1 // mips.cc -- mips target support for gold.
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
8 // This file is part of gold.
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
33 #include "parameters.h"
40 #include "copy-relocs.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
47 #include "attributes.h"
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
60 template<int size, bool big_endian>
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
78 template<int size, bool big_endian>
81 template<int size, bool big_endian>
84 class Mips16_stub_section_base;
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry. Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache. The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning. We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only". Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values. Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
120 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
121 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
122 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
124 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125 GOT_TYPE_STANDARD_MULTIGOT = 3,
126 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
130 // TLS type of GOT entry.
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
142 RSS_UNDEF = 0, // None - value is zero.
143 RSS_GP = 1, // Value of GP.
144 RSS_GP0 = 2, // Value of GP in object being relocated.
145 RSS_LOC = 3 // Address of location being relocated.
148 // Whether the section is readonly.
150 is_readonly_section(Output_section* output_section)
152 elfcpp::Elf_Xword section_flags = output_section->flags();
153 elfcpp::Elf_Word section_type = output_section->type();
155 if (section_type == elfcpp::SHT_NOBITS)
158 if (section_flags & elfcpp::SHF_WRITE)
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub. See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170 unsigned int r_type, bool target_is_16_bit_code)
172 // We specifically ignore branches and jumps from EF_PIC objects,
173 // where the onus is on the compiler or programmer to perform any
174 // necessary initialization of $25. Sometimes such initialization
175 // is unnecessary; for example, -mno-shared functions do not use
176 // the incoming value of $25, and may therefore be called directly.
177 if (object->is_pic())
182 case elfcpp::R_MIPS_26:
183 case elfcpp::R_MIPS_PC16:
184 case elfcpp::R_MIPS_PC21_S2:
185 case elfcpp::R_MIPS_PC26_S2:
186 case elfcpp::R_MICROMIPS_26_S1:
187 case elfcpp::R_MICROMIPS_PC7_S1:
188 case elfcpp::R_MICROMIPS_PC10_S1:
189 case elfcpp::R_MICROMIPS_PC16_S1:
190 case elfcpp::R_MICROMIPS_PC23_S2:
193 case elfcpp::R_MIPS16_26:
194 return !target_is_16_bit_code;
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid. Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
208 local_pic_function(Mips_symbol<size>* sym)
210 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211 && !sym->object()->is_dynamic()
212 && !sym->is_undefined());
214 if (sym->is_defined() && def_regular)
216 Mips_relobj<size, big_endian>* object =
217 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
219 if ((object->is_pic() || sym->is_pic())
220 && (!sym->is_mips16()
221 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
228 hi16_reloc(int r_type)
230 return (r_type == elfcpp::R_MIPS_HI16
231 || r_type == elfcpp::R_MIPS16_HI16
232 || r_type == elfcpp::R_MICROMIPS_HI16
233 || r_type == elfcpp::R_MIPS_PCHI16);
237 lo16_reloc(int r_type)
239 return (r_type == elfcpp::R_MIPS_LO16
240 || r_type == elfcpp::R_MIPS16_LO16
241 || r_type == elfcpp::R_MICROMIPS_LO16
242 || r_type == elfcpp::R_MIPS_PCLO16);
246 got16_reloc(unsigned int r_type)
248 return (r_type == elfcpp::R_MIPS_GOT16
249 || r_type == elfcpp::R_MIPS16_GOT16
250 || r_type == elfcpp::R_MICROMIPS_GOT16);
254 call_lo16_reloc(unsigned int r_type)
256 return (r_type == elfcpp::R_MIPS_CALL_LO16
257 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
261 got_lo16_reloc(unsigned int r_type)
263 return (r_type == elfcpp::R_MIPS_GOT_LO16
264 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
268 eh_reloc(unsigned int r_type)
270 return (r_type == elfcpp::R_MIPS_EH);
274 got_disp_reloc(unsigned int r_type)
276 return (r_type == elfcpp::R_MIPS_GOT_DISP
277 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
281 got_page_reloc(unsigned int r_type)
283 return (r_type == elfcpp::R_MIPS_GOT_PAGE
284 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
288 tls_gd_reloc(unsigned int r_type)
290 return (r_type == elfcpp::R_MIPS_TLS_GD
291 || r_type == elfcpp::R_MIPS16_TLS_GD
292 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
296 tls_gottprel_reloc(unsigned int r_type)
298 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
304 tls_ldm_reloc(unsigned int r_type)
306 return (r_type == elfcpp::R_MIPS_TLS_LDM
307 || r_type == elfcpp::R_MIPS16_TLS_LDM
308 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
312 mips16_call_reloc(unsigned int r_type)
314 return (r_type == elfcpp::R_MIPS16_26
315 || r_type == elfcpp::R_MIPS16_CALL16);
319 jal_reloc(unsigned int r_type)
321 return (r_type == elfcpp::R_MIPS_26
322 || r_type == elfcpp::R_MIPS16_26
323 || r_type == elfcpp::R_MICROMIPS_26_S1);
327 micromips_branch_reloc(unsigned int r_type)
329 return (r_type == elfcpp::R_MICROMIPS_26_S1
330 || r_type == elfcpp::R_MICROMIPS_PC16_S1
331 || r_type == elfcpp::R_MICROMIPS_PC10_S1
332 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
335 // Check if R_TYPE is a MIPS16 reloc.
337 mips16_reloc(unsigned int r_type)
341 case elfcpp::R_MIPS16_26:
342 case elfcpp::R_MIPS16_GPREL:
343 case elfcpp::R_MIPS16_GOT16:
344 case elfcpp::R_MIPS16_CALL16:
345 case elfcpp::R_MIPS16_HI16:
346 case elfcpp::R_MIPS16_LO16:
347 case elfcpp::R_MIPS16_TLS_GD:
348 case elfcpp::R_MIPS16_TLS_LDM:
349 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351 case elfcpp::R_MIPS16_TLS_GOTTPREL:
352 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
361 // Check if R_TYPE is a microMIPS reloc.
363 micromips_reloc(unsigned int r_type)
367 case elfcpp::R_MICROMIPS_26_S1:
368 case elfcpp::R_MICROMIPS_HI16:
369 case elfcpp::R_MICROMIPS_LO16:
370 case elfcpp::R_MICROMIPS_GPREL16:
371 case elfcpp::R_MICROMIPS_LITERAL:
372 case elfcpp::R_MICROMIPS_GOT16:
373 case elfcpp::R_MICROMIPS_PC7_S1:
374 case elfcpp::R_MICROMIPS_PC10_S1:
375 case elfcpp::R_MICROMIPS_PC16_S1:
376 case elfcpp::R_MICROMIPS_CALL16:
377 case elfcpp::R_MICROMIPS_GOT_DISP:
378 case elfcpp::R_MICROMIPS_GOT_PAGE:
379 case elfcpp::R_MICROMIPS_GOT_OFST:
380 case elfcpp::R_MICROMIPS_GOT_HI16:
381 case elfcpp::R_MICROMIPS_GOT_LO16:
382 case elfcpp::R_MICROMIPS_SUB:
383 case elfcpp::R_MICROMIPS_HIGHER:
384 case elfcpp::R_MICROMIPS_HIGHEST:
385 case elfcpp::R_MICROMIPS_CALL_HI16:
386 case elfcpp::R_MICROMIPS_CALL_LO16:
387 case elfcpp::R_MICROMIPS_SCN_DISP:
388 case elfcpp::R_MICROMIPS_JALR:
389 case elfcpp::R_MICROMIPS_HI0_LO16:
390 case elfcpp::R_MICROMIPS_TLS_GD:
391 case elfcpp::R_MICROMIPS_TLS_LDM:
392 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397 case elfcpp::R_MICROMIPS_GPREL7_S2:
398 case elfcpp::R_MICROMIPS_PC23_S2:
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
411 case elfcpp::R_MIPS_HI16:
412 case elfcpp::R_MIPS_GOT16:
413 return lo16_reloc == elfcpp::R_MIPS_LO16;
414 case elfcpp::R_MIPS_PCHI16:
415 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416 case elfcpp::R_MIPS16_HI16:
417 case elfcpp::R_MIPS16_GOT16:
418 return lo16_reloc == elfcpp::R_MIPS16_LO16;
419 case elfcpp::R_MICROMIPS_HI16:
420 case elfcpp::R_MICROMIPS_GOT16:
421 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
430 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 // (2) a SYMBOL address, where SYMBOL is not local to an input object
433 // (sym != NULL, symndx == -1)
434 // (3) a TLS LDM slot (there's only one of these per GOT.)
435 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
437 template<int size, bool big_endian>
440 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
443 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444 Mips_address addend, unsigned char tls_type,
445 unsigned int shndx, bool is_section_symbol)
446 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447 is_section_symbol_(is_section_symbol), shndx_(shndx)
448 { this->d.object = object; }
450 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451 : addend_(0), symndx_(-1U), tls_type_(tls_type),
452 is_section_symbol_(false), shndx_(-1U)
453 { this->d.sym = sym; }
455 // Return whether this entry is for a local symbol.
457 is_for_local_symbol() const
458 { return this->symndx_ != -1U; }
460 // Return whether this entry is for a global symbol.
462 is_for_global_symbol() const
463 { return this->symndx_ == -1U; }
465 // Return the hash of this entry.
469 if (this->tls_type_ == GOT_TLS_LDM)
470 return this->symndx_ + (1 << 18);
472 size_t name_hash_value = gold::string_hash<char>(
473 (this->symndx_ != -1U)
474 ? this->d.object->name().c_str()
475 : this->d.sym->name());
476 size_t addend = this->addend_;
477 return name_hash_value ^ this->symndx_ ^ addend;
480 // Return whether this entry is equal to OTHER.
482 equals(Mips_got_entry<size, big_endian>* other) const
484 if (this->tls_type_ == GOT_TLS_LDM)
487 return ((this->tls_type_ == other->tls_type_)
488 && (this->symndx_ == other->symndx_)
489 && ((this->symndx_ != -1U)
490 ? (this->d.object == other->d.object)
491 : (this->d.sym == other->d.sym))
492 && (this->addend_ == other->addend_));
495 // Return input object that needs this GOT entry.
496 Mips_relobj<size, big_endian>*
499 gold_assert(this->symndx_ != -1U);
500 return this->d.object;
503 // Return local symbol index for local GOT entries.
507 gold_assert(this->symndx_ != -1U);
508 return this->symndx_;
511 // Return the relocation addend for local GOT entries.
514 { return this->addend_; }
516 // Return global symbol for global GOT entries.
520 gold_assert(this->symndx_ == -1U);
524 // Return whether this is a TLS GOT entry.
527 { return this->tls_type_ != GOT_TLS_NONE; }
529 // Return TLS type of this GOT entry.
532 { return this->tls_type_; }
534 // Return section index of the local symbol for local GOT entries.
537 { return this->shndx_; }
539 // Return whether this is a STT_SECTION symbol.
541 is_section_symbol() const
542 { return this->is_section_symbol_; }
546 Mips_address addend_;
548 // The index of the symbol if we have a local symbol; -1 otherwise.
549 unsigned int symndx_;
553 // The input object for local symbols that needs the GOT entry.
554 Mips_relobj<size, big_endian>* object;
555 // If symndx == -1, the global symbol corresponding to this GOT entry. The
556 // symbol's entry is in the local area if mips_sym->global_got_area is
557 // GGA_NONE, otherwise it is in the global area.
558 Mips_symbol<size>* sym;
561 // The TLS type of this GOT entry. An LDM GOT entry will be a local
562 // symbol entry with r_symndx == 0.
563 unsigned char tls_type_;
565 // Whether this is a STT_SECTION symbol.
566 bool is_section_symbol_;
568 // For local GOT entries, section index of the local symbol.
572 // Hash for Mips_got_entry.
574 template<int size, bool big_endian>
575 class Mips_got_entry_hash
579 operator()(Mips_got_entry<size, big_endian>* entry) const
580 { return entry->hash(); }
583 // Equality for Mips_got_entry.
585 template<int size, bool big_endian>
586 class Mips_got_entry_eq
590 operator()(Mips_got_entry<size, big_endian>* e1,
591 Mips_got_entry<size, big_endian>* e2) const
592 { return e1->equals(e2); }
595 // Hash for Mips_symbol.
598 class Mips_symbol_hash
602 operator()(Mips_symbol<size>* sym) const
603 { return sym->hash(); }
606 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
607 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
608 // increasing MIN_ADDEND.
610 struct Got_page_range
613 : next(NULL), min_addend(0), max_addend(0)
616 Got_page_range* next;
620 // Return the maximum number of GOT page entries required.
623 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
626 // Got_page_entry. This class describes the range of addends that are applied
627 // to page relocations against a given symbol.
629 struct Got_page_entry
632 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
635 Got_page_entry(Object* object_, unsigned int symndx_)
636 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
639 // The input object that needs the GOT page entry.
641 // The index of the symbol, as stored in the relocation r_info.
643 // The ranges for this page entry.
644 Got_page_range* ranges;
645 // The maximum number of page entries needed for RANGES.
646 unsigned int num_pages;
649 // Hash for Got_page_entry.
651 struct Got_page_entry_hash
654 operator()(Got_page_entry* entry) const
655 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
658 // Equality for Got_page_entry.
660 struct Got_page_entry_eq
663 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
665 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
669 // This class is used to hold .got information when linking.
671 template<int size, bool big_endian>
674 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
677 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
679 // Unordered set of GOT entries.
680 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681 Mips_got_entry_hash<size, big_endian>,
682 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
684 // Unordered set of GOT page entries.
685 typedef Unordered_set<Got_page_entry*,
686 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
688 // Unordered set of global GOT entries.
689 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690 Global_got_entry_set;
694 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
701 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
704 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705 unsigned int symndx, Mips_address addend,
706 unsigned int r_type, unsigned int shndx,
707 bool is_section_symbol);
709 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710 // in OBJECT. FOR_CALL is true if the caller is only interested in
711 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
714 record_global_got_symbol(Mips_symbol<size>* mips_sym,
715 Mips_relobj<size, big_endian>* object,
716 unsigned int r_type, bool dyn_reloc, bool for_call);
718 // Add ENTRY to master GOT and to OBJECT's GOT.
720 record_got_entry(Mips_got_entry<size, big_endian>* entry,
721 Mips_relobj<size, big_endian>* object);
723 // Record that OBJECT has a page relocation against symbol SYMNDX and
724 // that ADDEND is the addend for that relocation.
726 record_got_page_entry(Mips_relobj<size, big_endian>* object,
727 unsigned int symndx, int addend);
729 // Create all entries that should be in the local part of the GOT.
731 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
733 // Create GOT page entries.
735 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
737 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
739 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740 unsigned int non_reloc_only_global_gotno);
742 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
744 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
746 // Create TLS GOT entries.
748 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
750 // Decide whether the symbol needs an entry in the global part of the primary
751 // GOT, setting global_got_area accordingly. Count the number of global
752 // symbols that are in the primary GOT only because they have dynamic
753 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
755 count_got_symbols(Symbol_table* symtab);
757 // Return the offset of GOT page entry for VALUE.
759 get_got_page_offset(Mips_address value,
760 Mips_output_data_got<size, big_endian>* got);
762 // Count the number of GOT entries required.
766 // Count the number of GOT entries required by ENTRY. Accumulate the result.
768 count_got_entry(Mips_got_entry<size, big_endian>* entry);
770 // Add FROM's GOT entries.
772 add_got_entries(Mips_got_info<size, big_endian>* from);
774 // Add FROM's GOT page entries.
776 add_got_page_entries(Mips_got_info<size, big_endian>* from);
781 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782 + this->tls_gotno_) * size/8);
785 // Return the number of local GOT entries.
788 { return this->local_gotno_; }
790 // Return the maximum number of page GOT entries needed.
793 { return this->page_gotno_; }
795 // Return the number of global GOT entries.
798 { return this->global_gotno_; }
800 // Set the number of global GOT entries.
802 set_global_gotno(unsigned int global_gotno)
803 { this->global_gotno_ = global_gotno; }
805 // Return the number of GGA_RELOC_ONLY global GOT entries.
807 reloc_only_gotno() const
808 { return this->reloc_only_gotno_; }
810 // Return the number of TLS GOT entries.
813 { return this->tls_gotno_; }
815 // Return the GOT type for this GOT. Used for multi-GOT links only.
817 multigot_got_type(unsigned int got_type) const
821 case GOT_TYPE_STANDARD:
822 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823 case GOT_TYPE_TLS_OFFSET:
824 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825 case GOT_TYPE_TLS_PAIR:
826 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
832 // Remove lazy-binding stubs for global symbols in this GOT.
834 remove_lazy_stubs(Target_mips<size, big_endian>* target);
836 // Return offset of this GOT from the start of .got section.
839 { return this->offset_; }
841 // Set offset of this GOT from the start of .got section.
843 set_offset(unsigned int offset)
844 { this->offset_ = offset; }
846 // Set index of this GOT in multi-GOT links.
848 set_index(unsigned int index)
849 { this->index_ = index; }
851 // Return next GOT in multi-GOT links.
852 Mips_got_info<size, big_endian>*
854 { return this->next_; }
856 // Set next GOT in multi-GOT links.
858 set_next(Mips_got_info<size, big_endian>* next)
859 { this->next_ = next; }
861 // Return the offset of TLS LDM entry for this GOT.
863 tls_ldm_offset() const
864 { return this->tls_ldm_offset_; }
866 // Set the offset of TLS LDM entry for this GOT.
868 set_tls_ldm_offset(unsigned int tls_ldm_offset)
869 { this->tls_ldm_offset_ = tls_ldm_offset; }
871 Global_got_entry_set&
873 { return this->global_got_symbols_; }
875 // Return the GOT_TLS_* type required by relocation type R_TYPE.
877 mips_elf_reloc_tls_type(unsigned int r_type)
879 if (tls_gd_reloc(r_type))
882 if (tls_ldm_reloc(r_type))
885 if (tls_gottprel_reloc(r_type))
891 // Return the number of GOT slots needed for GOT TLS type TYPE.
893 mips_tls_got_entries(unsigned int type)
913 // The number of local GOT entries.
914 unsigned int local_gotno_;
915 // The maximum number of page GOT entries needed.
916 unsigned int page_gotno_;
917 // The number of global GOT entries.
918 unsigned int global_gotno_;
919 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920 unsigned int reloc_only_gotno_;
921 // The number of TLS GOT entries.
922 unsigned int tls_gotno_;
923 // The offset of TLS LDM entry for this GOT.
924 unsigned int tls_ldm_offset_;
925 // All symbols that have global GOT entry.
926 Global_got_entry_set global_got_symbols_;
927 // A hash table holding GOT entries.
928 Got_entry_set got_entries_;
929 // A hash table of GOT page entries.
930 Got_page_entry_set got_page_entries_;
931 // The offset of first GOT page entry for this GOT.
932 unsigned int got_page_offset_start_;
933 // The offset of next available GOT page entry for this GOT.
934 unsigned int got_page_offset_next_;
935 // A hash table that maps GOT page entry value to the GOT offset where
936 // the entry is located.
937 Got_page_offsets got_page_offsets_;
938 // In multi-GOT links, a pointer to the next GOT.
939 Mips_got_info<size, big_endian>* next_;
940 // Index of this GOT in multi-GOT links.
942 // The offset of this GOT in multi-GOT links.
943 unsigned int offset_;
946 // This is a helper class used during relocation scan. It records GOT16 addend.
948 template<int size, bool big_endian>
951 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
953 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955 Mips_address _addend)
956 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
960 const Sized_relobj_file<size, big_endian>* object;
967 // .MIPS.abiflags section content
969 template<bool big_endian>
972 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
977 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
981 // Version of flags structure.
983 // The level of the ISA: 1-5, 32, 64.
985 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
987 // The size of general purpose registers.
989 // The size of co-processor 1 registers.
991 // The size of co-processor 2 registers.
993 // The floating-point ABI.
995 // Processor-specific extension.
997 // Mask of ASEs used.
999 // Mask of general flags.
1004 // Mips_symbol class. Holds additional symbol information needed for Mips.
1007 class Mips_symbol : public Sized_symbol<size>
1011 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1020 // Return whether this is a MIPS16 symbol.
1024 // (st_other & STO_MIPS16) == STO_MIPS16
1025 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026 == elfcpp::STO_MIPS16 >> 2);
1029 // Return whether this is a microMIPS symbol.
1031 is_micromips() const
1033 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035 == elfcpp::STO_MICROMIPS >> 2);
1038 // Return whether the symbol needs MIPS16 fn_stub.
1040 need_fn_stub() const
1041 { return this->need_fn_stub_; }
1043 // Set that the symbol needs MIPS16 fn_stub.
1046 { this->need_fn_stub_ = true; }
1048 // Return whether this symbol is referenced by branch relocations from
1049 // any non-PIC input file.
1051 has_nonpic_branches() const
1052 { return this->has_nonpic_branches_; }
1054 // Set that this symbol is referenced by branch relocations from
1055 // any non-PIC input file.
1057 set_has_nonpic_branches()
1058 { this->has_nonpic_branches_ = true; }
1060 // Return the offset of the la25 stub for this symbol from the start of the
1061 // la25 stub section.
1063 la25_stub_offset() const
1064 { return this->la25_stub_offset_; }
1066 // Set the offset of the la25 stub for this symbol from the start of the
1067 // la25 stub section.
1069 set_la25_stub_offset(unsigned int offset)
1070 { this->la25_stub_offset_ = offset; }
1072 // Return whether the symbol has la25 stub. This is true if this symbol is
1073 // for a PIC function, and there are non-PIC branches and jumps to it.
1075 has_la25_stub() const
1076 { return this->la25_stub_offset_ != -1U; }
1078 // Return whether there is a relocation against this symbol that must be
1079 // resolved by the static linker (that is, the relocation cannot possibly
1080 // be made dynamic).
1082 has_static_relocs() const
1083 { return this->has_static_relocs_; }
1085 // Set that there is a relocation against this symbol that must be resolved
1086 // by the static linker (that is, the relocation cannot possibly be made
1089 set_has_static_relocs()
1090 { this->has_static_relocs_ = true; }
1092 // Return whether we must not create a lazy-binding stub for this symbol.
1094 no_lazy_stub() const
1095 { return this->no_lazy_stub_; }
1097 // Set that we must not create a lazy-binding stub for this symbol.
1100 { this->no_lazy_stub_ = true; }
1102 // Return the offset of the lazy-binding stub for this symbol from the start
1103 // of .MIPS.stubs section.
1105 lazy_stub_offset() const
1106 { return this->lazy_stub_offset_; }
1108 // Set the offset of the lazy-binding stub for this symbol from the start
1109 // of .MIPS.stubs section.
1111 set_lazy_stub_offset(unsigned int offset)
1112 { this->lazy_stub_offset_ = offset; }
1114 // Return whether there are any relocations for this symbol where
1115 // pointer equality matters.
1117 pointer_equality_needed() const
1118 { return this->pointer_equality_needed_; }
1120 // Set that there are relocations for this symbol where pointer equality
1123 set_pointer_equality_needed()
1124 { this->pointer_equality_needed_ = true; }
1126 // Return global GOT area where this symbol in located.
1128 global_got_area() const
1129 { return this->global_got_area_; }
1131 // Set global GOT area where this symbol in located.
1133 set_global_got_area(Global_got_area global_got_area)
1134 { this->global_got_area_ = global_got_area; }
1136 // Return the global GOT offset for this symbol. For multi-GOT links, this
1137 // returns the offset from the start of .got section to the first GOT entry
1138 // for the symbol. Note that in multi-GOT links the symbol can have entry
1139 // in more than one GOT.
1141 global_gotoffset() const
1142 { return this->global_gotoffset_; }
1144 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1145 // the symbol can have entry in more than one GOT. This method will set
1146 // the offset only if it is less than current offset.
1148 set_global_gotoffset(unsigned int offset)
1150 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151 this->global_gotoffset_ = offset;
1154 // Return whether all GOT relocations for this symbol are for calls.
1156 got_only_for_calls() const
1157 { return this->got_only_for_calls_; }
1159 // Set that there is a GOT relocation for this symbol that is not for call.
1161 set_got_not_only_for_calls()
1162 { this->got_only_for_calls_ = false; }
1164 // Return whether this is a PIC symbol.
1168 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170 == (elfcpp::STO_MIPS_PIC >> 2));
1173 // Set the flag in st_other field that marks this symbol as PIC.
1177 if (this->is_mips16())
1178 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179 this->set_nonvis((this->nonvis()
1180 & ~((elfcpp::STO_MIPS16 >> 2)
1181 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182 | (elfcpp::STO_MIPS_PIC >> 2));
1184 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186 | (elfcpp::STO_MIPS_PIC >> 2));
1189 // Set the flag in st_other field that marks this symbol as PLT.
1193 if (this->is_mips16())
1194 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195 this->set_nonvis((this->nonvis()
1196 & ((elfcpp::STO_MIPS16 >> 2)
1197 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198 | (elfcpp::STO_MIPS_PLT >> 2));
1201 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203 | (elfcpp::STO_MIPS_PLT >> 2));
1206 // Downcast a base pointer to a Mips_symbol pointer.
1207 static Mips_symbol<size>*
1208 as_mips_sym(Symbol* sym)
1209 { return static_cast<Mips_symbol<size>*>(sym); }
1211 // Downcast a base pointer to a Mips_symbol pointer.
1212 static const Mips_symbol<size>*
1213 as_mips_sym(const Symbol* sym)
1214 { return static_cast<const Mips_symbol<size>*>(sym); }
1216 // Return whether the symbol has lazy-binding stub.
1218 has_lazy_stub() const
1219 { return this->has_lazy_stub_; }
1221 // Set whether the symbol has lazy-binding stub.
1223 set_has_lazy_stub(bool has_lazy_stub)
1224 { this->has_lazy_stub_ = has_lazy_stub; }
1226 // Return whether the symbol needs a standard PLT entry.
1228 needs_mips_plt() const
1229 { return this->needs_mips_plt_; }
1231 // Set whether the symbol needs a standard PLT entry.
1233 set_needs_mips_plt(bool needs_mips_plt)
1234 { this->needs_mips_plt_ = needs_mips_plt; }
1236 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1239 needs_comp_plt() const
1240 { return this->needs_comp_plt_; }
1242 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1244 set_needs_comp_plt(bool needs_comp_plt)
1245 { this->needs_comp_plt_ = needs_comp_plt; }
1247 // Return standard PLT entry offset, or -1 if none.
1249 mips_plt_offset() const
1250 { return this->mips_plt_offset_; }
1252 // Set standard PLT entry offset.
1254 set_mips_plt_offset(unsigned int mips_plt_offset)
1255 { this->mips_plt_offset_ = mips_plt_offset; }
1257 // Return whether the symbol has standard PLT entry.
1259 has_mips_plt_offset() const
1260 { return this->mips_plt_offset_ != -1U; }
1262 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1264 comp_plt_offset() const
1265 { return this->comp_plt_offset_; }
1267 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1269 set_comp_plt_offset(unsigned int comp_plt_offset)
1270 { this->comp_plt_offset_ = comp_plt_offset; }
1272 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1274 has_comp_plt_offset() const
1275 { return this->comp_plt_offset_ != -1U; }
1277 // Return MIPS16 fn stub for a symbol.
1278 template<bool big_endian>
1279 Mips16_stub_section<size, big_endian>*
1280 get_mips16_fn_stub() const
1282 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1285 // Set MIPS16 fn stub for a symbol.
1287 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288 { this->mips16_fn_stub_ = stub; }
1290 // Return whether symbol has MIPS16 fn stub.
1292 has_mips16_fn_stub() const
1293 { return this->mips16_fn_stub_ != NULL; }
1295 // Return MIPS16 call stub for a symbol.
1296 template<bool big_endian>
1297 Mips16_stub_section<size, big_endian>*
1298 get_mips16_call_stub() const
1300 return static_cast<Mips16_stub_section<size, big_endian>*>(
1304 // Set MIPS16 call stub for a symbol.
1306 set_mips16_call_stub(Mips16_stub_section_base* stub)
1307 { this->mips16_call_stub_ = stub; }
1309 // Return whether symbol has MIPS16 call stub.
1311 has_mips16_call_stub() const
1312 { return this->mips16_call_stub_ != NULL; }
1314 // Return MIPS16 call_fp stub for a symbol.
1315 template<bool big_endian>
1316 Mips16_stub_section<size, big_endian>*
1317 get_mips16_call_fp_stub() const
1319 return static_cast<Mips16_stub_section<size, big_endian>*>(
1320 mips16_call_fp_stub_);
1323 // Set MIPS16 call_fp stub for a symbol.
1325 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326 { this->mips16_call_fp_stub_ = stub; }
1328 // Return whether symbol has MIPS16 call_fp stub.
1330 has_mips16_call_fp_stub() const
1331 { return this->mips16_call_fp_stub_ != NULL; }
1334 get_applied_secondary_got_fixup() const
1335 { return applied_secondary_got_fixup_; }
1338 set_applied_secondary_got_fixup()
1339 { this->applied_secondary_got_fixup_ = true; }
1341 // Return the hash of this symbol.
1345 return gold::string_hash<char>(this->name());
1349 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1350 // appears in any relocs other than a 16 bit call.
1353 // True if this symbol is referenced by branch relocations from
1354 // any non-PIC input file. This is used to determine whether an
1355 // la25 stub is required.
1356 bool has_nonpic_branches_;
1358 // The offset of the la25 stub for this symbol from the start of the
1359 // la25 stub section.
1360 unsigned int la25_stub_offset_;
1362 // True if there is a relocation against this symbol that must be
1363 // resolved by the static linker (that is, the relocation cannot
1364 // possibly be made dynamic).
1365 bool has_static_relocs_;
1367 // Whether we must not create a lazy-binding stub for this symbol.
1368 // This is true if the symbol has relocations related to taking the
1369 // function's address.
1372 // The offset of the lazy-binding stub for this symbol from the start of
1373 // .MIPS.stubs section.
1374 unsigned int lazy_stub_offset_;
1376 // True if there are any relocations for this symbol where pointer equality
1378 bool pointer_equality_needed_;
1380 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381 // in the global part of the GOT.
1382 Global_got_area global_got_area_;
1384 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1385 // from the start of .got section to the first GOT entry for the symbol.
1386 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387 unsigned int global_gotoffset_;
1389 // Whether all GOT relocations for this symbol are for calls.
1390 bool got_only_for_calls_;
1391 // Whether the symbol has lazy-binding stub.
1392 bool has_lazy_stub_;
1393 // Whether the symbol needs a standard PLT entry.
1394 bool needs_mips_plt_;
1395 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396 bool needs_comp_plt_;
1397 // Standard PLT entry offset, or -1 if none.
1398 unsigned int mips_plt_offset_;
1399 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400 unsigned int comp_plt_offset_;
1401 // MIPS16 fn stub for a symbol.
1402 Mips16_stub_section_base* mips16_fn_stub_;
1403 // MIPS16 call stub for a symbol.
1404 Mips16_stub_section_base* mips16_call_stub_;
1405 // MIPS16 call_fp stub for a symbol.
1406 Mips16_stub_section_base* mips16_call_fp_stub_;
1408 bool applied_secondary_got_fixup_;
1411 // Mips16_stub_section class.
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead. If no 32 bit
1420 // function calls FNNAME, the stub should be discarded. We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead. If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs. These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call. (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally. Instead, the relocation
1443 // information will indicate which symbol the section is for.
1445 // We record any stubs that we find in the symbol table.
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1449 class Mips16_stub_section_base { };
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1457 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459 found_r_mips_none_(false)
1461 gold_assert(object->is_mips16_fn_stub_section(shndx)
1462 || object->is_mips16_call_stub_section(shndx)
1463 || object->is_mips16_call_fp_stub_section(shndx));
1466 // Return the object of this stub section.
1467 Mips_relobj<size, big_endian>*
1469 { return this->object_; }
1471 // Return the size of a section.
1473 section_size() const
1474 { return this->object_->section_size(this->shndx_); }
1476 // Return section index of this stub section.
1479 { return this->shndx_; }
1481 // Return symbol index, if stub is for a local function.
1484 { return this->r_sym_; }
1486 // Return symbol, if stub is for a global function.
1489 { return this->gsym_; }
1491 // Return whether stub is for a local function.
1493 is_for_local_function() const
1494 { return this->gsym_ == NULL; }
1496 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497 // is found in the stub section. Try to find stub target.
1499 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1501 // To find target symbol for this stub, trust the first R_MIPS_NONE
1502 // relocation, if any. Otherwise trust the first relocation, whatever
1504 if (this->found_r_mips_none_)
1506 if (r_type == elfcpp::R_MIPS_NONE)
1508 this->r_sym_ = r_sym;
1510 this->found_r_mips_none_ = true;
1512 else if (!is_target_found())
1513 this->r_sym_ = r_sym;
1516 // This method is called when a new relocation R_TYPE for global symbol GSYM
1517 // is found in the stub section. Try to find stub target.
1519 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1521 // To find target symbol for this stub, trust the first R_MIPS_NONE
1522 // relocation, if any. Otherwise trust the first relocation, whatever
1524 if (this->found_r_mips_none_)
1526 if (r_type == elfcpp::R_MIPS_NONE)
1530 this->found_r_mips_none_ = true;
1532 else if (!is_target_found())
1536 // Return whether we found the stub target.
1538 is_target_found() const
1539 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1541 // Return whether this is a fn stub.
1544 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1546 // Return whether this is a call stub.
1548 is_call_stub() const
1549 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1551 // Return whether this is a call_fp stub.
1553 is_call_fp_stub() const
1554 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1556 // Return the output address.
1558 output_address() const
1560 return (this->object_->output_section(this->shndx_)->address()
1561 + this->object_->output_section_offset(this->shndx_));
1565 // The object of this stub section.
1566 Mips_relobj<size, big_endian>* object_;
1567 // The section index of this stub section.
1568 unsigned int shndx_;
1569 // The symbol index, if stub is for a local function.
1570 unsigned int r_sym_;
1571 // The symbol, if stub is for a global function.
1572 Mips_symbol<size>* gsym_;
1573 // True if we found R_MIPS_NONE relocation in this stub.
1574 bool found_r_mips_none_;
1577 // Mips_relobj class.
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1582 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584 Mips16_stubs_int_map;
1585 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1588 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591 processor_specific_flags_(0), local_symbol_is_mips16_(),
1592 local_symbol_is_micromips_(), mips16_stub_sections_(),
1593 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595 got_info_(NULL), section_is_mips16_fn_stub_(),
1596 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1597 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1598 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1600 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1601 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1605 { delete this->attributes_section_data_; }
1607 // Downcast a base pointer to a Mips_relobj pointer. This is
1608 // not type-safe but we only use Mips_relobj not the base class.
1609 static Mips_relobj<size, big_endian>*
1610 as_mips_relobj(Relobj* relobj)
1611 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1613 // Downcast a base pointer to a Mips_relobj pointer. This is
1614 // not type-safe but we only use Mips_relobj not the base class.
1615 static const Mips_relobj<size, big_endian>*
1616 as_mips_relobj(const Relobj* relobj)
1617 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1619 // Processor-specific flags in ELF file header. This is valid only after
1622 processor_specific_flags() const
1623 { return this->processor_specific_flags_; }
1625 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1626 // index. This is only valid after do_count_local_symbol is called.
1628 local_symbol_is_mips16(unsigned int r_sym) const
1630 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1631 return this->local_symbol_is_mips16_[r_sym];
1634 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1635 // index. This is only valid after do_count_local_symbol is called.
1637 local_symbol_is_micromips(unsigned int r_sym) const
1639 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1640 return this->local_symbol_is_micromips_[r_sym];
1643 // Get or create MIPS16 stub section.
1644 Mips16_stub_section<size, big_endian>*
1645 get_mips16_stub_section(unsigned int shndx)
1647 typename Mips16_stubs_int_map::const_iterator it =
1648 this->mips16_stub_sections_.find(shndx);
1649 if (it != this->mips16_stub_sections_.end())
1650 return (*it).second;
1652 Mips16_stub_section<size, big_endian>* stub_section =
1653 new Mips16_stub_section<size, big_endian>(this, shndx);
1654 this->mips16_stub_sections_.insert(
1655 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1656 stub_section->shndx(), stub_section));
1657 return stub_section;
1660 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1661 // object doesn't have fn stub for R_SYM.
1662 Mips16_stub_section<size, big_endian>*
1663 get_local_mips16_fn_stub(unsigned int r_sym) const
1665 typename Mips16_stubs_int_map::const_iterator it =
1666 this->local_mips16_fn_stubs_.find(r_sym);
1667 if (it != this->local_mips16_fn_stubs_.end())
1668 return (*it).second;
1672 // Record that this object has MIPS16 fn stub for local symbol. This method
1673 // is only called if we decided not to discard the stub.
1675 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1677 gold_assert(stub->is_for_local_function());
1678 unsigned int r_sym = stub->r_sym();
1679 this->local_mips16_fn_stubs_.insert(
1680 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1684 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1685 // object doesn't have call stub for R_SYM.
1686 Mips16_stub_section<size, big_endian>*
1687 get_local_mips16_call_stub(unsigned int r_sym) const
1689 typename Mips16_stubs_int_map::const_iterator it =
1690 this->local_mips16_call_stubs_.find(r_sym);
1691 if (it != this->local_mips16_call_stubs_.end())
1692 return (*it).second;
1696 // Record that this object has MIPS16 call stub for local symbol. This method
1697 // is only called if we decided not to discard the stub.
1699 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1701 gold_assert(stub->is_for_local_function());
1702 unsigned int r_sym = stub->r_sym();
1703 this->local_mips16_call_stubs_.insert(
1704 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1708 // Record that we found "non 16-bit" call relocation against local symbol
1709 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1712 add_local_non_16bit_call(unsigned int symndx)
1713 { this->local_non_16bit_calls_.insert(symndx); }
1715 // Return true if there is any "non 16-bit" call relocation against local
1716 // symbol SYMNDX in this object.
1718 has_local_non_16bit_call_relocs(unsigned int symndx)
1720 return (this->local_non_16bit_calls_.find(symndx)
1721 != this->local_non_16bit_calls_.end());
1724 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1725 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1726 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1728 add_local_16bit_call(unsigned int symndx)
1729 { this->local_16bit_calls_.insert(symndx); }
1731 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1732 // symbol SYMNDX in this object.
1734 has_local_16bit_call_relocs(unsigned int symndx)
1736 return (this->local_16bit_calls_.find(symndx)
1737 != this->local_16bit_calls_.end());
1740 // Get gp value that was used to create this object.
1743 { return this->gp_; }
1745 // Return whether the object is a PIC object.
1748 { return this->is_pic_; }
1750 // Return whether the object uses N32 ABI.
1753 { return this->is_n32_; }
1755 // Return whether the object uses N64 ABI.
1758 { return size == 64; }
1760 // Return whether the object uses NewABI conventions.
1763 { return this->is_n32() || this->is_n64(); }
1765 // Return Mips_got_info for this object.
1766 Mips_got_info<size, big_endian>*
1767 get_got_info() const
1768 { return this->got_info_; }
1770 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1771 Mips_got_info<size, big_endian>*
1772 get_or_create_got_info()
1774 if (!this->got_info_)
1775 this->got_info_ = new Mips_got_info<size, big_endian>();
1776 return this->got_info_;
1779 // Set Mips_got_info for this object.
1781 set_got_info(Mips_got_info<size, big_endian>* got_info)
1782 { this->got_info_ = got_info; }
1784 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1785 // after do_read_symbols is called.
