, big_endian>*
1611   as_mips_relobj(Relobj* relobj)
1612   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1613
1614   // Downcast a base pointer to a Mips_relobj pointer.  This is
1615   // not type-safe but we only use Mips_relobj not the base class.
1616   static const Mips_relobj<size, big_endian>*
1617   as_mips_relobj(const Relobj* relobj)
1618   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1619
1620   // Processor-specific flags in ELF file header.  This is valid only after
1621   // reading symbols.
1622   elfcpp::Elf_Word
1623   processor_specific_flags() const
1624   { return this->processor_specific_flags_; }
1625
1626   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1627   // index.  This is only valid after do_count_local_symbol is called.
1628   bool
1629   local_symbol_is_mips16(unsigned int r_sym) const
1630   {
1631     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1632     return this->local_symbol_is_mips16_[r_sym];
1633   }
1634
1635   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1636   // index.  This is only valid after do_count_local_symbol is called.
1637   bool
1638   local_symbol_is_micromips(unsigned int r_sym) const
1639   {
1640     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1641     return this->local_symbol_is_micromips_[r_sym];
1642   }
1643
1644   // Get or create MIPS16 stub section.
1645   Mips16_stub_section<size, big_endian>*
1646   get_mips16_stub_section(unsigned int shndx)
1647   {
1648     typename Mips16_stubs_int_map::const_iterator it =
1649       this->mips16_stub_sections_.find(shndx);
1650     if (it != this->mips16_stub_sections_.end())
1651       return (*it).second;
1652
1653     Mips16_stub_section<size, big_endian>* stub_section =
1654       new Mips16_stub_section<size, big_endian>(this, shndx);
1655     this->mips16_stub_sections_.insert(
1656       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1657         stub_section->shndx(), stub_section));
1658     return stub_section;
1659   }
1660
1661   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1662   // object doesn't have fn stub for R_SYM.
1663   Mips16_stub_section<size, big_endian>*
1664   get_local_mips16_fn_stub(unsigned int r_sym) const
1665   {
1666     typename Mips16_stubs_int_map::const_iterator it =
1667       this->local_mips16_fn_stubs_.find(r_sym);
1668     if (it != this->local_mips16_fn_stubs_.end())
1669       return (*it).second;
1670     return NULL;
1671   }
1672
1673   // Record that this object has MIPS16 fn stub for local symbol.  This method
1674   // is only called if we decided not to discard the stub.
1675   void
1676   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1677   {
1678     gold_assert(stub->is_for_local_function());
1679     unsigned int r_sym = stub->r_sym();
1680     this->local_mips16_fn_stubs_.insert(
1681       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1682         r_sym, stub));
1683   }
1684
1685   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1686   // object doesn't have call stub for R_SYM.
1687   Mips16_stub_section<size, big_endian>*
1688   get_local_mips16_call_stub(unsigned int r_sym) const
1689   {
1690     typename Mips16_stubs_int_map::const_iterator it =
1691       this->local_mips16_call_stubs_.find(r_sym);
1692     if (it != this->local_mips16_call_stubs_.end())
1693       return (*it).second;
1694     return NULL;
1695   }
1696
1697   // Record that this object has MIPS16 call stub for local symbol.  This method
1698   // is only called if we decided not to discard the stub.
1699   void
1700   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1701   {
1702     gold_assert(stub->is_for_local_function());
1703     unsigned int r_sym = stub->r_sym();
1704     this->local_mips16_call_stubs_.insert(
1705       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1706         r_sym, stub));
1707   }
1708
1709   // Record that we found "non 16-bit" call relocation against local symbol
1710   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1711   // is one.
1712   void
1713   add_local_non_16bit_call(unsigned int symndx)
1714   { this->local_non_16bit_calls_.insert(symndx); }
1715
1716   // Return true if there is any "non 16-bit" call relocation against local
1717   // symbol SYMNDX in this object.
1718   bool
1719   has_local_non_16bit_call_relocs(unsigned int symndx)
1720   {
1721     return (this->local_non_16bit_calls_.find(symndx)
1722             != this->local_non_16bit_calls_.end());
1723   }
1724
1725   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1726   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1727   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1728   void
1729   add_local_16bit_call(unsigned int symndx)
1730   { this->local_16bit_calls_.insert(symndx); }
1731
1732   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1733   // symbol SYMNDX in this object.
1734   bool
1735   has_local_16bit_call_relocs(unsigned int symndx)
1736   {
1737     return (this->local_16bit_calls_.find(symndx)
1738             != this->local_16bit_calls_.end());
1739   }
1740
1741   // Get gp value that was used to create this object.
1742   Mips_address
1743   gp_value() const
1744   { return this->gp_; }
1745
1746   // Return whether the object is a PIC object.
1747   bool
1748   is_pic() const
1749   { return this->is_pic_; }
1750
1751   // Return whether the object uses N32 ABI.
1752   bool
1753   is_n32() const
1754   { return this->is_n32_; }
1755
1756   // Return whether the object uses N64 ABI.
1757   bool
1758   is_n64() const
1759   { return size == 64; }
1760
1761   // Return whether the object uses NewABI conventions.
1762   bool
1763   is_newabi() const
1764   { return this->is_n32() || this->is_n64(); }
1765
1766   // Return Mips_got_info for this object.
1767   Mips_got_info<size, big_endian>*
1768   get_got_info() const
1769   { return this->got_info_; }
1770
1771   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1772   Mips_got_info<size, big_endian>*
1773   get_or_create_got_info()
1774   {
1775     if (!this->got_info_)
1776       this->got_info_ = new Mips_got_info<size, big_endian>();
1777     return this->got_info_;
1778   }
1779
1780   // Set Mips_got_info for this object.
1781   void
1782   set_got_info(Mips_got_info<size, big_endian>* got_info)
1783   { this->got_info_ = got_info; }
1784
1785   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1786   // after do_read_symbols is called.
1787   bool
1788   is_mips16_stub_section(unsigned int shndx)
1789   {
1790     return (is_mips16_fn_stub_section(shndx)
1791             || is_mips16_call_stub_section(shndx)
1792             || is_mips16_call_fp_stub_section(shndx));
1793   }
1794
1795   // Return TRUE if relocations in section SHNDX can refer directly to a
1796   // MIPS16 function rather than to a hard-float stub.  This is only valid
1797   // after do_read_symbols is called.
1798   bool
1799   section_allows_mips16_refs(unsigned int shndx)
1800   {
1801     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1802   }
1803
1804   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1805   // after do_read_symbols is called.
1806   bool
1807   is_mips16_fn_stub_section(unsigned int shndx)
1808   {
1809     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1810     return this->section_is_mips16_fn_stub_[shndx];
1811   }
1812
1813   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1814   // after do_read_symbols is called.
1815   bool
1816   is_mips16_call_stub_section(unsigned int shndx)
1817   {
1818     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1819     return this->section_is_mips16_call_stub_[shndx];
1820   }
1821
1822   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1823   // valid after do_read_symbols is called.
1824   bool
1825   is_mips16_call_fp_stub_section(unsigned int shndx)
1826   {
1827     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1828     return this->section_is_mips16_call_fp_stub_[shndx];
1829   }
1830
1831   // Discard MIPS16 stub secions that are not needed.
1832   void
1833   discard_mips16_stub_sections(Symbol_table* symtab);
1834
1835   // Return whether there is a .reginfo section.
1836   bool
1837   has_reginfo_section() const
1838   { return this->has_reginfo_section_; }
1839
1840   // Return whether we want to merge processor-specific data.
1841   bool
1842   merge_processor_specific_data() const
1843   { return this->merge_processor_specific_data_; }
1844
1845   // Return gprmask from the .reginfo section of this object.
1846   Valtype
1847   gprmask() const
1848   { return this->gprmask_; }
1849
1850   // Return cprmask1 from the .reginfo section of this object.
1851   Valtype
1852   cprmask1() const
1853   { return this->cprmask1_; }
1854
1855   // Return cprmask2 from the .reginfo section of this object.
1856   Valtype
1857   cprmask2() const
1858   { return this->cprmask2_; }
1859
1860   // Return cprmask3 from the .reginfo section of this object.
1861   Valtype
1862   cprmask3() const
1863   { return this->cprmask3_; }
1864
1865   // Return cprmask4 from the .reginfo section of this object.
1866   Valtype
1867   cprmask4() const
1868   { return this->cprmask4_; }
1869
1870   // This is the contents of the .MIPS.abiflags section if there is one.
1871   Mips_abiflags<big_endian>*
1872   abiflags()
1873   { return this->abiflags_; }
1874
1875   // This is the contents of the .gnu.attribute section if there is one.
1876   const Attributes_section_data*
1877   attributes_section_data() const
1878   { return this->attributes_section_data_; }
1879
1880  protected:
1881   // Count the local symbols.
1882   void
1883   do_count_local_symbols(Stringpool_template<char>*,
1884                          Stringpool_template<char>*);
1885
1886   // Read the symbol information.
1887   void
1888   do_read_symbols(Read_symbols_data* sd);
1889
1890  private:
1891   // The name of the options section.
1892   const char* mips_elf_options_section_name()
1893   { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1894
1895   // processor-specific flags in ELF file header.
1896   elfcpp::Elf_Word processor_specific_flags_;
1897
1898   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1899   // This is only valid after do_count_local_symbol is called.
1900   std::vector<bool> local_symbol_is_mips16_;
1901
1902   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1903   // This is only valid after do_count_local_symbol is called.
1904   std::vector<bool> local_symbol_is_micromips_;
1905
1906   // Map from section index to the MIPS16 stub for that section.  This contains
1907   // all stubs found in this object.
1908   Mips16_stubs_int_map mips16_stub_sections_;
1909
1910   // Local symbols that have "non 16-bit" call relocation.  This relocation
1911   // would need to refer to a MIPS16 fn stub, if there is one.
1912   std::set<unsigned int> local_non_16bit_calls_;
1913
1914   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1915   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1916   // relocation that refers to the stub symbol.
1917   std::set<unsigned int> local_16bit_calls_;
1918
1919   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1920   // This contains only the stubs that we decided not to discard.
1921   Mips16_stubs_int_map local_mips16_fn_stubs_;
1922
1923   // Map from local symbol index to the MIPS16 call stub for that symbol.
1924   // This contains only the stubs that we decided not to discard.
1925   Mips16_stubs_int_map local_mips16_call_stubs_;
1926
1927   // gp value that was used to create this object.
1928   Mips_address gp_;
1929   // Whether the object is a PIC object.
1930   bool is_pic_ : 1;
1931   // Whether the object uses N32 ABI.
1932   bool is_n32_ : 1;
1933   // Whether the object contains a .reginfo section.
1934   bool has_reginfo_section_ : 1;
1935   // Whether we merge processor-specific data of this object to output.
1936   bool merge_processor_specific_data_ : 1;
1937   // The Mips_got_info for this object.
1938   Mips_got_info<size, big_endian>* got_info_;
1939
1940   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1941   // This is only valid after do_read_symbols is called.
1942   std::vector<bool> section_is_mips16_fn_stub_;
1943
1944   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1945   // This is only valid after do_read_symbols is called.
1946   std::vector<bool> section_is_mips16_call_stub_;
1947
1948   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1949   // This is only valid after do_read_symbols is called.
1950   std::vector<bool> section_is_mips16_call_fp_stub_;
1951
1952   // .pdr section index.
1953   unsigned int pdr_shndx_;
1954
1955   // Object attributes if there is a .gnu.attributes section or NULL.
1956   Attributes_section_data* attributes_section_data_;
1957
1958   // Object abiflags if there is a .MIPS.abiflags section or NULL.
1959   Mips_abiflags<big_endian>* abiflags_;
1960
1961   // gprmask from the .reginfo section of this object.
1962   Valtype gprmask_;
1963   // cprmask1 from the .reginfo section of this object.
1964   Valtype cprmask1_;
1965   // cprmask2 from the .reginfo section of this object.
1966   Valtype cprmask2_;
1967   // cprmask3 from the .reginfo section of this object.
1968   Valtype cprmask3_;
1969   // cprmask4 from the .reginfo section of this object.
1970   Valtype cprmask4_;
1971 };
1972
1973 // Mips_output_data_got class.
1974
1975 template<int size, bool big_endian>
1976 class Mips_output_data_got : public Output_data_got<size, big_endian>
1977 {
1978   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1979   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1980     Reloc_section;
1981   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1982
1983  public:
1984   Mips_output_data_got(Target_mips<size, big_endian>* target,
1985       Symbol_table* symtab, Layout* layout)
1986     : Output_data_got<size, big_endian>(), target_(target),
1987       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1988       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1989       secondary_got_relocs_()
1990   {
1991     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1992     this->set_addralign(16);
1993   }
1994
1995   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1996   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1997   void
1998   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1999                           unsigned int symndx, Mips_address addend,
2000                           unsigned int r_type, unsigned int shndx,
2001                           bool is_section_symbol)
2002   {
2003     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
2004                                                     r_type, shndx,
2005                                                     is_section_symbol);
2006   }
2007
2008   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2009   // in OBJECT.  FOR_CALL is true if the caller is only interested in
2010   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
2011   // relocation.
2012   void
2013   record_global_got_symbol(Mips_symbol<size>* mips_sym,
2014                            Mips_relobj<size, big_endian>* object,
2015                            unsigned int r_type, bool dyn_reloc, bool for_call)
2016   {
2017     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2018                                                      dyn_reloc, for_call);
2019   }
2020
2021   // Record that OBJECT has a page relocation against symbol SYMNDX and
2022   // that ADDEND is the addend for that relocation.
2023   void
2024   record_got_page_entry(Mips_relobj<size, big_endian>* object,
2025                         unsigned int symndx, int addend)
2026   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2027
2028   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
2029   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2030   // applied in a static link.
2031   void
2032   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033                    Mips_symbol<size>* gsym)
2034   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2035
2036   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
2037   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
2038   // relocation that needs to be applied in a static link.
2039   void
2040   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2041                    Sized_relobj_file<size, big_endian>* relobj,
2042                    unsigned int index)
2043   {
2044     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2045                                                 index));
2046   }
2047
2048   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2049   // secondary GOT at OFFSET.
2050   void
2051   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2052                           Mips_symbol<size>* gsym)
2053   {
2054     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2055                                                        r_type, gsym));
2056   }
2057
2058   // Update GOT entry at OFFSET with VALUE.
2059   void
2060   update_got_entry(unsigned int offset, Mips_address value)
2061   {
2062     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2063   }
2064
2065   // Return the number of entries in local part of the GOT.  This includes
2066   // local entries, page entries and 2 reserved entries.
2067   unsigned int
2068   get_local_gotno() const
2069   {
2070     if (!this->multi_got())
2071       {
2072         return (2 + this->master_got_info_->local_gotno()
2073                 + this->master_got_info_->page_gotno());
2074       }
2075     else
2076       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2077   }
2078
2079   // Return dynamic symbol table index of the first symbol with global GOT
2080   // entry.
2081   unsigned int
2082   first_global_got_dynsym_index() const
2083   { return this->first_global_got_dynsym_index_; }
2084
2085   // Set dynamic symbol table index of the first symbol with global GOT entry.
2086   void
2087   set_first_global_got_dynsym_index(unsigned int index)
2088   { this->first_global_got_dynsym_index_ = index; }
2089
2090   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
2091   // larger than 64K, create multi-GOT.
2092   void
2093   lay_out_got(Layout* layout, Symbol_table* symtab,
2094               const Input_objects* input_objects);
2095
2096   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
2097   void
2098   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2099
2100   // Attempt to merge GOTs of different input objects.
2101   void
2102   merge_gots(const Input_objects* input_objects);
2103
2104   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
2105   // this would lead to overflow, true if they were merged successfully.
2106   bool
2107   merge_got_with(Mips_got_info<size, big_endian>* from,
2108                  Mips_relobj<size, big_endian>* object,
2109                  Mips_got_info<size, big_endian>* to);
2110
2111   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
2112   // use OBJECT's GOT.
2113   unsigned int
2114   get_got_page_offset(Mips_address value,
2115                       const Mips_relobj<size, big_endian>* object)
2116   {
2117     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2118                                           ? this->master_got_info_
2119                                           : object->get_got_info());
2120     gold_assert(g != NULL);
2121     return g->get_got_page_offset(value, this);
2122   }
2123
2124   // Return the GOT offset of type GOT_TYPE of the global symbol
2125   // GSYM.  For multi-GOT links, use OBJECT's GOT.
2126   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2127                           Mips_relobj<size, big_endian>* object) const
2128   {
2129     if (!this->multi_got())
2130       return gsym->got_offset(got_type);
2131     else
2132       {
2133         Mips_got_info<size, big_endian>* g = object->get_got_info();
2134         gold_assert(g != NULL);
2135         return gsym->got_offset(g->multigot_got_type(got_type));
2136       }
2137   }
2138
2139   // Return the GOT offset of type GOT_TYPE of the local symbol
2140   // SYMNDX.
2141   unsigned int
2142   got_offset(unsigned int symndx, unsigned int got_type,
2143              Sized_relobj_file<size, big_endian>* object,
2144              uint64_t addend) const
2145   { return object->local_got_offset(symndx, got_type, addend); }
2146
2147   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2148   unsigned int
2149   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2150   {
2151     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2152                                           ? this->master_got_info_
2153                                           : object->get_got_info());
2154     gold_assert(g != NULL);
2155     return g->tls_ldm_offset();
2156   }
2157
2158   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2159   void
2160   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2161                      Mips_relobj<size, big_endian>* object)
2162   {
2163     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2164                                           ? this->master_got_info_
2165                                           : object->get_got_info());
2166     gold_assert(g != NULL);
2167     g->set_tls_ldm_offset(tls_ldm_offset);
2168   }
2169
2170   // Return true for multi-GOT links.
2171   bool
2172   multi_got() const
2173   { return this->primary_got_ != NULL; }
2174
2175   // Return the offset of OBJECT's GOT from the start of .got section.
2176   unsigned int
2177   get_got_offset(const Mips_relobj<size, big_endian>* object)
2178   {
2179     if (!this->multi_got())
2180       return 0;
2181     else
2182       {
2183         Mips_got_info<size, big_endian>* g = object->get_got_info();
2184         return g != NULL ? g->offset() : 0;
2185       }
2186   }
2187
2188   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2189   void
2190   add_reloc_only_entries()
2191   { this->master_got_info_->add_reloc_only_entries(this); }
2192
2193   // Return offset of the primary GOT's entry for global symbol.
2194   unsigned int
2195   get_primary_got_offset(const Mips_symbol<size>* sym) const
2196   {
2197     gold_assert(sym->global_got_area() != GGA_NONE);
2198     return (this->get_local_gotno() + sym->dynsym_index()
2199             - this->first_global_got_dynsym_index()) * size/8;
2200   }
2201
2202   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2203   // Input argument GOT_OFFSET is always global offset from the start of
2204   // .got section, for both single and multi-GOT links.
2205   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2206   // links, the return value is object_got_offset - 0x7FF0, where
2207   // object_got_offset is offset in the OBJECT's GOT.
2208   int
2209   gp_offset(unsigned int got_offset,
2210             const Mips_relobj<size, big_endian>* object) const
2211   {
2212     return (this->address() + got_offset
2213             - this->target_->adjusted_gp_value(object));
2214   }
2215
2216  protected:
2217   // Write out the GOT table.
2218   void
2219   do_write(Output_file*);
2220
2221  private:
2222
2223   // This class represent dynamic relocations that need to be applied by
2224   // gold because we are using TLS relocations in a static link.
2225   class Static_reloc
2226   {
2227    public:
2228     Static_reloc(unsigned int got_offset, unsigned int r_type,
2229                  Mips_symbol<size>* gsym)
2230       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2231     { this->u_.global.symbol = gsym; }
2232
2233     Static_reloc(unsigned int got_offset, unsigned int r_type,
2234           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2235       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2236     {
2237       this->u_.local.relobj = relobj;
2238       this->u_.local.index = index;
2239     }
2240
2241     // Return the GOT offset.
2242     unsigned int
2243     got_offset() const
2244     { return this->got_offset_; }
2245
2246     // Relocation type.
2247     unsigned int
2248     r_type() const
2249     { return this->r_type_; }
2250
2251     // Whether the symbol is global or not.
2252     bool
2253     symbol_is_global() const
2254     { return this->symbol_is_global_; }
2255
2256     // For a relocation against a global symbol, the global symbol.
2257     Mips_symbol<size>*
2258     symbol() const
2259     {
2260       gold_assert(this->symbol_is_global_);
2261       return this->u_.global.symbol;
2262     }
2263
2264     // For a relocation against a local symbol, the defining object.
2265     Sized_relobj_file<size, big_endian>*
2266     relobj() const
2267     {
2268       gold_assert(!this->symbol_is_global_);
2269       return this->u_.local.relobj;
2270     }
2271
2272     // For a relocation against a local symbol, the local symbol index.
2273     unsigned int
2274     index() const
2275     {
2276       gold_assert(!this->symbol_is_global_);
2277       return this->u_.local.index;
2278     }
2279
2280    private:
2281     // GOT offset of the entry to which this relocation is applied.
2282     unsigned int got_offset_;
2283     // Type of relocation.
2284     unsigned int r_type_;
2285     // Whether this relocation is against a global symbol.
2286     bool symbol_is_global_;
2287     // A global or local symbol.
2288     union
2289     {
2290       struct
2291       {
2292         // For a global symbol, the symbol itself.
2293         Mips_symbol<size>* symbol;
2294       } global;
2295       struct
2296       {
2297         // For a local symbol, the object defining object.
2298         Sized_relobj_file<size, big_endian>* relobj;
2299         // For a local symbol, the symbol index.
2300         unsigned int index;
2301       } local;
2302     } u_;
2303   };
2304
2305   // The target.
2306   Target_mips<size, big_endian>* target_;
2307   // The symbol table.
2308   Symbol_table* symbol_table_;
2309   // The layout.
2310   Layout* layout_;
2311   // Static relocs to be applied to the GOT.
2312   std::vector<Static_reloc> static_relocs_;
2313   // .got section view.
2314   unsigned char* got_view_;
2315   // The dynamic symbol table index of the first symbol with global GOT entry.
2316   unsigned int first_global_got_dynsym_index_;
2317   // The master GOT information.
2318   Mips_got_info<size, big_endian>* master_got_info_;
2319   // The  primary GOT information.
2320   Mips_got_info<size, big_endian>* primary_got_;
2321   // Secondary GOT fixups.
2322   std::vector<Static_reloc> secondary_got_relocs_;
2323 };
2324
2325 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2326 // two ways of creating these interfaces.  The first is to add:
2327 //
2328 //      lui     $25,%hi(func)
2329 //      j       func
2330 //      addiu   $25,$25,%lo(func)
2331 //
2332 // to a separate trampoline section.  The second is to add:
2333 //
2334 //      lui     $25,%hi(func)
2335 //      addiu   $25,$25,%lo(func)
2336 //
2337 // immediately before a PIC function "func", but only if a function is at the
2338 // beginning of the section, and the section is not too heavily aligned (i.e we
2339 // would need to add no more than 2 nops before the stub.)
2340 //
2341 // We only create stubs of the first type.
2342
2343 template<int size, bool big_endian>
2344 class Mips_output_data_la25_stub : public Output_section_data
2345 {
2346   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2347
2348  public:
2349   Mips_output_data_la25_stub()
2350   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2351   { }
2352
2353   // Create LA25 stub for a symbol.
2354   void
2355   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2356                    Mips_symbol<size>* gsym);
2357
2358   // Return output address of a stub.
2359   Mips_address
2360   stub_address(const Mips_symbol<size>* sym) const
2361   {
2362     gold_assert(sym->has_la25_stub());
2363     return this->address() + sym->la25_stub_offset();
2364   }
2365
2366  protected:
2367   void
2368   do_adjust_output_section(Output_section* os)
2369   { os->set_entsize(0); }
2370
2371  private:
2372   // Template for standard LA25 stub.
2373   static const uint32_t la25_stub_entry[];
2374   // Template for microMIPS LA25 stub.
2375   static const uint32_t la25_stub_micromips_entry[];
2376
2377   // Set the final size.
2378   void
2379   set_final_data_size()
2380   { this->set_data_size(this->symbols_.size() * 16); }
2381
2382   // Create a symbol for SYM stub's value and size, to help make the
2383   // disassembly easier to read.
2384   void
2385   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2386                      Target_mips<size, big_endian>* target, uint64_t symsize);
2387
2388   // Write to a map file.
2389   void
2390   do_print_to_mapfile(Mapfile* mapfile) const
2391   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2392
2393   // Write out the LA25 stub section.
2394   void
2395   do_write(Output_file*);
2396
2397   // Symbols that have LA25 stubs.
2398   std::vector<Mips_symbol<size>*> symbols_;
2399 };
2400
2401 // MIPS-specific relocation writer.
2402
2403 template<int sh_type, bool dynamic, int size, bool big_endian>
2404 struct Mips_output_reloc_writer;
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2408 {
2409   typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2410   typedef std::vector<Output_reloc_type> Relocs;
2411
2412   static void
2413   write(typename Relocs::const_iterator p, unsigned char* pov)
2414   { p->write(pov); }
2415 };
2416
2417 template<int sh_type, bool dynamic, bool big_endian>
2418 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2419 {
2420   typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2421   typedef std::vector<Output_reloc_type> Relocs;
2422
2423   static void
2424   write(typename Relocs::const_iterator p, unsigned char* pov)
2425   {
2426     elfcpp::Mips64_rel_write<big_endian> orel(pov);
2427     orel.put_r_offset(p->get_address());
2428     orel.put_r_sym(p->get_symbol_index());
2429     orel.put_r_ssym(RSS_UNDEF);
2430     orel.put_r_type(p->type());
2431     if (p->type() == elfcpp::R_MIPS_REL32)
2432       orel.put_r_type2(elfcpp::R_MIPS_64);
2433     else
2434       orel.put_r_type2(elfcpp::R_MIPS_NONE);
2435     orel.put_r_type3(elfcpp::R_MIPS_NONE);
2436   }
2437 };
2438
2439 template<int sh_type, bool dynamic, int size, bool big_endian>
2440 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2441                                                         size, big_endian>
2442 {
2443  public:
2444   Mips_output_data_reloc(bool sort_relocs)
2445     : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2446   { }
2447
2448  protected:
2449   // Write out the data.
2450   void
2451   do_write(Output_file* of)
2452   {
2453     typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2454         big_endian> Writer;
2455     this->template do_write_generic<Writer>(of);
2456   }
2457 };
2458
2459
2460 // A class to handle the PLT data.
2461
2462 template<int size, bool big_endian>
2463 class Mips_output_data_plt : public Output_section_data
2464 {
2465   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2466   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2467                                  size, big_endian> Reloc_section;
2468
2469  public:
2470   // Create the PLT section.  The ordinary .got section is an argument,
2471   // since we need to refer to the start.
2472   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2473                        Target_mips<size, big_endian>* target)
2474     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2475       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2476       target_(target)
2477   {
2478     this->rel_ = new Reloc_section(false);
2479     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2480                                     elfcpp::SHF_ALLOC, this->rel_,
2481                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2482   }
2483
2484   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2485   void
2486   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2487
2488   // Return the .rel.plt section data.
2489   Reloc_section*
2490   rel_plt() const
2491   { return this->rel_; }
2492
2493   // Return the number of PLT entries.
2494   unsigned int
2495   entry_count() const
2496   { return this->symbols_.size(); }
2497
2498   // Return the offset of the first non-reserved PLT entry.
2499   unsigned int
2500   first_plt_entry_offset() const
2501   { return sizeof(plt0_entry_o32); }
2502
2503   // Return the size of a PLT entry.
2504   unsigned int
2505   plt_entry_size() const
2506   { return sizeof(plt_entry); }
2507
2508   // Set final PLT offsets.  For each symbol, determine whether standard or
2509   // compressed (MIPS16 or microMIPS) PLT entry is used.
2510   void
2511   set_plt_offsets();
2512
2513   // Return the offset of the first standard PLT entry.
2514   unsigned int
2515   first_mips_plt_offset() const
2516   { return this->plt_header_size_; }
2517
2518   // Return the offset of the first compressed PLT entry.
2519   unsigned int
2520   first_comp_plt_offset() const
2521   { return this->plt_header_size_ + this->plt_mips_offset_; }
2522
2523   // Return whether there are any standard PLT entries.
2524   bool
2525   has_standard_entries() const
2526   { return this->plt_mips_offset_ > 0; }
2527
2528   // Return the output address of standard PLT entry.
2529   Mips_address
2530   mips_entry_address(const Mips_symbol<size>* sym) const
2531   {
2532     gold_assert (sym->has_mips_plt_offset());
2533     return (this->address() + this->first_mips_plt_offset()
2534             + sym->mips_plt_offset());
2535   }
2536
2537   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2538   Mips_address
2539   comp_entry_address(const Mips_symbol<size>* sym) const
2540   {
2541     gold_assert (sym->has_comp_plt_offset());
2542     return (this->address() + this->first_comp_plt_offset()
2543             + sym->comp_plt_offset());
2544   }
2545
2546  protected:
2547   void
2548   do_adjust_output_section(Output_section* os)
2549   { os->set_entsize(0); }
2550
2551   // Write to a map file.
2552   void
2553   do_print_to_mapfile(Mapfile* mapfile) const
2554   { mapfile->print_output_data(this, _(".plt")); }
2555
2556  private:
2557   // Template for the first PLT entry.
2558   static const uint32_t plt0_entry_o32[];
2559   static const uint32_t plt0_entry_n32[];
2560   static const uint32_t plt0_entry_n64[];
2561   static const uint32_t plt0_entry_micromips_o32[];
2562   static const uint32_t plt0_entry_micromips32_o32[];
2563
2564   // Template for subsequent PLT entries.
2565   static const uint32_t plt_entry[];
2566   static const uint32_t plt_entry_r6[];
2567   static const uint32_t plt_entry_mips16_o32[];
2568   static const uint32_t plt_entry_micromips_o32[];
2569   static const uint32_t plt_entry_micromips32_o32[];
2570
2571   // Set the final size.
2572   void
2573   set_final_data_size()
2574   {
2575     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2576                         + this->plt_comp_offset_);
2577   }
2578
2579   // Write out the PLT data.
2580   void
2581   do_write(Output_file*);
2582
2583   // Return whether the plt header contains microMIPS code.  For the sake of
2584   // cache alignment always use a standard header whenever any standard entries
2585   // are present even if microMIPS entries are present as well.  This also lets
2586   // the microMIPS header rely on the value of $v0 only set by microMIPS
2587   // entries, for a small size reduction.
2588   bool
2589   is_plt_header_compressed() const
2590   {
2591     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2592     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2593   }
2594
2595   // Return the size of the PLT header.
2596   unsigned int
2597   get_plt_header_size() const
2598   {
2599     if (this->target_->is_output_n64())
2600       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2601     else if (this->target_->is_output_n32())
2602       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2603     else if (!this->is_plt_header_compressed())
2604       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2605     else if (this->target_->use_32bit_micromips_instructions())
2606       return (2 * sizeof(plt0_entry_micromips32_o32)
2607               / sizeof(plt0_entry_micromips32_o32[0]));
2608     else
2609       return (2 * sizeof(plt0_entry_micromips_o32)
2610               / sizeof(plt0_entry_micromips_o32[0]));
2611   }
2612
2613   // Return the PLT header entry.
2614   const uint32_t*
2615   get_plt_header_entry() const
2616   {
2617     if (this->target_->is_output_n64())
2618       return plt0_entry_n64;
2619     else if (this->target_->is_output_n32())
2620       return plt0_entry_n32;
2621     else if (!this->is_plt_header_compressed())
2622       return plt0_entry_o32;
2623     else if (this->target_->use_32bit_micromips_instructions())
2624       return plt0_entry_micromips32_o32;
2625     else
2626       return plt0_entry_micromips_o32;
2627   }
2628
2629   // Return the size of the standard PLT entry.
2630   unsigned int
2631   standard_plt_entry_size() const
2632   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2633
2634   // Return the size of the compressed PLT entry.
2635   unsigned int
2636   compressed_plt_entry_size() const
2637   {
2638     gold_assert(!this->target_->is_output_newabi());
2639
2640     if (!this->target_->is_output_micromips())
2641       return (2 * sizeof(plt_entry_mips16_o32)
2642               / sizeof(plt_entry_mips16_o32[0]));
2643     else if (this->target_->use_32bit_micromips_instructions())
2644       return (2 * sizeof(plt_entry_micromips32_o32)
2645               / sizeof(plt_entry_micromips32_o32[0]));
2646     else
2647       return (2 * sizeof(plt_entry_micromips_o32)
2648               / sizeof(plt_entry_micromips_o32[0]));
2649   }
2650
2651   // The reloc section.
2652   Reloc_section* rel_;
2653   // The .got.plt section.
2654   Output_data_space* got_plt_;
2655   // Symbols that have PLT entry.
2656   std::vector<Mips_symbol<size>*> symbols_;
2657   // The offset of the next standard PLT entry to create.
2658   unsigned int plt_mips_offset_;
2659   // The offset of the next compressed PLT entry to create.
2660   unsigned int plt_comp_offset_;
2661   // The size of the PLT header in bytes.
2662   unsigned int plt_header_size_;
2663   // The target.
2664   Target_mips<size, big_endian>* target_;
2665 };
2666
2667 // A class to handle the .MIPS.stubs data.
2668
2669 template<int size, bool big_endian>
2670 class Mips_output_data_mips_stubs : public Output_section_data
2671 {
2672   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2673
2674   // Unordered set of .MIPS.stubs entries.
2675   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2676       Mips_stubs_entry_set;
2677
2678  public:
2679    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2680      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2681        stub_offsets_are_set_(false), target_(target)
2682    { }
2683
2684   // Create entry for a symbol.
2685   void
2686   make_entry(Mips_symbol<size>*);
2687
2688   // Remove entry for a symbol.
2689   void
2690   remove_entry(Mips_symbol<size>* gsym);
2691
2692   // Set stub offsets for symbols.  This method expects that the number of
2693   // entries in dynamic symbol table is set.
2694   void
2695   set_lazy_stub_offsets();
2696
2697   void
2698   set_needs_dynsym_value();
2699
2700    // Set the number of entries in dynamic symbol table.
2701   void
2702   set_dynsym_count(unsigned int dynsym_count)
2703   { this->dynsym_count_ = dynsym_count; }
2704
2705   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2706   // count is greater than 0x10000.  If the dynamic symbol count is less than
2707   // 0x10000, the stub will be 4 bytes smaller.
2708   // There's no disadvantage from using microMIPS code here, so for the sake of
2709   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2710   // output produced at all.  This has a benefit of stubs being shorter by
2711   // 4 bytes each too, unless in the insn32 mode.
2712   unsigned int
2713   stub_max_size() const
2714   {
2715     if (!this->target_->is_output_micromips()
2716         || this->target_->use_32bit_micromips_instructions())
2717       return 20;
2718     else
2719       return 16;
2720   }
2721
2722   // Return the size of the stub.  This method expects that the final dynsym
2723   // count is set.
2724   unsigned int
2725   stub_size() const
2726   {
2727     gold_assert(this->dynsym_count_ != -1U);
2728     if (this->dynsym_count_ > 0x10000)
2729       return this->stub_max_size();
2730     else
2731       return this->stub_max_size() - 4;
2732   }
2733
2734   // Return output address of a stub.
2735   Mips_address
2736   stub_address(const Mips_symbol<size>* sym) const
2737   {
2738     gold_assert(sym->has_lazy_stub());
2739     return this->address() + sym->lazy_stub_offset();
2740   }
2741
2742  protected:
2743   void
2744   do_adjust_output_section(Output_section* os)
2745   { os->set_entsize(0); }
2746
2747   // Write to a map file.
2748   void
2749   do_print_to_mapfile(Mapfile* mapfile) const
2750   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2751
2752  private:
2753   static const uint32_t lazy_stub_normal_1[];
2754   static const uint32_t lazy_stub_normal_1_n64[];
2755   static const uint32_t lazy_stub_normal_2[];
2756   static const uint32_t lazy_stub_normal_2_n64[];
2757   static const uint32_t lazy_stub_big[];
2758   static const uint32_t lazy_stub_big_n64[];
2759
2760   static const uint32_t lazy_stub_micromips_normal_1[];
2761   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2762   static const uint32_t lazy_stub_micromips_normal_2[];
2763   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2764   static const uint32_t lazy_stub_micromips_big[];
2765   static const uint32_t lazy_stub_micromips_big_n64[];
2766
2767   static const uint32_t lazy_stub_micromips32_normal_1[];
2768   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2769   static const uint32_t lazy_stub_micromips32_normal_2[];
2770   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2771   static const uint32_t lazy_stub_micromips32_big[];
2772   static const uint32_t lazy_stub_micromips32_big_n64[];
2773
2774   // Set the final size.
2775   void
2776   set_final_data_size()
2777   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2778
2779   // Write out the .MIPS.stubs data.
2780   void
2781   do_write(Output_file*);
2782
2783   // .MIPS.stubs symbols
2784   Mips_stubs_entry_set symbols_;
2785   // Number of entries in dynamic symbol table.
2786   unsigned int dynsym_count_;
2787   // Whether the stub offsets are set.
2788   bool stub_offsets_are_set_;
2789   // The target.
2790   Target_mips<size, big_endian>* target_;
2791 };
2792
2793 // This class handles Mips .reginfo output section.
2794
2795 template<int size, bool big_endian>
2796 class Mips_output_section_reginfo : public Output_section_data
2797 {
2798   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2799
2800  public:
2801   Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2802                               Valtype gprmask, Valtype cprmask1,
2803                               Valtype cprmask2, Valtype cprmask3,
2804                               Valtype cprmask4)
2805     : Output_section_data(24, 4, true), target_(target),
2806       gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2807       cprmask3_(cprmask3), cprmask4_(cprmask4)
2808   { }
2809
2810  protected:
2811   // Write to a map file.
2812   void
2813   do_print_to_mapfile(Mapfile* mapfile) const
2814   { mapfile->print_output_data(this, _(".reginfo")); }
2815
2816   // Write out reginfo section.
2817   void
2818   do_write(Output_file* of);
2819
2820  private:
2821   Target_mips<size, big_endian>* target_;
2822
2823   // gprmask of the output .reginfo section.
2824   Valtype gprmask_;
2825   // cprmask1 of the output .reginfo section.
2826   Valtype cprmask1_;
2827   // cprmask2 of the output .reginfo section.
2828   Valtype cprmask2_;
2829   // cprmask3 of the output .reginfo section.
2830   Valtype cprmask3_;
2831   // cprmask4 of the output .reginfo section.
2832   Valtype cprmask4_;
2833 };
2834
2835 // This class handles .MIPS.options output section.
2836
2837 template<int size, bool big_endian>
2838 class Mips_output_section_options : public Output_section
2839 {
2840  public:
2841   Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2842                               elfcpp::Elf_Xword flags,
2843                               Target_mips<size, big_endian>* target)
2844     : Output_section(name, type, flags), target_(target)
2845   {
2846     // After the input sections are written, we only need to update
2847     // ri_gp_value field of ODK_REGINFO entries.
2848     this->set_after_input_sections();
2849   }
2850
2851  protected:
2852   // Write out option section.
2853   void
2854   do_write(Output_file* of);
2855
2856  private:
2857   Target_mips<size, big_endian>* target_;
2858 };
2859
2860 // This class handles .MIPS.abiflags output section.
2861
2862 template<int size, bool big_endian>
2863 class Mips_output_section_abiflags : public Output_section_data
2864 {
2865  public:
2866   Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2867     : Output_section_data(24, 8, true), abiflags_(abiflags)
2868   { }
2869
2870  protected:
2871   // Write to a map file.
2872   void
2873   do_print_to_mapfile(Mapfile* mapfile) const
2874   { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2875
2876   void
2877   do_write(Output_file* of);
2878
2879  private:
2880   const Mips_abiflags<big_endian>& abiflags_;
2881 };
2882
2883 // The MIPS target has relocation types which default handling of relocatable
2884 // relocation cannot process.  So we have to extend the default code.
2885
2886 template<bool big_endian, typename Classify_reloc>
2887 class Mips_scan_relocatable_relocs :
2888   public Default_scan_relocatable_relocs<Classify_reloc>
2889 {
2890  public:
2891   // Return the strategy to use for a local symbol which is a section
2892   // symbol, given the relocation type.
2893   inline Relocatable_relocs::Reloc_strategy
2894   local_section_strategy(unsigned int r_type, Relobj* object)
2895   {
2896     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2897       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2898     else
2899       {
2900         switch (r_type)
2901           {
2902           case elfcpp::R_MIPS_26:
2903             return Relocatable_relocs::RELOC_SPECIAL;
2904
2905           default:
2906             return Default_scan_relocatable_relocs<Classify_reloc>::
2907                 local_section_strategy(r_type, object);
2908           }
2909       }
2910   }
2911 };
2912
2913 // Mips_copy_relocs class.  The only difference from the base class is the
2914 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2915 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2916 // cannot be made dynamic, a COPY reloc is emitted.
2917
2918 template<int sh_type, int size, bool big_endian>
2919 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2920 {
2921  public:
2922   Mips_copy_relocs()
2923     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2924   { }
2925
2926   // Emit any saved relocations which turn out to be needed.  This is
2927   // called after all the relocs have been scanned.
2928   void
2929   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2930             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2931
2932  private:
2933   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2934     Copy_reloc_entry;
2935
2936   // Emit this reloc if appropriate.  This is called after we have
2937   // scanned all the relocations, so we know whether we emitted a
2938   // COPY relocation for SYM_.
2939   void
2940   emit_entry(Copy_reloc_entry& entry,
2941              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2942              Symbol_table* symtab, Layout* layout,
2943              Target_mips<size, big_endian>* target);
2944 };
2945
2946
2947 // Return true if the symbol SYM should be considered to resolve local
2948 // to the current module, and false otherwise.  The logic is taken from
2949 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2950 static bool
2951 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2952                   bool local_protected)
2953 {
2954   // If it's a local sym, of course we resolve locally.
2955   if (sym == NULL)
2956     return true;
2957
2958   // STV_HIDDEN or STV_INTERNAL ones must be local.
2959   if (sym->visibility() == elfcpp::STV_HIDDEN
2960       || sym->visibility() == elfcpp::STV_INTERNAL)
2961     return true;
2962
2963   // If we don't have a definition in a regular file, then we can't
2964   // resolve locally.  The sym is either undefined or dynamic.
2965   if (sym->is_from_dynobj() || sym->is_undefined())
2966     return false;
2967
2968   // Forced local symbols resolve locally.
2969   if (sym->is_forced_local())
2970     return true;
2971
2972   // As do non-dynamic symbols.
2973   if (!has_dynsym_entry)
2974     return true;
2975
2976   // At this point, we know the symbol is defined and dynamic.  In an
2977   // executable it must resolve locally, likewise when building symbolic
2978   // shared libraries.
2979   if (parameters->options().output_is_executable()
2980       || parameters->options().Bsymbolic())
2981     return true;
2982
2983   // Now deal with defined dynamic symbols in shared libraries.  Ones
2984   // with default visibility might not resolve locally.
2985   if (sym->visibility() == elfcpp::STV_DEFAULT)
2986     return false;
2987
2988   // STV_PROTECTED non-function symbols are local.
2989   if (sym->type() != elfcpp::STT_FUNC)
2990     return true;
2991
2992   // Function pointer equality tests may require that STV_PROTECTED
2993   // symbols be treated as dynamic symbols.  If the address of a
2994   // function not defined in an executable is set to that function's
2995   // plt entry in the executable, then the address of the function in
2996   // a shared library must also be the plt entry in the executable.
2997   return local_protected;
2998 }
2999
3000 // Return TRUE if references to this symbol always reference the symbol in this
3001 // object.
3002 static bool
3003 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
3004 {
3005   return symbol_refs_local(sym, has_dynsym_entry, false);
3006 }
3007
3008 // Return TRUE if calls to this symbol always call the version in this object.
3009 static bool
3010 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3011 {
3012   return symbol_refs_local(sym, has_dynsym_entry, true);
3013 }
3014
3015 // Compare GOT offsets of two symbols.
