426817600ebb357f779f5c6d47bf305a4f1d8cf2
[external/binutils.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
71
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
74
75 template<int size>
76 class Mips_symbol;
77
78 template<int size, bool big_endian>
79 class Mips_got_info;
80
81 template<int size, bool big_endian>
82 class Mips_relobj;
83
84 class Mips16_stub_section_base;
85
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
88
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry.  Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache.  The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
95
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning.  We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
102
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values.  Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
106
107 enum Global_got_area
108 {
109   GGA_NORMAL = 0,
110   GGA_RELOC_ONLY = 1,
111   GGA_NONE = 2
112 };
113
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
119 {
120   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
121   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
122   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
123
124   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125   GOT_TYPE_STANDARD_MULTIGOT = 3,
126   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
128 };
129
130 // TLS type of GOT entry.
131 enum Got_tls_type
132 {
133   GOT_TLS_NONE = 0,
134   GOT_TLS_GD = 1,
135   GOT_TLS_LDM = 2,
136   GOT_TLS_IE = 4
137 };
138
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
141 {
142   RSS_UNDEF = 0,    // None - value is zero.
143   RSS_GP = 1,       // Value of GP.
144   RSS_GP0 = 2,      // Value of GP in object being relocated.
145   RSS_LOC = 3       // Address of location being relocated.
146 };
147
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
151 {
152   elfcpp::Elf_Xword section_flags = output_section->flags();
153   elfcpp::Elf_Word section_type = output_section->type();
154
155   if (section_type == elfcpp::SHT_NOBITS)
156     return false;
157
158   if (section_flags & elfcpp::SHF_WRITE)
159     return false;
160
161   return true;
162 }
163
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub.  See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170                            unsigned int r_type, bool target_is_16_bit_code)
171 {
172   // We specifically ignore branches and jumps from EF_PIC objects,
173   // where the onus is on the compiler or programmer to perform any
174   // necessary initialization of $25.  Sometimes such initialization
175   // is unnecessary; for example, -mno-shared functions do not use
176   // the incoming value of $25, and may therefore be called directly.
177   if (object->is_pic())
178     return false;
179
180   switch (r_type)
181     {
182     case elfcpp::R_MIPS_26:
183     case elfcpp::R_MIPS_PC16:
184     case elfcpp::R_MIPS_PC21_S2:
185     case elfcpp::R_MIPS_PC26_S2:
186     case elfcpp::R_MICROMIPS_26_S1:
187     case elfcpp::R_MICROMIPS_PC7_S1:
188     case elfcpp::R_MICROMIPS_PC10_S1:
189     case elfcpp::R_MICROMIPS_PC16_S1:
190     case elfcpp::R_MICROMIPS_PC23_S2:
191       return true;
192
193     case elfcpp::R_MIPS16_26:
194       return !target_is_16_bit_code;
195
196     default:
197       return false;
198     }
199 }
200
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid.  Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
209 {
210   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211                       && !sym->object()->is_dynamic()
212                       && !sym->is_undefined());
213
214   if (sym->is_defined() && def_regular)
215     {
216       Mips_relobj<size, big_endian>* object =
217         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
218
219       if ((object->is_pic() || sym->is_pic())
220           && (!sym->is_mips16()
221               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222         return true;
223     }
224   return false;
225 }
226
227 static inline bool
228 hi16_reloc(int r_type)
229 {
230   return (r_type == elfcpp::R_MIPS_HI16
231           || r_type == elfcpp::R_MIPS16_HI16
232           || r_type == elfcpp::R_MICROMIPS_HI16
233           || r_type == elfcpp::R_MIPS_PCHI16);
234 }
235
236 static inline bool
237 lo16_reloc(int r_type)
238 {
239   return (r_type == elfcpp::R_MIPS_LO16
240           || r_type == elfcpp::R_MIPS16_LO16
241           || r_type == elfcpp::R_MICROMIPS_LO16
242           || r_type == elfcpp::R_MIPS_PCLO16);
243 }
244
245 static inline bool
246 got16_reloc(unsigned int r_type)
247 {
248   return (r_type == elfcpp::R_MIPS_GOT16
249           || r_type == elfcpp::R_MIPS16_GOT16
250           || r_type == elfcpp::R_MICROMIPS_GOT16);
251 }
252
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
255 {
256   return (r_type == elfcpp::R_MIPS_CALL_LO16
257           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 }
259
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
262 {
263   return (r_type == elfcpp::R_MIPS_GOT_LO16
264           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 }
266
267 static inline bool
268 eh_reloc(unsigned int r_type)
269 {
270   return (r_type == elfcpp::R_MIPS_EH);
271 }
272
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
275 {
276   return (r_type == elfcpp::R_MIPS_GOT_DISP
277           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 }
279
280 static inline bool
281 got_page_reloc(unsigned int r_type)
282 {
283   return (r_type == elfcpp::R_MIPS_GOT_PAGE
284           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 }
286
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
289 {
290   return (r_type == elfcpp::R_MIPS_TLS_GD
291           || r_type == elfcpp::R_MIPS16_TLS_GD
292           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 }
294
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
297 {