1787 is_mips16_stub_section(unsigned int shndx)
1789 return (is_mips16_fn_stub_section(shndx)
1790 || is_mips16_call_stub_section(shndx)
1791 || is_mips16_call_fp_stub_section(shndx));
1794 // Return TRUE if relocations in section SHNDX can refer directly to a
1795 // MIPS16 function rather than to a hard-float stub. This is only valid
1796 // after do_read_symbols is called.
1798 section_allows_mips16_refs(unsigned int shndx)
1800 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1803 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1804 // after do_read_symbols is called.
1806 is_mips16_fn_stub_section(unsigned int shndx)
1808 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1809 return this->section_is_mips16_fn_stub_[shndx];
1812 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1813 // after do_read_symbols is called.
1815 is_mips16_call_stub_section(unsigned int shndx)
1817 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1818 return this->section_is_mips16_call_stub_[shndx];
1821 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1822 // valid after do_read_symbols is called.
1824 is_mips16_call_fp_stub_section(unsigned int shndx)
1826 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1827 return this->section_is_mips16_call_fp_stub_[shndx];
1830 // Discard MIPS16 stub secions that are not needed.
1832 discard_mips16_stub_sections(Symbol_table* symtab);
1834 // Return whether there is a .reginfo section.
1836 has_reginfo_section() const
1837 { return this->has_reginfo_section_; }
1839 // Return gprmask from the .reginfo section of this object.
1842 { return this->gprmask_; }
1844 // Return cprmask1 from the .reginfo section of this object.
1847 { return this->cprmask1_; }
1849 // Return cprmask2 from the .reginfo section of this object.
1852 { return this->cprmask2_; }
1854 // Return cprmask3 from the .reginfo section of this object.
1857 { return this->cprmask3_; }
1859 // Return cprmask4 from the .reginfo section of this object.
1862 { return this->cprmask4_; }
1864 // This is the contents of the .MIPS.abiflags section if there is one.
1865 Mips_abiflags<big_endian>*
1867 { return this->abiflags_; }
1869 // This is the contents of the .gnu.attribute section if there is one.
1870 const Attributes_section_data*
1871 attributes_section_data() const
1872 { return this->attributes_section_data_; }
1875 // Count the local symbols.
1877 do_count_local_symbols(Stringpool_template<char>*,
1878 Stringpool_template<char>*);
1880 // Read the symbol information.
1882 do_read_symbols(Read_symbols_data* sd);
1885 // The name of the options section.
1886 const char* mips_elf_options_section_name()
1887 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1889 // processor-specific flags in ELF file header.
1890 elfcpp::Elf_Word processor_specific_flags_;
1892 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1893 // This is only valid after do_count_local_symbol is called.
1894 std::vector<bool> local_symbol_is_mips16_;
1896 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1897 // This is only valid after do_count_local_symbol is called.
1898 std::vector<bool> local_symbol_is_micromips_;
1900 // Map from section index to the MIPS16 stub for that section. This contains
1901 // all stubs found in this object.
1902 Mips16_stubs_int_map mips16_stub_sections_;
1904 // Local symbols that have "non 16-bit" call relocation. This relocation
1905 // would need to refer to a MIPS16 fn stub, if there is one.
1906 std::set<unsigned int> local_non_16bit_calls_;
1908 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1909 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1910 // relocation that refers to the stub symbol.
1911 std::set<unsigned int> local_16bit_calls_;
1913 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1914 // This contains only the stubs that we decided not to discard.
1915 Mips16_stubs_int_map local_mips16_fn_stubs_;
1917 // Map from local symbol index to the MIPS16 call stub for that symbol.
1918 // This contains only the stubs that we decided not to discard.
1919 Mips16_stubs_int_map local_mips16_call_stubs_;
1921 // gp value that was used to create this object.
1923 // Whether the object is a PIC object.
1925 // Whether the object uses N32 ABI.
1927 // Whether the object contains a .reginfo section.
1928 bool has_reginfo_section_ : 1;
1929 // The Mips_got_info for this object.
1930 Mips_got_info<size, big_endian>* got_info_;
1932 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1933 // This is only valid after do_read_symbols is called.
1934 std::vector<bool> section_is_mips16_fn_stub_;
1936 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1937 // This is only valid after do_read_symbols is called.
1938 std::vector<bool> section_is_mips16_call_stub_;
1940 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1941 // This is only valid after do_read_symbols is called.
1942 std::vector<bool> section_is_mips16_call_fp_stub_;
1944 // .pdr section index.
1945 unsigned int pdr_shndx_;
1947 // Object attributes if there is a .gnu.attributes section or NULL.
1948 Attributes_section_data* attributes_section_data_;
1950 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1951 Mips_abiflags<big_endian>* abiflags_;
1953 // gprmask from the .reginfo section of this object.
1955 // cprmask1 from the .reginfo section of this object.
1957 // cprmask2 from the .reginfo section of this object.
1959 // cprmask3 from the .reginfo section of this object.
1961 // cprmask4 from the .reginfo section of this object.
1965 // Mips_output_data_got class.
1967 template<int size, bool big_endian>
1968 class Mips_output_data_got : public Output_data_got<size, big_endian>
1970 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1971 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1973 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1976 Mips_output_data_got(Target_mips<size, big_endian>* target,
1977 Symbol_table* symtab, Layout* layout)
1978 : Output_data_got<size, big_endian>(), target_(target),
1979 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1980 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1981 secondary_got_relocs_()
1983 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1984 this->set_addralign(16);
1987 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1988 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1990 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1991 unsigned int symndx, Mips_address addend,
1992 unsigned int r_type, unsigned int shndx,
1993 bool is_section_symbol)
1995 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
2000 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2001 // in OBJECT. FOR_CALL is true if the caller is only interested in
2002 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2005 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2006 Mips_relobj<size, big_endian>* object,
2007 unsigned int r_type, bool dyn_reloc, bool for_call)
2009 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2010 dyn_reloc, for_call);
2013 // Record that OBJECT has a page relocation against symbol SYMNDX and
2014 // that ADDEND is the addend for that relocation.
2016 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2017 unsigned int symndx, int addend)
2018 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2020 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2021 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2022 // applied in a static link.
2024 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2025 Mips_symbol<size>* gsym)
2026 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2028 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2029 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2030 // relocation that needs to be applied in a static link.
2032 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033 Sized_relobj_file<size, big_endian>* relobj,
2036 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2040 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2041 // secondary GOT at OFFSET.
2043 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2044 Mips_symbol<size>* gsym)
2046 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2050 // Update GOT entry at OFFSET with VALUE.
2052 update_got_entry(unsigned int offset, Mips_address value)
2054 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2057 // Return the number of entries in local part of the GOT. This includes
2058 // local entries, page entries and 2 reserved entries.
2060 get_local_gotno() const
2062 if (!this->multi_got())
2064 return (2 + this->master_got_info_->local_gotno()
2065 + this->master_got_info_->page_gotno());
2068 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2071 // Return dynamic symbol table index of the first symbol with global GOT
2074 first_global_got_dynsym_index() const
2075 { return this->first_global_got_dynsym_index_; }
2077 // Set dynamic symbol table index of the first symbol with global GOT entry.
2079 set_first_global_got_dynsym_index(unsigned int index)
2080 { this->first_global_got_dynsym_index_ = index; }
2082 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2083 // larger than 64K, create multi-GOT.
2085 lay_out_got(Layout* layout, Symbol_table* symtab,
2086 const Input_objects* input_objects);
2088 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2090 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2092 // Attempt to merge GOTs of different input objects.
2094 merge_gots(const Input_objects* input_objects);
2096 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2097 // this would lead to overflow, true if they were merged successfully.
2099 merge_got_with(Mips_got_info<size, big_endian>* from,
2100 Mips_relobj<size, big_endian>* object,
2101 Mips_got_info<size, big_endian>* to);
2103 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2104 // use OBJECT's GOT.
2106 get_got_page_offset(Mips_address value,
2107 const Mips_relobj<size, big_endian>* object)
2109 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2110 ? this->master_got_info_
2111 : object->get_got_info());
2112 gold_assert(g != NULL);
2113 return g->get_got_page_offset(value, this);
2116 // Return the GOT offset of type GOT_TYPE of the global symbol
2117 // GSYM. For multi-GOT links, use OBJECT's GOT.
2118 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2119 Mips_relobj<size, big_endian>* object) const
2121 if (!this->multi_got())
2122 return gsym->got_offset(got_type);
2125 Mips_got_info<size, big_endian>* g = object->get_got_info();
2126 gold_assert(g != NULL);
2127 return gsym->got_offset(g->multigot_got_type(got_type));
2131 // Return the GOT offset of type GOT_TYPE of the local symbol
2134 got_offset(unsigned int symndx, unsigned int got_type,
2135 Sized_relobj_file<size, big_endian>* object,
2136 uint64_t addend) const
2137 { return object->local_got_offset(symndx, got_type, addend); }
2139 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2141 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2143 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2144 ? this->master_got_info_
2145 : object->get_got_info());
2146 gold_assert(g != NULL);
2147 return g->tls_ldm_offset();
2150 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2152 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2153 Mips_relobj<size, big_endian>* object)
2155 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2156 ? this->master_got_info_
2157 : object->get_got_info());
2158 gold_assert(g != NULL);
2159 g->set_tls_ldm_offset(tls_ldm_offset);
2162 // Return true for multi-GOT links.
2165 { return this->primary_got_ != NULL; }
2167 // Return the offset of OBJECT's GOT from the start of .got section.
2169 get_got_offset(const Mips_relobj<size, big_endian>* object)
2171 if (!this->multi_got())
2175 Mips_got_info<size, big_endian>* g = object->get_got_info();
2176 return g != NULL ? g->offset() : 0;
2180 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2182 add_reloc_only_entries()
2183 { this->master_got_info_->add_reloc_only_entries(this); }
2185 // Return offset of the primary GOT's entry for global symbol.
2187 get_primary_got_offset(const Mips_symbol<size>* sym) const
2189 gold_assert(sym->global_got_area() != GGA_NONE);
2190 return (this->get_local_gotno() + sym->dynsym_index()
2191 - this->first_global_got_dynsym_index()) * size/8;
2194 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2195 // Input argument GOT_OFFSET is always global offset from the start of
2196 // .got section, for both single and multi-GOT links.
2197 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2198 // links, the return value is object_got_offset - 0x7FF0, where
2199 // object_got_offset is offset in the OBJECT's GOT.
2201 gp_offset(unsigned int got_offset,
2202 const Mips_relobj<size, big_endian>* object) const
2204 return (this->address() + got_offset
2205 - this->target_->adjusted_gp_value(object));
2209 // Write out the GOT table.
2211 do_write(Output_file*);
2215 // This class represent dynamic relocations that need to be applied by
2216 // gold because we are using TLS relocations in a static link.
2220 Static_reloc(unsigned int got_offset, unsigned int r_type,
2221 Mips_symbol<size>* gsym)
2222 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2223 { this->u_.global.symbol = gsym; }
2225 Static_reloc(unsigned int got_offset, unsigned int r_type,
2226 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2227 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2229 this->u_.local.relobj = relobj;
2230 this->u_.local.index = index;
2233 // Return the GOT offset.
2236 { return this->got_offset_; }
2241 { return this->r_type_; }
2243 // Whether the symbol is global or not.
2245 symbol_is_global() const
2246 { return this->symbol_is_global_; }
2248 // For a relocation against a global symbol, the global symbol.
2252 gold_assert(this->symbol_is_global_);
2253 return this->u_.global.symbol;
2256 // For a relocation against a local symbol, the defining object.
2257 Sized_relobj_file<size, big_endian>*
2260 gold_assert(!this->symbol_is_global_);
2261 return this->u_.local.relobj;
2264 // For a relocation against a local symbol, the local symbol index.
2268 gold_assert(!this->symbol_is_global_);
2269 return this->u_.local.index;
2273 // GOT offset of the entry to which this relocation is applied.
2274 unsigned int got_offset_;
2275 // Type of relocation.
2276 unsigned int r_type_;
2277 // Whether this relocation is against a global symbol.
2278 bool symbol_is_global_;
2279 // A global or local symbol.
2284 // For a global symbol, the symbol itself.
2285 Mips_symbol<size>* symbol;
2289 // For a local symbol, the object defining object.
2290 Sized_relobj_file<size, big_endian>* relobj;
2291 // For a local symbol, the symbol index.
2298 Target_mips<size, big_endian>* target_;
2299 // The symbol table.
2300 Symbol_table* symbol_table_;
2303 // Static relocs to be applied to the GOT.
2304 std::vector<Static_reloc> static_relocs_;
2305 // .got section view.
2306 unsigned char* got_view_;
2307 // The dynamic symbol table index of the first symbol with global GOT entry.
2308 unsigned int first_global_got_dynsym_index_;
2309 // The master GOT information.
2310 Mips_got_info<size, big_endian>* master_got_info_;
2311 // The primary GOT information.
2312 Mips_got_info<size, big_endian>* primary_got_;
2313 // Secondary GOT fixups.
2314 std::vector<Static_reloc> secondary_got_relocs_;
2317 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2318 // two ways of creating these interfaces. The first is to add:
2320 // lui $25,%hi(func)
2322 // addiu $25,$25,%lo(func)
2324 // to a separate trampoline section. The second is to add:
2326 // lui $25,%hi(func)
2327 // addiu $25,$25,%lo(func)
2329 // immediately before a PIC function "func", but only if a function is at the
2330 // beginning of the section, and the section is not too heavily aligned (i.e we
2331 // would need to add no more than 2 nops before the stub.)
2333 // We only create stubs of the first type.
2335 template<int size, bool big_endian>
2336 class Mips_output_data_la25_stub : public Output_section_data
2338 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2341 Mips_output_data_la25_stub()
2342 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2345 // Create LA25 stub for a symbol.
2347 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2348 Mips_symbol<size>* gsym);
2350 // Return output address of a stub.
2352 stub_address(const Mips_symbol<size>* sym) const
2354 gold_assert(sym->has_la25_stub());
2355 return this->address() + sym->la25_stub_offset();
2360 do_adjust_output_section(Output_section* os)
2361 { os->set_entsize(0); }
2364 // Template for standard LA25 stub.
2365 static const uint32_t la25_stub_entry[];
2366 // Template for microMIPS LA25 stub.
2367 static const uint32_t la25_stub_micromips_entry[];
2369 // Set the final size.
2371 set_final_data_size()
2372 { this->set_data_size(this->symbols_.size() * 16); }
2374 // Create a symbol for SYM stub's value and size, to help make the
2375 // disassembly easier to read.
2377 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2378 Target_mips<size, big_endian>* target, uint64_t symsize);
2380 // Write to a map file.
2382 do_print_to_mapfile(Mapfile* mapfile) const
2383 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2385 // Write out the LA25 stub section.
2387 do_write(Output_file*);
2389 // Symbols that have LA25 stubs.
2390 std::vector<Mips_symbol<size>*> symbols_;
2393 // MIPS-specific relocation writer.
2395 template<int sh_type, bool dynamic, int size, bool big_endian>
2396 struct Mips_output_reloc_writer;
2398 template<int sh_type, bool dynamic, bool big_endian>
2399 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2401 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2402 typedef std::vector<Output_reloc_type> Relocs;
2405 write(typename Relocs::const_iterator p, unsigned char* pov)
2409 template<int sh_type, bool dynamic, bool big_endian>
2410 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2412 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2413 typedef std::vector<Output_reloc_type> Relocs;
2416 write(typename Relocs::const_iterator p, unsigned char* pov)
2418 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2419 orel.put_r_offset(p->get_address());
2420 orel.put_r_sym(p->get_symbol_index());
2421 orel.put_r_ssym(RSS_UNDEF);
2422 orel.put_r_type(p->type());
2423 if (p->type() == elfcpp::R_MIPS_REL32)
2424 orel.put_r_type2(elfcpp::R_MIPS_64);
2426 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2427 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2431 template<int sh_type, bool dynamic, int size, bool big_endian>
2432 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2436 Mips_output_data_reloc(bool sort_relocs)
2437 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2441 // Write out the data.
2443 do_write(Output_file* of)
2445 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2447 this->template do_write_generic<Writer>(of);
2452 // A class to handle the PLT data.
2454 template<int size, bool big_endian>
2455 class Mips_output_data_plt : public Output_section_data
2457 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2458 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2459 size, big_endian> Reloc_section;
2462 // Create the PLT section. The ordinary .got section is an argument,
2463 // since we need to refer to the start.
2464 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2465 Target_mips<size, big_endian>* target)
2466 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2467 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2470 this->rel_ = new Reloc_section(false);
2471 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2472 elfcpp::SHF_ALLOC, this->rel_,
2473 ORDER_DYNAMIC_PLT_RELOCS, false);
2476 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2478 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2480 // Return the .rel.plt section data.
2483 { return this->rel_; }
2485 // Return the number of PLT entries.
2488 { return this->symbols_.size(); }
2490 // Return the offset of the first non-reserved PLT entry.
2492 first_plt_entry_offset() const
2493 { return sizeof(plt0_entry_o32); }
2495 // Return the size of a PLT entry.
2497 plt_entry_size() const
2498 { return sizeof(plt_entry); }
2500 // Set final PLT offsets. For each symbol, determine whether standard or
2501 // compressed (MIPS16 or microMIPS) PLT entry is used.
2505 // Return the offset of the first standard PLT entry.
2507 first_mips_plt_offset() const
2508 { return this->plt_header_size_; }
2510 // Return the offset of the first compressed PLT entry.
2512 first_comp_plt_offset() const
2513 { return this->plt_header_size_ + this->plt_mips_offset_; }
2515 // Return whether there are any standard PLT entries.
2517 has_standard_entries() const
2518 { return this->plt_mips_offset_ > 0; }
2520 // Return the output address of standard PLT entry.
2522 mips_entry_address(const Mips_symbol<size>* sym) const
2524 gold_assert (sym->has_mips_plt_offset());
2525 return (this->address() + this->first_mips_plt_offset()
2526 + sym->mips_plt_offset());
2529 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2531 comp_entry_address(const Mips_symbol<size>* sym) const
2533 gold_assert (sym->has_comp_plt_offset());
2534 return (this->address() + this->first_comp_plt_offset()
2535 + sym->comp_plt_offset());
2540 do_adjust_output_section(Output_section* os)
2541 { os->set_entsize(0); }
2543 // Write to a map file.
2545 do_print_to_mapfile(Mapfile* mapfile) const
2546 { mapfile->print_output_data(this, _(".plt")); }
2549 // Template for the first PLT entry.
2550 static const uint32_t plt0_entry_o32[];
2551 static const uint32_t plt0_entry_n32[];
2552 static const uint32_t plt0_entry_n64[];
2553 static const uint32_t plt0_entry_micromips_o32[];
2554 static const uint32_t plt0_entry_micromips32_o32[];
2556 // Template for subsequent PLT entries.
2557 static const uint32_t plt_entry[];
2558 static const uint32_t plt_entry_r6[];
2559 static const uint32_t plt_entry_mips16_o32[];
2560 static const uint32_t plt_entry_micromips_o32[];
2561 static const uint32_t plt_entry_micromips32_o32[];
2563 // Set the final size.
2565 set_final_data_size()
2567 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2568 + this->plt_comp_offset_);
2571 // Write out the PLT data.
2573 do_write(Output_file*);
2575 // Return whether the plt header contains microMIPS code. For the sake of
2576 // cache alignment always use a standard header whenever any standard entries
2577 // are present even if microMIPS entries are present as well. This also lets
2578 // the microMIPS header rely on the value of $v0 only set by microMIPS
2579 // entries, for a small size reduction.
2581 is_plt_header_compressed() const
2583 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2584 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2587 // Return the size of the PLT header.
2589 get_plt_header_size() const
2591 if (this->target_->is_output_n64())
2592 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2593 else if (this->target_->is_output_n32())
2594 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2595 else if (!this->is_plt_header_compressed())
2596 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2597 else if (this->target_->use_32bit_micromips_instructions())
2598 return (2 * sizeof(plt0_entry_micromips32_o32)
2599 / sizeof(plt0_entry_micromips32_o32[0]));
2601 return (2 * sizeof(plt0_entry_micromips_o32)
2602 / sizeof(plt0_entry_micromips_o32[0]));
2605 // Return the PLT header entry.
2607 get_plt_header_entry() const
2609 if (this->target_->is_output_n64())
2610 return plt0_entry_n64;
2611 else if (this->target_->is_output_n32())
2612 return plt0_entry_n32;
2613 else if (!this->is_plt_header_compressed())
2614 return plt0_entry_o32;
2615 else if (this->target_->use_32bit_micromips_instructions())
2616 return plt0_entry_micromips32_o32;
2618 return plt0_entry_micromips_o32;
2621 // Return the size of the standard PLT entry.
2623 standard_plt_entry_size() const
2624 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2626 // Return the size of the compressed PLT entry.
2628 compressed_plt_entry_size() const
2630 gold_assert(!this->target_->is_output_newabi());
2632 if (!this->target_->is_output_micromips())
2633 return (2 * sizeof(plt_entry_mips16_o32)
2634 / sizeof(plt_entry_mips16_o32[0]));
2635 else if (this->target_->use_32bit_micromips_instructions())
2636 return (2 * sizeof(plt_entry_micromips32_o32)
2637 / sizeof(plt_entry_micromips32_o32[0]));
2639 return (2 * sizeof(plt_entry_micromips_o32)
2640 / sizeof(plt_entry_micromips_o32[0]));
2643 // The reloc section.
2644 Reloc_section* rel_;
2645 // The .got.plt section.
2646 Output_data_space* got_plt_;
2647 // Symbols that have PLT entry.
2648 std::vector<Mips_symbol<size>*> symbols_;
2649 // The offset of the next standard PLT entry to create.
2650 unsigned int plt_mips_offset_;
2651 // The offset of the next compressed PLT entry to create.
2652 unsigned int plt_comp_offset_;
2653 // The size of the PLT header in bytes.
2654 unsigned int plt_header_size_;
2656 Target_mips<size, big_endian>* target_;
2659 // A class to handle the .MIPS.stubs data.
2661 template<int size, bool big_endian>
2662 class Mips_output_data_mips_stubs : public Output_section_data
2664 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2666 // Unordered set of .MIPS.stubs entries.
2667 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2668 Mips_stubs_entry_set;
2671 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2672 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2673 stub_offsets_are_set_(false), target_(target)
2676 // Create entry for a symbol.
2678 make_entry(Mips_symbol<size>*);
2680 // Remove entry for a symbol.
2682 remove_entry(Mips_symbol<size>* gsym);
2684 // Set stub offsets for symbols. This method expects that the number of
2685 // entries in dynamic symbol table is set.
2687 set_lazy_stub_offsets();
2690 set_needs_dynsym_value();
2692 // Set the number of entries in dynamic symbol table.
2694 set_dynsym_count(unsigned int dynsym_count)
2695 { this->dynsym_count_ = dynsym_count; }
2697 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2698 // count is greater than 0x10000. If the dynamic symbol count is less than
2699 // 0x10000, the stub will be 4 bytes smaller.
2700 // There's no disadvantage from using microMIPS code here, so for the sake of
2701 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2702 // output produced at all. This has a benefit of stubs being shorter by
2703 // 4 bytes each too, unless in the insn32 mode.
2705 stub_max_size() const
2707 if (!this->target_->is_output_micromips()
2708 || this->target_->use_32bit_micromips_instructions())
2714 // Return the size of the stub. This method expects that the final dynsym
2719 gold_assert(this->dynsym_count_ != -1U);
2720 if (this->dynsym_count_ > 0x10000)
2721 return this->stub_max_size();
2723 return this->stub_max_size() - 4;
2726 // Return output address of a stub.
2728 stub_address(const Mips_symbol<size>* sym) const
2730 gold_assert(sym->has_lazy_stub());
2731 return this->address() + sym->lazy_stub_offset();
2736 do_adjust_output_section(Output_section* os)
2737 { os->set_entsize(0); }
2739 // Write to a map file.
2741 do_print_to_mapfile(Mapfile* mapfile) const
2742 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2745 static const uint32_t lazy_stub_normal_1[];
2746 static const uint32_t lazy_stub_normal_1_n64[];
2747 static const uint32_t lazy_stub_normal_2[];
2748 static const uint32_t lazy_stub_normal_2_n64[];
2749 static const uint32_t lazy_stub_big[];
2750 static const uint32_t lazy_stub_big_n64[];
2752 static const uint32_t lazy_stub_micromips_normal_1[];
2753 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2754 static const uint32_t lazy_stub_micromips_normal_2[];
2755 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2756 static const uint32_t lazy_stub_micromips_big[];
2757 static const uint32_t lazy_stub_micromips_big_n64[];
2759 static const uint32_t lazy_stub_micromips32_normal_1[];
2760 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2761 static const uint32_t lazy_stub_micromips32_normal_2[];
2762 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2763 static const uint32_t lazy_stub_micromips32_big[];
2764 static const uint32_t lazy_stub_micromips32_big_n64[];
2766 // Set the final size.
2768 set_final_data_size()
2769 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2771 // Write out the .MIPS.stubs data.
2773 do_write(Output_file*);
2775 // .MIPS.stubs symbols
2776 Mips_stubs_entry_set symbols_;
2777 // Number of entries in dynamic symbol table.
2778 unsigned int dynsym_count_;
2779 // Whether the stub offsets are set.
2780 bool stub_offsets_are_set_;
2782 Target_mips<size, big_endian>* target_;
2785 // This class handles Mips .reginfo output section.
2787 template<int size, bool big_endian>
2788 class Mips_output_section_reginfo : public Output_section_data
2790 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2793 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2794 Valtype gprmask, Valtype cprmask1,
2795 Valtype cprmask2, Valtype cprmask3,
2797 : Output_section_data(24, 4, true), target_(target),
2798 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2799 cprmask3_(cprmask3), cprmask4_(cprmask4)
2803 // Write to a map file.
2805 do_print_to_mapfile(Mapfile* mapfile) const
2806 { mapfile->print_output_data(this, _(".reginfo")); }
2808 // Write out reginfo section.
2810 do_write(Output_file* of);
2813 Target_mips<size, big_endian>* target_;
2815 // gprmask of the output .reginfo section.
2817 // cprmask1 of the output .reginfo section.
2819 // cprmask2 of the output .reginfo section.
2821 // cprmask3 of the output .reginfo section.
2823 // cprmask4 of the output .reginfo section.
2827 // This class handles .MIPS.options output section.
2829 template<int size, bool big_endian>
2830 class Mips_output_section_options : public Output_section
2833 Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2834 elfcpp::Elf_Xword flags,
2835 Target_mips<size, big_endian>* target)
2836 : Output_section(name, type, flags), target_(target)
2838 // After the input sections are written, we only need to update
2839 // ri_gp_value field of ODK_REGINFO entries.
2840 this->set_after_input_sections();
2844 // Write out option section.
2846 do_write(Output_file* of);
2849 Target_mips<size, big_endian>* target_;
2852 // This class handles .MIPS.abiflags output section.
2854 template<int size, bool big_endian>
2855 class Mips_output_section_abiflags : public Output_section_data
2858 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2859 : Output_section_data(24, 8, true), abiflags_(abiflags)
2863 // Write to a map file.
2865 do_print_to_mapfile(Mapfile* mapfile) const
2866 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2869 do_write(Output_file* of);
2872 const Mips_abiflags<big_endian>& abiflags_;
2875 // The MIPS target has relocation types which default handling of relocatable
2876 // relocation cannot process. So we have to extend the default code.
2878 template<bool big_endian, typename Classify_reloc>
2879 class Mips_scan_relocatable_relocs :
2880 public Default_scan_relocatable_relocs<Classify_reloc>
2883 // Return the strategy to use for a local symbol which is a section
2884 // symbol, given the relocation type.
2885 inline Relocatable_relocs::Reloc_strategy
2886 local_section_strategy(unsigned int r_type, Relobj* object)
2888 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2889 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2894 case elfcpp::R_MIPS_26:
2895 return Relocatable_relocs::RELOC_SPECIAL;
2898 return Default_scan_relocatable_relocs<Classify_reloc>::
2899 local_section_strategy(r_type, object);
2905 // Mips_copy_relocs class. The only difference from the base class is the
2906 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2907 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2908 // cannot be made dynamic, a COPY reloc is emitted.
2910 template<int sh_type, int size, bool big_endian>
2911 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2915 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2918 // Emit any saved relocations which turn out to be needed. This is
2919 // called after all the relocs have been scanned.
2921 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2922 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2925 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2928 // Emit this reloc if appropriate. This is called after we have
2929 // scanned all the relocations, so we know whether we emitted a
2930 // COPY relocation for SYM_.
2932 emit_entry(Copy_reloc_entry& entry,
2933 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2934 Symbol_table* symtab, Layout* layout,
2935 Target_mips<size, big_endian>* target);
2939 // Return true if the symbol SYM should be considered to resolve local
2940 // to the current module, and false otherwise. The logic is taken from
2941 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2943 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2944 bool local_protected)
2946 // If it's a local sym, of course we resolve locally.
2950 // STV_HIDDEN or STV_INTERNAL ones must be local.
2951 if (sym->visibility() == elfcpp::STV_HIDDEN
2952 || sym->visibility() == elfcpp::STV_INTERNAL)
2955 // If we don't have a definition in a regular file, then we can't
2956 // resolve locally. The sym is either undefined or dynamic.
2957 if (sym->is_from_dynobj() || sym->is_undefined())
2960 // Forced local symbols resolve locally.
2961 if (sym->is_forced_local())
2964 // As do non-dynamic symbols.
2965 if (!has_dynsym_entry)
2968 // At this point, we know the symbol is defined and dynamic. In an
2969 // executable it must resolve locally, likewise when building symbolic
2970 // shared libraries.
2971 if (parameters->options().output_is_executable()
2972 || parameters->options().Bsymbolic())
2975 // Now deal with defined dynamic symbols in shared libraries. Ones
2976 // with default visibility might not resolve locally.
2977 if (sym->visibility() == elfcpp::STV_DEFAULT)
2980 // STV_PROTECTED non-function symbols are local.
2981 if (sym->type() != elfcpp::STT_FUNC)
2984 // Function pointer equality tests may require that STV_PROTECTED
2985 // symbols be treated as dynamic symbols. If the address of a
2986 // function not defined in an executable is set to that function's
2987 // plt entry in the executable, then the address of the function in
2988 // a shared library must also be the plt entry in the executable.
2989 return local_protected;
2992 // Return TRUE if references to this symbol always reference the symbol in this
2995 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2997 return symbol_refs_local(sym, has_dynsym_entry, false);
3000 // Return TRUE if calls to this symbol always call the version in this object.
3002 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3004 return symbol_refs_local(sym, has_dynsym_entry, true);
3007 // Compare GOT offsets of two symbols.
3009 template<int size, bool big_endian>
3011 got_offset_compare(Symbol* sym1, Symbol* sym2)
3013 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3014 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3015 unsigned int area1 = mips_sym1->global_got_area();
3016 unsigned int area2 = mips_sym2->global_got_area();
3017 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3019 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3021 return area1 < area2;
3023 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3026 // This method divides dynamic symbols into symbols that have GOT entry, and
3027 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3028 // Mips ABI requires that symbols with the GOT entry must be at the end of
3029 // dynamic symbol table, and the order in dynamic symbol table must match the
3032 template<int size, bool big_endian>
3034 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3035 std::vector<Symbol*>* non_got_symbols,
3036 std::vector<Symbol*>* got_symbols)
3038 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3039 p != dyn_symbols->end();
3042 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3043 if (mips_sym->global_got_area() == GGA_NORMAL
3044 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3045 got_symbols->push_back(mips_sym);
3047 non_got_symbols->push_back(mips_sym);
3050 std::sort(got_symbols->begin(), got_symbols->end(),
3051 got_offset_compare<size, big_endian>);
3054 // Functor class for processing the global symbol table.
3056 template<int size, bool big_endian>
3057 class Symbol_visitor_check_symbols
3060 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3061 Layout* layout, Symbol_table* symtab)
3062 : target_(target), layout_(layout), symtab_(symtab)
3066 operator()(Sized_symbol<size>* sym)
3068 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3069 if (local_pic_function<size, big_endian>(mips_sym))
3071 // SYM is a function that might need $25 to be valid on entry.
3072 // If we're creating a non-PIC relocatable object, mark SYM as
3073 // being PIC. If we're creating a non-relocatable object with
3074 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3076 if (parameters->options().relocatable())
3078 if (!parameters->options().output_is_position_independent())
3079 mips_sym->set_pic();
3081 else if (mips_sym->has_nonpic_branches())
3083 this->target_->la25_stub_section(layout_)
3084 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3090 Target_mips<size, big_endian>* target_;
3092 Symbol_table* symtab_;
3095 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3096 // and endianness. The relocation format for MIPS-64 is non-standard.
3098 template<int sh_type, int size, bool big_endian>
3099 struct Mips_reloc_types;
3101 template<bool big_endian>
3102 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3104 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3105 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3107 static typename elfcpp::Elf_types<32>::Elf_Swxword
3108 get_r_addend(const Reloc*)
3112 set_reloc_addend(Reloc_write*,
3113 typename elfcpp::Elf_types<32>::Elf_Swxword)
3114 { gold_unreachable(); }
3117 template<bool big_endian>
3118 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3120 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3121 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3123 static typename elfcpp::Elf_types<32>::Elf_Swxword
3124 get_r_addend(const Reloc* reloc)
3125 { return reloc->get_r_addend(); }
3128 set_reloc_addend(Reloc_write* p,
3129 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3130 { p->put_r_addend(val); }
3133 template<bool big_endian>
3134 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3136 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3137 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3139 static typename elfcpp::Elf_types<64>::Elf_Swxword
3140 get_r_addend(const Reloc*)
3144 set_reloc_addend(Reloc_write*,
3145 typename elfcpp::Elf_types<64>::Elf_Swxword)
3146 { gold_unreachable(); }
3149 template<bool big_endian>
3150 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3152 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3153 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3155 static typename elfcpp::Elf_types<64>::Elf_Swxword
3156 get_r_addend(const Reloc* reloc)
3157 { return reloc->get_r_addend(); }
3160 set_reloc_addend(Reloc_write* p,
3161 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3162 { p->put_r_addend(val); }
3165 // Forward declaration.
3167 mips_get_size_for_reloc(unsigned int, Relobj*);
3169 // A class for inquiring about properties of a relocation,
3170 // used while scanning relocs during a relocatable link and
3171 // garbage collection.
3173 template<int sh_type_, int size, bool big_endian>
3174 class Mips_classify_reloc;
3176 template<int sh_type_, bool big_endian>
3177 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3178 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3181 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3183 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3186 // Return the symbol referred to by the relocation.
3187 static inline unsigned int
3188 get_r_sym(const Reltype* reloc)
3189 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3191 // Return the type of the relocation.
3192 static inline unsigned int
3193 get_r_type(const Reltype* reloc)
3194 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3196 static inline unsigned int
3197 get_r_type2(const Reltype*)
3200 static inline unsigned int
3201 get_r_type3(const Reltype*)
3204 static inline unsigned int
3205 get_r_ssym(const Reltype*)
3208 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3209 static inline unsigned int
3210 get_r_addend(const Reltype* reloc)
3212 if (sh_type_ == elfcpp::SHT_REL)
3214 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3217 // Write the r_info field to a new reloc, using the r_info field from
3218 // the original reloc, replacing the r_sym field with R_SYM.
3220 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3222 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3223 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3226 // Write the r_addend field to a new reloc.
3228 put_r_addend(Reltype_write* to,
3229 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3230 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3232 // Return the size of the addend of the relocation (only used for SHT_REL).
3234 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3235 { return mips_get_size_for_reloc(r_type, obj); }
3238 template<int sh_type_, bool big_endian>
3239 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3240 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3243 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3245 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3248 // Return the symbol referred to by the relocation.
3249 static inline unsigned int
3250 get_r_sym(const Reltype* reloc)
3251 { return reloc->get_r_sym(); }
3253 // Return the r_type of the relocation.
3254 static inline unsigned int
3255 get_r_type(const Reltype* reloc)
3256 { return reloc->get_r_type(); }
3258 // Return the r_type2 of the relocation.
3259 static inline unsigned int
3260 get_r_type2(const Reltype* reloc)
3261 { return reloc->get_r_type2(); }
3263 // Return the r_type3 of the relocation.
3264 static inline unsigned int
3265 get_r_type3(const Reltype* reloc)
3266 { return reloc->get_r_type3(); }
3268 // Return the special symbol of the relocation.
3269 static inline unsigned int
3270 get_r_ssym(const Reltype* reloc)
3271 { return reloc->get_r_ssym(); }
3273 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3274 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3275 get_r_addend(const Reltype* reloc)
3277 if (sh_type_ == elfcpp::SHT_REL)
3279 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3282 // Write the r_info field to a new reloc, using the r_info field from
3283 // the original reloc, replacing the r_sym field with R_SYM.
3285 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3287 new_reloc->put_r_sym(r_sym);
3288 new_reloc->put_r_ssym(reloc->get_r_ssym());
3289 new_reloc->put_r_type3(reloc->get_r_type3());
3290 new_reloc->put_r_type2(reloc->get_r_type2());
3291 new_reloc->put_r_type(reloc->get_r_type());
3294 // Write the r_addend field to a new reloc.
3296 put_r_addend(Reltype_write* to,
3297 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3298 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3300 // Return the size of the addend of the relocation (only used for SHT_REL).
3302 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3303 { return mips_get_size_for_reloc(r_type, obj); }
3306 template<int size, bool big_endian>
3307 class Target_mips : public Sized_target<size, big_endian>
3309 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3310 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3312 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3313 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3314 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3316 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3320 Target_mips(const Target::Target_info* info = &mips_info)
3321 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3322 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3323 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3324 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3325 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3326 entry_symbol_is_compressed_(false), insn32_(false)
3328 this->add_machine_extensions();
3331 // The offset of $gp from the beginning of the .got section.
3332 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3334 // The maximum size of the GOT for it to be addressable using 16-bit
3335 // offsets from $gp.
3336 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3338 // Make a new symbol table entry for the Mips target.
3340 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3341 { return new Mips_symbol<size>(); }
3343 // Process the relocations to determine unreferenced sections for
3344 // garbage collection.
3346 gc_process_relocs(Symbol_table* symtab,
3348 Sized_relobj_file<size, big_endian>* object,
3349 unsigned int data_shndx,
3350 unsigned int sh_type,
3351 const unsigned char* prelocs,
3353 Output_section* output_section,
3354 bool needs_special_offset_handling,
3355 size_t local_symbol_count,
3356 const unsigned char* plocal_symbols);
3358 // Scan the relocations to look for symbol adjustments.
3360 scan_relocs(Symbol_table* symtab,
3362 Sized_relobj_file<size, big_endian>* object,
3363 unsigned int data_shndx,
3364 unsigned int sh_type,
3365 const unsigned char* prelocs,
3367 Output_section* output_section,
3368 bool needs_special_offset_handling,
3369 size_t local_symbol_count,
3370 const unsigned char* plocal_symbols);
3372 // Finalize the sections.
3374 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3376 // Relocate a section.
3378 relocate_section(const Relocate_info<size, big_endian>*,
3379 unsigned int sh_type,
3380 const unsigned char* prelocs,
3382 Output_section* output_section,
3383 bool needs_special_offset_handling,
3384 unsigned char* view,
3385 Mips_address view_address,
3386 section_size_type view_size,
3387 const Reloc_symbol_changes*);
3389 // Scan the relocs during a relocatable link.