3016
3017 template<int size, bool big_endian>
3018 static bool
3019 got_offset_compare(Symbol* sym1, Symbol* sym2)
3020 {
3021   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3022   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3023   unsigned int area1 = mips_sym1->global_got_area();
3024   unsigned int area2 = mips_sym2->global_got_area();
3025   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3026
3027   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3028   if (area1 != area2)
3029     return area1 < area2;
3030
3031   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3032 }
3033
3034 // This method divides dynamic symbols into symbols that have GOT entry, and
3035 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
3036 // Mips ABI requires that symbols with the GOT entry must be at the end of
3037 // dynamic symbol table, and the order in dynamic symbol table must match the
3038 // order in GOT.
3039
3040 template<int size, bool big_endian>
3041 static void
3042 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3043                     std::vector<Symbol*>* non_got_symbols,
3044                     std::vector<Symbol*>* got_symbols)
3045 {
3046   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3047        p != dyn_symbols->end();
3048        ++p)
3049     {
3050       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3051       if (mips_sym->global_got_area() == GGA_NORMAL
3052           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3053         got_symbols->push_back(mips_sym);
3054       else
3055         non_got_symbols->push_back(mips_sym);
3056     }
3057
3058   std::sort(got_symbols->begin(), got_symbols->end(),
3059             got_offset_compare<size, big_endian>);
3060 }
3061
3062 // Functor class for processing the global symbol table.
3063
3064 template<int size, bool big_endian>
3065 class Symbol_visitor_check_symbols
3066 {
3067  public:
3068   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3069     Layout* layout, Symbol_table* symtab)
3070     : target_(target), layout_(layout), symtab_(symtab)
3071   { }
3072
3073   void
3074   operator()(Sized_symbol<size>* sym)
3075   {
3076     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3077     if (local_pic_function<size, big_endian>(mips_sym))
3078       {
3079         // SYM is a function that might need $25 to be valid on entry.
3080         // If we're creating a non-PIC relocatable object, mark SYM as
3081         // being PIC.  If we're creating a non-relocatable object with
3082         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3083         // stub.
3084         if (parameters->options().relocatable())
3085           {
3086             if (!parameters->options().output_is_position_independent())
3087               mips_sym->set_pic();
3088           }
3089         else if (mips_sym->has_nonpic_branches())
3090           {
3091             this->target_->la25_stub_section(layout_)
3092                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3093           }
3094       }
3095   }
3096
3097  private:
3098   Target_mips<size, big_endian>* target_;
3099   Layout* layout_;
3100   Symbol_table* symtab_;
3101 };
3102
3103 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3104 // and endianness. The relocation format for MIPS-64 is non-standard.
3105
3106 template<int sh_type, int size, bool big_endian>
3107 struct Mips_reloc_types;
3108
3109 template<bool big_endian>
3110 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3111 {
3112   typedef typename elfcpp::Rel<32, big_endian> Reloc;
3113   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3114
3115   static typename elfcpp::Elf_types<32>::Elf_Swxword
3116   get_r_addend(const Reloc*)
3117   { return 0; }
3118
3119   static inline void
3120   set_reloc_addend(Reloc_write*,
3121                    typename elfcpp::Elf_types<32>::Elf_Swxword)
3122   { gold_unreachable(); }
3123 };
3124
3125 template<bool big_endian>
3126 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3127 {
3128   typedef typename elfcpp::Rela<32, big_endian> Reloc;
3129   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3130
3131   static typename elfcpp::Elf_types<32>::Elf_Swxword
3132   get_r_addend(const Reloc* reloc)
3133   { return reloc->get_r_addend(); }
3134
3135   static inline void
3136   set_reloc_addend(Reloc_write* p,
3137                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
3138   { p->put_r_addend(val); }
3139 };
3140
3141 template<bool big_endian>
3142 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3143 {
3144   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3145   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3146
3147   static typename elfcpp::Elf_types<64>::Elf_Swxword
3148   get_r_addend(const Reloc*)
3149   { return 0; }
3150
3151   static inline void
3152   set_reloc_addend(Reloc_write*,
3153                    typename elfcpp::Elf_types<64>::Elf_Swxword)
3154   { gold_unreachable(); }
3155 };
3156
3157 template<bool big_endian>
3158 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3159 {
3160   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3161   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3162
3163   static typename elfcpp::Elf_types<64>::Elf_Swxword
3164   get_r_addend(const Reloc* reloc)
3165   { return reloc->get_r_addend(); }
3166
3167   static inline void
3168   set_reloc_addend(Reloc_write* p,
3169                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
3170   { p->put_r_addend(val); }
3171 };
3172
3173 // Forward declaration.
3174 static unsigned int
3175 mips_get_size_for_reloc(unsigned int, Relobj*);
3176
3177 // A class for inquiring about properties of a relocation,
3178 // used while scanning relocs during a relocatable link and
3179 // garbage collection.
3180
3181 template<int sh_type_, int size, bool big_endian>
3182 class Mips_classify_reloc;
3183
3184 template<int sh_type_, bool big_endian>
3185 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3186     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3187 {
3188  public:
3189   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3190       Reltype;
3191   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3192       Reltype_write;
3193
3194   // Return the symbol referred to by the relocation.
3195   static inline unsigned int
3196   get_r_sym(const Reltype* reloc)
3197   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3198
3199   // Return the type of the relocation.
3200   static inline unsigned int
3201   get_r_type(const Reltype* reloc)
3202   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3203
3204   static inline unsigned int
3205   get_r_type2(const Reltype*)
3206   { return 0; }
3207
3208   static inline unsigned int
3209   get_r_type3(const Reltype*)
3210   { return 0; }
3211
3212   static inline unsigned int
3213   get_r_ssym(const Reltype*)
3214   { return 0; }
3215
3216   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3217   static inline unsigned int
3218   get_r_addend(const Reltype* reloc)
3219   {
3220     if (sh_type_ == elfcpp::SHT_REL)
3221       return 0;
3222     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3223   }
3224
3225   // Write the r_info field to a new reloc, using the r_info field from
3226   // the original reloc, replacing the r_sym field with R_SYM.
3227   static inline void
3228   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3229   {
3230     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3231     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3232   }
3233
3234   // Write the r_addend field to a new reloc.
3235   static inline void
3236   put_r_addend(Reltype_write* to,
3237                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3238   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3239
3240   // Return the size of the addend of the relocation (only used for SHT_REL).
3241   static unsigned int
3242   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3243   { return mips_get_size_for_reloc(r_type, obj); }
3244 };
3245
3246 template<int sh_type_, bool big_endian>
3247 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3248     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3249 {
3250  public:
3251   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3252       Reltype;
3253   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3254       Reltype_write;
3255
3256   // Return the symbol referred to by the relocation.
3257   static inline unsigned int
3258   get_r_sym(const Reltype* reloc)
3259   { return reloc->get_r_sym(); }
3260
3261   // Return the r_type of the relocation.
3262   static inline unsigned int
3263   get_r_type(const Reltype* reloc)
3264   { return reloc->get_r_type(); }
3265
3266   // Return the r_type2 of the relocation.
3267   static inline unsigned int
3268   get_r_type2(const Reltype* reloc)
3269   { return reloc->get_r_type2(); }
3270
3271   // Return the r_type3 of the relocation.
3272   static inline unsigned int
3273   get_r_type3(const Reltype* reloc)
3274   { return reloc->get_r_type3(); }
3275
3276   // Return the special symbol of the relocation.
3277   static inline unsigned int
3278   get_r_ssym(const Reltype* reloc)
3279   { return reloc->get_r_ssym(); }
3280
3281   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3282   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3283   get_r_addend(const Reltype* reloc)
3284   {
3285     if (sh_type_ == elfcpp::SHT_REL)
3286       return 0;
3287     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3288   }
3289
3290   // Write the r_info field to a new reloc, using the r_info field from
3291   // the original reloc, replacing the r_sym field with R_SYM.
3292   static inline void
3293   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3294   {
3295     new_reloc->put_r_sym(r_sym);
3296     new_reloc->put_r_ssym(reloc->get_r_ssym());
3297     new_reloc->put_r_type3(reloc->get_r_type3());
3298     new_reloc->put_r_type2(reloc->get_r_type2());
3299     new_reloc->put_r_type(reloc->get_r_type());
3300   }
3301
3302   // Write the r_addend field to a new reloc.
3303   static inline void
3304   put_r_addend(Reltype_write* to,
3305                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3306   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3307
3308   // Return the size of the addend of the relocation (only used for SHT_REL).
3309   static unsigned int
3310   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3311   { return mips_get_size_for_reloc(r_type, obj); }
3312 };
3313
3314 template<int size, bool big_endian>
3315 class Target_mips : public Sized_target<size, big_endian>
3316 {
3317   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3318   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3319     Reloc_section;
3320   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3321   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3322   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3323       Reltype;
3324   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3325       Relatype;
3326
3327  public:
3328   Target_mips(const Target::Target_info* info = &mips_info)
3329     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3330       got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3331       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3332       mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3333       mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3334       entry_symbol_is_compressed_(false), insn32_(false)
3335   {
3336     this->add_machine_extensions();
3337   }
3338
3339   // The offset of $gp from the beginning of the .got section.
3340   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3341
3342   // The maximum size of the GOT for it to be addressable using 16-bit
3343   // offsets from $gp.
3344   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3345
3346   // Make a new symbol table entry for the Mips target.
3347   Sized_symbol<size>*
3348   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3349   { return new Mips_symbol<size>(); }
3350
3351   // Process the relocations to determine unreferenced sections for
3352   // garbage collection.
3353   void
3354   gc_process_relocs(Symbol_table* symtab,
3355                     Layout* layout,
3356                     Sized_relobj_file<size, big_endian>* object,
3357                     unsigned int data_shndx,
3358                     unsigned int sh_type,
3359                     const unsigned char* prelocs,
3360                     size_t reloc_count,
3361                     Output_section* output_section,
3362                     bool needs_special_offset_handling,
3363                     size_t local_symbol_count,
3364                     const unsigned char* plocal_symbols);
3365
3366   // Scan the relocations to look for symbol adjustments.
3367   void
3368   scan_relocs(Symbol_table* symtab,
3369               Layout* layout,
3370               Sized_relobj_file<size, big_endian>* object,
3371               unsigned int data_shndx,
3372               unsigned int sh_type,
3373               const unsigned char* prelocs,
3374               size_t reloc_count,
3375               Output_section* output_section,
3376               bool needs_special_offset_handling,
3377               size_t local_symbol_count,
3378               const unsigned char* plocal_symbols);
3379
3380   // Finalize the sections.
3381   void
3382   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3383
3384   // Relocate a section.
3385   void
3386   relocate_section(const Relocate_info<size, big_endian>*,
3387                    unsigned int sh_type,
3388                    const unsigned char* prelocs,
3389                    size_t reloc_count,
3390                    Output_section* output_section,
3391                    bool needs_special_offset_handling,
3392                    unsigned char* view,
3393                    Mips_address view_address,
3394                    section_size_type view_size,
3395                    const Reloc_symbol_changes*);
3396
3397   // Scan the relocs during a relocatable link.
3398   void
3399   scan_relocatable_relocs(Symbol_table* symtab,
3400                           Layout* layout,
3401                           Sized_relobj_file<size, big_endian>* object,
3402                           unsigned int data_shndx,
3403                           unsigned int sh_type,
3404                           const unsigned char* prelocs,
3405                           size_t reloc_count,
3406                           Output_section* output_section,
3407                           bool needs_special_offset_handling,
3408                           size_t local_symbol_count,
3409                           const unsigned char* plocal_symbols,
3410                           Relocatable_relocs*);
3411
3412   // Scan the relocs for --emit-relocs.
3413   void
3414   emit_relocs_scan(Symbol_table* symtab,
3415                    Layout* layout,
3416                    Sized_relobj_file<size, big_endian>* object,
3417                    unsigned int data_shndx,
3418                    unsigned int sh_type,
3419                    const unsigned char* prelocs,
3420                    size_t reloc_count,
3421                    Output_section* output_section,
3422                    bool needs_special_offset_handling,
3423                    size_t local_symbol_count,
3424                    const unsigned char* plocal_syms,
3425                    Relocatable_relocs* rr);
3426
3427   // Emit relocations for a section.
3428   void
3429   relocate_relocs(const Relocate_info<size, big_endian>*,
3430                   unsigned int sh_type,
3431                   const unsigned char* prelocs,
3432                   size_t reloc_count,
3433                   Output_section* output_section,
3434                   typename elfcpp::Elf_types<size>::Elf_Off
3435                     offset_in_output_section,
3436                   unsigned char* view,
3437                   Mips_address view_address,
3438                   section_size_type view_size,
3439                   unsigned char* reloc_view,
3440                   section_size_type reloc_view_size);
3441
3442   // Perform target-specific processing in a relocatable link.  This is
3443   // only used if we use the relocation strategy RELOC_SPECIAL.
3444   void
3445   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3446                                unsigned int sh_type,
3447                                const unsigned char* preloc_in,
3448                                size_t relnum,
3449                                Output_section* output_section,
3450                                typename elfcpp::Elf_types<size>::Elf_Off
3451                                  offset_in_output_section,
3452                                unsigned char* view,
3453                                Mips_address view_address,
3454                                section_size_type view_size,
3455                                unsigned char* preloc_out);
3456
3457   // Return whether SYM is defined by the ABI.
3458   bool
3459   do_is_defined_by_abi(const Symbol* sym) const
3460   {
3461     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3462             || (strcmp(sym->name(), "_gp_disp") == 0)
3463             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3464   }
3465
3466   // Return the number of entries in the GOT.
3467   unsigned int
3468   got_entry_count() const
3469   {
3470     if (!this->has_got_section())
3471       return 0;
3472     return this->got_size() / (size/8);
3473   }
3474
3475   // Return the number of entries in the PLT.
3476   unsigned int
3477   plt_entry_count() const
3478   {
3479     if (this->plt_ == NULL)
3480       return 0;
3481     return this->plt_->entry_count();
3482   }
3483
3484   // Return the offset of the first non-reserved PLT entry.
3485   unsigned int
3486   first_plt_entry_offset() const
3487   { return this->plt_->first_plt_entry_offset(); }
3488
3489   // Return the size of each PLT entry.
3490   unsigned int
3491   plt_entry_size() const
3492   { return this->plt_->plt_entry_size(); }
3493
3494   // Get the GOT section, creating it if necessary.
3495   Mips_output_data_got<size, big_endian>*
3496   got_section(Symbol_table*, Layout*);
3497
3498   // Get the GOT section.
3499   Mips_output_data_got<size, big_endian>*
3500   got_section() const
3501   {
3502     gold_assert(this->got_ != NULL);
3503     return this->got_;
3504   }
3505
3506   // Get the .MIPS.stubs section, creating it if necessary.
3507   Mips_output_data_mips_stubs<size, big_endian>*
3508   mips_stubs_section(Layout* layout);
3509
3510   // Get the .MIPS.stubs section.
3511   Mips_output_data_mips_stubs<size, big_endian>*
3512   mips_stubs_section() const
3513   {
3514     gold_assert(this->mips_stubs_ != NULL);
3515     return this->mips_stubs_;
3516   }
3517
3518   // Get the LA25 stub section, creating it if necessary.
3519   Mips_output_data_la25_stub<size, big_endian>*
3520   la25_stub_section(Layout*);
3521
3522   // Get the LA25 stub section.
3523   Mips_output_data_la25_stub<size, big_endian>*
3524   la25_stub_section()
3525   {
3526     gold_assert(this->la25_stub_ != NULL);
3527     return this->la25_stub_;
3528   }
3529
3530   // Get gp value.  It has the value of .got + 0x7FF0.
3531   Mips_address
3532   gp_value() const
3533   {
3534     if (this->gp_ != NULL)
3535       return this->gp_->value();
3536     return 0;
3537   }
3538
3539   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3540   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3541   Mips_address
3542   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3543   {
3544     if (this->gp_ == NULL)
3545       return 0;
3546
3547     bool multi_got = false;
3548     if (this->has_got_section())
3549       multi_got = this->got_section()->multi_got();
3550     if (!multi_got)
3551       return this->gp_->value();
3552     else
3553       return this->gp_->value() + this->got_section()->get_got_offset(object);
3554   }
3555
3556   // Get the dynamic reloc section, creating it if necessary.
3557   Reloc_section*
3558   rel_dyn_section(Layout*);
3559
3560   bool
3561   do_has_custom_set_dynsym_indexes() const
3562   { return true; }
3563
3564   // Don't emit input .reginfo/.MIPS.abiflags sections to
3565   // output .reginfo/.MIPS.abiflags.
3566   bool
3567   do_should_include_section(elfcpp::Elf_Word sh_type) const
3568   {
3569     return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3570              && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3571   }
3572
3573   // Set the dynamic symbol indexes.  INDEX is the index of the first
3574   // global dynamic symbol.  Pointers to the symbols are stored into the
3575   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3576   // updated dynamic symbol index.
3577   unsigned int
3578   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3579                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3580                         Versions* versions, Symbol_table* symtab) const;
3581
3582   // Remove .MIPS.stubs entry for a symbol.
3583   void
3584   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3585   {
3586     if (this->mips_stubs_ != NULL)
3587       this->mips_stubs_->remove_entry(sym);
3588   }
3589
3590   // The value to write into got[1] for SVR4 targets, to identify it is
3591   // a GNU object.  The dynamic linker can then use got[1] to store the
3592   // module pointer.
3593   uint64_t
3594   mips_elf_gnu_got1_mask()
3595   {
3596     if (this->is_output_n64())
3597       return (uint64_t)1 << 63;
3598     else
3599       return 1 << 31;
3600   }
3601
3602   // Whether the output has microMIPS code.  This is valid only after
3603   // merge_obj_e_flags() is called.
3604   bool
3605   is_output_micromips() const
3606   {
3607     gold_assert(this->are_processor_specific_flags_set());
3608     return elfcpp::is_micromips(this->processor_specific_flags());
3609   }
3610
3611   // Whether the output uses N32 ABI.  This is valid only after
3612   // merge_obj_e_flags() is called.
3613   bool
3614   is_output_n32() const
3615   {
3616     gold_assert(this->are_processor_specific_flags_set());
3617     return elfcpp::abi_n32(this->processor_specific_flags());
3618   }
3619
3620   // Whether the output uses R6 ISA.  This is valid only after
3621   // merge_obj_e_flags() is called.
3622   bool
3623   is_output_r6() const
3624   {
3625     gold_assert(this->are_processor_specific_flags_set());
3626     return elfcpp::r6_isa(this->processor_specific_flags());
3627   }
3628
3629   // Whether the output uses N64 ABI.
3630   bool
3631   is_output_n64() const
3632   { return size == 64; }
3633
3634   // Whether the output uses NEWABI.  This is valid only after
3635   // merge_obj_e_flags() is called.
3636   bool
3637   is_output_newabi() const
3638   { return this->is_output_n32() || this->is_output_n64(); }
3639
3640   // Whether we can only use 32-bit microMIPS instructions.
3641   bool
3642   use_32bit_micromips_instructions() const
3643   { return this->insn32_; }
3644
3645   // Return the r_sym field from a relocation.
3646   unsigned int
3647   get_r_sym(const unsigned char* preloc) const
3648   {
3649     // Since REL and RELA relocs share the same structure through
3650     // the r_info field, we can just use REL here.
3651     Reltype rel(preloc);
3652     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3653         get_r_sym(&rel);
3654   }
3655
3656  protected:
3657   // Return the value to use for a dynamic symbol which requires special
3658   // treatment.  This is how we support equality comparisons of function
3659   // pointers across shared library boundaries, as described in the
3660   // processor specific ABI supplement.
3661   uint64_t
3662   do_dynsym_value(const Symbol* gsym) const;
3663
3664   // Make an ELF object.
3665   Object*
3666   do_make_elf_object(const std::string&, Input_file*, off_t,
3667                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3668
3669   Object*
3670   do_make_elf_object(const std::string&, Input_file*, off_t,
3671                      const elfcpp::Ehdr<size, !big_endian>&)
3672   { gold_unreachable(); }
3673
3674   // Make an output section.
3675   Output_section*
3676   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3677                          elfcpp::Elf_Xword flags)
3678     {
3679       if (type == elfcpp::SHT_MIPS_OPTIONS)
3680         return new Mips_output_section_options<size, big_endian>(name, type,
3681                                                                  flags, this);
3682       else
3683         return new Output_section(name, type, flags);
3684     }
3685
3686   // Adjust ELF file header.
3687   void
3688   do_adjust_elf_header(unsigned char* view, int len);
3689
3690   // Get the custom dynamic tag value.
3691   unsigned int
3692   do_dynamic_tag_custom_value(elfcpp::DT) const;
3693
3694   // Adjust the value written to the dynamic symbol table.
3695   virtual void
3696   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3697   {
3698     elfcpp::Sym<size, big_endian> isym(view);
3699     elfcpp::Sym_write<size, big_endian> osym(view);
3700     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3701
3702     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3703     // to treat compressed symbols like any other.
3704     Mips_address value = isym.get_st_value();
3705     if (mips_sym->is_mips16() && value != 0)
3706       {
3707         if (!mips_sym->has_mips16_fn_stub())
3708           value |= 1;
3709         else
3710           {
3711             // If we have a MIPS16 function with a stub, the dynamic symbol
3712             // must refer to the stub, since only the stub uses the standard
3713             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3714             // in this case.
3715
3716             // There is a code which does this in the method
3717             // Target_mips::do_dynsym_value, but that code will only be
3718             // executed if the symbol is from dynobj.
3719             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3720             // table.
3721
3722             Mips16_stub_section<size, big_endian>* fn_stub =
3723               mips_sym->template get_mips16_fn_stub<big_endian>();
3724             value = fn_stub->output_address();
3725             osym.put_st_size(fn_stub->section_size());
3726           }
3727
3728         osym.put_st_value(value);
3729         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3730                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3731       }
3732     else if ((mips_sym->is_micromips()
3733               // Stubs are always microMIPS if there is any microMIPS code in
3734               // the output.
3735               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3736              && value != 0)
3737       {
3738         osym.put_st_value(value | 1);
3739         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3740                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3741       }
3742   }
3743
3744  private:
3745   // The class which scans relocations.
3746   class Scan
3747   {
3748    public:
3749     Scan()
3750     { }
3751
3752     static inline int
3753     get_reference_flags(unsigned int r_type);
3754
3755     inline void
3756     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3757           Sized_relobj_file<size, big_endian>* object,
3758           unsigned int data_shndx,
3759           Output_section* output_section,
3760           const Reltype& reloc, unsigned int r_type,
3761           const elfcpp::Sym<size, big_endian>& lsym,
3762           bool is_discarded);
3763
3764     inline void
3765     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3766           Sized_relobj_file<size, big_endian>* object,
3767           unsigned int data_shndx,
3768           Output_section* output_section,
3769           const Relatype& reloc, unsigned int r_type,
3770           const elfcpp::Sym<size, big_endian>& lsym,
3771           bool is_discarded);
3772
3773     inline void
3774     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3775           Sized_relobj_file<size, big_endian>* object,
3776           unsigned int data_shndx,
3777           Output_section* output_section,
3778           const Relatype* rela,
3779           const Reltype* rel,
3780           unsigned int rel_type,
3781           unsigned int r_type,
3782           const elfcpp::Sym<size, big_endian>& lsym,
3783           bool is_discarded);
3784
3785     inline void
3786     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787            Sized_relobj_file<size, big_endian>* object,
3788            unsigned int data_shndx,
3789            Output_section* output_section,
3790            const Reltype& reloc, unsigned int r_type,
3791            Symbol* gsym);
3792
3793     inline void
3794     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795            Sized_relobj_file<size, big_endian>* object,
3796            unsigned int data_shndx,
3797            Output_section* output_section,
3798            const Relatype& reloc, unsigned int r_type,
3799            Symbol* gsym);
3800
3801     inline void
3802     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3803            Sized_relobj_file<size, big_endian>* object,
3804            unsigned int data_shndx,
3805            Output_section* output_section,
3806            const Relatype* rela,
3807            const Reltype* rel,
3808            unsigned int rel_type,
3809            unsigned int r_type,
3810            Symbol* gsym);
3811
3812     inline bool
3813     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3814                                         Target_mips*,
3815                                         Sized_relobj_file<size, big_endian>*,
3816                                         unsigned int,
3817                                         Output_section*,
3818                                         const Reltype&,
3819                                         unsigned int,
3820                                         const elfcpp::Sym<size, big_endian>&)
3821     { return false; }
3822
3823     inline bool
3824     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3825                                          Target_mips*,
3826                                          Sized_relobj_file<size, big_endian>*,
3827                                          unsigned int,
3828                                          Output_section*,
3829                                          const Reltype&,
3830                                          unsigned int, Symbol*)
3831     { return false; }
3832
3833     inline bool
3834     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3835                                         Target_mips*,
3836                                         Sized_relobj_file<size, big_endian>*,
3837                                         unsigned int,
3838                                         Output_section*,
3839                                         const Relatype&,
3840                                         unsigned int,
3841                                         const elfcpp::Sym<size, big_endian>&)
3842     { return false; }
3843
3844     inline bool
3845     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3846                                          Target_mips*,
3847                                          Sized_relobj_file<size, big_endian>*,
3848                                          unsigned int,
3849                                          Output_section*,
3850                                          const Relatype&,
3851                                          unsigned int, Symbol*)
3852     { return false; }
3853    private:
3854     static void
3855     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3856                             unsigned int r_type);
3857
3858     static void
3859     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3860                              unsigned int r_type, Symbol*);
3861   };
3862
3863   // The class which implements relocation.
3864   class Relocate
3865   {
3866    public:
3867     Relocate()
3868       : calculated_value_(0), calculate_only_(false)
3869     { }
3870
3871     ~Relocate()
3872     { }
3873
3874     // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3875     inline bool
3876     should_apply_static_reloc(const Mips_symbol<size>* gsym,
3877                               unsigned int r_type,
3878                               Output_section* output_section,
3879                               Target_mips* target);
3880
3881     // Do a relocation.  Return false if the caller should not issue
3882     // any warnings about this relocation.
3883     inline bool
3884     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3885              Target_mips*, Output_section*, size_t, const unsigned char*,
3886              const Sized_symbol<size>*, const Symbol_value<size>*,
3887              unsigned char*, Mips_address, section_size_type);
3888
3889    private:
3890     // Result of the relocation.
3891     Valtype calculated_value_;
3892     // Whether we have to calculate relocation instead of applying it.
3893     bool calculate_only_;
3894   };
3895
3896   // This POD class holds the dynamic relocations that should be emitted instead
3897   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3898   // relocations if it turns out that the symbol does not have static
3899   // relocations.
3900   class Dyn_reloc
3901   {
3902    public:
3903     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3904               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3905               Output_section* output_section, Mips_address r_offset)
3906       : sym_(sym), r_type_(r_type), relobj_(relobj),
3907         shndx_(shndx), output_section_(output_section),
3908         r_offset_(r_offset)
3909     { }
3910
3911     // Emit this reloc if appropriate.  This is called after we have
3912     // scanned all the relocations, so we know whether the symbol has
3913     // static relocations.
3914     void
3915     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3916          Symbol_table* symtab)
3917     {
3918       if (!this->sym_->has_static_relocs())
3919         {
3920           got->record_global_got_symbol(this->sym_, this->relobj_,
3921                                         this->r_type_, true, false);
3922           if (!symbol_references_local(this->sym_,
3923                                 this->sym_->should_add_dynsym_entry(symtab)))
3924             rel_dyn->add_global(this->sym_, this->r_type_,
3925                                 this->output_section_, this->relobj_,
3926                                 this->shndx_, this->r_offset_);
3927           else
3928             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3929                                           this->output_section_, this->relobj_,
3930                                           this->shndx_, this->r_offset_);
3931         }
3932     }
3933
3934    private:
3935     Mips_symbol<size>* sym_;
3936     unsigned int r_type_;
3937     Mips_relobj<size, big_endian>* relobj_;
3938     unsigned int shndx_;
3939     Output_section* output_section_;
3940     Mips_address r_offset_;
3941   };
3942
3943   // Adjust TLS relocation type based on the options and whether this
3944   // is a local symbol.
3945   static tls::Tls_optimization
3946   optimize_tls_reloc(bool is_final, int r_type);
3947
3948   // Return whether there is a GOT section.
3949   bool
3950   has_got_section() const
3951   { return this->got_ != NULL; }
3952
3953   // Check whether the given ELF header flags describe a 32-bit binary.
3954   bool
3955   mips_32bit_flags(elfcpp::Elf_Word);
3956
3957   enum Mips_mach {
3958     mach_mips3000             = 3000,
3959     mach_mips3900             = 3900,
3960     mach_mips4000             = 4000,
3961     mach_mips4010             = 4010,
3962     mach_mips4100             = 4100,
3963     mach_mips4111             = 4111,
3964     mach_mips4120             = 4120,
3965     mach_mips4300             = 4300,
3966     mach_mips4400             = 4400,
3967     mach_mips4600             = 4600,
3968     mach_mips4650             = 4650,
3969     mach_mips5000             = 5000,
3970     mach_mips5400             = 5400,
3971     mach_mips5500             = 5500,
3972     mach_mips5900             = 5900,
3973     mach_mips6000             = 6000,
3974     mach_mips7000             = 7000,
3975     mach_mips8000             = 8000,
3976     mach_mips9000             = 9000,
3977     mach_mips10000            = 10000,
3978     mach_mips12000            = 12000,
3979     mach_mips14000            = 14000,
3980     mach_mips16000            = 16000,
3981     mach_mips16               = 16,
3982     mach_mips5                = 5,
3983     mach_mips_loongson_2e     = 3001,
3984     mach_mips_loongson_2f     = 3002,
3985     mach_mips_gs464           = 3003,
3986     mach_mips_gs464e          = 3004,
3987     mach_mips_gs264e          = 3005,
3988     mach_mips_sb1             = 12310201, // octal 'SB', 01
3989     mach_mips_octeon          = 6501,
3990     mach_mips_octeonp         = 6601,
3991     mach_mips_octeon2         = 6502,
3992     mach_mips_octeon3         = 6503,
3993     mach_mips_xlr             = 887682,   // decimal 'XLR'
3994     mach_mipsisa32            = 32,
3995     mach_mipsisa32r2          = 33,
3996     mach_mipsisa32r3          = 34,
3997     mach_mipsisa32r5          = 36,
3998     mach_mipsisa32r6          = 37,
3999     mach_mipsisa64            = 64,
4000     mach_mipsisa64r2          = 65,
4001     mach_mipsisa64r3          = 66,
4002     mach_mipsisa64r5          = 68,
4003     mach_mipsisa64r6          = 69,
4004     mach_mips_micromips       = 96
4005   };
4006
4007   // Return the MACH for a MIPS e_flags value.
4008   unsigned int
4009   elf_mips_mach(elfcpp::Elf_Word);
4010
4011   // Return the MACH for each .MIPS.abiflags ISA Extension.
4012   unsigned int
4013   mips_isa_ext_mach(unsigned int);
4014
4015   // Return the .MIPS.abiflags value representing each ISA Extension.
4016   unsigned int
4017   mips_isa_ext(unsigned int);
4018
4019   // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4020   void
4021   update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4022                       Mips_abiflags<big_endian>*);
4023
4024   // Infer the content of the ABI flags based on the elf header.
4025   void
4026   infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4027
4028   // Create abiflags from elf header or from .MIPS.abiflags section.
4029   void
4030   create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4031
4032   // Return the meaning of fp_abi, or "unknown" if not known.
4033   const char*
4034   fp_abi_string(int);
4035
4036   // Select fp_abi.
4037   int
4038   select_fp_abi(const std::string&, int, int);
4039
4040   // Merge attributes from input object.
4041   void
4042   merge_obj_attributes(const std::string&, const Attributes_section_data*);
4043
4044   // Merge abiflags from input object.
4045   void
4046   merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4047
4048   // Check whether machine EXTENSION is an extension of machine BASE.
4049   bool
4050   mips_mach_extends(unsigned int, unsigned int);
4051
4052   // Merge file header flags from input object.
4053   void
4054   merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4055
4056   // Encode ISA level and revision as a single value.
4057   int
4058   level_rev(unsigned char isa_level, unsigned char isa_rev) const
4059   { return (isa_level << 3) | isa_rev; }
4060
4061   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4062   static inline bool
4063   jal_to_bal()
4064   { return false; }
4065
4066   // True if we are linking for CPUs that are faster if JALR is converted to
4067   // BAL.  This should be safe for all architectures.  We enable this predicate
4068   // for all CPUs.
4069   static inline bool
4070   jalr_to_bal()
4071   { return true; }
4072
4073   // True if we are linking for CPUs that are faster if JR is converted to B.
4074   // This should be safe for all architectures.  We enable this predicate for
4075   // all CPUs.
4076   static inline bool
4077   jr_to_b()
4078   { return true; }
4079
4080   // Return the size of the GOT section.
4081   section_size_type
4082   got_size() const
4083   {
4084     gold_assert(this->got_ != NULL);
4085     return this->got_->data_size();
4086   }
4087
4088   // Create a PLT entry for a global symbol referenced by r_type relocation.
4089   void
4090   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4091                  unsigned int r_type);
4092
4093   // Get the PLT section.
4094   Mips_output_data_plt<size, big_endian>*
4095   plt_section() const
4096   {
4097     gold_assert(this->plt_ != NULL);
4098     return this->plt_;
4099   }
4100
4101   // Get the GOT PLT section.
4102   const Mips_output_data_plt<size, big_endian>*
4103   got_plt_section() const
4104   {
4105     gold_assert(this->got_plt_ != NULL);
4106     return this->got_plt_;
4107   }
4108
4109   // Copy a relocation against a global symbol.
4110   void
4111   copy_reloc(Symbol_table* symtab, Layout* layout,
4112              Sized_relobj_file<size, big_endian>* object,
4113              unsigned int shndx, Output_section* output_section,
4114              Symbol* sym, unsigned int r_type, Mips_address r_offset)
4115   {
4116     this->copy_relocs_.copy_reloc(symtab, layout,
4117                                   symtab->get_sized_symbol<size>(sym),
4118                                   object, shndx, output_section,
4119                                   r_type, r_offset, 0,
4120                                   this->rel_dyn_section(layout));
4121   }
4122
4123   void
4124   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4125                 Mips_relobj<size, big_endian>* relobj,
4126                 unsigned int shndx, Output_section* output_section,
4127                 Mips_address r_offset)
4128   {
4129     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4130                                           output_section, r_offset));
4131   }
4132
4133   // Calculate value of _gp symbol.
4134   void
4135   set_gp(Layout*, Symbol_table*);
4136
4137   const char*
4138   elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4139   const char*
4140   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4141
4142   // Adds entries that describe how machines relate to one another.  The entries
4143   // are ordered topologically with MIPS I extensions listed last.  First
4144   // element is extension, second element is base.
4145   void
4146   add_machine_extensions()
4147   {
4148     // MIPS64r2 extensions.
4149     this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4150     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4151     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4152     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4153     this->add_extension(mach_mips_gs264e, mach_mips_gs464e);
4154     this->add_extension(mach_mips_gs464e, mach_mips_gs464);
4155     this->add_extension(mach_mips_gs464, mach_mipsisa64r2);
4156
4157     // MIPS64 extensions.
4158     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4159     this->add_extension(mach_mips_sb1, mach_mipsisa64);
4160     this->add_extension(mach_mips_xlr, mach_mipsisa64);
4161
4162     // MIPS V extensions.
4163     this->add_extension(mach_mipsisa64, mach_mips5);
4164
4165     // R10000 extensions.
4166     this->add_extension(mach_mips12000, mach_mips10000);
4167     this->add_extension(mach_mips14000, mach_mips10000);
4168     this->add_extension(mach_mips16000, mach_mips10000);
4169
4170     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
4171     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
4172     // better to allow vr5400 and vr5500 code to be merged anyway, since
4173     // many libraries will just use the core ISA.  Perhaps we could add
4174     // some sort of ASE flag if this ever proves a problem.
4175     this->add_extension(mach_mips5500, mach_mips5400);
4176     this->add_extension(mach_mips5400, mach_mips5000);
4177
4178     // MIPS IV extensions.
4179     this->add_extension(mach_mips5, mach_mips8000);
4180     this->add_extension(mach_mips10000, mach_mips8000);
4181     this->add_extension(mach_mips5000, mach_mips8000);
4182     this->add_extension(mach_mips7000, mach_mips8000);
4183     this->add_extension(mach_mips9000, mach_mips8000);
4184
4185     // VR4100 extensions.
4186     this->add_extension(mach_mips4120, mach_mips4100);
4187     this->add_extension(mach_mips4111, mach_mips4100);
4188
4189     // MIPS III extensions.
4190     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4191     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4192     this->add_extension(mach_mips8000, mach_mips4000);
4193     this->add_extension(mach_mips4650, mach_mips4000);
4194     this->add_extension(mach_mips4600, mach_mips4000);
4195     this->add_extension(mach_mips4400, mach_mips4000);
4196     this->add_extension(mach_mips4300, mach_mips4000);
4197     this->add_extension(mach_mips4100, mach_mips4000);
4198     this->add_extension(mach_mips4010, mach_mips4000);
4199     this->add_extension(mach_mips5900, mach_mips4000);
4200
4201     // MIPS32 extensions.
4202     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4203
4204     // MIPS II extensions.
4205     this->add_extension(mach_mips4000, mach_mips6000);
4206     this->add_extension(mach_mipsisa32, mach_mips6000);
4207
4208     // MIPS I extensions.
4209     this->add_extension(mach_mips6000, mach_mips3000);
4210     this->add_extension(mach_mips3900, mach_mips3000);
4211   }
4212
4213   // Add value to MIPS extenstions.
4214   void
4215   add_extension(unsigned int base, unsigned int extension)
4216   {
4217     std::pair<unsigned int, unsigned int> ext(base, extension);
4218     this->mips_mach_extensions_.push_back(ext);
4219   }
4220
4221   // Return the number of entries in the .dynsym section.
4222   unsigned int get_dt_mips_symtabno() const
4223   {
4224     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4225                            / elfcpp::Elf_sizes<size>::sym_size));
4226     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4227   }
4228
4229   // Information about this specific target which we pass to the
4230   // general Target structure.
4231   static const Target::Target_info mips_info;
4232   // The GOT section.
4233   Mips_output_data_got<size, big_endian>* got_;
4234   // gp symbol.  It has the value of .got + 0x7FF0.
4235   Sized_symbol<size>* gp_;
4236   // The PLT section.
4237   Mips_output_data_plt<size, big_endian>* plt_;
4238   // The GOT PLT section.
4239   Output_data_space* got_plt_;
4240   // The dynamic reloc section.
4241   Reloc_section* rel_dyn_;
4242   // The .rld_map section.
4243   Output_data_zero_fill* rld_map_;
4244   // Relocs saved to avoid a COPY reloc.
4245   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4246
4247   // A list of dyn relocs to be saved.
4248   std::vector<Dyn_reloc> dyn_relocs_;
4249
4250   // The LA25 stub section.
4251   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4252   // Architecture extensions.
4253   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4254   // .MIPS.stubs
4255   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4256
4257   // Attributes section data in output.
4258   Attributes_section_data* attributes_section_data_;
4259   // .MIPS.abiflags section data in output.
4260   Mips_abiflags<big_endian>* abiflags_;
4261
4262   unsigned int mach_;
4263   Layout* layout_;
4264
4265   typename std::list<got16_addend<size, big_endian> > got16_addends_;
4266
4267   // Whether there is an input .MIPS.abiflags section.
4268   bool has_abiflags_section_;
4269
4270   // Whether the entry symbol is mips16 or micromips.
4271   bool entry_symbol_is_compressed_;
4272
4273   // Whether we can use only 32-bit microMIPS instructions.
4274   // TODO(sasa): This should be a linker option.
4275   bool insn32_;
4276 };
4277
4278 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4279 // It records high part of the relocation pair.
4280
4281 template<int size, bool big_endian>
4282 struct reloc_high
4283 {
4284   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4285
4286   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4287              const Symbol_value<size>* _psymval, Mips_address _addend,
4288              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4289              Mips_address _address = 0, bool _gp_disp = false)
4290     : view(_view), object(_object), psymval(_psymval), addend(_addend),
4291       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4292       address(_address), gp_disp(_gp_disp)
4293   { }
4294
4295   unsigned char* view;
4296   const Mips_relobj<size, big_endian>* object;
4297   const Symbol_value<size>* psymval;
4298   Mips_address addend;
4299   unsigned int r_type;
4300   unsigned int r_sym;
4301   bool extract_addend;
4302   Mips_address address;
4303   bool gp_disp;
4304 };
4305
4306 template<int size, bool big_endian>
4307 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4308 {
4309   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4310   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4311   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4312   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4313   typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4314
4315  public:
4316   typedef enum
4317   {
4318     STATUS_OKAY,            // No error during relocation.
4319     STATUS_OVERFLOW,        // Relocation overflow.
4320     STATUS_BAD_RELOC,       // Relocation cannot be applied.
4321     STATUS_PCREL_UNALIGNED  // Unaligned PC-relative relocation.
4322   } Status;
4323
4324  private:
4325   typedef Relocate_functions<size, big_endian> Base;
4326   typedef Mips_relocate_functions<size, big_endian> This;
4327
4328   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4329   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4330   static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4331
4332   template<int valsize>
4333   static inline typename This::Status
4334   check_overflow(Valtype value)
4335   {
4336     if (size == 32)
4337       return (Bits<valsize>::has_overflow32(value)
4338               ? This::STATUS_OVERFLOW
4339               : This::STATUS_OKAY);
4340
4341     return (Bits<valsize>::has_overflow(value)
4342             ? This::STATUS_OVERFLOW
4343             : This::STATUS_OKAY);
4344   }
4345
4346   static inline bool
4347   should_shuffle_micromips_reloc(unsigned int r_type)
4348   {
4349     return (micromips_reloc(r_type)
4350             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4351             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4352   }
4353
4354  public:
4355   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4356   //   Most mips16 instructions are 16 bits, but these instructions
4357   //   are 32 bits.
4358   //
4359   //   The format of these instructions is:
4360   //
4361   //   +--------------+--------------------------------+
4362   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
4363   //   +--------------+--------------------------------+
4364   //   |                Immediate  15:0                |
4365   //   +-----------------------------------------------+
4366   //
4367   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4368   //   Note that the immediate value in the first word is swapped.
4369   //
4370   //   When producing a relocatable object file, R_MIPS16_26 is
4371   //   handled mostly like R_MIPS_26.  In particular, the addend is
4372   //   stored as a straight 26-bit value in a 32-bit instruction.
4373   //   (gas makes life simpler for itself by never adjusting a
4374   //   R_MIPS16_26 reloc to be against a section, so the addend is
4375   //   always zero).  However, the 32 bit instruction is stored as 2
4376   //   16-bit values, rather than a single 32-bit value.  In a
4377   //   big-endian file, the result is the same; in a little-endian
4378   //   file, the two 16-bit halves of the 32 bit value are swapped.
4379   //   This is so that a disassembler can recognize the jal
4380   //   instruction.
4381   //
4382   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4383   //   instruction stored as two 16-bit values.  The addend A is the
4384   //   contents of the targ26 field.  The calculation is the same as
4385   //   R_MIPS_26.  When storing the calculated value, reorder the
4386   //   immediate value as shown above, and don't forget to store the
4387   //   value as two 16-bit values.
4388   //
4389   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4390   //   defined as
4391   //
4392   //   big-endian:
4393   //   +--------+----------------------+
4394   //   |        |                      |
4395   //   |        |    targ26-16         |
4396   //   |31    26|25                   0|
4397   //   +--------+----------------------+
4398   //
4399   //   little-endian:
4400   //   +----------+------+-------------+
4401   //   |          |      |             |
4402   //   |  sub1    |      |     sub2    |
4403   //   |0        9|10  15|16         31|
4404   //   +----------+--------------------+
4405   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4406   //   ((sub1 << 16) | sub2)).
4407   //
4408   //   When producing a relocatable object file, the calculation is
4409   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4410   //   When producing a fully linked file, the calculation is
4411   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4412   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4413   //
4414   //   The table below lists the other MIPS16 instruction relocations.