298   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 }
302
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
305 {
306   return (r_type == elfcpp::R_MIPS_TLS_LDM
307           || r_type == elfcpp::R_MIPS16_TLS_LDM
308           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 }
310
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
313 {
314   return (r_type == elfcpp::R_MIPS16_26
315           || r_type == elfcpp::R_MIPS16_CALL16);
316 }
317
318 static inline bool
319 jal_reloc(unsigned int r_type)
320 {
321   return (r_type == elfcpp::R_MIPS_26
322           || r_type == elfcpp::R_MIPS16_26
323           || r_type == elfcpp::R_MICROMIPS_26_S1);
324 }
325
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
328 {
329   return (r_type == elfcpp::R_MICROMIPS_26_S1
330           || r_type == elfcpp::R_MICROMIPS_PC16_S1
331           || r_type == elfcpp::R_MICROMIPS_PC10_S1
332           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
333 }
334
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
338 {
339   switch (r_type)
340     {
341     case elfcpp::R_MIPS16_26:
342     case elfcpp::R_MIPS16_GPREL:
343     case elfcpp::R_MIPS16_GOT16:
344     case elfcpp::R_MIPS16_CALL16:
345     case elfcpp::R_MIPS16_HI16:
346     case elfcpp::R_MIPS16_LO16:
347     case elfcpp::R_MIPS16_TLS_GD:
348     case elfcpp::R_MIPS16_TLS_LDM:
349     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351     case elfcpp::R_MIPS16_TLS_GOTTPREL:
352     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354       return true;
355
356     default:
357       return false;
358     }
359 }
360
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
364 {
365   switch (r_type)
366     {
367     case elfcpp::R_MICROMIPS_26_S1:
368     case elfcpp::R_MICROMIPS_HI16:
369     case elfcpp::R_MICROMIPS_LO16:
370     case elfcpp::R_MICROMIPS_GPREL16:
371     case elfcpp::R_MICROMIPS_LITERAL:
372     case elfcpp::R_MICROMIPS_GOT16:
373     case elfcpp::R_MICROMIPS_PC7_S1:
374     case elfcpp::R_MICROMIPS_PC10_S1:
375     case elfcpp::R_MICROMIPS_PC16_S1:
376     case elfcpp::R_MICROMIPS_CALL16:
377     case elfcpp::R_MICROMIPS_GOT_DISP:
378     case elfcpp::R_MICROMIPS_GOT_PAGE:
379     case elfcpp::R_MICROMIPS_GOT_OFST:
380     case elfcpp::R_MICROMIPS_GOT_HI16:
381     case elfcpp::R_MICROMIPS_GOT_LO16:
382     case elfcpp::R_MICROMIPS_SUB:
383     case elfcpp::R_MICROMIPS_HIGHER:
384     case elfcpp::R_MICROMIPS_HIGHEST:
385     case elfcpp::R_MICROMIPS_CALL_HI16:
386     case elfcpp::R_MICROMIPS_CALL_LO16:
387     case elfcpp::R_MICROMIPS_SCN_DISP:
388     case elfcpp::R_MICROMIPS_JALR:
389     case elfcpp::R_MICROMIPS_HI0_LO16:
390     case elfcpp::R_MICROMIPS_TLS_GD:
391     case elfcpp::R_MICROMIPS_TLS_LDM:
392     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397     case elfcpp::R_MICROMIPS_GPREL7_S2:
398     case elfcpp::R_MICROMIPS_PC23_S2:
399       return true;
400
401     default:
402       return false;
403     }
404 }
405
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 {
409   switch (high_reloc)
410     {
411     case elfcpp::R_MIPS_HI16:
412     case elfcpp::R_MIPS_GOT16:
413       return lo16_reloc == elfcpp::R_MIPS_LO16;
414     case elfcpp::R_MIPS_PCHI16:
415       return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416     case elfcpp::R_MIPS16_HI16:
417     case elfcpp::R_MIPS16_GOT16:
418       return lo16_reloc == elfcpp::R_MIPS16_LO16;
419     case elfcpp::R_MICROMIPS_HI16:
420     case elfcpp::R_MICROMIPS_GOT16:
421       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422     default:
423       return false;
424     }
425 }
426
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
429 //
430 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
433 //          (sym != NULL, symndx == -1)
434 //    (3) a TLS LDM slot (there's only one of these per GOT.)
435 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
436
437 template<int size, bool big_endian>
438 class Mips_got_entry
439 {
440   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
441
442  public:
443   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444                  Mips_address addend, unsigned char tls_type,
445                  unsigned int shndx, bool is_section_symbol)
446     : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447       is_section_symbol_(is_section_symbol), shndx_(shndx)
448   { this->d.object = object; }
449
450   Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451     : addend_(0), symndx_(-1U), tls_type_(tls_type),
452       is_section_symbol_(false), shndx_(-1U)
453   { this->d.sym = sym; }
454
455   // Return whether this entry is for a local symbol.
456   bool
457   is_for_local_symbol() const
458   { return this->symndx_ != -1U; }
459
460   // Return whether this entry is for a global symbol.
461   bool
462   is_for_global_symbol() const
463   { return this->symndx_ == -1U; }
464
465   // Return the hash of this entry.
466   size_t
467   hash() const
468   {
469     if (this->tls_type_ == GOT_TLS_LDM)
470       return this->symndx_ + (1 << 18);
471
472     size_t name_hash_value = gold::string_hash<char>(
473         (this->symndx_ != -1U)
474          ? this->d.object->name().c_str()
475          : this->d.sym->name());
476     size_t addend = this->addend_;
477     return name_hash_value ^ this->symndx_ ^ addend;
478   }
479
480   // Return whether this entry is equal to OTHER.
481   bool
482   equals(Mips_got_entry<size, big_endian>* other) const
483   {
484     if (this->tls_type_ == GOT_TLS_LDM)
485       return true;
486
487     return ((this->tls_type_ == other->tls_type_)
488              && (this->symndx_ == other->symndx_)
489              && ((this->symndx_ != -1U)
490                   ? (this->d.object == other->d.object)
491                   : (this->d.sym == other->d.sym))
492              && (this->addend_ == other->addend_));
493   }
494
495   // Return input object that needs this GOT entry.