3391 scan_relocatable_relocs(Symbol_table* symtab,
3393 Sized_relobj_file<size, big_endian>* object,
3394 unsigned int data_shndx,
3395 unsigned int sh_type,
3396 const unsigned char* prelocs,
3398 Output_section* output_section,
3399 bool needs_special_offset_handling,
3400 size_t local_symbol_count,
3401 const unsigned char* plocal_symbols,
3402 Relocatable_relocs*);
3404 // Scan the relocs for --emit-relocs.
3406 emit_relocs_scan(Symbol_table* symtab,
3408 Sized_relobj_file<size, big_endian>* object,
3409 unsigned int data_shndx,
3410 unsigned int sh_type,
3411 const unsigned char* prelocs,
3413 Output_section* output_section,
3414 bool needs_special_offset_handling,
3415 size_t local_symbol_count,
3416 const unsigned char* plocal_syms,
3417 Relocatable_relocs* rr);
3419 // Emit relocations for a section.
3421 relocate_relocs(const Relocate_info<size, big_endian>*,
3422 unsigned int sh_type,
3423 const unsigned char* prelocs,
3425 Output_section* output_section,
3426 typename elfcpp::Elf_types<size>::Elf_Off
3427 offset_in_output_section,
3428 unsigned char* view,
3429 Mips_address view_address,
3430 section_size_type view_size,
3431 unsigned char* reloc_view,
3432 section_size_type reloc_view_size);
3434 // Perform target-specific processing in a relocatable link. This is
3435 // only used if we use the relocation strategy RELOC_SPECIAL.
3437 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3438 unsigned int sh_type,
3439 const unsigned char* preloc_in,
3441 Output_section* output_section,
3442 typename elfcpp::Elf_types<size>::Elf_Off
3443 offset_in_output_section,
3444 unsigned char* view,
3445 Mips_address view_address,
3446 section_size_type view_size,
3447 unsigned char* preloc_out);
3449 // Return whether SYM is defined by the ABI.
3451 do_is_defined_by_abi(const Symbol* sym) const
3453 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3454 || (strcmp(sym->name(), "_gp_disp") == 0)
3455 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3458 // Return the number of entries in the GOT.
3460 got_entry_count() const
3462 if (!this->has_got_section())
3464 return this->got_size() / (size/8);
3467 // Return the number of entries in the PLT.
3469 plt_entry_count() const
3471 if (this->plt_ == NULL)
3473 return this->plt_->entry_count();
3476 // Return the offset of the first non-reserved PLT entry.
3478 first_plt_entry_offset() const
3479 { return this->plt_->first_plt_entry_offset(); }
3481 // Return the size of each PLT entry.
3483 plt_entry_size() const
3484 { return this->plt_->plt_entry_size(); }
3486 // Get the GOT section, creating it if necessary.
3487 Mips_output_data_got<size, big_endian>*
3488 got_section(Symbol_table*, Layout*);
3490 // Get the GOT section.
3491 Mips_output_data_got<size, big_endian>*
3494 gold_assert(this->got_ != NULL);
3498 // Get the .MIPS.stubs section, creating it if necessary.
3499 Mips_output_data_mips_stubs<size, big_endian>*
3500 mips_stubs_section(Layout* layout);
3502 // Get the .MIPS.stubs section.
3503 Mips_output_data_mips_stubs<size, big_endian>*
3504 mips_stubs_section() const
3506 gold_assert(this->mips_stubs_ != NULL);
3507 return this->mips_stubs_;
3510 // Get the LA25 stub section, creating it if necessary.
3511 Mips_output_data_la25_stub<size, big_endian>*
3512 la25_stub_section(Layout*);
3514 // Get the LA25 stub section.
3515 Mips_output_data_la25_stub<size, big_endian>*
3518 gold_assert(this->la25_stub_ != NULL);
3519 return this->la25_stub_;
3522 // Get gp value. It has the value of .got + 0x7FF0.
3526 if (this->gp_ != NULL)
3527 return this->gp_->value();
3531 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3532 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3534 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3536 if (this->gp_ == NULL)
3539 bool multi_got = false;
3540 if (this->has_got_section())
3541 multi_got = this->got_section()->multi_got();
3543 return this->gp_->value();
3545 return this->gp_->value() + this->got_section()->get_got_offset(object);
3548 // Get the dynamic reloc section, creating it if necessary.
3550 rel_dyn_section(Layout*);
3553 do_has_custom_set_dynsym_indexes() const
3556 // Don't emit input .reginfo/.MIPS.abiflags sections to
3557 // output .reginfo/.MIPS.abiflags.
3559 do_should_include_section(elfcpp::Elf_Word sh_type) const
3561 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3562 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3565 // Set the dynamic symbol indexes. INDEX is the index of the first
3566 // global dynamic symbol. Pointers to the symbols are stored into the
3567 // vector SYMS. The names are added to DYNPOOL. This returns an
3568 // updated dynamic symbol index.
3570 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3571 std::vector<Symbol*>* syms, Stringpool* dynpool,
3572 Versions* versions, Symbol_table* symtab) const;
3574 // Remove .MIPS.stubs entry for a symbol.
3576 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3578 if (this->mips_stubs_ != NULL)
3579 this->mips_stubs_->remove_entry(sym);
3582 // The value to write into got[1] for SVR4 targets, to identify it is
3583 // a GNU object. The dynamic linker can then use got[1] to store the
3586 mips_elf_gnu_got1_mask()
3588 if (this->is_output_n64())
3589 return (uint64_t)1 << 63;
3594 // Whether the output has microMIPS code. This is valid only after
3595 // merge_obj_e_flags() is called.
3597 is_output_micromips() const
3599 gold_assert(this->are_processor_specific_flags_set());
3600 return elfcpp::is_micromips(this->processor_specific_flags());
3603 // Whether the output uses N32 ABI. This is valid only after
3604 // merge_obj_e_flags() is called.
3606 is_output_n32() const
3608 gold_assert(this->are_processor_specific_flags_set());
3609 return elfcpp::abi_n32(this->processor_specific_flags());
3612 // Whether the output uses R6 ISA. This is valid only after
3613 // merge_obj_e_flags() is called.
3615 is_output_r6() const
3617 gold_assert(this->are_processor_specific_flags_set());
3618 return elfcpp::r6_isa(this->processor_specific_flags());
3621 // Whether the output uses N64 ABI.
3623 is_output_n64() const
3624 { return size == 64; }
3626 // Whether the output uses NEWABI. This is valid only after
3627 // merge_obj_e_flags() is called.
3629 is_output_newabi() const
3630 { return this->is_output_n32() || this->is_output_n64(); }
3632 // Whether we can only use 32-bit microMIPS instructions.
3634 use_32bit_micromips_instructions() const
3635 { return this->insn32_; }
3637 // Return the r_sym field from a relocation.
3639 get_r_sym(const unsigned char* preloc) const
3641 // Since REL and RELA relocs share the same structure through
3642 // the r_info field, we can just use REL here.
3643 Reltype rel(preloc);
3644 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3649 // Return the value to use for a dynamic symbol which requires special
3650 // treatment. This is how we support equality comparisons of function
3651 // pointers across shared library boundaries, as described in the
3652 // processor specific ABI supplement.
3654 do_dynsym_value(const Symbol* gsym) const;
3656 // Make an ELF object.
3658 do_make_elf_object(const std::string&, Input_file*, off_t,
3659 const elfcpp::Ehdr<size, big_endian>& ehdr);
3662 do_make_elf_object(const std::string&, Input_file*, off_t,
3663 const elfcpp::Ehdr<size, !big_endian>&)
3664 { gold_unreachable(); }
3666 // Make an output section.
3668 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3669 elfcpp::Elf_Xword flags)
3671 if (type == elfcpp::SHT_MIPS_OPTIONS)
3672 return new Mips_output_section_options<size, big_endian>(name, type,
3675 return new Output_section(name, type, flags);
3678 // Adjust ELF file header.
3680 do_adjust_elf_header(unsigned char* view, int len);
3682 // Get the custom dynamic tag value.
3684 do_dynamic_tag_custom_value(elfcpp::DT) const;
3686 // Adjust the value written to the dynamic symbol table.
3688 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3690 elfcpp::Sym<size, big_endian> isym(view);
3691 elfcpp::Sym_write<size, big_endian> osym(view);
3692 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3694 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3695 // to treat compressed symbols like any other.
3696 Mips_address value = isym.get_st_value();
3697 if (mips_sym->is_mips16() && value != 0)
3699 if (!mips_sym->has_mips16_fn_stub())
3703 // If we have a MIPS16 function with a stub, the dynamic symbol
3704 // must refer to the stub, since only the stub uses the standard
3705 // calling conventions. Stub contains MIPS32 code, so don't add +1
3708 // There is a code which does this in the method
3709 // Target_mips::do_dynsym_value, but that code will only be
3710 // executed if the symbol is from dynobj.
3711 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3714 Mips16_stub_section<size, big_endian>* fn_stub =
3715 mips_sym->template get_mips16_fn_stub<big_endian>();
3716 value = fn_stub->output_address();
3717 osym.put_st_size(fn_stub->section_size());
3720 osym.put_st_value(value);
3721 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3722 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3724 else if ((mips_sym->is_micromips()
3725 // Stubs are always microMIPS if there is any microMIPS code in
3727 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3730 osym.put_st_value(value | 1);
3731 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3732 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3737 // The class which scans relocations.
3745 get_reference_flags(unsigned int r_type);
3748 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3749 Sized_relobj_file<size, big_endian>* object,
3750 unsigned int data_shndx,
3751 Output_section* output_section,
3752 const Reltype& reloc, unsigned int r_type,
3753 const elfcpp::Sym<size, big_endian>& lsym,
3757 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3758 Sized_relobj_file<size, big_endian>* object,
3759 unsigned int data_shndx,
3760 Output_section* output_section,
3761 const Relatype& reloc, unsigned int r_type,
3762 const elfcpp::Sym<size, big_endian>& lsym,
3766 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3767 Sized_relobj_file<size, big_endian>* object,
3768 unsigned int data_shndx,
3769 Output_section* output_section,
3770 const Relatype* rela,
3772 unsigned int rel_type,
3773 unsigned int r_type,
3774 const elfcpp::Sym<size, big_endian>& lsym,
3778 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3779 Sized_relobj_file<size, big_endian>* object,
3780 unsigned int data_shndx,
3781 Output_section* output_section,
3782 const Reltype& reloc, unsigned int r_type,
3786 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787 Sized_relobj_file<size, big_endian>* object,
3788 unsigned int data_shndx,
3789 Output_section* output_section,
3790 const Relatype& reloc, unsigned int r_type,
3794 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795 Sized_relobj_file<size, big_endian>* object,
3796 unsigned int data_shndx,
3797 Output_section* output_section,
3798 const Relatype* rela,
3800 unsigned int rel_type,
3801 unsigned int r_type,
3805 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3807 Sized_relobj_file<size, big_endian>*,
3812 const elfcpp::Sym<size, big_endian>&)
3816 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3818 Sized_relobj_file<size, big_endian>*,
3822 unsigned int, Symbol*)
3826 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3828 Sized_relobj_file<size, big_endian>*,
3833 const elfcpp::Sym<size, big_endian>&)
3837 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3839 Sized_relobj_file<size, big_endian>*,
3843 unsigned int, Symbol*)
3847 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3848 unsigned int r_type);
3851 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3852 unsigned int r_type, Symbol*);
3855 // The class which implements relocation.
3860 : calculated_value_(0), calculate_only_(false)
3866 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3868 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3869 unsigned int r_type,
3870 Output_section* output_section,
3871 Target_mips* target);
3873 // Do a relocation. Return false if the caller should not issue
3874 // any warnings about this relocation.
3876 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3877 Target_mips*, Output_section*, size_t, const unsigned char*,
3878 const Sized_symbol<size>*, const Symbol_value<size>*,
3879 unsigned char*, Mips_address, section_size_type);
3882 // Result of the relocation.
3883 Valtype calculated_value_;
3884 // Whether we have to calculate relocation instead of applying it.
3885 bool calculate_only_;
3888 // This POD class holds the dynamic relocations that should be emitted instead
3889 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3890 // relocations if it turns out that the symbol does not have static
3895 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3896 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3897 Output_section* output_section, Mips_address r_offset)
3898 : sym_(sym), r_type_(r_type), relobj_(relobj),
3899 shndx_(shndx), output_section_(output_section),
3903 // Emit this reloc if appropriate. This is called after we have
3904 // scanned all the relocations, so we know whether the symbol has
3905 // static relocations.
3907 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3908 Symbol_table* symtab)
3910 if (!this->sym_->has_static_relocs())
3912 got->record_global_got_symbol(this->sym_, this->relobj_,
3913 this->r_type_, true, false);
3914 if (!symbol_references_local(this->sym_,
3915 this->sym_->should_add_dynsym_entry(symtab)))
3916 rel_dyn->add_global(this->sym_, this->r_type_,
3917 this->output_section_, this->relobj_,
3918 this->shndx_, this->r_offset_);
3920 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3921 this->output_section_, this->relobj_,
3922 this->shndx_, this->r_offset_);
3927 Mips_symbol<size>* sym_;
3928 unsigned int r_type_;
3929 Mips_relobj<size, big_endian>* relobj_;
3930 unsigned int shndx_;
3931 Output_section* output_section_;
3932 Mips_address r_offset_;
3935 // Adjust TLS relocation type based on the options and whether this
3936 // is a local symbol.
3937 static tls::Tls_optimization
3938 optimize_tls_reloc(bool is_final, int r_type);
3940 // Return whether there is a GOT section.
3942 has_got_section() const
3943 { return this->got_ != NULL; }
3945 // Check whether the given ELF header flags describe a 32-bit binary.
3947 mips_32bit_flags(elfcpp::Elf_Word);
3950 mach_mips3000 = 3000,
3951 mach_mips3900 = 3900,
3952 mach_mips4000 = 4000,
3953 mach_mips4010 = 4010,
3954 mach_mips4100 = 4100,
3955 mach_mips4111 = 4111,
3956 mach_mips4120 = 4120,
3957 mach_mips4300 = 4300,
3958 mach_mips4400 = 4400,
3959 mach_mips4600 = 4600,
3960 mach_mips4650 = 4650,
3961 mach_mips5000 = 5000,
3962 mach_mips5400 = 5400,
3963 mach_mips5500 = 5500,
3964 mach_mips5900 = 5900,
3965 mach_mips6000 = 6000,
3966 mach_mips7000 = 7000,
3967 mach_mips8000 = 8000,
3968 mach_mips9000 = 9000,
3969 mach_mips10000 = 10000,
3970 mach_mips12000 = 12000,
3971 mach_mips14000 = 14000,
3972 mach_mips16000 = 16000,
3975 mach_mips_loongson_2e = 3001,
3976 mach_mips_loongson_2f = 3002,
3977 mach_mips_loongson_3a = 3003,
3978 mach_mips_sb1 = 12310201, // octal 'SB', 01
3979 mach_mips_octeon = 6501,
3980 mach_mips_octeonp = 6601,
3981 mach_mips_octeon2 = 6502,
3982 mach_mips_octeon3 = 6503,
3983 mach_mips_xlr = 887682, // decimal 'XLR'
3984 mach_mipsisa32 = 32,
3985 mach_mipsisa32r2 = 33,
3986 mach_mipsisa32r3 = 34,
3987 mach_mipsisa32r5 = 36,
3988 mach_mipsisa32r6 = 37,
3989 mach_mipsisa64 = 64,
3990 mach_mipsisa64r2 = 65,
3991 mach_mipsisa64r3 = 66,
3992 mach_mipsisa64r5 = 68,
3993 mach_mipsisa64r6 = 69,
3994 mach_mips_micromips = 96
3997 // Return the MACH for a MIPS e_flags value.
3999 elf_mips_mach(elfcpp::Elf_Word);
4001 // Return the MACH for each .MIPS.abiflags ISA Extension.
4003 mips_isa_ext_mach(unsigned int);
4005 // Return the .MIPS.abiflags value representing each ISA Extension.
4007 mips_isa_ext(unsigned int);
4009 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4011 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4012 Mips_abiflags<big_endian>*);
4014 // Infer the content of the ABI flags based on the elf header.
4016 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4018 // Create abiflags from elf header or from .MIPS.abiflags section.
4020 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4022 // Return the meaning of fp_abi, or "unknown" if not known.
4028 select_fp_abi(const std::string&, int, int);
4030 // Merge attributes from input object.
4032 merge_obj_attributes(const std::string&, const Attributes_section_data*);
4034 // Merge abiflags from input object.
4036 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4038 // Check whether machine EXTENSION is an extension of machine BASE.
4040 mips_mach_extends(unsigned int, unsigned int);
4042 // Merge file header flags from input object.
4044 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4046 // Encode ISA level and revision as a single value.
4048 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4049 { return (isa_level << 3) | isa_rev; }
4051 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4056 // True if we are linking for CPUs that are faster if JALR is converted to
4057 // BAL. This should be safe for all architectures. We enable this predicate
4063 // True if we are linking for CPUs that are faster if JR is converted to B.
4064 // This should be safe for all architectures. We enable this predicate for
4070 // Return the size of the GOT section.
4074 gold_assert(this->got_ != NULL);
4075 return this->got_->data_size();
4078 // Create a PLT entry for a global symbol referenced by r_type relocation.
4080 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4081 unsigned int r_type);
4083 // Get the PLT section.
4084 Mips_output_data_plt<size, big_endian>*
4087 gold_assert(this->plt_ != NULL);
4091 // Get the GOT PLT section.
4092 const Mips_output_data_plt<size, big_endian>*
4093 got_plt_section() const
4095 gold_assert(this->got_plt_ != NULL);
4096 return this->got_plt_;
4099 // Copy a relocation against a global symbol.
4101 copy_reloc(Symbol_table* symtab, Layout* layout,
4102 Sized_relobj_file<size, big_endian>* object,
4103 unsigned int shndx, Output_section* output_section,
4104 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4106 this->copy_relocs_.copy_reloc(symtab, layout,
4107 symtab->get_sized_symbol<size>(sym),
4108 object, shndx, output_section,
4109 r_type, r_offset, 0,
4110 this->rel_dyn_section(layout));
4114 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4115 Mips_relobj<size, big_endian>* relobj,
4116 unsigned int shndx, Output_section* output_section,
4117 Mips_address r_offset)
4119 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4120 output_section, r_offset));
4123 // Calculate value of _gp symbol.
4125 set_gp(Layout*, Symbol_table*);
4128 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4130 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4132 // Adds entries that describe how machines relate to one another. The entries
4133 // are ordered topologically with MIPS I extensions listed last. First
4134 // element is extension, second element is base.
4136 add_machine_extensions()
4138 // MIPS64r2 extensions.
4139 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4140 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4141 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4142 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4143 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4145 // MIPS64 extensions.
4146 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4147 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4148 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4150 // MIPS V extensions.
4151 this->add_extension(mach_mipsisa64, mach_mips5);
4153 // R10000 extensions.
4154 this->add_extension(mach_mips12000, mach_mips10000);
4155 this->add_extension(mach_mips14000, mach_mips10000);
4156 this->add_extension(mach_mips16000, mach_mips10000);
4158 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4159 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4160 // better to allow vr5400 and vr5500 code to be merged anyway, since
4161 // many libraries will just use the core ISA. Perhaps we could add
4162 // some sort of ASE flag if this ever proves a problem.
4163 this->add_extension(mach_mips5500, mach_mips5400);
4164 this->add_extension(mach_mips5400, mach_mips5000);
4166 // MIPS IV extensions.
4167 this->add_extension(mach_mips5, mach_mips8000);
4168 this->add_extension(mach_mips10000, mach_mips8000);
4169 this->add_extension(mach_mips5000, mach_mips8000);
4170 this->add_extension(mach_mips7000, mach_mips8000);
4171 this->add_extension(mach_mips9000, mach_mips8000);
4173 // VR4100 extensions.
4174 this->add_extension(mach_mips4120, mach_mips4100);
4175 this->add_extension(mach_mips4111, mach_mips4100);
4177 // MIPS III extensions.
4178 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4179 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4180 this->add_extension(mach_mips8000, mach_mips4000);
4181 this->add_extension(mach_mips4650, mach_mips4000);
4182 this->add_extension(mach_mips4600, mach_mips4000);
4183 this->add_extension(mach_mips4400, mach_mips4000);
4184 this->add_extension(mach_mips4300, mach_mips4000);
4185 this->add_extension(mach_mips4100, mach_mips4000);
4186 this->add_extension(mach_mips4010, mach_mips4000);
4187 this->add_extension(mach_mips5900, mach_mips4000);
4189 // MIPS32 extensions.
4190 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4192 // MIPS II extensions.
4193 this->add_extension(mach_mips4000, mach_mips6000);
4194 this->add_extension(mach_mipsisa32, mach_mips6000);
4196 // MIPS I extensions.
4197 this->add_extension(mach_mips6000, mach_mips3000);
4198 this->add_extension(mach_mips3900, mach_mips3000);
4201 // Add value to MIPS extenstions.
4203 add_extension(unsigned int base, unsigned int extension)
4205 std::pair<unsigned int, unsigned int> ext(base, extension);
4206 this->mips_mach_extensions_.push_back(ext);
4209 // Return the number of entries in the .dynsym section.
4210 unsigned int get_dt_mips_symtabno() const
4212 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4213 / elfcpp::Elf_sizes<size>::sym_size));
4214 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4217 // Information about this specific target which we pass to the
4218 // general Target structure.
4219 static const Target::Target_info mips_info;
4221 Mips_output_data_got<size, big_endian>* got_;
4222 // gp symbol. It has the value of .got + 0x7FF0.
4223 Sized_symbol<size>* gp_;
4225 Mips_output_data_plt<size, big_endian>* plt_;
4226 // The GOT PLT section.
4227 Output_data_space* got_plt_;
4228 // The dynamic reloc section.
4229 Reloc_section* rel_dyn_;
4230 // The .rld_map section.
4231 Output_data_zero_fill* rld_map_;
4232 // Relocs saved to avoid a COPY reloc.
4233 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4235 // A list of dyn relocs to be saved.
4236 std::vector<Dyn_reloc> dyn_relocs_;
4238 // The LA25 stub section.
4239 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4240 // Architecture extensions.
4241 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4243 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4245 // Attributes section data in output.
4246 Attributes_section_data* attributes_section_data_;
4247 // .MIPS.abiflags section data in output.
4248 Mips_abiflags<big_endian>* abiflags_;
4253 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4255 // Whether there is an input .MIPS.abiflags section.
4256 bool has_abiflags_section_;
4258 // Whether the entry symbol is mips16 or micromips.
4259 bool entry_symbol_is_compressed_;
4261 // Whether we can use only 32-bit microMIPS instructions.
4262 // TODO(sasa): This should be a linker option.
4266 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4267 // It records high part of the relocation pair.
4269 template<int size, bool big_endian>
4272 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4274 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4275 const Symbol_value<size>* _psymval, Mips_address _addend,
4276 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4277 Mips_address _address = 0, bool _gp_disp = false)
4278 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4279 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4280 address(_address), gp_disp(_gp_disp)
4283 unsigned char* view;
4284 const Mips_relobj<size, big_endian>* object;
4285 const Symbol_value<size>* psymval;
4286 Mips_address addend;
4287 unsigned int r_type;
4289 bool extract_addend;
4290 Mips_address address;
4294 template<int size, bool big_endian>
4295 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4297 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4298 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4299 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4300 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4301 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4306 STATUS_OKAY, // No error during relocation.
4307 STATUS_OVERFLOW, // Relocation overflow.
4308 STATUS_BAD_RELOC, // Relocation cannot be applied.
4309 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4313 typedef Relocate_functions<size, big_endian> Base;
4314 typedef Mips_relocate_functions<size, big_endian> This;
4316 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4317 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4318 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4320 template<int valsize>
4321 static inline typename This::Status
4322 check_overflow(Valtype value)
4325 return (Bits<valsize>::has_overflow32(value)
4326 ? This::STATUS_OVERFLOW
4327 : This::STATUS_OKAY);
4329 return (Bits<valsize>::has_overflow(value)
4330 ? This::STATUS_OVERFLOW
4331 : This::STATUS_OKAY);
4335 should_shuffle_micromips_reloc(unsigned int r_type)
4337 return (micromips_reloc(r_type)
4338 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4339 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4343 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4344 // Most mips16 instructions are 16 bits, but these instructions
4347 // The format of these instructions is:
4349 // +--------------+--------------------------------+
4350 // | JALX | X| Imm 20:16 | Imm 25:21 |
4351 // +--------------+--------------------------------+
4352 // | Immediate 15:0 |
4353 // +-----------------------------------------------+
4355 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4356 // Note that the immediate value in the first word is swapped.
4358 // When producing a relocatable object file, R_MIPS16_26 is
4359 // handled mostly like R_MIPS_26. In particular, the addend is
4360 // stored as a straight 26-bit value in a 32-bit instruction.
4361 // (gas makes life simpler for itself by never adjusting a
4362 // R_MIPS16_26 reloc to be against a section, so the addend is
4363 // always zero). However, the 32 bit instruction is stored as 2
4364 // 16-bit values, rather than a single 32-bit value. In a
4365 // big-endian file, the result is the same; in a little-endian
4366 // file, the two 16-bit halves of the 32 bit value are swapped.
4367 // This is so that a disassembler can recognize the jal
4370 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4371 // instruction stored as two 16-bit values. The addend A is the
4372 // contents of the targ26 field. The calculation is the same as
4373 // R_MIPS_26. When storing the calculated value, reorder the
4374 // immediate value as shown above, and don't forget to store the
4375 // value as two 16-bit values.
4377 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4381 // +--------+----------------------+
4385 // +--------+----------------------+
4388 // +----------+------+-------------+
4390 // | sub1 | | sub2 |
4391 // |0 9|10 15|16 31|
4392 // +----------+--------------------+
4393 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4394 // ((sub1 << 16) | sub2)).
4396 // When producing a relocatable object file, the calculation is
4397 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4398 // When producing a fully linked file, the calculation is
4399 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4400 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4402 // The table below lists the other MIPS16 instruction relocations.
4403 // Each one is calculated in the same way as the non-MIPS16 relocation
4404 // given on the right, but using the extended MIPS16 layout of 16-bit
4405 // immediate fields:
4407 // R_MIPS16_GPREL R_MIPS_GPREL16
4408 // R_MIPS16_GOT16 R_MIPS_GOT16
4409 // R_MIPS16_CALL16 R_MIPS_CALL16
4410 // R_MIPS16_HI16 R_MIPS_HI16
4411 // R_MIPS16_LO16 R_MIPS_LO16
4413 // A typical instruction will have a format like this:
4415 // +--------------+--------------------------------+
4416 // | EXTEND | Imm 10:5 | Imm 15:11 |
4417 // +--------------+--------------------------------+
4418 // | Major | rx | ry | Imm 4:0 |
4419 // +--------------+--------------------------------+
4421 // EXTEND is the five bit value 11110. Major is the instruction
4424 // All we need to do here is shuffle the bits appropriately.
4425 // As above, the two 16-bit halves must be swapped on a
4426 // little-endian system.
4428 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4429 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4430 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4433 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4436 if (!mips16_reloc(r_type)
4437 && !should_shuffle_micromips_reloc(r_type))
4440 // Pick up the first and second halfwords of the instruction.
4441 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4442 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4445 if (micromips_reloc(r_type)
4446 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4447 val = first << 16 | second;
4448 else if (r_type != elfcpp::R_MIPS16_26)
4449 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4450 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4452 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4453 | ((first & 0x1f) << 21) | second);
4455 elfcpp::Swap<32, big_endian>::writeval(view, val);
4459 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4461 if (!mips16_reloc(r_type)
4462 && !should_shuffle_micromips_reloc(r_type))
4465 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4466 Valtype16 first, second;
4468 if (micromips_reloc(r_type)
4469 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4471 second = val & 0xffff;
4474 else if (r_type != elfcpp::R_MIPS16_26)
4476 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4477 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4481 second = val & 0xffff;
4482 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4483 | ((val >> 21) & 0x1f);
4486 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4487 elfcpp::Swap<16, big_endian>::writeval(view, first);
4490 // R_MIPS_16: S + sign-extend(A)
4491 static inline typename This::Status
4492 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4493 const Symbol_value<size>* psymval, Mips_address addend_a,
4494 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4496 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4497 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4499 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4502 Valtype x = psymval->value(object, addend);
4503 val = Bits<16>::bit_select32(val, x, 0xffffU);
4507 *calculated_value = x;
4508 return This::STATUS_OKAY;
4511 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4513 return check_overflow<16>(x);
4517 static inline typename This::Status
4518 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4519 const Symbol_value<size>* psymval, Mips_address addend_a,
4520 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4522 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4523 Valtype addend = (extract_addend
4524 ? elfcpp::Swap<32, big_endian>::readval(wv)
4526 Valtype x = psymval->value(object, addend);
4529 *calculated_value = x;
4531 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4533 return This::STATUS_OKAY;
4536 // R_MIPS_JALR, R_MICROMIPS_JALR
4537 static inline typename This::Status
4538 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4539 const Symbol_value<size>* psymval, Mips_address address,
4540 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4541 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4542 bool calculate_only, Valtype* calculated_value)
4544 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4545 Valtype addend = extract_addend ? 0 : addend_a;
4546 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4548 // Try converting J(AL)R to B(AL), if the target is in range.
4549 if (r_type == elfcpp::R_MIPS_JALR
4551 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4552 || (jr_to_b && val == 0x03200008))) // jr t9
4554 int offset = psymval->value(object, addend) - (address + 4);
4555 if (!Bits<18>::has_overflow32(offset))
4557 if (val == 0x03200008) // jr t9
4558 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4560 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4565 *calculated_value = val;
4567 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4569 return This::STATUS_OKAY;
4572 // R_MIPS_PC32: S + A - P
4573 static inline typename This::Status
4574 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4575 const Symbol_value<size>* psymval, Mips_address address,
4576 Mips_address addend_a, bool extract_addend, bool calculate_only,
4577 Valtype* calculated_value)
4579 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4580 Valtype addend = (extract_addend
4581 ? elfcpp::Swap<32, big_endian>::readval(wv)
4583 Valtype x = psymval->value(object, addend) - address;
4586 *calculated_value = x;
4588 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4590 return This::STATUS_OKAY;
4593 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4594 static inline typename This::Status
4595 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4596 const Symbol_value<size>* psymval, Mips_address address,
4597 bool local, Mips_address addend_a, bool extract_addend,
4598 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4599 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4601 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4602 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4607 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4608 addend = (val & 0x03ffffff) << 1;
4610 addend = (val & 0x03ffffff) << 2;
4615 // Make sure the target of JALX is word-aligned. Bit 0 must be
4616 // the correct ISA mode selector and bit 1 must be 0.
4617 if (!calculate_only && cross_mode_jump
4618 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4620 gold_warning(_("JALX to a non-word-aligned address"));
4621 return This::STATUS_BAD_RELOC;
4624 // Shift is 2, unusually, for microMIPS JALX.
4625 unsigned int shift =
4626 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4630 x = addend | ((address + 4) & (0xfc000000 << shift));
4634 x = Bits<27>::sign_extend32(addend);
4636 x = Bits<28>::sign_extend32(addend);
4638 x = psymval->value(object, x) >> shift;
4640 if (!calculate_only && !local && !gsym->is_weak_undefined()
4641 && ((x >> 26) != ((address + 4) >> (26 + shift))))
4642 return This::STATUS_OVERFLOW;
4644 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4646 // If required, turn JAL into JALX.
4647 if (cross_mode_jump)
4650 Valtype32 opcode = val >> 26;
4651 Valtype32 jalx_opcode;
4653 // Check to see if the opcode is already JAL or JALX.
4654 if (r_type == elfcpp::R_MIPS16_26)
4656 ok = (opcode == 0x6) || (opcode == 0x7);
4659 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4661 ok = (opcode == 0x3d) || (opcode == 0x3c);
4666 ok = (opcode == 0x3) || (opcode == 0x1d);
4670 // If the opcode is not JAL or JALX, there's a problem. We cannot
4671 // convert J or JALS to JALX.
4672 if (!calculate_only && !ok)
4674 gold_error(_("Unsupported jump between ISA modes; consider "
4675 "recompiling with interlinking enabled."));
4676 return This::STATUS_BAD_RELOC;
4679 // Make this the JALX opcode.
4680 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4683 // Try converting JAL to BAL, if the target is in range.
4684 if (!parameters->options().relocatable()
4687 && r_type == elfcpp::R_MIPS_26
4688 && (val >> 26) == 0x3))) // jal addr
4690 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4691 int offset = dest - (address + 4);
4692 if (!Bits<18>::has_overflow32(offset))
4694 if (val == 0x03200008) // jr t9
4695 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4697 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4702 *calculated_value = val;
4704 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4706 return This::STATUS_OKAY;
4710 static inline typename This::Status
4711 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4712 const Symbol_value<size>* psymval, Mips_address address,
4713 Mips_address addend_a, bool extract_addend, bool calculate_only,
4714 Valtype* calculated_value)
4716 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4717 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4719 Valtype addend = (extract_addend
4720 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4723 Valtype x = psymval->value(object, addend) - address;
4724 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4728 *calculated_value = x >> 2;
4729 return This::STATUS_OKAY;
4732 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4734 if (psymval->value(object, addend) & 3)
4735 return This::STATUS_PCREL_UNALIGNED;
4737 return check_overflow<18>(x);
4741 static inline typename This::Status
4742 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4743 const Symbol_value<size>* psymval, Mips_address address,
4744 Mips_address addend_a, bool extract_addend, bool calculate_only,
4745 Valtype* calculated_value)
4747 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4748 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4750 Valtype addend = (extract_addend
4751 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4754 Valtype x = psymval->value(object, addend) - address;
4755 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4759 *calculated_value = x >> 2;
4760 return This::STATUS_OKAY;
4763 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4765 if (psymval->value(object, addend) & 3)
4766 return This::STATUS_PCREL_UNALIGNED;
4768 return check_overflow<23>(x);
4772 static inline typename This::Status
4773 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4774 const Symbol_value<size>* psymval, Mips_address address,
4775 Mips_address addend_a, bool extract_addend, bool calculate_only,
4776 Valtype* calculated_value)
4778 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4779 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4781 Valtype addend = (extract_addend
4782 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4785 Valtype x = psymval->value(object, addend) - address;
4786 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4790 *calculated_value = x >> 2;
4791 return This::STATUS_OKAY;
4794 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4796 if (psymval->value(object, addend) & 3)
4797 return This::STATUS_PCREL_UNALIGNED;
4799 return check_overflow<28>(x);
4803 static inline typename This::Status
4804 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4805 const Symbol_value<size>* psymval, Mips_address address,
4806 Mips_address addend_a, bool extract_addend, bool calculate_only,
4807 Valtype* calculated_value)
4809 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4810 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4812 Valtype addend = (extract_addend
4813 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4816 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4817 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4821 *calculated_value = x >> 3;
4822 return This::STATUS_OKAY;
4825 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4827 if (psymval->value(object, addend) & 7)
4828 return This::STATUS_PCREL_UNALIGNED;
4830 return check_overflow<21>(x);
4834 static inline typename This::Status
4835 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4836 const Symbol_value<size>* psymval, Mips_address address,
4837 Mips_address addend_a, bool extract_addend, bool calculate_only,
4838 Valtype* calculated_value)
4840 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4841 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4843 Valtype addend = (extract_addend
4844 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4847 Valtype x = psymval->value(object, addend) - address;
4848 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4852 *calculated_value = x >> 2;
4853 return This::STATUS_OKAY;
4856 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4858 if (psymval->value(object, addend) & 3)
4859 return This::STATUS_PCREL_UNALIGNED;
4861 return check_overflow<21>(x);
4865 static inline typename This::Status
4866 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4867 const Symbol_value<size>* psymval, Mips_address addend,
4868 Mips_address address, unsigned int r_sym, bool extract_addend)
4870 // Record the relocation. It will be resolved when we find pclo16 part.
4871 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4872 addend, 0, r_sym, extract_addend, address));
4873 return This::STATUS_OKAY;
4877 static inline typename This::Status
4878 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4879 const Symbol_value<size>* psymval, Mips_address addend_hi,
4880 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4881 bool calculate_only, Valtype* calculated_value)
4883 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4884 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4886 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4889 Valtype value = psymval->value(object, addend) - address;
4890 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4891 val = Bits<32>::bit_select32(val, x, 0xffff);
4894 *calculated_value = x;
4896 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4898 return This::STATUS_OKAY;
4902 static inline typename This::Status
4903 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4904 const Symbol_value<size>* psymval, Mips_address addend_a,
4905 bool extract_addend, Mips_address address, unsigned int r_sym,
4906 unsigned int rel_type, bool calculate_only,
4907 Valtype* calculated_value)
4909 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4910 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4912 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4915 if (rel_type == elfcpp::SHT_REL)
4917 // Resolve pending R_MIPS_PCHI16 relocations.
4918 typename std::list<reloc_high<size, big_endian> >::iterator it =
4919 pchi16_relocs.begin();
4920 while (it != pchi16_relocs.end())
4922 reloc_high<size, big_endian> pchi16 = *it;
4923 if (pchi16.r_sym == r_sym)
4925 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4926 pchi16.addend, pchi16.address,
4927 pchi16.extract_addend, addend, calculate_only,
4929 it = pchi16_relocs.erase(it);
4936 // Resolve R_MIPS_PCLO16 relocation.
4937 Valtype x = psymval->value(object, addend) - address;
4938 val = Bits<32>::bit_select32(val, x, 0xffff);
4941 *calculated_value = x;
4943 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4945 return This::STATUS_OKAY;
4948 // R_MICROMIPS_PC7_S1
4949 static inline typename This::Status
4950 relmicromips_pc7_s1(unsigned char* view,
4951 const Mips_relobj<size, big_endian>* object,
4952 const Symbol_value<size>* psymval, Mips_address address,
4953 Mips_address addend_a, bool extract_addend,
4954 bool calculate_only, Valtype* calculated_value)
4956 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4957 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4959 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4962 Valtype x = psymval->value(object, addend) - address;
4963 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4967 *calculated_value = x >> 1;
4968 return This::STATUS_OKAY;
4971 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4973 return check_overflow<8>(x);
4976 // R_MICROMIPS_PC10_S1
4977 static inline typename This::Status
4978 relmicromips_pc10_s1(unsigned char* view,
4979 const Mips_relobj<size, big_endian>* object,
4980 const Symbol_value<size>* psymval, Mips_address address,
4981 Mips_address addend_a, bool extract_addend,
4982 bool calculate_only, Valtype* calculated_value)
4984 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4985 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4987 Valtype addend = (extract_addend
4988 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4991 Valtype x = psymval->value(object, addend) - address;
4992 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4996 *calculated_value = x >> 1;
4997 return This::STATUS_OKAY;
5000 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5002 return check_overflow<11>(x);
5005 // R_MICROMIPS_PC16_S1
5006 static inline typename This::Status
5007 relmicromips_pc16_s1(unsigned char* view,
5008 const Mips_relobj<size, big_endian>* object,
5009 const Symbol_value<size>* psymval, Mips_address address,
5010 Mips_address addend_a, bool extract_addend,
5011 bool calculate_only, Valtype* calculated_value)
5013 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5014 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5016 Valtype addend = (extract_addend
5017 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5020 Valtype x = psymval->value(object, addend) - address;
5021 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5025 *calculated_value = x >> 1;
5026 return This::STATUS_OKAY;
5029 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5031 return check_overflow<17>(x);
5034 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5035 static inline typename This::Status
5036 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5037 const Symbol_value<size>* psymval, Mips_address addend,
5038 Mips_address address, bool gp_disp, unsigned int r_type,
5039 unsigned int r_sym, bool extract_addend)
5041 // Record the relocation. It will be resolved when we find lo16 part.