4415   //   Each one is calculated in the same way as the non-MIPS16 relocation
4416   //   given on the right, but using the extended MIPS16 layout of 16-bit
4417   //   immediate fields:
4418   //
4419   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4420   //      R_MIPS16_GOT16          R_MIPS_GOT16
4421   //      R_MIPS16_CALL16         R_MIPS_CALL16
4422   //      R_MIPS16_HI16           R_MIPS_HI16
4423   //      R_MIPS16_LO16           R_MIPS_LO16
4424   //
4425   //   A typical instruction will have a format like this:
4426   //
4427   //   +--------------+--------------------------------+
4428   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4429   //   +--------------+--------------------------------+
4430   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4431   //   +--------------+--------------------------------+
4432   //
4433   //   EXTEND is the five bit value 11110.  Major is the instruction
4434   //   opcode.
4435   //
4436   //   All we need to do here is shuffle the bits appropriately.
4437   //   As above, the two 16-bit halves must be swapped on a
4438   //   little-endian system.
4439
4440   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4441   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4442   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4443
4444   static void
4445   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4446                        bool jal_shuffle)
4447   {
4448     if (!mips16_reloc(r_type)
4449         && !should_shuffle_micromips_reloc(r_type))
4450       return;
4451
4452     // Pick up the first and second halfwords of the instruction.
4453     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4454     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4455     Valtype32 val;
4456
4457     if (micromips_reloc(r_type)
4458         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4459       val = first << 16 | second;
4460     else if (r_type != elfcpp::R_MIPS16_26)
4461       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4462              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4463     else
4464       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4465              | ((first & 0x1f) << 21) | second);
4466
4467     elfcpp::Swap<32, big_endian>::writeval(view, val);
4468   }
4469
4470   static void
4471   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4472   {
4473     if (!mips16_reloc(r_type)
4474         && !should_shuffle_micromips_reloc(r_type))
4475       return;
4476
4477     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4478     Valtype16 first, second;
4479
4480     if (micromips_reloc(r_type)
4481         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4482       {
4483         second = val & 0xffff;
4484         first = val >> 16;
4485       }
4486     else if (r_type != elfcpp::R_MIPS16_26)
4487       {
4488         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4489         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4490       }
4491     else
4492       {
4493         second = val & 0xffff;
4494         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4495                  | ((val >> 21) & 0x1f);
4496       }
4497
4498     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4499     elfcpp::Swap<16, big_endian>::writeval(view, first);
4500   }
4501
4502   // R_MIPS_16: S + sign-extend(A)
4503   static inline typename This::Status
4504   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4505         const Symbol_value<size>* psymval, Mips_address addend_a,
4506         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4507   {
4508     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4509     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4510
4511     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4512                                      : addend_a);
4513
4514     Valtype x = psymval->value(object, addend);
4515     val = Bits<16>::bit_select32(val, x, 0xffffU);
4516
4517     if (calculate_only)
4518       {
4519         *calculated_value = x;
4520         return This::STATUS_OKAY;
4521       }
4522     else
4523       elfcpp::Swap<16, big_endian>::writeval(wv, val);
4524
4525     return check_overflow<16>(x);
4526   }
4527
4528   // R_MIPS_32: S + A
4529   static inline typename This::Status
4530   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4531         const Symbol_value<size>* psymval, Mips_address addend_a,
4532         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4533   {
4534     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4535     Valtype addend = (extract_addend
4536                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4537                         : addend_a);
4538     Valtype x = psymval->value(object, addend);
4539
4540     if (calculate_only)
4541       *calculated_value = x;
4542     else
4543       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4544
4545     return This::STATUS_OKAY;
4546   }
4547
4548   // R_MIPS_JALR, R_MICROMIPS_JALR
4549   static inline typename This::Status
4550   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4551           const Symbol_value<size>* psymval, Mips_address address,
4552           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4553           unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4554           bool calculate_only, Valtype* calculated_value)
4555   {
4556     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4557     Valtype addend = extract_addend ? 0 : addend_a;
4558     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4559
4560     // Try converting J(AL)R to B(AL), if the target is in range.
4561     if (r_type == elfcpp::R_MIPS_JALR
4562         && !cross_mode_jump
4563         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4564             || (jr_to_b && val == 0x03200008)))   // jr t9
4565       {
4566         int offset = psymval->value(object, addend) - (address + 4);
4567         if (!Bits<18>::has_overflow32(offset))
4568           {
4569             if (val == 0x03200008)   // jr t9
4570               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4571             else
4572               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4573           }
4574       }
4575
4576     if (calculate_only)
4577       *calculated_value = val;
4578     else
4579       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4580
4581     return This::STATUS_OKAY;
4582   }
4583
4584   // R_MIPS_PC32: S + A - P
4585   static inline typename This::Status
4586   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4587           const Symbol_value<size>* psymval, Mips_address address,
4588           Mips_address addend_a, bool extract_addend, bool calculate_only,
4589           Valtype* calculated_value)
4590   {
4591     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4592     Valtype addend = (extract_addend
4593                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4594                         : addend_a);
4595     Valtype x = psymval->value(object, addend) - address;
4596
4597     if (calculate_only)
4598        *calculated_value = x;
4599     else
4600       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4601
4602     return This::STATUS_OKAY;
4603   }
4604
4605   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4606   static inline typename This::Status
4607   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4608         const Symbol_value<size>* psymval, Mips_address address,
4609         bool local, Mips_address addend_a, bool extract_addend,
4610         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4611         bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4612   {
4613     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4614     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4615
4616     Valtype addend;
4617     if (extract_addend)
4618       {
4619         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4620           addend = (val & 0x03ffffff) << 1;
4621         else
4622           addend = (val & 0x03ffffff) << 2;
4623       }
4624     else
4625       addend = addend_a;
4626
4627     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4628     // the correct ISA mode selector and bit 1 must be 0.
4629     if (!calculate_only && cross_mode_jump
4630         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4631       {
4632         gold_warning(_("JALX to a non-word-aligned address"));
4633         return This::STATUS_BAD_RELOC;
4634       }
4635
4636     // Shift is 2, unusually, for microMIPS JALX.
4637     unsigned int shift =
4638         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4639
4640     Valtype x;
4641     if (local)
4642       x = addend | ((address + 4) & (0xfc000000 << shift));
4643     else
4644       {
4645         if (shift == 1)
4646           x = Bits<27>::sign_extend32(addend);
4647         else
4648           x = Bits<28>::sign_extend32(addend);
4649       }
4650     x = psymval->value(object, x) >> shift;
4651
4652     if (!calculate_only && !local && !gsym->is_weak_undefined()
4653         && ((x >> 26) != ((address + 4) >> (26 + shift))))
4654       return This::STATUS_OVERFLOW;
4655
4656     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4657
4658     // If required, turn JAL into JALX.
4659     if (cross_mode_jump)
4660       {
4661         bool ok;
4662         Valtype32 opcode = val >> 26;
4663         Valtype32 jalx_opcode;
4664
4665         // Check to see if the opcode is already JAL or JALX.
4666         if (r_type == elfcpp::R_MIPS16_26)
4667           {
4668             ok = (opcode == 0x6) || (opcode == 0x7);
4669             jalx_opcode = 0x7;
4670           }
4671         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4672           {
4673             ok = (opcode == 0x3d) || (opcode == 0x3c);
4674             jalx_opcode = 0x3c;
4675           }
4676         else
4677           {
4678             ok = (opcode == 0x3) || (opcode == 0x1d);
4679             jalx_opcode = 0x1d;
4680           }
4681
4682         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4683         // convert J or JALS to JALX.
4684         if (!calculate_only && !ok)
4685           {
4686             gold_error(_("Unsupported jump between ISA modes; consider "
4687                          "recompiling with interlinking enabled."));
4688             return This::STATUS_BAD_RELOC;
4689           }
4690
4691         // Make this the JALX opcode.
4692         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4693       }
4694
4695     // Try converting JAL to BAL, if the target is in range.
4696     if (!parameters->options().relocatable()
4697         && !cross_mode_jump
4698         && ((jal_to_bal
4699             && r_type == elfcpp::R_MIPS_26
4700             && (val >> 26) == 0x3)))    // jal addr
4701       {
4702         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4703         int offset = dest - (address + 4);
4704         if (!Bits<18>::has_overflow32(offset))
4705           {
4706             if (val == 0x03200008)   // jr t9
4707               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4708             else
4709               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4710           }
4711       }
4712
4713     if (calculate_only)
4714       *calculated_value = val;
4715     else
4716       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4717
4718     return This::STATUS_OKAY;
4719   }
4720
4721   // R_MIPS_PC16
4722   static inline typename This::Status
4723   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4724           const Symbol_value<size>* psymval, Mips_address address,
4725           Mips_address addend_a, bool extract_addend, bool calculate_only,
4726           Valtype* calculated_value)
4727   {
4728     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4729     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4730
4731     Valtype addend = (extract_addend
4732                       ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4733                       : addend_a);
4734
4735     Valtype x = psymval->value(object, addend) - address;
4736     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4737
4738     if (calculate_only)
4739       {
4740         *calculated_value = x >> 2;
4741         return This::STATUS_OKAY;
4742       }
4743     else
4744       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4745
4746     if (psymval->value(object, addend) & 3)
4747       return This::STATUS_PCREL_UNALIGNED;
4748
4749     return check_overflow<18>(x);
4750   }
4751
4752   // R_MIPS_PC21_S2
4753   static inline typename This::Status
4754   relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4755           const Symbol_value<size>* psymval, Mips_address address,
4756           Mips_address addend_a, bool extract_addend, bool calculate_only,
4757           Valtype* calculated_value)
4758   {
4759     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4760     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4761
4762     Valtype addend = (extract_addend
4763                       ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4764                       : addend_a);
4765
4766     Valtype x = psymval->value(object, addend) - address;
4767     val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4768
4769     if (calculate_only)
4770       {
4771         *calculated_value = x >> 2;
4772         return This::STATUS_OKAY;
4773       }
4774     else
4775       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4776
4777     if (psymval->value(object, addend) & 3)
4778       return This::STATUS_PCREL_UNALIGNED;
4779
4780     return check_overflow<23>(x);
4781   }
4782
4783   // R_MIPS_PC26_S2
4784   static inline typename This::Status
4785   relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4786           const Symbol_value<size>* psymval, Mips_address address,
4787           Mips_address addend_a, bool extract_addend, bool calculate_only,
4788           Valtype* calculated_value)
4789   {
4790     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4791     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4792
4793     Valtype addend = (extract_addend
4794                       ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4795                       : addend_a);
4796
4797     Valtype x = psymval->value(object, addend) - address;
4798     val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4799
4800     if (calculate_only)
4801       {
4802         *calculated_value = x >> 2;
4803         return This::STATUS_OKAY;
4804       }
4805     else
4806       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4807
4808     if (psymval->value(object, addend) & 3)
4809       return This::STATUS_PCREL_UNALIGNED;
4810
4811     return check_overflow<28>(x);
4812   }
4813
4814   // R_MIPS_PC18_S3
4815   static inline typename This::Status
4816   relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4817           const Symbol_value<size>* psymval, Mips_address address,
4818           Mips_address addend_a, bool extract_addend, bool calculate_only,
4819           Valtype* calculated_value)
4820   {
4821     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4822     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4823
4824     Valtype addend = (extract_addend
4825                       ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4826                       : addend_a);
4827
4828     Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4829     val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4830
4831     if (calculate_only)
4832       {
4833         *calculated_value = x >> 3;
4834         return This::STATUS_OKAY;
4835       }
4836     else
4837       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4838
4839     if (psymval->value(object, addend) & 7)
4840       return This::STATUS_PCREL_UNALIGNED;
4841
4842     return check_overflow<21>(x);
4843   }
4844
4845   // R_MIPS_PC19_S2
4846   static inline typename This::Status
4847   relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4848           const Symbol_value<size>* psymval, Mips_address address,
4849           Mips_address addend_a, bool extract_addend, bool calculate_only,
4850           Valtype* calculated_value)
4851   {
4852     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4853     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4854
4855     Valtype addend = (extract_addend
4856                       ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4857                       : addend_a);
4858
4859     Valtype x = psymval->value(object, addend) - address;
4860     val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4861
4862     if (calculate_only)
4863       {
4864         *calculated_value = x >> 2;
4865         return This::STATUS_OKAY;
4866       }
4867     else
4868       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4869
4870     if (psymval->value(object, addend) & 3)
4871       return This::STATUS_PCREL_UNALIGNED;
4872
4873     return check_overflow<21>(x);
4874   }
4875
4876   // R_MIPS_PCHI16
4877   static inline typename This::Status
4878   relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4879             const Symbol_value<size>* psymval, Mips_address addend,
4880             Mips_address address, unsigned int r_sym, bool extract_addend)
4881   {
4882     // Record the relocation.  It will be resolved when we find pclo16 part.
4883     pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4884                             addend, 0, r_sym, extract_addend, address));
4885     return This::STATUS_OKAY;
4886   }
4887
4888   // R_MIPS_PCHI16
4889   static inline typename This::Status
4890   do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4891              const Symbol_value<size>* psymval, Mips_address addend_hi,
4892              Mips_address address, bool extract_addend, Valtype32 addend_lo,
4893              bool calculate_only, Valtype* calculated_value)
4894   {
4895     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4896     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4897
4898     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4899                                        : addend_hi);
4900
4901     Valtype value = psymval->value(object, addend) - address;
4902     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4903     val = Bits<32>::bit_select32(val, x, 0xffff);
4904
4905     if (calculate_only)
4906       *calculated_value = x;
4907     else
4908       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4909
4910     return This::STATUS_OKAY;
4911   }
4912
4913   // R_MIPS_PCLO16
4914   static inline typename This::Status
4915   relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4916             const Symbol_value<size>* psymval, Mips_address addend_a,
4917             bool extract_addend, Mips_address address, unsigned int r_sym,
4918             unsigned int rel_type, bool calculate_only,
4919             Valtype* calculated_value)
4920   {
4921     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4922     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4923
4924     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4925                                      : addend_a);
4926
4927     if (rel_type == elfcpp::SHT_REL)
4928       {
4929         // Resolve pending R_MIPS_PCHI16 relocations.
4930         typename std::list<reloc_high<size, big_endian> >::iterator it =
4931             pchi16_relocs.begin();
4932         while (it != pchi16_relocs.end())
4933           {
4934             reloc_high<size, big_endian> pchi16 = *it;
4935             if (pchi16.r_sym == r_sym)
4936               {
4937                 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4938                              pchi16.addend, pchi16.address,
4939                              pchi16.extract_addend, addend, calculate_only,
4940                              calculated_value);
4941                 it = pchi16_relocs.erase(it);
4942               }
4943             else
4944               ++it;
4945           }
4946       }
4947
4948     // Resolve R_MIPS_PCLO16 relocation.
4949     Valtype x = psymval->value(object, addend) - address;
4950     val = Bits<32>::bit_select32(val, x, 0xffff);
4951
4952     if (calculate_only)
4953       *calculated_value = x;
4954     else
4955       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4956
4957     return This::STATUS_OKAY;
4958   }
4959
4960   // R_MICROMIPS_PC7_S1
4961   static inline typename This::Status
4962   relmicromips_pc7_s1(unsigned char* view,
4963                       const Mips_relobj<size, big_endian>* object,
4964                       const Symbol_value<size>* psymval, Mips_address address,
4965                       Mips_address addend_a, bool extract_addend,
4966                       bool calculate_only, Valtype* calculated_value)
4967   {
4968     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4969     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4970
4971     Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4972                                     : addend_a;
4973
4974     Valtype x = psymval->value(object, addend) - address;
4975     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4976
4977     if (calculate_only)
4978       {
4979         *calculated_value = x >> 1;
4980         return This::STATUS_OKAY;
4981       }
4982     else
4983       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4984
4985     return check_overflow<8>(x);
4986   }
4987
4988   // R_MICROMIPS_PC10_S1
4989   static inline typename This::Status
4990   relmicromips_pc10_s1(unsigned char* view,
4991                        const Mips_relobj<size, big_endian>* object,
4992                        const Symbol_value<size>* psymval, Mips_address address,
4993                        Mips_address addend_a, bool extract_addend,
4994                        bool calculate_only, Valtype* calculated_value)
4995   {
4996     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4997     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4998
4999     Valtype addend = (extract_addend
5000                       ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
5001                       : addend_a);
5002
5003     Valtype x = psymval->value(object, addend) - address;
5004     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
5005
5006     if (calculate_only)
5007       {
5008         *calculated_value = x >> 1;
5009         return This::STATUS_OKAY;
5010       }
5011     else
5012       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5013
5014     return check_overflow<11>(x);
5015   }
5016
5017   // R_MICROMIPS_PC16_S1
5018   static inline typename This::Status
5019   relmicromips_pc16_s1(unsigned char* view,
5020                        const Mips_relobj<size, big_endian>* object,
5021                        const Symbol_value<size>* psymval, Mips_address address,
5022                        Mips_address addend_a, bool extract_addend,
5023                        bool calculate_only, Valtype* calculated_value)
5024   {
5025     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5026     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5027
5028     Valtype addend = (extract_addend
5029                       ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5030                       : addend_a);
5031
5032     Valtype x = psymval->value(object, addend) - address;
5033     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5034
5035     if (calculate_only)
5036       {
5037         *calculated_value = x >> 1;
5038         return This::STATUS_OKAY;
5039       }
5040     else
5041       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5042
5043     return check_overflow<17>(x);
5044   }
5045
5046   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5047   static inline typename This::Status
5048   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5049           const Symbol_value<size>* psymval, Mips_address addend,
5050           Mips_address address, bool gp_disp, unsigned int r_type,
5051           unsigned int r_sym, bool extract_addend)
5052   {
5053     // Record the relocation.  It will be resolved when we find lo16 part.
5054     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5055                           addend, r_type, r_sym, extract_addend, address,
5056                           gp_disp));
5057     return This::STATUS_OKAY;
5058   }
5059
5060   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5061   static inline typename This::Status
5062   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5063              const Symbol_value<size>* psymval, Mips_address addend_hi,
5064              Mips_address address, bool is_gp_disp, unsigned int r_type,
5065              bool extract_addend, Valtype32 addend_lo,
5066              Target_mips<size, big_endian>* target, bool calculate_only,
5067              Valtype* calculated_value)
5068   {
5069     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5070     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5071
5072     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5073                                        : addend_hi);
5074
5075     Valtype32 value;
5076     if (!is_gp_disp)
5077       value = psymval->value(object, addend);
5078     else
5079       {
5080         // For MIPS16 ABI code we generate this sequence
5081         //    0: li      $v0,%hi(_gp_disp)
5082         //    4: addiupc $v1,%lo(_gp_disp)
5083         //    8: sll     $v0,16
5084         //   12: addu    $v0,$v1
5085         //   14: move    $gp,$v0
5086         // So the offsets of hi and lo relocs are the same, but the
5087         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5088         // ADDIUPC clears the low two bits of the instruction address,
5089         // so the base is ($t9 + 4) & ~3.
5090         Valtype32 gp_disp;
5091         if (r_type == elfcpp::R_MIPS16_HI16)
5092           gp_disp = (target->adjusted_gp_value(object)
5093                      - ((address + 4) & ~0x3));
5094         // The microMIPS .cpload sequence uses the same assembly
5095         // instructions as the traditional psABI version, but the
5096         // incoming $t9 has the low bit set.
5097         else if (r_type == elfcpp::R_MICROMIPS_HI16)
5098           gp_disp = target->adjusted_gp_value(object) - address - 1;
5099         else
5100           gp_disp = target->adjusted_gp_value(object) - address;
5101         value = gp_disp + addend;
5102       }
5103     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5104     val = Bits<32>::bit_select32(val, x, 0xffff);
5105
5106     if (calculate_only)
5107       {
5108         *calculated_value = x;
5109         return This::STATUS_OKAY;
5110       }
5111     else
5112       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5113
5114     return (is_gp_disp ? check_overflow<16>(x)
5115                        : This::STATUS_OKAY);
5116   }
5117
5118   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5119   static inline typename This::Status
5120   relgot16_local(unsigned char* view,
5121                  const Mips_relobj<size, big_endian>* object,
5122                  const Symbol_value<size>* psymval, Mips_address addend_a,
5123                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
5124   {
5125     // Record the relocation.  It will be resolved when we find lo16 part.
5126     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5127                            addend_a, r_type, r_sym, extract_addend));
5128     return This::STATUS_OKAY;
5129   }
5130
5131   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5132   static inline typename This::Status
5133   do_relgot16_local(unsigned char* view,
5134                     const Mips_relobj<size, big_endian>* object,
5135                     const Symbol_value<size>* psymval, Mips_address addend_hi,
5136                     bool extract_addend, Valtype32 addend_lo,
5137                     Target_mips<size, big_endian>* target, bool calculate_only,
5138                     Valtype* calculated_value)
5139   {
5140     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5141     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5142
5143     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5144                                        : addend_hi);
5145
5146     // Find GOT page entry.
5147     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5148                           & 0xffff;
5149     value <<= 16;
5150     unsigned int got_offset =
5151       target->got_section()->get_got_page_offset(value, object);
5152
5153     // Resolve the relocation.
5154     Valtype x = target->got_section()->gp_offset(got_offset, object);
5155     val = Bits<32>::bit_select32(val, x, 0xffff);
5156
5157     if (calculate_only)
5158       {
5159         *calculated_value = x;
5160         return This::STATUS_OKAY;
5161       }
5162     else
5163       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5164
5165     return check_overflow<16>(x);
5166   }
5167
5168   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5169   static inline typename This::Status
5170   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5171           const Mips_relobj<size, big_endian>* object,
5172           const Symbol_value<size>* psymval, Mips_address addend_a,
5173           bool extract_addend, Mips_address address, bool is_gp_disp,
5174           unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5175           bool calculate_only, Valtype* calculated_value)
5176   {
5177     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5178     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5179
5180     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5181                                      : addend_a);
5182
5183     if (rel_type == elfcpp::SHT_REL)
5184       {
5185         typename This::Status reloc_status = This::STATUS_OKAY;
5186         // Resolve pending R_MIPS_HI16 relocations.
5187         typename std::list<reloc_high<size, big_endian> >::iterator it =
5188           hi16_relocs.begin();
5189         while (it != hi16_relocs.end())
5190           {
5191             reloc_high<size, big_endian> hi16 = *it;
5192             if (hi16.r_sym == r_sym
5193                 && is_matching_lo16_reloc(hi16.r_type, r_type))
5194               {
5195                 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5196                 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5197                                        hi16.addend, hi16.address, hi16.gp_disp,
5198                                        hi16.r_type, hi16.extract_addend, addend,
5199                                        target, calculate_only, calculated_value);
5200                 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5201                 if (reloc_status == This::STATUS_OVERFLOW)
5202                   return This::STATUS_OVERFLOW;
5203                 it = hi16_relocs.erase(it);
5204               }
5205             else
5206               ++it;
5207           }
5208
5209         // Resolve pending local R_MIPS_GOT16 relocations.
5210         typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5211           got16_relocs.begin();
5212         while (it2 != got16_relocs.end())
5213           {
5214             reloc_high<size, big_endian> got16 = *it2;
5215             if (got16.r_sym == r_sym
5216                 && is_matching_lo16_reloc(got16.r_type, r_type))
5217               {
5218                 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5219
5220                 reloc_status = do_relgot16_local(got16.view, got16.object,
5221                                      got16.psymval, got16.addend,
5222                                      got16.extract_addend, addend, target,
5223                                      calculate_only, calculated_value);
5224
5225                 mips_reloc_shuffle(got16.view, got16.r_type, false);
5226                 if (reloc_status == This::STATUS_OVERFLOW)
5227                   return This::STATUS_OVERFLOW;
5228                 it2 = got16_relocs.erase(it2);
5229               }
5230             else
5231               ++it2;
5232           }
5233       }
5234
5235     // Resolve R_MIPS_LO16 relocation.
5236     Valtype x;
5237     if (!is_gp_disp)
5238       x = psymval->value(object, addend);
5239     else
5240       {
5241         // See the comment for R_MIPS16_HI16 above for the reason
5242         // for this conditional.
5243         Valtype32 gp_disp;
5244         if (r_type == elfcpp::R_MIPS16_LO16)
5245           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5246         else if (r_type == elfcpp::R_MICROMIPS_LO16
5247                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5248           gp_disp = target->adjusted_gp_value(object) - address + 3;
5249         else
5250           gp_disp = target->adjusted_gp_value(object) - address + 4;
5251         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5252         // for overflow.  Relocations against _gp_disp are normally
5253         // generated from the .cpload pseudo-op.  It generates code
5254         // that normally looks like this:
5255
5256         //   lui    $gp,%hi(_gp_disp)
5257         //   addiu  $gp,$gp,%lo(_gp_disp)
5258         //   addu   $gp,$gp,$t9
5259
5260         // Here $t9 holds the address of the function being called,
5261         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
5262         // relocation can easily overflow in this situation, but the
5263         // R_MIPS_HI16 relocation will handle the overflow.
5264         // Therefore, we consider this a bug in the MIPS ABI, and do
5265         // not check for overflow here.
5266         x = gp_disp + addend;
5267       }
5268     val = Bits<32>::bit_select32(val, x, 0xffff);
5269
5270     if (calculate_only)
5271       *calculated_value = x;
5272     else
5273       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5274
5275     return This::STATUS_OKAY;
5276   }
5277
5278   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5279   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5280   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5281   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5282   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5283   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5284   static inline typename This::Status
5285   relgot(unsigned char* view, int gp_offset, bool calculate_only,
5286          Valtype* calculated_value)
5287   {
5288     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5289     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5290     Valtype x = gp_offset;
5291     val = Bits<32>::bit_select32(val, x, 0xffff);
5292
5293     if (calculate_only)
5294       {
5295         *calculated_value = x;
5296         return This::STATUS_OKAY;
5297       }
5298     else
5299       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5300
5301     return check_overflow<16>(x);
5302   }
5303
5304   // R_MIPS_EH
5305   static inline typename This::Status
5306   releh(unsigned char* view, int gp_offset, bool calculate_only,
5307         Valtype* calculated_value)
5308   {
5309     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5310     Valtype x = gp_offset;
5311
5312     if (calculate_only)
5313       {
5314         *calculated_value = x;
5315         return This::STATUS_OKAY;
5316       }
5317     else
5318       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5319
5320     return check_overflow<32>(x);
5321   }
5322
5323   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5324   static inline typename This::Status
5325   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5326              const Mips_relobj<size, big_endian>* object,
5327              const Symbol_value<size>* psymval, Mips_address addend_a,
5328              bool extract_addend, bool calculate_only,
5329              Valtype* calculated_value)
5330   {
5331     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5332     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5333     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5334
5335     // Find a GOT page entry that points to within 32KB of symbol + addend.
5336     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5337     unsigned int  got_offset =
5338       target->got_section()->get_got_page_offset(value, object);
5339
5340     Valtype x = target->got_section()->gp_offset(got_offset, object);
5341     val = Bits<32>::bit_select32(val, x, 0xffff);
5342
5343     if (calculate_only)
5344       {
5345         *calculated_value = x;
5346         return This::STATUS_OKAY;
5347       }
5348     else
5349       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5350
5351     return check_overflow<16>(x);
5352   }
5353
5354   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5355   static inline typename This::Status
5356   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5357              const Mips_relobj<size, big_endian>* object,
5358              const Symbol_value<size>* psymval, Mips_address addend_a,
5359              bool extract_addend, bool local, bool calculate_only,
5360              Valtype* calculated_value)
5361   {
5362     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5363     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5364     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5365
5366     // For a local symbol, find a GOT page entry that points to within 32KB of
5367     // symbol + addend.  Relocation value is the offset of the GOT page entry's
5368     // value from symbol + addend.
5369     // For a global symbol, relocation value is addend.
5370     Valtype x;
5371     if (local)
5372       {
5373         // Find GOT page entry.
5374         Mips_address value = ((psymval->value(object, addend) + 0x8000)
5375                               & ~0xffff);
5376         target->got_section()->get_got_page_offset(value, object);
5377
5378         x = psymval->value(object, addend) - value;
5379       }
5380     else
5381       x = addend;
5382     val = Bits<32>::bit_select32(val, x, 0xffff);
5383
5384     if (calculate_only)
5385       {
5386         *calculated_value = x;
5387         return This::STATUS_OKAY;
5388       }
5389     else
5390       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5391
5392     return check_overflow<16>(x);
5393   }
5394
5395   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5396   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5397   static inline typename This::Status
5398   relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5399               Valtype* calculated_value)
5400   {
5401     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5402     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5403     Valtype x = gp_offset;
5404     x = ((x + 0x8000) >> 16) & 0xffff;
5405     val = Bits<32>::bit_select32(val, x, 0xffff);
5406
5407     if (calculate_only)
5408       *calculated_value = x;
5409     else
5410       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5411
5412     return This::STATUS_OKAY;
5413   }
5414
5415   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5416   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5417   static inline typename This::Status
5418   relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5419               Valtype* calculated_value)
5420   {
5421     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5422     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5423     Valtype x = gp_offset;
5424     val = Bits<32>::bit_select32(val, x, 0xffff);
5425
5426     if (calculate_only)
5427       *calculated_value = x;
5428     else
5429       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5430
5431     return This::STATUS_OKAY;
5432   }
5433
5434   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5435   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5436   static inline typename This::Status
5437   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5438            const Symbol_value<size>* psymval, Mips_address gp,
5439            Mips_address addend_a, bool extract_addend, bool local,
5440            unsigned int r_type, bool calculate_only,
5441            Valtype* calculated_value)
5442   {
5443     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5444     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5445
5446     Valtype addend;
5447     if (extract_addend)
5448       {
5449         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5450           addend = (val & 0x7f) << 2;
5451         else
5452           addend = val & 0xffff;
5453         // Only sign-extend the addend if it was extracted from the
5454         // instruction.  If the addend was separate, leave it alone,
5455         // otherwise we may lose significant bits.
5456         addend = Bits<16>::sign_extend32(addend);
5457       }
5458     else
5459       addend = addend_a;
5460
5461     Valtype x = psymval->value(object, addend) - gp;
5462
5463     // If the symbol was local, any earlier relocatable links will
5464     // have adjusted its addend with the gp offset, so compensate
5465     // for that now.  Don't do it for symbols forced local in this
5466     // link, though, since they won't have had the gp offset applied
5467     // to them before.
5468     if (local)
5469       x += object->gp_value();
5470
5471     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5472       val = Bits<32>::bit_select32(val, x, 0x7f);
5473     else
5474       val = Bits<32>::bit_select32(val, x, 0xffff);
5475
5476     if (calculate_only)
5477       {
5478         *calculated_value = x;
5479         return This::STATUS_OKAY;
5480       }
5481     else
5482       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5483
5484     if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5485       {
5486         gold_error(_("small-data section exceeds 64KB; lower small-data size "
5487                      "limit (see option -G)"));
5488         return This::STATUS_OVERFLOW;
5489       }
5490     return This::STATUS_OKAY;
5491   }
5492
5493   // R_MIPS_GPREL32
5494   static inline typename This::Status
5495   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5496              const Symbol_value<size>* psymval, Mips_address gp,
5497              Mips_address addend_a, bool extract_addend, bool calculate_only,
5498              Valtype* calculated_value)
5499   {
5500     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5501     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5502     Valtype addend = extract_addend ? val : addend_a;
5503
5504     // R_MIPS_GPREL32 relocations are defined for local symbols only.
5505     Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5506
5507     if (calculate_only)
5508       *calculated_value = x;
5509     else
5510       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5511
5512     return This::STATUS_OKAY;
5513  }
5514
5515   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5516   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5517   // R_MICROMIPS_TLS_DTPREL_HI16
5518   static inline typename This::Status
5519   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5520              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5521              Mips_address addend_a, bool extract_addend, bool calculate_only,
5522              Valtype* calculated_value)
5523   {
5524     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5525     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5526     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5527
5528     // tls symbol values are relative to tls_segment()->vaddr()
5529     Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5530     val = Bits<32>::bit_select32(val, x, 0xffff);
5531
5532     if (calculate_only)
5533       *calculated_value = x;
5534     else
5535       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5536
5537     return This::STATUS_OKAY;
5538   }
5539
5540   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5541   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5542   // R_MICROMIPS_TLS_DTPREL_LO16,
5543   static inline typename This::Status
5544   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5545              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5546              Mips_address addend_a, bool extract_addend, bool calculate_only,
5547              Valtype* calculated_value)
5548   {
5549     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5550     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5551     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5552
5553     // tls symbol values are relative to tls_segment()->vaddr()
5554     Valtype x = psymval->value(object, addend) - tp_offset;
5555     val = Bits<32>::bit_select32(val, x, 0xffff);
5556
5557     if (calculate_only)
5558       *calculated_value = x;
5559     else
5560       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5561
5562     return This::STATUS_OKAY;
5563   }
5564
5565   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5566   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5567   static inline typename This::Status
5568   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5569            const Symbol_value<size>* psymval, Valtype32 tp_offset,
5570            Mips_address addend_a, bool extract_addend, bool calculate_only,
5571            Valtype* calculated_value)
5572   {
5573     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5574     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5575     Valtype addend = extract_addend ? val : addend_a;
5576
5577     // tls symbol values are relative to tls_segment()->vaddr()
5578     Valtype x = psymval->value(object, addend) - tp_offset;
5579
5580     if (calculate_only)
5581       *calculated_value = x;
5582     else
5583       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5584
5585     return This::STATUS_OKAY;
5586   }
5587
5588   // R_MIPS_SUB, R_MICROMIPS_SUB
5589   static inline typename This::Status
5590   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5591          const Symbol_value<size>* psymval, Mips_address addend_a,
5592          bool extract_addend, bool calculate_only, Valtype* calculated_value)
5593   {
5594     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5595     Valtype64 addend = (extract_addend
5596                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5597                         : addend_a);
5598
5599     Valtype64 x = psymval->value(object, -addend);
5600     if (calculate_only)
5601       *calculated_value = x;
5602     else
5603       elfcpp::Swap<64, big_endian>::writeval(wv, x);
5604
5605     return This::STATUS_OKAY;
5606   }
5607
5608   // R_MIPS_64: S + A
5609   static inline typename This::Status
5610   rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5611         const Symbol_value<size>* psymval, Mips_address addend_a,
5612         bool extract_addend, bool calculate_only, Valtype* calculated_value,
5613         bool apply_addend_only)
5614   {
5615     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5616     Valtype64 addend = (extract_addend
5617                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5618                         : addend_a);
5619
5620     Valtype64 x = psymval->value(object, addend);
5621     if (calculate_only)
5622       *calculated_value = x;
5623     else
5624       {
5625         if (apply_addend_only)
5626           x = addend;
5627         elfcpp::Swap<64, big_endian>::writeval(wv, x);
5628       }
5629
5630     return This::STATUS_OKAY;
5631   }
5632
5633   // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5634   static inline typename This::Status
5635   relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5636             const Symbol_value<size>* psymval, Mips_address addend_a,
5637             bool extract_addend, bool calculate_only, Valtype* calculated_value)
5638   {
5639     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5640     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5641     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5642                                      : addend_a);
5643
5644     Valtype x = psymval->value(object, addend);
5645     x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5646     val = Bits<32>::bit_select32(val, x, 0xffff);
5647
5648     if (calculate_only)
5649       *calculated_value = x;
5650     else
5651       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5652
5653     return This::STATUS_OKAY;
5654   }
5655
5656   // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5657   static inline typename This::Status
5658   relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5659              const Symbol_value<size>* psymval, Mips_address addend_a,
5660              bool extract_addend, bool calculate_only,
5661              Valtype* calculated_value)
5662   {
5663     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5664     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5665     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5666                                      : addend_a);
5667
5668     Valtype x = psymval->value(object, addend);
5669     x = ((x + (uint64_t) 0x800080008000llu) >> 48) & 0xffff;
5670     val = Bits<32>::bit_select32(val, x, 0xffff);
5671
5672     if (calculate_only)
5673       *calculated_value = x;
5674     else
5675       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5676
5677     return This::STATUS_OKAY;
5678   }
5679 };
5680
5681 template<int size, bool big_endian>
5682 typename std::list<reloc_high<size, big_endian> >
5683     Mips_relocate_functions<size, big_endian>::hi16_relocs;
5684
5685 template<int size, bool big_endian>
5686 typename std::list<reloc_high<size, big_endian> >
5687     Mips_relocate_functions<size, big_endian>::got16_relocs;
5688
5689 template<int size, bool big_endian>
5690 typename std::list<reloc_high<size, big_endian> >
5691     Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5692
5693 // Mips_got_info methods.
5694
5695 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5696 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5697
5698 template<int size, bool big_endian>
5699 void
5700 Mips_got_info<size, big_endian>::record_local_got_symbol(
5701     Mips_relobj<size, big_endian>* object, unsigned int symndx,
5702     Mips_address addend, unsigned int r_type, unsigned int shndx,
5703     bool is_section_symbol)
5704 {
5705   Mips_got_entry<size, big_endian>* entry =
5706     new Mips_got_entry<size, big_endian>(object, symndx, addend,
5707                                          mips_elf_reloc_tls_type(r_type),
5708                                          shndx, is_section_symbol);
5709   this->record_got_entry(entry, object);
5710 }
5711
5712 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5713 // in OBJECT.  FOR_CALL is true if the caller is only interested in
5714 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
5715 // relocation.
5716
5717 template<int size, bool big_endian>
5718 void
5719 Mips_got_info<size, big_endian>::record_global_got_symbol(
5720     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5721     unsigned int r_type, bool dyn_reloc, bool for_call)
5722 {
5723   if (!for_call)
5724     mips_sym->set_got_not_only_for_calls();
5725
5726   // A global symbol in the GOT must also be in the dynamic symbol table.
5727   if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5728     {
5729       switch (mips_sym->visibility())
5730         {
5731         case elfcpp::STV_INTERNAL:
5732         case elfcpp::STV_HIDDEN:
5733           mips_sym->set_is_forced_local();
5734           break;
5735         default:
5736           mips_sym->set_needs_dynsym_entry();
5737           break;
5738         }
5739     }
5740
5741   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5742   if (tls_type == GOT_TLS_NONE)
5743     this->global_got_symbols_.insert(mips_sym);
5744
5745   if (dyn_reloc)
5746     {
5747       if (mips_sym->global_got_area() == GGA_NONE)
5748         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5749       return;
5750     }
5751
5752   Mips_got_entry<size, big_endian>* entry =
5753     new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5754
5755   this->record_got_entry(entry, object);
5756 }
5757
5758 // Add ENTRY to master GOT and to OBJECT's GOT.
5759
5760 template<int size, bool big_endian>
5761 void
5762 Mips_got_info<size, big_endian>::record_got_entry(
5763     Mips_got_entry<size, big_endian>* entry,
5764     Mips_relobj<size, big_endian>* object)
5765 {
5766   this->got_entries_.insert(entry);
5767
5768   // Create the GOT entry for the OBJECT's GOT.
5769   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5770   Mips_got_entry<size, big_endian>* entry2 =
5771     new Mips_got_entry<size, big_endian>(*entry);
5772
5773   g->got_entries_.insert(entry2);
5774 }
5775
5776 // Record that OBJECT has a page relocation against symbol SYMNDX and
5777 // that ADDEND is the addend for that relocation.
5778 // This function creates an upper bound on the number of GOT slots
5779 // required; no attempt is made to combine references to non-overridable
5780 // global symbols across multiple input files.
5781
5782 template<int size, bool big_endian>
5783 void
5784 Mips_got_info<size, big_endian>::record_got_page_entry(
5785     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5786 {
5787   struct Got_page_range **range_ptr, *range;
5788   int old_pages, new_pages;
5789
5790   // Find the Got_page_entry for this symbol.
5791   Got_page_entry* entry = new Got_page_entry(object, symndx);
5792   typename Got_page_entry_set::iterator it =
5793     this->got_page_entries_.find(entry);
5794   if (it != this->got_page_entries_.end())
5795     entry = *it;
5796   else
5797     this->got_page_entries_.insert(entry);
5798
5799   // Get the object's GOT, but we don't need to insert an entry here.
5800   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5801
5802   // Skip over ranges whose maximum extent cannot share a page entry
5803   // with ADDEND.
5804   range_ptr = &entry->ranges;
5805   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5806     range_ptr = &(*range_ptr)->next;
5807
5808   // If we scanned to the end of the list, or found a range whose
5809   // minimum extent cannot share a page entry with ADDEND, create
5810   // a new singleton range.
5811   range = *range_ptr;
5812   if (!range || addend < range->min_addend - 0xffff)
5813     {
5814       range = new Got_page_range();
5815       range->next = *range_ptr;
5816       range->min_addend = addend;
5817       range->max_addend = addend;
5818
5819       *range_ptr = range;
5820       ++this->page_gotno_;
5821       ++g2->page_gotno_;
5822       return;
5823     }
5824
5825   // Remember how many pages the old range contributed.
5826   old_pages = range->get_max_pages();
5827
5828   // Update the ranges.
5829   if (addend < range->min_addend)
5830     range->min_addend = addend;
5831   else if (addend > range->max_addend)
5832     {
5833       if (range->next && addend >= range->next->min_addend - 0xffff)
5834         {
5835           old_pages += range->next->get_max_pages();
5836           range->max_addend = range->next->max_addend;
5837           range->next = range->next->next;
5838         }
5839       else
5840         range->max_addend = addend;
5841     }
5842
5843   // Record any change in the total estimate.
5844   new_pages = range->get_max_pages();
5845   if (old_pages != new_pages)
5846     {
5847       this->page_gotno_ += new_pages - old_pages;
5848       g2->page_gotno_ += new_pages - old_pages;
5849     }
5850 }
5851
5852 // Create all entries that should be in the local part of the GOT.
5853
5854 template<int size, bool big_endian>
5855 void
5856 Mips_got_info<size, big_endian>::add_local_entries(
5857     Target_mips<size, big_endian>* target, Layout* layout)
5858 {
5859   Mips_output_data_got<size, big_endian>* got = target->got_section();
5860   // First two GOT entries are reserved.  The first entry will be filled at
5861   // runtime.  The second entry will be used by some runtime loaders.
5862   got->add_constant(0);
5863   got->add_constant(target->mips_elf_gnu_got1_mask());
5864
5865   for (typename Got_entry_set::iterator
5866        p = this->got_entries_.begin();
5867        p != this->got_entries_.end();
5868        ++p)
5869     {
5870       Mips_got_entry<size, big_endian>* entry = *p;
5871       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5872         {
5873           got->add_local(entry->object(), entry->symndx(),
5874                          GOT_TYPE_STANDARD, entry->addend());
5875           unsigned int got_offset = entry->object()->local_got_offset(
5876               entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5877           if (got->multi_got() && this->index_ > 0
5878               && parameters->options().output_is_position_independent())
5879           {
5880             if (!entry->is_section_symbol())
5881               target->rel_dyn_section(layout)->add_local(entry->object(),
5882                   entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5883             else
5884               target->rel_dyn_section(layout)->add_symbolless_local_addend(
5885                   entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5886                   got, got_offset);
5887           }
5888         }
5889     }
5890
5891   this->add_page_entries(target, layout);
5892
5893   // Add global entries that should be in the local area.
5894   for (typename Got_entry_set::iterator
5895        p = this->got_entries_.begin();
5896        p != this->got_entries_.end();
5897        ++p)
5898     {
5899       Mips_got_entry<size, big_endian>* entry = *p;
5900       if (!entry->is_for_global_symbol())
5901         continue;
5902
5903       Mips_symbol<size>* mips_sym = entry->sym();
5904       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5905         {
5906           unsigned int got_type;
5907           if (!got->multi_got())
5908             got_type = GOT_TYPE_STANDARD;
5909           else
5910             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5911           if (got->add_global(mips_sym, got_type))
5912             {
5913               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5914               if (got->multi_got() && this->index_ > 0
5915                   && parameters->options().output_is_position_independent())
5916                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5917                     mips_sym, elfcpp::R_MIPS_REL32, got,
5918                     mips_sym->got_offset(got_type));
5919             }
5920         }
5921     }
5922 }
5923
5924 // Create GOT page entries.