496   Mips_relobj<size, big_endian>*
497   object() const
498   {
499     gold_assert(this->symndx_ != -1U);
500     return this->d.object;
501   }
502
503   // Return local symbol index for local GOT entries.
504   unsigned int
505   symndx() const
506   {
507     gold_assert(this->symndx_ != -1U);
508     return this->symndx_;
509   }
510
511   // Return the relocation addend for local GOT entries.
512   Mips_address
513   addend() const
514   { return this->addend_; }
515
516   // Return global symbol for global GOT entries.
517   Mips_symbol<size>*
518   sym() const
519   {
520     gold_assert(this->symndx_ == -1U);
521     return this->d.sym;
522   }
523
524   // Return whether this is a TLS GOT entry.
525   bool
526   is_tls_entry() const
527   { return this->tls_type_ != GOT_TLS_NONE; }
528
529   // Return TLS type of this GOT entry.
530   unsigned char
531   tls_type() const
532   { return this->tls_type_; }
533
534   // Return section index of the local symbol for local GOT entries.
535   unsigned int
536   shndx() const
537   { return this->shndx_; }
538
539   // Return whether this is a STT_SECTION symbol.
540   bool
541   is_section_symbol() const
542   { return this->is_section_symbol_; }
543
544  private:
545   // The addend.
546   Mips_address addend_;
547
548   // The index of the symbol if we have a local symbol; -1 otherwise.
549   unsigned int symndx_;
550
551   union
552   {
553     // The input object for local symbols that needs the GOT entry.
554     Mips_relobj<size, big_endian>* object;
555     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
556     // symbol's entry is in the local area if mips_sym->global_got_area is
557     // GGA_NONE, otherwise it is in the global area.
558     Mips_symbol<size>* sym;
559   } d;
560
561   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
562   // symbol entry with r_symndx == 0.
563   unsigned char tls_type_;
564
565   // Whether this is a STT_SECTION symbol.
566   bool is_section_symbol_;
567
568   // For local GOT entries, section index of the local symbol.
569   unsigned int shndx_;
570 };
571
572 // Hash for Mips_got_entry.
573
574 template<int size, bool big_endian>
575 class Mips_got_entry_hash
576 {
577  public:
578   size_t
579   operator()(Mips_got_entry<size, big_endian>* entry) const
580   { return entry->hash(); }
581 };
582
583 // Equality for Mips_got_entry.
584
585 template<int size, bool big_endian>
586 class Mips_got_entry_eq
587 {
588  public:
589   bool
590   operator()(Mips_got_entry<size, big_endian>* e1,
591              Mips_got_entry<size, big_endian>* e2) const
592   { return e1->equals(e2); }
593 };
594
595 // Hash for Mips_symbol.
596
597 template<int size>
598 class Mips_symbol_hash
599 {
600  public:
601   size_t
602   operator()(Mips_symbol<size>* sym) const
603   { return sym->hash(); }
604 };
605
606 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
607 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
608 // increasing MIN_ADDEND.
609
610 struct Got_page_range
611 {
612   Got_page_range()
613     : next(NULL), min_addend(0), max_addend(0)
614   { }
615
616   Got_page_range* next;
617   int min_addend;
618   int max_addend;
619
620   // Return the maximum number of GOT page entries required.
621   int
622   get_max_pages()
623   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
624 };
625
626 // Got_page_entry.  This class describes the range of addends that are applied
627 // to page relocations against a given symbol.
628
629 struct Got_page_entry
630 {
631   Got_page_entry()
632     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
633   { }
634
635   Got_page_entry(Object* object_, unsigned int symndx_)
636     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
637   { }
638
639   // The input object that needs the GOT page entry.
640   Object* object;
641   // The index of the symbol, as stored in the relocation r_info.
642   unsigned int symndx;
643   // The ranges for this page entry.
644   Got_page_range* ranges;
645   // The maximum number of page entries needed for RANGES.
646   unsigned int num_pages;
647 };
648
649 // Hash for Got_page_entry.
650
651 struct Got_page_entry_hash
652 {
653   size_t
654   operator()(Got_page_entry* entry) const
655   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
656 };
657
658 // Equality for Got_page_entry.
659
660 struct Got_page_entry_eq
661 {
662   bool
663   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
664   {
665     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
666   }
667 };
668
669 // This class is used to hold .got information when linking.
670
671 template<int size, bool big_endian>
672 class Mips_got_info
673 {
674   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
676     Reloc_section;
677   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
678
679   // Unordered set of GOT entries.
680   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681       Mips_got_entry_hash<size, big_endian>,
682       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
683
684   // Unordered set of GOT page entries.
685   typedef Unordered_set<Got_page_entry*,
686       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
687
688   // Unordered set of global GOT entries.
689   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690       Global_got_entry_set;
691
692  public:
693   Mips_got_info()
694     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698       offset_(0)
699   { }
700
701   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
703   void
704   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705                           unsigned int symndx, Mips_address addend,
706                           unsigned int r_type, unsigned int shndx,
707                           bool is_section_symbol);
708
709   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710   // in OBJECT.  FOR_CALL is true if the caller is only interested in
711   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
712   // relocation.
713   void
714   record_global_got_symbol(Mips_symbol<size>* mips_sym,
715                            Mips_relobj<size, big_endian>* object,
716                            unsigned int r_type, bool dyn_reloc, bool for_call);
717
718   // Add ENTRY to master GOT and to OBJECT's GOT.
719   void
720   record_got_entry(Mips_got_entry<size, big_endian>* entry,
721                    Mips_relobj<size, big_endian>* object);
722
723   // Record that OBJECT has a page relocation against symbol SYMNDX and
724   // that ADDEND is the addend for that relocation.