5042 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5043 addend, r_type, r_sym, extract_addend, address,
5045 return This::STATUS_OKAY;
5048 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5049 static inline typename This::Status
5050 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5051 const Symbol_value<size>* psymval, Mips_address addend_hi,
5052 Mips_address address, bool is_gp_disp, unsigned int r_type,
5053 bool extract_addend, Valtype32 addend_lo,
5054 Target_mips<size, big_endian>* target, bool calculate_only,
5055 Valtype* calculated_value)
5057 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5058 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5060 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5065 value = psymval->value(object, addend);
5068 // For MIPS16 ABI code we generate this sequence
5069 // 0: li $v0,%hi(_gp_disp)
5070 // 4: addiupc $v1,%lo(_gp_disp)
5074 // So the offsets of hi and lo relocs are the same, but the
5075 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5076 // ADDIUPC clears the low two bits of the instruction address,
5077 // so the base is ($t9 + 4) & ~3.
5079 if (r_type == elfcpp::R_MIPS16_HI16)
5080 gp_disp = (target->adjusted_gp_value(object)
5081 - ((address + 4) & ~0x3));
5082 // The microMIPS .cpload sequence uses the same assembly
5083 // instructions as the traditional psABI version, but the
5084 // incoming $t9 has the low bit set.
5085 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5086 gp_disp = target->adjusted_gp_value(object) - address - 1;
5088 gp_disp = target->adjusted_gp_value(object) - address;
5089 value = gp_disp + addend;
5091 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5092 val = Bits<32>::bit_select32(val, x, 0xffff);
5096 *calculated_value = x;
5097 return This::STATUS_OKAY;
5100 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5102 return (is_gp_disp ? check_overflow<16>(x)
5103 : This::STATUS_OKAY);
5106 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5107 static inline typename This::Status
5108 relgot16_local(unsigned char* view,
5109 const Mips_relobj<size, big_endian>* object,
5110 const Symbol_value<size>* psymval, Mips_address addend_a,
5111 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5113 // Record the relocation. It will be resolved when we find lo16 part.
5114 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5115 addend_a, r_type, r_sym, extract_addend));
5116 return This::STATUS_OKAY;
5119 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5120 static inline typename This::Status
5121 do_relgot16_local(unsigned char* view,
5122 const Mips_relobj<size, big_endian>* object,
5123 const Symbol_value<size>* psymval, Mips_address addend_hi,
5124 bool extract_addend, Valtype32 addend_lo,
5125 Target_mips<size, big_endian>* target, bool calculate_only,
5126 Valtype* calculated_value)
5128 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5129 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5131 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5134 // Find GOT page entry.
5135 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5138 unsigned int got_offset =
5139 target->got_section()->get_got_page_offset(value, object);
5141 // Resolve the relocation.
5142 Valtype x = target->got_section()->gp_offset(got_offset, object);
5143 val = Bits<32>::bit_select32(val, x, 0xffff);
5147 *calculated_value = x;
5148 return This::STATUS_OKAY;
5151 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5153 return check_overflow<16>(x);
5156 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5157 static inline typename This::Status
5158 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5159 const Mips_relobj<size, big_endian>* object,
5160 const Symbol_value<size>* psymval, Mips_address addend_a,
5161 bool extract_addend, Mips_address address, bool is_gp_disp,
5162 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5163 bool calculate_only, Valtype* calculated_value)
5165 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5166 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5168 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5171 if (rel_type == elfcpp::SHT_REL)
5173 typename This::Status reloc_status = This::STATUS_OKAY;
5174 // Resolve pending R_MIPS_HI16 relocations.
5175 typename std::list<reloc_high<size, big_endian> >::iterator it =
5176 hi16_relocs.begin();
5177 while (it != hi16_relocs.end())
5179 reloc_high<size, big_endian> hi16 = *it;
5180 if (hi16.r_sym == r_sym
5181 && is_matching_lo16_reloc(hi16.r_type, r_type))
5183 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5184 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5185 hi16.addend, hi16.address, hi16.gp_disp,
5186 hi16.r_type, hi16.extract_addend, addend,
5187 target, calculate_only, calculated_value);
5188 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5189 if (reloc_status == This::STATUS_OVERFLOW)
5190 return This::STATUS_OVERFLOW;
5191 it = hi16_relocs.erase(it);
5197 // Resolve pending local R_MIPS_GOT16 relocations.
5198 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5199 got16_relocs.begin();
5200 while (it2 != got16_relocs.end())
5202 reloc_high<size, big_endian> got16 = *it2;
5203 if (got16.r_sym == r_sym
5204 && is_matching_lo16_reloc(got16.r_type, r_type))
5206 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5208 reloc_status = do_relgot16_local(got16.view, got16.object,
5209 got16.psymval, got16.addend,
5210 got16.extract_addend, addend, target,
5211 calculate_only, calculated_value);
5213 mips_reloc_shuffle(got16.view, got16.r_type, false);
5214 if (reloc_status == This::STATUS_OVERFLOW)
5215 return This::STATUS_OVERFLOW;
5216 it2 = got16_relocs.erase(it2);
5223 // Resolve R_MIPS_LO16 relocation.
5226 x = psymval->value(object, addend);
5229 // See the comment for R_MIPS16_HI16 above for the reason
5230 // for this conditional.
5232 if (r_type == elfcpp::R_MIPS16_LO16)
5233 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5234 else if (r_type == elfcpp::R_MICROMIPS_LO16
5235 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5236 gp_disp = target->adjusted_gp_value(object) - address + 3;
5238 gp_disp = target->adjusted_gp_value(object) - address + 4;
5239 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5240 // for overflow. Relocations against _gp_disp are normally
5241 // generated from the .cpload pseudo-op. It generates code
5242 // that normally looks like this:
5244 // lui $gp,%hi(_gp_disp)
5245 // addiu $gp,$gp,%lo(_gp_disp)
5248 // Here $t9 holds the address of the function being called,
5249 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5250 // relocation can easily overflow in this situation, but the
5251 // R_MIPS_HI16 relocation will handle the overflow.
5252 // Therefore, we consider this a bug in the MIPS ABI, and do
5253 // not check for overflow here.
5254 x = gp_disp + addend;
5256 val = Bits<32>::bit_select32(val, x, 0xffff);
5259 *calculated_value = x;
5261 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5263 return This::STATUS_OKAY;
5266 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5267 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5268 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5269 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5270 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5271 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5272 static inline typename This::Status
5273 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5274 Valtype* calculated_value)
5276 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5277 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5278 Valtype x = gp_offset;
5279 val = Bits<32>::bit_select32(val, x, 0xffff);
5283 *calculated_value = x;
5284 return This::STATUS_OKAY;
5287 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5289 return check_overflow<16>(x);
5293 static inline typename This::Status
5294 releh(unsigned char* view, int gp_offset, bool calculate_only,
5295 Valtype* calculated_value)
5297 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5298 Valtype x = gp_offset;
5302 *calculated_value = x;
5303 return This::STATUS_OKAY;
5306 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5308 return check_overflow<32>(x);
5311 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5312 static inline typename This::Status
5313 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5314 const Mips_relobj<size, big_endian>* object,
5315 const Symbol_value<size>* psymval, Mips_address addend_a,
5316 bool extract_addend, bool calculate_only,
5317 Valtype* calculated_value)
5319 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5320 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5321 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5323 // Find a GOT page entry that points to within 32KB of symbol + addend.
5324 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5325 unsigned int got_offset =
5326 target->got_section()->get_got_page_offset(value, object);
5328 Valtype x = target->got_section()->gp_offset(got_offset, object);
5329 val = Bits<32>::bit_select32(val, x, 0xffff);
5333 *calculated_value = x;
5334 return This::STATUS_OKAY;
5337 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5339 return check_overflow<16>(x);
5342 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5343 static inline typename This::Status
5344 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5345 const Mips_relobj<size, big_endian>* object,
5346 const Symbol_value<size>* psymval, Mips_address addend_a,
5347 bool extract_addend, bool local, bool calculate_only,
5348 Valtype* calculated_value)
5350 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5351 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5352 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5354 // For a local symbol, find a GOT page entry that points to within 32KB of
5355 // symbol + addend. Relocation value is the offset of the GOT page entry's
5356 // value from symbol + addend.
5357 // For a global symbol, relocation value is addend.
5361 // Find GOT page entry.
5362 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5364 target->got_section()->get_got_page_offset(value, object);
5366 x = psymval->value(object, addend) - value;
5370 val = Bits<32>::bit_select32(val, x, 0xffff);
5374 *calculated_value = x;
5375 return This::STATUS_OKAY;
5378 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5380 return check_overflow<16>(x);
5383 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5384 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5385 static inline typename This::Status
5386 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5387 Valtype* calculated_value)
5389 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5390 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5391 Valtype x = gp_offset;
5392 x = ((x + 0x8000) >> 16) & 0xffff;
5393 val = Bits<32>::bit_select32(val, x, 0xffff);
5396 *calculated_value = x;
5398 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5400 return This::STATUS_OKAY;
5403 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5404 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5405 static inline typename This::Status
5406 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5407 Valtype* calculated_value)
5409 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5410 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5411 Valtype x = gp_offset;
5412 val = Bits<32>::bit_select32(val, x, 0xffff);
5415 *calculated_value = x;
5417 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5419 return This::STATUS_OKAY;
5422 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5423 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5424 static inline typename This::Status
5425 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5426 const Symbol_value<size>* psymval, Mips_address gp,
5427 Mips_address addend_a, bool extract_addend, bool local,
5428 unsigned int r_type, bool calculate_only,
5429 Valtype* calculated_value)
5431 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5432 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5437 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5438 addend = (val & 0x7f) << 2;
5440 addend = val & 0xffff;
5441 // Only sign-extend the addend if it was extracted from the
5442 // instruction. If the addend was separate, leave it alone,
5443 // otherwise we may lose significant bits.
5444 addend = Bits<16>::sign_extend32(addend);
5449 Valtype x = psymval->value(object, addend) - gp;
5451 // If the symbol was local, any earlier relocatable links will
5452 // have adjusted its addend with the gp offset, so compensate
5453 // for that now. Don't do it for symbols forced local in this
5454 // link, though, since they won't have had the gp offset applied
5457 x += object->gp_value();
5459 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5460 val = Bits<32>::bit_select32(val, x, 0x7f);
5462 val = Bits<32>::bit_select32(val, x, 0xffff);
5466 *calculated_value = x;
5467 return This::STATUS_OKAY;
5470 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5472 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5474 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5475 "limit (see option -G)"));
5476 return This::STATUS_OVERFLOW;
5478 return This::STATUS_OKAY;
5482 static inline typename This::Status
5483 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5484 const Symbol_value<size>* psymval, Mips_address gp,
5485 Mips_address addend_a, bool extract_addend, bool calculate_only,
5486 Valtype* calculated_value)
5488 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5489 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5490 Valtype addend = extract_addend ? val : addend_a;
5492 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5493 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5496 *calculated_value = x;
5498 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5500 return This::STATUS_OKAY;
5503 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5504 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5505 // R_MICROMIPS_TLS_DTPREL_HI16
5506 static inline typename This::Status
5507 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5508 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5509 Mips_address addend_a, bool extract_addend, bool calculate_only,
5510 Valtype* calculated_value)
5512 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5513 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5514 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5516 // tls symbol values are relative to tls_segment()->vaddr()
5517 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5518 val = Bits<32>::bit_select32(val, x, 0xffff);
5521 *calculated_value = x;
5523 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5525 return This::STATUS_OKAY;
5528 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5529 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5530 // R_MICROMIPS_TLS_DTPREL_LO16,
5531 static inline typename This::Status
5532 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5533 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5534 Mips_address addend_a, bool extract_addend, bool calculate_only,
5535 Valtype* calculated_value)
5537 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5538 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5539 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5541 // tls symbol values are relative to tls_segment()->vaddr()
5542 Valtype x = psymval->value(object, addend) - tp_offset;
5543 val = Bits<32>::bit_select32(val, x, 0xffff);
5546 *calculated_value = x;
5548 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5550 return This::STATUS_OKAY;
5553 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5554 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5555 static inline typename This::Status
5556 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5557 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5558 Mips_address addend_a, bool extract_addend, bool calculate_only,
5559 Valtype* calculated_value)
5561 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5562 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5563 Valtype addend = extract_addend ? val : addend_a;
5565 // tls symbol values are relative to tls_segment()->vaddr()
5566 Valtype x = psymval->value(object, addend) - tp_offset;
5569 *calculated_value = x;
5571 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5573 return This::STATUS_OKAY;
5576 // R_MIPS_SUB, R_MICROMIPS_SUB
5577 static inline typename This::Status
5578 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5579 const Symbol_value<size>* psymval, Mips_address addend_a,
5580 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5582 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5583 Valtype64 addend = (extract_addend
5584 ? elfcpp::Swap<64, big_endian>::readval(wv)
5587 Valtype64 x = psymval->value(object, -addend);
5589 *calculated_value = x;
5591 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5593 return This::STATUS_OKAY;
5597 static inline typename This::Status
5598 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5599 const Symbol_value<size>* psymval, Mips_address addend_a,
5600 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5601 bool apply_addend_only)
5603 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5604 Valtype64 addend = (extract_addend
5605 ? elfcpp::Swap<64, big_endian>::readval(wv)
5608 Valtype64 x = psymval->value(object, addend);
5610 *calculated_value = x;
5613 if (apply_addend_only)
5615 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5618 return This::STATUS_OKAY;
5621 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5622 static inline typename This::Status
5623 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5624 const Symbol_value<size>* psymval, Mips_address addend_a,
5625 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5627 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5628 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5629 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5632 Valtype x = psymval->value(object, addend);
5633 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5634 val = Bits<32>::bit_select32(val, x, 0xffff);
5637 *calculated_value = x;
5639 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5641 return This::STATUS_OKAY;
5644 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5645 static inline typename This::Status
5646 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5647 const Symbol_value<size>* psymval, Mips_address addend_a,
5648 bool extract_addend, bool calculate_only,
5649 Valtype* calculated_value)
5651 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5652 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5653 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5656 Valtype x = psymval->value(object, addend);
5657 x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5658 val = Bits<32>::bit_select32(val, x, 0xffff);
5661 *calculated_value = x;
5663 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5665 return This::STATUS_OKAY;
5669 template<int size, bool big_endian>
5670 typename std::list<reloc_high<size, big_endian> >
5671 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5673 template<int size, bool big_endian>
5674 typename std::list<reloc_high<size, big_endian> >
5675 Mips_relocate_functions<size, big_endian>::got16_relocs;
5677 template<int size, bool big_endian>
5678 typename std::list<reloc_high<size, big_endian> >
5679 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5681 // Mips_got_info methods.
5683 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5684 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5686 template<int size, bool big_endian>
5688 Mips_got_info<size, big_endian>::record_local_got_symbol(
5689 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5690 Mips_address addend, unsigned int r_type, unsigned int shndx,
5691 bool is_section_symbol)
5693 Mips_got_entry<size, big_endian>* entry =
5694 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5695 mips_elf_reloc_tls_type(r_type),
5696 shndx, is_section_symbol);
5697 this->record_got_entry(entry, object);
5700 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5701 // in OBJECT. FOR_CALL is true if the caller is only interested in
5702 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5705 template<int size, bool big_endian>
5707 Mips_got_info<size, big_endian>::record_global_got_symbol(
5708 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5709 unsigned int r_type, bool dyn_reloc, bool for_call)
5712 mips_sym->set_got_not_only_for_calls();
5714 // A global symbol in the GOT must also be in the dynamic symbol table.
5715 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5717 switch (mips_sym->visibility())
5719 case elfcpp::STV_INTERNAL:
5720 case elfcpp::STV_HIDDEN:
5721 mips_sym->set_is_forced_local();
5724 mips_sym->set_needs_dynsym_entry();
5729 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5730 if (tls_type == GOT_TLS_NONE)
5731 this->global_got_symbols_.insert(mips_sym);
5735 if (mips_sym->global_got_area() == GGA_NONE)
5736 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5740 Mips_got_entry<size, big_endian>* entry =
5741 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5743 this->record_got_entry(entry, object);
5746 // Add ENTRY to master GOT and to OBJECT's GOT.
5748 template<int size, bool big_endian>
5750 Mips_got_info<size, big_endian>::record_got_entry(
5751 Mips_got_entry<size, big_endian>* entry,
5752 Mips_relobj<size, big_endian>* object)
5754 this->got_entries_.insert(entry);
5756 // Create the GOT entry for the OBJECT's GOT.
5757 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5758 Mips_got_entry<size, big_endian>* entry2 =
5759 new Mips_got_entry<size, big_endian>(*entry);
5761 g->got_entries_.insert(entry2);
5764 // Record that OBJECT has a page relocation against symbol SYMNDX and
5765 // that ADDEND is the addend for that relocation.
5766 // This function creates an upper bound on the number of GOT slots
5767 // required; no attempt is made to combine references to non-overridable
5768 // global symbols across multiple input files.
5770 template<int size, bool big_endian>
5772 Mips_got_info<size, big_endian>::record_got_page_entry(
5773 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5775 struct Got_page_range **range_ptr, *range;
5776 int old_pages, new_pages;
5778 // Find the Got_page_entry for this symbol.
5779 Got_page_entry* entry = new Got_page_entry(object, symndx);
5780 typename Got_page_entry_set::iterator it =
5781 this->got_page_entries_.find(entry);
5782 if (it != this->got_page_entries_.end())
5785 this->got_page_entries_.insert(entry);
5787 // Add the same entry to the OBJECT's GOT.
5788 Got_page_entry* entry2 = NULL;
5789 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5790 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5792 entry2 = new Got_page_entry(*entry);
5793 g2->got_page_entries_.insert(entry2);
5796 // Skip over ranges whose maximum extent cannot share a page entry
5798 range_ptr = &entry->ranges;
5799 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5800 range_ptr = &(*range_ptr)->next;
5802 // If we scanned to the end of the list, or found a range whose
5803 // minimum extent cannot share a page entry with ADDEND, create
5804 // a new singleton range.
5806 if (!range || addend < range->min_addend - 0xffff)
5808 range = new Got_page_range();
5809 range->next = *range_ptr;
5810 range->min_addend = addend;
5811 range->max_addend = addend;
5816 ++entry2->num_pages;
5817 ++this->page_gotno_;
5822 // Remember how many pages the old range contributed.
5823 old_pages = range->get_max_pages();
5825 // Update the ranges.
5826 if (addend < range->min_addend)
5827 range->min_addend = addend;
5828 else if (addend > range->max_addend)
5830 if (range->next && addend >= range->next->min_addend - 0xffff)
5832 old_pages += range->next->get_max_pages();
5833 range->max_addend = range->next->max_addend;
5834 range->next = range->next->next;
5837 range->max_addend = addend;
5840 // Record any change in the total estimate.
5841 new_pages = range->get_max_pages();
5842 if (old_pages != new_pages)
5844 entry->num_pages += new_pages - old_pages;
5846 entry2->num_pages += new_pages - old_pages;
5847 this->page_gotno_ += new_pages - old_pages;
5848 g2->page_gotno_ += new_pages - old_pages;
5852 // Create all entries that should be in the local part of the GOT.
5854 template<int size, bool big_endian>
5856 Mips_got_info<size, big_endian>::add_local_entries(
5857 Target_mips<size, big_endian>* target, Layout* layout)
5859 Mips_output_data_got<size, big_endian>* got = target->got_section();
5860 // First two GOT entries are reserved. The first entry will be filled at
5861 // runtime. The second entry will be used by some runtime loaders.
5862 got->add_constant(0);
5863 got->add_constant(target->mips_elf_gnu_got1_mask());
5865 for (typename Got_entry_set::iterator
5866 p = this->got_entries_.begin();
5867 p != this->got_entries_.end();
5870 Mips_got_entry<size, big_endian>* entry = *p;
5871 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5873 got->add_local(entry->object(), entry->symndx(),
5874 GOT_TYPE_STANDARD, entry->addend());
5875 unsigned int got_offset = entry->object()->local_got_offset(
5876 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5877 if (got->multi_got() && this->index_ > 0
5878 && parameters->options().output_is_position_independent())
5880 if (!entry->is_section_symbol())
5881 target->rel_dyn_section(layout)->add_local(entry->object(),
5882 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5884 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5885 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5891 this->add_page_entries(target, layout);
5893 // Add global entries that should be in the local area.
5894 for (typename Got_entry_set::iterator
5895 p = this->got_entries_.begin();
5896 p != this->got_entries_.end();
5899 Mips_got_entry<size, big_endian>* entry = *p;
5900 if (!entry->is_for_global_symbol())
5903 Mips_symbol<size>* mips_sym = entry->sym();
5904 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5906 unsigned int got_type;
5907 if (!got->multi_got())
5908 got_type = GOT_TYPE_STANDARD;
5910 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5911 if (got->add_global(mips_sym, got_type))
5913 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5914 if (got->multi_got() && this->index_ > 0
5915 && parameters->options().output_is_position_independent())
5916 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5917 mips_sym, elfcpp::R_MIPS_REL32, got,
5918 mips_sym->got_offset(got_type));
5924 // Create GOT page entries.
5926 template<int size, bool big_endian>
5928 Mips_got_info<size, big_endian>::add_page_entries(
5929 Target_mips<size, big_endian>* target, Layout* layout)
5931 if (this->page_gotno_ == 0)
5934 Mips_output_data_got<size, big_endian>* got = target->got_section();
5935 this->got_page_offset_start_ = got->add_constant(0);
5936 if (got->multi_got() && this->index_ > 0
5937 && parameters->options().output_is_position_independent())
5938 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5939 this->got_page_offset_start_);
5940 int num_entries = this->page_gotno_;
5941 unsigned int prev_offset = this->got_page_offset_start_;
5942 while (--num_entries > 0)
5944 unsigned int next_offset = got->add_constant(0);
5945 if (got->multi_got() && this->index_ > 0
5946 && parameters->options().output_is_position_independent())
5947 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5949 gold_assert(next_offset == prev_offset + size/8);
5950 prev_offset = next_offset;
5952 this->got_page_offset_next_ = this->got_page_offset_start_;
5955 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5957 template<int size, bool big_endian>
5959 Mips_got_info<size, big_endian>::add_global_entries(
5960 Target_mips<size, big_endian>* target, Layout* layout,
5961 unsigned int non_reloc_only_global_gotno)
5963 Mips_output_data_got<size, big_endian>* got = target->got_section();
5964 // Add GGA_NORMAL entries.
5965 unsigned int count = 0;
5966 for (typename Got_entry_set::iterator
5967 p = this->got_entries_.begin();
5968 p != this->got_entries_.end();
5971 Mips_got_entry<size, big_endian>* entry = *p;
5972 if (!entry->is_for_global_symbol())
5975 Mips_symbol<size>* mips_sym = entry->sym();
5976 if (mips_sym->global_got_area() != GGA_NORMAL)
5979 unsigned int got_type;
5980 if (!got->multi_got())
5981 got_type = GOT_TYPE_STANDARD;
5983 // In multi-GOT links, global symbol can be in both primary and
5984 // secondary GOT(s). By creating custom GOT type
5985 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5986 // is added to secondary GOT(s).
5987 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5988 if (!got->add_global(mips_sym, got_type))
5991 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5992 if (got->multi_got() && this->index_ == 0)
5994 if (got->multi_got() && this->index_ > 0)
5996 if (parameters->options().output_is_position_independent()
5997 || (!parameters->doing_static_link()
5998 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
6000 target->rel_dyn_section(layout)->add_global(
6001 mips_sym, elfcpp::R_MIPS_REL32, got,
6002 mips_sym->got_offset(got_type));
6003 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
6004 elfcpp::R_MIPS_REL32, mips_sym);
6009 if (!got->multi_got() || this->index_ == 0)
6011 if (got->multi_got())
6013 // We need to allocate space in the primary GOT for GGA_NORMAL entries
6014 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6015 // entries correspond to dynamic symbol indexes.
6016 while (count < non_reloc_only_global_gotno)
6018 got->add_constant(0);
6023 // Add GGA_RELOC_ONLY entries.
6024 got->add_reloc_only_entries();
6028 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6030 template<int size, bool big_endian>
6032 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6033 Mips_output_data_got<size, big_endian>* got)
6035 for (typename Global_got_entry_set::iterator
6036 p = this->global_got_symbols_.begin();
6037 p != this->global_got_symbols_.end();
6040 Mips_symbol<size>* mips_sym = *p;
6041 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6043 unsigned int got_type;
6044 if (!got->multi_got())
6045 got_type = GOT_TYPE_STANDARD;
6047 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6048 if (got->add_global(mips_sym, got_type))
6049 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6054 // Create TLS GOT entries.
6056 template<int size, bool big_endian>
6058 Mips_got_info<size, big_endian>::add_tls_entries(
6059 Target_mips<size, big_endian>* target, Layout* layout)
6061 Mips_output_data_got<size, big_endian>* got = target->got_section();
6062 // Add local tls entries.
6063 for (typename Got_entry_set::iterator
6064 p = this->got_entries_.begin();
6065 p != this->got_entries_.end();
6068 Mips_got_entry<size, big_endian>* entry = *p;
6069 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6072 if (entry->tls_type() == GOT_TLS_GD)
6074 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6075 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6076 : elfcpp::R_MIPS_TLS_DTPMOD64);
6077 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6078 : elfcpp::R_MIPS_TLS_DTPREL64);
6080 if (!parameters->doing_static_link())
6082 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6083 entry->shndx(), got_type,
6084 target->rel_dyn_section(layout),
6085 r_type1, entry->addend());
6086 unsigned int got_offset =
6087 entry->object()->local_got_offset(entry->symndx(), got_type,
6089 got->add_static_reloc(got_offset + size/8, r_type2,
6090 entry->object(), entry->symndx());
6094 // We are doing a static link. Mark it as belong to module 1,
6096 unsigned int got_offset = got->add_constant(1);
6097 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6100 got->add_constant(0);
6101 got->add_static_reloc(got_offset + size/8, r_type2,
6102 entry->object(), entry->symndx());
6105 else if (entry->tls_type() == GOT_TLS_IE)
6107 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6108 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6109 : elfcpp::R_MIPS_TLS_TPREL64);
6110 if (!parameters->doing_static_link())
6111 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6112 target->rel_dyn_section(layout), r_type,
6116 got->add_local(entry->object(), entry->symndx(), got_type,
6118 unsigned int got_offset =
6119 entry->object()->local_got_offset(entry->symndx(), got_type,
6121 got->add_static_reloc(got_offset, r_type, entry->object(),
6125 else if (entry->tls_type() == GOT_TLS_LDM)
6127 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6128 : elfcpp::R_MIPS_TLS_DTPMOD64);
6129 unsigned int got_offset;
6130 if (!parameters->doing_static_link())
6132 got_offset = got->add_constant(0);
6133 target->rel_dyn_section(layout)->add_local(
6134 entry->object(), 0, r_type, got, got_offset);
6137 // We are doing a static link. Just mark it as belong to module 1,
6139 got_offset = got->add_constant(1);
6141 got->add_constant(0);
6142 got->set_tls_ldm_offset(got_offset, entry->object());
6148 // Add global tls entries.
6149 for (typename Got_entry_set::iterator
6150 p = this->got_entries_.begin();
6151 p != this->got_entries_.end();
6154 Mips_got_entry<size, big_endian>* entry = *p;
6155 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6158 Mips_symbol<size>* mips_sym = entry->sym();
6159 if (entry->tls_type() == GOT_TLS_GD)
6161 unsigned int got_type;
6162 if (!got->multi_got())
6163 got_type = GOT_TYPE_TLS_PAIR;
6165 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6166 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6167 : elfcpp::R_MIPS_TLS_DTPMOD64);
6168 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6169 : elfcpp::R_MIPS_TLS_DTPREL64);
6170 if (!parameters->doing_static_link())
6171 got->add_global_pair_with_rel(mips_sym, got_type,
6172 target->rel_dyn_section(layout), r_type1, r_type2);
6175 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6176 // GOT entries. The first one is initialized to be 1, which is the
6177 // module index for the main executable and the second one 0. A
6178 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6179 // the second GOT entry and will be applied by gold.
6180 unsigned int got_offset = got->add_constant(1);
6181 mips_sym->set_got_offset(got_type, got_offset);
6182 got->add_constant(0);
6183 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6186 else if (entry->tls_type() == GOT_TLS_IE)
6188 unsigned int got_type;
6189 if (!got->multi_got())
6190 got_type = GOT_TYPE_TLS_OFFSET;
6192 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6193 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6194 : elfcpp::R_MIPS_TLS_TPREL64);
6195 if (!parameters->doing_static_link())
6196 got->add_global_with_rel(mips_sym, got_type,
6197 target->rel_dyn_section(layout), r_type);
6200 got->add_global(mips_sym, got_type);
6201 unsigned int got_offset = mips_sym->got_offset(got_type);
6202 got->add_static_reloc(got_offset, r_type, mips_sym);
6210 // Decide whether the symbol needs an entry in the global part of the primary
6211 // GOT, setting global_got_area accordingly. Count the number of global
6212 // symbols that are in the primary GOT only because they have dynamic
6213 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6215 template<int size, bool big_endian>
6217 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6219 for (typename Global_got_entry_set::iterator
6220 p = this->global_got_symbols_.begin();
6221 p != this->global_got_symbols_.end();
6224 Mips_symbol<size>* sym = *p;
6225 // Make a final decision about whether the symbol belongs in the
6226 // local or global GOT. Symbols that bind locally can (and in the
6227 // case of forced-local symbols, must) live in the local GOT.
6228 // Those that are aren't in the dynamic symbol table must also
6229 // live in the local GOT.
6231 if (!sym->should_add_dynsym_entry(symtab)
6232 || (sym->got_only_for_calls()
6233 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6234 : symbol_references_local(sym,
6235 sym->should_add_dynsym_entry(symtab))))
6236 // The symbol belongs in the local GOT. We no longer need this
6237 // entry if it was only used for relocations; those relocations
6238 // will be against the null or section symbol instead.
6239 sym->set_global_got_area(GGA_NONE);
6240 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6242 ++this->reloc_only_gotno_;
6243 ++this->global_gotno_ ;
6248 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6249 // VALUE if it is not initialized.
6251 template<int size, bool big_endian>
6253 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6254 Mips_output_data_got<size, big_endian>* got)
6256 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6257 if (it != this->got_page_offsets_.end())
6260 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6261 + (size/8) * this->page_gotno_);
6263 unsigned int got_offset = this->got_page_offset_next_;
6264 this->got_page_offsets_[value] = got_offset;
6265 this->got_page_offset_next_ += size/8;
6266 got->update_got_entry(got_offset, value);
6270 // Remove lazy-binding stubs for global symbols in this GOT.
6272 template<int size, bool big_endian>
6274 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6275 Target_mips<size, big_endian>* target)
6277 for (typename Got_entry_set::iterator
6278 p = this->got_entries_.begin();
6279 p != this->got_entries_.end();
6282 Mips_got_entry<size, big_endian>* entry = *p;
6283 if (entry->is_for_global_symbol())
6284 target->remove_lazy_stub_entry(entry->sym());
6288 // Count the number of GOT entries required.
6290 template<int size, bool big_endian>
6292 Mips_got_info<size, big_endian>::count_got_entries()
6294 for (typename Got_entry_set::iterator
6295 p = this->got_entries_.begin();
6296 p != this->got_entries_.end();
6299 this->count_got_entry(*p);
6303 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6305 template<int size, bool big_endian>
6307 Mips_got_info<size, big_endian>::count_got_entry(
6308 Mips_got_entry<size, big_endian>* entry)
6310 if (entry->is_tls_entry())
6311 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6312 else if (entry->is_for_local_symbol()
6313 || entry->sym()->global_got_area() == GGA_NONE)
6314 ++this->local_gotno_;
6316 ++this->global_gotno_;
6319 // Add FROM's GOT entries.
6321 template<int size, bool big_endian>
6323 Mips_got_info<size, big_endian>::add_got_entries(
6324 Mips_got_info<size, big_endian>* from)
6326 for (typename Got_entry_set::iterator
6327 p = from->got_entries_.begin();
6328 p != from->got_entries_.end();
6331 Mips_got_entry<size, big_endian>* entry = *p;
6332 if (this->got_entries_.find(entry) == this->got_entries_.end())
6334 Mips_got_entry<size, big_endian>* entry2 =
6335 new Mips_got_entry<size, big_endian>(*entry);
6336 this->got_entries_.insert(entry2);
6337 this->count_got_entry(entry);
6342 // Add FROM's GOT page entries.
6344 template<int size, bool big_endian>
6346 Mips_got_info<size, big_endian>::add_got_page_entries(
6347 Mips_got_info<size, big_endian>* from)
6349 for (typename Got_page_entry_set::iterator
6350 p = from->got_page_entries_.begin();
6351 p != from->got_page_entries_.end();
6354 Got_page_entry* entry = *p;
6355 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6357 Got_page_entry* entry2 = new Got_page_entry(*entry);
6358 this->got_page_entries_.insert(entry2);
6359 this->page_gotno_ += entry->num_pages;
6364 // Mips_output_data_got methods.
6366 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6367 // larger than 64K, create multi-GOT.
6369 template<int size, bool big_endian>
6371 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6372 Symbol_table* symtab, const Input_objects* input_objects)
6374 // Decide which symbols need to go in the global part of the GOT and
6375 // count the number of reloc-only GOT symbols.
6376 this->master_got_info_->count_got_symbols(symtab);
6378 // Count the number of GOT entries.
6379 this->master_got_info_->count_got_entries();
6381 unsigned int got_size = this->master_got_info_->got_size();
6382 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6383 this->lay_out_multi_got(layout, input_objects);
6386 // Record that all objects use single GOT.
6387 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6388 p != input_objects->relobj_end();
6391 Mips_relobj<size, big_endian>* object =
6392 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6393 if (object->get_got_info() != NULL)
6394 object->set_got_info(this->master_got_info_);
6397 this->master_got_info_->add_local_entries(this->target_, layout);
6398 this->master_got_info_->add_global_entries(this->target_, layout,
6400 this->master_got_info_->add_tls_entries(this->target_, layout);
6404 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6406 template<int size, bool big_endian>
6408 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6409 const Input_objects* input_objects)
6411 // Try to merge the GOTs of input objects together, as long as they
6412 // don't seem to exceed the maximum GOT size, choosing one of them
6413 // to be the primary GOT.
6414 this->merge_gots(input_objects);
6416 // Every symbol that is referenced in a dynamic relocation must be
6417 // present in the primary GOT.
6418 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6422 unsigned int offset = 0;
6423 Mips_got_info<size, big_endian>* g = this->primary_got_;
6427 g->set_offset(offset);
6429 g->add_local_entries(this->target_, layout);
6431 g->add_global_entries(this->target_, layout,
6432 (this->master_got_info_->global_gotno()
6433 - this->master_got_info_->reloc_only_gotno()));
6435 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6436 g->add_tls_entries(this->target_, layout);
6438 // Forbid global symbols in every non-primary GOT from having
6439 // lazy-binding stubs.
6441 g->remove_lazy_stubs(this->target_);
6444 offset += g->got_size();
6450 // Attempt to merge GOTs of different input objects. Try to use as much as
6451 // possible of the primary GOT, since it doesn't require explicit dynamic
6452 // relocations, but don't use objects that would reference global symbols
6453 // out of the addressable range. Failing the primary GOT, attempt to merge
6454 // with the current GOT, or finish the current GOT and then make make the new
6457 template<int size, bool big_endian>
6459 Mips_output_data_got<size, big_endian>::merge_gots(
6460 const Input_objects* input_objects)
6462 gold_assert(this->primary_got_ == NULL);
6463 Mips_got_info<size, big_endian>* current = NULL;
6465 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6466 p != input_objects->relobj_end();
6469 Mips_relobj<size, big_endian>* object =
6470 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6472 Mips_got_info<size, big_endian>* g = object->get_got_info();
6476 g->count_got_entries();
6478 // Work out the number of page, local and TLS entries.
6479 unsigned int estimate = this->master_got_info_->page_gotno();
6480 if (estimate > g->page_gotno())
6481 estimate = g->page_gotno();
6482 estimate += g->local_gotno() + g->tls_gotno();
6484 // We place TLS GOT entries after both locals and globals. The globals
6485 // for the primary GOT may overflow the normal GOT size limit, so be
6486 // sure not to merge a GOT which requires TLS with the primary GOT in that
6487 // case. This doesn't affect non-primary GOTs.
6488 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6489 : g->global_gotno());
6491 unsigned int max_count =
6492 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6493 if (estimate <= max_count)
6495 // If we don't have a primary GOT, use it as
6496 // a starting point for the primary GOT.
6497 if (!this->primary_got_)
6499 this->primary_got_ = g;
6503 // Try merging with the primary GOT.
6504 if (this->merge_got_with(g, object, this->primary_got_))
6508 // If we can merge with the last-created GOT, do it.
6509 if (current && this->merge_got_with(g, object, current))
6512 // Well, we couldn't merge, so create a new GOT. Don't check if it
6513 // fits; if it turns out that it doesn't, we'll get relocation
6514 // overflows anyway.
6515 g->set_next(current);
6519 // If we do not find any suitable primary GOT, create an empty one.
6520 if (this->primary_got_ == NULL)
6521 this->primary_got_ = new Mips_got_info<size, big_endian>();
6523 // Link primary GOT with secondary GOTs.
6524 this->primary_got_->set_next(current);
6527 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6528 // this would lead to overflow, true if they were merged successfully.
6530 template<int size, bool big_endian>
6532 Mips_output_data_got<size, big_endian>::merge_got_with(
6533 Mips_got_info<size, big_endian>* from,
6534 Mips_relobj<size, big_endian>* object,
6535 Mips_got_info<size, big_endian>* to)
6537 // Work out how many page entries we would need for the combined GOT.
6538 unsigned int estimate = this->master_got_info_->page_gotno();
6539 if (estimate >= from->page_gotno() + to->page_gotno())
6540 estimate = from->page_gotno() + to->page_gotno();
6542 // Conservatively estimate how many local and TLS entries would be needed.
6543 estimate += from->local_gotno() + to->local_gotno();
6544 estimate += from->tls_gotno() + to->tls_gotno();
6546 // If we're merging with the primary got, any TLS relocations will
6547 // come after the full set of global entries. Otherwise estimate those
6548 // conservatively as well.
6549 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6550 estimate += this->master_got_info_->global_gotno();
6552 estimate += from->global_gotno() + to->global_gotno();
6554 // Bail out if the combined GOT might be too big.
6555 unsigned int max_count =
6556 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6557 if (estimate > max_count)
6560 // Transfer the object's GOT information from FROM to TO.
6561 to->add_got_entries(from);
6562 to->add_got_page_entries(from);
6564 // Record that OBJECT should use output GOT TO.
6565 object->set_got_info(to);
6570 // Write out the GOT.
6572 template<int size, bool big_endian>
6574 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6576 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6577 Mips_stubs_entry_set;
6579 // Call parent to write out GOT.
6580 Output_data_got<size, big_endian>::do_write(of);
6582 const off_t offset = this->offset();
6583 const section_size_type oview_size =
6584 convert_to_section_size_type(this->data_size());
6585 unsigned char* const oview = of->get_output_view(offset, oview_size);
6587 // Needed for fixing values of .got section.