5925
5926 template<int size, bool big_endian>
5927 void
5928 Mips_got_info<size, big_endian>::add_page_entries(
5929     Target_mips<size, big_endian>* target, Layout* layout)
5930 {
5931   if (this->page_gotno_ == 0)
5932     return;
5933
5934   Mips_output_data_got<size, big_endian>* got = target->got_section();
5935   this->got_page_offset_start_ = got->add_constant(0);
5936   if (got->multi_got() && this->index_ > 0
5937       && parameters->options().output_is_position_independent())
5938     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5939                                                   this->got_page_offset_start_);
5940   int num_entries = this->page_gotno_;
5941   unsigned int prev_offset = this->got_page_offset_start_;
5942   while (--num_entries > 0)
5943     {
5944       unsigned int next_offset = got->add_constant(0);
5945       if (got->multi_got() && this->index_ > 0
5946           && parameters->options().output_is_position_independent())
5947         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5948                                                       next_offset);
5949       gold_assert(next_offset == prev_offset + size/8);
5950       prev_offset = next_offset;
5951     }
5952   this->got_page_offset_next_ = this->got_page_offset_start_;
5953 }
5954
5955 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5956
5957 template<int size, bool big_endian>
5958 void
5959 Mips_got_info<size, big_endian>::add_global_entries(
5960     Target_mips<size, big_endian>* target, Layout* layout,
5961     unsigned int non_reloc_only_global_gotno)
5962 {
5963   Mips_output_data_got<size, big_endian>* got = target->got_section();
5964   // Add GGA_NORMAL entries.
5965   unsigned int count = 0;
5966   for (typename Got_entry_set::iterator
5967        p = this->got_entries_.begin();
5968        p != this->got_entries_.end();
5969        ++p)
5970     {
5971       Mips_got_entry<size, big_endian>* entry = *p;
5972       if (!entry->is_for_global_symbol())
5973         continue;
5974
5975       Mips_symbol<size>* mips_sym = entry->sym();
5976       if (mips_sym->global_got_area() != GGA_NORMAL)
5977         continue;
5978
5979       unsigned int got_type;
5980       if (!got->multi_got())
5981         got_type = GOT_TYPE_STANDARD;
5982       else
5983         // In multi-GOT links, global symbol can be in both primary and
5984         // secondary GOT(s).  By creating custom GOT type
5985         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5986         // is added to secondary GOT(s).
5987         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5988       if (!got->add_global(mips_sym, got_type))
5989         continue;
5990
5991       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5992       if (got->multi_got() && this->index_ == 0)
5993         count++;
5994       if (got->multi_got() && this->index_ > 0)
5995         {
5996           if (parameters->options().output_is_position_independent()
5997               || (!parameters->doing_static_link()
5998                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5999             {
6000               target->rel_dyn_section(layout)->add_global(
6001                   mips_sym, elfcpp::R_MIPS_REL32, got,
6002                   mips_sym->got_offset(got_type));
6003               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
6004                                            elfcpp::R_MIPS_REL32, mips_sym);
6005             }
6006         }
6007     }
6008
6009   if (!got->multi_got() || this->index_ == 0)
6010     {
6011       if (got->multi_got())
6012         {
6013           // We need to allocate space in the primary GOT for GGA_NORMAL entries
6014           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6015           // entries correspond to dynamic symbol indexes.
6016           while (count < non_reloc_only_global_gotno)
6017             {
6018               got->add_constant(0);
6019               ++count;
6020             }
6021         }
6022
6023       // Add GGA_RELOC_ONLY entries.
6024       got->add_reloc_only_entries();
6025     }
6026 }
6027
6028 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6029
6030 template<int size, bool big_endian>
6031 void
6032 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6033     Mips_output_data_got<size, big_endian>* got)
6034 {
6035   for (typename Global_got_entry_set::iterator
6036        p = this->global_got_symbols_.begin();
6037        p != this->global_got_symbols_.end();
6038        ++p)
6039     {
6040       Mips_symbol<size>* mips_sym = *p;
6041       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6042         {
6043           unsigned int got_type;
6044           if (!got->multi_got())
6045             got_type = GOT_TYPE_STANDARD;
6046           else
6047             got_type = GOT_TYPE_STANDARD_MULTIGOT;
6048           if (got->add_global(mips_sym, got_type))
6049             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6050         }
6051     }
6052 }
6053
6054 // Create TLS GOT entries.
6055
6056 template<int size, bool big_endian>
6057 void
6058 Mips_got_info<size, big_endian>::add_tls_entries(
6059     Target_mips<size, big_endian>* target, Layout* layout)
6060 {
6061   Mips_output_data_got<size, big_endian>* got = target->got_section();
6062   // Add local tls entries.
6063   for (typename Got_entry_set::iterator
6064        p = this->got_entries_.begin();
6065        p != this->got_entries_.end();
6066        ++p)
6067     {
6068       Mips_got_entry<size, big_endian>* entry = *p;
6069       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6070         continue;
6071
6072       if (entry->tls_type() == GOT_TLS_GD)
6073         {
6074           unsigned int got_type = GOT_TYPE_TLS_PAIR;
6075           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6076                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6077           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6078                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6079
6080           if (!parameters->doing_static_link())
6081             {
6082               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6083                                            entry->shndx(), got_type,
6084                                            target->rel_dyn_section(layout),
6085                                            r_type1, entry->addend());
6086               unsigned int got_offset =
6087                 entry->object()->local_got_offset(entry->symndx(), got_type,
6088                                                   entry->addend());
6089               got->add_static_reloc(got_offset + size/8, r_type2,
6090                                     entry->object(), entry->symndx());
6091             }
6092           else
6093             {
6094               // We are doing a static link.  Mark it as belong to module 1,
6095               // the executable.
6096               unsigned int got_offset = got->add_constant(1);
6097               entry->object()->set_local_got_offset(entry->symndx(), got_type,
6098                                                     got_offset,
6099                                                     entry->addend());
6100               got->add_constant(0);
6101               got->add_static_reloc(got_offset + size/8, r_type2,
6102                                     entry->object(), entry->symndx());
6103             }
6104         }
6105       else if (entry->tls_type() == GOT_TLS_IE)
6106         {
6107           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6108           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6109                                             : elfcpp::R_MIPS_TLS_TPREL64);
6110           if (!parameters->doing_static_link())
6111             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6112                                     target->rel_dyn_section(layout), r_type,
6113                                     entry->addend());
6114           else
6115             {
6116               got->add_local(entry->object(), entry->symndx(), got_type,
6117                              entry->addend());
6118               unsigned int got_offset =
6119                   entry->object()->local_got_offset(entry->symndx(), got_type,
6120                                                     entry->addend());
6121               got->add_static_reloc(got_offset, r_type, entry->object(),
6122                                     entry->symndx());
6123             }
6124         }
6125       else if (entry->tls_type() == GOT_TLS_LDM)
6126         {
6127           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6128                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
6129           unsigned int got_offset;
6130           if (!parameters->doing_static_link())
6131             {
6132               got_offset = got->add_constant(0);
6133               target->rel_dyn_section(layout)->add_local(
6134                   entry->object(), 0, r_type, got, got_offset);
6135             }
6136           else
6137             // We are doing a static link.  Just mark it as belong to module 1,
6138             // the executable.
6139             got_offset = got->add_constant(1);
6140
6141           got->add_constant(0);
6142           got->set_tls_ldm_offset(got_offset, entry->object());
6143         }
6144       else
6145         gold_unreachable();
6146     }
6147
6148   // Add global tls entries.
6149   for (typename Got_entry_set::iterator
6150        p = this->got_entries_.begin();
6151        p != this->got_entries_.end();
6152        ++p)
6153     {
6154       Mips_got_entry<size, big_endian>* entry = *p;
6155       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6156         continue;
6157
6158       Mips_symbol<size>* mips_sym = entry->sym();
6159       if (entry->tls_type() == GOT_TLS_GD)
6160         {
6161           unsigned int got_type;
6162           if (!got->multi_got())
6163             got_type = GOT_TYPE_TLS_PAIR;
6164           else
6165             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6166           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6167                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6168           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6169                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6170           if (!parameters->doing_static_link())
6171             got->add_global_pair_with_rel(mips_sym, got_type,
6172                              target->rel_dyn_section(layout), r_type1, r_type2);
6173           else
6174             {
6175               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
6176               // GOT entries.  The first one is initialized to be 1, which is the
6177               // module index for the main executable and the second one 0.  A
6178               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6179               // the second GOT entry and will be applied by gold.
6180               unsigned int got_offset = got->add_constant(1);
6181               mips_sym->set_got_offset(got_type, got_offset);
6182               got->add_constant(0);
6183               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6184             }
6185         }
6186       else if (entry->tls_type() == GOT_TLS_IE)
6187         {
6188           unsigned int got_type;
6189           if (!got->multi_got())
6190             got_type = GOT_TYPE_TLS_OFFSET;
6191           else
6192             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6193           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6194                                             : elfcpp::R_MIPS_TLS_TPREL64);
6195           if (!parameters->doing_static_link())
6196             got->add_global_with_rel(mips_sym, got_type,
6197                                      target->rel_dyn_section(layout), r_type);
6198           else
6199             {
6200               got->add_global(mips_sym, got_type);
6201               unsigned int got_offset = mips_sym->got_offset(got_type);
6202               got->add_static_reloc(got_offset, r_type, mips_sym);
6203             }
6204         }
6205       else
6206         gold_unreachable();
6207     }
6208 }
6209
6210 // Decide whether the symbol needs an entry in the global part of the primary
6211 // GOT, setting global_got_area accordingly.  Count the number of global
6212 // symbols that are in the primary GOT only because they have dynamic
6213 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6214
6215 template<int size, bool big_endian>
6216 void
6217 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6218 {
6219   for (typename Global_got_entry_set::iterator
6220        p = this->global_got_symbols_.begin();
6221        p != this->global_got_symbols_.end();
6222        ++p)
6223     {
6224       Mips_symbol<size>* sym = *p;
6225       // Make a final decision about whether the symbol belongs in the
6226       // local or global GOT.  Symbols that bind locally can (and in the
6227       // case of forced-local symbols, must) live in the local GOT.
6228       // Those that are aren't in the dynamic symbol table must also
6229       // live in the local GOT.
6230
6231       if (!sym->should_add_dynsym_entry(symtab)
6232           || (sym->got_only_for_calls()
6233               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6234               : symbol_references_local(sym,
6235                                         sym->should_add_dynsym_entry(symtab))))
6236         // The symbol belongs in the local GOT.  We no longer need this
6237         // entry if it was only used for relocations; those relocations
6238         // will be against the null or section symbol instead.
6239         sym->set_global_got_area(GGA_NONE);
6240       else if (sym->global_got_area() == GGA_RELOC_ONLY)
6241         {
6242           ++this->reloc_only_gotno_;
6243           ++this->global_gotno_ ;
6244         }
6245     }
6246 }
6247
6248 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
6249 // VALUE if it is not initialized.
6250
6251 template<int size, bool big_endian>
6252 unsigned int
6253 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6254     Mips_output_data_got<size, big_endian>* got)
6255 {
6256   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6257   if (it != this->got_page_offsets_.end())
6258     return it->second;
6259
6260   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6261               + (size/8) * this->page_gotno_);
6262
6263   unsigned int got_offset = this->got_page_offset_next_;
6264   this->got_page_offsets_[value] = got_offset;
6265   this->got_page_offset_next_ += size/8;
6266   got->update_got_entry(got_offset, value);
6267   return got_offset;
6268 }
6269
6270 // Remove lazy-binding stubs for global symbols in this GOT.
6271
6272 template<int size, bool big_endian>
6273 void
6274 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6275     Target_mips<size, big_endian>* target)
6276 {
6277   for (typename Got_entry_set::iterator
6278        p = this->got_entries_.begin();
6279        p != this->got_entries_.end();
6280        ++p)
6281     {
6282       Mips_got_entry<size, big_endian>* entry = *p;
6283       if (entry->is_for_global_symbol())
6284         target->remove_lazy_stub_entry(entry->sym());
6285     }
6286 }
6287
6288 // Count the number of GOT entries required.
6289
6290 template<int size, bool big_endian>
6291 void
6292 Mips_got_info<size, big_endian>::count_got_entries()
6293 {
6294   for (typename Got_entry_set::iterator
6295        p = this->got_entries_.begin();
6296        p != this->got_entries_.end();
6297        ++p)
6298     {
6299       this->count_got_entry(*p);
6300     }
6301 }
6302
6303 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
6304
6305 template<int size, bool big_endian>
6306 void
6307 Mips_got_info<size, big_endian>::count_got_entry(
6308     Mips_got_entry<size, big_endian>* entry)
6309 {
6310   if (entry->is_tls_entry())
6311     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6312   else if (entry->is_for_local_symbol()
6313            || entry->sym()->global_got_area() == GGA_NONE)
6314     ++this->local_gotno_;
6315   else
6316     ++this->global_gotno_;
6317 }
6318
6319 // Add FROM's GOT entries.
6320
6321 template<int size, bool big_endian>
6322 void
6323 Mips_got_info<size, big_endian>::add_got_entries(
6324     Mips_got_info<size, big_endian>* from)
6325 {
6326   for (typename Got_entry_set::iterator
6327        p = from->got_entries_.begin();
6328        p != from->got_entries_.end();
6329        ++p)
6330     {
6331       Mips_got_entry<size, big_endian>* entry = *p;
6332       if (this->got_entries_.find(entry) == this->got_entries_.end())
6333         {
6334           Mips_got_entry<size, big_endian>* entry2 =
6335             new Mips_got_entry<size, big_endian>(*entry);
6336           this->got_entries_.insert(entry2);
6337           this->count_got_entry(entry);
6338         }
6339     }
6340 }
6341
6342 // Add FROM's GOT page entries.
6343
6344 template<int size, bool big_endian>
6345 void
6346 Mips_got_info<size, big_endian>::add_got_page_count(
6347     Mips_got_info<size, big_endian>* from)
6348 {
6349   this->page_gotno_ += from->page_gotno_;
6350 }
6351
6352 // Mips_output_data_got methods.
6353
6354 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
6355 // larger than 64K, create multi-GOT.
6356
6357 template<int size, bool big_endian>
6358 void
6359 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6360     Symbol_table* symtab, const Input_objects* input_objects)
6361 {
6362   // Decide which symbols need to go in the global part of the GOT and
6363   // count the number of reloc-only GOT symbols.
6364   this->master_got_info_->count_got_symbols(symtab);
6365
6366   // Count the number of GOT entries.
6367   this->master_got_info_->count_got_entries();
6368
6369   unsigned int got_size = this->master_got_info_->got_size();
6370   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6371     this->lay_out_multi_got(layout, input_objects);
6372   else
6373     {
6374       // Record that all objects use single GOT.
6375       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6376            p != input_objects->relobj_end();
6377            ++p)
6378         {
6379           Mips_relobj<size, big_endian>* object =
6380             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6381           if (object->get_got_info() != NULL)
6382             object->set_got_info(this->master_got_info_);
6383         }
6384
6385       this->master_got_info_->add_local_entries(this->target_, layout);
6386       this->master_got_info_->add_global_entries(this->target_, layout,
6387                                                  /*not used*/-1U);
6388       this->master_got_info_->add_tls_entries(this->target_, layout);
6389     }
6390 }
6391
6392 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
6393
6394 template<int size, bool big_endian>
6395 void
6396 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6397     const Input_objects* input_objects)
6398 {
6399   // Try to merge the GOTs of input objects together, as long as they
6400   // don't seem to exceed the maximum GOT size, choosing one of them
6401   // to be the primary GOT.
6402   this->merge_gots(input_objects);
6403
6404   // Every symbol that is referenced in a dynamic relocation must be
6405   // present in the primary GOT.
6406   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6407
6408   // Add GOT entries.
6409   unsigned int i = 0;
6410   unsigned int offset = 0;
6411   Mips_got_info<size, big_endian>* g = this->primary_got_;
6412   do
6413     {
6414       g->set_index(i);
6415       g->set_offset(offset);
6416
6417       g->add_local_entries(this->target_, layout);
6418       if (i == 0)
6419         g->add_global_entries(this->target_, layout,
6420                               (this->master_got_info_->global_gotno()
6421                                - this->master_got_info_->reloc_only_gotno()));
6422       else
6423         g->add_global_entries(this->target_, layout, /*not used*/-1U);
6424       g->add_tls_entries(this->target_, layout);
6425
6426       // Forbid global symbols in every non-primary GOT from having
6427       // lazy-binding stubs.
6428       if (i > 0)
6429         g->remove_lazy_stubs(this->target_);
6430
6431       ++i;
6432       offset += g->got_size();
6433       g = g->next();
6434     }
6435   while (g);
6436 }
6437
6438 // Attempt to merge GOTs of different input objects.  Try to use as much as
6439 // possible of the primary GOT, since it doesn't require explicit dynamic
6440 // relocations, but don't use objects that would reference global symbols
6441 // out of the addressable range.  Failing the primary GOT, attempt to merge
6442 // with the current GOT, or finish the current GOT and then make make the new
6443 // GOT current.
6444
6445 template<int size, bool big_endian>
6446 void
6447 Mips_output_data_got<size, big_endian>::merge_gots(
6448     const Input_objects* input_objects)
6449 {
6450   gold_assert(this->primary_got_ == NULL);
6451   Mips_got_info<size, big_endian>* current = NULL;
6452
6453   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6454        p != input_objects->relobj_end();
6455        ++p)
6456     {
6457       Mips_relobj<size, big_endian>* object =
6458         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6459
6460       Mips_got_info<size, big_endian>* g = object->get_got_info();
6461       if (g == NULL)
6462         continue;
6463
6464       g->count_got_entries();
6465
6466       // Work out the number of page, local and TLS entries.
6467       unsigned int estimate = this->master_got_info_->page_gotno();
6468       if (estimate > g->page_gotno())
6469         estimate = g->page_gotno();
6470       estimate += g->local_gotno() + g->tls_gotno();
6471
6472       // We place TLS GOT entries after both locals and globals.  The globals
6473       // for the primary GOT may overflow the normal GOT size limit, so be
6474       // sure not to merge a GOT which requires TLS with the primary GOT in that
6475       // case.  This doesn't affect non-primary GOTs.
6476       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6477                                       : g->global_gotno());
6478
6479       unsigned int max_count =
6480         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6481       if (estimate <= max_count)
6482         {
6483           // If we don't have a primary GOT, use it as
6484           // a starting point for the primary GOT.
6485           if (!this->primary_got_)
6486             {
6487               this->primary_got_ = g;
6488               continue;
6489             }
6490
6491           // Try merging with the primary GOT.
6492           if (this->merge_got_with(g, object, this->primary_got_))
6493             continue;
6494         }
6495
6496       // If we can merge with the last-created GOT, do it.
6497       if (current && this->merge_got_with(g, object, current))
6498         continue;
6499
6500       // Well, we couldn't merge, so create a new GOT.  Don't check if it
6501       // fits; if it turns out that it doesn't, we'll get relocation
6502       // overflows anyway.
6503       g->set_next(current);
6504       current = g;
6505     }
6506
6507   // If we do not find any suitable primary GOT, create an empty one.
6508   if (this->primary_got_ == NULL)
6509     this->primary_got_ = new Mips_got_info<size, big_endian>();
6510
6511   // Link primary GOT with secondary GOTs.
6512   this->primary_got_->set_next(current);
6513 }
6514
6515 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
6516 // this would lead to overflow, true if they were merged successfully.
6517
6518 template<int size, bool big_endian>
6519 bool
6520 Mips_output_data_got<size, big_endian>::merge_got_with(
6521     Mips_got_info<size, big_endian>* from,
6522     Mips_relobj<size, big_endian>* object,
6523     Mips_got_info<size, big_endian>* to)
6524 {
6525   // Work out how many page entries we would need for the combined GOT.
6526   unsigned int estimate = this->master_got_info_->page_gotno();
6527   if (estimate >= from->page_gotno() + to->page_gotno())
6528     estimate = from->page_gotno() + to->page_gotno();
6529
6530   // Conservatively estimate how many local and TLS entries would be needed.
6531   estimate += from->local_gotno() + to->local_gotno();
6532   estimate += from->tls_gotno() + to->tls_gotno();
6533
6534   // If we're merging with the primary got, any TLS relocations will
6535   // come after the full set of global entries.  Otherwise estimate those
6536   // conservatively as well.
6537   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6538     estimate += this->master_got_info_->global_gotno();
6539   else
6540     estimate += from->global_gotno() + to->global_gotno();
6541
6542   // Bail out if the combined GOT might be too big.
6543   unsigned int max_count =
6544     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6545   if (estimate > max_count)
6546     return false;
6547
6548   // Transfer the object's GOT information from FROM to TO.
6549   to->add_got_entries(from);
6550   to->add_got_page_count(from);
6551
6552   // Record that OBJECT should use output GOT TO.
6553   object->set_got_info(to);
6554
6555   return true;
6556 }
6557
6558 // Write out the GOT.
6559
6560 template<int size, bool big_endian>
6561 void
6562 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6563 {
6564   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6565       Mips_stubs_entry_set;
6566
6567   // Call parent to write out GOT.
6568   Output_data_got<size, big_endian>::do_write(of);
6569
6570   const off_t offset = this->offset();
6571   const section_size_type oview_size =
6572     convert_to_section_size_type(this->data_size());
6573   unsigned char* const oview = of->get_output_view(offset, oview_size);
6574
6575   // Needed for fixing values of .got section.
6576   this->got_view_ = oview;
6577
6578   // Write lazy stub addresses.
6579   for (typename Mips_stubs_entry_set::iterator
6580        p = this->master_got_info_->global_got_symbols().begin();
6581        p != this->master_got_info_->global_got_symbols().end();
6582        ++p)
6583     {
6584       Mips_symbol<size>* mips_sym = *p;
6585       if (mips_sym->has_lazy_stub())
6586         {
6587           Valtype* wv = reinterpret_cast<Valtype*>(
6588             oview + this->get_primary_got_offset(mips_sym));
6589           Valtype value =
6590             this->target_->mips_stubs_section()->stub_address(mips_sym);
6591           elfcpp::Swap<size, big_endian>::writeval(wv, value);
6592         }
6593     }
6594
6595   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6596   for (typename Mips_stubs_entry_set::iterator
6597        p = this->master_got_info_->global_got_symbols().begin();
6598        p != this->master_got_info_->global_got_symbols().end();
6599        ++p)
6600     {
6601       Mips_symbol<size>* mips_sym = *p;
6602       if (!this->multi_got()
6603           && (mips_sym->is_mips16() || mips_sym->is_micromips())
6604           && mips_sym->global_got_area() == GGA_NONE
6605           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6606         {
6607           Valtype* wv = reinterpret_cast<Valtype*>(
6608             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6609           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6610           if (value != 0)
6611             {
6612               value |= 1;
6613               elfcpp::Swap<size, big_endian>::writeval(wv, value);
6614             }
6615         }
6616     }
6617
6618   if (!this->secondary_got_relocs_.empty())
6619     {
6620       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
6621       // secondary GOT entries with non-zero initial value copy the value
6622       // to the corresponding primary GOT entry, and set the secondary GOT
6623       // entry to zero.
6624       // TODO(sasa): This is workaround.  It needs to be investigated further.
6625
6626       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6627         {
6628           Static_reloc& reloc(this->secondary_got_relocs_[i]);
6629           if (reloc.symbol_is_global())
6630             {
6631               Mips_symbol<size>* gsym = reloc.symbol();
6632               gold_assert(gsym != NULL);
6633
6634               unsigned got_offset = reloc.got_offset();
6635               gold_assert(got_offset < oview_size);
6636
6637               // Find primary GOT entry.
6638               Valtype* wv_prim = reinterpret_cast<Valtype*>(
6639                 oview + this->get_primary_got_offset(gsym));
6640
6641               // Find secondary GOT entry.
6642               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6643
6644               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6645               if (value != 0)
6646                 {
6647                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6648                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6649                   gsym->set_applied_secondary_got_fixup();
6650                 }
6651             }
6652         }
6653
6654       of->write_output_view(offset, oview_size, oview);
6655     }
6656
6657   // We are done if there is no fix up.
6658   if (this->static_relocs_.empty())
6659     return;
6660
6661   Output_segment* tls_segment = this->layout_->tls_segment();
6662   gold_assert(tls_segment != NULL);
6663
6664   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6665     {
6666       Static_reloc& reloc(this->static_relocs_[i]);
6667
6668       Mips_address value;
6669       if (!reloc.symbol_is_global())
6670         {
6671           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6672           const Symbol_value<size>* psymval =
6673             object->local_symbol(reloc.index());
6674
6675           // We are doing static linking.  Issue an error and skip this
6676           // relocation if the symbol is undefined or in a discarded_section.
6677           bool is_ordinary;
6678           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6679           if ((shndx == elfcpp::SHN_UNDEF)
6680               || (is_ordinary
6681                   && shndx != elfcpp::SHN_UNDEF
6682                   && !object->is_section_included(shndx)
6683                   && !this->symbol_table_->is_section_folded(object, shndx)))
6684             {
6685               gold_error(_("undefined or discarded local symbol %u from "
6686                            " object %s in GOT"),
6687                          reloc.index(), reloc.relobj()->name().c_str());
6688               continue;
6689             }
6690
6691           value = psymval->value(object, 0);
6692         }
6693       else
6694         {
6695           const Mips_symbol<size>* gsym = reloc.symbol();
6696           gold_assert(gsym != NULL);
6697
6698           // We are doing static linking.  Issue an error and skip this
6699           // relocation if the symbol is undefined or in a discarded_section
6700           // unless it is a weakly_undefined symbol.
6701           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6702               && !gsym->is_weak_undefined())
6703             {
6704               gold_error(_("undefined or discarded symbol %s in GOT"),
6705                          gsym->name());
6706               continue;
6707             }
6708
6709           if (!gsym->is_weak_undefined())
6710             value = gsym->value();
6711           else
6712             value = 0;
6713         }
6714
6715       unsigned got_offset = reloc.got_offset();
6716       gold_assert(got_offset < oview_size);
6717
6718       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6719       Valtype x;
6720
6721       switch (reloc.r_type())
6722         {
6723         case elfcpp::R_MIPS_TLS_DTPMOD32:
6724         case elfcpp::R_MIPS_TLS_DTPMOD64:
6725           x = value;
6726           break;
6727         case elfcpp::R_MIPS_TLS_DTPREL32:
6728         case elfcpp::R_MIPS_TLS_DTPREL64:
6729           x = value - elfcpp::DTP_OFFSET;
6730           break;
6731         case elfcpp::R_MIPS_TLS_TPREL32:
6732         case elfcpp::R_MIPS_TLS_TPREL64:
6733           x = value - elfcpp::TP_OFFSET;
6734           break;
6735         default:
6736           gold_unreachable();
6737           break;
6738         }
6739
6740       elfcpp::Swap<size, big_endian>::writeval(wv, x);
6741     }
6742
6743   of->write_output_view(offset, oview_size, oview);
6744 }
6745
6746 // Mips_relobj methods.
6747
6748 // Count the local symbols.  The Mips backend needs to know if a symbol
6749 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
6750 // because the Symbol object keeps the ELF symbol type and st_other field.
6751 // For local symbol it is harder because we cannot access this information.
6752 // So we override the do_count_local_symbol in parent and scan local symbols to
6753 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
6754 // I do not want to slow down other ports by calling a per symbol target hook
6755 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6756
6757 template<int size, bool big_endian>
6758 void
6759 Mips_relobj<size, big_endian>::do_count_local_symbols(
6760     Stringpool_template<char>* pool,
6761     Stringpool_template<char>* dynpool)
6762 {
6763   // Ask parent to count the local symbols.
6764   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6765   const unsigned int loccount = this->local_symbol_count();
6766   if (loccount == 0)
6767     return;
6768
6769   // Initialize the mips16 and micromips function bit-vector.
6770   this->local_symbol_is_mips16_.resize(loccount, false);
6771   this->local_symbol_is_micromips_.resize(loccount, false);
6772
6773   // Read the symbol table section header.
6774   const unsigned int symtab_shndx = this->symtab_shndx();
6775   elfcpp::Shdr<size, big_endian>
6776     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6777   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6778
6779   // Read the local symbols.
6780   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6781   gold_assert(loccount == symtabshdr.get_sh_info());
6782   off_t locsize = loccount * sym_size;
6783   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6784                                               locsize, true, true);
6785
6786   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6787
6788   // Skip the first dummy symbol.
6789   psyms += sym_size;
6790   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6791     {
6792       elfcpp::Sym<size, big_endian> sym(psyms);
6793       unsigned char st_other = sym.get_st_other();
6794       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6795       this->local_symbol_is_micromips_[i] =
6796         elfcpp::elf_st_is_micromips(st_other);
6797     }
6798 }
6799
6800 // Read the symbol information.
6801
6802 template<int size, bool big_endian>
6803 void
6804 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6805 {
6806   // Call parent class to read symbol information.
6807   this->base_read_symbols(sd);
6808
6809   // If this input file is a binary file, it has no processor
6810   // specific data.
6811   Input_file::Format format = this->input_file()->format();
6812   if (format != Input_file::FORMAT_ELF)
6813     {
6814       gold_assert(format == Input_file::FORMAT_BINARY);
6815       this->merge_processor_specific_data_ = false;
6816       return;
6817     }
6818
6819   // Read processor-specific flags in ELF file header.
6820   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6821                                             elfcpp::Elf_sizes<size>::ehdr_size,
6822                                             true, false);
6823   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6824   this->processor_specific_flags_ = ehdr.get_e_flags();
6825
6826   // Get the section names.
6827   const unsigned char* pnamesu = sd->section_names->data();
6828   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6829
6830   // Initialize the mips16 stub section bit-vectors.
6831   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6832   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6833   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6834
6835   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6836   const unsigned char* pshdrs = sd->section_headers->data();
6837   const unsigned char* ps = pshdrs + shdr_size;
6838   bool must_merge_processor_specific_data = false;
6839   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6840     {
6841       elfcpp::Shdr<size, big_endian> shdr(ps);
6842
6843       // Sometimes an object has no contents except the section name string
6844       // table and an empty symbol table with the undefined symbol.  We
6845       // don't want to merge processor-specific data from such an object.
6846       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6847         {
6848           // Symbol table is not empty.
6849           const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
6850             elfcpp::Elf_sizes<size>::sym_size;
6851           if (shdr.get_sh_size() > sym_size)
6852             must_merge_processor_specific_data = true;
6853         }
6854       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6855         // If this is neither an empty symbol table nor a string table,
6856         // be conservative.
6857         must_merge_processor_specific_data = true;
6858
6859       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6860         {
6861           this->has_reginfo_section_ = true;
6862           // Read the gp value that was used to create this object.  We need the
6863           // gp value while processing relocs.  The .reginfo section is not used
6864           // in the 64-bit MIPS ELF ABI.
6865           section_offset_type section_offset = shdr.get_sh_offset();
6866           section_size_type section_size =
6867             convert_to_section_size_type(shdr.get_sh_size());
6868           const unsigned char* view =
6869              this->get_view(section_offset, section_size, true, false);
6870
6871           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6872
6873           // Read the rest of .reginfo.
6874           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6875           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6876           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6877           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6878           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6879         }
6880
6881       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6882         {
6883           gold_assert(this->attributes_section_data_ == NULL);
6884           section_offset_type section_offset = shdr.get_sh_offset();
6885           section_size_type section_size =
6886             convert_to_section_size_type(shdr.get_sh_size());
6887           const unsigned char* view =
6888             this->get_view(section_offset, section_size, true, false);
6889           this->attributes_section_data_ =
6890             new Attributes_section_data(view, section_size);
6891         }
6892
6893       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6894         {
6895           gold_assert(this->abiflags_ == NULL);
6896           section_offset_type section_offset = shdr.get_sh_offset();
6897           section_size_type section_size =
6898             convert_to_section_size_type(shdr.get_sh_size());
6899           const unsigned char* view =
6900             this->get_view(section_offset, section_size, true, false);
6901           this->abiflags_ = new Mips_abiflags<big_endian>();
6902
6903           this->abiflags_->version =
6904             elfcpp::Swap<16, big_endian>::readval(view);
6905           if (this->abiflags_->version != 0)
6906             {
6907               gold_error(_("%s: .MIPS.abiflags section has "
6908                            "unsupported version %u"),
6909                          this->name().c_str(),
6910                          this->abiflags_->version);
6911               break;
6912             }
6913           this->abiflags_->isa_level =
6914             elfcpp::Swap<8, big_endian>::readval(view + 2);
6915           this->abiflags_->isa_rev =
6916             elfcpp::Swap<8, big_endian>::readval(view + 3);
6917           this->abiflags_->gpr_size =
6918             elfcpp::Swap<8, big_endian>::readval(view + 4);
6919           this->abiflags_->cpr1_size =
6920             elfcpp::Swap<8, big_endian>::readval(view + 5);
6921           this->abiflags_->cpr2_size =
6922             elfcpp::Swap<8, big_endian>::readval(view + 6);
6923           this->abiflags_->fp_abi =
6924             elfcpp::Swap<8, big_endian>::readval(view + 7);
6925           this->abiflags_->isa_ext =
6926             elfcpp::Swap<32, big_endian>::readval(view + 8);
6927           this->abiflags_->ases =
6928             elfcpp::Swap<32, big_endian>::readval(view + 12);
6929           this->abiflags_->flags1 =
6930             elfcpp::Swap<32, big_endian>::readval(view + 16);
6931           this->abiflags_->flags2 =
6932             elfcpp::Swap<32, big_endian>::readval(view + 20);
6933         }
6934
6935       // In the 64-bit ABI, .MIPS.options section holds register information.
6936       // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6937       // starts with this header:
6938       //
6939       // typedef struct
6940       // {
6941       //   // Type of option.
6942       //   unsigned char kind[1];
6943       //   // Size of option descriptor, including header.
6944       //   unsigned char size[1];
6945       //   // Section index of affected section, or 0 for global option.
6946       //   unsigned char section[2];
6947       //   // Information specific to this kind of option.
6948       //   unsigned char info[4];
6949       // };
6950       //
6951       // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6952       // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
6953       // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6954
6955       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6956         {
6957           section_offset_type section_offset = shdr.get_sh_offset();
6958           section_size_type section_size =
6959             convert_to_section_size_type(shdr.get_sh_size());
6960           const unsigned char* view =
6961              this->get_view(section_offset, section_size, true, false);
6962           const unsigned char* end = view + section_size;
6963
6964           while (view + 8 <= end)
6965             {
6966               unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6967               unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6968               if (sz < 8)
6969                 {
6970                   gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6971                                "than its header"),
6972                              this->name().c_str(),
6973                              this->mips_elf_options_section_name(), sz);
6974                   break;
6975                 }
6976
6977               if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6978                 {
6979                   // In the 64 bit ABI, an ODK_REGINFO option is the following
6980                   // structure.  The info field of the options header is not
6981                   // used.
6982                   //
6983                   // typedef struct
6984                   // {
6985                   //   // Mask of general purpose registers used.
6986                   //   unsigned char ri_gprmask[4];
6987                   //   // Padding.
6988                   //   unsigned char ri_pad[4];
6989                   //   // Mask of co-processor registers used.
6990                   //   unsigned char ri_cprmask[4][4];
6991                   //   // GP register value for this object file.
6992                   //   unsigned char ri_gp_value[8];
6993                   // };
6994
6995                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6996                                                                       + 32);
6997                 }
6998               else if (kind == elfcpp::ODK_REGINFO)
6999                 {
7000                   // In the 32 bit ABI, an ODK_REGINFO option is the following
7001                   // structure.  The info field of the options header is not
7002                   // used.  The same structure is used in .reginfo section.
7003                   //
7004                   // typedef struct
7005                   // {
7006                   //   unsigned char ri_gprmask[4];
7007                   //   unsigned char ri_cprmask[4][4];
7008                   //   unsigned char ri_gp_value[4];
7009                   // };
7010
7011                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
7012                                                                       + 28);
7013                 }
7014               view += sz;
7015             }
7016         }
7017
7018       const char* name = pnames + shdr.get_sh_name();
7019       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
7020       this->section_is_mips16_call_stub_[i] =
7021         is_prefix_of(".mips16.call.", name);
7022       this->section_is_mips16_call_fp_stub_[i] =
7023         is_prefix_of(".mips16.call.fp.", name);
7024
7025       if (strcmp(name, ".pdr") == 0)
7026         {
7027           gold_assert(this->pdr_shndx_ == -1U);
7028           this->pdr_shndx_ = i;
7029         }
7030     }
7031
7032   // This is rare.
7033   if (!must_merge_processor_specific_data)
7034     this->merge_processor_specific_data_ = false;
7035 }
7036
7037 // Discard MIPS16 stub secions that are not needed.
7038
7039 template<int size, bool big_endian>
7040 void
7041 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7042 {
7043   for (typename Mips16_stubs_int_map::const_iterator
7044        it = this->mips16_stub_sections_.begin();
7045        it != this->mips16_stub_sections_.end(); ++it)
7046     {
7047       Mips16_stub_section<size, big_endian>* stub_section = it->second;
7048       if (!stub_section->is_target_found())
7049         {
7050           gold_error(_("no relocation found in mips16 stub section '%s'"),
7051                      stub_section->object()
7052                        ->section_name(stub_section->shndx()).c_str());
7053         }
7054
7055       bool discard = false;
7056       if (stub_section->is_for_local_function())
7057         {
7058           if (stub_section->is_fn_stub())
7059             {
7060               // This stub is for a local symbol.  This stub will only
7061               // be needed if there is some relocation in this object,
7062               // other than a 16 bit function call, which refers to this
7063               // symbol.
7064               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7065                 discard = true;
7066               else
7067                 this->add_local_mips16_fn_stub(stub_section);
7068             }
7069           else
7070             {
7071               // This stub is for a local symbol.  This stub will only
7072               // be needed if there is some relocation (R_MIPS16_26) in
7073               // this object that refers to this symbol.
7074               gold_assert(stub_section->is_call_stub()
7075                           || stub_section->is_call_fp_stub());
7076               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7077                 discard = true;
7078               else
7079                 this->add_local_mips16_call_stub(stub_section);
7080             }
7081         }
7082       else
7083         {
7084           Mips_symbol<size>* gsym = stub_section->gsym();
7085           if (stub_section->is_fn_stub())
7086             {
7087               if (gsym->has_mips16_fn_stub())
7088                 // We already have a stub for this function.
7089                 discard = true;
7090               else
7091                 {
7092                   gsym->set_mips16_fn_stub(stub_section);
7093                   if (gsym->should_add_dynsym_entry(symtab))
7094                     {
7095                       // If we have a MIPS16 function with a stub, the
7096                       // dynamic symbol must refer to the stub, since only
7097                       // the stub uses the standard calling conventions.
7098                       gsym->set_need_fn_stub();
7099                       if (gsym->is_from_dynobj())
7100                         gsym->set_needs_dynsym_value();
7101                     }
7102                 }
7103               if (!gsym->need_fn_stub())
7104                 discard = true;
7105             }
7106           else if (stub_section->is_call_stub())
7107             {
7108               if (gsym->is_mips16())
7109                 // We don't need the call_stub; this is a 16 bit
7110                 // function, so calls from other 16 bit functions are
7111                 // OK.
7112                 discard = true;
7113               else if (gsym->has_mips16_call_stub())
7114                 // We already have a stub for this function.
7115                 discard = true;
7116               else
7117                 gsym->set_mips16_call_stub(stub_section);
7118             }
7119           else
7120             {
7121               gold_assert(stub_section->is_call_fp_stub());
7122               if (gsym->is_mips16())
7123                 // We don't need the call_stub; this is a 16 bit
7124                 // function, so calls from other 16 bit functions are
7125                 // OK.
7126                 discard = true;
7127               else if (gsym->has_mips16_call_fp_stub())
7128                 // We already have a stub for this function.
7129                 discard = true;
7130               else
7131                 gsym->set_mips16_call_fp_stub(stub_section);
7132             }
7133         }
7134       if (discard)
7135         this->set_output_section(stub_section->shndx(), NULL);
7136    }
7137 }
7138
7139 // Mips_output_data_la25_stub methods.
7140
7141 // Template for standard LA25 stub.
7142 template<int size, bool big_endian>
7143 const uint32_t
7144 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7145 {
7146   0x3c190000,           // lui $25,%hi(func)
7147   0x08000000,           // j func
7148   0x27390000,           // add $25,$25,%lo(func)
7149   0x00000000            // nop
7150 };
7151
7152 // Template for microMIPS LA25 stub.
7153 template<int size, bool big_endian>
7154 const uint32_t
7155 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7156 {
7157   0x41b9, 0x0000,       // lui t9,%hi(func)
7158   0xd400, 0x0000,       // j func
7159   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
7160   0x0000, 0x0000        // nop
7161 };
7162
7163 // Create la25 stub for a symbol.
7164
7165 template<int size, bool big_endian>
7166 void
7167 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7168     Symbol_table* symtab, Target_mips<size, big_endian>* target,
7169     Mips_symbol<size>* gsym)
7170 {
7171   if (!gsym->has_la25_stub())
7172     {
7173       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7174       this->symbols_.push_back(gsym);
7175       this->create_stub_symbol(gsym, symtab, target, 16);
7176     }
7177 }
7178
7179 // Create a symbol for SYM stub's value and size, to help make the disassembly
7180 // easier to read.
7181
7182 template<int size, bool big_endian>
7183 void
7184 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7185     Mips_symbol<size>* sym, Symbol_table* symtab,
7186     Target_mips<size, big_endian>* target, uint64_t symsize)
7187 {
7188   std::string name(".pic.");
7189   name += sym->name();
7190
7191   unsigned int offset = sym->la25_stub_offset();
7192   if (sym->is_micromips())
7193     offset |= 1;
7194
7195   // Make it a local function.
7196   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7197                                       Symbol_table::PREDEFINED,
7198                                       target->la25_stub_section(),
7199                                       offset, symsize, elfcpp::STT_FUNC,
7200                                       elfcpp::STB_LOCAL,
7201                                       elfcpp::STV_DEFAULT, 0,
7202                                       false, false);
7203   new_sym->set_is_forced_local();
7204 }
7205
7206 // Write out la25 stubs.  This uses the hand-coded instructions above,
7207 // and adjusts them as needed.
7208
7209 template<int size, bool big_endian>
7210 void
7211 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7212 {
7213   const off_t offset = this->offset();
7214   const section_size_type oview_size =
7215     convert_to_section_size_type(this->data_size());
7216   unsigned char* const oview = of->get_output_view(offset, oview_size);
7217
7218   for (typename std::vector<Mips_symbol<size>*>::iterator
7219        p = this->symbols_.begin();
7220        p != this->symbols_.end();
7221        ++p)
7222     {
7223       Mips_symbol<size>* sym = *p;
7224       unsigned char* pov = oview + sym->la25_stub_offset();
7225
7226       Mips_address target = sym->value();
7227       if (!sym->is_micromips())
7228         {
7229           elfcpp::Swap<32, big_endian>::writeval(pov,
7230               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7231           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7232               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7233           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7234               la25_stub_entry[2] | (target & 0xffff));
7235           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7236         }
7237       else
7238         {
7239           target |= 1;
7240           // First stub instruction.  Paste high 16-bits of the target.
7241           elfcpp::Swap<16, big_endian>::writeval(pov,
7242                                                  la25_stub_micromips_entry[0]);
7243           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7244               ((target + 0x8000) >> 16) & 0xffff);
7245           // Second stub instruction.  Paste low 26-bits of the target, shifted
7246           // right by 1.
7247           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7248               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7249           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7250               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7251           // Third stub instruction.  Paste low 16-bits of the target.
7252           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7253                                                  la25_stub_micromips_entry[4]);
7254           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7255           // Fourth stub instruction.
7256           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7257                                                  la25_stub_micromips_entry[6]);
7258           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7259                                                  la25_stub_micromips_entry[7]);
7260         }
7261     }
7262
7263   of->write_output_view(offset, oview_size, oview);
7264 }
7265
7266 // Mips_output_data_plt methods.
7267
7268 // The format of the first PLT entry in an O32 executable.