725   void
726   record_got_page_entry(Mips_relobj<size, big_endian>* object,
727                         unsigned int symndx, int addend);
728
729   // Create all entries that should be in the local part of the GOT.
730   void
731   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
732
733   // Create GOT page entries.
734   void
735   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
736
737   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
738   void
739   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740                      unsigned int non_reloc_only_global_gotno);
741
742   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
743   void
744   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
745
746   // Create TLS GOT entries.
747   void
748   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
749
750   // Decide whether the symbol needs an entry in the global part of the primary
751   // GOT, setting global_got_area accordingly.  Count the number of global
752   // symbols that are in the primary GOT only because they have dynamic
753   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
754   void
755   count_got_symbols(Symbol_table* symtab);
756
757   // Return the offset of GOT page entry for VALUE.
758   unsigned int
759   get_got_page_offset(Mips_address value,
760                       Mips_output_data_got<size, big_endian>* got);
761
762   // Count the number of GOT entries required.
763   void
764   count_got_entries();
765
766   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
767   void
768   count_got_entry(Mips_got_entry<size, big_endian>* entry);
769
770   // Add FROM's GOT entries.
771   void
772   add_got_entries(Mips_got_info<size, big_endian>* from);
773
774   // Add FROM's GOT page entries.
775   void
776   add_got_page_entries(Mips_got_info<size, big_endian>* from);
777
778   // Return GOT size.
779   unsigned int
780   got_size() const
781   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782              + this->tls_gotno_) * size/8);
783   }
784
785   // Return the number of local GOT entries.
786   unsigned int
787   local_gotno() const
788   { return this->local_gotno_; }
789
790   // Return the maximum number of page GOT entries needed.
791   unsigned int
792   page_gotno() const
793   { return this->page_gotno_; }
794
795   // Return the number of global GOT entries.
796   unsigned int
797   global_gotno() const
798   { return this->global_gotno_; }
799
800   // Set the number of global GOT entries.
801   void
802   set_global_gotno(unsigned int global_gotno)
803   { this->global_gotno_ = global_gotno; }
804
805   // Return the number of GGA_RELOC_ONLY global GOT entries.
806   unsigned int
807   reloc_only_gotno() const
808   { return this->reloc_only_gotno_; }
809
810   // Return the number of TLS GOT entries.
811   unsigned int
812   tls_gotno() const
813   { return this->tls_gotno_; }
814
815   // Return the GOT type for this GOT.  Used for multi-GOT links only.
816   unsigned int
817   multigot_got_type(unsigned int got_type) const
818   {
819     switch (got_type)
820       {
821       case GOT_TYPE_STANDARD:
822         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823       case GOT_TYPE_TLS_OFFSET:
824         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825       case GOT_TYPE_TLS_PAIR:
826         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
827       default:
828         gold_unreachable();
829       }
830   }
831
832   // Remove lazy-binding stubs for global symbols in this GOT.
833   void
834   remove_lazy_stubs(Target_mips<size, big_endian>* target);
835
836   // Return offset of this GOT from the start of .got section.
837   unsigned int
838   offset() const
839   { return this->offset_; }
840
841   // Set offset of this GOT from the start of .got section.
842   void
843   set_offset(unsigned int offset)
844   { this->offset_ = offset; }
845
846   // Set index of this GOT in multi-GOT links.
847   void
848   set_index(unsigned int index)
849   { this->index_ = index; }
850
851   // Return next GOT in multi-GOT links.
852   Mips_got_info<size, big_endian>*
853   next() const
854   { return this->next_; }
855
856   // Set next GOT in multi-GOT links.
857   void
858   set_next(Mips_got_info<size, big_endian>* next)
859   { this->next_ = next; }
860
861   // Return the offset of TLS LDM entry for this GOT.
862   unsigned int
863   tls_ldm_offset() const
864   { return this->tls_ldm_offset_; }
865
866   // Set the offset of TLS LDM entry for this GOT.
867   void
868   set_tls_ldm_offset(unsigned int tls_ldm_offset)
869   { this->tls_ldm_offset_ = tls_ldm_offset; }
870
871   Global_got_entry_set&
872   global_got_symbols()
873   { return this->global_got_symbols_; }
874
875   // Return the GOT_TLS_* type required by relocation type R_TYPE.
876   static int
877   mips_elf_reloc_tls_type(unsigned int r_type)
878   {
879     if (tls_gd_reloc(r_type))
880       return GOT_TLS_GD;
881
882     if (tls_ldm_reloc(r_type))
883       return GOT_TLS_LDM;
884
885     if (tls_gottprel_reloc(r_type))
886       return GOT_TLS_IE;
887
888     return GOT_TLS_NONE;
889   }
890
891   // Return the number of GOT slots needed for GOT TLS type TYPE.
892   static int
893   mips_tls_got_entries(unsigned int type)
894   {
895     switch (type)
896       {
897       case GOT_TLS_GD:
898       case GOT_TLS_LDM:
899         return 2;
900
901       case GOT_TLS_IE:
902         return 1;
903
904       case GOT_TLS_NONE:
905         return 0;
906
907       default:
908         gold_unreachable();
909       }
910   }
911
912  private:
913   // The number of local GOT entries.
914   unsigned int local_gotno_;
915   // The maximum number of page GOT entries needed.
916   unsigned int page_gotno_;
917   // The number of global GOT entries.
918   unsigned int global_gotno_;
919   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920   unsigned int reloc_only_gotno_;
921   // The number of TLS GOT entries.