6588 this->got_view_ = oview;
6590 // Write lazy stub addresses.
6591 for (typename Mips_stubs_entry_set::iterator
6592 p = this->master_got_info_->global_got_symbols().begin();
6593 p != this->master_got_info_->global_got_symbols().end();
6596 Mips_symbol<size>* mips_sym = *p;
6597 if (mips_sym->has_lazy_stub())
6599 Valtype* wv = reinterpret_cast<Valtype*>(
6600 oview + this->get_primary_got_offset(mips_sym));
6602 this->target_->mips_stubs_section()->stub_address(mips_sym);
6603 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6607 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6608 for (typename Mips_stubs_entry_set::iterator
6609 p = this->master_got_info_->global_got_symbols().begin();
6610 p != this->master_got_info_->global_got_symbols().end();
6613 Mips_symbol<size>* mips_sym = *p;
6614 if (!this->multi_got()
6615 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6616 && mips_sym->global_got_area() == GGA_NONE
6617 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6619 Valtype* wv = reinterpret_cast<Valtype*>(
6620 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6621 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6625 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6630 if (!this->secondary_got_relocs_.empty())
6632 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6633 // secondary GOT entries with non-zero initial value copy the value
6634 // to the corresponding primary GOT entry, and set the secondary GOT
6636 // TODO(sasa): This is workaround. It needs to be investigated further.
6638 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6640 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6641 if (reloc.symbol_is_global())
6643 Mips_symbol<size>* gsym = reloc.symbol();
6644 gold_assert(gsym != NULL);
6646 unsigned got_offset = reloc.got_offset();
6647 gold_assert(got_offset < oview_size);
6649 // Find primary GOT entry.
6650 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6651 oview + this->get_primary_got_offset(gsym));
6653 // Find secondary GOT entry.
6654 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6656 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6659 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6660 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6661 gsym->set_applied_secondary_got_fixup();
6666 of->write_output_view(offset, oview_size, oview);
6669 // We are done if there is no fix up.
6670 if (this->static_relocs_.empty())
6673 Output_segment* tls_segment = this->layout_->tls_segment();
6674 gold_assert(tls_segment != NULL);
6676 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6678 Static_reloc& reloc(this->static_relocs_[i]);
6681 if (!reloc.symbol_is_global())
6683 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6684 const Symbol_value<size>* psymval =
6685 object->local_symbol(reloc.index());
6687 // We are doing static linking. Issue an error and skip this
6688 // relocation if the symbol is undefined or in a discarded_section.
6690 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6691 if ((shndx == elfcpp::SHN_UNDEF)
6693 && shndx != elfcpp::SHN_UNDEF
6694 && !object->is_section_included(shndx)
6695 && !this->symbol_table_->is_section_folded(object, shndx)))
6697 gold_error(_("undefined or discarded local symbol %u from "
6698 " object %s in GOT"),
6699 reloc.index(), reloc.relobj()->name().c_str());
6703 value = psymval->value(object, 0);
6707 const Mips_symbol<size>* gsym = reloc.symbol();
6708 gold_assert(gsym != NULL);
6710 // We are doing static linking. Issue an error and skip this
6711 // relocation if the symbol is undefined or in a discarded_section
6712 // unless it is a weakly_undefined symbol.
6713 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6714 && !gsym->is_weak_undefined())
6716 gold_error(_("undefined or discarded symbol %s in GOT"),
6721 if (!gsym->is_weak_undefined())
6722 value = gsym->value();
6727 unsigned got_offset = reloc.got_offset();
6728 gold_assert(got_offset < oview_size);
6730 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6733 switch (reloc.r_type())
6735 case elfcpp::R_MIPS_TLS_DTPMOD32:
6736 case elfcpp::R_MIPS_TLS_DTPMOD64:
6739 case elfcpp::R_MIPS_TLS_DTPREL32:
6740 case elfcpp::R_MIPS_TLS_DTPREL64:
6741 x = value - elfcpp::DTP_OFFSET;
6743 case elfcpp::R_MIPS_TLS_TPREL32:
6744 case elfcpp::R_MIPS_TLS_TPREL64:
6745 x = value - elfcpp::TP_OFFSET;
6752 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6755 of->write_output_view(offset, oview_size, oview);
6758 // Mips_relobj methods.
6760 // Count the local symbols. The Mips backend needs to know if a symbol
6761 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6762 // because the Symbol object keeps the ELF symbol type and st_other field.
6763 // For local symbol it is harder because we cannot access this information.
6764 // So we override the do_count_local_symbol in parent and scan local symbols to
6765 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6766 // I do not want to slow down other ports by calling a per symbol target hook
6767 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6769 template<int size, bool big_endian>
6771 Mips_relobj<size, big_endian>::do_count_local_symbols(
6772 Stringpool_template<char>* pool,
6773 Stringpool_template<char>* dynpool)
6775 // Ask parent to count the local symbols.
6776 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6777 const unsigned int loccount = this->local_symbol_count();
6781 // Initialize the mips16 and micromips function bit-vector.
6782 this->local_symbol_is_mips16_.resize(loccount, false);
6783 this->local_symbol_is_micromips_.resize(loccount, false);
6785 // Read the symbol table section header.
6786 const unsigned int symtab_shndx = this->symtab_shndx();
6787 elfcpp::Shdr<size, big_endian>
6788 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6789 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6791 // Read the local symbols.
6792 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6793 gold_assert(loccount == symtabshdr.get_sh_info());
6794 off_t locsize = loccount * sym_size;
6795 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6796 locsize, true, true);
6798 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6800 // Skip the first dummy symbol.
6802 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6804 elfcpp::Sym<size, big_endian> sym(psyms);
6805 unsigned char st_other = sym.get_st_other();
6806 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6807 this->local_symbol_is_micromips_[i] =
6808 elfcpp::elf_st_is_micromips(st_other);
6812 // Read the symbol information.
6814 template<int size, bool big_endian>
6816 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6818 // Call parent class to read symbol information.
6819 this->base_read_symbols(sd);
6821 // Read processor-specific flags in ELF file header.
6822 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6823 elfcpp::Elf_sizes<size>::ehdr_size,
6825 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6826 this->processor_specific_flags_ = ehdr.get_e_flags();
6828 // Get the section names.
6829 const unsigned char* pnamesu = sd->section_names->data();
6830 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6832 // Initialize the mips16 stub section bit-vectors.
6833 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6834 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6835 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6837 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6838 const unsigned char* pshdrs = sd->section_headers->data();
6839 const unsigned char* ps = pshdrs + shdr_size;
6840 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6842 elfcpp::Shdr<size, big_endian> shdr(ps);
6844 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6846 this->has_reginfo_section_ = true;
6847 // Read the gp value that was used to create this object. We need the
6848 // gp value while processing relocs. The .reginfo section is not used
6849 // in the 64-bit MIPS ELF ABI.
6850 section_offset_type section_offset = shdr.get_sh_offset();
6851 section_size_type section_size =
6852 convert_to_section_size_type(shdr.get_sh_size());
6853 const unsigned char* view =
6854 this->get_view(section_offset, section_size, true, false);
6856 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6858 // Read the rest of .reginfo.
6859 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6860 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6861 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6862 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6863 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6866 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6868 gold_assert(this->attributes_section_data_ == NULL);
6869 section_offset_type section_offset = shdr.get_sh_offset();
6870 section_size_type section_size =
6871 convert_to_section_size_type(shdr.get_sh_size());
6872 const unsigned char* view =
6873 this->get_view(section_offset, section_size, true, false);
6874 this->attributes_section_data_ =
6875 new Attributes_section_data(view, section_size);
6878 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6880 gold_assert(this->abiflags_ == NULL);
6881 section_offset_type section_offset = shdr.get_sh_offset();
6882 section_size_type section_size =
6883 convert_to_section_size_type(shdr.get_sh_size());
6884 const unsigned char* view =
6885 this->get_view(section_offset, section_size, true, false);
6886 this->abiflags_ = new Mips_abiflags<big_endian>();
6888 this->abiflags_->version =
6889 elfcpp::Swap<16, big_endian>::readval(view);
6890 if (this->abiflags_->version != 0)
6892 gold_error(_("%s: .MIPS.abiflags section has "
6893 "unsupported version %u"),
6894 this->name().c_str(),
6895 this->abiflags_->version);
6898 this->abiflags_->isa_level =
6899 elfcpp::Swap<8, big_endian>::readval(view + 2);
6900 this->abiflags_->isa_rev =
6901 elfcpp::Swap<8, big_endian>::readval(view + 3);
6902 this->abiflags_->gpr_size =
6903 elfcpp::Swap<8, big_endian>::readval(view + 4);
6904 this->abiflags_->cpr1_size =
6905 elfcpp::Swap<8, big_endian>::readval(view + 5);
6906 this->abiflags_->cpr2_size =
6907 elfcpp::Swap<8, big_endian>::readval(view + 6);
6908 this->abiflags_->fp_abi =
6909 elfcpp::Swap<8, big_endian>::readval(view + 7);
6910 this->abiflags_->isa_ext =
6911 elfcpp::Swap<32, big_endian>::readval(view + 8);
6912 this->abiflags_->ases =
6913 elfcpp::Swap<32, big_endian>::readval(view + 12);
6914 this->abiflags_->flags1 =
6915 elfcpp::Swap<32, big_endian>::readval(view + 16);
6916 this->abiflags_->flags2 =
6917 elfcpp::Swap<32, big_endian>::readval(view + 20);
6920 // In the 64-bit ABI, .MIPS.options section holds register information.
6921 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6922 // starts with this header:
6926 // // Type of option.
6927 // unsigned char kind[1];
6928 // // Size of option descriptor, including header.
6929 // unsigned char size[1];
6930 // // Section index of affected section, or 0 for global option.
6931 // unsigned char section[2];
6932 // // Information specific to this kind of option.
6933 // unsigned char info[4];
6936 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6937 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6938 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6940 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6942 section_offset_type section_offset = shdr.get_sh_offset();
6943 section_size_type section_size =
6944 convert_to_section_size_type(shdr.get_sh_size());
6945 const unsigned char* view =
6946 this->get_view(section_offset, section_size, true, false);
6947 const unsigned char* end = view + section_size;
6949 while (view + 8 <= end)
6951 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6952 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6955 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6957 this->name().c_str(),
6958 this->mips_elf_options_section_name(), sz);
6962 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6964 // In the 64 bit ABI, an ODK_REGINFO option is the following
6965 // structure. The info field of the options header is not
6970 // // Mask of general purpose registers used.
6971 // unsigned char ri_gprmask[4];
6973 // unsigned char ri_pad[4];
6974 // // Mask of co-processor registers used.
6975 // unsigned char ri_cprmask[4][4];
6976 // // GP register value for this object file.
6977 // unsigned char ri_gp_value[8];
6980 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6983 else if (kind == elfcpp::ODK_REGINFO)
6985 // In the 32 bit ABI, an ODK_REGINFO option is the following
6986 // structure. The info field of the options header is not
6987 // used. The same structure is used in .reginfo section.
6991 // unsigned char ri_gprmask[4];
6992 // unsigned char ri_cprmask[4][4];
6993 // unsigned char ri_gp_value[4];
6996 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
7003 const char* name = pnames + shdr.get_sh_name();
7004 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
7005 this->section_is_mips16_call_stub_[i] =
7006 is_prefix_of(".mips16.call.", name);
7007 this->section_is_mips16_call_fp_stub_[i] =
7008 is_prefix_of(".mips16.call.fp.", name);
7010 if (strcmp(name, ".pdr") == 0)
7012 gold_assert(this->pdr_shndx_ == -1U);
7013 this->pdr_shndx_ = i;
7018 // Discard MIPS16 stub secions that are not needed.
7020 template<int size, bool big_endian>
7022 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7024 for (typename Mips16_stubs_int_map::const_iterator
7025 it = this->mips16_stub_sections_.begin();
7026 it != this->mips16_stub_sections_.end(); ++it)
7028 Mips16_stub_section<size, big_endian>* stub_section = it->second;
7029 if (!stub_section->is_target_found())
7031 gold_error(_("no relocation found in mips16 stub section '%s'"),
7032 stub_section->object()
7033 ->section_name(stub_section->shndx()).c_str());
7036 bool discard = false;
7037 if (stub_section->is_for_local_function())
7039 if (stub_section->is_fn_stub())
7041 // This stub is for a local symbol. This stub will only
7042 // be needed if there is some relocation in this object,
7043 // other than a 16 bit function call, which refers to this
7045 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7048 this->add_local_mips16_fn_stub(stub_section);
7052 // This stub is for a local symbol. This stub will only
7053 // be needed if there is some relocation (R_MIPS16_26) in
7054 // this object that refers to this symbol.
7055 gold_assert(stub_section->is_call_stub()
7056 || stub_section->is_call_fp_stub());
7057 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7060 this->add_local_mips16_call_stub(stub_section);
7065 Mips_symbol<size>* gsym = stub_section->gsym();
7066 if (stub_section->is_fn_stub())
7068 if (gsym->has_mips16_fn_stub())
7069 // We already have a stub for this function.
7073 gsym->set_mips16_fn_stub(stub_section);
7074 if (gsym->should_add_dynsym_entry(symtab))
7076 // If we have a MIPS16 function with a stub, the
7077 // dynamic symbol must refer to the stub, since only
7078 // the stub uses the standard calling conventions.
7079 gsym->set_need_fn_stub();
7080 if (gsym->is_from_dynobj())
7081 gsym->set_needs_dynsym_value();
7084 if (!gsym->need_fn_stub())
7087 else if (stub_section->is_call_stub())
7089 if (gsym->is_mips16())
7090 // We don't need the call_stub; this is a 16 bit
7091 // function, so calls from other 16 bit functions are
7094 else if (gsym->has_mips16_call_stub())
7095 // We already have a stub for this function.
7098 gsym->set_mips16_call_stub(stub_section);
7102 gold_assert(stub_section->is_call_fp_stub());
7103 if (gsym->is_mips16())
7104 // We don't need the call_stub; this is a 16 bit
7105 // function, so calls from other 16 bit functions are
7108 else if (gsym->has_mips16_call_fp_stub())
7109 // We already have a stub for this function.
7112 gsym->set_mips16_call_fp_stub(stub_section);
7116 this->set_output_section(stub_section->shndx(), NULL);
7120 // Mips_output_data_la25_stub methods.
7122 // Template for standard LA25 stub.
7123 template<int size, bool big_endian>
7125 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7127 0x3c190000, // lui $25,%hi(func)
7128 0x08000000, // j func
7129 0x27390000, // add $25,$25,%lo(func)
7133 // Template for microMIPS LA25 stub.
7134 template<int size, bool big_endian>
7136 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7138 0x41b9, 0x0000, // lui t9,%hi(func)
7139 0xd400, 0x0000, // j func
7140 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7141 0x0000, 0x0000 // nop
7144 // Create la25 stub for a symbol.
7146 template<int size, bool big_endian>
7148 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7149 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7150 Mips_symbol<size>* gsym)
7152 if (!gsym->has_la25_stub())
7154 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7155 this->symbols_.push_back(gsym);
7156 this->create_stub_symbol(gsym, symtab, target, 16);
7160 // Create a symbol for SYM stub's value and size, to help make the disassembly
7163 template<int size, bool big_endian>
7165 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7166 Mips_symbol<size>* sym, Symbol_table* symtab,
7167 Target_mips<size, big_endian>* target, uint64_t symsize)
7169 std::string name(".pic.");
7170 name += sym->name();
7172 unsigned int offset = sym->la25_stub_offset();
7173 if (sym->is_micromips())
7176 // Make it a local function.
7177 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7178 Symbol_table::PREDEFINED,
7179 target->la25_stub_section(),
7180 offset, symsize, elfcpp::STT_FUNC,
7182 elfcpp::STV_DEFAULT, 0,
7184 new_sym->set_is_forced_local();
7187 // Write out la25 stubs. This uses the hand-coded instructions above,
7188 // and adjusts them as needed.
7190 template<int size, bool big_endian>
7192 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7194 const off_t offset = this->offset();
7195 const section_size_type oview_size =
7196 convert_to_section_size_type(this->data_size());
7197 unsigned char* const oview = of->get_output_view(offset, oview_size);
7199 for (typename std::vector<Mips_symbol<size>*>::iterator
7200 p = this->symbols_.begin();
7201 p != this->symbols_.end();
7204 Mips_symbol<size>* sym = *p;
7205 unsigned char* pov = oview + sym->la25_stub_offset();
7207 Mips_address target = sym->value();
7208 if (!sym->is_micromips())
7210 elfcpp::Swap<32, big_endian>::writeval(pov,
7211 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7212 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7213 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7214 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7215 la25_stub_entry[2] | (target & 0xffff));
7216 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7221 // First stub instruction. Paste high 16-bits of the target.
7222 elfcpp::Swap<16, big_endian>::writeval(pov,
7223 la25_stub_micromips_entry[0]);
7224 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7225 ((target + 0x8000) >> 16) & 0xffff);
7226 // Second stub instruction. Paste low 26-bits of the target, shifted
7228 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7229 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7230 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7231 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7232 // Third stub instruction. Paste low 16-bits of the target.
7233 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7234 la25_stub_micromips_entry[4]);
7235 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7236 // Fourth stub instruction.
7237 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7238 la25_stub_micromips_entry[6]);
7239 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7240 la25_stub_micromips_entry[7]);
7244 of->write_output_view(offset, oview_size, oview);
7247 // Mips_output_data_plt methods.
7249 // The format of the first PLT entry in an O32 executable.
7250 template<int size, bool big_endian>
7251 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7253 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7254 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7255 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7256 0x031cc023, // subu $24, $24, $28
7257 0x03e07825, // or $15, $31, zero
7258 0x0018c082, // srl $24, $24, 2
7259 0x0320f809, // jalr $25
7260 0x2718fffe // subu $24, $24, 2
7263 // The format of the first PLT entry in an N32 executable. Different
7264 // because gp ($28) is not available; we use t2 ($14) instead.
7265 template<int size, bool big_endian>
7266 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7268 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7269 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7270 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7271 0x030ec023, // subu $24, $24, $14
7272 0x03e07825, // or $15, $31, zero
7273 0x0018c082, // srl $24, $24, 2
7274 0x0320f809, // jalr $25
7275 0x2718fffe // subu $24, $24, 2
7278 // The format of the first PLT entry in an N64 executable. Different
7279 // from N32 because of the increased size of GOT entries.
7280 template<int size, bool big_endian>
7281 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7283 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7284 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7285 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7286 0x030ec023, // subu $24, $24, $14
7287 0x03e07825, // or $15, $31, zero
7288 0x0018c0c2, // srl $24, $24, 3
7289 0x0320f809, // jalr $25
7290 0x2718fffe // subu $24, $24, 2
7293 // The format of the microMIPS first PLT entry in an O32 executable.
7294 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7295 // of the GOTPLT entry handled, so this stub may only be used when
7296 // all the subsequent PLT entries are microMIPS code too.
7298 // The trailing NOP is for alignment and correct disassembly only.
7299 template<int size, bool big_endian>
7300 const uint32_t Mips_output_data_plt<size, big_endian>::
7301 plt0_entry_micromips_o32[] =
7303 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7304 0xff23, 0x0000, // lw $25, 0($3)
7305 0x0535, // subu $2, $2, $3
7306 0x2525, // srl $2, $2, 2
7307 0x3302, 0xfffe, // subu $24, $2, 2
7308 0x0dff, // move $15, $31
7309 0x45f9, // jalrs $25
7310 0x0f83, // move $28, $3
7314 // The format of the microMIPS first PLT entry in an O32 executable
7315 // in the insn32 mode.
7316 template<int size, bool big_endian>
7317 const uint32_t Mips_output_data_plt<size, big_endian>::
7318 plt0_entry_micromips32_o32[] =
7320 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7321 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7322 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7323 0x0398, 0xc1d0, // subu $24, $24, $28
7324 0x001f, 0x7a90, // or $15, $31, zero
7325 0x0318, 0x1040, // srl $24, $24, 2
7326 0x03f9, 0x0f3c, // jalr $25
7327 0x3318, 0xfffe // subu $24, $24, 2
7330 // The format of subsequent standard entries in the PLT.
7331 template<int size, bool big_endian>
7332 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7334 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7335 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7336 0x03200008, // jr $25
7337 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7340 // The format of subsequent R6 PLT entries.
7341 template<int size, bool big_endian>
7342 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7344 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7345 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7346 0x03200009, // jr $25
7347 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7350 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7351 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7352 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7353 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7354 // target function address in register v0.
7355 template<int size, bool big_endian>
7356 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7358 0xb303, // lw $3, 12($pc)
7359 0x651b, // move $24, $3
7360 0x9b60, // lw $3, 0($3)
7362 0x653b, // move $25, $3
7364 0x0000, 0x0000 // .word (.got.plt entry)
7367 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7368 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7369 template<int size, bool big_endian>
7370 const uint32_t Mips_output_data_plt<size, big_endian>::
7371 plt_entry_micromips_o32[] =
7373 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7374 0xff22, 0x0000, // lw $25, 0($2)
7376 0x0f02 // move $24, $2
7379 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7380 template<int size, bool big_endian>
7381 const uint32_t Mips_output_data_plt<size, big_endian>::
7382 plt_entry_micromips32_o32[] =
7384 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7385 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7386 0x0019, 0x0f3c, // jr $25
7387 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7390 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7392 template<int size, bool big_endian>
7394 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7395 unsigned int r_type)
7397 gold_assert(!gsym->has_plt_offset());
7399 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7400 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7401 + sizeof(plt0_entry_o32));
7402 this->symbols_.push_back(gsym);
7404 // Record whether the relocation requires a standard MIPS
7405 // or a compressed code entry.
7406 if (jal_reloc(r_type))
7408 if (r_type == elfcpp::R_MIPS_26)
7409 gsym->set_needs_mips_plt(true);
7411 gsym->set_needs_comp_plt(true);
7414 section_offset_type got_offset = this->got_plt_->current_data_size();
7416 // Every PLT entry needs a GOT entry which points back to the PLT
7417 // entry (this will be changed by the dynamic linker, normally
7418 // lazily when the function is called).
7419 this->got_plt_->set_current_data_size(got_offset + size/8);
7421 gsym->set_needs_dynsym_entry();
7422 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7426 // Set final PLT offsets. For each symbol, determine whether standard or
7427 // compressed (MIPS16 or microMIPS) PLT entry is used.
7429 template<int size, bool big_endian>
7431 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7433 // The sizes of individual PLT entries.
7434 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7435 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7436 ? this->compressed_plt_entry_size() : 0);
7438 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7439 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7441 Mips_symbol<size>* mips_sym = *p;
7443 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7444 // so always use a standard entry there.
7446 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7447 // all MIPS16 calls will go via that stub, and there is no benefit
7448 // to having a MIPS16 entry. And in the case of call_stub a
7449 // standard entry actually has to be used as the stub ends with a J
7451 if (this->target_->is_output_newabi()
7452 || mips_sym->has_mips16_call_stub()
7453 || mips_sym->has_mips16_call_fp_stub())
7455 mips_sym->set_needs_mips_plt(true);
7456 mips_sym->set_needs_comp_plt(false);
7459 // Otherwise, if there are no direct calls to the function, we
7460 // have a free choice of whether to use standard or compressed
7461 // entries. Prefer microMIPS entries if the object is known to
7462 // contain microMIPS code, so that it becomes possible to create
7463 // pure microMIPS binaries. Prefer standard entries otherwise,
7464 // because MIPS16 ones are no smaller and are usually slower.
7465 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7467 if (this->target_->is_output_micromips())
7468 mips_sym->set_needs_comp_plt(true);
7470 mips_sym->set_needs_mips_plt(true);
7473 if (mips_sym->needs_mips_plt())
7475 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7476 this->plt_mips_offset_ += plt_mips_entry_size;
7478 if (mips_sym->needs_comp_plt())
7480 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7481 this->plt_comp_offset_ += plt_comp_entry_size;
7485 // Figure out the size of the PLT header if we know that we are using it.
7486 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7487 this->plt_header_size_ = this->get_plt_header_size();
7490 // Write out the PLT. This uses the hand-coded instructions above,
7491 // and adjusts them as needed.
7493 template<int size, bool big_endian>
7495 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7497 const off_t offset = this->offset();
7498 const section_size_type oview_size =
7499 convert_to_section_size_type(this->data_size());
7500 unsigned char* const oview = of->get_output_view(offset, oview_size);
7502 const off_t gotplt_file_offset = this->got_plt_->offset();
7503 const section_size_type gotplt_size =
7504 convert_to_section_size_type(this->got_plt_->data_size());
7505 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7507 unsigned char* pov = oview;
7509 Mips_address plt_address = this->address();
7511 // Calculate the address of .got.plt.
7512 Mips_address gotplt_addr = this->got_plt_->address();
7513 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7514 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7516 // The PLT sequence is not safe for N64 if .got.plt's address can
7517 // not be loaded in two instructions.
7518 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7519 || ~(gotplt_addr | 0x7fffffff) == 0);
7521 // Write the PLT header.
7522 const uint32_t* plt0_entry = this->get_plt_header_entry();
7523 if (plt0_entry == plt0_entry_micromips_o32)
7525 // Write microMIPS PLT header.
7526 gold_assert(gotplt_addr % 4 == 0);
7528 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7530 // ADDIUPC has a span of +/-16MB, check we're in range.
7531 if (gotpc_offset + 0x1000000 >= 0x2000000)
7533 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7534 "ADDIUPC"), (long)gotpc_offset);
7538 elfcpp::Swap<16, big_endian>::writeval(pov,
7539 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7540 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7541 (gotpc_offset >> 2) & 0xffff);
7543 for (unsigned int i = 2;
7544 i < (sizeof(plt0_entry_micromips_o32)
7545 / sizeof(plt0_entry_micromips_o32[0]));
7548 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7552 else if (plt0_entry == plt0_entry_micromips32_o32)
7554 // Write microMIPS PLT header in insn32 mode.
7555 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7556 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7557 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7558 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7559 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7560 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7562 for (unsigned int i = 6;
7563 i < (sizeof(plt0_entry_micromips32_o32)
7564 / sizeof(plt0_entry_micromips32_o32[0]));
7567 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7573 // Write standard PLT header.
7574 elfcpp::Swap<32, big_endian>::writeval(pov,
7575 plt0_entry[0] | gotplt_addr_high);
7576 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7577 plt0_entry[1] | gotplt_addr_low);
7578 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7579 plt0_entry[2] | gotplt_addr_low);
7581 for (int i = 3; i < 8; i++)
7583 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7589 unsigned char* gotplt_pov = gotplt_view;
7590 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7592 // The first two entries in .got.plt are reserved.
7593 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7594 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7596 unsigned int gotplt_offset = 2 * got_entry_size;
7597 gotplt_pov += 2 * got_entry_size;
7599 // Calculate the address of the PLT header.
7600 Mips_address header_address = (plt_address
7601 + (this->is_plt_header_compressed() ? 1 : 0));
7603 // Initialize compressed PLT area view.
7604 unsigned char* pov2 = pov + this->plt_mips_offset_;
7606 // Write the PLT entries.
7607 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7608 p = this->symbols_.begin();
7609 p != this->symbols_.end();
7610 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7612 Mips_symbol<size>* mips_sym = *p;
7614 // Calculate the address of the .got.plt entry.
7615 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7616 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7618 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7620 // Initially point the .got.plt entry at the PLT header.
7621 if (this->target_->is_output_n64())
7622 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7624 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7626 // Now handle the PLT itself. First the standard entry.
7627 if (mips_sym->has_mips_plt_offset())
7629 // Pick the load opcode (LW or LD).
7630 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7633 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7636 // Fill in the PLT entry itself.
7637 elfcpp::Swap<32, big_endian>::writeval(pov,
7638 entry[0] | gotplt_entry_addr_hi);
7639 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7640 entry[1] | gotplt_entry_addr_lo | load);
7641 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7642 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7643 entry[3] | gotplt_entry_addr_lo);
7647 // Now the compressed entry. They come after any standard ones.
7648 if (mips_sym->has_comp_plt_offset())
7650 if (!this->target_->is_output_micromips())
7652 // Write MIPS16 PLT entry.
7653 const uint32_t* plt_entry = plt_entry_mips16_o32;
7655 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7656 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7657 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7658 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7659 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7660 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7661 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7665 else if (this->target_->use_32bit_micromips_instructions())
7667 // Write microMIPS PLT entry in insn32 mode.
7668 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7670 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7671 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7672 gotplt_entry_addr_hi);
7673 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7674 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7675 gotplt_entry_addr_lo);
7676 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7677 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7678 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7679 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7680 gotplt_entry_addr_lo);
7685 // Write microMIPS PLT entry.
7686 const uint32_t* plt_entry = plt_entry_micromips_o32;
7688 gold_assert(gotplt_entry_addr % 4 == 0);
7690 Mips_address loc_address = plt_address + pov2 - oview;
7691 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7693 // ADDIUPC has a span of +/-16MB, check we're in range.
7694 if (gotpc_offset + 0x1000000 >= 0x2000000)
7696 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7697 "range of ADDIUPC"), (long)gotpc_offset);
7701 elfcpp::Swap<16, big_endian>::writeval(pov2,
7702 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7703 elfcpp::Swap<16, big_endian>::writeval(
7704 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7705 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7706 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7707 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7708 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7714 // Check the number of bytes written for standard entries.
7715 gold_assert(static_cast<section_size_type>(
7716 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7717 // Check the number of bytes written for compressed entries.
7718 gold_assert((static_cast<section_size_type>(pov2 - pov)
7719 == this->plt_comp_offset_));
7720 // Check the total number of bytes written.
7721 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7723 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7726 of->write_output_view(offset, oview_size, oview);
7727 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7730 // Mips_output_data_mips_stubs methods.
7732 // The format of the lazy binding stub when dynamic symbol count is less than
7733 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7734 template<int size, bool big_endian>
7736 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7738 0x8f998010, // lw t9,0x8010(gp)
7739 0x03e07825, // or t7,ra,zero
7740 0x0320f809, // jalr t9,ra
7741 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7744 // The format of the lazy binding stub when dynamic symbol count is less than
7745 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7746 template<int size, bool big_endian>
7748 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7750 0xdf998010, // ld t9,0x8010(gp)
7751 0x03e07825, // or t7,ra,zero
7752 0x0320f809, // jalr t9,ra
7753 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7756 // The format of the lazy binding stub when dynamic symbol count is less than
7757 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7758 template<int size, bool big_endian>
7760 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7762 0x8f998010, // lw t9,0x8010(gp)
7763 0x03e07825, // or t7,ra,zero
7764 0x0320f809, // jalr t9,ra
7765 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7768 // The format of the lazy binding stub when dynamic symbol count is less than
7769 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7770 template<int size, bool big_endian>
7772 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7774 0xdf998010, // ld t9,0x8010(gp)
7775 0x03e07825, // or t7,ra,zero
7776 0x0320f809, // jalr t9,ra
7777 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7780 // The format of the lazy binding stub when dynamic symbol count is greater than
7781 // 64K, and ABI is not N64.
7782 template<int size, bool big_endian>
7783 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7785 0x8f998010, // lw t9,0x8010(gp)
7786 0x03e07825, // or t7,ra,zero
7787 0x3c180000, // lui t8,DYN_INDEX
7788 0x0320f809, // jalr t9,ra
7789 0x37180000 // ori t8,t8,DYN_INDEX
7792 // The format of the lazy binding stub when dynamic symbol count is greater than
7793 // 64K, and ABI is N64.
7794 template<int size, bool big_endian>
7796 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7798 0xdf998010, // ld t9,0x8010(gp)
7799 0x03e07825, // or t7,ra,zero
7800 0x3c180000, // lui t8,DYN_INDEX
7801 0x0320f809, // jalr t9,ra
7802 0x37180000 // ori t8,t8,DYN_INDEX
7807 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7808 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7809 template<int size, bool big_endian>
7811 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7813 0xff3c, 0x8010, // lw t9,0x8010(gp)
7814 0x0dff, // move t7,ra
7816 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7819 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7820 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7821 template<int size, bool big_endian>
7823 Mips_output_data_mips_stubs<size, big_endian>::
7824 lazy_stub_micromips_normal_1_n64[] =
7826 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7827 0x0dff, // move t7,ra
7829 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7832 // The format of the microMIPS lazy binding stub when dynamic symbol
7833 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7834 // and ABI is not N64.
7835 template<int size, bool big_endian>
7837 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7839 0xff3c, 0x8010, // lw t9,0x8010(gp)
7840 0x0dff, // move t7,ra
7842 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7845 // The format of the microMIPS lazy binding stub when dynamic symbol
7846 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7848 template<int size, bool big_endian>
7850 Mips_output_data_mips_stubs<size, big_endian>::
7851 lazy_stub_micromips_normal_2_n64[] =
7853 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7854 0x0dff, // move t7,ra
7856 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7859 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7860 // greater than 64K, and ABI is not N64.
7861 template<int size, bool big_endian>
7863 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7865 0xff3c, 0x8010, // lw t9,0x8010(gp)
7866 0x0dff, // move t7,ra
7867 0x41b8, 0x0000, // lui t8,DYN_INDEX
7869 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7872 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7873 // greater than 64K, and ABI is N64.
7874 template<int size, bool big_endian>
7876 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7878 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7879 0x0dff, // move t7,ra
7880 0x41b8, 0x0000, // lui t8,DYN_INDEX
7882 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7885 // 32-bit microMIPS stubs.
7887 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7888 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7889 // can use only 32-bit instructions.
7890 template<int size, bool big_endian>
7892 Mips_output_data_mips_stubs<size, big_endian>::
7893 lazy_stub_micromips32_normal_1[] =
7895 0xff3c, 0x8010, // lw t9,0x8010(gp)
7896 0x001f, 0x7a90, // or t7,ra,zero
7897 0x03f9, 0x0f3c, // jalr ra,t9
7898 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7901 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7902 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7903 // use only 32-bit instructions.
7904 template<int size, bool big_endian>
7906 Mips_output_data_mips_stubs<size, big_endian>::
7907 lazy_stub_micromips32_normal_1_n64[] =
7909 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7910 0x001f, 0x7a90, // or t7,ra,zero
7911 0x03f9, 0x0f3c, // jalr ra,t9
7912 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7915 // The format of the microMIPS lazy binding stub when dynamic symbol
7916 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7917 // ABI is not N64, and we can use only 32-bit instructions.
7918 template<int size, bool big_endian>
7920 Mips_output_data_mips_stubs<size, big_endian>::
7921 lazy_stub_micromips32_normal_2[] =
7923 0xff3c, 0x8010, // lw t9,0x8010(gp)
7924 0x001f, 0x7a90, // or t7,ra,zero
7925 0x03f9, 0x0f3c, // jalr ra,t9
7926 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7929 // The format of the microMIPS lazy binding stub when dynamic symbol
7930 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7931 // ABI is N64, and we can use only 32-bit instructions.
7932 template<int size, bool big_endian>
7934 Mips_output_data_mips_stubs<size, big_endian>::
7935 lazy_stub_micromips32_normal_2_n64[] =
7937 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7938 0x001f, 0x7a90, // or t7,ra,zero
7939 0x03f9, 0x0f3c, // jalr ra,t9
7940 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7943 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7944 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7945 template<int size, bool big_endian>
7947 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7949 0xff3c, 0x8010, // lw t9,0x8010(gp)
7950 0x001f, 0x7a90, // or t7,ra,zero
7951 0x41b8, 0x0000, // lui t8,DYN_INDEX
7952 0x03f9, 0x0f3c, // jalr ra,t9
7953 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7956 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7957 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7958 template<int size, bool big_endian>
7960 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7962 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7963 0x001f, 0x7a90, // or t7,ra,zero
7964 0x41b8, 0x0000, // lui t8,DYN_INDEX
7965 0x03f9, 0x0f3c, // jalr ra,t9
7966 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7969 // Create entry for a symbol.
7971 template<int size, bool big_endian>
7973 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7974 Mips_symbol<size>* gsym)
7976 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7978 this->symbols_.insert(gsym);
7979 gsym->set_has_lazy_stub(true);
7983 // Remove entry for a symbol.
7985 template<int size, bool big_endian>
7987 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7988 Mips_symbol<size>* gsym)
7990 if (gsym->has_lazy_stub())
7992 this->symbols_.erase(gsym);
7993 gsym->set_has_lazy_stub(false);
7997 // Set stub offsets for symbols. This method expects that the number of
7998 // entries in dynamic symbol table is set.
8000 template<int size, bool big_endian>
8002 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
8004 gold_assert(this->dynsym_count_ != -1U);
8006 if (this->stub_offsets_are_set_)
8009 unsigned int stub_size = this->stub_size();
8010 unsigned int offset = 0;
8011 for (typename Mips_stubs_entry_set::const_iterator
8012 p = this->symbols_.begin();
8013 p != this->symbols_.end();
8014 ++p, offset += stub_size)
8016 Mips_symbol<size>* mips_sym = *p;
8017 mips_sym->set_lazy_stub_offset(offset);
8019 this->stub_offsets_are_set_ = true;
8022 template<int size, bool big_endian>
8024 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8026 for (typename Mips_stubs_entry_set::const_iterator
8027 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8029 Mips_symbol<size>* sym = *p;
8030 if (sym->is_from_dynobj())
8031 sym->set_needs_dynsym_value();
8035 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
8036 // adjusts them as needed.
8038 template<int size, bool big_endian>
8040 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8042 const off_t offset = this->offset();
8043 const section_size_type oview_size =
8044 convert_to_section_size_type(this->data_size());
8045 unsigned char* const oview = of->get_output_view(offset, oview_size);
8047 bool big_stub = this->dynsym_count_ > 0x10000;
8049 unsigned char* pov = oview;
8050 for (typename Mips_stubs_entry_set::const_iterator
8051 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8053 Mips_symbol<size>* sym = *p;
8054 const uint32_t* lazy_stub;
8055 bool n64 = this->target_->is_output_n64();
8057 if (!this->target_->is_output_micromips())
8059 // Write standard (non-microMIPS) stub.
8062 if (sym->dynsym_index() & ~0x7fff)
8063 // Dynsym index is between 32K and 64K.
8064 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8066 // Dynsym index is less than 32K.
8067 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8070 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8073 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8074 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8080 // LUI instruction of the big stub. Paste high 16 bits of the
8082 elfcpp::Swap<32, big_endian>::writeval(pov,
8083 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8087 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8088 // Last stub instruction. Paste low 16 bits of the dynsym index.
8089 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8090 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8093 else if (this->target_->use_32bit_micromips_instructions())
8095 // Write microMIPS stub in insn32 mode.
8098 if (sym->dynsym_index() & ~0x7fff)
8099 // Dynsym index is between 32K and 64K.
8100 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8101 : lazy_stub_micromips32_normal_2;
8103 // Dynsym index is less than 32K.
8104 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8105 : lazy_stub_micromips32_normal_1;
8108 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8109 : lazy_stub_micromips32_big;
8112 // First stub instruction. We emit 32-bit microMIPS instructions by
8113 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8114 // the instruction where the opcode is must always come first, for
8115 // both little and big endian.
8116 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8117 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8118 // Second stub instruction.
8119 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8120 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8125 // LUI instruction of the big stub. Paste high 16 bits of the
8127 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8128 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8129 (sym->dynsym_index() >> 16) & 0x7fff);
8133 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8134 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8135 // Last stub instruction. Paste low 16 bits of the dynsym index.