7269 template<int size, bool big_endian>
7270 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7271 {
7272   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
7273   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
7274   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
7275   0x031cc023,         // subu $24, $24, $28
7276   0x03e07825,         // or $15, $31, zero
7277   0x0018c082,         // srl $24, $24, 2
7278   0x0320f809,         // jalr $25
7279   0x2718fffe          // subu $24, $24, 2
7280 };
7281
7282 // The format of the first PLT entry in an N32 executable.  Different
7283 // because gp ($28) is not available; we use t2 ($14) instead.
7284 template<int size, bool big_endian>
7285 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7286 {
7287   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7288   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
7289   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7290   0x030ec023,         // subu $24, $24, $14
7291   0x03e07825,         // or $15, $31, zero
7292   0x0018c082,         // srl $24, $24, 2
7293   0x0320f809,         // jalr $25
7294   0x2718fffe          // subu $24, $24, 2
7295 };
7296
7297 // The format of the first PLT entry in an N64 executable.  Different
7298 // from N32 because of the increased size of GOT entries.
7299 template<int size, bool big_endian>
7300 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7301 {
7302   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7303   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
7304   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7305   0x030ec023,         // subu $24, $24, $14
7306   0x03e07825,         // or $15, $31, zero
7307   0x0018c0c2,         // srl $24, $24, 3
7308   0x0320f809,         // jalr $25
7309   0x2718fffe          // subu $24, $24, 2
7310 };
7311
7312 // The format of the microMIPS first PLT entry in an O32 executable.
7313 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7314 // of the GOTPLT entry handled, so this stub may only be used when
7315 // all the subsequent PLT entries are microMIPS code too.
7316 //
7317 // The trailing NOP is for alignment and correct disassembly only.
7318 template<int size, bool big_endian>
7319 const uint32_t Mips_output_data_plt<size, big_endian>::
7320 plt0_entry_micromips_o32[] =
7321 {
7322   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
7323   0xff23, 0x0000,      // lw $25, 0($3)
7324   0x0535,              // subu $2, $2, $3
7325   0x2525,              // srl $2, $2, 2
7326   0x3302, 0xfffe,      // subu $24, $2, 2
7327   0x0dff,              // move $15, $31
7328   0x45f9,              // jalrs $25
7329   0x0f83,              // move $28, $3
7330   0x0c00               // nop
7331 };
7332
7333 // The format of the microMIPS first PLT entry in an O32 executable
7334 // in the insn32 mode.
7335 template<int size, bool big_endian>
7336 const uint32_t Mips_output_data_plt<size, big_endian>::
7337 plt0_entry_micromips32_o32[] =
7338 {
7339   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
7340   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
7341   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
7342   0x0398, 0xc1d0,      // subu $24, $24, $28
7343   0x001f, 0x7a90,      // or $15, $31, zero
7344   0x0318, 0x1040,      // srl $24, $24, 2
7345   0x03f9, 0x0f3c,      // jalr $25
7346   0x3318, 0xfffe       // subu $24, $24, 2
7347 };
7348
7349 // The format of subsequent standard entries in the PLT.
7350 template<int size, bool big_endian>
7351 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7352 {
7353   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7354   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7355   0x03200008,           // jr $25
7356   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7357 };
7358
7359 // The format of subsequent R6 PLT entries.
7360 template<int size, bool big_endian>
7361 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7362 {
7363   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7364   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7365   0x03200009,           // jr $25
7366   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7367 };
7368
7369 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
7370 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7371 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7372 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7373 // target function address in register v0.
7374 template<int size, bool big_endian>
7375 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7376 {
7377   0xb303,              // lw $3, 12($pc)
7378   0x651b,              // move $24, $3
7379   0x9b60,              // lw $3, 0($3)
7380   0xeb00,              // jr $3
7381   0x653b,              // move $25, $3
7382   0x6500,              // nop
7383   0x0000, 0x0000       // .word (.got.plt entry)
7384 };
7385
7386 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
7387 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7388 template<int size, bool big_endian>
7389 const uint32_t Mips_output_data_plt<size, big_endian>::
7390 plt_entry_micromips_o32[] =
7391 {
7392   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
7393   0xff22, 0x0000,      // lw $25, 0($2)
7394   0x4599,              // jr $25
7395   0x0f02               // move $24, $2
7396 };
7397
7398 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7399 template<int size, bool big_endian>
7400 const uint32_t Mips_output_data_plt<size, big_endian>::
7401 plt_entry_micromips32_o32[] =
7402 {
7403   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
7404   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
7405   0x0019, 0x0f3c,      // jr $25
7406   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
7407 };
7408
7409 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7410
7411 template<int size, bool big_endian>
7412 void
7413 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7414                                                   unsigned int r_type)
7415 {
7416   gold_assert(!gsym->has_plt_offset());
7417
7418   // Final PLT offset for a symbol will be set in method set_plt_offsets().
7419   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7420                        + sizeof(plt0_entry_o32));
7421   this->symbols_.push_back(gsym);
7422
7423   // Record whether the relocation requires a standard MIPS
7424   // or a compressed code entry.
7425   if (jal_reloc(r_type))
7426    {
7427      if (r_type == elfcpp::R_MIPS_26)
7428        gsym->set_needs_mips_plt(true);
7429      else
7430        gsym->set_needs_comp_plt(true);
7431    }
7432
7433   section_offset_type got_offset = this->got_plt_->current_data_size();
7434
7435   // Every PLT entry needs a GOT entry which points back to the PLT
7436   // entry (this will be changed by the dynamic linker, normally
7437   // lazily when the function is called).
7438   this->got_plt_->set_current_data_size(got_offset + size/8);
7439
7440   gsym->set_needs_dynsym_entry();
7441   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7442                          got_offset);
7443 }
7444
7445 // Set final PLT offsets.  For each symbol, determine whether standard or
7446 // compressed (MIPS16 or microMIPS) PLT entry is used.
7447
7448 template<int size, bool big_endian>
7449 void
7450 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7451 {
7452   // The sizes of individual PLT entries.
7453   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7454   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7455                                       ? this->compressed_plt_entry_size() : 0);
7456
7457   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7458        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7459     {
7460       Mips_symbol<size>* mips_sym = *p;
7461
7462       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7463       // so always use a standard entry there.
7464       //
7465       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7466       // all MIPS16 calls will go via that stub, and there is no benefit
7467       // to having a MIPS16 entry.  And in the case of call_stub a
7468       // standard entry actually has to be used as the stub ends with a J
7469       // instruction.
7470       if (this->target_->is_output_newabi()
7471           || mips_sym->has_mips16_call_stub()
7472           || mips_sym->has_mips16_call_fp_stub())
7473         {
7474           mips_sym->set_needs_mips_plt(true);
7475           mips_sym->set_needs_comp_plt(false);
7476         }
7477
7478       // Otherwise, if there are no direct calls to the function, we
7479       // have a free choice of whether to use standard or compressed
7480       // entries.  Prefer microMIPS entries if the object is known to
7481       // contain microMIPS code, so that it becomes possible to create
7482       // pure microMIPS binaries.  Prefer standard entries otherwise,
7483       // because MIPS16 ones are no smaller and are usually slower.
7484       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7485         {
7486           if (this->target_->is_output_micromips())
7487             mips_sym->set_needs_comp_plt(true);
7488           else
7489             mips_sym->set_needs_mips_plt(true);
7490         }
7491
7492       if (mips_sym->needs_mips_plt())
7493         {
7494           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7495           this->plt_mips_offset_ += plt_mips_entry_size;
7496         }
7497       if (mips_sym->needs_comp_plt())
7498         {
7499           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7500           this->plt_comp_offset_ += plt_comp_entry_size;
7501         }
7502     }
7503
7504     // Figure out the size of the PLT header if we know that we are using it.
7505     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7506       this->plt_header_size_ = this->get_plt_header_size();
7507 }
7508
7509 // Write out the PLT.  This uses the hand-coded instructions above,
7510 // and adjusts them as needed.
7511
7512 template<int size, bool big_endian>
7513 void
7514 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7515 {
7516   const off_t offset = this->offset();
7517   const section_size_type oview_size =
7518     convert_to_section_size_type(this->data_size());
7519   unsigned char* const oview = of->get_output_view(offset, oview_size);
7520
7521   const off_t gotplt_file_offset = this->got_plt_->offset();
7522   const section_size_type gotplt_size =
7523     convert_to_section_size_type(this->got_plt_->data_size());
7524   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7525                                                          gotplt_size);
7526   unsigned char* pov = oview;
7527
7528   Mips_address plt_address = this->address();
7529
7530   // Calculate the address of .got.plt.
7531   Mips_address gotplt_addr = this->got_plt_->address();
7532   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7533   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7534
7535   // The PLT sequence is not safe for N64 if .got.plt's address can
7536   // not be loaded in two instructions.
7537   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7538               || ~(gotplt_addr | 0x7fffffff) == 0);
7539
7540   // Write the PLT header.
7541   const uint32_t* plt0_entry = this->get_plt_header_entry();
7542   if (plt0_entry == plt0_entry_micromips_o32)
7543     {
7544       // Write microMIPS PLT header.
7545       gold_assert(gotplt_addr % 4 == 0);
7546
7547       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7548
7549       // ADDIUPC has a span of +/-16MB, check we're in range.
7550       if (gotpc_offset + 0x1000000 >= 0x2000000)
7551        {
7552          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7553                     "ADDIUPC"), (long)gotpc_offset);
7554          return;
7555        }
7556
7557       elfcpp::Swap<16, big_endian>::writeval(pov,
7558                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7559       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7560                                              (gotpc_offset >> 2) & 0xffff);
7561       pov += 4;
7562       for (unsigned int i = 2;
7563            i < (sizeof(plt0_entry_micromips_o32)
7564                 / sizeof(plt0_entry_micromips_o32[0]));
7565            i++)
7566         {
7567           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7568           pov += 2;
7569         }
7570     }
7571   else if (plt0_entry == plt0_entry_micromips32_o32)
7572     {
7573       // Write microMIPS PLT header in insn32 mode.
7574       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7575       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7576       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7577       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7578       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7579       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7580       pov += 12;
7581       for (unsigned int i = 6;
7582            i < (sizeof(plt0_entry_micromips32_o32)
7583                 / sizeof(plt0_entry_micromips32_o32[0]));
7584            i++)
7585         {
7586           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7587           pov += 2;
7588         }
7589     }
7590   else
7591     {
7592       // Write standard PLT header.
7593       elfcpp::Swap<32, big_endian>::writeval(pov,
7594                                              plt0_entry[0] | gotplt_addr_high);
7595       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7596                                              plt0_entry[1] | gotplt_addr_low);
7597       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7598                                              plt0_entry[2] | gotplt_addr_low);
7599       pov += 12;
7600       for (int i = 3; i < 8; i++)
7601         {
7602           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7603           pov += 4;
7604         }
7605     }
7606
7607
7608   unsigned char* gotplt_pov = gotplt_view;
7609   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7610
7611   // The first two entries in .got.plt are reserved.
7612   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7613   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7614
7615   unsigned int gotplt_offset = 2 * got_entry_size;
7616   gotplt_pov += 2 * got_entry_size;
7617
7618   // Calculate the address of the PLT header.
7619   Mips_address header_address = (plt_address
7620                                  + (this->is_plt_header_compressed() ? 1 : 0));
7621
7622   // Initialize compressed PLT area view.
7623   unsigned char* pov2 = pov + this->plt_mips_offset_;
7624
7625   // Write the PLT entries.
7626   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7627        p = this->symbols_.begin();
7628        p != this->symbols_.end();
7629        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7630     {
7631       Mips_symbol<size>* mips_sym = *p;
7632
7633       // Calculate the address of the .got.plt entry.
7634       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7635       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7636                                        & 0xffff);
7637       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7638
7639       // Initially point the .got.plt entry at the PLT header.
7640       if (this->target_->is_output_n64())
7641         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7642       else
7643         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7644
7645       // Now handle the PLT itself.  First the standard entry.
7646       if (mips_sym->has_mips_plt_offset())
7647         {
7648           // Pick the load opcode (LW or LD).
7649           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7650                                                          : 0x8c000000;
7651
7652           const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7653                                                                 : plt_entry;
7654
7655           // Fill in the PLT entry itself.
7656           elfcpp::Swap<32, big_endian>::writeval(pov,
7657               entry[0] | gotplt_entry_addr_hi);
7658           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7659               entry[1] | gotplt_entry_addr_lo | load);
7660           elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7661           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7662               entry[3] | gotplt_entry_addr_lo);
7663           pov += 16;
7664         }
7665
7666       // Now the compressed entry.  They come after any standard ones.
7667       if (mips_sym->has_comp_plt_offset())
7668         {
7669           if (!this->target_->is_output_micromips())
7670             {
7671               // Write MIPS16 PLT entry.
7672               const uint32_t* plt_entry = plt_entry_mips16_o32;
7673
7674               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7675               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7676               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7677               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7678               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7679               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7680               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7681                                                      gotplt_entry_addr);
7682               pov2 += 16;
7683             }
7684           else if (this->target_->use_32bit_micromips_instructions())
7685             {
7686               // Write microMIPS PLT entry in insn32 mode.
7687               const uint32_t* plt_entry = plt_entry_micromips32_o32;
7688
7689               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7690               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7691                                                      gotplt_entry_addr_hi);
7692               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7693               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7694                                                      gotplt_entry_addr_lo);
7695               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7696               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7697               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7698               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7699                                                      gotplt_entry_addr_lo);
7700               pov2 += 16;
7701             }
7702           else
7703             {
7704               // Write microMIPS PLT entry.
7705               const uint32_t* plt_entry = plt_entry_micromips_o32;
7706
7707               gold_assert(gotplt_entry_addr % 4 == 0);
7708
7709               Mips_address loc_address = plt_address + pov2 - oview;
7710               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7711
7712               // ADDIUPC has a span of +/-16MB, check we're in range.
7713               if (gotpc_offset + 0x1000000 >= 0x2000000)
7714                 {
7715                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
7716                              "range of ADDIUPC"), (long)gotpc_offset);
7717                   return;
7718                 }
7719
7720               elfcpp::Swap<16, big_endian>::writeval(pov2,
7721                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7722               elfcpp::Swap<16, big_endian>::writeval(
7723                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7724               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7725               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7726               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7727               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7728               pov2 += 12;
7729             }
7730         }
7731     }
7732
7733   // Check the number of bytes written for standard entries.
7734   gold_assert(static_cast<section_size_type>(
7735       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7736   // Check the number of bytes written for compressed entries.
7737   gold_assert((static_cast<section_size_type>(pov2 - pov)
7738                == this->plt_comp_offset_));
7739   // Check the total number of bytes written.
7740   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7741
7742   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7743               == gotplt_size);
7744
7745   of->write_output_view(offset, oview_size, oview);
7746   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7747 }
7748
7749 // Mips_output_data_mips_stubs methods.
7750
7751 // The format of the lazy binding stub when dynamic symbol count is less than
7752 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7753 template<int size, bool big_endian>
7754 const uint32_t
7755 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7756 {
7757   0x8f998010,         // lw t9,0x8010(gp)
7758   0x03e07825,         // or t7,ra,zero
7759   0x0320f809,         // jalr t9,ra
7760   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
7761 };
7762
7763 // The format of the lazy binding stub when dynamic symbol count is less than
7764 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7765 template<int size, bool big_endian>
7766 const uint32_t
7767 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7768 {
7769   0xdf998010,         // ld t9,0x8010(gp)
7770   0x03e07825,         // or t7,ra,zero
7771   0x0320f809,         // jalr t9,ra
7772   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
7773 };
7774
7775 // The format of the lazy binding stub when dynamic symbol count is less than
7776 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7777 template<int size, bool big_endian>
7778 const uint32_t
7779 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7780 {
7781   0x8f998010,         // lw t9,0x8010(gp)
7782   0x03e07825,         // or t7,ra,zero
7783   0x0320f809,         // jalr t9,ra
7784   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7785 };
7786
7787 // The format of the lazy binding stub when dynamic symbol count is less than
7788 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7789 template<int size, bool big_endian>
7790 const uint32_t
7791 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7792 {
7793   0xdf998010,         // ld t9,0x8010(gp)
7794   0x03e07825,         // or t7,ra,zero
7795   0x0320f809,         // jalr t9,ra
7796   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7797 };
7798
7799 // The format of the lazy binding stub when dynamic symbol count is greater than
7800 // 64K, and ABI is not N64.
7801 template<int size, bool big_endian>
7802 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7803 {
7804   0x8f998010,         // lw t9,0x8010(gp)
7805   0x03e07825,         // or t7,ra,zero
7806   0x3c180000,         // lui t8,DYN_INDEX
7807   0x0320f809,         // jalr t9,ra
7808   0x37180000          // ori t8,t8,DYN_INDEX
7809 };
7810
7811 // The format of the lazy binding stub when dynamic symbol count is greater than
7812 // 64K, and ABI is N64.
7813 template<int size, bool big_endian>
7814 const uint32_t
7815 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7816 {
7817   0xdf998010,         // ld t9,0x8010(gp)
7818   0x03e07825,         // or t7,ra,zero
7819   0x3c180000,         // lui t8,DYN_INDEX
7820   0x0320f809,         // jalr t9,ra
7821   0x37180000          // ori t8,t8,DYN_INDEX
7822 };
7823
7824 // microMIPS stubs.
7825
7826 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7827 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7828 template<int size, bool big_endian>
7829 const uint32_t
7830 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7831 {
7832   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7833   0x0dff,             // move t7,ra
7834   0x45d9,             // jalr t9
7835   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7836 };
7837
7838 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7839 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7840 template<int size, bool big_endian>
7841 const uint32_t
7842 Mips_output_data_mips_stubs<size, big_endian>::
7843 lazy_stub_micromips_normal_1_n64[] =
7844 {
7845   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7846   0x0dff,             // move t7,ra
7847   0x45d9,             // jalr t9
7848   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7849 };
7850
7851 // The format of the microMIPS lazy binding stub when dynamic symbol
7852 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7853 // and ABI is not N64.
7854 template<int size, bool big_endian>
7855 const uint32_t
7856 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7857 {
7858   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7859   0x0dff,             // move t7,ra
7860   0x45d9,             // jalr t9
7861   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7862 };
7863
7864 // The format of the microMIPS lazy binding stub when dynamic symbol
7865 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7866 // and ABI is N64.
7867 template<int size, bool big_endian>
7868 const uint32_t
7869 Mips_output_data_mips_stubs<size, big_endian>::
7870 lazy_stub_micromips_normal_2_n64[] =
7871 {
7872   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7873   0x0dff,             // move t7,ra
7874   0x45d9,             // jalr t9
7875   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7876 };
7877
7878 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7879 // greater than 64K, and ABI is not N64.
7880 template<int size, bool big_endian>
7881 const uint32_t
7882 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7883 {
7884   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7885   0x0dff,             // move t7,ra
7886   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7887   0x45d9,             // jalr t9
7888   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7889 };
7890
7891 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7892 // greater than 64K, and ABI is N64.
7893 template<int size, bool big_endian>
7894 const uint32_t
7895 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7896 {
7897   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7898   0x0dff,             // move t7,ra
7899   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7900   0x45d9,             // jalr t9
7901   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7902 };
7903
7904 // 32-bit microMIPS stubs.
7905
7906 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7907 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7908 // can use only 32-bit instructions.
7909 template<int size, bool big_endian>
7910 const uint32_t
7911 Mips_output_data_mips_stubs<size, big_endian>::
7912 lazy_stub_micromips32_normal_1[] =
7913 {
7914   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7915   0x001f, 0x7a90,     // or t7,ra,zero
7916   0x03f9, 0x0f3c,     // jalr ra,t9
7917   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7918 };
7919
7920 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7921 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7922 // use only 32-bit instructions.
7923 template<int size, bool big_endian>
7924 const uint32_t
7925 Mips_output_data_mips_stubs<size, big_endian>::
7926 lazy_stub_micromips32_normal_1_n64[] =
7927 {
7928   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7929   0x001f, 0x7a90,     // or t7,ra,zero
7930   0x03f9, 0x0f3c,     // jalr ra,t9
7931   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7932 };
7933
7934 // The format of the microMIPS lazy binding stub when dynamic symbol
7935 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7936 // ABI is not N64, and we can use only 32-bit instructions.
7937 template<int size, bool big_endian>
7938 const uint32_t
7939 Mips_output_data_mips_stubs<size, big_endian>::
7940 lazy_stub_micromips32_normal_2[] =
7941 {
7942   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7943   0x001f, 0x7a90,     // or t7,ra,zero
7944   0x03f9, 0x0f3c,     // jalr ra,t9
7945   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7946 };
7947
7948 // The format of the microMIPS lazy binding stub when dynamic symbol
7949 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7950 // ABI is N64, and we can use only 32-bit instructions.
7951 template<int size, bool big_endian>
7952 const uint32_t
7953 Mips_output_data_mips_stubs<size, big_endian>::
7954 lazy_stub_micromips32_normal_2_n64[] =
7955 {
7956   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7957   0x001f, 0x7a90,     // or t7,ra,zero
7958   0x03f9, 0x0f3c,     // jalr ra,t9
7959   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7960 };
7961
7962 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7963 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7964 template<int size, bool big_endian>
7965 const uint32_t
7966 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7967 {
7968   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7969   0x001f, 0x7a90,     // or t7,ra,zero
7970   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7971   0x03f9, 0x0f3c,     // jalr ra,t9
7972   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7973 };
7974
7975 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7976 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7977 template<int size, bool big_endian>
7978 const uint32_t
7979 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7980 {
7981   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7982   0x001f, 0x7a90,     // or t7,ra,zero
7983   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7984   0x03f9, 0x0f3c,     // jalr ra,t9
7985   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7986 };
7987
7988 // Create entry for a symbol.
7989
7990 template<int size, bool big_endian>
7991 void
7992 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7993     Mips_symbol<size>* gsym)
7994 {
7995   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7996     {
7997       this->symbols_.insert(gsym);
7998       gsym->set_has_lazy_stub(true);
7999     }
8000 }
8001
8002 // Remove entry for a symbol.
8003
8004 template<int size, bool big_endian>
8005 void
8006 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
8007     Mips_symbol<size>* gsym)
8008 {
8009   if (gsym->has_lazy_stub())
8010     {
8011       this->symbols_.erase(gsym);
8012       gsym->set_has_lazy_stub(false);
8013     }
8014 }
8015
8016 // Set stub offsets for symbols.  This method expects that the number of
8017 // entries in dynamic symbol table is set.
8018
8019 template<int size, bool big_endian>
8020 void
8021 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
8022 {
8023   gold_assert(this->dynsym_count_ != -1U);
8024
8025   if (this->stub_offsets_are_set_)
8026     return;
8027
8028   unsigned int stub_size = this->stub_size();
8029   unsigned int offset = 0;
8030   for (typename Mips_stubs_entry_set::const_iterator
8031        p = this->symbols_.begin();
8032        p != this->symbols_.end();
8033        ++p, offset += stub_size)
8034     {
8035       Mips_symbol<size>* mips_sym = *p;
8036       mips_sym->set_lazy_stub_offset(offset);
8037     }
8038   this->stub_offsets_are_set_ = true;
8039 }
8040
8041 template<int size, bool big_endian>
8042 void
8043 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8044 {
8045   for (typename Mips_stubs_entry_set::const_iterator
8046        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8047     {
8048       Mips_symbol<size>* sym = *p;
8049       if (sym->is_from_dynobj())
8050         sym->set_needs_dynsym_value();
8051     }
8052 }
8053
8054 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
8055 // adjusts them as needed.
8056
8057 template<int size, bool big_endian>
8058 void
8059 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8060 {
8061   const off_t offset = this->offset();
8062   const section_size_type oview_size =
8063     convert_to_section_size_type(this->data_size());
8064   unsigned char* const oview = of->get_output_view(offset, oview_size);
8065
8066   bool big_stub = this->dynsym_count_ > 0x10000;
8067
8068   unsigned char* pov = oview;
8069   for (typename Mips_stubs_entry_set::const_iterator
8070        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8071     {
8072       Mips_symbol<size>* sym = *p;
8073       const uint32_t* lazy_stub;
8074       bool n64 = this->target_->is_output_n64();
8075
8076       if (!this->target_->is_output_micromips())
8077         {
8078           // Write standard (non-microMIPS) stub.
8079           if (!big_stub)
8080             {
8081               if (sym->dynsym_index() & ~0x7fff)
8082                 // Dynsym index is between 32K and 64K.
8083                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8084               else
8085                 // Dynsym index is less than 32K.
8086                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8087             }
8088           else
8089             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8090
8091           unsigned int i = 0;
8092           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8093           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8094           pov += 8;
8095
8096           i += 2;
8097           if (big_stub)
8098             {
8099               // LUI instruction of the big stub.  Paste high 16 bits of the
8100               // dynsym index.
8101               elfcpp::Swap<32, big_endian>::writeval(pov,
8102                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8103               pov += 4;
8104               i += 1;
8105             }
8106           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8107           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8108           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8109               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8110           pov += 8;
8111         }
8112       else if (this->target_->use_32bit_micromips_instructions())
8113         {
8114           // Write microMIPS stub in insn32 mode.
8115           if (!big_stub)
8116             {
8117               if (sym->dynsym_index() & ~0x7fff)
8118                 // Dynsym index is between 32K and 64K.
8119                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8120                                 : lazy_stub_micromips32_normal_2;
8121               else
8122                 // Dynsym index is less than 32K.
8123                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8124                                 : lazy_stub_micromips32_normal_1;
8125             }
8126           else
8127             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8128                             : lazy_stub_micromips32_big;
8129
8130           unsigned int i = 0;
8131           // First stub instruction.  We emit 32-bit microMIPS instructions by
8132           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8133           // the instruction where the opcode is must always come first, for
8134           // both little and big endian.
8135           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8136           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8137           // Second stub instruction.
8138           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8139           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8140           pov += 8;
8141           i += 4;
8142           if (big_stub)
8143             {
8144               // LUI instruction of the big stub.  Paste high 16 bits of the
8145               // dynsym index.
8146               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8147               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8148                   (sym->dynsym_index() >> 16) & 0x7fff);
8149               pov += 4;
8150               i += 2;
8151             }
8152           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8153           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8154           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8155           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8156           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8157               sym->dynsym_index() & 0xffff);
8158           pov += 8;
8159         }
8160       else
8161         {
8162           // Write microMIPS stub.
8163           if (!big_stub)
8164             {
8165               if (sym->dynsym_index() & ~0x7fff)
8166                 // Dynsym index is between 32K and 64K.
8167                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8168                                 : lazy_stub_micromips_normal_2;
8169               else
8170                 // Dynsym index is less than 32K.
8171                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8172                                 : lazy_stub_micromips_normal_1;
8173             }
8174           else
8175             lazy_stub = n64 ? lazy_stub_micromips_big_n64
8176                             : lazy_stub_micromips_big;
8177
8178           unsigned int i = 0;
8179           // First stub instruction.  We emit 32-bit microMIPS instructions by
8180           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8181           // the instruction where the opcode is must always come first, for
8182           // both little and big endian.
8183           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8184           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8185           // Second stub instruction.
8186           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8187           pov += 6;
8188           i += 3;
8189           if (big_stub)
8190             {
8191               // LUI instruction of the big stub.  Paste high 16 bits of the
8192               // dynsym index.
8193               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8194               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8195                   (sym->dynsym_index() >> 16) & 0x7fff);
8196               pov += 4;
8197               i += 2;
8198             }
8199           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8200           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8201           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8202           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8203               sym->dynsym_index() & 0xffff);
8204           pov += 6;
8205         }
8206     }
8207
8208   // We always allocate 20 bytes for every stub, because final dynsym count is
8209   // not known in method do_finalize_sections.  There are 4 unused bytes per
8210   // stub if final dynsym count is less than 0x10000.
8211   unsigned int used = pov - oview;
8212   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8213   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8214
8215   // Fill the unused space with zeroes.
8216   // TODO(sasa): Can we strip unused bytes during the relaxation?
8217   if (unused > 0)
8218     memset(pov, 0, unused);
8219
8220   of->write_output_view(offset, oview_size, oview);
8221 }
8222
8223 // Mips_output_section_reginfo methods.
8224
8225 template<int size, bool big_endian>
8226 void
8227 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8228 {
8229   off_t offset = this->offset();
8230   off_t data_size = this->data_size();
8231
8232   unsigned char* view = of->get_output_view(offset, data_size);
8233   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8234   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8235   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8236   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8237   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8238   // Write the gp value.
8239   elfcpp::Swap<size, big_endian>::writeval(view + 20,
8240                                            this->target_->gp_value());
8241
8242   of->write_output_view(offset, data_size, view);
8243 }
8244
8245 // Mips_output_section_options methods.
8246
8247 template<int size, bool big_endian>
8248 void
8249 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8250 {
8251   off_t offset = this->offset();
8252   const section_size_type oview_size =
8253     convert_to_section_size_type(this->data_size());
8254   unsigned char* view = of->get_output_view(offset, oview_size);
8255   const unsigned char* end = view + oview_size;
8256
8257   while (view + 8 <= end)
8258     {
8259       unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8260       unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8261       if (sz < 8)
8262         {
8263           gold_error(_("Warning: bad `%s' option size %u smaller "
8264                        "than its header in output section"),
8265                      this->name(), sz);
8266           break;
8267         }
8268
8269       // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8270       if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8271         elfcpp::Swap<size, big_endian>::writeval(view + 32,
8272                                                  this->target_->gp_value());
8273       else if (kind == elfcpp::ODK_REGINFO)
8274         elfcpp::Swap<size, big_endian>::writeval(view + 28,
8275                                                  this->target_->gp_value());
8276
8277       view += sz;
8278     }
8279
8280   of->write_output_view(offset, oview_size, view);
8281 }
8282
8283 // Mips_output_section_abiflags methods.
8284
8285 template<int size, bool big_endian>
8286 void
8287 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8288 {
8289   off_t offset = this->offset();
8290   off_t data_size = this->data_size();
8291
8292   unsigned char* view = of->get_output_view(offset, data_size);
8293   elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8294   elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8295   elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8296   elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8297   elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8298   elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8299   elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8300   elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8301   elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8302   elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8303   elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8304
8305   of->write_output_view(offset, data_size, view);
8306 }
8307
8308 // Mips_copy_relocs methods.
8309
8310 // Emit any saved relocs.
8311
8312 template<int sh_type, int size, bool big_endian>
8313 void
8314 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8315     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8316     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8317 {
8318   for (typename Copy_relocs<sh_type, size, big_endian>::
8319        Copy_reloc_entries::iterator p = this->entries_.begin();
8320        p != this->entries_.end();
8321        ++p)
8322     emit_entry(*p, reloc_section, symtab, layout, target);
8323
8324   // We no longer need the saved information.
8325   this->entries_.clear();
8326 }
8327
8328 // Emit the reloc if appropriate.
8329
8330 template<int sh_type, int size, bool big_endian>
8331 void
8332 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8333     Copy_reloc_entry& entry,
8334     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8335     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8336 {
8337   // If the symbol is no longer defined in a dynamic object, then we
8338   // emitted a COPY relocation, and we do not want to emit this
8339   // dynamic relocation.
8340   if (!entry.sym_->is_from_dynobj())
8341     return;
8342
8343   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8344                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8345                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
8346
8347   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8348   if (can_make_dynamic && !sym->has_static_relocs())
8349     {
8350       Mips_relobj<size, big_endian>* object =
8351         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8352       target->got_section(symtab, layout)->record_global_got_symbol(
8353                           sym, object, entry.reloc_type_, true, false);
8354       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8355         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8356             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8357       else
8358         target->rel_dyn_section(layout)->add_symbolless_global_addend(
8359             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8360             entry.shndx_, entry.address_);
8361     }
8362   else
8363     this->make_copy_reloc(symtab, layout,
8364                           static_cast<Sized_symbol<size>*>(entry.sym_),
8365                           entry.relobj_,
8366                           reloc_section);
8367 }
8368
8369 // Target_mips methods.
8370
8371 // Return the value to use for a dynamic symbol which requires special
8372 // treatment.  This is how we support equality comparisons of function
8373 // pointers across shared library boundaries, as described in the
8374 // processor specific ABI supplement.
8375
8376 template<int size, bool big_endian>
8377 uint64_t
8378 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8379 {
8380   uint64_t value = 0;
8381   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8382
8383   if (!mips_sym->has_lazy_stub())
8384     {
8385       if (mips_sym->has_plt_offset())
8386         {
8387           // We distinguish between PLT entries and lazy-binding stubs by
8388           // giving the former an st_other value of STO_MIPS_PLT.  Set the
8389           // value to the stub address if there are any relocations in the
8390           // binary where pointer equality matters.
8391           if (mips_sym->pointer_equality_needed())
8392             {
8393               // Prefer a standard MIPS PLT entry.
8394               if (mips_sym->has_mips_plt_offset())
8395                 value = this->plt_section()->mips_entry_address(mips_sym);
8396               else
8397                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8398             }
8399           else
8400             value = 0;
8401         }
8402     }
8403   else
8404     {
8405       // First, set stub offsets for symbols.  This method expects that the
8406       // number of entries in dynamic symbol table is set.
8407       this->mips_stubs_section()->set_lazy_stub_offsets();
8408
8409       // The run-time linker uses the st_value field of the symbol
8410       // to reset the global offset table entry for this external
8411       // to its stub address when unlinking a shared object.
8412       value = this->mips_stubs_section()->stub_address(mips_sym);
8413     }
8414
8415   if (mips_sym->has_mips16_fn_stub())
8416     {
8417       // If we have a MIPS16 function with a stub, the dynamic symbol must
8418       // refer to the stub, since only the stub uses the standard calling
8419       // conventions.
8420       value = mips_sym->template
8421               get_mips16_fn_stub<big_endian>()->output_address();
8422     }
8423
8424   return value;
8425 }
8426
8427 // Get the dynamic reloc section, creating it if necessary.  It's always
8428 // .rel.dyn, even for MIPS64.
8429
8430 template<int size, bool big_endian>
8431 typename Target_mips<size, big_endian>::Reloc_section*
8432 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8433 {
8434   if (this->rel_dyn_ == NULL)
8435     {
8436       gold_assert(layout != NULL);
8437       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8438       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8439                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
8440                                       ORDER_DYNAMIC_RELOCS, false);
8441
8442       // First entry in .rel.dyn has to be null.
8443       // This is hack - we define dummy output data and set its address to 0,
8444       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8445       // This ensures that the entry is null.
8446       Output_data* od = new Output_data_zero_fill(0, 0);
8447       od->set_address(0);
8448       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8449     }
8450   return this->rel_dyn_;
8451 }
8452
8453 // Get the GOT section, creating it if necessary.
8454
8455 template<int size, bool big_endian>
8456 Mips_output_data_got<size, big_endian>*
8457 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8458                                            Layout* layout)
8459 {
8460   if (this->got_ == NULL)
8461     {
8462       gold_assert(symtab != NULL && layout != NULL);
8463
8464       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8465                                                               layout);
8466       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8467                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8468                                       elfcpp::SHF_MIPS_GPREL),
8469                                       this->got_, ORDER_DATA, false);
8470
8471       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8472       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8473                                     Symbol_table::PREDEFINED,
8474                                     this->got_,
8475                                     0, 0, elfcpp::STT_OBJECT,
8476                                     elfcpp::STB_GLOBAL,
8477                                     elfcpp::STV_HIDDEN, 0,
8478                                     false, false);
8479     }
8480
8481   return this->got_;
8482 }
8483
8484 // Calculate value of _gp symbol.
8485
8486 template<int size, bool big_endian>
8487 void
8488 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8489 {
8490   gold_assert(this->gp_ == NULL);
8491
8492   Sized_symbol<size>* gp =
8493     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8494
8495   // Set _gp symbol if the linker script hasn't created it.
8496   if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8497     {
8498       // If there is no .got section, gp should be based on .sdata.
8499       Output_data* gp_section = (this->got_ != NULL
8500                                  ? this->got_->output_section()
8501                                  : layout->find_output_section(".sdata"));
8502
8503       if (gp_section != NULL)
8504         gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8505                                           "_gp", NULL, Symbol_table::PREDEFINED,
8506                                           gp_section, MIPS_GP_OFFSET, 0,
8507                                           elfcpp::STT_NOTYPE,
8508                                           elfcpp::STB_LOCAL,
8509                                           elfcpp::STV_DEFAULT,
8510                                           0, false, false));
8511     }
8512
8513   this->gp_ = gp;
8514 }
8515
8516 // Set the dynamic symbol indexes.  INDEX is the index of the first
8517 // global dynamic symbol.  Pointers to the symbols are stored into the
8518 // vector SYMS.  The names are added to DYNPOOL.  This returns an
8519 // updated dynamic symbol index.
8520
8521 template<int size, bool big_endian>
8522 unsigned int
8523 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8524     std::vector<Symbol*>* dyn_symbols, unsigned int index,
8525     std::vector<Symbol*>* syms, Stringpool* dynpool,
8526     Versions* versions, Symbol_table* symtab) const
8527 {
8528   std::vector<Symbol*> non_got_symbols;
8529   std::vector<Symbol*> got_symbols;
8530
8531   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8532                                         &got_symbols);
8533
8534   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8535        p != non_got_symbols.end();
8536        ++p)
8537     {
8538       Symbol* sym = *p;
8539
8540       // Note that SYM may already have a dynamic symbol index, since
8541       // some symbols appear more than once in the symbol table, with
8542       // and without a version.
8543
8544       if (!sym->has_dynsym_index())
8545         {
8546           sym->set_dynsym_index(index);
8547           ++index;
8548           syms->push_back(sym);
8549           dynpool->add(sym->name(), false, NULL);
8550
8551           // Record any version information.
8552           if (sym->version() != NULL)
8553             versions->record_version(symtab, dynpool, sym);
8554
8555           // If the symbol is defined in a dynamic object and is
8556           // referenced in a regular object, then mark the dynamic
8557           // object as needed.  This is used to implement --as-needed.
8558           if (sym->is_from_dynobj() && sym->in_reg())
8559             sym->object()->set_is_needed();
8560         }
8561     }
8562
8563   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8564        p != got_symbols.end();
8565        ++p)
8566     {
8567       Symbol* sym = *p;
8568       if (!sym->has_dynsym_index())
8569         {
8570           // Record any version information.
8571           if (sym->version() != NULL)
8572             versions->record_version(symtab, dynpool, sym);
8573         }
8574     }
8575
8576   index = versions->finalize(symtab, index, syms);
8577
8578   int got_sym_count = 0;
8579   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8580        p != got_symbols.end();
8581        ++p)
8582     {
8583       Symbol* sym = *p;
8584
8585       if (!sym->has_dynsym_index())
8586         {
8587           ++got_sym_count;
8588           sym->set_dynsym_index(index);
8589           ++index;
8590           syms->push_back(sym);
8591           dynpool->add(sym->name(), false, NULL);
8592
8593           // If the symbol is defined in a dynamic object and is
8594           // referenced in a regular object, then mark the dynamic
8595           // object as needed.  This is used to implement --as-needed.
8596           if (sym->is_from_dynobj() && sym->in_reg())
8597             sym->object()->set_is_needed();
8598         }
8599     }
8600
8601   // Set index of the first symbol that has .got entry.
8602   this->got_->set_first_global_got_dynsym_index(
8603     got_sym_count > 0 ? index - got_sym_count : -1U);
8604
8605   if (this->mips_stubs_ != NULL)
8606     this->mips_stubs_->set_dynsym_count(index);
8607
8608   return index;
8609 }
8610
8611 // Create a PLT entry for a global symbol referenced by r_type relocation.
8612
8613 template<int size, bool big_endian>
8614 void
8615 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8616                                               Layout* layout,
8617                                               Mips_symbol<size>* gsym,
8618                                               unsigned int r_type)
8619 {
8620   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8621     return;
8622
8623   if (this->plt_ == NULL)
8624     {
8625       // Create the GOT section first.
8626       this->got_section(symtab, layout);
8627
8628       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8629       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8630                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8631                                       this->got_plt_, ORDER_DATA, false);
8632
8633       // The first two entries are reserved.
8634       this->got_plt_->set_current_data_size(2 * size/8);
8635
8636       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8637                                                               this->got_plt_,
8638                                                               this);
8639       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8640                                       (elfcpp::SHF_ALLOC
8641                                        | elfcpp::SHF_EXECINSTR),
8642                                       this->plt_, ORDER_PLT, false);
8643
8644       // Make the sh_info field of .rel.plt point to .plt.
8645       Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8646       rel_plt_os->set_info_section(this->plt_->output_section());
8647     }
8648
8649   this->plt_->add_entry(gsym, r_type);
8650 }
8651
8652
8653 // Get the .MIPS.stubs section, creating it if necessary.
8654
8655 template<int size, bool big_endian>
8656 Mips_output_data_mips_stubs<size, big_endian>*
8657 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8658 {
8659   if (this->mips_stubs_ == NULL)
8660     {
8661       this->mips_stubs_ =
8662         new Mips_output_data_mips_stubs<size, big_endian>(this);
8663       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8664                                       (elfcpp::SHF_ALLOC
8665                                        | elfcpp::SHF_EXECINSTR),
8666                                       this->mips_stubs_, ORDER_PLT, false);
8667     }
8668   return this->mips_stubs_;
8669 }
8670
8671 // Get the LA25 stub section, creating it if necessary.
8672
8673 template<int size, bool big_endian>
8674 Mips_output_data_la25_stub<size, big_endian>*
8675 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8676 {
8677   if (this->la25_stub_ == NULL)
8678     {
8679       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8680       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8681                                       (elfcpp::SHF_ALLOC
8682                                        | elfcpp::SHF_EXECINSTR),
8683                                       this->la25_stub_, ORDER_TEXT, false);
8684     }
8685   return this->la25_stub_;
8686 }
8687
8688 // Process the relocations to determine unreferenced sections for
8689 // garbage collection.
8690
8691 template<int size, bool big_endian>
8692 void
8693 Target_mips<size, big_endian>::gc_process_relocs(
8694                         Symbol_table* symtab,
8695                         Layout* layout,
8696                         Sized_relobj_file<size, big_endian>* object,
8697                         unsigned int data_shndx,
8698                         unsigned int sh_type,
8699                         const unsigned char* prelocs,
8700                         size_t reloc_count,
8701                         Output_section* output_section,
8702                         bool needs_special_offset_handling,
8703                         size_t local_symbol_count,
8704                         const unsigned char* plocal_symbols)
8705 {
8706   typedef Target_mips<size, big_endian> Mips;
8707
8708   if (sh_type == elfcpp::SHT_REL)
8709     {
8710       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8711           Classify_reloc;
8712
8713       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8714         symtab,
8715         layout,
8716         this,
8717         object,
8718         data_shndx,
8719         prelocs,
8720         reloc_count,
8721         output_section,
8722         needs_special_offset_handling,
8723         local_symbol_count,
8724         plocal_symbols);
8725     }
8726   else if (sh_type == elfcpp::SHT_RELA)
8727     {
8728       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8729           Classify_reloc;
8730
8731       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8732         symtab,
8733         layout,
8734         this,
8735         object,
8736         data_shndx,
8737         prelocs,
8738         reloc_count,
8739         output_section,
8740         needs_special_offset_handling,
8741         local_symbol_count,
8742         plocal_symbols);
8743     }
8744   else
8745     gold_unreachable();
8746 }
8747
8748 // Scan relocations for a section.