922   unsigned int tls_gotno_;
923   // The offset of TLS LDM entry for this GOT.
924   unsigned int tls_ldm_offset_;
925   // All symbols that have global GOT entry.
926   Global_got_entry_set global_got_symbols_;
927   // A hash table holding GOT entries.
928   Got_entry_set got_entries_;
929   // A hash table of GOT page entries.
930   Got_page_entry_set got_page_entries_;
931   // The offset of first GOT page entry for this GOT.
932   unsigned int got_page_offset_start_;
933   // The offset of next available GOT page entry for this GOT.
934   unsigned int got_page_offset_next_;
935   // A hash table that maps GOT page entry value to the GOT offset where
936   // the entry is located.
937   Got_page_offsets got_page_offsets_;
938   // In multi-GOT links, a pointer to the next GOT.
939   Mips_got_info<size, big_endian>* next_;
940   // Index of this GOT in multi-GOT links.
941   unsigned int index_;
942   // The offset of this GOT in multi-GOT links.
943   unsigned int offset_;
944 };
945
946 // This is a helper class used during relocation scan.  It records GOT16 addend.
947
948 template<int size, bool big_endian>
949 struct got16_addend
950 {
951   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
952
953   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955                Mips_address _addend)
956     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957       addend(_addend)
958   { }
959
960   const Sized_relobj_file<size, big_endian>* object;
961   unsigned int shndx;
962   unsigned int r_type;
963   unsigned int r_sym;
964   Mips_address addend;
965 };
966
967 // .MIPS.abiflags section content
968
969 template<bool big_endian>
970 struct Mips_abiflags
971 {
972   typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
975
976   Mips_abiflags()
977     : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978       cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
979   { }
980
981   // Version of flags structure.
982   Valtype16 version;
983   // The level of the ISA: 1-5, 32, 64.
984   Valtype8 isa_level;
985   // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
986   Valtype8 isa_rev;
987   // The size of general purpose registers.
988   Valtype8 gpr_size;
989   // The size of co-processor 1 registers.
990   Valtype8 cpr1_size;
991   // The size of co-processor 2 registers.
992   Valtype8 cpr2_size;
993   // The floating-point ABI.
994   Valtype8 fp_abi;
995   // Processor-specific extension.
996   Valtype32 isa_ext;
997   // Mask of ASEs used.
998   Valtype32 ases;
999   // Mask of general flags.
1000   Valtype32 flags1;
1001   Valtype32 flags2;
1002 };
1003
1004 // Mips_symbol class.  Holds additional symbol information needed for Mips.
1005
1006 template<int size>
1007 class Mips_symbol : public Sized_symbol<size>
1008 {
1009  public:
1010   Mips_symbol()
1011     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1018   { }
1019
1020   // Return whether this is a MIPS16 symbol.
1021   bool
1022   is_mips16() const
1023   {
1024     // (st_other & STO_MIPS16) == STO_MIPS16
1025     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026             == elfcpp::STO_MIPS16 >> 2);
1027   }
1028
1029   // Return whether this is a microMIPS symbol.
1030   bool
1031   is_micromips() const
1032   {
1033     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035             == elfcpp::STO_MICROMIPS >> 2);
1036   }
1037
1038   // Return whether the symbol needs MIPS16 fn_stub.
1039   bool
1040   need_fn_stub() const
1041   { return this->need_fn_stub_; }
1042
1043   // Set that the symbol needs MIPS16 fn_stub.
1044   void
1045   set_need_fn_stub()
1046   { this->need_fn_stub_ = true; }
1047
1048   // Return whether this symbol is referenced by branch relocations from
1049   // any non-PIC input file.
1050   bool
1051   has_nonpic_branches() const
1052   { return this->has_nonpic_branches_; }
1053
1054   // Set that this symbol is referenced by branch relocations from
1055   // any non-PIC input file.
1056   void
1057   set_has_nonpic_branches()
1058   { this->has_nonpic_branches_ = true; }
1059
1060   // Return the offset of the la25 stub for this symbol from the start of the
1061   // la25 stub section.
1062   unsigned int
1063   la25_stub_offset() const
1064   { return this->la25_stub_offset_; }
1065
1066   // Set the offset of the la25 stub for this symbol from the start of the
1067   // la25 stub section.
1068   void
1069   set_la25_stub_offset(unsigned int offset)
1070   { this->la25_stub_offset_ = offset; }
1071
1072   // Return whether the symbol has la25 stub.  This is true if this symbol is
1073   // for a PIC function, and there are non-PIC branches and jumps to it.
1074   bool
1075   has_la25_stub() const
1076   { return this->la25_stub_offset_ != -1U; }
1077
1078   // Return whether there is a relocation against this symbol that must be
1079   // resolved by the static linker (that is, the relocation cannot possibly
1080   // be made dynamic).
1081   bool
1082   has_static_relocs() const
1083   { return this->has_static_relocs_; }
1084
1085   // Set that there is a relocation against this symbol that must be resolved
1086   // by the static linker (that is, the relocation cannot possibly be made
1087   // dynamic).
1088   void
1089   set_has_static_relocs()
1090   { this->has_static_relocs_ = true; }
1091
1092   // Return whether we must not create a lazy-binding stub for this symbol.
1093   bool
1094   no_lazy_stub() const
1095   { return this->no_lazy_stub_; }
1096
1097   // Set that we must not create a lazy-binding stub for this symbol.
1098   void
1099   set_no_lazy_stub()
1100   { this->no_lazy_stub_ = true; }
1101
1102   // Return the offset of the lazy-binding stub for this symbol from the start
1103   // of .MIPS.stubs section.