8136 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8137 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8138 sym->dynsym_index() & 0xffff);
8143 // Write microMIPS stub.
8146 if (sym->dynsym_index() & ~0x7fff)
8147 // Dynsym index is between 32K and 64K.
8148 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8149 : lazy_stub_micromips_normal_2;
8151 // Dynsym index is less than 32K.
8152 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8153 : lazy_stub_micromips_normal_1;
8156 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8157 : lazy_stub_micromips_big;
8160 // First stub instruction. We emit 32-bit microMIPS instructions by
8161 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8162 // the instruction where the opcode is must always come first, for
8163 // both little and big endian.
8164 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8165 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8166 // Second stub instruction.
8167 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8172 // LUI instruction of the big stub. Paste high 16 bits of the
8174 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8175 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8176 (sym->dynsym_index() >> 16) & 0x7fff);
8180 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8181 // Last stub instruction. Paste low 16 bits of the dynsym index.
8182 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8183 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8184 sym->dynsym_index() & 0xffff);
8189 // We always allocate 20 bytes for every stub, because final dynsym count is
8190 // not known in method do_finalize_sections. There are 4 unused bytes per
8191 // stub if final dynsym count is less than 0x10000.
8192 unsigned int used = pov - oview;
8193 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8194 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8196 // Fill the unused space with zeroes.
8197 // TODO(sasa): Can we strip unused bytes during the relaxation?
8199 memset(pov, 0, unused);
8201 of->write_output_view(offset, oview_size, oview);
8204 // Mips_output_section_reginfo methods.
8206 template<int size, bool big_endian>
8208 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8210 off_t offset = this->offset();
8211 off_t data_size = this->data_size();
8213 unsigned char* view = of->get_output_view(offset, data_size);
8214 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8215 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8216 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8217 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8218 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8219 // Write the gp value.
8220 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8221 this->target_->gp_value());
8223 of->write_output_view(offset, data_size, view);
8226 // Mips_output_section_options methods.
8228 template<int size, bool big_endian>
8230 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8232 off_t offset = this->offset();
8233 const section_size_type oview_size =
8234 convert_to_section_size_type(this->data_size());
8235 unsigned char* view = of->get_output_view(offset, oview_size);
8236 const unsigned char* end = view + oview_size;
8238 while (view + 8 <= end)
8240 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8241 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8244 gold_error(_("Warning: bad `%s' option size %u smaller "
8245 "than its header in output section"),
8250 // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8251 if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8252 elfcpp::Swap<size, big_endian>::writeval(view + 32,
8253 this->target_->gp_value());
8254 else if (kind == elfcpp::ODK_REGINFO)
8255 elfcpp::Swap<size, big_endian>::writeval(view + 28,
8256 this->target_->gp_value());
8261 of->write_output_view(offset, oview_size, view);
8264 // Mips_output_section_abiflags methods.
8266 template<int size, bool big_endian>
8268 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8270 off_t offset = this->offset();
8271 off_t data_size = this->data_size();
8273 unsigned char* view = of->get_output_view(offset, data_size);
8274 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8275 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8276 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8277 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8278 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8279 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8280 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8281 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8282 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8283 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8284 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8286 of->write_output_view(offset, data_size, view);
8289 // Mips_copy_relocs methods.
8291 // Emit any saved relocs.
8293 template<int sh_type, int size, bool big_endian>
8295 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8296 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8297 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8299 for (typename Copy_relocs<sh_type, size, big_endian>::
8300 Copy_reloc_entries::iterator p = this->entries_.begin();
8301 p != this->entries_.end();
8303 emit_entry(*p, reloc_section, symtab, layout, target);
8305 // We no longer need the saved information.
8306 this->entries_.clear();
8309 // Emit the reloc if appropriate.
8311 template<int sh_type, int size, bool big_endian>
8313 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8314 Copy_reloc_entry& entry,
8315 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8316 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8318 // If the symbol is no longer defined in a dynamic object, then we
8319 // emitted a COPY relocation, and we do not want to emit this
8320 // dynamic relocation.
8321 if (!entry.sym_->is_from_dynobj())
8324 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8325 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8326 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8328 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8329 if (can_make_dynamic && !sym->has_static_relocs())
8331 Mips_relobj<size, big_endian>* object =
8332 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8333 target->got_section(symtab, layout)->record_global_got_symbol(
8334 sym, object, entry.reloc_type_, true, false);
8335 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8336 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8337 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8339 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8340 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8341 entry.shndx_, entry.address_);
8344 this->make_copy_reloc(symtab, layout,
8345 static_cast<Sized_symbol<size>*>(entry.sym_),
8350 // Target_mips methods.
8352 // Return the value to use for a dynamic symbol which requires special
8353 // treatment. This is how we support equality comparisons of function
8354 // pointers across shared library boundaries, as described in the
8355 // processor specific ABI supplement.
8357 template<int size, bool big_endian>
8359 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8362 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8364 if (!mips_sym->has_lazy_stub())
8366 if (mips_sym->has_plt_offset())
8368 // We distinguish between PLT entries and lazy-binding stubs by
8369 // giving the former an st_other value of STO_MIPS_PLT. Set the
8370 // value to the stub address if there are any relocations in the
8371 // binary where pointer equality matters.
8372 if (mips_sym->pointer_equality_needed())
8374 // Prefer a standard MIPS PLT entry.
8375 if (mips_sym->has_mips_plt_offset())
8376 value = this->plt_section()->mips_entry_address(mips_sym);
8378 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8386 // First, set stub offsets for symbols. This method expects that the
8387 // number of entries in dynamic symbol table is set.
8388 this->mips_stubs_section()->set_lazy_stub_offsets();
8390 // The run-time linker uses the st_value field of the symbol
8391 // to reset the global offset table entry for this external
8392 // to its stub address when unlinking a shared object.
8393 value = this->mips_stubs_section()->stub_address(mips_sym);
8396 if (mips_sym->has_mips16_fn_stub())
8398 // If we have a MIPS16 function with a stub, the dynamic symbol must
8399 // refer to the stub, since only the stub uses the standard calling
8401 value = mips_sym->template
8402 get_mips16_fn_stub<big_endian>()->output_address();
8408 // Get the dynamic reloc section, creating it if necessary. It's always
8409 // .rel.dyn, even for MIPS64.
8411 template<int size, bool big_endian>
8412 typename Target_mips<size, big_endian>::Reloc_section*
8413 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8415 if (this->rel_dyn_ == NULL)
8417 gold_assert(layout != NULL);
8418 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8419 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8420 elfcpp::SHF_ALLOC, this->rel_dyn_,
8421 ORDER_DYNAMIC_RELOCS, false);
8423 // First entry in .rel.dyn has to be null.
8424 // This is hack - we define dummy output data and set its address to 0,
8425 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8426 // This ensures that the entry is null.
8427 Output_data* od = new Output_data_zero_fill(0, 0);
8429 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8431 return this->rel_dyn_;
8434 // Get the GOT section, creating it if necessary.
8436 template<int size, bool big_endian>
8437 Mips_output_data_got<size, big_endian>*
8438 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8441 if (this->got_ == NULL)
8443 gold_assert(symtab != NULL && layout != NULL);
8445 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8447 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8448 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8449 elfcpp::SHF_MIPS_GPREL),
8450 this->got_, ORDER_DATA, false);
8452 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8453 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8454 Symbol_table::PREDEFINED,
8456 0, 0, elfcpp::STT_OBJECT,
8458 elfcpp::STV_HIDDEN, 0,
8465 // Calculate value of _gp symbol.
8467 template<int size, bool big_endian>
8469 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8471 gold_assert(this->gp_ == NULL);
8473 Sized_symbol<size>* gp =
8474 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8476 // Set _gp symbol if the linker script hasn't created it.
8477 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8479 // If there is no .got section, gp should be based on .sdata.
8480 Output_data* gp_section = (this->got_ != NULL
8481 ? this->got_->output_section()
8482 : layout->find_output_section(".sdata"));
8484 if (gp_section != NULL)
8485 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8486 "_gp", NULL, Symbol_table::PREDEFINED,
8487 gp_section, MIPS_GP_OFFSET, 0,
8490 elfcpp::STV_DEFAULT,
8497 // Set the dynamic symbol indexes. INDEX is the index of the first
8498 // global dynamic symbol. Pointers to the symbols are stored into the
8499 // vector SYMS. The names are added to DYNPOOL. This returns an
8500 // updated dynamic symbol index.
8502 template<int size, bool big_endian>
8504 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8505 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8506 std::vector<Symbol*>* syms, Stringpool* dynpool,
8507 Versions* versions, Symbol_table* symtab) const
8509 std::vector<Symbol*> non_got_symbols;
8510 std::vector<Symbol*> got_symbols;
8512 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8515 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8516 p != non_got_symbols.end();
8521 // Note that SYM may already have a dynamic symbol index, since
8522 // some symbols appear more than once in the symbol table, with
8523 // and without a version.
8525 if (!sym->has_dynsym_index())
8527 sym->set_dynsym_index(index);
8529 syms->push_back(sym);
8530 dynpool->add(sym->name(), false, NULL);
8532 // Record any version information.
8533 if (sym->version() != NULL)
8534 versions->record_version(symtab, dynpool, sym);
8536 // If the symbol is defined in a dynamic object and is
8537 // referenced in a regular object, then mark the dynamic
8538 // object as needed. This is used to implement --as-needed.
8539 if (sym->is_from_dynobj() && sym->in_reg())
8540 sym->object()->set_is_needed();
8544 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8545 p != got_symbols.end();
8549 if (!sym->has_dynsym_index())
8551 // Record any version information.
8552 if (sym->version() != NULL)
8553 versions->record_version(symtab, dynpool, sym);
8557 index = versions->finalize(symtab, index, syms);
8559 int got_sym_count = 0;
8560 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8561 p != got_symbols.end();
8566 if (!sym->has_dynsym_index())
8569 sym->set_dynsym_index(index);
8571 syms->push_back(sym);
8572 dynpool->add(sym->name(), false, NULL);
8574 // If the symbol is defined in a dynamic object and is
8575 // referenced in a regular object, then mark the dynamic
8576 // object as needed. This is used to implement --as-needed.
8577 if (sym->is_from_dynobj() && sym->in_reg())
8578 sym->object()->set_is_needed();
8582 // Set index of the first symbol that has .got entry.
8583 this->got_->set_first_global_got_dynsym_index(
8584 got_sym_count > 0 ? index - got_sym_count : -1U);
8586 if (this->mips_stubs_ != NULL)
8587 this->mips_stubs_->set_dynsym_count(index);
8592 // Create a PLT entry for a global symbol referenced by r_type relocation.
8594 template<int size, bool big_endian>
8596 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8598 Mips_symbol<size>* gsym,
8599 unsigned int r_type)
8601 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8604 if (this->plt_ == NULL)
8606 // Create the GOT section first.
8607 this->got_section(symtab, layout);
8609 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8610 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8611 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8612 this->got_plt_, ORDER_DATA, false);
8614 // The first two entries are reserved.
8615 this->got_plt_->set_current_data_size(2 * size/8);
8617 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8620 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8622 | elfcpp::SHF_EXECINSTR),
8623 this->plt_, ORDER_PLT, false);
8625 // Make the sh_info field of .rel.plt point to .plt.
8626 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8627 rel_plt_os->set_info_section(this->plt_->output_section());
8630 this->plt_->add_entry(gsym, r_type);
8634 // Get the .MIPS.stubs section, creating it if necessary.
8636 template<int size, bool big_endian>
8637 Mips_output_data_mips_stubs<size, big_endian>*
8638 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8640 if (this->mips_stubs_ == NULL)
8643 new Mips_output_data_mips_stubs<size, big_endian>(this);
8644 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8646 | elfcpp::SHF_EXECINSTR),
8647 this->mips_stubs_, ORDER_PLT, false);
8649 return this->mips_stubs_;
8652 // Get the LA25 stub section, creating it if necessary.
8654 template<int size, bool big_endian>
8655 Mips_output_data_la25_stub<size, big_endian>*
8656 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8658 if (this->la25_stub_ == NULL)
8660 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8661 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8663 | elfcpp::SHF_EXECINSTR),
8664 this->la25_stub_, ORDER_TEXT, false);
8666 return this->la25_stub_;
8669 // Process the relocations to determine unreferenced sections for
8670 // garbage collection.
8672 template<int size, bool big_endian>
8674 Target_mips<size, big_endian>::gc_process_relocs(
8675 Symbol_table* symtab,
8677 Sized_relobj_file<size, big_endian>* object,
8678 unsigned int data_shndx,
8679 unsigned int sh_type,
8680 const unsigned char* prelocs,
8682 Output_section* output_section,
8683 bool needs_special_offset_handling,
8684 size_t local_symbol_count,
8685 const unsigned char* plocal_symbols)
8687 typedef Target_mips<size, big_endian> Mips;
8689 if (sh_type == elfcpp::SHT_REL)
8691 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8694 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8703 needs_special_offset_handling,
8707 else if (sh_type == elfcpp::SHT_RELA)
8709 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8712 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8721 needs_special_offset_handling,
8729 // Scan relocations for a section.
8731 template<int size, bool big_endian>
8733 Target_mips<size, big_endian>::scan_relocs(
8734 Symbol_table* symtab,
8736 Sized_relobj_file<size, big_endian>* object,
8737 unsigned int data_shndx,
8738 unsigned int sh_type,
8739 const unsigned char* prelocs,
8741 Output_section* output_section,
8742 bool needs_special_offset_handling,
8743 size_t local_symbol_count,
8744 const unsigned char* plocal_symbols)
8746 typedef Target_mips<size, big_endian> Mips;
8748 if (sh_type == elfcpp::SHT_REL)
8750 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8753 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8762 needs_special_offset_handling,
8766 else if (sh_type == elfcpp::SHT_RELA)
8768 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8771 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8780 needs_special_offset_handling,
8786 template<int size, bool big_endian>
8788 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8790 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8791 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8792 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8793 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8794 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8795 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8796 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8797 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8800 // Return the MACH for a MIPS e_flags value.
8801 template<int size, bool big_endian>
8803 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8805 switch (flags & elfcpp::EF_MIPS_MACH)
8807 case elfcpp::E_MIPS_MACH_3900:
8808 return mach_mips3900;
8810 case elfcpp::E_MIPS_MACH_4010:
8811 return mach_mips4010;
8813 case elfcpp::E_MIPS_MACH_4100:
8814 return mach_mips4100;
8816 case elfcpp::E_MIPS_MACH_4111:
8817 return mach_mips4111;
8819 case elfcpp::E_MIPS_MACH_4120:
8820 return mach_mips4120;
8822 case elfcpp::E_MIPS_MACH_4650:
8823 return mach_mips4650;
8825 case elfcpp::E_MIPS_MACH_5400:
8826 return mach_mips5400;
8828 case elfcpp::E_MIPS_MACH_5500:
8829 return mach_mips5500;
8831 case elfcpp::E_MIPS_MACH_5900:
8832 return mach_mips5900;
8834 case elfcpp::E_MIPS_MACH_9000:
8835 return mach_mips9000;
8837 case elfcpp::E_MIPS_MACH_SB1:
8838 return mach_mips_sb1;
8840 case elfcpp::E_MIPS_MACH_LS2E:
8841 return mach_mips_loongson_2e;
8843 case elfcpp::E_MIPS_MACH_LS2F:
8844 return mach_mips_loongson_2f;
8846 case elfcpp::E_MIPS_MACH_LS3A:
8847 return mach_mips_loongson_3a;
8849 case elfcpp::E_MIPS_MACH_OCTEON3:
8850 return mach_mips_octeon3;
8852 case elfcpp::E_MIPS_MACH_OCTEON2:
8853 return mach_mips_octeon2;
8855 case elfcpp::E_MIPS_MACH_OCTEON:
8856 return mach_mips_octeon;
8858 case elfcpp::E_MIPS_MACH_XLR:
8859 return mach_mips_xlr;
8862 switch (flags & elfcpp::EF_MIPS_ARCH)
8865 case elfcpp::E_MIPS_ARCH_1:
8866 return mach_mips3000;
8868 case elfcpp::E_MIPS_ARCH_2:
8869 return mach_mips6000;
8871 case elfcpp::E_MIPS_ARCH_3:
8872 return mach_mips4000;
8874 case elfcpp::E_MIPS_ARCH_4:
8875 return mach_mips8000;
8877 case elfcpp::E_MIPS_ARCH_5:
8880 case elfcpp::E_MIPS_ARCH_32:
8881 return mach_mipsisa32;
8883 case elfcpp::E_MIPS_ARCH_64:
8884 return mach_mipsisa64;
8886 case elfcpp::E_MIPS_ARCH_32R2:
8887 return mach_mipsisa32r2;
8889 case elfcpp::E_MIPS_ARCH_32R6:
8890 return mach_mipsisa32r6;
8892 case elfcpp::E_MIPS_ARCH_64R2:
8893 return mach_mipsisa64r2;
8895 case elfcpp::E_MIPS_ARCH_64R6:
8896 return mach_mipsisa64r6;
8903 // Return the MACH for each .MIPS.abiflags ISA Extension.
8905 template<int size, bool big_endian>
8907 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8911 case elfcpp::AFL_EXT_3900:
8912 return mach_mips3900;
8914 case elfcpp::AFL_EXT_4010:
8915 return mach_mips4010;
8917 case elfcpp::AFL_EXT_4100:
8918 return mach_mips4100;
8920 case elfcpp::AFL_EXT_4111:
8921 return mach_mips4111;
8923 case elfcpp::AFL_EXT_4120:
8924 return mach_mips4120;
8926 case elfcpp::AFL_EXT_4650:
8927 return mach_mips4650;
8929 case elfcpp::AFL_EXT_5400:
8930 return mach_mips5400;
8932 case elfcpp::AFL_EXT_5500:
8933 return mach_mips5500;
8935 case elfcpp::AFL_EXT_5900:
8936 return mach_mips5900;
8938 case elfcpp::AFL_EXT_10000:
8939 return mach_mips10000;
8941 case elfcpp::AFL_EXT_LOONGSON_2E:
8942 return mach_mips_loongson_2e;
8944 case elfcpp::AFL_EXT_LOONGSON_2F:
8945 return mach_mips_loongson_2f;
8947 case elfcpp::AFL_EXT_LOONGSON_3A:
8948 return mach_mips_loongson_3a;
8950 case elfcpp::AFL_EXT_SB1:
8951 return mach_mips_sb1;
8953 case elfcpp::AFL_EXT_OCTEON:
8954 return mach_mips_octeon;
8956 case elfcpp::AFL_EXT_OCTEONP:
8957 return mach_mips_octeonp;
8959 case elfcpp::AFL_EXT_OCTEON2:
8960 return mach_mips_octeon2;
8962 case elfcpp::AFL_EXT_XLR:
8963 return mach_mips_xlr;
8966 return mach_mips3000;
8970 // Return the .MIPS.abiflags value representing each ISA Extension.
8972 template<int size, bool big_endian>
8974 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8979 return elfcpp::AFL_EXT_3900;
8982 return elfcpp::AFL_EXT_4010;
8985 return elfcpp::AFL_EXT_4100;
8988 return elfcpp::AFL_EXT_4111;
8991 return elfcpp::AFL_EXT_4120;
8994 return elfcpp::AFL_EXT_4650;
8997 return elfcpp::AFL_EXT_5400;
9000 return elfcpp::AFL_EXT_5500;
9003 return elfcpp::AFL_EXT_5900;
9005 case mach_mips10000:
9006 return elfcpp::AFL_EXT_10000;
9008 case mach_mips_loongson_2e:
9009 return elfcpp::AFL_EXT_LOONGSON_2E;
9011 case mach_mips_loongson_2f:
9012 return elfcpp::AFL_EXT_LOONGSON_2F;
9014 case mach_mips_loongson_3a:
9015 return elfcpp::AFL_EXT_LOONGSON_3A;
9018 return elfcpp::AFL_EXT_SB1;
9020 case mach_mips_octeon:
9021 return elfcpp::AFL_EXT_OCTEON;
9023 case mach_mips_octeonp:
9024 return elfcpp::AFL_EXT_OCTEONP;
9026 case mach_mips_octeon3:
9027 return elfcpp::AFL_EXT_OCTEON3;
9029 case mach_mips_octeon2:
9030 return elfcpp::AFL_EXT_OCTEON2;
9033 return elfcpp::AFL_EXT_XLR;
9040 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9042 template<int size, bool big_endian>
9044 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9045 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9048 switch (e_flags & elfcpp::EF_MIPS_ARCH)
9050 case elfcpp::E_MIPS_ARCH_1:
9051 new_isa = this->level_rev(1, 0);
9053 case elfcpp::E_MIPS_ARCH_2:
9054 new_isa = this->level_rev(2, 0);
9056 case elfcpp::E_MIPS_ARCH_3:
9057 new_isa = this->level_rev(3, 0);
9059 case elfcpp::E_MIPS_ARCH_4:
9060 new_isa = this->level_rev(4, 0);
9062 case elfcpp::E_MIPS_ARCH_5:
9063 new_isa = this->level_rev(5, 0);
9065 case elfcpp::E_MIPS_ARCH_32:
9066 new_isa = this->level_rev(32, 1);
9068 case elfcpp::E_MIPS_ARCH_32R2:
9069 new_isa = this->level_rev(32, 2);
9071 case elfcpp::E_MIPS_ARCH_32R6:
9072 new_isa = this->level_rev(32, 6);
9074 case elfcpp::E_MIPS_ARCH_64:
9075 new_isa = this->level_rev(64, 1);
9077 case elfcpp::E_MIPS_ARCH_64R2:
9078 new_isa = this->level_rev(64, 2);
9080 case elfcpp::E_MIPS_ARCH_64R6:
9081 new_isa = this->level_rev(64, 6);
9084 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9085 this->elf_mips_mach_name(e_flags));
9088 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9090 // Decode a single value into level and revision.
9091 abiflags->isa_level = new_isa >> 3;
9092 abiflags->isa_rev = new_isa & 0x7;
9095 // Update the isa_ext if needed.
9096 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9097 this->elf_mips_mach(e_flags)))
9098 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9101 // Infer the content of the ABI flags based on the elf header.
9103 template<int size, bool big_endian>
9105 Target_mips<size, big_endian>::infer_abiflags(
9106 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9108 const Attributes_section_data* pasd = relobj->attributes_section_data();
9109 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9110 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9112 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9115 // Read fp_abi from the .gnu.attribute section.
9116 const Object_attribute* attr =
9117 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9118 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9121 abiflags->fp_abi = attr_fp_abi;
9122 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9123 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9124 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9125 : elfcpp::AFL_REG_64;
9127 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9128 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9129 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9130 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9131 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9132 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9133 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9134 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9135 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9137 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9138 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9139 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9140 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9141 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9142 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9144 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9145 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9146 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9147 && abiflags->isa_level >= 32
9148 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9149 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9152 // Create abiflags from elf header or from .MIPS.abiflags section.
9154 template<int size, bool big_endian>
9156 Target_mips<size, big_endian>::create_abiflags(
9157 Mips_relobj<size, big_endian>* relobj,
9158 Mips_abiflags<big_endian>* abiflags)
9160 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9161 Mips_abiflags<big_endian> header_abiflags;
9163 this->infer_abiflags(relobj, &header_abiflags);
9165 if (sec_abiflags == NULL)
9167 // If there is no input .MIPS.abiflags section, use abiflags created
9169 *abiflags = header_abiflags;
9173 this->has_abiflags_section_ = true;
9175 // It is not possible to infer the correct ISA revision for R3 or R5
9176 // so drop down to R2 for the checks.
9177 unsigned char isa_rev = sec_abiflags->isa_rev;
9178 if (isa_rev == 3 || isa_rev == 5)
9181 // Check compatibility between abiflags created from elf header
9182 // and abiflags from .MIPS.abiflags section in this object file.
9183 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9184 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9185 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9186 relobj->name().c_str());
9187 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9188 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9189 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9190 ".MIPS.abiflags"), relobj->name().c_str());
9191 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9192 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9193 relobj->name().c_str());
9194 // The isa_ext is allowed to be an extension of what can be inferred
9196 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9197 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9198 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9199 ".MIPS.abiflags"), relobj->name().c_str());
9200 if (sec_abiflags->flags2 != 0)
9201 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9202 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9203 sec_abiflags->flags2);
9204 // Use abiflags from .MIPS.abiflags section.
9205 *abiflags = *sec_abiflags;
9208 // Return the meaning of fp_abi, or "unknown" if not known.
9210 template<int size, bool big_endian>
9212 Target_mips<size, big_endian>::fp_abi_string(int fp)
9216 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9217 return "-mdouble-float";
9218 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9219 return "-msingle-float";
9220 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9221 return "-msoft-float";
9222 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9223 return _("-mips32r2 -mfp64 (12 callee-saved)");
9224 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9226 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9227 return "-mgp32 -mfp64";
9228 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9229 return "-mgp32 -mfp64 -mno-odd-spreg";
9237 template<int size, bool big_endian>
9239 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9242 if (in_fp == out_fp)
9245 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9247 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9248 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9249 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9250 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9252 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9253 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9254 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9255 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9256 return out_fp; // Keep the current setting.
9257 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9258 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9260 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9261 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9262 return out_fp; // Keep the current setting.
9263 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9264 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9265 fp_abi_string(in_fp), fp_abi_string(out_fp));
9269 // Merge attributes from input object.
9271 template<int size, bool big_endian>
9273 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9274 const Attributes_section_data* pasd)
9276 // Return if there is no attributes section data.
9280 // If output has no object attributes, just copy.
9281 if (this->attributes_section_data_ == NULL)
9283 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9287 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9288 Object_attribute::OBJ_ATTR_GNU);
9290 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9291 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9293 // Merge Tag_compatibility attributes and any common GNU ones.
9294 this->attributes_section_data_->merge(name.c_str(), pasd);
9297 // Merge abiflags from input object.
9299 template<int size, bool big_endian>
9301 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9302 Mips_abiflags<big_endian>* in_abiflags)
9304 // If output has no abiflags, just copy.
9305 if (this->abiflags_ == NULL)
9307 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9311 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9312 this->abiflags_->fp_abi);
9315 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9316 in_abiflags->isa_level);
9317 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9318 in_abiflags->isa_rev);
9319 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9320 in_abiflags->gpr_size);
9321 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9322 in_abiflags->cpr1_size);
9323 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9324 in_abiflags->cpr2_size);
9325 this->abiflags_->ases |= in_abiflags->ases;
9326 this->abiflags_->flags1 |= in_abiflags->flags1;
9329 // Check whether machine EXTENSION is an extension of machine BASE.
9330 template<int size, bool big_endian>
9332 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9333 unsigned int extension)
9335 if (extension == base)
9338 if ((base == mach_mipsisa32)
9339 && this->mips_mach_extends(mach_mipsisa64, extension))
9342 if ((base == mach_mipsisa32r2)
9343 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9346 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9347 if (extension == this->mips_mach_extensions_[i].first)
9349 extension = this->mips_mach_extensions_[i].second;
9350 if (extension == base)
9357 // Merge file header flags from input object.
9359 template<int size, bool big_endian>
9361 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9362 elfcpp::Elf_Word in_flags)
9364 // If flags are not set yet, just copy them.
9365 if (!this->are_processor_specific_flags_set())
9367 this->set_processor_specific_flags(in_flags);
9368 this->mach_ = this->elf_mips_mach(in_flags);
9372 elfcpp::Elf_Word new_flags = in_flags;
9373 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9374 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9375 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9377 // Check flag compatibility.
9378 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9379 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9381 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9382 // doesn't seem to matter.
9383 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9384 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9386 // MIPSpro generates ucode info in n64 objects. Again, we should
9387 // just be able to ignore this.
9388 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9389 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9391 if (new_flags == old_flags)
9393 this->set_processor_specific_flags(merged_flags);
9397 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9398 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9399 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9402 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9403 merged_flags |= elfcpp::EF_MIPS_CPIC;
9404 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9405 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9407 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9408 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9410 // Compare the ISAs.
9411 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9412 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9413 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9415 // Output ISA isn't the same as, or an extension of, input ISA.
9416 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9418 // Copy the architecture info from input object to output. Also copy
9419 // the 32-bit flag (if set) so that we continue to recognise
9420 // output as a 32-bit binary.
9421 this->mach_ = this->elf_mips_mach(in_flags);
9422 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9423 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9424 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9426 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9427 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9429 // Copy across the ABI flags if output doesn't use them
9430 // and if that was what caused us to treat input object as 32-bit.
9431 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9432 && this->mips_32bit_flags(new_flags)
9433 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9434 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9437 // The ISAs aren't compatible.
9438 gold_error(_("%s: linking %s module with previous %s modules"),
9439 name.c_str(), this->elf_mips_mach_name(in_flags),
9440 this->elf_mips_mach_name(merged_flags));
9443 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9444 | elfcpp::EF_MIPS_32BITMODE));
9445 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9446 | elfcpp::EF_MIPS_32BITMODE));
9449 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9451 // Only error if both are set (to different values).
9452 if ((new_flags & elfcpp::EF_MIPS_ABI)
9453 && (old_flags & elfcpp::EF_MIPS_ABI))
9454 gold_error(_("%s: ABI mismatch: linking %s module with "
9455 "previous %s modules"), name.c_str(),
9456 this->elf_mips_abi_name(in_flags),
9457 this->elf_mips_abi_name(merged_flags));
9459 new_flags &= ~elfcpp::EF_MIPS_ABI;
9460 old_flags &= ~elfcpp::EF_MIPS_ABI;
9463 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9464 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9465 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9466 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9468 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9469 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9470 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9471 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9472 int micro_mis = old_m16 && new_micro;
9473 int m16_mis = old_micro && new_m16;
9475 if (m16_mis || micro_mis)
9476 gold_error(_("%s: ASE mismatch: linking %s module with "
9477 "previous %s modules"), name.c_str(),
9478 m16_mis ? "MIPS16" : "microMIPS",
9479 m16_mis ? "microMIPS" : "MIPS16");
9481 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9483 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9484 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9487 // Compare NaN encodings.
9488 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9490 gold_error(_("%s: linking %s module with previous %s modules"),
9492 (new_flags & elfcpp::EF_MIPS_NAN2008
9493 ? "-mnan=2008" : "-mnan=legacy"),
9494 (old_flags & elfcpp::EF_MIPS_NAN2008
9495 ? "-mnan=2008" : "-mnan=legacy"));
9497 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9498 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9501 // Compare FP64 state.
9502 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9504 gold_error(_("%s: linking %s module with previous %s modules"),
9506 (new_flags & elfcpp::EF_MIPS_FP64
9507 ? "-mfp64" : "-mfp32"),
9508 (old_flags & elfcpp::EF_MIPS_FP64
9509 ? "-mfp64" : "-mfp32"));
9511 new_flags &= ~elfcpp::EF_MIPS_FP64;
9512 old_flags &= ~elfcpp::EF_MIPS_FP64;
9515 // Warn about any other mismatches.
9516 if (new_flags != old_flags)
9517 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9518 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9520 this->set_processor_specific_flags(merged_flags);
9523 // Adjust ELF file header.
9525 template<int size, bool big_endian>
9527 Target_mips<size, big_endian>::do_adjust_elf_header(
9528 unsigned char* view,
9531 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9533 elfcpp::Ehdr<size, big_endian> ehdr(view);
9534 unsigned char e_ident[elfcpp::EI_NIDENT];
9535 elfcpp::Elf_Word flags = this->processor_specific_flags();
9536 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9538 unsigned char ei_abiversion = 0;
9539 elfcpp::Elf_Half type = ehdr.get_e_type();
9540 if (type == elfcpp::ET_EXEC
9541 && parameters->options().copyreloc()
9542 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9543 == elfcpp::EF_MIPS_CPIC)
9546 if (this->abiflags_ != NULL
9547 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9548 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9551 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9552 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9553 oehdr.put_e_ident(e_ident);
9555 if (this->entry_symbol_is_compressed_)
9556 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9559 // do_make_elf_object to override the same function in the base class.
9560 // We need to use a target-specific sub-class of
9561 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9562 // Hence we need to have our own ELF object creation.
9564 template<int size, bool big_endian>
9566 Target_mips<size, big_endian>::do_make_elf_object(
9567 const std::string& name,
9568 Input_file* input_file,
9569 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9571 int et = ehdr.get_e_type();
9572 // ET_EXEC files are valid input for --just-symbols/-R,
9573 // and we treat them as relocatable objects.
9574 if (et == elfcpp::ET_REL
9575 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9577 Mips_relobj<size, big_endian>* obj =
9578 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9582 else if (et == elfcpp::ET_DYN)
9584 // TODO(sasa): Should we create Mips_dynobj?
9585 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9589 gold_error(_("%s: unsupported ELF file type %d"),
9595 // Finalize the sections.
9597 template <int size, bool big_endian>
9599 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9600 const Input_objects* input_objects,
9601 Symbol_table* symtab)
9603 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9604 // DT_FINI have correct values.
9605 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9606 symtab->lookup(parameters->options().init()));
9607 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9608 init->set_value(init->value() | 1);
9609 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9610 symtab->lookup(parameters->options().fini()));
9611 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9612 fini->set_value(fini->value() | 1);
9614 // Check whether the entry symbol is mips16 or micromips. This is needed to
9615 // adjust entry address in ELF header.
9616 Mips_symbol<size>* entry =
9617 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9618 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9619 || entry->is_micromips()));
9621 if (!parameters->doing_static_link()
9622 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9623 || strcmp(parameters->options().hash_style(), "both") == 0))
9625 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9626 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9627 // MIPS ABI requires a mapping between the GOT and the symbol table.
9628 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9631 // Check whether the final section that was scanned has HI16 or GOT16
9632 // relocations without the corresponding LO16 part.
9633 if (this->got16_addends_.size() > 0)
9634 gold_error("Can't find matching LO16 reloc");
9636 // Check for any mips16 stub sections that we can discard.
9637 if (!parameters->options().relocatable())
9639 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9640 p != input_objects->relobj_end();
9643 Mips_relobj<size, big_endian>* object =
9644 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9645 object->discard_mips16_stub_sections(symtab);
9649 Valtype gprmask = 0;
9650 Valtype cprmask1 = 0;
9651 Valtype cprmask2 = 0;
9652 Valtype cprmask3 = 0;
9653 Valtype cprmask4 = 0;
9654 bool has_reginfo_section = false;
9656 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9657 p != input_objects->relobj_end();
9660 Mips_relobj<size, big_endian>* relobj =
9661 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9663 // Merge .reginfo contents of input objects.
9664 if (relobj->has_reginfo_section())
9666 has_reginfo_section = true;
9667 gprmask |= relobj->gprmask();
9668 cprmask1 |= relobj->cprmask1();
9669 cprmask2 |= relobj->cprmask2();
9670 cprmask3 |= relobj->cprmask3();
9671 cprmask4 |= relobj->cprmask4();
9674 Input_file::Format format = relobj->input_file()->format();
9675 if (format != Input_file::FORMAT_ELF)
9678 // If all input sections will be discarded, don't use this object
9679 // file for merging processor specific flags.
9680 bool should_merge_processor_specific_flags = false;
9682 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9683 if (relobj->output_section(i) != NULL)
9685 should_merge_processor_specific_flags = true;
9689 if (!should_merge_processor_specific_flags)
9692 // Merge processor specific flags.
9693 Mips_abiflags<big_endian> in_abiflags;
9695 this->create_abiflags(relobj, &in_abiflags);
9696 this->merge_obj_e_flags(relobj->name(),
9697 relobj->processor_specific_flags());
9698 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9699 this->merge_obj_attributes(relobj->name(),
9700 relobj->attributes_section_data());
9703 // Create a .gnu.attributes section if we have merged any attributes
9705 if (this->attributes_section_data_ != NULL)
9707 Output_attributes_section_data* attributes_section =
9708 new Output_attributes_section_data(*this->attributes_section_data_);
9709 layout->add_output_section_data(".gnu.attributes",
9710 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9711 attributes_section, ORDER_INVALID, false);
9714 // Create .MIPS.abiflags output section if there is an input section.
9715 if (this->has_abiflags_section_)
9717 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9718 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9720 Output_section* os =
9721 layout->add_output_section_data(".MIPS.abiflags",
9722 elfcpp::SHT_MIPS_ABIFLAGS,
9724 abiflags_section, ORDER_INVALID, false);
9726 if (!parameters->options().relocatable() && os != NULL)
9728 Output_segment* abiflags_segment =
9729 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9730 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9734 if (has_reginfo_section && !parameters->options().gc_sections())
9736 // Create .reginfo output section.
9737 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9738 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9740 cprmask3, cprmask4);
9742 Output_section* os =
9743 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9744 elfcpp::SHF_ALLOC, reginfo_section,
9745 ORDER_INVALID, false);
9747 if (!parameters->options().relocatable() && os != NULL)
9749 Output_segment* reginfo_segment =
9750 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9752 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9756 if (this->plt_ != NULL)
9758 // Set final PLT offsets for symbols.
9759 this->plt_section()->set_plt_offsets();
9761 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9762 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9763 // there are no standard PLT entries present.
9764 unsigned char nonvis = 0;
9765 if (this->is_output_micromips()
9766 && !this->plt_section()->has_standard_entries())
9767 nonvis = elfcpp::STO_MICROMIPS >> 2;
9768 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9769 Symbol_table::PREDEFINED,
9771 0, 0, elfcpp::STT_FUNC,
9773 elfcpp::STV_DEFAULT, nonvis,
9777 if (this->mips_stubs_ != NULL)
9779 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9780 unsigned char nonvis = 0;
9781 if (this->is_output_micromips())
9782 nonvis = elfcpp::STO_MICROMIPS >> 2;
9783 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9784 Symbol_table::PREDEFINED,
9786 0, 0, elfcpp::STT_FUNC,
9788 elfcpp::STV_DEFAULT, nonvis,
9792 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9793 // In case there is no .got section, create one.
9794 this->got_section(symtab, layout);
9796 // Emit any relocs we saved in an attempt to avoid generating COPY
9798 if (this->copy_relocs_.any_saved_relocs())
9799 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9803 this->set_gp(layout, symtab);
9805 // Emit dynamic relocs.
9806 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9807 p != this->dyn_relocs_.end();
9809 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9811 if (this->has_got_section())
9812 this->got_section()->lay_out_got(layout, symtab, input_objects);
9814 if (this->mips_stubs_ != NULL)
9815 this->mips_stubs_->set_needs_dynsym_value();
9817 // Check for functions that might need $25 to be valid on entry.
9818 // TODO(sasa): Can we do this without iterating over all symbols?
9819 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9820 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9823 // Add NULL segment.
9824 if (!parameters->options().relocatable())
9825 layout->make_output_segment(elfcpp::PT_NULL, 0);
9827 // Fill in some more dynamic tags.
9828 // TODO(sasa): Add more dynamic tags.
9829 const Reloc_section* rel_plt = (this->plt_ == NULL
9830 ? NULL : this->plt_->rel_plt());
9831 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9832 this->rel_dyn_, true, false);
9834 Output_data_dynamic* const odyn = layout->dynamic_data();
9836 && !parameters->options().relocatable()
9837 && !parameters->doing_static_link())
9840 // This element holds a 32-bit version id for the Runtime
9841 // Linker Interface. This will start at integer value 1.
9843 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9846 d_val = elfcpp::RHF_NOTPOT;
9847 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9849 // Save layout for using when emitting custom dynamic tags.
9850 this->layout_ = layout;
9852 // This member holds the base address of the segment.
9853 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9855 // This member holds the number of entries in the .dynsym section.