8749
8750 template<int size, bool big_endian>
8751 void
8752 Target_mips<size, big_endian>::scan_relocs(
8753                         Symbol_table* symtab,
8754                         Layout* layout,
8755                         Sized_relobj_file<size, big_endian>* object,
8756                         unsigned int data_shndx,
8757                         unsigned int sh_type,
8758                         const unsigned char* prelocs,
8759                         size_t reloc_count,
8760                         Output_section* output_section,
8761                         bool needs_special_offset_handling,
8762                         size_t local_symbol_count,
8763                         const unsigned char* plocal_symbols)
8764 {
8765   typedef Target_mips<size, big_endian> Mips;
8766
8767   if (sh_type == elfcpp::SHT_REL)
8768     {
8769       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8770           Classify_reloc;
8771
8772       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8773         symtab,
8774         layout,
8775         this,
8776         object,
8777         data_shndx,
8778         prelocs,
8779         reloc_count,
8780         output_section,
8781         needs_special_offset_handling,
8782         local_symbol_count,
8783         plocal_symbols);
8784     }
8785   else if (sh_type == elfcpp::SHT_RELA)
8786     {
8787       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8788           Classify_reloc;
8789
8790       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8791         symtab,
8792         layout,
8793         this,
8794         object,
8795         data_shndx,
8796         prelocs,
8797         reloc_count,
8798         output_section,
8799         needs_special_offset_handling,
8800         local_symbol_count,
8801         plocal_symbols);
8802     }
8803 }
8804
8805 template<int size, bool big_endian>
8806 bool
8807 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8808 {
8809   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8810           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8811           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8812           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8813           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8814           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8815           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8816           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8817 }
8818
8819 // Return the MACH for a MIPS e_flags value.
8820 template<int size, bool big_endian>
8821 unsigned int
8822 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8823 {
8824   switch (flags & elfcpp::EF_MIPS_MACH)
8825     {
8826     case elfcpp::E_MIPS_MACH_3900:
8827       return mach_mips3900;
8828
8829     case elfcpp::E_MIPS_MACH_4010:
8830       return mach_mips4010;
8831
8832     case elfcpp::E_MIPS_MACH_4100:
8833       return mach_mips4100;
8834
8835     case elfcpp::E_MIPS_MACH_4111:
8836       return mach_mips4111;
8837
8838     case elfcpp::E_MIPS_MACH_4120:
8839       return mach_mips4120;
8840
8841     case elfcpp::E_MIPS_MACH_4650:
8842       return mach_mips4650;
8843
8844     case elfcpp::E_MIPS_MACH_5400:
8845       return mach_mips5400;
8846
8847     case elfcpp::E_MIPS_MACH_5500:
8848       return mach_mips5500;
8849
8850     case elfcpp::E_MIPS_MACH_5900:
8851       return mach_mips5900;
8852
8853     case elfcpp::E_MIPS_MACH_9000:
8854       return mach_mips9000;
8855
8856     case elfcpp::E_MIPS_MACH_SB1:
8857       return mach_mips_sb1;
8858
8859     case elfcpp::E_MIPS_MACH_LS2E:
8860       return mach_mips_loongson_2e;
8861
8862     case elfcpp::E_MIPS_MACH_LS2F:
8863       return mach_mips_loongson_2f;
8864
8865     case elfcpp::E_MIPS_MACH_GS464:
8866       return mach_mips_gs464;
8867
8868     case elfcpp::E_MIPS_MACH_GS464E:
8869       return mach_mips_gs464e;
8870
8871     case elfcpp::E_MIPS_MACH_GS264E:
8872       return mach_mips_gs264e;
8873
8874     case elfcpp::E_MIPS_MACH_OCTEON3:
8875       return mach_mips_octeon3;
8876
8877     case elfcpp::E_MIPS_MACH_OCTEON2:
8878       return mach_mips_octeon2;
8879
8880     case elfcpp::E_MIPS_MACH_OCTEON:
8881       return mach_mips_octeon;
8882
8883     case elfcpp::E_MIPS_MACH_XLR:
8884       return mach_mips_xlr;
8885
8886     default:
8887       switch (flags & elfcpp::EF_MIPS_ARCH)
8888         {
8889         default:
8890         case elfcpp::E_MIPS_ARCH_1:
8891           return mach_mips3000;
8892
8893         case elfcpp::E_MIPS_ARCH_2:
8894           return mach_mips6000;
8895
8896         case elfcpp::E_MIPS_ARCH_3:
8897           return mach_mips4000;
8898
8899         case elfcpp::E_MIPS_ARCH_4:
8900           return mach_mips8000;
8901
8902         case elfcpp::E_MIPS_ARCH_5:
8903           return mach_mips5;
8904
8905         case elfcpp::E_MIPS_ARCH_32:
8906           return mach_mipsisa32;
8907
8908         case elfcpp::E_MIPS_ARCH_64:
8909           return mach_mipsisa64;
8910
8911         case elfcpp::E_MIPS_ARCH_32R2:
8912           return mach_mipsisa32r2;
8913
8914         case elfcpp::E_MIPS_ARCH_32R6:
8915           return mach_mipsisa32r6;
8916
8917         case elfcpp::E_MIPS_ARCH_64R2:
8918           return mach_mipsisa64r2;
8919
8920         case elfcpp::E_MIPS_ARCH_64R6:
8921           return mach_mipsisa64r6;
8922         }
8923     }
8924
8925   return 0;
8926 }
8927
8928 // Return the MACH for each .MIPS.abiflags ISA Extension.
8929
8930 template<int size, bool big_endian>
8931 unsigned int
8932 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8933 {
8934   switch (isa_ext)
8935     {
8936     case elfcpp::AFL_EXT_3900:
8937       return mach_mips3900;
8938
8939     case elfcpp::AFL_EXT_4010:
8940       return mach_mips4010;
8941
8942     case elfcpp::AFL_EXT_4100:
8943       return mach_mips4100;
8944
8945     case elfcpp::AFL_EXT_4111:
8946       return mach_mips4111;
8947
8948     case elfcpp::AFL_EXT_4120:
8949       return mach_mips4120;
8950
8951     case elfcpp::AFL_EXT_4650:
8952       return mach_mips4650;
8953
8954     case elfcpp::AFL_EXT_5400:
8955       return mach_mips5400;
8956
8957     case elfcpp::AFL_EXT_5500:
8958       return mach_mips5500;
8959
8960     case elfcpp::AFL_EXT_5900:
8961       return mach_mips5900;
8962
8963     case elfcpp::AFL_EXT_10000:
8964       return mach_mips10000;
8965
8966     case elfcpp::AFL_EXT_LOONGSON_2E:
8967       return mach_mips_loongson_2e;
8968
8969     case elfcpp::AFL_EXT_LOONGSON_2F:
8970       return mach_mips_loongson_2f;
8971
8972     case elfcpp::AFL_EXT_SB1:
8973       return mach_mips_sb1;
8974
8975     case elfcpp::AFL_EXT_OCTEON:
8976       return mach_mips_octeon;
8977
8978     case elfcpp::AFL_EXT_OCTEONP:
8979       return mach_mips_octeonp;
8980
8981     case elfcpp::AFL_EXT_OCTEON2:
8982       return mach_mips_octeon2;
8983
8984     case elfcpp::AFL_EXT_XLR:
8985       return mach_mips_xlr;
8986
8987     default:
8988       return mach_mips3000;
8989     }
8990 }
8991
8992 // Return the .MIPS.abiflags value representing each ISA Extension.
8993
8994 template<int size, bool big_endian>
8995 unsigned int
8996 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8997 {
8998   switch (mips_mach)
8999     {
9000     case mach_mips3900:
9001       return elfcpp::AFL_EXT_3900;
9002
9003     case mach_mips4010:
9004       return elfcpp::AFL_EXT_4010;
9005
9006     case mach_mips4100:
9007       return elfcpp::AFL_EXT_4100;
9008
9009     case mach_mips4111:
9010       return elfcpp::AFL_EXT_4111;
9011
9012     case mach_mips4120:
9013       return elfcpp::AFL_EXT_4120;
9014
9015     case mach_mips4650:
9016       return elfcpp::AFL_EXT_4650;
9017
9018     case mach_mips5400:
9019       return elfcpp::AFL_EXT_5400;
9020
9021     case mach_mips5500:
9022       return elfcpp::AFL_EXT_5500;
9023
9024     case mach_mips5900:
9025       return elfcpp::AFL_EXT_5900;
9026
9027     case mach_mips10000:
9028       return elfcpp::AFL_EXT_10000;
9029
9030     case mach_mips_loongson_2e:
9031       return elfcpp::AFL_EXT_LOONGSON_2E;
9032
9033     case mach_mips_loongson_2f:
9034       return elfcpp::AFL_EXT_LOONGSON_2F;
9035
9036     case mach_mips_sb1:
9037       return elfcpp::AFL_EXT_SB1;
9038
9039     case mach_mips_octeon:
9040       return elfcpp::AFL_EXT_OCTEON;
9041
9042     case mach_mips_octeonp:
9043       return elfcpp::AFL_EXT_OCTEONP;
9044
9045     case mach_mips_octeon3:
9046       return elfcpp::AFL_EXT_OCTEON3;
9047
9048     case mach_mips_octeon2:
9049       return elfcpp::AFL_EXT_OCTEON2;
9050
9051     case mach_mips_xlr:
9052       return elfcpp::AFL_EXT_XLR;
9053
9054     default:
9055       return 0;
9056     }
9057 }
9058
9059 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9060
9061 template<int size, bool big_endian>
9062 void
9063 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9064     elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9065 {
9066   int new_isa = 0;
9067   switch (e_flags & elfcpp::EF_MIPS_ARCH)
9068     {
9069     case elfcpp::E_MIPS_ARCH_1:
9070       new_isa = this->level_rev(1, 0);
9071       break;
9072     case elfcpp::E_MIPS_ARCH_2:
9073       new_isa = this->level_rev(2, 0);
9074       break;
9075     case elfcpp::E_MIPS_ARCH_3:
9076       new_isa = this->level_rev(3, 0);
9077       break;
9078     case elfcpp::E_MIPS_ARCH_4:
9079       new_isa = this->level_rev(4, 0);
9080       break;
9081     case elfcpp::E_MIPS_ARCH_5:
9082       new_isa = this->level_rev(5, 0);
9083       break;
9084     case elfcpp::E_MIPS_ARCH_32:
9085       new_isa = this->level_rev(32, 1);
9086       break;
9087     case elfcpp::E_MIPS_ARCH_32R2:
9088       new_isa = this->level_rev(32, 2);
9089       break;
9090     case elfcpp::E_MIPS_ARCH_32R6:
9091       new_isa = this->level_rev(32, 6);
9092       break;
9093     case elfcpp::E_MIPS_ARCH_64:
9094       new_isa = this->level_rev(64, 1);
9095       break;
9096     case elfcpp::E_MIPS_ARCH_64R2:
9097       new_isa = this->level_rev(64, 2);
9098       break;
9099     case elfcpp::E_MIPS_ARCH_64R6:
9100       new_isa = this->level_rev(64, 6);
9101       break;
9102     default:
9103       gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9104                  this->elf_mips_mach_name(e_flags));
9105     }
9106
9107   if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9108     {
9109       // Decode a single value into level and revision.
9110       abiflags->isa_level = new_isa >> 3;
9111       abiflags->isa_rev = new_isa & 0x7;
9112     }
9113
9114   // Update the isa_ext if needed.
9115   if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9116       this->elf_mips_mach(e_flags)))
9117     abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9118 }
9119
9120 // Infer the content of the ABI flags based on the elf header.
9121
9122 template<int size, bool big_endian>
9123 void
9124 Target_mips<size, big_endian>::infer_abiflags(
9125     Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9126 {
9127   const Attributes_section_data* pasd = relobj->attributes_section_data();
9128   int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9129   elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9130
9131   this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9132   if (pasd != NULL)
9133     {
9134       // Read fp_abi from the .gnu.attribute section.
9135       const Object_attribute* attr =
9136         pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9137       attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9138     }
9139
9140   abiflags->fp_abi = attr_fp_abi;
9141   abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9142   abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9143   abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9144                                                        : elfcpp::AFL_REG_64;
9145
9146   if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9147       || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9148       || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9149       && abiflags->gpr_size == elfcpp::AFL_REG_32))
9150     abiflags->cpr1_size = elfcpp::AFL_REG_32;
9151   else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9152            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9153            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9154     abiflags->cpr1_size = elfcpp::AFL_REG_64;
9155
9156   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9157     abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9158   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9159     abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9160   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9161     abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9162
9163   if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9164       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9165       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9166       && abiflags->isa_level >= 32
9167       && abiflags->ases != elfcpp::AFL_ASE_LOONGSON_EXT)
9168     abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9169 }
9170
9171 // Create abiflags from elf header or from .MIPS.abiflags section.
9172
9173 template<int size, bool big_endian>
9174 void
9175 Target_mips<size, big_endian>::create_abiflags(
9176     Mips_relobj<size, big_endian>* relobj,
9177     Mips_abiflags<big_endian>* abiflags)
9178 {
9179   Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9180   Mips_abiflags<big_endian> header_abiflags;
9181
9182   this->infer_abiflags(relobj, &header_abiflags);
9183
9184   if (sec_abiflags == NULL)
9185     {
9186       // If there is no input .MIPS.abiflags section, use abiflags created
9187       // from elf header.
9188       *abiflags = header_abiflags;
9189       return;
9190     }
9191
9192   this->has_abiflags_section_ = true;
9193
9194   // It is not possible to infer the correct ISA revision for R3 or R5
9195   // so drop down to R2 for the checks.
9196   unsigned char isa_rev = sec_abiflags->isa_rev;
9197   if (isa_rev == 3 || isa_rev == 5)
9198     isa_rev = 2;
9199
9200   // Check compatibility between abiflags created from elf header
9201   // and abiflags from .MIPS.abiflags section in this object file.
9202   if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9203       < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9204     gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9205                  relobj->name().c_str());
9206   if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9207       && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9208     gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9209                    ".MIPS.abiflags"), relobj->name().c_str());
9210   if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9211     gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9212                  relobj->name().c_str());
9213   // The isa_ext is allowed to be an extension of what can be inferred
9214   // from e_flags.
9215   if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9216                                this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9217     gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9218                    ".MIPS.abiflags"), relobj->name().c_str());
9219   if (sec_abiflags->flags2 != 0)
9220     gold_warning(_("%s: Unexpected flag in the flags2 field of "
9221                    ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9222                                              sec_abiflags->flags2);
9223   // Use abiflags from .MIPS.abiflags section.
9224   *abiflags = *sec_abiflags;
9225 }
9226
9227 // Return the meaning of fp_abi, or "unknown" if not known.
9228
9229 template<int size, bool big_endian>
9230 const char*
9231 Target_mips<size, big_endian>::fp_abi_string(int fp)
9232 {
9233   switch (fp)
9234     {
9235     case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9236       return "-mdouble-float";
9237     case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9238       return "-msingle-float";
9239     case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9240       return "-msoft-float";
9241     case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9242       return _("-mips32r2 -mfp64 (12 callee-saved)");
9243     case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9244       return "-mfpxx";
9245     case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9246       return "-mgp32 -mfp64";
9247     case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9248       return "-mgp32 -mfp64 -mno-odd-spreg";
9249     default:
9250       return "unknown";
9251     }
9252 }
9253
9254 // Select fp_abi.
9255
9256 template<int size, bool big_endian>
9257 int
9258 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9259                                              int out_fp)
9260 {
9261   if (in_fp == out_fp)
9262     return out_fp;
9263
9264   if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9265     return in_fp;
9266   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9267            && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9268                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9269                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9270     return in_fp;
9271   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9272            && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9273                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9274                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9275     return out_fp; // Keep the current setting.
9276   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9277            && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9278     return in_fp;
9279   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9280            && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9281     return out_fp; // Keep the current setting.
9282   else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9283     gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9284                  fp_abi_string(in_fp), fp_abi_string(out_fp));
9285   return out_fp;
9286 }
9287
9288 // Merge attributes from input object.
9289
9290 template<int size, bool big_endian>
9291 void
9292 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9293     const Attributes_section_data* pasd)
9294 {
9295   // Return if there is no attributes section data.
9296   if (pasd == NULL)
9297     return;
9298
9299   // If output has no object attributes, just copy.
9300   if (this->attributes_section_data_ == NULL)
9301     {
9302       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9303       return;
9304     }
9305
9306   Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9307       Object_attribute::OBJ_ATTR_GNU);
9308
9309   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9310   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9311
9312   // Merge Tag_compatibility attributes and any common GNU ones.
9313   this->attributes_section_data_->merge(name.c_str(), pasd);
9314 }
9315
9316 // Merge abiflags from input object.
9317
9318 template<int size, bool big_endian>
9319 void
9320 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9321     Mips_abiflags<big_endian>* in_abiflags)
9322 {
9323   // If output has no abiflags, just copy.
9324   if (this->abiflags_ == NULL)
9325   {
9326     this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9327     return;
9328   }
9329
9330   this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9331                                                 this->abiflags_->fp_abi);
9332
9333   // Merge abiflags.
9334   this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9335                                         in_abiflags->isa_level);
9336   this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9337                                       in_abiflags->isa_rev);
9338   this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9339                                        in_abiflags->gpr_size);
9340   this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9341                                         in_abiflags->cpr1_size);
9342   this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9343                                         in_abiflags->cpr2_size);
9344   this->abiflags_->ases |= in_abiflags->ases;
9345   this->abiflags_->flags1 |= in_abiflags->flags1;
9346 }
9347
9348 // Check whether machine EXTENSION is an extension of machine BASE.
9349 template<int size, bool big_endian>
9350 bool
9351 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9352                                                  unsigned int extension)
9353 {
9354   if (extension == base)
9355     return true;
9356
9357   if ((base == mach_mipsisa32)
9358       && this->mips_mach_extends(mach_mipsisa64, extension))
9359     return true;
9360
9361   if ((base == mach_mipsisa32r2)
9362       && this->mips_mach_extends(mach_mipsisa64r2, extension))
9363     return true;
9364
9365   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9366     if (extension == this->mips_mach_extensions_[i].first)
9367       {
9368         extension = this->mips_mach_extensions_[i].second;
9369         if (extension == base)
9370           return true;
9371       }
9372
9373   return false;
9374 }
9375
9376 // Merge file header flags from input object.
9377
9378 template<int size, bool big_endian>
9379 void
9380 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9381                                                  elfcpp::Elf_Word in_flags)
9382 {
9383   // If flags are not set yet, just copy them.
9384   if (!this->are_processor_specific_flags_set())
9385     {
9386       this->set_processor_specific_flags(in_flags);
9387       this->mach_ = this->elf_mips_mach(in_flags);
9388       return;
9389     }
9390
9391   elfcpp::Elf_Word new_flags = in_flags;
9392   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9393   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9394   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9395
9396   // Check flag compatibility.
9397   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9398   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9399
9400   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
9401   // doesn't seem to matter.
9402   new_flags &= ~elfcpp::EF_MIPS_XGOT;
9403   old_flags &= ~elfcpp::EF_MIPS_XGOT;
9404
9405   // MIPSpro generates ucode info in n64 objects.  Again, we should
9406   // just be able to ignore this.
9407   new_flags &= ~elfcpp::EF_MIPS_UCODE;
9408   old_flags &= ~elfcpp::EF_MIPS_UCODE;
9409
9410   if (new_flags == old_flags)
9411     {
9412       this->set_processor_specific_flags(merged_flags);
9413       return;
9414     }
9415
9416   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9417       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9418     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9419                  name.c_str());
9420
9421   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9422     merged_flags |= elfcpp::EF_MIPS_CPIC;
9423   if (!(new_flags & elfcpp::EF_MIPS_PIC))
9424     merged_flags &= ~elfcpp::EF_MIPS_PIC;
9425
9426   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9427   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9428
9429   // Compare the ISAs.
9430   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9431     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9432   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9433     {
9434       // Output ISA isn't the same as, or an extension of, input ISA.
9435       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9436         {
9437           // Copy the architecture info from input object to output.  Also copy
9438           // the 32-bit flag (if set) so that we continue to recognise
9439           // output as a 32-bit binary.
9440           this->mach_ = this->elf_mips_mach(in_flags);
9441           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9442           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9443                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9444
9445           // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9446           this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9447
9448           // Copy across the ABI flags if output doesn't use them
9449           // and if that was what caused us to treat input object as 32-bit.
9450           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9451               && this->mips_32bit_flags(new_flags)
9452               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9453             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9454         }
9455       else
9456         // The ISAs aren't compatible.
9457         gold_error(_("%s: linking %s module with previous %s modules"),
9458                    name.c_str(), this->elf_mips_mach_name(in_flags),
9459                    this->elf_mips_mach_name(merged_flags));
9460     }
9461
9462   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9463                 | elfcpp::EF_MIPS_32BITMODE));
9464   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9465                 | elfcpp::EF_MIPS_32BITMODE));
9466
9467   // Compare ABIs.
9468   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9469     {
9470       // Only error if both are set (to different values).
9471       if ((new_flags & elfcpp::EF_MIPS_ABI)
9472            && (old_flags & elfcpp::EF_MIPS_ABI))
9473         gold_error(_("%s: ABI mismatch: linking %s module with "
9474                      "previous %s modules"), name.c_str(),
9475                    this->elf_mips_abi_name(in_flags),
9476                    this->elf_mips_abi_name(merged_flags));
9477
9478       new_flags &= ~elfcpp::EF_MIPS_ABI;
9479       old_flags &= ~elfcpp::EF_MIPS_ABI;
9480     }
9481
9482   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
9483   // and allow arbitrary mixing of the remaining ASEs (retain the union).
9484   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9485       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9486     {
9487       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9488       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9489       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9490       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9491       int micro_mis = old_m16 && new_micro;
9492       int m16_mis = old_micro && new_m16;
9493
9494       if (m16_mis || micro_mis)
9495         gold_error(_("%s: ASE mismatch: linking %s module with "
9496                      "previous %s modules"), name.c_str(),
9497                    m16_mis ? "MIPS16" : "microMIPS",
9498                    m16_mis ? "microMIPS" : "MIPS16");
9499
9500       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9501
9502       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9503       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9504     }
9505
9506   // Compare NaN encodings.
9507   if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9508     {
9509       gold_error(_("%s: linking %s module with previous %s modules"),
9510                  name.c_str(),
9511                  (new_flags & elfcpp::EF_MIPS_NAN2008
9512                   ? "-mnan=2008" : "-mnan=legacy"),
9513                  (old_flags & elfcpp::EF_MIPS_NAN2008
9514                   ? "-mnan=2008" : "-mnan=legacy"));
9515
9516       new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9517       old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9518     }
9519
9520   // Compare FP64 state.
9521   if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9522     {
9523       gold_error(_("%s: linking %s module with previous %s modules"),
9524                  name.c_str(),
9525                  (new_flags & elfcpp::EF_MIPS_FP64
9526                   ? "-mfp64" : "-mfp32"),
9527                  (old_flags & elfcpp::EF_MIPS_FP64
9528                   ? "-mfp64" : "-mfp32"));
9529
9530       new_flags &= ~elfcpp::EF_MIPS_FP64;
9531       old_flags &= ~elfcpp::EF_MIPS_FP64;
9532     }
9533
9534   // Warn about any other mismatches.
9535   if (new_flags != old_flags)
9536     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9537                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9538
9539   this->set_processor_specific_flags(merged_flags);
9540 }
9541
9542 // Adjust ELF file header.
9543
9544 template<int size, bool big_endian>
9545 void
9546 Target_mips<size, big_endian>::do_adjust_elf_header(
9547     unsigned char* view,
9548     int len)
9549 {
9550   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9551
9552   elfcpp::Ehdr<size, big_endian> ehdr(view);
9553   unsigned char e_ident[elfcpp::EI_NIDENT];
9554   elfcpp::Elf_Word flags = this->processor_specific_flags();
9555   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9556
9557   unsigned char ei_abiversion = 0;
9558   elfcpp::Elf_Half type = ehdr.get_e_type();
9559   if (type == elfcpp::ET_EXEC
9560       && parameters->options().copyreloc()
9561       && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9562           == elfcpp::EF_MIPS_CPIC)
9563     ei_abiversion = 1;
9564
9565   if (this->abiflags_ != NULL
9566       && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9567           || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9568     ei_abiversion = 3;
9569
9570   e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9571   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9572   oehdr.put_e_ident(e_ident);
9573
9574   if (this->entry_symbol_is_compressed_)
9575     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9576 }
9577
9578 // do_make_elf_object to override the same function in the base class.
9579 // We need to use a target-specific sub-class of
9580 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9581 // Hence we need to have our own ELF object creation.
9582
9583 template<int size, bool big_endian>
9584 Object*
9585 Target_mips<size, big_endian>::do_make_elf_object(
9586     const std::string& name,
9587     Input_file* input_file,
9588     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9589 {
9590   int et = ehdr.get_e_type();
9591   // ET_EXEC files are valid input for --just-symbols/-R,
9592   // and we treat them as relocatable objects.
9593   if (et == elfcpp::ET_REL
9594       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9595     {
9596       Mips_relobj<size, big_endian>* obj =
9597         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9598       obj->setup();
9599       return obj;
9600     }
9601   else if (et == elfcpp::ET_DYN)
9602     {
9603       // TODO(sasa): Should we create Mips_dynobj?
9604       return Target::do_make_elf_object(name, input_file, offset, ehdr);
9605     }
9606   else
9607     {
9608       gold_error(_("%s: unsupported ELF file type %d"),
9609                  name.c_str(), et);
9610       return NULL;
9611     }
9612 }
9613
9614 // Finalize the sections.
9615
9616 template <int size, bool big_endian>
9617 void
9618 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9619                                         const Input_objects* input_objects,
9620                                         Symbol_table* symtab)
9621 {
9622   const bool relocatable = parameters->options().relocatable();
9623
9624   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9625   // DT_FINI have correct values.
9626   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9627       symtab->lookup(parameters->options().init()));
9628   if (init != NULL && (init->is_mips16() || init->is_micromips()))
9629     init->set_value(init->value() | 1);
9630   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9631       symtab->lookup(parameters->options().fini()));
9632   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9633     fini->set_value(fini->value() | 1);
9634
9635   // Check whether the entry symbol is mips16 or micromips.  This is needed to
9636   // adjust entry address in ELF header.
9637   Mips_symbol<size>* entry =
9638     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9639   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9640                                        || entry->is_micromips()));
9641
9642   if (!parameters->doing_static_link()
9643       && (strcmp(parameters->options().hash_style(), "gnu") == 0
9644           || strcmp(parameters->options().hash_style(), "both") == 0))
9645     {
9646       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9647       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
9648       // MIPS ABI requires a mapping between the GOT and the symbol table.
9649       gold_error(".gnu.hash is incompatible with the MIPS ABI");
9650     }
9651
9652   // Check whether the final section that was scanned has HI16 or GOT16
9653   // relocations without the corresponding LO16 part.
9654   if (this->got16_addends_.size() > 0)
9655       gold_error("Can't find matching LO16 reloc");
9656
9657   Valtype gprmask = 0;
9658   Valtype cprmask1 = 0;
9659   Valtype cprmask2 = 0;
9660   Valtype cprmask3 = 0;
9661   Valtype cprmask4 = 0;
9662   bool has_reginfo_section = false;
9663
9664   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9665        p != input_objects->relobj_end();
9666        ++p)
9667     {
9668       Mips_relobj<size, big_endian>* relobj =
9669         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9670
9671       // Check for any mips16 stub sections that we can discard.
9672       if (!relocatable)
9673         relobj->discard_mips16_stub_sections(symtab);
9674
9675       if (!relobj->merge_processor_specific_data())
9676         continue;
9677
9678       // Merge .reginfo contents of input objects.
9679       if (relobj->has_reginfo_section())
9680         {
9681           has_reginfo_section = true;
9682           gprmask |= relobj->gprmask();
9683           cprmask1 |= relobj->cprmask1();
9684           cprmask2 |= relobj->cprmask2();
9685           cprmask3 |= relobj->cprmask3();
9686           cprmask4 |= relobj->cprmask4();
9687         }
9688
9689       // Merge processor specific flags.
9690       Mips_abiflags<big_endian> in_abiflags;
9691
9692       this->create_abiflags(relobj, &in_abiflags);
9693       this->merge_obj_e_flags(relobj->name(),
9694                               relobj->processor_specific_flags());
9695       this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9696       this->merge_obj_attributes(relobj->name(),
9697                                  relobj->attributes_section_data());
9698     }
9699
9700   // Create a .gnu.attributes section if we have merged any attributes
9701   // from inputs.
9702   if (this->attributes_section_data_ != NULL)
9703     {
9704       Output_attributes_section_data* attributes_section =
9705         new Output_attributes_section_data(*this->attributes_section_data_);
9706       layout->add_output_section_data(".gnu.attributes",
9707                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
9708                                       attributes_section, ORDER_INVALID, false);
9709     }
9710
9711   // Create .MIPS.abiflags output section if there is an input section.
9712   if (this->has_abiflags_section_)
9713     {
9714       Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9715         new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9716
9717       Output_section* os =
9718         layout->add_output_section_data(".MIPS.abiflags",
9719                                         elfcpp::SHT_MIPS_ABIFLAGS,
9720                                         elfcpp::SHF_ALLOC,
9721                                         abiflags_section, ORDER_INVALID, false);
9722
9723       if (!relocatable && os != NULL)
9724         {
9725           Output_segment* abiflags_segment =
9726             layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9727           abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9728         }
9729     }
9730
9731   if (has_reginfo_section && !parameters->options().gc_sections())
9732     {
9733       // Create .reginfo output section.
9734       Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9735         new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9736                                                           cprmask1, cprmask2,
9737                                                           cprmask3, cprmask4);
9738
9739       Output_section* os =
9740         layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9741                                         elfcpp::SHF_ALLOC, reginfo_section,
9742                                         ORDER_INVALID, false);
9743
9744       if (!relocatable && os != NULL)
9745         {
9746           Output_segment* reginfo_segment =
9747             layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9748                                         elfcpp::PF_R);
9749           reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9750         }
9751     }
9752
9753   if (this->plt_ != NULL)
9754     {
9755       // Set final PLT offsets for symbols.
9756       this->plt_section()->set_plt_offsets();
9757
9758       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9759       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9760       // there are no standard PLT entries present.
9761       unsigned char nonvis = 0;
9762       if (this->is_output_micromips()
9763           && !this->plt_section()->has_standard_entries())
9764         nonvis = elfcpp::STO_MICROMIPS >> 2;
9765       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9766                                     Symbol_table::PREDEFINED,
9767                                     this->plt_,
9768                                     0, 0, elfcpp::STT_FUNC,
9769                                     elfcpp::STB_LOCAL,
9770                                     elfcpp::STV_DEFAULT, nonvis,
9771                                     false, false);
9772     }
9773
9774   if (this->mips_stubs_ != NULL)
9775     {
9776       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9777       unsigned char nonvis = 0;
9778       if (this->is_output_micromips())
9779         nonvis = elfcpp::STO_MICROMIPS >> 2;
9780       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9781                                     Symbol_table::PREDEFINED,
9782                                     this->mips_stubs_,
9783                                     0, 0, elfcpp::STT_FUNC,
9784                                     elfcpp::STB_LOCAL,
9785                                     elfcpp::STV_DEFAULT, nonvis,
9786                                     false, false);
9787     }
9788
9789   if (!relocatable && !parameters->doing_static_link())
9790     // In case there is no .got section, create one.
9791     this->got_section(symtab, layout);
9792
9793   // Emit any relocs we saved in an attempt to avoid generating COPY
9794   // relocs.
9795   if (this->copy_relocs_.any_saved_relocs())
9796     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9797                                  this);
9798
9799   // Set _gp value.
9800   this->set_gp(layout, symtab);
9801
9802   // Emit dynamic relocs.
9803   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9804        p != this->dyn_relocs_.end();
9805        ++p)
9806     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9807
9808   if (this->has_got_section())
9809     this->got_section()->lay_out_got(layout, symtab, input_objects);
9810
9811   if (this->mips_stubs_ != NULL)
9812     this->mips_stubs_->set_needs_dynsym_value();
9813
9814   // Check for functions that might need $25 to be valid on entry.
9815   // TODO(sasa): Can we do this without iterating over all symbols?
9816   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9817   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9818                                                                symtab));
9819
9820   // Add NULL segment.
9821   if (!relocatable)
9822     layout->make_output_segment(elfcpp::PT_NULL, 0);
9823
9824   // Fill in some more dynamic tags.
9825   // TODO(sasa): Add more dynamic tags.
9826   const Reloc_section* rel_plt = (this->plt_ == NULL
9827                                   ? NULL : this->plt_->rel_plt());
9828   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9829                                   this->rel_dyn_, true, false);
9830
9831   Output_data_dynamic* const odyn = layout->dynamic_data();
9832   if (odyn != NULL
9833       && !relocatable
9834       && !parameters->doing_static_link())
9835   {
9836     unsigned int d_val;
9837     // This element holds a 32-bit version id for the Runtime
9838     // Linker Interface.  This will start at integer value 1.
9839     d_val = 0x01;
9840     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9841
9842     // Dynamic flags
9843     d_val = elfcpp::RHF_NOTPOT;
9844     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9845
9846     // Save layout for using when emitting custom dynamic tags.
9847     this->layout_ = layout;
9848
9849     // This member holds the base address of the segment.
9850     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9851
9852     // This member holds the number of entries in the .dynsym section.
9853     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9854
9855     // This member holds the index of the first dynamic symbol
9856     // table entry that corresponds to an entry in the global offset table.
9857     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9858
9859     // This member holds the number of local GOT entries.
9860     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9861                        this->got_->get_local_gotno());
9862
9863     if (this->plt_ != NULL)
9864       // DT_MIPS_PLTGOT dynamic tag
9865       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9866
9867     if (!parameters->options().shared())
9868       {
9869         this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9870
9871         layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9872                                         (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9873                                         this->rld_map_, ORDER_INVALID, false);
9874
9875         // __RLD_MAP will be filled in by the runtime loader to contain
9876         // a pointer to the _r_debug structure.
9877         Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9878                                             Symbol_table::PREDEFINED,
9879                                             this->rld_map_,
9880                                             0, 0, elfcpp::STT_OBJECT,
9881                                             elfcpp::STB_GLOBAL,
9882                                             elfcpp::STV_DEFAULT, 0,
9883                                             false, false);
9884
9885         if (!rld_map->is_forced_local())
9886           rld_map->set_needs_dynsym_entry();
9887
9888         if (!parameters->options().pie())
9889           // This member holds the absolute address of the debug pointer.
9890           odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9891         else
9892           // This member holds the offset to the debug pointer,
9893           // relative to the address of the tag.
9894           odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9895       }
9896   }
9897 }
9898
9899 // Get the custom dynamic tag value.
9900 template<int size, bool big_endian>
9901 unsigned int
9902 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9903 {
9904   switch (tag)
9905     {
9906     case elfcpp::DT_MIPS_BASE_ADDRESS:
9907       {
9908         // The base address of the segment.
9909         // At this point, the segment list has been sorted into final order,
9910         // so just return vaddr of the first readable PT_LOAD segment.
9911         Output_segment* seg =
9912           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9913         gold_assert(seg != NULL);
9914         return seg->vaddr();
9915       }
9916
9917     case elfcpp::DT_MIPS_SYMTABNO:
9918       // The number of entries in the .dynsym section.
9919       return this->get_dt_mips_symtabno();
9920
9921     case elfcpp::DT_MIPS_GOTSYM:
9922       {
9923         // The index of the first dynamic symbol table entry that corresponds
9924         // to an entry in the GOT.
9925         if (this->got_->first_global_got_dynsym_index() != -1U)
9926           return this->got_->first_global_got_dynsym_index();
9927         else
9928           // In case if we don't have global GOT symbols we default to setting
9929           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9930           return this->get_dt_mips_symtabno();
9931       }
9932
9933     case elfcpp::DT_MIPS_RLD_MAP_REL:
9934       {
9935         // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9936         // relative to the address of the tag.
9937         Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9938         unsigned int entry_offset =
9939           odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9940         gold_assert(entry_offset != -1U);
9941         return this->rld_map_->address() - (odyn->address() + entry_offset);
9942       }
9943     default:
9944       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9945     }
9946
9947   return (unsigned int)-1;
9948 }
9949
9950 // Relocate section data.
9951
9952 template<int size, bool big_endian>
9953 void
9954 Target_mips<size, big_endian>::relocate_section(
9955                         const Relocate_info<size, big_endian>* relinfo,
9956                         unsigned int sh_type,
9957                         const unsigned char* prelocs,
9958                         size_t reloc_count,
9959                         Output_section* output_section,
9960                         bool needs_special_offset_handling,
9961                         unsigned char* view,
9962                         Mips_address address,
9963                         section_size_type view_size,
9964                         const Reloc_symbol_changes* reloc_symbol_changes)
9965 {
9966   typedef Target_mips<size, big_endian> Mips;
9967   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9968
9969   if (sh_type == elfcpp::SHT_REL)
9970     {
9971       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9972           Classify_reloc;
9973
9974       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9975                              gold::Default_comdat_behavior, Classify_reloc>(
9976         relinfo,
9977         this,
9978         prelocs,
9979         reloc_count,
9980         output_section,
9981         needs_special_offset_handling,
9982         view,
9983         address,
9984         view_size,
9985         reloc_symbol_changes);
9986     }
9987   else if (sh_type == elfcpp::SHT_RELA)
9988     {
9989       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9990           Classify_reloc;
9991
9992       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9993                              gold::Default_comdat_behavior, Classify_reloc>(
9994         relinfo,
9995         this,
9996         prelocs,
9997         reloc_count,
9998         output_section,
9999         needs_special_offset_handling,
10000         view,
10001         address,
10002         view_size,
10003         reloc_symbol_changes);
10004     }
10005 }
10006
10007 // Return the size of a relocation while scanning during a relocatable
10008 // link.
10009
10010 unsigned int
10011 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10012 {
10013   switch (r_type)
10014     {
10015     case elfcpp::R_MIPS_NONE:
10016     case elfcpp::R_MIPS_TLS_DTPMOD64:
10017     case elfcpp::R_MIPS_TLS_DTPREL64:
10018     case elfcpp::R_MIPS_TLS_TPREL64:
10019       return 0;
10020
10021     case elfcpp::R_MIPS_32:
10022     case elfcpp::R_MIPS_TLS_DTPMOD32:
10023     case elfcpp::R_MIPS_TLS_DTPREL32:
10024     case elfcpp::R_MIPS_TLS_TPREL32:
10025     case elfcpp::R_MIPS_REL32:
10026     case elfcpp::R_MIPS_PC32:
10027     case elfcpp::R_MIPS_GPREL32:
10028     case elfcpp::R_MIPS_JALR:
10029     case elfcpp::R_MIPS_EH:
10030       return 4;
10031
10032     case elfcpp::R_MIPS_16:
10033     case elfcpp::R_MIPS_HI16:
10034     case elfcpp::R_MIPS_LO16:
10035     case elfcpp::R_MIPS_HIGHER:
10036     case elfcpp::R_MIPS_HIGHEST:
10037     case elfcpp::R_MIPS_GPREL16:
10038     case elfcpp::R_MIPS16_HI16:
10039     case elfcpp::R_MIPS16_LO16:
10040     case elfcpp::R_MIPS_PC16:
10041     case elfcpp::R_MIPS_PCHI16:
10042     case elfcpp::R_MIPS_PCLO16:
10043     case elfcpp::R_MIPS_GOT16:
10044     case elfcpp::R_MIPS16_GOT16:
10045     case elfcpp::R_MIPS_CALL16:
10046     case elfcpp::R_MIPS16_CALL16:
10047     case elfcpp::R_MIPS_GOT_HI16:
10048     case elfcpp::R_MIPS_CALL_HI16:
10049     case elfcpp::R_MIPS_GOT_LO16:
10050     case elfcpp::R_MIPS_CALL_LO16:
10051     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10052     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10053     case elfcpp::R_MIPS_TLS_TPREL_HI16:
10054     case elfcpp::R_MIPS_TLS_TPREL_LO16:
10055     case elfcpp::R_MIPS16_GPREL:
10056     case elfcpp::R_MIPS_GOT_DISP:
10057     case elfcpp::R_MIPS_LITERAL:
10058     case elfcpp::R_MIPS_GOT_PAGE:
10059     case elfcpp::R_MIPS_GOT_OFST:
10060     case elfcpp::R_MIPS_TLS_GD:
10061     case elfcpp::R_MIPS_TLS_LDM:
10062     case elfcpp::R_MIPS_TLS_GOTTPREL:
10063       return 2;
10064
10065     // These relocations are not byte sized
10066     case elfcpp::R_MIPS_26:
10067     case elfcpp::R_MIPS16_26:
10068     case elfcpp::R_MIPS_PC21_S2:
10069     case elfcpp::R_MIPS_PC26_S2:
10070     case elfcpp::R_MIPS_PC18_S3:
10071     case elfcpp::R_MIPS_PC19_S2:
10072       return 4;
10073
10074     case elfcpp::R_MIPS_COPY:
10075     case elfcpp::R_MIPS_JUMP_SLOT:
10076       object->error(_("unexpected reloc %u in object file"), r_type);
10077       return 0;
10078
10079     default:
10080       object->error(_("unsupported reloc %u in object file"), r_type);
10081       return 0;
10082   }
10083 }
10084
10085 // Scan the relocs during a relocatable link.
10086
10087 template<int size, bool big_endian>
10088 void
10089 Target_mips<size, big_endian>::scan_relocatable_relocs(
10090                         Symbol_table* symtab,
10091                         Layout* layout,
10092                         Sized_relobj_file<size, big_endian>* object,
10093                         unsigned int data_shndx,
10094                         unsigned int sh_type,
10095                         const unsigned char* prelocs,
10096                         size_t reloc_count,
10097                         Output_section* output_section,
10098                         bool needs_special_offset_handling,
10099                         size_t local_symbol_count,
10100                         const unsigned char* plocal_symbols,
10101                         Relocatable_relocs* rr)
10102 {
10103   if (sh_type == elfcpp::SHT_REL)
10104     {
10105       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10106           Classify_reloc;
10107       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10108           Scan_relocatable_relocs;
10109
10110       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10111         symtab,
10112         layout,
10113         object,
10114         data_shndx,
10115         prelocs,
10116         reloc_count,
10117         output_section,
10118         needs_special_offset_handling,
10119         local_symbol_count,
10120         plocal_symbols,
10121         rr);
10122     }
10123   else if (sh_type == elfcpp::SHT_RELA)
10124     {
10125       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10126           Classify_reloc;
10127       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10128           Scan_relocatable_relocs;
10129
10130       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10131         symtab,
10132         layout,
10133         object,
10134         data_shndx,
10135         prelocs,
10136         reloc_count,
10137         output_section,
10138         needs_special_offset_handling,
10139         local_symbol_count,
10140         plocal_symbols,
10141         rr);
10142     }
10143   else
10144     gold_unreachable();
10145 }
10146
10147 // Scan the relocs for --emit-relocs.
10148
10149 template<int size, bool big_endian>
10150 void
10151 Target_mips<size, big_endian>::emit_relocs_scan(
10152     Symbol_table* symtab,
10153     Layout* layout,
10154     Sized_relobj_file<size, big_endian>* object,
10155     unsigned int data_shndx,
10156     unsigned int sh_type,
10157     const unsigned char* prelocs,
10158     size_t reloc_count,
10159     Output_section* output_section,
10160     bool needs_special_offset_handling,
10161     size_t local_symbol_count,
10162     const unsigned char* plocal_syms,
10163     Relocatable_relocs* rr)
10164 {
10165   if (sh_type == elfcpp::SHT_REL)
10166     {
10167       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10168           Classify_reloc;
10169       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10170           Emit_relocs_strategy;
10171
10172       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10173         symtab,
10174         layout,
10175         object,
10176         data_shndx,
10177         prelocs,
10178         reloc_count,
10179         output_section,
10180         needs_special_offset_handling,
10181         local_symbol_count,
10182         plocal_syms,
10183         rr);
10184     }
10185   else if (sh_type == elfcpp::SHT_RELA)
10186     {
10187       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10188           Classify_reloc;
10189       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10190           Emit_relocs_strategy;
10191
10192       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10193         symtab,
10194         layout,
10195         object,
10196         data_shndx,
10197         prelocs,
10198         reloc_count,
10199         output_section,
10200         needs_special_offset_handling,
10201         local_symbol_count,
10202         plocal_syms,
10203         rr);
10204     }
10205   else
10206     gold_unreachable();
10207 }
10208
10209 // Emit relocations for a section.