1104   unsigned int
1105   lazy_stub_offset() const
1106   { return this->lazy_stub_offset_; }
1107
1108   // Set the offset of the lazy-binding stub for this symbol from the start
1109   // of .MIPS.stubs section.
1110   void
1111   set_lazy_stub_offset(unsigned int offset)
1112   { this->lazy_stub_offset_ = offset; }
1113
1114   // Return whether there are any relocations for this symbol where
1115   // pointer equality matters.
1116   bool
1117   pointer_equality_needed() const
1118   { return this->pointer_equality_needed_; }
1119
1120   // Set that there are relocations for this symbol where pointer equality
1121   // matters.
1122   void
1123   set_pointer_equality_needed()
1124   { this->pointer_equality_needed_ = true; }
1125
1126   // Return global GOT area where this symbol in located.
1127   Global_got_area
1128   global_got_area() const
1129   { return this->global_got_area_; }
1130
1131   // Set global GOT area where this symbol in located.
1132   void
1133   set_global_got_area(Global_got_area global_got_area)
1134   { this->global_got_area_ = global_got_area; }
1135
1136   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1137   // returns the offset from the start of .got section to the first GOT entry
1138   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1139   // in more than one GOT.
1140   unsigned int
1141   global_gotoffset() const
1142   { return this->global_gotoffset_; }
1143
1144   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1145   // the symbol can have entry in more than one GOT.  This method will set
1146   // the offset only if it is less than current offset.
1147   void
1148   set_global_gotoffset(unsigned int offset)
1149   {
1150     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151       this->global_gotoffset_ = offset;
1152   }
1153
1154   // Return whether all GOT relocations for this symbol are for calls.
1155   bool
1156   got_only_for_calls() const
1157   { return this->got_only_for_calls_; }
1158
1159   // Set that there is a GOT relocation for this symbol that is not for call.
1160   void
1161   set_got_not_only_for_calls()
1162   { this->got_only_for_calls_ = false; }
1163
1164   // Return whether this is a PIC symbol.
1165   bool
1166   is_pic() const
1167   {
1168     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170             == (elfcpp::STO_MIPS_PIC >> 2));
1171   }
1172
1173   // Set the flag in st_other field that marks this symbol as PIC.
1174   void
1175   set_pic()
1176   {
1177     if (this->is_mips16())
1178       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179       this->set_nonvis((this->nonvis()
1180                         & ~((elfcpp::STO_MIPS16 >> 2)
1181                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182                        | (elfcpp::STO_MIPS_PIC >> 2));
1183     else
1184       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186                        | (elfcpp::STO_MIPS_PIC >> 2));
1187   }
1188
1189   // Set the flag in st_other field that marks this symbol as PLT.
1190   void
1191   set_mips_plt()
1192   {
1193     if (this->is_mips16())
1194       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195       this->set_nonvis((this->nonvis()
1196                         & ((elfcpp::STO_MIPS16 >> 2)
1197                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198                        | (elfcpp::STO_MIPS_PLT >> 2));
1199
1200     else
1201       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203                        | (elfcpp::STO_MIPS_PLT >> 2));
1204   }
1205
1206   // Downcast a base pointer to a Mips_symbol pointer.
1207   static Mips_symbol<size>*
1208   as_mips_sym(Symbol* sym)
1209   { return static_cast<Mips_symbol<size>*>(sym); }
1210
1211   // Downcast a base pointer to a Mips_symbol pointer.
1212   static const Mips_symbol<size>*
1213   as_mips_sym(const Symbol* sym)
1214   { return static_cast<const Mips_symbol<size>*>(sym); }
1215
1216   // Return whether the symbol has lazy-binding stub.
1217   bool
1218   has_lazy_stub() const
1219   { return this->has_lazy_stub_; }
1220
1221   // Set whether the symbol has lazy-binding stub.
1222   void
1223   set_has_lazy_stub(bool has_lazy_stub)
1224   { this->has_lazy_stub_ = has_lazy_stub; }
1225
1226   // Return whether the symbol needs a standard PLT entry.
1227   bool
1228   needs_mips_plt() const
1229   { return this->needs_mips_plt_; }
1230
1231   // Set whether the symbol needs a standard PLT entry.
1232   void
1233   set_needs_mips_plt(bool needs_mips_plt)
1234   { this->needs_mips_plt_ = needs_mips_plt; }
1235
1236   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1237   // entry.
1238   bool
1239   needs_comp_plt() const
1240   { return this->needs_comp_plt_; }
1241
1242   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1243   void
1244   set_needs_comp_plt(bool needs_comp_plt)
1245   { this->needs_comp_plt_ = needs_comp_plt; }
1246
1247   // Return standard PLT entry offset, or -1 if none.
1248   unsigned int
1249   mips_plt_offset() const
1250   { return this->mips_plt_offset_; }
1251
1252   // Set standard PLT entry offset.
1253   void
1254   set_mips_plt_offset(unsigned int mips_plt_offset)
1255   { this->mips_plt_offset_ = mips_plt_offset; }
1256
1257   // Return whether the symbol has standard PLT entry.
1258   bool
1259   has_mips_plt_offset() const
1260   { return this->mips_plt_offset_ != -1U; }
1261
1262   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1263   unsigned int
1264   comp_plt_offset() const
1265   { return this->comp_plt_offset_; }
1266
1267   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1268   void
1269   set_comp_plt_offset(unsigned int comp_plt_offset)
1270   { this->comp_plt_offset_ = comp_plt_offset; }
1271
1272   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1273   bool
1274   has_comp_plt_offset() const
1275   { return this->comp_plt_offset_ != -1U; }
1276
1277   // Return MIPS16 fn stub for a symbol.