9856 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9858 // This member holds the index of the first dynamic symbol
9859 // table entry that corresponds to an entry in the global offset table.
9860 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9862 // This member holds the number of local GOT entries.
9863 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9864 this->got_->get_local_gotno());
9866 if (this->plt_ != NULL)
9867 // DT_MIPS_PLTGOT dynamic tag
9868 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9870 if (!parameters->options().shared())
9872 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9874 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9875 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9876 this->rld_map_, ORDER_INVALID, false);
9878 // __RLD_MAP will be filled in by the runtime loader to contain
9879 // a pointer to the _r_debug structure.
9880 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9881 Symbol_table::PREDEFINED,
9883 0, 0, elfcpp::STT_OBJECT,
9885 elfcpp::STV_DEFAULT, 0,
9888 if (!rld_map->is_forced_local())
9889 rld_map->set_needs_dynsym_entry();
9891 if (!parameters->options().pie())
9892 // This member holds the absolute address of the debug pointer.
9893 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9895 // This member holds the offset to the debug pointer,
9896 // relative to the address of the tag.
9897 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9902 // Get the custom dynamic tag value.
9903 template<int size, bool big_endian>
9905 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9909 case elfcpp::DT_MIPS_BASE_ADDRESS:
9911 // The base address of the segment.
9912 // At this point, the segment list has been sorted into final order,
9913 // so just return vaddr of the first readable PT_LOAD segment.
9914 Output_segment* seg =
9915 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9916 gold_assert(seg != NULL);
9917 return seg->vaddr();
9920 case elfcpp::DT_MIPS_SYMTABNO:
9921 // The number of entries in the .dynsym section.
9922 return this->get_dt_mips_symtabno();
9924 case elfcpp::DT_MIPS_GOTSYM:
9926 // The index of the first dynamic symbol table entry that corresponds
9927 // to an entry in the GOT.
9928 if (this->got_->first_global_got_dynsym_index() != -1U)
9929 return this->got_->first_global_got_dynsym_index();
9931 // In case if we don't have global GOT symbols we default to setting
9932 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9933 return this->get_dt_mips_symtabno();
9936 case elfcpp::DT_MIPS_RLD_MAP_REL:
9938 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9939 // relative to the address of the tag.
9940 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9941 unsigned int entry_offset =
9942 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9943 gold_assert(entry_offset != -1U);
9944 return this->rld_map_->address() - (odyn->address() + entry_offset);
9947 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9950 return (unsigned int)-1;
9953 // Relocate section data.
9955 template<int size, bool big_endian>
9957 Target_mips<size, big_endian>::relocate_section(
9958 const Relocate_info<size, big_endian>* relinfo,
9959 unsigned int sh_type,
9960 const unsigned char* prelocs,
9962 Output_section* output_section,
9963 bool needs_special_offset_handling,
9964 unsigned char* view,
9965 Mips_address address,
9966 section_size_type view_size,
9967 const Reloc_symbol_changes* reloc_symbol_changes)
9969 typedef Target_mips<size, big_endian> Mips;
9970 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9972 if (sh_type == elfcpp::SHT_REL)
9974 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9977 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9978 gold::Default_comdat_behavior, Classify_reloc>(
9984 needs_special_offset_handling,
9988 reloc_symbol_changes);
9990 else if (sh_type == elfcpp::SHT_RELA)
9992 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9995 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9996 gold::Default_comdat_behavior, Classify_reloc>(
10002 needs_special_offset_handling,
10006 reloc_symbol_changes);
10010 // Return the size of a relocation while scanning during a relocatable
10014 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10018 case elfcpp::R_MIPS_NONE:
10019 case elfcpp::R_MIPS_TLS_DTPMOD64:
10020 case elfcpp::R_MIPS_TLS_DTPREL64:
10021 case elfcpp::R_MIPS_TLS_TPREL64:
10024 case elfcpp::R_MIPS_32:
10025 case elfcpp::R_MIPS_TLS_DTPMOD32:
10026 case elfcpp::R_MIPS_TLS_DTPREL32:
10027 case elfcpp::R_MIPS_TLS_TPREL32:
10028 case elfcpp::R_MIPS_REL32:
10029 case elfcpp::R_MIPS_PC32:
10030 case elfcpp::R_MIPS_GPREL32:
10031 case elfcpp::R_MIPS_JALR:
10032 case elfcpp::R_MIPS_EH:
10035 case elfcpp::R_MIPS_16:
10036 case elfcpp::R_MIPS_HI16:
10037 case elfcpp::R_MIPS_LO16:
10038 case elfcpp::R_MIPS_HIGHER:
10039 case elfcpp::R_MIPS_HIGHEST:
10040 case elfcpp::R_MIPS_GPREL16:
10041 case elfcpp::R_MIPS16_HI16:
10042 case elfcpp::R_MIPS16_LO16:
10043 case elfcpp::R_MIPS_PC16:
10044 case elfcpp::R_MIPS_PCHI16:
10045 case elfcpp::R_MIPS_PCLO16:
10046 case elfcpp::R_MIPS_GOT16:
10047 case elfcpp::R_MIPS16_GOT16:
10048 case elfcpp::R_MIPS_CALL16:
10049 case elfcpp::R_MIPS16_CALL16:
10050 case elfcpp::R_MIPS_GOT_HI16:
10051 case elfcpp::R_MIPS_CALL_HI16:
10052 case elfcpp::R_MIPS_GOT_LO16:
10053 case elfcpp::R_MIPS_CALL_LO16:
10054 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10055 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10056 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10057 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10058 case elfcpp::R_MIPS16_GPREL:
10059 case elfcpp::R_MIPS_GOT_DISP:
10060 case elfcpp::R_MIPS_LITERAL:
10061 case elfcpp::R_MIPS_GOT_PAGE:
10062 case elfcpp::R_MIPS_GOT_OFST:
10063 case elfcpp::R_MIPS_TLS_GD:
10064 case elfcpp::R_MIPS_TLS_LDM:
10065 case elfcpp::R_MIPS_TLS_GOTTPREL:
10068 // These relocations are not byte sized
10069 case elfcpp::R_MIPS_26:
10070 case elfcpp::R_MIPS16_26:
10071 case elfcpp::R_MIPS_PC21_S2:
10072 case elfcpp::R_MIPS_PC26_S2:
10073 case elfcpp::R_MIPS_PC18_S3:
10074 case elfcpp::R_MIPS_PC19_S2:
10077 case elfcpp::R_MIPS_COPY:
10078 case elfcpp::R_MIPS_JUMP_SLOT:
10079 object->error(_("unexpected reloc %u in object file"), r_type);
10083 object->error(_("unsupported reloc %u in object file"), r_type);
10088 // Scan the relocs during a relocatable link.
10090 template<int size, bool big_endian>
10092 Target_mips<size, big_endian>::scan_relocatable_relocs(
10093 Symbol_table* symtab,
10095 Sized_relobj_file<size, big_endian>* object,
10096 unsigned int data_shndx,
10097 unsigned int sh_type,
10098 const unsigned char* prelocs,
10099 size_t reloc_count,
10100 Output_section* output_section,
10101 bool needs_special_offset_handling,
10102 size_t local_symbol_count,
10103 const unsigned char* plocal_symbols,
10104 Relocatable_relocs* rr)
10106 if (sh_type == elfcpp::SHT_REL)
10108 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10110 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10111 Scan_relocatable_relocs;
10113 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10121 needs_special_offset_handling,
10122 local_symbol_count,
10126 else if (sh_type == elfcpp::SHT_RELA)
10128 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10130 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10131 Scan_relocatable_relocs;
10133 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10141 needs_special_offset_handling,
10142 local_symbol_count,
10147 gold_unreachable();
10150 // Scan the relocs for --emit-relocs.
10152 template<int size, bool big_endian>
10154 Target_mips<size, big_endian>::emit_relocs_scan(
10155 Symbol_table* symtab,
10157 Sized_relobj_file<size, big_endian>* object,
10158 unsigned int data_shndx,
10159 unsigned int sh_type,
10160 const unsigned char* prelocs,
10161 size_t reloc_count,
10162 Output_section* output_section,
10163 bool needs_special_offset_handling,
10164 size_t local_symbol_count,
10165 const unsigned char* plocal_syms,
10166 Relocatable_relocs* rr)
10168 if (sh_type == elfcpp::SHT_REL)
10170 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10172 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10173 Emit_relocs_strategy;
10175 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10183 needs_special_offset_handling,
10184 local_symbol_count,
10188 else if (sh_type == elfcpp::SHT_RELA)
10190 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10192 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10193 Emit_relocs_strategy;
10195 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10203 needs_special_offset_handling,
10204 local_symbol_count,
10209 gold_unreachable();
10212 // Emit relocations for a section.
10214 template<int size, bool big_endian>
10216 Target_mips<size, big_endian>::relocate_relocs(
10217 const Relocate_info<size, big_endian>* relinfo,
10218 unsigned int sh_type,
10219 const unsigned char* prelocs,
10220 size_t reloc_count,
10221 Output_section* output_section,
10222 typename elfcpp::Elf_types<size>::Elf_Off
10223 offset_in_output_section,
10224 unsigned char* view,
10225 Mips_address view_address,
10226 section_size_type view_size,
10227 unsigned char* reloc_view,
10228 section_size_type reloc_view_size)
10230 if (sh_type == elfcpp::SHT_REL)
10232 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10235 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10240 offset_in_output_section,
10247 else if (sh_type == elfcpp::SHT_RELA)
10249 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10252 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10257 offset_in_output_section,
10265 gold_unreachable();
10268 // Perform target-specific processing in a relocatable link. This is
10269 // only used if we use the relocation strategy RELOC_SPECIAL.
10271 template<int size, bool big_endian>
10273 Target_mips<size, big_endian>::relocate_special_relocatable(
10274 const Relocate_info<size, big_endian>* relinfo,
10275 unsigned int sh_type,
10276 const unsigned char* preloc_in,
10278 Output_section* output_section,
10279 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10280 unsigned char* view,
10281 Mips_address view_address,
10283 unsigned char* preloc_out)
10285 // We can only handle REL type relocation sections.
10286 gold_assert(sh_type == elfcpp::SHT_REL);
10288 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10290 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10293 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10295 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10297 Mips_relobj<size, big_endian>* object =
10298 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10299 const unsigned int local_count = object->local_symbol_count();
10301 Reltype reloc(preloc_in);
10302 Reltype_write reloc_write(preloc_out);
10304 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10305 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10306 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10308 // Get the new symbol index.
10309 // We only use RELOC_SPECIAL strategy in local relocations.
10310 gold_assert(r_sym < local_count);
10312 // We are adjusting a section symbol. We need to find
10313 // the symbol table index of the section symbol for
10314 // the output section corresponding to input section
10315 // in which this symbol is defined.
10317 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10318 gold_assert(is_ordinary);
10319 Output_section* os = object->output_section(shndx);
10320 gold_assert(os != NULL);
10321 gold_assert(os->needs_symtab_index());
10322 unsigned int new_symndx = os->symtab_index();
10324 // Get the new offset--the location in the output section where
10325 // this relocation should be applied.
10327 Mips_address offset = reloc.get_r_offset();
10328 Mips_address new_offset;
10329 if (offset_in_output_section != invalid_address)
10330 new_offset = offset + offset_in_output_section;
10333 section_offset_type sot_offset =
10334 convert_types<section_offset_type, Mips_address>(offset);
10335 section_offset_type new_sot_offset =
10336 output_section->output_offset(object, relinfo->data_shndx,
10338 gold_assert(new_sot_offset != -1);
10339 new_offset = new_sot_offset;
10342 // In an object file, r_offset is an offset within the section.
10343 // In an executable or dynamic object, generated by
10344 // --emit-relocs, r_offset is an absolute address.
10345 if (!parameters->options().relocatable())
10347 new_offset += view_address;
10348 if (offset_in_output_section != invalid_address)
10349 new_offset -= offset_in_output_section;
10352 reloc_write.put_r_offset(new_offset);
10353 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10355 // Handle the reloc addend.
10356 // The relocation uses a section symbol in the input file.
10357 // We are adjusting it to use a section symbol in the output
10358 // file. The input section symbol refers to some address in
10359 // the input section. We need the relocation in the output
10360 // file to refer to that same address. This adjustment to
10361 // the addend is the same calculation we use for a simple
10362 // absolute relocation for the input section symbol.
10363 Valtype calculated_value = 0;
10364 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10366 unsigned char* paddend = view + offset;
10367 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10370 case elfcpp::R_MIPS_26:
10371 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10372 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10373 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10374 false, &calculated_value);
10378 gold_unreachable();
10381 // Report any errors.
10382 switch (reloc_status)
10384 case Reloc_funcs::STATUS_OKAY:
10386 case Reloc_funcs::STATUS_OVERFLOW:
10387 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10388 _("relocation overflow: "
10389 "%u against local symbol %u in %s"),
10390 r_type, r_sym, object->name().c_str());
10392 case Reloc_funcs::STATUS_BAD_RELOC:
10393 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10394 _("unexpected opcode while processing relocation"));
10397 gold_unreachable();
10401 // Optimize the TLS relocation type based on what we know about the
10402 // symbol. IS_FINAL is true if the final address of this symbol is
10403 // known at link time.
10405 template<int size, bool big_endian>
10406 tls::Tls_optimization
10407 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10409 // FIXME: Currently we do not do any TLS optimization.
10410 return tls::TLSOPT_NONE;
10413 // Scan a relocation for a local symbol.
10415 template<int size, bool big_endian>
10417 Target_mips<size, big_endian>::Scan::local(
10418 Symbol_table* symtab,
10420 Target_mips<size, big_endian>* target,
10421 Sized_relobj_file<size, big_endian>* object,
10422 unsigned int data_shndx,
10423 Output_section* output_section,
10424 const Relatype* rela,
10425 const Reltype* rel,
10426 unsigned int rel_type,
10427 unsigned int r_type,
10428 const elfcpp::Sym<size, big_endian>& lsym,
10434 Mips_address r_offset;
10435 unsigned int r_sym;
10436 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10438 if (rel_type == elfcpp::SHT_RELA)
10440 r_offset = rela->get_r_offset();
10441 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10443 r_addend = rela->get_r_addend();
10447 r_offset = rel->get_r_offset();
10448 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10453 Mips_relobj<size, big_endian>* mips_obj =
10454 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10456 if (mips_obj->is_mips16_stub_section(data_shndx))
10458 mips_obj->get_mips16_stub_section(data_shndx)
10459 ->new_local_reloc_found(r_type, r_sym);
10462 if (r_type == elfcpp::R_MIPS_NONE)
10463 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10467 if (!mips16_call_reloc(r_type)
10468 && !mips_obj->section_allows_mips16_refs(data_shndx))
10469 // This reloc would need to refer to a MIPS16 hard-float stub, if
10470 // there is one. We ignore MIPS16 stub sections and .pdr section when
10471 // looking for relocs that would need to refer to MIPS16 stubs.
10472 mips_obj->add_local_non_16bit_call(r_sym);
10474 if (r_type == elfcpp::R_MIPS16_26
10475 && !mips_obj->section_allows_mips16_refs(data_shndx))
10476 mips_obj->add_local_16bit_call(r_sym);
10480 case elfcpp::R_MIPS_GOT16:
10481 case elfcpp::R_MIPS_CALL16:
10482 case elfcpp::R_MIPS_CALL_HI16:
10483 case elfcpp::R_MIPS_CALL_LO16:
10484 case elfcpp::R_MIPS_GOT_HI16:
10485 case elfcpp::R_MIPS_GOT_LO16:
10486 case elfcpp::R_MIPS_GOT_PAGE:
10487 case elfcpp::R_MIPS_GOT_OFST:
10488 case elfcpp::R_MIPS_GOT_DISP:
10489 case elfcpp::R_MIPS_TLS_GOTTPREL:
10490 case elfcpp::R_MIPS_TLS_GD:
10491 case elfcpp::R_MIPS_TLS_LDM:
10492 case elfcpp::R_MIPS16_GOT16:
10493 case elfcpp::R_MIPS16_CALL16:
10494 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10495 case elfcpp::R_MIPS16_TLS_GD:
10496 case elfcpp::R_MIPS16_TLS_LDM:
10497 case elfcpp::R_MICROMIPS_GOT16:
10498 case elfcpp::R_MICROMIPS_CALL16:
10499 case elfcpp::R_MICROMIPS_CALL_HI16:
10500 case elfcpp::R_MICROMIPS_CALL_LO16:
10501 case elfcpp::R_MICROMIPS_GOT_HI16:
10502 case elfcpp::R_MICROMIPS_GOT_LO16:
10503 case elfcpp::R_MICROMIPS_GOT_PAGE:
10504 case elfcpp::R_MICROMIPS_GOT_OFST:
10505 case elfcpp::R_MICROMIPS_GOT_DISP:
10506 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10507 case elfcpp::R_MICROMIPS_TLS_GD:
10508 case elfcpp::R_MICROMIPS_TLS_LDM:
10509 case elfcpp::R_MIPS_EH:
10510 // We need a GOT section.
10511 target->got_section(symtab, layout);
10518 if (call_lo16_reloc(r_type)
10519 || got_lo16_reloc(r_type)
10520 || got_disp_reloc(r_type)
10521 || eh_reloc(r_type))
10523 // We may need a local GOT entry for this relocation. We
10524 // don't count R_MIPS_GOT_PAGE because we can estimate the
10525 // maximum number of pages needed by looking at the size of
10526 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10527 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10528 // R_MIPS_CALL_HI16 because these are always followed by an
10529 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10530 Mips_output_data_got<size, big_endian>* got =
10531 target->got_section(symtab, layout);
10532 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10533 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10534 is_section_symbol);
10539 case elfcpp::R_MIPS_CALL16:
10540 case elfcpp::R_MIPS16_CALL16:
10541 case elfcpp::R_MICROMIPS_CALL16:
10542 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10543 (unsigned long)r_offset);
10546 case elfcpp::R_MIPS_GOT_PAGE:
10547 case elfcpp::R_MICROMIPS_GOT_PAGE:
10548 case elfcpp::R_MIPS16_GOT16:
10549 case elfcpp::R_MIPS_GOT16:
10550 case elfcpp::R_MIPS_GOT_HI16:
10551 case elfcpp::R_MIPS_GOT_LO16:
10552 case elfcpp::R_MICROMIPS_GOT16:
10553 case elfcpp::R_MICROMIPS_GOT_HI16:
10554 case elfcpp::R_MICROMIPS_GOT_LO16:
10556 // This relocation needs a page entry in the GOT.
10557 // Get the section contents.
10558 section_size_type view_size = 0;
10559 const unsigned char* view = object->section_contents(data_shndx,
10560 &view_size, false);
10563 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10564 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10567 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10568 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10569 object, data_shndx, r_type, r_sym, addend));
10571 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10575 case elfcpp::R_MIPS_HI16:
10576 case elfcpp::R_MIPS_PCHI16:
10577 case elfcpp::R_MIPS16_HI16:
10578 case elfcpp::R_MICROMIPS_HI16:
10579 // Record the reloc so that we can check whether the corresponding LO16
10581 if (rel_type == elfcpp::SHT_REL)
10582 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10583 object, data_shndx, r_type, r_sym, 0));
10586 case elfcpp::R_MIPS_LO16:
10587 case elfcpp::R_MIPS_PCLO16:
10588 case elfcpp::R_MIPS16_LO16:
10589 case elfcpp::R_MICROMIPS_LO16:
10591 if (rel_type != elfcpp::SHT_REL)
10594 // Find corresponding GOT16/HI16 relocation.
10596 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10597 // be immediately following. However, for the IRIX6 ABI, the next
10598 // relocation may be a composed relocation consisting of several
10599 // relocations for the same address. In that case, the R_MIPS_LO16
10600 // relocation may occur as one of these. We permit a similar
10601 // extension in general, as that is useful for GCC.
10603 // In some cases GCC dead code elimination removes the LO16 but
10604 // keeps the corresponding HI16. This is strictly speaking a
10605 // violation of the ABI but not immediately harmful.
10607 typename std::list<got16_addend<size, big_endian> >::iterator it =
10608 target->got16_addends_.begin();
10609 while (it != target->got16_addends_.end())
10611 got16_addend<size, big_endian> _got16_addend = *it;
10613 // TODO(sasa): Split got16_addends_ list into two lists - one for
10614 // GOT16 relocs and the other for HI16 relocs.
10616 // Report an error if we find HI16 or GOT16 reloc from the
10617 // previous section without the matching LO16 part.
10618 if (_got16_addend.object != object
10619 || _got16_addend.shndx != data_shndx)
10621 gold_error("Can't find matching LO16 reloc");
10625 if (_got16_addend.r_sym != r_sym
10626 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10632 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10633 // For GOT16, we need to calculate combined addend and record GOT page
10635 if (got16_reloc(_got16_addend.r_type))
10638 section_size_type view_size = 0;
10639 const unsigned char* view = object->section_contents(data_shndx,
10644 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10645 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10647 addend = (_got16_addend.addend << 16) + addend;
10648 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10652 it = target->got16_addends_.erase(it);
10660 case elfcpp::R_MIPS_32:
10661 case elfcpp::R_MIPS_REL32:
10662 case elfcpp::R_MIPS_64:
10664 if (parameters->options().output_is_position_independent())
10666 // If building a shared library (or a position-independent
10667 // executable), we need to create a dynamic relocation for
10669 if (is_readonly_section(output_section))
10671 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10672 rel_dyn->add_symbolless_local_addend(object, r_sym,
10673 elfcpp::R_MIPS_REL32,
10674 output_section, data_shndx,
10680 case elfcpp::R_MIPS_TLS_GOTTPREL:
10681 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10682 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10683 case elfcpp::R_MIPS_TLS_LDM:
10684 case elfcpp::R_MIPS16_TLS_LDM:
10685 case elfcpp::R_MICROMIPS_TLS_LDM:
10686 case elfcpp::R_MIPS_TLS_GD:
10687 case elfcpp::R_MIPS16_TLS_GD:
10688 case elfcpp::R_MICROMIPS_TLS_GD:
10690 bool output_is_shared = parameters->options().shared();
10691 const tls::Tls_optimization optimized_type
10692 = Target_mips<size, big_endian>::optimize_tls_reloc(
10693 !output_is_shared, r_type);
10696 case elfcpp::R_MIPS_TLS_GD:
10697 case elfcpp::R_MIPS16_TLS_GD:
10698 case elfcpp::R_MICROMIPS_TLS_GD:
10699 if (optimized_type == tls::TLSOPT_NONE)
10701 // Create a pair of GOT entries for the module index and
10702 // dtv-relative offset.
10703 Mips_output_data_got<size, big_endian>* got =
10704 target->got_section(symtab, layout);
10705 unsigned int shndx = lsym.get_st_shndx();
10707 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10710 object->error(_("local symbol %u has bad shndx %u"),
10714 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10719 // FIXME: TLS optimization not supported yet.
10720 gold_unreachable();
10724 case elfcpp::R_MIPS_TLS_LDM:
10725 case elfcpp::R_MIPS16_TLS_LDM:
10726 case elfcpp::R_MICROMIPS_TLS_LDM:
10727 if (optimized_type == tls::TLSOPT_NONE)
10729 // We always record LDM symbols as local with index 0.
10730 target->got_section()->record_local_got_symbol(mips_obj, 0,
10736 // FIXME: TLS optimization not supported yet.
10737 gold_unreachable();
10740 case elfcpp::R_MIPS_TLS_GOTTPREL:
10741 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10742 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10743 layout->set_has_static_tls();
10744 if (optimized_type == tls::TLSOPT_NONE)
10746 // Create a GOT entry for the tp-relative offset.
10747 Mips_output_data_got<size, big_endian>* got =
10748 target->got_section(symtab, layout);
10749 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10754 // FIXME: TLS optimization not supported yet.
10755 gold_unreachable();
10760 gold_unreachable();
10769 // Refuse some position-dependent relocations when creating a
10770 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10771 // not PIC, but we can create dynamic relocations and the result
10772 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10773 // combined with R_MIPS_GOT16.
10774 if (parameters->options().shared())
10778 case elfcpp::R_MIPS16_HI16:
10779 case elfcpp::R_MIPS_HI16:
10780 case elfcpp::R_MIPS_HIGHER:
10781 case elfcpp::R_MIPS_HIGHEST:
10782 case elfcpp::R_MICROMIPS_HI16:
10783 case elfcpp::R_MICROMIPS_HIGHER:
10784 case elfcpp::R_MICROMIPS_HIGHEST:
10785 // Don't refuse a high part relocation if it's against
10786 // no symbol (e.g. part of a compound relocation).
10791 case elfcpp::R_MIPS16_26:
10792 case elfcpp::R_MIPS_26:
10793 case elfcpp::R_MICROMIPS_26_S1:
10794 gold_error(_("%s: relocation %u against `%s' can not be used when "
10795 "making a shared object; recompile with -fPIC"),
10796 object->name().c_str(), r_type, "a local symbol");
10803 template<int size, bool big_endian>
10805 Target_mips<size, big_endian>::Scan::local(
10806 Symbol_table* symtab,
10808 Target_mips<size, big_endian>* target,
10809 Sized_relobj_file<size, big_endian>* object,
10810 unsigned int data_shndx,
10811 Output_section* output_section,
10812 const Reltype& reloc,
10813 unsigned int r_type,
10814 const elfcpp::Sym<size, big_endian>& lsym,
10827 (const Relatype*) NULL,
10831 lsym, is_discarded);
10835 template<int size, bool big_endian>
10837 Target_mips<size, big_endian>::Scan::local(
10838 Symbol_table* symtab,
10840 Target_mips<size, big_endian>* target,
10841 Sized_relobj_file<size, big_endian>* object,
10842 unsigned int data_shndx,
10843 Output_section* output_section,
10844 const Relatype& reloc,
10845 unsigned int r_type,
10846 const elfcpp::Sym<size, big_endian>& lsym,
10860 (const Reltype*) NULL,
10863 lsym, is_discarded);
10866 // Scan a relocation for a global symbol.
10868 template<int size, bool big_endian>
10870 Target_mips<size, big_endian>::Scan::global(
10871 Symbol_table* symtab,
10873 Target_mips<size, big_endian>* target,
10874 Sized_relobj_file<size, big_endian>* object,
10875 unsigned int data_shndx,
10876 Output_section* output_section,
10877 const Relatype* rela,
10878 const Reltype* rel,
10879 unsigned int rel_type,
10880 unsigned int r_type,
10883 Mips_address r_offset;
10884 unsigned int r_sym;
10885 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10887 if (rel_type == elfcpp::SHT_RELA)
10889 r_offset = rela->get_r_offset();
10890 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10892 r_addend = rela->get_r_addend();
10896 r_offset = rel->get_r_offset();
10897 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10902 Mips_relobj<size, big_endian>* mips_obj =
10903 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10904 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10906 if (mips_obj->is_mips16_stub_section(data_shndx))
10908 mips_obj->get_mips16_stub_section(data_shndx)
10909 ->new_global_reloc_found(r_type, mips_sym);
10912 if (r_type == elfcpp::R_MIPS_NONE)
10913 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10917 if (!mips16_call_reloc(r_type)
10918 && !mips_obj->section_allows_mips16_refs(data_shndx))
10919 // This reloc would need to refer to a MIPS16 hard-float stub, if
10920 // there is one. We ignore MIPS16 stub sections and .pdr section when
10921 // looking for relocs that would need to refer to MIPS16 stubs.
10922 mips_sym->set_need_fn_stub();
10924 // We need PLT entries if there are static-only relocations against
10925 // an externally-defined function. This can technically occur for
10926 // shared libraries if there are branches to the symbol, although it
10927 // is unlikely that this will be used in practice due to the short
10928 // ranges involved. It can occur for any relative or absolute relocation
10929 // in executables; in that case, the PLT entry becomes the function's
10930 // canonical address.
10931 bool static_reloc = false;
10933 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10934 // relocation into a dynamic one.
10935 bool can_make_dynamic = false;
10938 case elfcpp::R_MIPS_GOT16:
10939 case elfcpp::R_MIPS_CALL16:
10940 case elfcpp::R_MIPS_CALL_HI16:
10941 case elfcpp::R_MIPS_CALL_LO16:
10942 case elfcpp::R_MIPS_GOT_HI16:
10943 case elfcpp::R_MIPS_GOT_LO16:
10944 case elfcpp::R_MIPS_GOT_PAGE:
10945 case elfcpp::R_MIPS_GOT_OFST:
10946 case elfcpp::R_MIPS_GOT_DISP:
10947 case elfcpp::R_MIPS_TLS_GOTTPREL:
10948 case elfcpp::R_MIPS_TLS_GD:
10949 case elfcpp::R_MIPS_TLS_LDM:
10950 case elfcpp::R_MIPS16_GOT16:
10951 case elfcpp::R_MIPS16_CALL16:
10952 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10953 case elfcpp::R_MIPS16_TLS_GD:
10954 case elfcpp::R_MIPS16_TLS_LDM:
10955 case elfcpp::R_MICROMIPS_GOT16:
10956 case elfcpp::R_MICROMIPS_CALL16:
10957 case elfcpp::R_MICROMIPS_CALL_HI16:
10958 case elfcpp::R_MICROMIPS_CALL_LO16:
10959 case elfcpp::R_MICROMIPS_GOT_HI16:
10960 case elfcpp::R_MICROMIPS_GOT_LO16:
10961 case elfcpp::R_MICROMIPS_GOT_PAGE:
10962 case elfcpp::R_MICROMIPS_GOT_OFST:
10963 case elfcpp::R_MICROMIPS_GOT_DISP:
10964 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10965 case elfcpp::R_MICROMIPS_TLS_GD:
10966 case elfcpp::R_MICROMIPS_TLS_LDM:
10967 case elfcpp::R_MIPS_EH:
10968 // We need a GOT section.
10969 target->got_section(symtab, layout);
10972 // This is just a hint; it can safely be ignored. Don't set
10973 // has_static_relocs for the corresponding symbol.
10974 case elfcpp::R_MIPS_JALR:
10975 case elfcpp::R_MICROMIPS_JALR:
10978 case elfcpp::R_MIPS_GPREL16:
10979 case elfcpp::R_MIPS_GPREL32:
10980 case elfcpp::R_MIPS16_GPREL:
10981 case elfcpp::R_MICROMIPS_GPREL16:
10983 // GP-relative relocations always resolve to a definition in a
10984 // regular input file, ignoring the one-definition rule. This is
10985 // important for the GP setup sequence in NewABI code, which
10986 // always resolves to a local function even if other relocations
10987 // against the symbol wouldn't.
10988 //constrain_symbol_p = FALSE;
10991 case elfcpp::R_MIPS_32:
10992 case elfcpp::R_MIPS_REL32:
10993 case elfcpp::R_MIPS_64:
10994 if ((parameters->options().shared()
10995 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10996 && (!is_readonly_section(output_section)
10997 || mips_obj->is_pic())))
10998 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
11000 if (r_type != elfcpp::R_MIPS_REL32)
11001 mips_sym->set_pointer_equality_needed();
11002 can_make_dynamic = true;
11008 // Most static relocations require pointer equality, except
11010 mips_sym->set_pointer_equality_needed();
11013 case elfcpp::R_MIPS_26:
11014 case elfcpp::R_MIPS_PC16:
11015 case elfcpp::R_MIPS_PC21_S2:
11016 case elfcpp::R_MIPS_PC26_S2:
11017 case elfcpp::R_MIPS16_26:
11018 case elfcpp::R_MICROMIPS_26_S1:
11019 case elfcpp::R_MICROMIPS_PC7_S1:
11020 case elfcpp::R_MICROMIPS_PC10_S1:
11021 case elfcpp::R_MICROMIPS_PC16_S1:
11022 case elfcpp::R_MICROMIPS_PC23_S2:
11023 static_reloc = true;
11024 mips_sym->set_has_static_relocs();
11028 // If there are call relocations against an externally-defined symbol,
11029 // see whether we can create a MIPS lazy-binding stub for it. We can
11030 // only do this if all references to the function are through call
11031 // relocations, and in that case, the traditional lazy-binding stubs
11032 // are much more efficient than PLT entries.
11035 case elfcpp::R_MIPS16_CALL16:
11036 case elfcpp::R_MIPS_CALL16:
11037 case elfcpp::R_MIPS_CALL_HI16:
11038 case elfcpp::R_MIPS_CALL_LO16:
11039 case elfcpp::R_MIPS_JALR:
11040 case elfcpp::R_MICROMIPS_CALL16:
11041 case elfcpp::R_MICROMIPS_CALL_HI16:
11042 case elfcpp::R_MICROMIPS_CALL_LO16:
11043 case elfcpp::R_MICROMIPS_JALR:
11044 if (!mips_sym->no_lazy_stub())
11046 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11047 // Calls from shared objects to undefined symbols of type
11048 // STT_NOTYPE need lazy-binding stub.
11049 || (mips_sym->is_undefined() && parameters->options().shared()))
11050 target->mips_stubs_section(layout)->make_entry(mips_sym);
11055 // We must not create a stub for a symbol that has relocations
11056 // related to taking the function's address.
11057 mips_sym->set_no_lazy_stub();
11058 target->remove_lazy_stub_entry(mips_sym);
11063 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11064 mips_sym->is_mips16()))
11065 mips_sym->set_has_nonpic_branches();
11067 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11068 // and has a special meaning.
11069 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11070 && strcmp(gsym->name(), "_gp_disp") == 0
11071 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11072 if (static_reloc && gsym->needs_plt_entry())
11074 target->make_plt_entry(symtab, layout, mips_sym, r_type);
11076 // Since this is not a PC-relative relocation, we may be
11077 // taking the address of a function. In that case we need to
11078 // set the entry in the dynamic symbol table to the address of
11080 if (gsym->is_from_dynobj() && !parameters->options().shared())
11082 gsym->set_needs_dynsym_value();
11083 // We distinguish between PLT entries and lazy-binding stubs by
11084 // giving the former an st_other value of STO_MIPS_PLT. Set the
11085 // flag if there are any relocations in the binary where pointer
11086 // equality matters.
11087 if (mips_sym->pointer_equality_needed())
11088 mips_sym->set_mips_plt();
11091 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11093 // Absolute addressing relocations.
11094 // Make a dynamic relocation if necessary.
11095 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11097 if (gsym->may_need_copy_reloc())
11099 target->copy_reloc(symtab, layout, object, data_shndx,
11100 output_section, gsym, r_type, r_offset);
11102 else if (can_make_dynamic)
11104 // Create .rel.dyn section.
11105 target->rel_dyn_section(layout);
11106 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11107 data_shndx, output_section, r_offset);
11110 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11115 bool for_call = false;
11118 case elfcpp::R_MIPS_CALL16:
11119 case elfcpp::R_MIPS16_CALL16:
11120 case elfcpp::R_MICROMIPS_CALL16:
11121 case elfcpp::R_MIPS_CALL_HI16:
11122 case elfcpp::R_MIPS_CALL_LO16:
11123 case elfcpp::R_MICROMIPS_CALL_HI16:
11124 case elfcpp::R_MICROMIPS_CALL_LO16:
11128 case elfcpp::R_MIPS16_GOT16:
11129 case elfcpp::R_MIPS_GOT16:
11130 case elfcpp::R_MIPS_GOT_HI16:
11131 case elfcpp::R_MIPS_GOT_LO16:
11132 case elfcpp::R_MICROMIPS_GOT16:
11133 case elfcpp::R_MICROMIPS_GOT_HI16:
11134 case elfcpp::R_MICROMIPS_GOT_LO16:
11135 case elfcpp::R_MIPS_GOT_DISP:
11136 case elfcpp::R_MICROMIPS_GOT_DISP:
11137 case elfcpp::R_MIPS_EH:
11139 // The symbol requires a GOT entry.
11140 Mips_output_data_got<size, big_endian>* got =
11141 target->got_section(symtab, layout);
11142 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11144 mips_sym->set_global_got_area(GGA_NORMAL);
11148 case elfcpp::R_MIPS_GOT_PAGE:
11149 case elfcpp::R_MICROMIPS_GOT_PAGE:
11151 // This relocation needs a page entry in the GOT.
11152 // Get the section contents.
11153 section_size_type view_size = 0;
11154 const unsigned char* view =
11155 object->section_contents(data_shndx, &view_size, false);
11158 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11159 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11161 Mips_output_data_got<size, big_endian>* got =
11162 target->got_section(symtab, layout);
11163 got->record_got_page_entry(mips_obj, r_sym, addend);
11165 // If this is a global, overridable symbol, GOT_PAGE will
11166 // decay to GOT_DISP, so we'll need a GOT entry for it.
11167 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11168 && !mips_sym->object()->is_dynamic()
11169 && !mips_sym->is_undefined());
11171 || (parameters->options().output_is_position_independent()
11172 && !parameters->options().Bsymbolic()
11173 && !mips_sym->is_forced_local()))
11175 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11177 mips_sym->set_global_got_area(GGA_NORMAL);
11182 case elfcpp::R_MIPS_TLS_GOTTPREL:
11183 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11184 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11185 case elfcpp::R_MIPS_TLS_LDM:
11186 case elfcpp::R_MIPS16_TLS_LDM:
11187 case elfcpp::R_MICROMIPS_TLS_LDM:
11188 case elfcpp::R_MIPS_TLS_GD:
11189 case elfcpp::R_MIPS16_TLS_GD:
11190 case elfcpp::R_MICROMIPS_TLS_GD:
11192 const bool is_final = gsym->final_value_is_known();
11193 const tls::Tls_optimization optimized_type =
11194 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11198 case elfcpp::R_MIPS_TLS_GD:
11199 case elfcpp::R_MIPS16_TLS_GD:
11200 case elfcpp::R_MICROMIPS_TLS_GD:
11201 if (optimized_type == tls::TLSOPT_NONE)
11203 // Create a pair of GOT entries for the module index and
11204 // dtv-relative offset.
11205 Mips_output_data_got<size, big_endian>* got =
11206 target->got_section(symtab, layout);
11207 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11212 // FIXME: TLS optimization not supported yet.
11213 gold_unreachable();
11217 case elfcpp::R_MIPS_TLS_LDM:
11218 case elfcpp::R_MIPS16_TLS_LDM:
11219 case elfcpp::R_MICROMIPS_TLS_LDM:
11220 if (optimized_type == tls::TLSOPT_NONE)
11222 // We always record LDM symbols as local with index 0.
11223 target->got_section()->record_local_got_symbol(mips_obj, 0,
11229 // FIXME: TLS optimization not supported yet.
11230 gold_unreachable();
11233 case elfcpp::R_MIPS_TLS_GOTTPREL:
11234 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11235 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11236 layout->set_has_static_tls();
11237 if (optimized_type == tls::TLSOPT_NONE)
11239 // Create a GOT entry for the tp-relative offset.
11240 Mips_output_data_got<size, big_endian>* got =
11241 target->got_section(symtab, layout);
11242 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11247 // FIXME: TLS optimization not supported yet.
11248 gold_unreachable();
11253 gold_unreachable();
11257 case elfcpp::R_MIPS_COPY:
11258 case elfcpp::R_MIPS_JUMP_SLOT:
11259 // These are relocations which should only be seen by the
11260 // dynamic linker, and should never be seen here.
11261 gold_error(_("%s: unexpected reloc %u in object file"),
11262 object->name().c_str(), r_type);
11269 // Refuse some position-dependent relocations when creating a
11270 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11271 // not PIC, but we can create dynamic relocations and the result
11272 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11273 // combined with R_MIPS_GOT16.