10210
10211 template<int size, bool big_endian>
10212 void
10213 Target_mips<size, big_endian>::relocate_relocs(
10214                         const Relocate_info<size, big_endian>* relinfo,
10215                         unsigned int sh_type,
10216                         const unsigned char* prelocs,
10217                         size_t reloc_count,
10218                         Output_section* output_section,
10219                         typename elfcpp::Elf_types<size>::Elf_Off
10220                           offset_in_output_section,
10221                         unsigned char* view,
10222                         Mips_address view_address,
10223                         section_size_type view_size,
10224                         unsigned char* reloc_view,
10225                         section_size_type reloc_view_size)
10226 {
10227   if (sh_type == elfcpp::SHT_REL)
10228     {
10229       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10230           Classify_reloc;
10231
10232       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10233         relinfo,
10234         prelocs,
10235         reloc_count,
10236         output_section,
10237         offset_in_output_section,
10238         view,
10239         view_address,
10240         view_size,
10241         reloc_view,
10242         reloc_view_size);
10243     }
10244   else if (sh_type == elfcpp::SHT_RELA)
10245     {
10246       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10247           Classify_reloc;
10248
10249       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10250         relinfo,
10251         prelocs,
10252         reloc_count,
10253         output_section,
10254         offset_in_output_section,
10255         view,
10256         view_address,
10257         view_size,
10258         reloc_view,
10259         reloc_view_size);
10260     }
10261   else
10262     gold_unreachable();
10263 }
10264
10265 // Perform target-specific processing in a relocatable link.  This is
10266 // only used if we use the relocation strategy RELOC_SPECIAL.
10267
10268 template<int size, bool big_endian>
10269 void
10270 Target_mips<size, big_endian>::relocate_special_relocatable(
10271     const Relocate_info<size, big_endian>* relinfo,
10272     unsigned int sh_type,
10273     const unsigned char* preloc_in,
10274     size_t relnum,
10275     Output_section* output_section,
10276     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10277     unsigned char* view,
10278     Mips_address view_address,
10279     section_size_type,
10280     unsigned char* preloc_out)
10281 {
10282   // We can only handle REL type relocation sections.
10283   gold_assert(sh_type == elfcpp::SHT_REL);
10284
10285   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10286     Reltype;
10287   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10288     Reltype_write;
10289
10290   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10291
10292   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10293
10294   Mips_relobj<size, big_endian>* object =
10295     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10296   const unsigned int local_count = object->local_symbol_count();
10297
10298   Reltype reloc(preloc_in);
10299   Reltype_write reloc_write(preloc_out);
10300
10301   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10302   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10303   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10304
10305   // Get the new symbol index.
10306   // We only use RELOC_SPECIAL strategy in local relocations.
10307   gold_assert(r_sym < local_count);
10308
10309   // We are adjusting a section symbol.  We need to find
10310   // the symbol table index of the section symbol for
10311   // the output section corresponding to input section
10312   // in which this symbol is defined.
10313   bool is_ordinary;
10314   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10315   gold_assert(is_ordinary);
10316   Output_section* os = object->output_section(shndx);
10317   gold_assert(os != NULL);
10318   gold_assert(os->needs_symtab_index());
10319   unsigned int new_symndx = os->symtab_index();
10320
10321   // Get the new offset--the location in the output section where
10322   // this relocation should be applied.
10323
10324   Mips_address offset = reloc.get_r_offset();
10325   Mips_address new_offset;
10326   if (offset_in_output_section != invalid_address)
10327     new_offset = offset + offset_in_output_section;
10328   else
10329     {
10330       section_offset_type sot_offset =
10331         convert_types<section_offset_type, Mips_address>(offset);
10332       section_offset_type new_sot_offset =
10333         output_section->output_offset(object, relinfo->data_shndx,
10334                                       sot_offset);
10335       gold_assert(new_sot_offset != -1);
10336       new_offset = new_sot_offset;
10337     }
10338
10339   // In an object file, r_offset is an offset within the section.
10340   // In an executable or dynamic object, generated by
10341   // --emit-relocs, r_offset is an absolute address.
10342   if (!parameters->options().relocatable())
10343     {
10344       new_offset += view_address;
10345       if (offset_in_output_section != invalid_address)
10346         new_offset -= offset_in_output_section;
10347     }
10348
10349   reloc_write.put_r_offset(new_offset);
10350   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10351
10352   // Handle the reloc addend.
10353   // The relocation uses a section symbol in the input file.
10354   // We are adjusting it to use a section symbol in the output
10355   // file.  The input section symbol refers to some address in
10356   // the input section.  We need the relocation in the output
10357   // file to refer to that same address.  This adjustment to
10358   // the addend is the same calculation we use for a simple
10359   // absolute relocation for the input section symbol.
10360   Valtype calculated_value = 0;
10361   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10362
10363   unsigned char* paddend = view + offset;
10364   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10365   switch (r_type)
10366     {
10367     case elfcpp::R_MIPS_26:
10368       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10369           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10370           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10371           false, &calculated_value);
10372       break;
10373
10374     default:
10375       gold_unreachable();
10376     }
10377
10378   // Report any errors.
10379   switch (reloc_status)
10380     {
10381     case Reloc_funcs::STATUS_OKAY:
10382       break;
10383     case Reloc_funcs::STATUS_OVERFLOW:
10384       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10385                              _("relocation overflow: "
10386                                "%u against local symbol %u in %s"),
10387                              r_type, r_sym, object->name().c_str());
10388       break;
10389     case Reloc_funcs::STATUS_BAD_RELOC:
10390       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10391         _("unexpected opcode while processing relocation"));
10392       break;
10393     default:
10394       gold_unreachable();
10395     }
10396 }
10397
10398 // Optimize the TLS relocation type based on what we know about the
10399 // symbol.  IS_FINAL is true if the final address of this symbol is
10400 // known at link time.
10401
10402 template<int size, bool big_endian>
10403 tls::Tls_optimization
10404 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10405 {
10406   // FIXME: Currently we do not do any TLS optimization.
10407   return tls::TLSOPT_NONE;
10408 }
10409
10410 // Scan a relocation for a local symbol.
10411
10412 template<int size, bool big_endian>
10413 inline void
10414 Target_mips<size, big_endian>::Scan::local(
10415                         Symbol_table* symtab,
10416                         Layout* layout,
10417                         Target_mips<size, big_endian>* target,
10418                         Sized_relobj_file<size, big_endian>* object,
10419                         unsigned int data_shndx,
10420                         Output_section* output_section,
10421                         const Relatype* rela,
10422                         const Reltype* rel,
10423                         unsigned int rel_type,
10424                         unsigned int r_type,
10425                         const elfcpp::Sym<size, big_endian>& lsym,
10426                         bool is_discarded)
10427 {
10428   if (is_discarded)
10429     return;
10430
10431   Mips_address r_offset;
10432   unsigned int r_sym;
10433   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10434
10435   if (rel_type == elfcpp::SHT_RELA)
10436     {
10437       r_offset = rela->get_r_offset();
10438       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10439           get_r_sym(rela);
10440       r_addend = rela->get_r_addend();
10441     }
10442   else
10443     {
10444       r_offset = rel->get_r_offset();
10445       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10446           get_r_sym(rel);
10447       r_addend = 0;
10448     }
10449
10450   Mips_relobj<size, big_endian>* mips_obj =
10451     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10452
10453   if (mips_obj->is_mips16_stub_section(data_shndx))
10454     {
10455       mips_obj->get_mips16_stub_section(data_shndx)
10456               ->new_local_reloc_found(r_type, r_sym);
10457     }
10458
10459   if (r_type == elfcpp::R_MIPS_NONE)
10460     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10461     // mips16 stub.
10462     return;
10463
10464   if (!mips16_call_reloc(r_type)
10465       && !mips_obj->section_allows_mips16_refs(data_shndx))
10466     // This reloc would need to refer to a MIPS16 hard-float stub, if
10467     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10468     // looking for relocs that would need to refer to MIPS16 stubs.
10469     mips_obj->add_local_non_16bit_call(r_sym);
10470
10471   if (r_type == elfcpp::R_MIPS16_26
10472       && !mips_obj->section_allows_mips16_refs(data_shndx))
10473     mips_obj->add_local_16bit_call(r_sym);
10474
10475   switch (r_type)
10476     {
10477     case elfcpp::R_MIPS_GOT16:
10478     case elfcpp::R_MIPS_CALL16:
10479     case elfcpp::R_MIPS_CALL_HI16:
10480     case elfcpp::R_MIPS_CALL_LO16:
10481     case elfcpp::R_MIPS_GOT_HI16:
10482     case elfcpp::R_MIPS_GOT_LO16:
10483     case elfcpp::R_MIPS_GOT_PAGE:
10484     case elfcpp::R_MIPS_GOT_OFST:
10485     case elfcpp::R_MIPS_GOT_DISP:
10486     case elfcpp::R_MIPS_TLS_GOTTPREL:
10487     case elfcpp::R_MIPS_TLS_GD:
10488     case elfcpp::R_MIPS_TLS_LDM:
10489     case elfcpp::R_MIPS16_GOT16:
10490     case elfcpp::R_MIPS16_CALL16:
10491     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10492     case elfcpp::R_MIPS16_TLS_GD:
10493     case elfcpp::R_MIPS16_TLS_LDM:
10494     case elfcpp::R_MICROMIPS_GOT16:
10495     case elfcpp::R_MICROMIPS_CALL16:
10496     case elfcpp::R_MICROMIPS_CALL_HI16:
10497     case elfcpp::R_MICROMIPS_CALL_LO16:
10498     case elfcpp::R_MICROMIPS_GOT_HI16:
10499     case elfcpp::R_MICROMIPS_GOT_LO16:
10500     case elfcpp::R_MICROMIPS_GOT_PAGE:
10501     case elfcpp::R_MICROMIPS_GOT_OFST:
10502     case elfcpp::R_MICROMIPS_GOT_DISP:
10503     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10504     case elfcpp::R_MICROMIPS_TLS_GD:
10505     case elfcpp::R_MICROMIPS_TLS_LDM:
10506     case elfcpp::R_MIPS_EH:
10507       // We need a GOT section.
10508       target->got_section(symtab, layout);
10509       break;
10510
10511     default:
10512       break;
10513     }
10514
10515   if (call_lo16_reloc(r_type)
10516       || got_lo16_reloc(r_type)
10517       || got_disp_reloc(r_type)
10518       || eh_reloc(r_type))
10519     {
10520       // We may need a local GOT entry for this relocation.  We
10521       // don't count R_MIPS_GOT_PAGE because we can estimate the
10522       // maximum number of pages needed by looking at the size of
10523       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
10524       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
10525       // R_MIPS_CALL_HI16 because these are always followed by an
10526       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10527       Mips_output_data_got<size, big_endian>* got =
10528         target->got_section(symtab, layout);
10529       bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10530       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10531                                    is_section_symbol);
10532     }
10533
10534   switch (r_type)
10535     {
10536     case elfcpp::R_MIPS_CALL16:
10537     case elfcpp::R_MIPS16_CALL16:
10538     case elfcpp::R_MICROMIPS_CALL16:
10539       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10540                  (unsigned long)r_offset);
10541       return;
10542
10543     case elfcpp::R_MIPS_GOT_PAGE:
10544     case elfcpp::R_MICROMIPS_GOT_PAGE:
10545     case elfcpp::R_MIPS16_GOT16:
10546     case elfcpp::R_MIPS_GOT16:
10547     case elfcpp::R_MIPS_GOT_HI16:
10548     case elfcpp::R_MIPS_GOT_LO16:
10549     case elfcpp::R_MICROMIPS_GOT16:
10550     case elfcpp::R_MICROMIPS_GOT_HI16:
10551     case elfcpp::R_MICROMIPS_GOT_LO16:
10552       {
10553         // This relocation needs a page entry in the GOT.
10554         // Get the section contents.
10555         section_size_type view_size = 0;
10556         const unsigned char* view = object->section_contents(data_shndx,
10557                                                              &view_size, false);
10558         view += r_offset;
10559
10560         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10561         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10562                                                         : r_addend);
10563
10564         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10565           target->got16_addends_.push_back(got16_addend<size, big_endian>(
10566               object, data_shndx, r_type, r_sym, addend));
10567         else
10568           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10569         break;
10570       }
10571
10572     case elfcpp::R_MIPS_HI16:
10573     case elfcpp::R_MIPS_PCHI16:
10574     case elfcpp::R_MIPS16_HI16:
10575     case elfcpp::R_MICROMIPS_HI16:
10576       // Record the reloc so that we can check whether the corresponding LO16
10577       // part exists.
10578       if (rel_type == elfcpp::SHT_REL)
10579         target->got16_addends_.push_back(got16_addend<size, big_endian>(
10580             object, data_shndx, r_type, r_sym, 0));
10581       break;
10582
10583     case elfcpp::R_MIPS_LO16:
10584     case elfcpp::R_MIPS_PCLO16:
10585     case elfcpp::R_MIPS16_LO16:
10586     case elfcpp::R_MICROMIPS_LO16:
10587       {
10588         if (rel_type != elfcpp::SHT_REL)
10589           break;
10590
10591         // Find corresponding GOT16/HI16 relocation.
10592
10593         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10594         // be immediately following.  However, for the IRIX6 ABI, the next
10595         // relocation may be a composed relocation consisting of several
10596         // relocations for the same address.  In that case, the R_MIPS_LO16
10597         // relocation may occur as one of these.  We permit a similar
10598         // extension in general, as that is useful for GCC.
10599
10600         // In some cases GCC dead code elimination removes the LO16 but
10601         // keeps the corresponding HI16.  This is strictly speaking a
10602         // violation of the ABI but not immediately harmful.
10603
10604         typename std::list<got16_addend<size, big_endian> >::iterator it =
10605           target->got16_addends_.begin();
10606         while (it != target->got16_addends_.end())
10607           {
10608             got16_addend<size, big_endian> _got16_addend = *it;
10609
10610             // TODO(sasa): Split got16_addends_ list into two lists - one for
10611             // GOT16 relocs and the other for HI16 relocs.
10612
10613             // Report an error if we find HI16 or GOT16 reloc from the
10614             // previous section without the matching LO16 part.
10615             if (_got16_addend.object != object
10616                 || _got16_addend.shndx != data_shndx)
10617               {
10618                 gold_error("Can't find matching LO16 reloc");
10619                 break;
10620               }
10621
10622             if (_got16_addend.r_sym != r_sym
10623                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10624               {
10625                 ++it;
10626                 continue;
10627               }
10628
10629             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10630             // For GOT16, we need to calculate combined addend and record GOT page
10631             // entry.
10632             if (got16_reloc(_got16_addend.r_type))
10633               {
10634
10635                 section_size_type view_size = 0;
10636                 const unsigned char* view = object->section_contents(data_shndx,
10637                                                                      &view_size,
10638                                                                      false);
10639                 view += r_offset;
10640
10641                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10642                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10643
10644                 addend = (_got16_addend.addend << 16) + addend;
10645                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10646                                                              addend);
10647               }
10648
10649             it = target->got16_addends_.erase(it);
10650           }
10651         break;
10652       }
10653     }
10654
10655   switch (r_type)
10656     {
10657     case elfcpp::R_MIPS_32:
10658     case elfcpp::R_MIPS_REL32:
10659     case elfcpp::R_MIPS_64:
10660       {
10661         if (parameters->options().output_is_position_independent())
10662           {
10663             // If building a shared library (or a position-independent
10664             // executable), we need to create a dynamic relocation for
10665             // this location.
10666             if (is_readonly_section(output_section))
10667               break;
10668             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10669             rel_dyn->add_symbolless_local_addend(object, r_sym,
10670                                                  elfcpp::R_MIPS_REL32,
10671                                                  output_section, data_shndx,
10672                                                  r_offset);
10673           }
10674         break;
10675       }
10676
10677     case elfcpp::R_MIPS_TLS_GOTTPREL:
10678     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10679     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10680     case elfcpp::R_MIPS_TLS_LDM:
10681     case elfcpp::R_MIPS16_TLS_LDM:
10682     case elfcpp::R_MICROMIPS_TLS_LDM:
10683     case elfcpp::R_MIPS_TLS_GD:
10684     case elfcpp::R_MIPS16_TLS_GD:
10685     case elfcpp::R_MICROMIPS_TLS_GD:
10686       {
10687         bool output_is_shared = parameters->options().shared();
10688         const tls::Tls_optimization optimized_type
10689             = Target_mips<size, big_endian>::optimize_tls_reloc(
10690                                              !output_is_shared, r_type);
10691         switch (r_type)
10692           {
10693           case elfcpp::R_MIPS_TLS_GD:
10694           case elfcpp::R_MIPS16_TLS_GD:
10695           case elfcpp::R_MICROMIPS_TLS_GD:
10696             if (optimized_type == tls::TLSOPT_NONE)
10697               {
10698                 // Create a pair of GOT entries for the module index and
10699                 // dtv-relative offset.
10700                 Mips_output_data_got<size, big_endian>* got =
10701                   target->got_section(symtab, layout);
10702                 unsigned int shndx = lsym.get_st_shndx();
10703                 bool is_ordinary;
10704                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10705                 if (!is_ordinary)
10706                   {
10707                     object->error(_("local symbol %u has bad shndx %u"),
10708                                   r_sym, shndx);
10709                     break;
10710                   }
10711                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10712                                              shndx, false);
10713               }
10714             else
10715               {
10716                 // FIXME: TLS optimization not supported yet.
10717                 gold_unreachable();
10718               }
10719             break;
10720
10721           case elfcpp::R_MIPS_TLS_LDM:
10722           case elfcpp::R_MIPS16_TLS_LDM:
10723           case elfcpp::R_MICROMIPS_TLS_LDM:
10724             if (optimized_type == tls::TLSOPT_NONE)
10725               {
10726                 // We always record LDM symbols as local with index 0.
10727                 target->got_section()->record_local_got_symbol(mips_obj, 0,
10728                                                                r_addend, r_type,
10729                                                                -1U, false);
10730               }
10731             else
10732               {
10733                 // FIXME: TLS optimization not supported yet.
10734                 gold_unreachable();
10735               }
10736             break;
10737           case elfcpp::R_MIPS_TLS_GOTTPREL:
10738           case elfcpp::R_MIPS16_TLS_GOTTPREL:
10739           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10740             layout->set_has_static_tls();
10741             if (optimized_type == tls::TLSOPT_NONE)
10742               {
10743                 // Create a GOT entry for the tp-relative offset.
10744                 Mips_output_data_got<size, big_endian>* got =
10745                   target->got_section(symtab, layout);
10746                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10747                                              -1U, false);
10748               }
10749             else
10750               {
10751                 // FIXME: TLS optimization not supported yet.
10752                 gold_unreachable();
10753               }
10754             break;
10755
10756           default:
10757             gold_unreachable();
10758         }
10759       }
10760       break;
10761
10762     default:
10763       break;
10764     }
10765
10766   // Refuse some position-dependent relocations when creating a
10767   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
10768   // not PIC, but we can create dynamic relocations and the result
10769   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
10770   // combined with R_MIPS_GOT16.
10771   if (parameters->options().shared())
10772     {
10773       switch (r_type)
10774         {
10775         case elfcpp::R_MIPS16_HI16:
10776         case elfcpp::R_MIPS_HI16:
10777         case elfcpp::R_MIPS_HIGHER:
10778         case elfcpp::R_MIPS_HIGHEST:
10779         case elfcpp::R_MICROMIPS_HI16:
10780         case elfcpp::R_MICROMIPS_HIGHER:
10781         case elfcpp::R_MICROMIPS_HIGHEST:
10782           // Don't refuse a high part relocation if it's against
10783           // no symbol (e.g. part of a compound relocation).
10784           if (r_sym == 0)
10785             break;
10786           // Fall through.
10787
10788         case elfcpp::R_MIPS16_26:
10789         case elfcpp::R_MIPS_26:
10790         case elfcpp::R_MICROMIPS_26_S1:
10791           gold_error(_("%s: relocation %u against `%s' can not be used when "
10792                        "making a shared object; recompile with -fPIC"),
10793                      object->name().c_str(), r_type, "a local symbol");
10794         default:
10795           break;
10796         }
10797     }
10798 }
10799
10800 template<int size, bool big_endian>
10801 inline void
10802 Target_mips<size, big_endian>::Scan::local(
10803                         Symbol_table* symtab,
10804                         Layout* layout,
10805                         Target_mips<size, big_endian>* target,
10806                         Sized_relobj_file<size, big_endian>* object,
10807                         unsigned int data_shndx,
10808                         Output_section* output_section,
10809                         const Reltype& reloc,
10810                         unsigned int r_type,
10811                         const elfcpp::Sym<size, big_endian>& lsym,
10812                         bool is_discarded)
10813 {
10814   if (is_discarded)
10815     return;
10816
10817   local(
10818     symtab,
10819     layout,
10820     target,
10821     object,
10822     data_shndx,
10823     output_section,
10824     (const Relatype*) NULL,
10825     &reloc,
10826     elfcpp::SHT_REL,
10827     r_type,
10828     lsym, is_discarded);
10829 }
10830
10831
10832 template<int size, bool big_endian>
10833 inline void
10834 Target_mips<size, big_endian>::Scan::local(
10835                         Symbol_table* symtab,
10836                         Layout* layout,
10837                         Target_mips<size, big_endian>* target,
10838                         Sized_relobj_file<size, big_endian>* object,
10839                         unsigned int data_shndx,
10840                         Output_section* output_section,
10841                         const Relatype& reloc,
10842                         unsigned int r_type,
10843                         const elfcpp::Sym<size, big_endian>& lsym,
10844                         bool is_discarded)
10845 {
10846   if (is_discarded)
10847     return;
10848
10849   local(
10850     symtab,
10851     layout,
10852     target,
10853     object,
10854     data_shndx,
10855     output_section,
10856     &reloc,
10857     (const Reltype*) NULL,
10858     elfcpp::SHT_RELA,
10859     r_type,
10860     lsym, is_discarded);
10861 }
10862
10863 // Scan a relocation for a global symbol.
10864
10865 template<int size, bool big_endian>
10866 inline void
10867 Target_mips<size, big_endian>::Scan::global(
10868                                 Symbol_table* symtab,
10869                                 Layout* layout,
10870                                 Target_mips<size, big_endian>* target,
10871                                 Sized_relobj_file<size, big_endian>* object,
10872                                 unsigned int data_shndx,
10873                                 Output_section* output_section,
10874                                 const Relatype* rela,
10875                                 const Reltype* rel,
10876                                 unsigned int rel_type,
10877                                 unsigned int r_type,
10878                                 Symbol* gsym)
10879 {
10880   Mips_address r_offset;
10881   unsigned int r_sym;
10882   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10883
10884   if (rel_type == elfcpp::SHT_RELA)
10885     {
10886       r_offset = rela->get_r_offset();
10887       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10888           get_r_sym(rela);
10889       r_addend = rela->get_r_addend();
10890     }
10891   else
10892     {
10893       r_offset = rel->get_r_offset();
10894       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10895           get_r_sym(rel);
10896       r_addend = 0;
10897     }
10898
10899   Mips_relobj<size, big_endian>* mips_obj =
10900     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10901   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10902
10903   if (mips_obj->is_mips16_stub_section(data_shndx))
10904     {
10905       mips_obj->get_mips16_stub_section(data_shndx)
10906               ->new_global_reloc_found(r_type, mips_sym);
10907     }
10908
10909   if (r_type == elfcpp::R_MIPS_NONE)
10910     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10911     // mips16 stub.
10912     return;
10913
10914   if (!mips16_call_reloc(r_type)
10915       && !mips_obj->section_allows_mips16_refs(data_shndx))
10916     // This reloc would need to refer to a MIPS16 hard-float stub, if
10917     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10918     // looking for relocs that would need to refer to MIPS16 stubs.
10919     mips_sym->set_need_fn_stub();
10920
10921   // We need PLT entries if there are static-only relocations against
10922   // an externally-defined function.  This can technically occur for
10923   // shared libraries if there are branches to the symbol, although it
10924   // is unlikely that this will be used in practice due to the short
10925   // ranges involved.  It can occur for any relative or absolute relocation
10926   // in executables; in that case, the PLT entry becomes the function's
10927   // canonical address.
10928   bool static_reloc = false;
10929
10930   // Set CAN_MAKE_DYNAMIC to true if we can convert this
10931   // relocation into a dynamic one.
10932   bool can_make_dynamic = false;
10933   switch (r_type)
10934     {
10935     case elfcpp::R_MIPS_GOT16:
10936     case elfcpp::R_MIPS_CALL16:
10937     case elfcpp::R_MIPS_CALL_HI16:
10938     case elfcpp::R_MIPS_CALL_LO16:
10939     case elfcpp::R_MIPS_GOT_HI16:
10940     case elfcpp::R_MIPS_GOT_LO16:
10941     case elfcpp::R_MIPS_GOT_PAGE:
10942     case elfcpp::R_MIPS_GOT_OFST:
10943     case elfcpp::R_MIPS_GOT_DISP:
10944     case elfcpp::R_MIPS_TLS_GOTTPREL:
10945     case elfcpp::R_MIPS_TLS_GD:
10946     case elfcpp::R_MIPS_TLS_LDM:
10947     case elfcpp::R_MIPS16_GOT16:
10948     case elfcpp::R_MIPS16_CALL16:
10949     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10950     case elfcpp::R_MIPS16_TLS_GD:
10951     case elfcpp::R_MIPS16_TLS_LDM:
10952     case elfcpp::R_MICROMIPS_GOT16:
10953     case elfcpp::R_MICROMIPS_CALL16:
10954     case elfcpp::R_MICROMIPS_CALL_HI16:
10955     case elfcpp::R_MICROMIPS_CALL_LO16:
10956     case elfcpp::R_MICROMIPS_GOT_HI16:
10957     case elfcpp::R_MICROMIPS_GOT_LO16:
10958     case elfcpp::R_MICROMIPS_GOT_PAGE:
10959     case elfcpp::R_MICROMIPS_GOT_OFST:
10960     case elfcpp::R_MICROMIPS_GOT_DISP:
10961     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10962     case elfcpp::R_MICROMIPS_TLS_GD:
10963     case elfcpp::R_MICROMIPS_TLS_LDM:
10964     case elfcpp::R_MIPS_EH:
10965       // We need a GOT section.
10966       target->got_section(symtab, layout);
10967       break;
10968
10969     // This is just a hint; it can safely be ignored.  Don't set
10970     // has_static_relocs for the corresponding symbol.
10971     case elfcpp::R_MIPS_JALR:
10972     case elfcpp::R_MICROMIPS_JALR:
10973       break;
10974
10975     case elfcpp::R_MIPS_GPREL16:
10976     case elfcpp::R_MIPS_GPREL32:
10977     case elfcpp::R_MIPS16_GPREL:
10978     case elfcpp::R_MICROMIPS_GPREL16:
10979       // TODO(sasa)
10980       // GP-relative relocations always resolve to a definition in a
10981       // regular input file, ignoring the one-definition rule.  This is
10982       // important for the GP setup sequence in NewABI code, which
10983       // always resolves to a local function even if other relocations
10984       // against the symbol wouldn't.
10985       //constrain_symbol_p = FALSE;
10986       break;
10987
10988     case elfcpp::R_MIPS_32:
10989     case elfcpp::R_MIPS_REL32:
10990     case elfcpp::R_MIPS_64:
10991       if ((parameters->options().shared()
10992           || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10993           && (!is_readonly_section(output_section)
10994           || mips_obj->is_pic())))
10995           && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10996         {
10997           if (r_type != elfcpp::R_MIPS_REL32)
10998             mips_sym->set_pointer_equality_needed();
10999           can_make_dynamic = true;
11000           break;
11001         }
11002       // Fall through.
11003
11004     default:
11005       // Most static relocations require pointer equality, except
11006       // for branches.
11007       mips_sym->set_pointer_equality_needed();
11008       // Fall through.
11009
11010     case elfcpp::R_MIPS_26:
11011     case elfcpp::R_MIPS_PC16:
11012     case elfcpp::R_MIPS_PC21_S2:
11013     case elfcpp::R_MIPS_PC26_S2:
11014     case elfcpp::R_MIPS16_26:
11015     case elfcpp::R_MICROMIPS_26_S1:
11016     case elfcpp::R_MICROMIPS_PC7_S1:
11017     case elfcpp::R_MICROMIPS_PC10_S1:
11018     case elfcpp::R_MICROMIPS_PC16_S1:
11019     case elfcpp::R_MICROMIPS_PC23_S2:
11020       static_reloc = true;
11021       mips_sym->set_has_static_relocs();
11022       break;
11023     }
11024
11025   // If there are call relocations against an externally-defined symbol,
11026   // see whether we can create a MIPS lazy-binding stub for it.  We can
11027   // only do this if all references to the function are through call
11028   // relocations, and in that case, the traditional lazy-binding stubs
11029   // are much more efficient than PLT entries.
11030   switch (r_type)
11031     {
11032     case elfcpp::R_MIPS16_CALL16:
11033     case elfcpp::R_MIPS_CALL16:
11034     case elfcpp::R_MIPS_CALL_HI16:
11035     case elfcpp::R_MIPS_CALL_LO16:
11036     case elfcpp::R_MIPS_JALR:
11037     case elfcpp::R_MICROMIPS_CALL16:
11038     case elfcpp::R_MICROMIPS_CALL_HI16:
11039     case elfcpp::R_MICROMIPS_CALL_LO16:
11040     case elfcpp::R_MICROMIPS_JALR:
11041       if (!mips_sym->no_lazy_stub())
11042         {
11043           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11044               // Calls from shared objects to undefined symbols of type
11045               // STT_NOTYPE need lazy-binding stub.
11046               || (mips_sym->is_undefined() && parameters->options().shared()))
11047             target->mips_stubs_section(layout)->make_entry(mips_sym);
11048         }
11049       break;
11050     default:
11051       {
11052         // We must not create a stub for a symbol that has relocations
11053         // related to taking the function's address.
11054         mips_sym->set_no_lazy_stub();
11055         target->remove_lazy_stub_entry(mips_sym);
11056         break;
11057       }
11058   }
11059
11060   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11061                                                    mips_sym->is_mips16()))
11062     mips_sym->set_has_nonpic_branches();
11063
11064   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11065   // and has a special meaning.
11066   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11067                                && strcmp(gsym->name(), "_gp_disp") == 0
11068                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11069   if (static_reloc && gsym->needs_plt_entry())
11070     {
11071       target->make_plt_entry(symtab, layout, mips_sym, r_type);
11072
11073       // Since this is not a PC-relative relocation, we may be
11074       // taking the address of a function.  In that case we need to
11075       // set the entry in the dynamic symbol table to the address of
11076       // the PLT entry.
11077       if (gsym->is_from_dynobj() && !parameters->options().shared())
11078         {
11079           gsym->set_needs_dynsym_value();
11080           // We distinguish between PLT entries and lazy-binding stubs by
11081           // giving the former an st_other value of STO_MIPS_PLT.  Set the
11082           // flag if there are any relocations in the binary where pointer
11083           // equality matters.
11084           if (mips_sym->pointer_equality_needed())
11085             mips_sym->set_mips_plt();
11086         }
11087     }
11088   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11089     {
11090       // Absolute addressing relocations.
11091       // Make a dynamic relocation if necessary.
11092       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11093         {
11094           if (gsym->may_need_copy_reloc())
11095             {
11096               target->copy_reloc(symtab, layout, object, data_shndx,
11097                                  output_section, gsym, r_type, r_offset);
11098             }
11099           else if (can_make_dynamic)
11100             {
11101               // Create .rel.dyn section.
11102               target->rel_dyn_section(layout);
11103               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11104                                     data_shndx, output_section, r_offset);
11105             }
11106           else
11107             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11108                        gsym->name());
11109         }
11110     }
11111
11112   bool for_call = false;
11113   switch (r_type)
11114     {
11115     case elfcpp::R_MIPS_CALL16:
11116     case elfcpp::R_MIPS16_CALL16:
11117     case elfcpp::R_MICROMIPS_CALL16:
11118     case elfcpp::R_MIPS_CALL_HI16:
11119     case elfcpp::R_MIPS_CALL_LO16:
11120     case elfcpp::R_MICROMIPS_CALL_HI16:
11121     case elfcpp::R_MICROMIPS_CALL_LO16:
11122       for_call = true;
11123       // Fall through.
11124
11125     case elfcpp::R_MIPS16_GOT16:
11126     case elfcpp::R_MIPS_GOT16:
11127     case elfcpp::R_MIPS_GOT_HI16:
11128     case elfcpp::R_MIPS_GOT_LO16:
11129     case elfcpp::R_MICROMIPS_GOT16:
11130     case elfcpp::R_MICROMIPS_GOT_HI16:
11131     case elfcpp::R_MICROMIPS_GOT_LO16:
11132     case elfcpp::R_MIPS_GOT_DISP:
11133     case elfcpp::R_MICROMIPS_GOT_DISP:
11134     case elfcpp::R_MIPS_EH:
11135       {
11136         // The symbol requires a GOT entry.
11137         Mips_output_data_got<size, big_endian>* got =
11138           target->got_section(symtab, layout);
11139         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11140                                       for_call);
11141         mips_sym->set_global_got_area(GGA_NORMAL);
11142       }
11143       break;
11144
11145     case elfcpp::R_MIPS_GOT_PAGE:
11146     case elfcpp::R_MICROMIPS_GOT_PAGE:
11147       {
11148         // This relocation needs a page entry in the GOT.
11149         // Get the section contents.
11150         section_size_type view_size = 0;
11151         const unsigned char* view =
11152           object->section_contents(data_shndx, &view_size, false);
11153         view += r_offset;
11154
11155         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11156         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11157                                                         : r_addend);
11158         Mips_output_data_got<size, big_endian>* got =
11159           target->got_section(symtab, layout);
11160         got->record_got_page_entry(mips_obj, r_sym, addend);
11161
11162         // If this is a global, overridable symbol, GOT_PAGE will
11163         // decay to GOT_DISP, so we'll need a GOT entry for it.
11164         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11165                             && !mips_sym->object()->is_dynamic()
11166                             && !mips_sym->is_undefined());
11167         if (!def_regular
11168             || (parameters->options().output_is_position_independent()
11169                 && !parameters->options().Bsymbolic()
11170                 && !mips_sym->is_forced_local()))
11171           {
11172             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11173                                           for_call);
11174             mips_sym->set_global_got_area(GGA_NORMAL);
11175           }
11176       }
11177       break;
11178
11179     case elfcpp::R_MIPS_TLS_GOTTPREL:
11180     case elfcpp::R_MIPS16_TLS_GOTTPREL:
11181     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11182     case elfcpp::R_MIPS_TLS_LDM:
11183     case elfcpp::R_MIPS16_TLS_LDM:
11184     case elfcpp::R_MICROMIPS_TLS_LDM:
11185     case elfcpp::R_MIPS_TLS_GD:
11186     case elfcpp::R_MIPS16_TLS_GD:
11187     case elfcpp::R_MICROMIPS_TLS_GD:
11188       {
11189         const bool is_final = gsym->final_value_is_known();
11190         const tls::Tls_optimization optimized_type =
11191           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11192
11193         switch (r_type)
11194           {
11195           case elfcpp::R_MIPS_TLS_GD:
11196           case elfcpp::R_MIPS16_TLS_GD:
11197           case elfcpp::R_MICROMIPS_TLS_GD:
11198             if (optimized_type == tls::TLSOPT_NONE)
11199               {
11200                 // Create a pair of GOT entries for the module index and
11201                 // dtv-relative offset.
11202                 Mips_output_data_got<size, big_endian>* got =
11203                   target->got_section(symtab, layout);
11204                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11205                                               false);
11206               }
11207             else
11208               {
11209                 // FIXME: TLS optimization not supported yet.
11210                 gold_unreachable();
11211               }
11212             break;
11213
11214           case elfcpp::R_MIPS_TLS_LDM:
11215           case elfcpp::R_MIPS16_TLS_LDM:
11216           case elfcpp::R_MICROMIPS_TLS_LDM:
11217             if (optimized_type == tls::TLSOPT_NONE)
11218               {
11219                 // We always record LDM symbols as local with index 0.
11220                 target->got_section()->record_local_got_symbol(mips_obj, 0,
11221                                                                r_addend, r_type,
11222                                                                -1U, false);
11223               }
11224             else
11225               {
11226                 // FIXME: TLS optimization not supported yet.
11227                 gold_unreachable();
11228               }
11229             break;
11230           case elfcpp::R_MIPS_TLS_GOTTPREL:
11231           case elfcpp::R_MIPS16_TLS_GOTTPREL:
11232           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11233             layout->set_has_static_tls();
11234             if (optimized_type == tls::TLSOPT_NONE)
11235               {
11236                 // Create a GOT entry for the tp-relative offset.
11237                 Mips_output_data_got<size, big_endian>* got =
11238                   target->got_section(symtab, layout);
11239                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11240                                               false);
11241               }
11242             else
11243               {
11244                 // FIXME: TLS optimization not supported yet.
11245                 gold_unreachable();
11246               }
11247             break;
11248
11249           default:
11250             gold_unreachable();
11251         }
11252       }
11253       break;
11254     case elfcpp::R_MIPS_COPY:
11255     case elfcpp::R_MIPS_JUMP_SLOT:
11256       // These are relocations which should only be seen by the
11257       // dynamic linker, and should never be seen here.
11258       gold_error(_("%s: unexpected reloc %u in object file"),
11259                  object->name().c_str(), r_type);
11260       break;
11261
11262     default:
11263       break;
11264     }
11265
11266   // Refuse some position-dependent relocations when creating a
11267   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
11268   // not PIC, but we can create dynamic relocations and the result
11269   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
11270   // combined with R_MIPS_GOT16.
11271   if (parameters->options().shared())
11272     {
11273       switch (r_type)
11274         {
11275         case elfcpp::R_MIPS16_HI16:
11276         case elfcpp::R_MIPS_HI16:
11277         case elfcpp::R_MIPS_HIGHER:
11278         case elfcpp::R_MIPS_HIGHEST:
11279         case elfcpp::R_MICROMIPS_HI16:
11280         case elfcpp::R_MICROMIPS_HIGHER:
11281         case elfcpp::R_MICROMIPS_HIGHEST:
11282           // Don't refuse a high part relocation if it's against
11283           // no symbol (e.g. part of a compound relocation).
11284           if (r_sym == 0)
11285             break;
11286
11287           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11288           // and has a special meaning.
11289           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11290             break;
11291           // Fall through.
11292
11293         case elfcpp::R_MIPS16_26:
11294         case elfcpp::R_MIPS_26:
11295         case elfcpp::R_MICROMIPS_26_S1:
11296           gold_error(_("%s: relocation %u against `%s' can not be used when "
11297                        "making a shared object; recompile with -fPIC"),
11298                      object->name().c_str(), r_type, gsym->name());
11299         default:
11300           break;
11301         }
11302     }
11303 }
11304
11305 template<int size, bool big_endian>
11306 inline void
11307 Target_mips<size, big_endian>::Scan::global(
11308                                 Symbol_table* symtab,
11309                                 Layout* layout,
11310                                 Target_mips<size, big_endian>* target,
11311                                 Sized_relobj_file<size, big_endian>* object,
11312                                 unsigned int data_shndx,
11313                                 Output_section* output_section,
11314                                 const Relatype& reloc,
11315                                 unsigned int r_type,
11316                                 Symbol* gsym)
11317 {
11318   global(
11319     symtab,
11320     layout,
11321     target,
11322     object,
11323     data_shndx,
11324     output_section,
11325     &reloc,
11326     (const Reltype*) NULL,
11327     elfcpp::SHT_RELA,
11328     r_type,
11329     gsym);
11330 }
11331
11332 template<int size, bool big_endian>
11333 inline void
11334 Target_mips<size, big_endian>::Scan::global(
11335                                 Symbol_table* symtab,
11336                                 Layout* layout,
11337                                 Target_mips<size, big_endian>* target,
11338                                 Sized_relobj_file<size, big_endian>* object,
11339                                 unsigned int data_shndx,
11340                                 Output_section* output_section,
11341                                 const Reltype& reloc,
11342                                 unsigned int r_type,
11343                                 Symbol* gsym)
11344 {
11345   global(
11346     symtab,
11347     layout,
11348     target,
11349     object,
11350     data_shndx,
11351     output_section,
11352     (const Relatype*) NULL,
11353     &reloc,
11354     elfcpp::SHT_REL,
11355     r_type,
11356     gsym);
11357 }
11358
11359 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11360 // In cases where Scan::local() or Scan::global() has created
11361 // a dynamic relocation, the addend of the relocation is carried
11362 // in the data, and we must not apply the static relocation.
11363
11364 template<int size, bool big_endian>
11365 inline bool
11366 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11367     const Mips_symbol<size>* gsym,
11368     unsigned int r_type,
11369     Output_section* output_section,
11370     Target_mips* target)
11371 {
11372   // If the output section is not allocated, then we didn't call
11373   // scan_relocs, we didn't create a dynamic reloc, and we must apply
11374   // the reloc here.
11375   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11376       return true;
11377
11378   if (gsym == NULL)
11379     return true;
11380   else
11381     {
11382       // For global symbols, we use the same helper routines used in the
11383       // scan pass.
11384       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11385           && !gsym->may_need_copy_reloc())
11386         {
11387           // We have generated dynamic reloc (R_MIPS_REL32).
11388
11389           bool multi_got = false;
11390           if (target->has_got_section())
11391             multi_got = target->got_section()->multi_got();
11392           bool has_got_offset;
11393           if (!multi_got)
11394             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11395           else
11396             has_got_offset = gsym->global_gotoffset() != -1U;
11397           if (!has_got_offset)
11398             return true;
11399           else
11400             // Apply the relocation only if the symbol is in the local got.
11401             // Do not apply the relocation if the symbol is in the global
11402             // got.
11403             return symbol_references_local(gsym, gsym->has_dynsym_index());
11404         }
11405       else
11406         // We have not generated dynamic reloc.
11407         return true;
11408     }
11409 }
11410
11411 // Perform a relocation.
11412
11413 template<int size, bool big_endian>
11414 inline bool
11415 Target_mips<size, big_endian>::Relocate::relocate(
11416                         const Relocate_info<size, big_endian>* relinfo,
11417                         unsigned int rel_type,
11418                         Target_mips* target,
11419                         Output_section* output_section,
11420                         size_t relnum,
11421                         const unsigned char* preloc,
11422                         const Sized_symbol<size>* gsym,
11423                         const Symbol_value<size>* psymval,
11424                         unsigned char* view,
11425                         Mips_address address,
11426                         section_size_type)
11427 {
11428   Mips_address r_offset;
11429   unsigned int r_sym;
11430   unsigned int r_type;
11431   unsigned int r_type2;
11432   unsigned int r_type3;
11433   unsigned char r_ssym;
11434   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11435   // r_offset and r_type of the next relocation is needed for resolving multiple
11436   // consecutive relocations with the same offset.
11437   Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
11438   unsigned int next_r_type = elfcpp::R_MIPS_NONE;
11439
11440   elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11441   size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
11442
11443   if (rel_type == elfcpp::SHT_RELA)
11444     {
11445       const Relatype rela(preloc);
11446       r_offset = rela.get_r_offset();
11447       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11448           get_r_sym(&rela);
11449       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11450           get_r_type(&rela);
11451       r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11452           get_r_type2(&rela);
11453       r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11454           get_r_type3(&rela);
11455       r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11456           get_r_ssym(&rela);
11457       r_addend = rela.get_r_addend();
11458       // If this is not last relocation, get r_offset and r_type of the next
11459       // relocation.
11460       if (relnum + 1 < reloc_count)
11461         {
11462           const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11463           const Relatype next_rela(preloc + reloc_size);
11464           next_r_offset = next_rela.get_r_offset();
11465           next_r_type =
11466             Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11467               get_r_type(&next_rela);
11468         }
11469     }
11470   else
11471     {
11472       const Reltype rel(preloc);
11473       r_offset = rel.get_r_offset();
11474       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11475           get_r_sym(&rel);
11476       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11477           get_r_type(&rel);
11478       r_ssym = 0;
11479       r_type2 = elfcpp::R_MIPS_NONE;
11480       r_type3 = elfcpp::R_MIPS_NONE;
11481       r_addend = 0;
11482       // If this is not last relocation, get r_offset and r_type of the next
11483       // relocation.