1278   template<bool big_endian>
1279   Mips16_stub_section<size, big_endian>*
1280   get_mips16_fn_stub() const
1281   {
1282     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1283   }
1284
1285   // Set MIPS16 fn stub for a symbol.
1286   void
1287   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288   { this->mips16_fn_stub_ = stub; }
1289
1290   // Return whether symbol has MIPS16 fn stub.
1291   bool
1292   has_mips16_fn_stub() const
1293   { return this->mips16_fn_stub_ != NULL; }
1294
1295   // Return MIPS16 call stub for a symbol.
1296   template<bool big_endian>
1297   Mips16_stub_section<size, big_endian>*
1298   get_mips16_call_stub() const
1299   {
1300     return static_cast<Mips16_stub_section<size, big_endian>*>(
1301       mips16_call_stub_);
1302   }
1303
1304   // Set MIPS16 call stub for a symbol.
1305   void
1306   set_mips16_call_stub(Mips16_stub_section_base* stub)
1307   { this->mips16_call_stub_ = stub; }
1308
1309   // Return whether symbol has MIPS16 call stub.
1310   bool
1311   has_mips16_call_stub() const
1312   { return this->mips16_call_stub_ != NULL; }
1313
1314   // Return MIPS16 call_fp stub for a symbol.
1315   template<bool big_endian>
1316   Mips16_stub_section<size, big_endian>*
1317   get_mips16_call_fp_stub() const
1318   {
1319     return static_cast<Mips16_stub_section<size, big_endian>*>(
1320       mips16_call_fp_stub_);
1321   }
1322
1323   // Set MIPS16 call_fp stub for a symbol.
1324   void
1325   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326   { this->mips16_call_fp_stub_ = stub; }
1327
1328   // Return whether symbol has MIPS16 call_fp stub.
1329   bool
1330   has_mips16_call_fp_stub() const
1331   { return this->mips16_call_fp_stub_ != NULL; }
1332
1333   bool
1334   get_applied_secondary_got_fixup() const
1335   { return applied_secondary_got_fixup_; }
1336
1337   void
1338   set_applied_secondary_got_fixup()
1339   { this->applied_secondary_got_fixup_ = true; }
1340
1341   // Return the hash of this symbol.
1342   size_t
1343   hash() const
1344   {
1345     return gold::string_hash<char>(this->name());
1346   }
1347
1348  private:
1349   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1350   // appears in any relocs other than a 16 bit call.
1351   bool need_fn_stub_;
1352
1353   // True if this symbol is referenced by branch relocations from
1354   // any non-PIC input file.  This is used to determine whether an
1355   // la25 stub is required.
1356   bool has_nonpic_branches_;
1357
1358   // The offset of the la25 stub for this symbol from the start of the
1359   // la25 stub section.
1360   unsigned int la25_stub_offset_;
1361
1362   // True if there is a relocation against this symbol that must be
1363   // resolved by the static linker (that is, the relocation cannot
1364   // possibly be made dynamic).
1365   bool has_static_relocs_;
1366
1367   // Whether we must not create a lazy-binding stub for this symbol.
1368   // This is true if the symbol has relocations related to taking the
1369   // function's address.
1370   bool no_lazy_stub_;
1371
1372   // The offset of the lazy-binding stub for this symbol from the start of
1373   // .MIPS.stubs section.
1374   unsigned int lazy_stub_offset_;
1375
1376   // True if there are any relocations for this symbol where pointer equality
1377   // matters.
1378   bool pointer_equality_needed_;
1379
1380   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381   // in the global part of the GOT.
1382   Global_got_area global_got_area_;
1383
1384   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1385   // from the start of .got section to the first GOT entry for the symbol.
1386   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387   unsigned int global_gotoffset_;
1388
1389   // Whether all GOT relocations for this symbol are for calls.
1390   bool got_only_for_calls_;
1391   // Whether the symbol has lazy-binding stub.
1392   bool has_lazy_stub_;
1393   // Whether the symbol needs a standard PLT entry.
1394   bool needs_mips_plt_;
1395   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396   bool needs_comp_plt_;
1397   // Standard PLT entry offset, or -1 if none.
1398   unsigned int mips_plt_offset_;
1399   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400   unsigned int comp_plt_offset_;
1401   // MIPS16 fn stub for a symbol.
1402   Mips16_stub_section_base* mips16_fn_stub_;
1403   // MIPS16 call stub for a symbol.
1404   Mips16_stub_section_base* mips16_call_stub_;
1405   // MIPS16 call_fp stub for a symbol.
1406   Mips16_stub_section_base* mips16_call_fp_stub_;
1407
1408   bool applied_secondary_got_fixup_;
1409 };
1410
1411 // Mips16_stub_section class.
1412
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1415
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead.  If no 32 bit
1420 // function calls FNNAME, the stub should be discarded.  We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1424
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead.  If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1431
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs.  These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call.  (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1440
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally.  Instead, the relocation
1443 // information will indicate which symbol the section is for.
1444
1445 // We record any stubs that we find in the symbol table.
1446
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1448
1449 class Mips16_stub_section_base { };
1450
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1453 {
1454   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1455
1456  public:
1457   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459       found_r_mips_none_(false)
1460   {
1461     gold_assert(object->is_mips16_fn_stub_section(shndx)
1462                 || object->is_mips16_call_stub_section(shndx)
1463                 || object->is_mips16_call_fp_stub_section(shndx));
1464   }
1465
1466   // Return the object of this stub section.
1467   Mips_relobj<size, big_endian>*
1468   object() const
1469   { return this->object_; }
1470
1471   // Return the size of a section.