11274 if (parameters->options().shared())
11278 case elfcpp::R_MIPS16_HI16:
11279 case elfcpp::R_MIPS_HI16:
11280 case elfcpp::R_MIPS_HIGHER:
11281 case elfcpp::R_MIPS_HIGHEST:
11282 case elfcpp::R_MICROMIPS_HI16:
11283 case elfcpp::R_MICROMIPS_HIGHER:
11284 case elfcpp::R_MICROMIPS_HIGHEST:
11285 // Don't refuse a high part relocation if it's against
11286 // no symbol (e.g. part of a compound relocation).
11290 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11291 // and has a special meaning.
11292 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11296 case elfcpp::R_MIPS16_26:
11297 case elfcpp::R_MIPS_26:
11298 case elfcpp::R_MICROMIPS_26_S1:
11299 gold_error(_("%s: relocation %u against `%s' can not be used when "
11300 "making a shared object; recompile with -fPIC"),
11301 object->name().c_str(), r_type, gsym->name());
11308 template<int size, bool big_endian>
11310 Target_mips<size, big_endian>::Scan::global(
11311 Symbol_table* symtab,
11313 Target_mips<size, big_endian>* target,
11314 Sized_relobj_file<size, big_endian>* object,
11315 unsigned int data_shndx,
11316 Output_section* output_section,
11317 const Relatype& reloc,
11318 unsigned int r_type,
11329 (const Reltype*) NULL,
11335 template<int size, bool big_endian>
11337 Target_mips<size, big_endian>::Scan::global(
11338 Symbol_table* symtab,
11340 Target_mips<size, big_endian>* target,
11341 Sized_relobj_file<size, big_endian>* object,
11342 unsigned int data_shndx,
11343 Output_section* output_section,
11344 const Reltype& reloc,
11345 unsigned int r_type,
11355 (const Relatype*) NULL,
11362 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11363 // In cases where Scan::local() or Scan::global() has created
11364 // a dynamic relocation, the addend of the relocation is carried
11365 // in the data, and we must not apply the static relocation.
11367 template<int size, bool big_endian>
11369 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11370 const Mips_symbol<size>* gsym,
11371 unsigned int r_type,
11372 Output_section* output_section,
11373 Target_mips* target)
11375 // If the output section is not allocated, then we didn't call
11376 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11378 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11385 // For global symbols, we use the same helper routines used in the
11387 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11388 && !gsym->may_need_copy_reloc())
11390 // We have generated dynamic reloc (R_MIPS_REL32).
11392 bool multi_got = false;
11393 if (target->has_got_section())
11394 multi_got = target->got_section()->multi_got();
11395 bool has_got_offset;
11397 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11399 has_got_offset = gsym->global_gotoffset() != -1U;
11400 if (!has_got_offset)
11403 // Apply the relocation only if the symbol is in the local got.
11404 // Do not apply the relocation if the symbol is in the global
11406 return symbol_references_local(gsym, gsym->has_dynsym_index());
11409 // We have not generated dynamic reloc.
11414 // Perform a relocation.
11416 template<int size, bool big_endian>
11418 Target_mips<size, big_endian>::Relocate::relocate(
11419 const Relocate_info<size, big_endian>* relinfo,
11420 unsigned int rel_type,
11421 Target_mips* target,
11422 Output_section* output_section,
11424 const unsigned char* preloc,
11425 const Sized_symbol<size>* gsym,
11426 const Symbol_value<size>* psymval,
11427 unsigned char* view,
11428 Mips_address address,
11431 Mips_address r_offset;
11432 unsigned int r_sym;
11433 unsigned int r_type;
11434 unsigned int r_type2;
11435 unsigned int r_type3;
11436 unsigned char r_ssym;
11437 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11438 // r_offset and r_type of the next relocation is needed for resolving multiple
11439 // consecutive relocations with the same offset.
11440 Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
11441 unsigned int next_r_type = elfcpp::R_MIPS_NONE;
11443 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11444 size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
11446 if (rel_type == elfcpp::SHT_RELA)
11448 const Relatype rela(preloc);
11449 r_offset = rela.get_r_offset();
11450 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11452 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11454 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11455 get_r_type2(&rela);
11456 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11457 get_r_type3(&rela);
11458 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11460 r_addend = rela.get_r_addend();
11461 // If this is not last relocation, get r_offset and r_type of the next
11463 if (relnum + 1 < reloc_count)
11465 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11466 const Relatype next_rela(preloc + reloc_size);
11467 next_r_offset = next_rela.get_r_offset();
11469 Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11470 get_r_type(&next_rela);
11475 const Reltype rel(preloc);
11476 r_offset = rel.get_r_offset();
11477 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11479 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11482 r_type2 = elfcpp::R_MIPS_NONE;
11483 r_type3 = elfcpp::R_MIPS_NONE;
11485 // If this is not last relocation, get r_offset and r_type of the next
11487 if (relnum + 1 < reloc_count)
11489 const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
11490 const Reltype next_rel(preloc + reloc_size);
11491 next_r_offset = next_rel.get_r_offset();
11492 next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11493 get_r_type(&next_rel);
11497 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11498 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11500 Mips_relobj<size, big_endian>* object =
11501 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11503 bool target_is_16_bit_code = false;
11504 bool target_is_micromips_code = false;
11505 bool cross_mode_jump;
11507 Symbol_value<size> symval;
11509 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11511 bool changed_symbol_value = false;
11514 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11515 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11516 if (target_is_16_bit_code || target_is_micromips_code)
11518 // MIPS16/microMIPS text labels should be treated as odd.
11519 symval.set_output_value(psymval->value(object, 1));
11521 changed_symbol_value = true;
11526 target_is_16_bit_code = mips_sym->is_mips16();
11527 target_is_micromips_code = mips_sym->is_micromips();
11529 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11530 // it odd. This will cause something like .word SYM to come up with
11531 // the right value when it is loaded into the PC.
11533 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11534 && psymval->value(object, 0) != 0)
11536 symval.set_output_value(psymval->value(object, 0) | 1);
11538 changed_symbol_value = true;
11541 // Pick the value to use for symbols defined in shared objects.
11542 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11543 || mips_sym->has_lazy_stub())
11545 Mips_address value;
11546 if (!mips_sym->has_lazy_stub())
11548 // Prefer a standard MIPS PLT entry.
11549 if (mips_sym->has_mips_plt_offset())
11551 value = target->plt_section()->mips_entry_address(mips_sym);
11552 target_is_micromips_code = false;
11553 target_is_16_bit_code = false;
11557 value = (target->plt_section()->comp_entry_address(mips_sym)
11559 if (target->is_output_micromips())
11560 target_is_micromips_code = true;
11562 target_is_16_bit_code = true;
11566 value = target->mips_stubs_section()->stub_address(mips_sym);
11568 symval.set_output_value(value);
11573 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11574 // Note that such a symbol must always be a global symbol.
11575 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11576 && !object->is_newabi());
11578 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11579 // Note that such a symbol must always be a global symbol.
11580 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11585 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11586 gold_error_at_location(relinfo, relnum, r_offset,
11587 _("relocations against _gp_disp are permitted only"
11588 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11590 else if (gnu_local_gp)
11592 // __gnu_local_gp is _gp symbol.
11593 symval.set_output_value(target->adjusted_gp_value(object));
11597 // If this is a reference to a 16-bit function with a stub, we need
11598 // to redirect the relocation to the stub unless:
11600 // (a) the relocation is for a MIPS16 JAL;
11602 // (b) the relocation is for a MIPS16 PIC call, and there are no
11603 // non-MIPS16 uses of the GOT slot; or
11605 // (c) the section allows direct references to MIPS16 functions.
11606 if (r_type != elfcpp::R_MIPS16_26
11607 && ((mips_sym != NULL
11608 && mips_sym->has_mips16_fn_stub()
11609 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11610 || (mips_sym == NULL
11611 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11612 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11614 // This is a 32- or 64-bit call to a 16-bit function. We should
11615 // have already noticed that we were going to need the
11617 Mips_address value;
11618 if (mips_sym == NULL)
11619 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11622 gold_assert(mips_sym->need_fn_stub());
11623 if (mips_sym->has_la25_stub())
11624 value = target->la25_stub_section()->stub_address(mips_sym);
11627 value = mips_sym->template
11628 get_mips16_fn_stub<big_endian>()->output_address();
11631 symval.set_output_value(value);
11633 changed_symbol_value = true;
11635 // The target is 16-bit, but the stub isn't.
11636 target_is_16_bit_code = false;
11638 // If this is a MIPS16 call with a stub, that is made through the PLT or
11639 // to a standard MIPS function, we need to redirect the call to the stub.
11640 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11641 // indirect calls should use an indirect stub instead.
11642 else if (r_type == elfcpp::R_MIPS16_26
11643 && ((mips_sym != NULL
11644 && (mips_sym->has_mips16_call_stub()
11645 || mips_sym->has_mips16_call_fp_stub()))
11646 || (mips_sym == NULL
11647 && object->get_local_mips16_call_stub(r_sym) != NULL))
11648 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11649 || !target_is_16_bit_code))
11651 Mips16_stub_section<size, big_endian>* call_stub;
11652 if (mips_sym == NULL)
11653 call_stub = object->get_local_mips16_call_stub(r_sym);
11656 // If both call_stub and call_fp_stub are defined, we can figure
11657 // out which one to use by checking which one appears in the input
11659 if (mips_sym->has_mips16_call_stub()
11660 && mips_sym->has_mips16_call_fp_stub())
11663 for (unsigned int i = 1; i < object->shnum(); ++i)
11665 if (object->is_mips16_call_fp_stub_section(i))
11667 call_stub = mips_sym->template
11668 get_mips16_call_fp_stub<big_endian>();
11673 if (call_stub == NULL)
11675 mips_sym->template get_mips16_call_stub<big_endian>();
11677 else if (mips_sym->has_mips16_call_stub())
11678 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11680 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11683 symval.set_output_value(call_stub->output_address());
11685 changed_symbol_value = true;
11687 // If this is a direct call to a PIC function, redirect to the
11689 else if (mips_sym != NULL
11690 && mips_sym->has_la25_stub()
11691 && relocation_needs_la25_stub<size, big_endian>(
11692 object, r_type, target_is_16_bit_code))
11694 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11695 if (mips_sym->is_micromips())
11697 symval.set_output_value(value);
11700 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11701 // entry is used if a standard PLT entry has also been made.
11702 else if ((r_type == elfcpp::R_MIPS16_26
11703 || r_type == elfcpp::R_MICROMIPS_26_S1)
11704 && mips_sym != NULL
11705 && mips_sym->has_plt_offset()
11706 && mips_sym->has_comp_plt_offset()
11707 && mips_sym->has_mips_plt_offset())
11709 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11711 symval.set_output_value(value);
11714 target_is_16_bit_code = !target->is_output_micromips();
11715 target_is_micromips_code = target->is_output_micromips();
11718 // Make sure MIPS16 and microMIPS are not used together.
11719 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11720 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11722 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11725 // Calls from 16-bit code to 32-bit code and vice versa require the
11726 // mode change. However, we can ignore calls to undefined weak symbols,
11727 // which should never be executed at runtime. This exception is important
11728 // because the assembly writer may have "known" that any definition of the
11729 // symbol would be 16-bit code, and that direct jumps were therefore
11732 (!(gsym != NULL && gsym->is_weak_undefined())
11733 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11734 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11735 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11736 && (target_is_16_bit_code || target_is_micromips_code))));
11738 bool local = (mips_sym == NULL
11739 || (mips_sym->got_only_for_calls()
11740 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11741 : symbol_references_local(mips_sym,
11742 mips_sym->has_dynsym_index())));
11744 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11745 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11746 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11747 if (got_page_reloc(r_type) && !local)
11748 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11749 : elfcpp::R_MIPS_GOT_DISP);
11751 unsigned int got_offset = 0;
11754 // Whether we have to extract addend from instruction.
11755 bool extract_addend = rel_type == elfcpp::SHT_REL;
11756 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11758 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11760 // For Mips64 N64 ABI, there may be up to three operations specified per
11761 // record, by the fields r_type, r_type2, and r_type3. The first operation
11762 // takes its addend from the relocation record. Each subsequent operation
11763 // takes as its addend the result of the previous operation.
11764 // The first operation in a record which references a symbol uses the symbol
11765 // implied by r_sym. The next operation in a record which references a symbol
11766 // uses the special symbol value given by the r_ssym field. A third operation
11767 // in a record which references a symbol will assume a NULL symbol,
11768 // i.e. value zero.
11771 // Check if a record references to a symbol.
11772 for (unsigned int i = 0; i < 3; ++i)
11774 if (r_types[i] == elfcpp::R_MIPS_NONE)
11777 // If we didn't apply previous relocation, use its result as addend
11779 if (this->calculate_only_)
11781 r_addend = this->calculated_value_;
11782 extract_addend = false;
11785 // In the N32 and 64-bit ABIs there may be multiple consecutive
11786 // relocations for the same offset. In that case we are
11787 // supposed to treat the output of each relocation as the addend
11788 // for the next. For N64 ABI, we are checking offsets only in a
11789 // third operation in a record (r_type3).
11790 this->calculate_only_ =
11791 (object->is_n64() && i < 2
11792 ? r_types[i+1] != elfcpp::R_MIPS_NONE
11793 : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
11795 if (object->is_n64())
11799 // Handle special symbol for r_type2 relocation type.
11803 symval.set_output_value(0);
11806 symval.set_output_value(target->gp_value());
11809 symval.set_output_value(object->gp_value());
11812 symval.set_output_value(address);
11815 gold_unreachable();
11821 // For r_type3 symbol value is 0.
11822 symval.set_output_value(0);
11826 bool update_got_entry = false;
11827 switch (r_types[i])
11829 case elfcpp::R_MIPS_NONE:
11831 case elfcpp::R_MIPS_16:
11832 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11834 this->calculate_only_,
11835 &this->calculated_value_);
11838 case elfcpp::R_MIPS_32:
11839 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11841 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11843 this->calculate_only_,
11844 &this->calculated_value_);
11845 if (mips_sym != NULL
11846 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11847 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11849 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11850 // already updated by adding +1.
11851 if (mips_sym->has_mips16_fn_stub())
11853 gold_assert(mips_sym->need_fn_stub());
11854 Mips16_stub_section<size, big_endian>* fn_stub =
11855 mips_sym->template get_mips16_fn_stub<big_endian>();
11857 symval.set_output_value(fn_stub->output_address());
11860 got_offset = mips_sym->global_gotoffset();
11861 update_got_entry = true;
11865 case elfcpp::R_MIPS_64:
11866 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11868 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11870 this->calculate_only_,
11871 &this->calculated_value_, false);
11872 else if (target->is_output_n64() && r_addend != 0)
11873 // Only apply the addend. The static relocation was RELA, but the
11874 // dynamic relocation is REL, so we need to apply the addend.
11875 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11877 this->calculate_only_,
11878 &this->calculated_value_, true);
11880 case elfcpp::R_MIPS_REL32:
11881 gold_unreachable();
11883 case elfcpp::R_MIPS_PC32:
11884 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11885 r_addend, extract_addend,
11886 this->calculate_only_,
11887 &this->calculated_value_);
11890 case elfcpp::R_MIPS16_26:
11891 // The calculation for R_MIPS16_26 is just the same as for an
11892 // R_MIPS_26. It's only the storage of the relocated field into
11893 // the output file that's different. So, we just fall through to the
11894 // R_MIPS_26 case here.
11895 case elfcpp::R_MIPS_26:
11896 case elfcpp::R_MICROMIPS_26_S1:
11897 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11898 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11899 r_types[i], target->jal_to_bal(), this->calculate_only_,
11900 &this->calculated_value_);
11903 case elfcpp::R_MIPS_HI16:
11904 case elfcpp::R_MIPS16_HI16:
11905 case elfcpp::R_MICROMIPS_HI16:
11906 if (rel_type == elfcpp::SHT_RELA)
11907 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11909 gp_disp, r_types[i],
11912 this->calculate_only_,
11913 &this->calculated_value_);
11914 else if (rel_type == elfcpp::SHT_REL)
11915 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11916 address, gp_disp, r_types[i],
11917 r_sym, extract_addend);
11919 gold_unreachable();
11922 case elfcpp::R_MIPS_LO16:
11923 case elfcpp::R_MIPS16_LO16:
11924 case elfcpp::R_MICROMIPS_LO16:
11925 case elfcpp::R_MICROMIPS_HI0_LO16:
11926 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11927 r_addend, extract_addend, address,
11928 gp_disp, r_types[i], r_sym,
11929 rel_type, this->calculate_only_,
11930 &this->calculated_value_);
11933 case elfcpp::R_MIPS_LITERAL:
11934 case elfcpp::R_MICROMIPS_LITERAL:
11935 // Because we don't merge literal sections, we can handle this
11936 // just like R_MIPS_GPREL16. In the long run, we should merge
11937 // shared literals, and then we will need to additional work
11942 case elfcpp::R_MIPS_GPREL16:
11943 case elfcpp::R_MIPS16_GPREL:
11944 case elfcpp::R_MICROMIPS_GPREL7_S2:
11945 case elfcpp::R_MICROMIPS_GPREL16:
11946 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11947 target->adjusted_gp_value(object),
11948 r_addend, extract_addend,
11949 gsym == NULL, r_types[i],
11950 this->calculate_only_,
11951 &this->calculated_value_);
11954 case elfcpp::R_MIPS_PC16:
11955 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11956 r_addend, extract_addend,
11957 this->calculate_only_,
11958 &this->calculated_value_);
11961 case elfcpp::R_MIPS_PC21_S2:
11962 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11963 r_addend, extract_addend,
11964 this->calculate_only_,
11965 &this->calculated_value_);
11968 case elfcpp::R_MIPS_PC26_S2:
11969 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11970 r_addend, extract_addend,
11971 this->calculate_only_,
11972 &this->calculated_value_);
11975 case elfcpp::R_MIPS_PC18_S3:
11976 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11977 r_addend, extract_addend,
11978 this->calculate_only_,
11979 &this->calculated_value_);
11982 case elfcpp::R_MIPS_PC19_S2:
11983 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11984 r_addend, extract_addend,
11985 this->calculate_only_,
11986 &this->calculated_value_);
11989 case elfcpp::R_MIPS_PCHI16:
11990 if (rel_type == elfcpp::SHT_RELA)
11991 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11994 this->calculate_only_,
11995 &this->calculated_value_);
11996 else if (rel_type == elfcpp::SHT_REL)
11997 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11998 r_addend, address, r_sym,
12001 gold_unreachable();
12004 case elfcpp::R_MIPS_PCLO16:
12005 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
12006 extract_addend, address, r_sym,
12007 rel_type, this->calculate_only_,
12008 &this->calculated_value_);
12010 case elfcpp::R_MICROMIPS_PC7_S1:
12011 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
12014 this->calculate_only_,
12015 &this->calculated_value_);
12017 case elfcpp::R_MICROMIPS_PC10_S1:
12018 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
12020 r_addend, extract_addend,
12021 this->calculate_only_,
12022 &this->calculated_value_);
12024 case elfcpp::R_MICROMIPS_PC16_S1:
12025 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
12027 r_addend, extract_addend,
12028 this->calculate_only_,
12029 &this->calculated_value_);
12031 case elfcpp::R_MIPS_GPREL32:
12032 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
12033 target->adjusted_gp_value(object),
12034 r_addend, extract_addend,
12035 this->calculate_only_,
12036 &this->calculated_value_);
12038 case elfcpp::R_MIPS_GOT_HI16:
12039 case elfcpp::R_MIPS_CALL_HI16:
12040 case elfcpp::R_MICROMIPS_GOT_HI16:
12041 case elfcpp::R_MICROMIPS_CALL_HI16:
12043 got_offset = target->got_section()->got_offset(gsym,
12047 got_offset = target->got_section()->got_offset(r_sym,
12050 gp_offset = target->got_section()->gp_offset(got_offset, object);
12051 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
12052 this->calculate_only_,
12053 &this->calculated_value_);
12054 update_got_entry = changed_symbol_value;
12057 case elfcpp::R_MIPS_GOT_LO16:
12058 case elfcpp::R_MIPS_CALL_LO16:
12059 case elfcpp::R_MICROMIPS_GOT_LO16:
12060 case elfcpp::R_MICROMIPS_CALL_LO16:
12062 got_offset = target->got_section()->got_offset(gsym,
12066 got_offset = target->got_section()->got_offset(r_sym,
12069 gp_offset = target->got_section()->gp_offset(got_offset, object);
12070 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12071 this->calculate_only_,
12072 &this->calculated_value_);
12073 update_got_entry = changed_symbol_value;
12076 case elfcpp::R_MIPS_GOT_DISP:
12077 case elfcpp::R_MICROMIPS_GOT_DISP:
12078 case elfcpp::R_MIPS_EH:
12080 got_offset = target->got_section()->got_offset(gsym,
12084 got_offset = target->got_section()->got_offset(r_sym,
12087 gp_offset = target->got_section()->gp_offset(got_offset, object);
12088 if (eh_reloc(r_types[i]))
12089 reloc_status = Reloc_funcs::releh(view, gp_offset,
12090 this->calculate_only_,
12091 &this->calculated_value_);
12093 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12094 this->calculate_only_,
12095 &this->calculated_value_);
12097 case elfcpp::R_MIPS_CALL16:
12098 case elfcpp::R_MIPS16_CALL16:
12099 case elfcpp::R_MICROMIPS_CALL16:
12100 gold_assert(gsym != NULL);
12101 got_offset = target->got_section()->got_offset(gsym,
12104 gp_offset = target->got_section()->gp_offset(got_offset, object);
12105 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12106 this->calculate_only_,
12107 &this->calculated_value_);
12108 // TODO(sasa): We should also initialize update_got_entry
12109 // in other place swhere relgot is called.
12110 update_got_entry = changed_symbol_value;
12113 case elfcpp::R_MIPS_GOT16:
12114 case elfcpp::R_MIPS16_GOT16:
12115 case elfcpp::R_MICROMIPS_GOT16:
12118 got_offset = target->got_section()->got_offset(gsym,
12121 gp_offset = target->got_section()->gp_offset(got_offset, object);
12122 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12123 this->calculate_only_,
12124 &this->calculated_value_);
12128 if (rel_type == elfcpp::SHT_RELA)
12129 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12133 this->calculate_only_,
12134 &this->calculated_value_);
12135 else if (rel_type == elfcpp::SHT_REL)
12136 reloc_status = Reloc_funcs::relgot16_local(view, object,
12139 r_types[i], r_sym);
12141 gold_unreachable();
12143 update_got_entry = changed_symbol_value;
12146 case elfcpp::R_MIPS_TLS_GD:
12147 case elfcpp::R_MIPS16_TLS_GD:
12148 case elfcpp::R_MICROMIPS_TLS_GD:
12150 got_offset = target->got_section()->got_offset(gsym,
12154 got_offset = target->got_section()->got_offset(r_sym,
12157 gp_offset = target->got_section()->gp_offset(got_offset, object);
12158 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12159 this->calculate_only_,
12160 &this->calculated_value_);
12163 case elfcpp::R_MIPS_TLS_GOTTPREL:
12164 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12165 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12167 got_offset = target->got_section()->got_offset(gsym,
12168 GOT_TYPE_TLS_OFFSET,
12171 got_offset = target->got_section()->got_offset(r_sym,
12172 GOT_TYPE_TLS_OFFSET,
12174 gp_offset = target->got_section()->gp_offset(got_offset, object);
12175 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12176 this->calculate_only_,
12177 &this->calculated_value_);
12180 case elfcpp::R_MIPS_TLS_LDM:
12181 case elfcpp::R_MIPS16_TLS_LDM:
12182 case elfcpp::R_MICROMIPS_TLS_LDM:
12183 // Relocate the field with the offset of the GOT entry for
12184 // the module index.
12185 got_offset = target->got_section()->tls_ldm_offset(object);
12186 gp_offset = target->got_section()->gp_offset(got_offset, object);
12187 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12188 this->calculate_only_,
12189 &this->calculated_value_);
12192 case elfcpp::R_MIPS_GOT_PAGE:
12193 case elfcpp::R_MICROMIPS_GOT_PAGE:
12194 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12195 r_addend, extract_addend,
12196 this->calculate_only_,
12197 &this->calculated_value_);
12200 case elfcpp::R_MIPS_GOT_OFST:
12201 case elfcpp::R_MICROMIPS_GOT_OFST:
12202 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12203 r_addend, extract_addend,
12204 local, this->calculate_only_,
12205 &this->calculated_value_);
12208 case elfcpp::R_MIPS_JALR:
12209 case elfcpp::R_MICROMIPS_JALR:
12210 // This relocation is only a hint. In some cases, we optimize
12211 // it into a bal instruction. But we don't try to optimize
12212 // when the symbol does not resolve locally.
12214 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12215 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12216 r_addend, extract_addend,
12217 cross_mode_jump, r_types[i],
12218 target->jalr_to_bal(),
12220 this->calculate_only_,
12221 &this->calculated_value_);
12224 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12225 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12226 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12227 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12228 elfcpp::DTP_OFFSET, r_addend,
12230 this->calculate_only_,
12231 &this->calculated_value_);
12233 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12234 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12235 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12236 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12237 elfcpp::DTP_OFFSET, r_addend,
12239 this->calculate_only_,
12240 &this->calculated_value_);
12242 case elfcpp::R_MIPS_TLS_DTPREL32:
12243 case elfcpp::R_MIPS_TLS_DTPREL64:
12244 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12245 elfcpp::DTP_OFFSET, r_addend,
12247 this->calculate_only_,
12248 &this->calculated_value_);
12250 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12251 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12252 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12253 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12254 elfcpp::TP_OFFSET, r_addend,
12256 this->calculate_only_,
12257 &this->calculated_value_);
12259 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12260 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12261 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12262 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12263 elfcpp::TP_OFFSET, r_addend,
12265 this->calculate_only_,
12266 &this->calculated_value_);
12268 case elfcpp::R_MIPS_TLS_TPREL32:
12269 case elfcpp::R_MIPS_TLS_TPREL64:
12270 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12271 elfcpp::TP_OFFSET, r_addend,
12273 this->calculate_only_,
12274 &this->calculated_value_);
12276 case elfcpp::R_MIPS_SUB:
12277 case elfcpp::R_MICROMIPS_SUB:
12278 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12280 this->calculate_only_,
12281 &this->calculated_value_);
12283 case elfcpp::R_MIPS_HIGHER:
12284 case elfcpp::R_MICROMIPS_HIGHER:
12285 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12287 this->calculate_only_,
12288 &this->calculated_value_);
12290 case elfcpp::R_MIPS_HIGHEST:
12291 case elfcpp::R_MICROMIPS_HIGHEST:
12292 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12293 r_addend, extract_addend,
12294 this->calculate_only_,
12295 &this->calculated_value_);
12298 gold_error_at_location(relinfo, relnum, r_offset,
12299 _("unsupported reloc %u"), r_types[i]);
12303 if (update_got_entry)
12305 Mips_output_data_got<size, big_endian>* got = target->got_section();
12306 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12307 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12308 psymval->value(object, 0));
12310 got->update_got_entry(got_offset, psymval->value(object, 0));
12314 bool jal_shuffle = jal_reloc(r_type);
12315 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12317 // Report any errors.
12318 switch (reloc_status)
12320 case Reloc_funcs::STATUS_OKAY:
12322 case Reloc_funcs::STATUS_OVERFLOW:
12324 gold_error_at_location(relinfo, relnum, r_offset,
12325 _("relocation overflow: "
12326 "%u against local symbol %u in %s"),
12327 r_type, r_sym, object->name().c_str());
12328 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12329 gold_error_at_location(relinfo, relnum, r_offset,
12330 _("relocation overflow: "
12331 "%u against '%s' defined in %s"),
12332 r_type, gsym->demangled_name().c_str(),
12333 gsym->object()->name().c_str());
12335 gold_error_at_location(relinfo, relnum, r_offset,
12336 _("relocation overflow: %u against '%s'"),
12337 r_type, gsym->demangled_name().c_str());
12339 case Reloc_funcs::STATUS_BAD_RELOC:
12340 gold_error_at_location(relinfo, relnum, r_offset,
12341 _("unexpected opcode while processing relocation"));
12343 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12344 gold_error_at_location(relinfo, relnum, r_offset,
12345 _("unaligned PC-relative relocation"));
12348 gold_unreachable();
12354 // Get the Reference_flags for a particular relocation.
12356 template<int size, bool big_endian>
12358 Target_mips<size, big_endian>::Scan::get_reference_flags(
12359 unsigned int r_type)
12363 case elfcpp::R_MIPS_NONE:
12364 // No symbol reference.
12367 case elfcpp::R_MIPS_16:
12368 case elfcpp::R_MIPS_32:
12369 case elfcpp::R_MIPS_64:
12370 case elfcpp::R_MIPS_HI16:
12371 case elfcpp::R_MIPS_LO16:
12372 case elfcpp::R_MIPS_HIGHER:
12373 case elfcpp::R_MIPS_HIGHEST:
12374 case elfcpp::R_MIPS16_HI16:
12375 case elfcpp::R_MIPS16_LO16:
12376 case elfcpp::R_MICROMIPS_HI16:
12377 case elfcpp::R_MICROMIPS_LO16:
12378 case elfcpp::R_MICROMIPS_HIGHER:
12379 case elfcpp::R_MICROMIPS_HIGHEST:
12380 return Symbol::ABSOLUTE_REF;
12382 case elfcpp::R_MIPS_26:
12383 case elfcpp::R_MIPS16_26:
12384 case elfcpp::R_MICROMIPS_26_S1:
12385 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12387 case elfcpp::R_MIPS_PC18_S3:
12388 case elfcpp::R_MIPS_PC19_S2:
12389 case elfcpp::R_MIPS_PCHI16:
12390 case elfcpp::R_MIPS_PCLO16:
12391 case elfcpp::R_MIPS_GPREL32:
12392 case elfcpp::R_MIPS_GPREL16:
12393 case elfcpp::R_MIPS_REL32:
12394 case elfcpp::R_MIPS16_GPREL:
12395 return Symbol::RELATIVE_REF;
12397 case elfcpp::R_MIPS_PC16:
12398 case elfcpp::R_MIPS_PC32:
12399 case elfcpp::R_MIPS_PC21_S2:
12400 case elfcpp::R_MIPS_PC26_S2:
12401 case elfcpp::R_MIPS_JALR:
12402 case elfcpp::R_MICROMIPS_JALR:
12403 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12405 case elfcpp::R_MIPS_GOT16:
12406 case elfcpp::R_MIPS_CALL16:
12407 case elfcpp::R_MIPS_GOT_DISP:
12408 case elfcpp::R_MIPS_GOT_HI16:
12409 case elfcpp::R_MIPS_GOT_LO16:
12410 case elfcpp::R_MIPS_CALL_HI16:
12411 case elfcpp::R_MIPS_CALL_LO16:
12412 case elfcpp::R_MIPS_LITERAL:
12413 case elfcpp::R_MIPS_GOT_PAGE:
12414 case elfcpp::R_MIPS_GOT_OFST:
12415 case elfcpp::R_MIPS16_GOT16:
12416 case elfcpp::R_MIPS16_CALL16:
12417 case elfcpp::R_MICROMIPS_GOT16:
12418 case elfcpp::R_MICROMIPS_CALL16:
12419 case elfcpp::R_MICROMIPS_GOT_HI16:
12420 case elfcpp::R_MICROMIPS_GOT_LO16:
12421 case elfcpp::R_MICROMIPS_CALL_HI16:
12422 case elfcpp::R_MICROMIPS_CALL_LO16:
12423 case elfcpp::R_MIPS_EH:
12424 // Absolute in GOT.
12425 return Symbol::RELATIVE_REF;
12427 case elfcpp::R_MIPS_TLS_DTPMOD32:
12428 case elfcpp::R_MIPS_TLS_DTPREL32:
12429 case elfcpp::R_MIPS_TLS_DTPMOD64:
12430 case elfcpp::R_MIPS_TLS_DTPREL64:
12431 case elfcpp::R_MIPS_TLS_GD:
12432 case elfcpp::R_MIPS_TLS_LDM:
12433 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12434 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12435 case elfcpp::R_MIPS_TLS_GOTTPREL:
12436 case elfcpp::R_MIPS_TLS_TPREL32:
12437 case elfcpp::R_MIPS_TLS_TPREL64:
12438 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12439 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12440 case elfcpp::R_MIPS16_TLS_GD:
12441 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12442 case elfcpp::R_MICROMIPS_TLS_GD:
12443 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12444 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12445 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12446 return Symbol::TLS_REF;
12448 case elfcpp::R_MIPS_COPY:
12449 case elfcpp::R_MIPS_JUMP_SLOT:
12451 // Not expected. We will give an error later.
12456 // Report an unsupported relocation against a local symbol.
12458 template<int size, bool big_endian>
12460 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12461 Sized_relobj_file<size, big_endian>* object,
12462 unsigned int r_type)
12464 gold_error(_("%s: unsupported reloc %u against local symbol"),
12465 object->name().c_str(), r_type);
12468 // Report an unsupported relocation against a global symbol.
12470 template<int size, bool big_endian>
12472 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12473 Sized_relobj_file<size, big_endian>* object,
12474 unsigned int r_type,
12477 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12478 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12481 // Return printable name for ABI.
12482 template<int size, bool big_endian>
12484 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12486 switch (e_flags & elfcpp::EF_MIPS_ABI)
12489 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12491 else if (size == 64)
12495 case elfcpp::E_MIPS_ABI_O32:
12497 case elfcpp::E_MIPS_ABI_O64:
12499 case elfcpp::E_MIPS_ABI_EABI32:
12501 case elfcpp::E_MIPS_ABI_EABI64:
12504 return "unknown abi";
12508 template<int size, bool big_endian>
12510 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12512 switch (e_flags & elfcpp::EF_MIPS_MACH)
12514 case elfcpp::E_MIPS_MACH_3900:
12515 return "mips:3900";
12516 case elfcpp::E_MIPS_MACH_4010:
12517 return "mips:4010";
12518 case elfcpp::E_MIPS_MACH_4100:
12519 return "mips:4100";
12520 case elfcpp::E_MIPS_MACH_4111:
12521 return "mips:4111";
12522 case elfcpp::E_MIPS_MACH_4120:
12523 return "mips:4120";
12524 case elfcpp::E_MIPS_MACH_4650:
12525 return "mips:4650";
12526 case elfcpp::E_MIPS_MACH_5400:
12527 return "mips:5400";
12528 case elfcpp::E_MIPS_MACH_5500:
12529 return "mips:5500";
12530 case elfcpp::E_MIPS_MACH_5900:
12531 return "mips:5900";
12532 case elfcpp::E_MIPS_MACH_SB1:
12534 case elfcpp::E_MIPS_MACH_9000:
12535 return "mips:9000";
12536 case elfcpp::E_MIPS_MACH_LS2E:
12537 return "mips:loongson_2e";
12538 case elfcpp::E_MIPS_MACH_LS2F:
12539 return "mips:loongson_2f";
12540 case elfcpp::E_MIPS_MACH_LS3A:
12541 return "mips:loongson_3a";
12542 case elfcpp::E_MIPS_MACH_OCTEON:
12543 return "mips:octeon";
12544 case elfcpp::E_MIPS_MACH_OCTEON2:
12545 return "mips:octeon2";
12546 case elfcpp::E_MIPS_MACH_OCTEON3:
12547 return "mips:octeon3";
12548 case elfcpp::E_MIPS_MACH_XLR:
12551 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12554 case elfcpp::E_MIPS_ARCH_1:
12555 return "mips:3000";
12557 case elfcpp::E_MIPS_ARCH_2:
12558 return "mips:6000";
12560 case elfcpp::E_MIPS_ARCH_3:
12561 return "mips:4000";
12563 case elfcpp::E_MIPS_ARCH_4:
12564 return "mips:8000";
12566 case elfcpp::E_MIPS_ARCH_5:
12567 return "mips:mips5";
12569 case elfcpp::E_MIPS_ARCH_32:
12570 return "mips:isa32";
12572 case elfcpp::E_MIPS_ARCH_64:
12573 return "mips:isa64";
12575 case elfcpp::E_MIPS_ARCH_32R2:
12576 return "mips:isa32r2";
12578 case elfcpp::E_MIPS_ARCH_32R6:
12579 return "mips:isa32r6";
12581 case elfcpp::E_MIPS_ARCH_64R2:
12582 return "mips:isa64r2";
12584 case elfcpp::E_MIPS_ARCH_64R6:
12585 return "mips:isa64r6";
12588 return "unknown CPU";
12591 template<int size, bool big_endian>
12592 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12595 big_endian, // is_big_endian
12596 elfcpp::EM_MIPS, // machine_code
12597 true, // has_make_symbol
12598 false, // has_resolve
12599 false, // has_code_fill
12600 true, // is_default_stack_executable
12601 false, // can_icf_inline_merge_sections
12603 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12604 0x400000, // default_text_segment_address
12605 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12606 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12607 false, // isolate_execinstr
12608 0, // rosegment_gap
12609 elfcpp::SHN_UNDEF, // small_common_shndx
12610 elfcpp::SHN_UNDEF, // large_common_shndx
12611 0, // small_common_section_flags
12612 0, // large_common_section_flags
12613 NULL, // attributes_section
12614 NULL, // attributes_vendor
12615 "__start", // entry_symbol_name
12616 32, // hash_entry_size
12619 template<int size, bool big_endian>
12620 class Target_mips_nacl : public Target_mips<size, big_endian>
12624 : Target_mips<size, big_endian>(&mips_nacl_info)
12628 static const Target::Target_info mips_nacl_info;
12631 template<int size, bool big_endian>
12632 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12635 big_endian, // is_big_endian
12636 elfcpp::EM_MIPS, // machine_code
12637 true, // has_make_symbol
12638 false, // has_resolve
12639 false, // has_code_fill
12640 true, // is_default_stack_executable
12641 false, // can_icf_inline_merge_sections
12643 "/lib/ld.so.1", // dynamic_linker
12644 0x20000, // default_text_segment_address
12645 0x10000, // abi_pagesize (overridable by -z max-page-size)
12646 0x10000, // common_pagesize (overridable by -z common-page-size)
12647 true, // isolate_execinstr
12648 0x10000000, // rosegment_gap
12649 elfcpp::SHN_UNDEF, // small_common_shndx
12650 elfcpp::SHN_UNDEF, // large_common_shndx
12651 0, // small_common_section_flags
12652 0, // large_common_section_flags
12653 NULL, // attributes_section
12654 NULL, // attributes_vendor
12655 "_start", // entry_symbol_name
12656 32, // hash_entry_size
12659 // Target selector for Mips. Note this is never instantiated directly.
12660 // It's only used in Target_selector_mips_nacl, below.
12662 template<int size, bool big_endian>
12663 class Target_selector_mips : public Target_selector
12666 Target_selector_mips()
12667 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12669 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12670 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12672 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12673 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12676 Target* do_instantiate_target()
12677 { return new Target_mips<size, big_endian>(); }
12680 template<int size, bool big_endian>
12681 class Target_selector_mips_nacl
12682 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12683 Target_mips_nacl<size, big_endian> >
12686 Target_selector_mips_nacl()
12687 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12688 Target_mips_nacl<size, big_endian> >(
12689 // NaCl currently supports only MIPS32 little-endian.
12690 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12694 Target_selector_mips_nacl<32, true> target_selector_mips32;
12695 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12696 Target_selector_mips_nacl<64, true> target_selector_mips64;
12697 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12699 } // End anonymous namespace.