11484       if (relnum + 1 < reloc_count)
11485         {
11486           const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
11487           const Reltype next_rel(preloc + reloc_size);
11488           next_r_offset = next_rel.get_r_offset();
11489           next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11490             get_r_type(&next_rel);
11491         }
11492     }
11493
11494   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11495   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11496
11497   Mips_relobj<size, big_endian>* object =
11498       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11499
11500   bool target_is_16_bit_code = false;
11501   bool target_is_micromips_code = false;
11502   bool cross_mode_jump;
11503
11504   Symbol_value<size> symval;
11505
11506   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11507
11508   bool changed_symbol_value = false;
11509   if (gsym == NULL)
11510     {
11511       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11512       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11513       if (target_is_16_bit_code || target_is_micromips_code)
11514         {
11515           // MIPS16/microMIPS text labels should be treated as odd.
11516           symval.set_output_value(psymval->value(object, 1));
11517           psymval = &symval;
11518           changed_symbol_value = true;
11519         }
11520     }
11521   else
11522     {
11523       target_is_16_bit_code = mips_sym->is_mips16();
11524       target_is_micromips_code = mips_sym->is_micromips();
11525
11526       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11527       // it odd.  This will cause something like .word SYM to come up with
11528       // the right value when it is loaded into the PC.
11529
11530       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11531           && psymval->value(object, 0) != 0)
11532         {
11533           symval.set_output_value(psymval->value(object, 0) | 1);
11534           psymval = &symval;
11535           changed_symbol_value = true;
11536         }
11537
11538       // Pick the value to use for symbols defined in shared objects.
11539       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11540           || mips_sym->has_lazy_stub())
11541         {
11542           Mips_address value;
11543           if (!mips_sym->has_lazy_stub())
11544             {
11545               // Prefer a standard MIPS PLT entry.
11546               if (mips_sym->has_mips_plt_offset())
11547                 {
11548                   value = target->plt_section()->mips_entry_address(mips_sym);
11549                   target_is_micromips_code = false;
11550                   target_is_16_bit_code = false;
11551                 }
11552               else
11553                 {
11554                   value = (target->plt_section()->comp_entry_address(mips_sym)
11555                            + 1);
11556                   if (target->is_output_micromips())
11557                     target_is_micromips_code = true;
11558                   else
11559                     target_is_16_bit_code = true;
11560                 }
11561             }
11562           else
11563             value = target->mips_stubs_section()->stub_address(mips_sym);
11564
11565           symval.set_output_value(value);
11566           psymval = &symval;
11567         }
11568     }
11569
11570   // TRUE if the symbol referred to by this relocation is "_gp_disp".
11571   // Note that such a symbol must always be a global symbol.
11572   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11573                   && !object->is_newabi());
11574
11575   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11576   // Note that such a symbol must always be a global symbol.
11577   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11578
11579
11580   if (gp_disp)
11581     {
11582       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11583         gold_error_at_location(relinfo, relnum, r_offset,
11584           _("relocations against _gp_disp are permitted only"
11585             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11586     }
11587   else if (gnu_local_gp)
11588     {
11589       // __gnu_local_gp is _gp symbol.
11590       symval.set_output_value(target->adjusted_gp_value(object));
11591       psymval = &symval;
11592     }
11593
11594   // If this is a reference to a 16-bit function with a stub, we need
11595   // to redirect the relocation to the stub unless:
11596   //
11597   // (a) the relocation is for a MIPS16 JAL;
11598   //
11599   // (b) the relocation is for a MIPS16 PIC call, and there are no
11600   //     non-MIPS16 uses of the GOT slot; or
11601   //
11602   // (c) the section allows direct references to MIPS16 functions.
11603   if (r_type != elfcpp::R_MIPS16_26
11604       && ((mips_sym != NULL
11605            && mips_sym->has_mips16_fn_stub()
11606            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11607           || (mips_sym == NULL
11608               && object->get_local_mips16_fn_stub(r_sym) != NULL))
11609       && !object->section_allows_mips16_refs(relinfo->data_shndx))
11610     {
11611       // This is a 32- or 64-bit call to a 16-bit function.  We should
11612       // have already noticed that we were going to need the
11613       // stub.
11614       Mips_address value;
11615       if (mips_sym == NULL)
11616         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11617       else
11618         {
11619           gold_assert(mips_sym->need_fn_stub());
11620           if (mips_sym->has_la25_stub())
11621             value = target->la25_stub_section()->stub_address(mips_sym);
11622           else
11623             {
11624               value = mips_sym->template
11625                       get_mips16_fn_stub<big_endian>()->output_address();
11626             }
11627           }
11628       symval.set_output_value(value);
11629       psymval = &symval;
11630       changed_symbol_value = true;
11631
11632       // The target is 16-bit, but the stub isn't.
11633       target_is_16_bit_code = false;
11634     }
11635   // If this is a MIPS16 call with a stub, that is made through the PLT or
11636   // to a standard MIPS function, we need to redirect the call to the stub.
11637   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11638   // indirect calls should use an indirect stub instead.
11639   else if (r_type == elfcpp::R_MIPS16_26
11640            && ((mips_sym != NULL
11641                 && (mips_sym->has_mips16_call_stub()
11642                     || mips_sym->has_mips16_call_fp_stub()))
11643                || (mips_sym == NULL
11644                    && object->get_local_mips16_call_stub(r_sym) != NULL))
11645            && ((mips_sym != NULL && mips_sym->has_plt_offset())
11646                || !target_is_16_bit_code))
11647     {
11648       Mips16_stub_section<size, big_endian>* call_stub;
11649       if (mips_sym == NULL)
11650         call_stub = object->get_local_mips16_call_stub(r_sym);
11651       else
11652         {
11653           // If both call_stub and call_fp_stub are defined, we can figure
11654           // out which one to use by checking which one appears in the input
11655           // file.
11656           if (mips_sym->has_mips16_call_stub()
11657               && mips_sym->has_mips16_call_fp_stub())
11658             {
11659               call_stub = NULL;
11660               for (unsigned int i = 1; i < object->shnum(); ++i)
11661                 {
11662                   if (object->is_mips16_call_fp_stub_section(i))
11663                     {
11664                       call_stub = mips_sym->template
11665                                   get_mips16_call_fp_stub<big_endian>();
11666                       break;
11667                     }
11668
11669                 }
11670               if (call_stub == NULL)
11671                 call_stub =
11672                   mips_sym->template get_mips16_call_stub<big_endian>();
11673             }
11674           else if (mips_sym->has_mips16_call_stub())
11675             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11676           else
11677             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11678         }
11679
11680       symval.set_output_value(call_stub->output_address());
11681       psymval = &symval;
11682       changed_symbol_value = true;
11683     }
11684   // If this is a direct call to a PIC function, redirect to the
11685   // non-PIC stub.
11686   else if (mips_sym != NULL
11687            && mips_sym->has_la25_stub()
11688            && relocation_needs_la25_stub<size, big_endian>(
11689                                        object, r_type, target_is_16_bit_code))
11690     {
11691       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11692       if (mips_sym->is_micromips())
11693         value += 1;
11694       symval.set_output_value(value);
11695       psymval = &symval;
11696     }
11697   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11698   // entry is used if a standard PLT entry has also been made.
11699   else if ((r_type == elfcpp::R_MIPS16_26
11700             || r_type == elfcpp::R_MICROMIPS_26_S1)
11701           && mips_sym != NULL
11702           && mips_sym->has_plt_offset()
11703           && mips_sym->has_comp_plt_offset()
11704           && mips_sym->has_mips_plt_offset())
11705     {
11706       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11707                             + 1);
11708       symval.set_output_value(value);
11709       psymval = &symval;
11710
11711       target_is_16_bit_code = !target->is_output_micromips();
11712       target_is_micromips_code = target->is_output_micromips();
11713     }
11714
11715   // Make sure MIPS16 and microMIPS are not used together.
11716   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11717       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11718    {
11719       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11720    }
11721
11722   // Calls from 16-bit code to 32-bit code and vice versa require the
11723   // mode change.  However, we can ignore calls to undefined weak symbols,
11724   // which should never be executed at runtime.  This exception is important
11725   // because the assembly writer may have "known" that any definition of the
11726   // symbol would be 16-bit code, and that direct jumps were therefore
11727   // acceptable.
11728   cross_mode_jump =
11729     (!(gsym != NULL && gsym->is_weak_undefined())
11730      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11731          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11732          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11733              && (target_is_16_bit_code || target_is_micromips_code))));
11734
11735   bool local = (mips_sym == NULL
11736                 || (mips_sym->got_only_for_calls()
11737                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11738                     : symbol_references_local(mips_sym,
11739                                               mips_sym->has_dynsym_index())));
11740
11741   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11742   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
11743   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11744   if (got_page_reloc(r_type) && !local)
11745     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11746                                       : elfcpp::R_MIPS_GOT_DISP);
11747
11748   unsigned int got_offset = 0;
11749   int gp_offset = 0;
11750
11751   // Whether we have to extract addend from instruction.
11752   bool extract_addend = rel_type == elfcpp::SHT_REL;
11753   unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11754
11755   Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11756
11757   // For Mips64 N64 ABI, there may be up to three operations specified per
11758   // record, by the fields r_type, r_type2, and r_type3. The first operation
11759   // takes its addend from the relocation record. Each subsequent operation
11760   // takes as its addend the result of the previous operation.
11761   // The first operation in a record which references a symbol uses the symbol
11762   // implied by r_sym. The next operation in a record which references a symbol
11763   // uses the special symbol value given by the r_ssym field. A third operation
11764   // in a record which references a symbol will assume a NULL symbol,
11765   // i.e. value zero.
11766
11767   // TODO(Vladimir)
11768   // Check if a record references to a symbol.
11769   for (unsigned int i = 0; i < 3; ++i)
11770     {
11771       if (r_types[i] == elfcpp::R_MIPS_NONE)
11772         break;
11773
11774       // If we didn't apply previous relocation, use its result as addend
11775       // for current.
11776       if (this->calculate_only_)
11777         {
11778           r_addend = this->calculated_value_;
11779           extract_addend = false;
11780         }
11781
11782       // In the N32 and 64-bit ABIs there may be multiple consecutive
11783       // relocations for the same offset.  In that case we are
11784       // supposed to treat the output of each relocation as the addend
11785       // for the next.  For N64 ABI, we are checking offsets only in a
11786       // third operation in a record (r_type3).
11787       this->calculate_only_ =
11788         (object->is_n64() && i < 2
11789          ? r_types[i+1] != elfcpp::R_MIPS_NONE
11790          : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
11791
11792       if (object->is_n64())
11793         {
11794           if (i == 1)
11795             {
11796               // Handle special symbol for r_type2 relocation type.
11797               switch (r_ssym)
11798                 {
11799                 case RSS_UNDEF:
11800                   symval.set_output_value(0);
11801                   break;
11802                 case RSS_GP:
11803                   symval.set_output_value(target->gp_value());
11804                   break;
11805                 case RSS_GP0:
11806                   symval.set_output_value(object->gp_value());
11807                   break;
11808                 case RSS_LOC:
11809                   symval.set_output_value(address);
11810                   break;
11811                 default:
11812                   gold_unreachable();
11813                 }
11814               psymval = &symval;
11815             }
11816           else if (i == 2)
11817            {
11818             // For r_type3 symbol value is 0.
11819             symval.set_output_value(0);
11820            }
11821         }
11822
11823       bool update_got_entry = false;
11824       switch (r_types[i])
11825         {
11826         case elfcpp::R_MIPS_NONE:
11827           break;
11828         case elfcpp::R_MIPS_16:
11829           reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11830                                             extract_addend,
11831                                             this->calculate_only_,
11832                                             &this->calculated_value_);
11833           break;
11834
11835         case elfcpp::R_MIPS_32:
11836           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11837                                         target))
11838             reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11839                                               extract_addend,
11840                                               this->calculate_only_,
11841                                               &this->calculated_value_);
11842           if (mips_sym != NULL
11843               && (mips_sym->is_mips16() || mips_sym->is_micromips())
11844               && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11845             {
11846               // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11847               // already updated by adding +1.
11848               if (mips_sym->has_mips16_fn_stub())
11849                 {
11850                   gold_assert(mips_sym->need_fn_stub());
11851                   Mips16_stub_section<size, big_endian>* fn_stub =
11852                     mips_sym->template get_mips16_fn_stub<big_endian>();
11853
11854                   symval.set_output_value(fn_stub->output_address());
11855                   psymval = &symval;
11856                 }
11857               got_offset = mips_sym->global_gotoffset();
11858               update_got_entry = true;
11859             }
11860           break;
11861
11862         case elfcpp::R_MIPS_64:
11863           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11864                                         target))
11865             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11866                                               extract_addend,
11867                                               this->calculate_only_,
11868                                               &this->calculated_value_, false);
11869           else if (target->is_output_n64() && r_addend != 0)
11870             // Only apply the addend.  The static relocation was RELA, but the
11871             // dynamic relocation is REL, so we need to apply the addend.
11872             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11873                                               extract_addend,
11874                                               this->calculate_only_,
11875                                               &this->calculated_value_, true);
11876           break;
11877         case elfcpp::R_MIPS_REL32:
11878           gold_unreachable();
11879
11880         case elfcpp::R_MIPS_PC32:
11881           reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11882                                               r_addend, extract_addend,
11883                                               this->calculate_only_,
11884                                               &this->calculated_value_);
11885           break;
11886
11887         case elfcpp::R_MIPS16_26:
11888           // The calculation for R_MIPS16_26 is just the same as for an
11889           // R_MIPS_26.  It's only the storage of the relocated field into
11890           // the output file that's different.  So, we just fall through to the
11891           // R_MIPS_26 case here.
11892         case elfcpp::R_MIPS_26:
11893         case elfcpp::R_MICROMIPS_26_S1:
11894           reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11895               gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11896               r_types[i], target->jal_to_bal(), this->calculate_only_,
11897               &this->calculated_value_);
11898           break;
11899
11900         case elfcpp::R_MIPS_HI16:
11901         case elfcpp::R_MIPS16_HI16:
11902         case elfcpp::R_MICROMIPS_HI16:
11903           if (rel_type == elfcpp::SHT_RELA)
11904             reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11905                                                    r_addend, address,
11906                                                    gp_disp, r_types[i],
11907                                                    extract_addend, 0,
11908                                                    target,
11909                                                    this->calculate_only_,
11910                                                    &this->calculated_value_);
11911           else if (rel_type == elfcpp::SHT_REL)
11912             reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11913                                                 address, gp_disp, r_types[i],
11914                                                 r_sym, extract_addend);
11915           else
11916             gold_unreachable();
11917           break;
11918
11919         case elfcpp::R_MIPS_LO16:
11920         case elfcpp::R_MIPS16_LO16:
11921         case elfcpp::R_MICROMIPS_LO16:
11922         case elfcpp::R_MICROMIPS_HI0_LO16:
11923           reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11924                                               r_addend, extract_addend, address,
11925                                               gp_disp, r_types[i], r_sym,
11926                                               rel_type, this->calculate_only_,
11927                                               &this->calculated_value_);
11928           break;
11929
11930         case elfcpp::R_MIPS_LITERAL:
11931         case elfcpp::R_MICROMIPS_LITERAL:
11932           // Because we don't merge literal sections, we can handle this
11933           // just like R_MIPS_GPREL16.  In the long run, we should merge
11934           // shared literals, and then we will need to additional work
11935           // here.
11936
11937           // Fall through.
11938
11939         case elfcpp::R_MIPS_GPREL16:
11940         case elfcpp::R_MIPS16_GPREL:
11941         case elfcpp::R_MICROMIPS_GPREL7_S2:
11942         case elfcpp::R_MICROMIPS_GPREL16:
11943           reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11944                                              target->adjusted_gp_value(object),
11945                                              r_addend, extract_addend,
11946                                              gsym == NULL, r_types[i],
11947                                              this->calculate_only_,
11948                                              &this->calculated_value_);
11949           break;
11950
11951         case elfcpp::R_MIPS_PC16:
11952           reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11953                                               r_addend, extract_addend,
11954                                               this->calculate_only_,
11955                                               &this->calculated_value_);
11956           break;
11957
11958         case elfcpp::R_MIPS_PC21_S2:
11959           reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11960                                               r_addend, extract_addend,
11961                                               this->calculate_only_,
11962                                               &this->calculated_value_);
11963           break;
11964
11965         case elfcpp::R_MIPS_PC26_S2:
11966           reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11967                                               r_addend, extract_addend,
11968                                               this->calculate_only_,
11969                                               &this->calculated_value_);
11970           break;
11971
11972         case elfcpp::R_MIPS_PC18_S3:
11973           reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11974                                               r_addend, extract_addend,
11975                                               this->calculate_only_,
11976                                               &this->calculated_value_);
11977           break;
11978
11979         case elfcpp::R_MIPS_PC19_S2:
11980           reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11981                                               r_addend, extract_addend,
11982                                               this->calculate_only_,
11983                                               &this->calculated_value_);
11984           break;
11985
11986         case elfcpp::R_MIPS_PCHI16:
11987           if (rel_type == elfcpp::SHT_RELA)
11988             reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11989                                                      r_addend, address,
11990                                                      extract_addend, 0,
11991                                                      this->calculate_only_,
11992                                                      &this->calculated_value_);
11993           else if (rel_type == elfcpp::SHT_REL)
11994             reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11995                                                   r_addend, address, r_sym,
11996                                                   extract_addend);
11997           else
11998             gold_unreachable();
11999           break;
12000
12001         case elfcpp::R_MIPS_PCLO16:
12002           reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
12003                                                 extract_addend, address, r_sym,
12004                                                 rel_type, this->calculate_only_,
12005                                                 &this->calculated_value_);
12006           break;
12007         case elfcpp::R_MICROMIPS_PC7_S1:
12008           reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
12009                                                       address, r_addend,
12010                                                       extract_addend,
12011                                                       this->calculate_only_,
12012                                                       &this->calculated_value_);
12013           break;
12014         case elfcpp::R_MICROMIPS_PC10_S1:
12015           reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
12016                                                       psymval, address,
12017                                                       r_addend, extract_addend,
12018                                                       this->calculate_only_,
12019                                                       &this->calculated_value_);
12020           break;
12021         case elfcpp::R_MICROMIPS_PC16_S1:
12022           reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
12023                                                       psymval, address,
12024                                                       r_addend, extract_addend,
12025                                                       this->calculate_only_,
12026                                                       &this->calculated_value_);
12027           break;
12028         case elfcpp::R_MIPS_GPREL32:
12029           reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
12030                                               target->adjusted_gp_value(object),
12031                                               r_addend, extract_addend,
12032                                               this->calculate_only_,
12033                                               &this->calculated_value_);
12034           break;
12035         case elfcpp::R_MIPS_GOT_HI16:
12036         case elfcpp::R_MIPS_CALL_HI16:
12037         case elfcpp::R_MICROMIPS_GOT_HI16:
12038         case elfcpp::R_MICROMIPS_CALL_HI16:
12039           if (gsym != NULL)
12040             got_offset = target->got_section()->got_offset(gsym,
12041                                                            GOT_TYPE_STANDARD,
12042                                                            object);
12043           else
12044             got_offset = target->got_section()->got_offset(r_sym,
12045                                                            GOT_TYPE_STANDARD,
12046                                                            object, r_addend);
12047           gp_offset = target->got_section()->gp_offset(got_offset, object);
12048           reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
12049                                                   this->calculate_only_,
12050                                                   &this->calculated_value_);
12051           update_got_entry = changed_symbol_value;
12052           break;
12053
12054         case elfcpp::R_MIPS_GOT_LO16:
12055         case elfcpp::R_MIPS_CALL_LO16:
12056         case elfcpp::R_MICROMIPS_GOT_LO16:
12057         case elfcpp::R_MICROMIPS_CALL_LO16:
12058           if (gsym != NULL)
12059             got_offset = target->got_section()->got_offset(gsym,
12060                                                            GOT_TYPE_STANDARD,
12061                                                            object);
12062           else
12063             got_offset = target->got_section()->got_offset(r_sym,
12064                                                            GOT_TYPE_STANDARD,
12065                                                            object, r_addend);
12066           gp_offset = target->got_section()->gp_offset(got_offset, object);
12067           reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12068                                                   this->calculate_only_,
12069                                                   &this->calculated_value_);
12070           update_got_entry = changed_symbol_value;
12071           break;
12072
12073         case elfcpp::R_MIPS_GOT_DISP:
12074         case elfcpp::R_MICROMIPS_GOT_DISP:
12075         case elfcpp::R_MIPS_EH:
12076           if (gsym != NULL)
12077             got_offset = target->got_section()->got_offset(gsym,
12078                                                            GOT_TYPE_STANDARD,
12079                                                            object);
12080           else
12081             got_offset = target->got_section()->got_offset(r_sym,
12082                                                            GOT_TYPE_STANDARD,
12083                                                            object, r_addend);
12084           gp_offset = target->got_section()->gp_offset(got_offset, object);
12085           if (eh_reloc(r_types[i]))
12086             reloc_status = Reloc_funcs::releh(view, gp_offset,
12087                                               this->calculate_only_,
12088                                               &this->calculated_value_);
12089           else
12090             reloc_status = Reloc_funcs::relgot(view, gp_offset,
12091                                                this->calculate_only_,
12092                                                &this->calculated_value_);
12093           break;
12094         case elfcpp::R_MIPS_CALL16:
12095         case elfcpp::R_MIPS16_CALL16:
12096         case elfcpp::R_MICROMIPS_CALL16:
12097           gold_assert(gsym != NULL);
12098           got_offset = target->got_section()->got_offset(gsym,
12099                                                          GOT_TYPE_STANDARD,
12100                                                          object);
12101           gp_offset = target->got_section()->gp_offset(got_offset, object);
12102           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12103                                              this->calculate_only_,
12104                                              &this->calculated_value_);
12105           // TODO(sasa): We should also initialize update_got_entry
12106           // in other place swhere relgot is called.
12107           update_got_entry = changed_symbol_value;
12108           break;
12109
12110         case elfcpp::R_MIPS_GOT16:
12111         case elfcpp::R_MIPS16_GOT16:
12112         case elfcpp::R_MICROMIPS_GOT16:
12113           if (gsym != NULL)
12114             {
12115               got_offset = target->got_section()->got_offset(gsym,
12116                                                              GOT_TYPE_STANDARD,
12117                                                              object);
12118               gp_offset = target->got_section()->gp_offset(got_offset, object);
12119               reloc_status = Reloc_funcs::relgot(view, gp_offset,
12120                                                  this->calculate_only_,
12121                                                  &this->calculated_value_);
12122             }
12123           else
12124             {
12125               if (rel_type == elfcpp::SHT_RELA)
12126                 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12127                                                       psymval, r_addend,
12128                                                       extract_addend, 0,
12129                                                       target,
12130                                                       this->calculate_only_,
12131                                                       &this->calculated_value_);
12132               else if (rel_type == elfcpp::SHT_REL)
12133                 reloc_status = Reloc_funcs::relgot16_local(view, object,
12134                                                            psymval, r_addend,
12135                                                            extract_addend,
12136                                                            r_types[i], r_sym);
12137               else
12138                 gold_unreachable();
12139             }
12140           update_got_entry = changed_symbol_value;
12141           break;
12142
12143         case elfcpp::R_MIPS_TLS_GD:
12144         case elfcpp::R_MIPS16_TLS_GD:
12145         case elfcpp::R_MICROMIPS_TLS_GD:
12146           if (gsym != NULL)
12147             got_offset = target->got_section()->got_offset(gsym,
12148                                                            GOT_TYPE_TLS_PAIR,
12149                                                            object);
12150           else
12151             got_offset = target->got_section()->got_offset(r_sym,
12152                                                            GOT_TYPE_TLS_PAIR,
12153                                                            object, r_addend);
12154           gp_offset = target->got_section()->gp_offset(got_offset, object);
12155           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12156                                              this->calculate_only_,
12157                                              &this->calculated_value_);
12158           break;
12159
12160         case elfcpp::R_MIPS_TLS_GOTTPREL:
12161         case elfcpp::R_MIPS16_TLS_GOTTPREL:
12162         case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12163           if (gsym != NULL)
12164             got_offset = target->got_section()->got_offset(gsym,
12165                                                            GOT_TYPE_TLS_OFFSET,
12166                                                            object);
12167           else
12168             got_offset = target->got_section()->got_offset(r_sym,
12169                                                            GOT_TYPE_TLS_OFFSET,
12170                                                            object, r_addend);
12171           gp_offset = target->got_section()->gp_offset(got_offset, object);
12172           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12173                                              this->calculate_only_,
12174                                              &this->calculated_value_);
12175           break;
12176
12177         case elfcpp::R_MIPS_TLS_LDM:
12178         case elfcpp::R_MIPS16_TLS_LDM:
12179         case elfcpp::R_MICROMIPS_TLS_LDM:
12180           // Relocate the field with the offset of the GOT entry for
12181           // the module index.
12182           got_offset = target->got_section()->tls_ldm_offset(object);
12183           gp_offset = target->got_section()->gp_offset(got_offset, object);
12184           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12185                                              this->calculate_only_,
12186                                              &this->calculated_value_);
12187           break;
12188
12189         case elfcpp::R_MIPS_GOT_PAGE:
12190         case elfcpp::R_MICROMIPS_GOT_PAGE:
12191           reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12192                                                  r_addend, extract_addend,
12193                                                  this->calculate_only_,
12194                                                  &this->calculated_value_);
12195           break;
12196
12197         case elfcpp::R_MIPS_GOT_OFST:
12198         case elfcpp::R_MICROMIPS_GOT_OFST:
12199           reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12200                                                  r_addend, extract_addend,
12201                                                  local, this->calculate_only_,
12202                                                  &this->calculated_value_);
12203           break;
12204
12205         case elfcpp::R_MIPS_JALR:
12206         case elfcpp::R_MICROMIPS_JALR:
12207           // This relocation is only a hint.  In some cases, we optimize
12208           // it into a bal instruction.  But we don't try to optimize
12209           // when the symbol does not resolve locally.
12210           if (gsym == NULL
12211               || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12212             reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12213                                                 r_addend, extract_addend,
12214                                                 cross_mode_jump, r_types[i],
12215                                                 target->jalr_to_bal(),
12216                                                 target->jr_to_b(),
12217                                                 this->calculate_only_,
12218                                                 &this->calculated_value_);
12219           break;
12220
12221         case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12222         case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12223         case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12224           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12225                                                  elfcpp::DTP_OFFSET, r_addend,
12226                                                  extract_addend,
12227                                                  this->calculate_only_,
12228                                                  &this->calculated_value_);
12229           break;
12230         case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12231         case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12232         case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12233           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12234                                                  elfcpp::DTP_OFFSET, r_addend,
12235                                                  extract_addend,
12236                                                  this->calculate_only_,
12237                                                  &this->calculated_value_);
12238           break;
12239         case elfcpp::R_MIPS_TLS_DTPREL32:
12240         case elfcpp::R_MIPS_TLS_DTPREL64:
12241           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12242                                                elfcpp::DTP_OFFSET, r_addend,
12243                                                extract_addend,
12244                                                this->calculate_only_,
12245                                                &this->calculated_value_);
12246           break;
12247         case elfcpp::R_MIPS_TLS_TPREL_HI16:
12248         case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12249         case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12250           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12251                                                  elfcpp::TP_OFFSET, r_addend,
12252                                                  extract_addend,
12253                                                  this->calculate_only_,
12254                                                  &this->calculated_value_);
12255           break;
12256         case elfcpp::R_MIPS_TLS_TPREL_LO16:
12257         case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12258         case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12259           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12260                                                  elfcpp::TP_OFFSET, r_addend,
12261                                                  extract_addend,
12262                                                  this->calculate_only_,
12263                                                  &this->calculated_value_);
12264           break;
12265         case elfcpp::R_MIPS_TLS_TPREL32:
12266         case elfcpp::R_MIPS_TLS_TPREL64:
12267           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12268                                                elfcpp::TP_OFFSET, r_addend,
12269                                                extract_addend,
12270                                                this->calculate_only_,
12271                                                &this->calculated_value_);
12272           break;
12273         case elfcpp::R_MIPS_SUB:
12274         case elfcpp::R_MICROMIPS_SUB:
12275           reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12276                                              extract_addend,
12277                                              this->calculate_only_,
12278                                              &this->calculated_value_);
12279           break;
12280         case elfcpp::R_MIPS_HIGHER:
12281         case elfcpp::R_MICROMIPS_HIGHER:
12282           reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12283                                                 extract_addend,
12284                                                 this->calculate_only_,
12285                                                 &this->calculated_value_);
12286           break;
12287         case elfcpp::R_MIPS_HIGHEST:
12288         case elfcpp::R_MICROMIPS_HIGHEST:
12289           reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12290                                                  r_addend, extract_addend,
12291                                                  this->calculate_only_,
12292                                                  &this->calculated_value_);
12293           break;
12294         default:
12295           gold_error_at_location(relinfo, relnum, r_offset,
12296                                  _("unsupported reloc %u"), r_types[i]);
12297           break;
12298         }
12299
12300       if (update_got_entry)
12301         {
12302           Mips_output_data_got<size, big_endian>* got = target->got_section();
12303           if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12304             got->update_got_entry(got->get_primary_got_offset(mips_sym),
12305                                   psymval->value(object, 0));
12306           else
12307             got->update_got_entry(got_offset, psymval->value(object, 0));
12308         }
12309     }
12310
12311   bool jal_shuffle = jal_reloc(r_type);
12312   Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12313
12314   // Report any errors.
12315   switch (reloc_status)
12316     {
12317     case Reloc_funcs::STATUS_OKAY:
12318       break;
12319     case Reloc_funcs::STATUS_OVERFLOW:
12320       if (gsym == NULL)
12321         gold_error_at_location(relinfo, relnum, r_offset,
12322                                _("relocation overflow: "
12323                                  "%u against local symbol %u in %s"),
12324                                r_type, r_sym, object->name().c_str());
12325       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12326         gold_error_at_location(relinfo, relnum, r_offset,
12327                                _("relocation overflow: "
12328                                  "%u against '%s' defined in %s"),
12329                                r_type, gsym->demangled_name().c_str(),
12330                                gsym->object()->name().c_str());
12331       else
12332         gold_error_at_location(relinfo, relnum, r_offset,
12333                                _("relocation overflow: %u against '%s'"),
12334                                r_type, gsym->demangled_name().c_str());
12335       break;
12336     case Reloc_funcs::STATUS_BAD_RELOC:
12337       gold_error_at_location(relinfo, relnum, r_offset,
12338         _("unexpected opcode while processing relocation"));
12339       break;
12340     case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12341       gold_error_at_location(relinfo, relnum, r_offset,
12342         _("unaligned PC-relative relocation"));
12343       break;
12344     default:
12345       gold_unreachable();
12346     }
12347
12348   return true;
12349 }
12350
12351 // Get the Reference_flags for a particular relocation.
12352
12353 template<int size, bool big_endian>
12354 int
12355 Target_mips<size, big_endian>::Scan::get_reference_flags(
12356                        unsigned int r_type)
12357 {
12358   switch (r_type)
12359     {
12360     case elfcpp::R_MIPS_NONE:
12361       // No symbol reference.
12362       return 0;
12363
12364     case elfcpp::R_MIPS_16:
12365     case elfcpp::R_MIPS_32:
12366     case elfcpp::R_MIPS_64:
12367     case elfcpp::R_MIPS_HI16:
12368     case elfcpp::R_MIPS_LO16:
12369     case elfcpp::R_MIPS_HIGHER:
12370     case elfcpp::R_MIPS_HIGHEST:
12371     case elfcpp::R_MIPS16_HI16:
12372     case elfcpp::R_MIPS16_LO16:
12373     case elfcpp::R_MICROMIPS_HI16:
12374     case elfcpp::R_MICROMIPS_LO16:
12375     case elfcpp::R_MICROMIPS_HIGHER:
12376     case elfcpp::R_MICROMIPS_HIGHEST:
12377       return Symbol::ABSOLUTE_REF;
12378
12379     case elfcpp::R_MIPS_26:
12380     case elfcpp::R_MIPS16_26:
12381     case elfcpp::R_MICROMIPS_26_S1:
12382       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12383
12384     case elfcpp::R_MIPS_PC18_S3:
12385     case elfcpp::R_MIPS_PC19_S2:
12386     case elfcpp::R_MIPS_PCHI16:
12387     case elfcpp::R_MIPS_PCLO16:
12388     case elfcpp::R_MIPS_GPREL32:
12389     case elfcpp::R_MIPS_GPREL16:
12390     case elfcpp::R_MIPS_REL32:
12391     case elfcpp::R_MIPS16_GPREL:
12392       return Symbol::RELATIVE_REF;
12393
12394     case elfcpp::R_MIPS_PC16:
12395     case elfcpp::R_MIPS_PC32:
12396     case elfcpp::R_MIPS_PC21_S2:
12397     case elfcpp::R_MIPS_PC26_S2:
12398     case elfcpp::R_MIPS_JALR:
12399     case elfcpp::R_MICROMIPS_JALR:
12400       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12401
12402     case elfcpp::R_MIPS_GOT16:
12403     case elfcpp::R_MIPS_CALL16:
12404     case elfcpp::R_MIPS_GOT_DISP:
12405     case elfcpp::R_MIPS_GOT_HI16:
12406     case elfcpp::R_MIPS_GOT_LO16:
12407     case elfcpp::R_MIPS_CALL_HI16:
12408     case elfcpp::R_MIPS_CALL_LO16:
12409     case elfcpp::R_MIPS_LITERAL:
12410     case elfcpp::R_MIPS_GOT_PAGE:
12411     case elfcpp::R_MIPS_GOT_OFST:
12412     case elfcpp::R_MIPS16_GOT16:
12413     case elfcpp::R_MIPS16_CALL16:
12414     case elfcpp::R_MICROMIPS_GOT16:
12415     case elfcpp::R_MICROMIPS_CALL16:
12416     case elfcpp::R_MICROMIPS_GOT_HI16:
12417     case elfcpp::R_MICROMIPS_GOT_LO16:
12418     case elfcpp::R_MICROMIPS_CALL_HI16:
12419     case elfcpp::R_MICROMIPS_CALL_LO16:
12420     case elfcpp::R_MIPS_EH:
12421       // Absolute in GOT.
12422       return Symbol::RELATIVE_REF;
12423
12424     case elfcpp::R_MIPS_TLS_DTPMOD32:
12425     case elfcpp::R_MIPS_TLS_DTPREL32:
12426     case elfcpp::R_MIPS_TLS_DTPMOD64:
12427     case elfcpp::R_MIPS_TLS_DTPREL64:
12428     case elfcpp::R_MIPS_TLS_GD:
12429     case elfcpp::R_MIPS_TLS_LDM:
12430     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12431     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12432     case elfcpp::R_MIPS_TLS_GOTTPREL:
12433     case elfcpp::R_MIPS_TLS_TPREL32:
12434     case elfcpp::R_MIPS_TLS_TPREL64:
12435     case elfcpp::R_MIPS_TLS_TPREL_HI16:
12436     case elfcpp::R_MIPS_TLS_TPREL_LO16:
12437     case elfcpp::R_MIPS16_TLS_GD:
12438     case elfcpp::R_MIPS16_TLS_GOTTPREL:
12439     case elfcpp::R_MICROMIPS_TLS_GD:
12440     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12441     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12442     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12443       return Symbol::TLS_REF;
12444
12445     case elfcpp::R_MIPS_COPY:
12446     case elfcpp::R_MIPS_JUMP_SLOT:
12447     default:
12448       // Not expected.  We will give an error later.
12449       return 0;
12450     }
12451 }
12452
12453 // Report an unsupported relocation against a local symbol.
12454
12455 template<int size, bool big_endian>
12456 void
12457 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12458                         Sized_relobj_file<size, big_endian>* object,
12459                         unsigned int r_type)
12460 {
12461   gold_error(_("%s: unsupported reloc %u against local symbol"),
12462              object->name().c_str(), r_type);
12463 }
12464
12465 // Report an unsupported relocation against a global symbol.
12466
12467 template<int size, bool big_endian>
12468 void
12469 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12470                         Sized_relobj_file<size, big_endian>* object,
12471                         unsigned int r_type,
12472                         Symbol* gsym)
12473 {
12474   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12475              object->name().c_str(), r_type, gsym->demangled_name().c_str());
12476 }
12477
12478 // Return printable name for ABI.
12479 template<int size, bool big_endian>
12480 const char*
12481 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12482 {
12483   switch (e_flags & elfcpp::EF_MIPS_ABI)
12484     {
12485     case 0:
12486       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12487         return "N32";
12488       else if (size == 64)
12489         return "64";
12490       else
12491         return "none";
12492     case elfcpp::E_MIPS_ABI_O32:
12493       return "O32";
12494     case elfcpp::E_MIPS_ABI_O64:
12495       return "O64";
12496     case elfcpp::E_MIPS_ABI_EABI32:
12497       return "EABI32";
12498     case elfcpp::E_MIPS_ABI_EABI64:
12499       return "EABI64";
12500     default:
12501       return "unknown abi";
12502     }
12503 }
12504
12505 template<int size, bool big_endian>
12506 const char*
12507 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12508 {
12509   switch (e_flags & elfcpp::EF_MIPS_MACH)
12510     {
12511     case elfcpp::E_MIPS_MACH_3900:
12512       return "mips:3900";
12513     case elfcpp::E_MIPS_MACH_4010:
12514       return "mips:4010";
12515     case elfcpp::E_MIPS_MACH_4100:
12516       return "mips:4100";
12517     case elfcpp::E_MIPS_MACH_4111:
12518       return "mips:4111";
12519     case elfcpp::E_MIPS_MACH_4120:
12520       return "mips:4120";
12521     case elfcpp::E_MIPS_MACH_4650:
12522       return "mips:4650";
12523     case elfcpp::E_MIPS_MACH_5400:
12524       return "mips:5400";
12525     case elfcpp::E_MIPS_MACH_5500:
12526       return "mips:5500";
12527     case elfcpp::E_MIPS_MACH_5900:
12528       return "mips:5900";
12529     case elfcpp::E_MIPS_MACH_SB1:
12530       return "mips:sb1";
12531     case elfcpp::E_MIPS_MACH_9000:
12532       return "mips:9000";
12533     case elfcpp::E_MIPS_MACH_LS2E:
12534       return "mips:loongson_2e";
12535     case elfcpp::E_MIPS_MACH_LS2F:
12536       return "mips:loongson_2f";
12537     case elfcpp::E_MIPS_MACH_GS464:
12538       return "mips:gs464";
12539     case elfcpp::E_MIPS_MACH_GS464E:
12540       return "mips:gs464e";
12541     case elfcpp::E_MIPS_MACH_GS264E:
12542       return "mips:gs264e";
12543     case elfcpp::E_MIPS_MACH_OCTEON:
12544       return "mips:octeon";
12545     case elfcpp::E_MIPS_MACH_OCTEON2:
12546       return "mips:octeon2";
12547     case elfcpp::E_MIPS_MACH_OCTEON3:
12548       return "mips:octeon3";
12549     case elfcpp::E_MIPS_MACH_XLR:
12550       return "mips:xlr";
12551     default:
12552       switch (e_flags & elfcpp::EF_MIPS_ARCH)
12553         {
12554         default:
12555         case elfcpp::E_MIPS_ARCH_1:
12556           return "mips:3000";
12557
12558         case elfcpp::E_MIPS_ARCH_2:
12559           return "mips:6000";
12560
12561         case elfcpp::E_MIPS_ARCH_3:
12562           return "mips:4000";
12563
12564         case elfcpp::E_MIPS_ARCH_4:
12565           return "mips:8000";
12566
12567         case elfcpp::E_MIPS_ARCH_5:
12568           return "mips:mips5";
12569
12570         case elfcpp::E_MIPS_ARCH_32:
12571           return "mips:isa32";
12572
12573         case elfcpp::E_MIPS_ARCH_64:
12574           return "mips:isa64";
12575
12576         case elfcpp::E_MIPS_ARCH_32R2:
12577           return "mips:isa32r2";
12578
12579         case elfcpp::E_MIPS_ARCH_32R6:
12580           return "mips:isa32r6";
12581
12582         case elfcpp::E_MIPS_ARCH_64R2:
12583           return "mips:isa64r2";
12584
12585         case elfcpp::E_MIPS_ARCH_64R6:
12586           return "mips:isa64r6";
12587         }
12588     }
12589     return "unknown CPU";
12590 }
12591
12592 template<int size, bool big_endian>
12593 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12594 {
12595   size,                 // size
12596   big_endian,           // is_big_endian
12597   elfcpp::EM_MIPS,      // machine_code
12598   true,                 // has_make_symbol
12599   false,                // has_resolve
12600   false,                // has_code_fill
12601   true,                 // is_default_stack_executable
12602   false,                // can_icf_inline_merge_sections
12603   '\0',                 // wrap_char
12604   size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
12605   0x400000,             // default_text_segment_address
12606   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
12607   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
12608   false,                // isolate_execinstr
12609   0,                    // rosegment_gap
12610   elfcpp::SHN_UNDEF,    // small_common_shndx
12611   elfcpp::SHN_UNDEF,    // large_common_shndx
12612   0,                    // small_common_section_flags
12613   0,                    // large_common_section_flags
12614   NULL,                 // attributes_section
12615   NULL,                 // attributes_vendor
12616   "__start",            // entry_symbol_name
12617   32,                   // hash_entry_size
12618   elfcpp::SHT_PROGBITS, // unwind_section_type
12619 };
12620
12621 template<int size, bool big_endian>
12622 class Target_mips_nacl : public Target_mips<size, big_endian>
12623 {
12624  public:
12625   Target_mips_nacl()
12626     : Target_mips<size, big_endian>(&mips_nacl_info)
12627   { }
12628
12629  private:
12630   static const Target::Target_info mips_nacl_info;
12631 };
12632
12633 template<int size, bool big_endian>
12634 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12635 {
12636   size,                 // size
12637   big_endian,           // is_big_endian
12638   elfcpp::EM_MIPS,      // machine_code
12639   true,                 // has_make_symbol
12640   false,                // has_resolve
12641   false,                // has_code_fill
12642   true,                 // is_default_stack_executable
12643   false,                // can_icf_inline_merge_sections
12644   '\0',                 // wrap_char
12645   "/lib/ld.so.1",       // dynamic_linker
12646   0x20000,              // default_text_segment_address
12647   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12648   0x10000,              // common_pagesize (overridable by -z common-page-size)
12649   true,                 // isolate_execinstr
12650   0x10000000,           // rosegment_gap
12651   elfcpp::SHN_UNDEF,    // small_common_shndx
12652   elfcpp::SHN_UNDEF,    // large_common_shndx
12653   0,                    // small_common_section_flags
12654   0,                    // large_common_section_flags
12655   NULL,                 // attributes_section
12656   NULL,                 // attributes_vendor
12657   "_start",             // entry_symbol_name
12658   32,                   // hash_entry_size
12659   elfcpp::SHT_PROGBITS, // unwind_section_type
12660 };
12661
12662 // Target selector for Mips.  Note this is never instantiated directly.
12663 // It's only used in Target_selector_mips_nacl, below.
12664
12665 template<int size, bool big_endian>
12666 class Target_selector_mips : public Target_selector
12667 {
12668 public:
12669   Target_selector_mips()
12670     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12671                 (size == 64 ?
12672                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12673                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12674                 (size == 64 ?
12675                   (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12676                   (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12677   { }
12678
12679   Target* do_instantiate_target()
12680   { return new Target_mips<size, big_endian>(); }
12681 };
12682
12683 template<int size, bool big_endian>
12684 class Target_selector_mips_nacl
12685   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12686                                 Target_mips_nacl<size, big_endian> >
12687 {
12688  public:
12689   Target_selector_mips_nacl()
12690     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12691                            Target_mips_nacl<size, big_endian> >(
12692         // NaCl currently supports only MIPS32 little-endian.
12693         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12694   { }
12695 };
12696
12697 Target_selector_mips_nacl<32, true> target_selector_mips32;
12698 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12699 Target_selector_mips_nacl<64, true> target_selector_mips64;
12700 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12701
12702 } // End anonymous namespace.