1472   uint64_t
1473   section_size() const
1474   { return this->object_->section_size(this->shndx_); }
1475
1476   // Return section index of this stub section.
1477   unsigned int
1478   shndx() const
1479   { return this->shndx_; }
1480
1481   // Return symbol index, if stub is for a local function.
1482   unsigned int
1483   r_sym() const
1484   { return this->r_sym_; }
1485
1486   // Return symbol, if stub is for a global function.
1487   Mips_symbol<size>*
1488   gsym() const
1489   { return this->gsym_; }
1490
1491   // Return whether stub is for a local function.
1492   bool
1493   is_for_local_function() const
1494   { return this->gsym_ == NULL; }
1495
1496   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497   // is found in the stub section.  Try to find stub target.
1498   void
1499   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1500   {
1501     // To find target symbol for this stub, trust the first R_MIPS_NONE
1502     // relocation, if any.  Otherwise trust the first relocation, whatever
1503     // its kind.
1504     if (this->found_r_mips_none_)
1505       return;
1506     if (r_type == elfcpp::R_MIPS_NONE)
1507       {
1508         this->r_sym_ = r_sym;
1509         this->gsym_ = NULL;
1510         this->found_r_mips_none_ = true;
1511       }
1512     else if (!is_target_found())
1513       this->r_sym_ = r_sym;
1514   }
1515
1516   // This method is called when a new relocation R_TYPE for global symbol GSYM
1517   // is found in the stub section.  Try to find stub target.
1518   void
1519   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1520   {
1521     // To find target symbol for this stub, trust the first R_MIPS_NONE
1522     // relocation, if any.  Otherwise trust the first relocation, whatever
1523     // its kind.
1524     if (this->found_r_mips_none_)
1525       return;
1526     if (r_type == elfcpp::R_MIPS_NONE)
1527       {
1528         this->gsym_ = gsym;
1529         this->r_sym_ = 0;
1530         this->found_r_mips_none_ = true;
1531       }
1532     else if (!is_target_found())
1533       this->gsym_ = gsym;
1534   }
1535
1536   // Return whether we found the stub target.
1537   bool
1538   is_target_found() const
1539   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1540
1541   // Return whether this is a fn stub.
1542   bool
1543   is_fn_stub() const
1544   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1545
1546   // Return whether this is a call stub.
1547   bool
1548   is_call_stub() const
1549   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1550
1551   // Return whether this is a call_fp stub.
1552   bool
1553   is_call_fp_stub() const
1554   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1555
1556   // Return the output address.
1557   Mips_address
1558   output_address() const
1559   {
1560     return (this->object_->output_section(this->shndx_)->address()
1561             + this->object_->output_section_offset(this->shndx_));
1562   }
1563
1564  private:
1565   // The object of this stub section.
1566   Mips_relobj<size, big_endian>* object_;
1567   // The section index of this stub section.
1568   unsigned int shndx_;
1569   // The symbol index, if stub is for a local function.
1570   unsigned int r_sym_;
1571   // The symbol, if stub is for a global function.
1572   Mips_symbol<size>* gsym_;
1573   // True if we found R_MIPS_NONE relocation in this stub.
1574   bool found_r_mips_none_;
1575 };
1576
1577 // Mips_relobj class.
1578
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1581 {
1582   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584     Mips16_stubs_int_map;
1585   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1586
1587  public:
1588   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591       processor_specific_flags_(0), local_symbol_is_mips16_(),
1592       local_symbol_is_micromips_(), mips16_stub_sections_(),
1593       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594       local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595       got_info_(NULL), section_is_mips16_fn_stub_(),
1596       section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1597       pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1598       gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1599   {
1600     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1601     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1602   }
1603
1604   ~Mips_relobj()
1605   { delete this->attributes_section_data_; }
1606
1607   // Downcast a base pointer to a Mips_relobj pointer.  This is
1608   // not type-safe but we only use Mips_relobj not the base class.
1609   static Mips_relobj<size, big_endian>*
1610   as_mips_relobj(Relobj* relobj)
1611   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1612
1613   // Downcast a base pointer to a Mips_relobj pointer.  This is
1614   // not type-safe but we only use Mips_relobj not the base class.
1615   static const Mips_relobj<size, big_endian>*
1616   as_mips_relobj(const Relobj* relobj)
1617   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1618
1619   // Processor-specific flags in ELF file header.  This is valid only after
1620   // reading symbols.
1621   elfcpp::Elf_Word
1622   processor_specific_flags() const
1623   { return this->processor_specific_flags_; }
1624
1625   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1626   // index.  This is only valid after do_count_local_symbol is called.
1627   bool
1628   local_symbol_is_mips16(unsigned int r_sym) const
1629   {
1630     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1631     return this->local_symbol_is_mips16_[r_sym];
1632   }
1633
1634   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1635   // index.  This is only valid after do_count_local_symbol is called.
1636   bool
1637   local_symbol_is_micromips(unsigned int r_sym) const
1638   {
1639     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1640     return this->local_symbol_is_micromips_[r_sym];
1641   }
1642
1643   // Get or create MIPS16 stub section.
1644   Mips16_stub_section<size, big_endian>*
1645   get_mips16_stub_section(unsigned int shndx)
1646   {
1647     typename Mips16_stubs_int_map::const_iterator it =
1648       this->mips16_stub_sections_.find(shndx);
1649     if (it != this->mips16_stub_sections_.end())
1650       return (*it).second;
1651
1652     Mips16_stub_section<size, big_endian>* stub_section =
1653       new Mips16_stub_section<size, big_endian>(this, shndx);
1654     this->mips16_stub_sections_.insert(
1655       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1656         stub_section->shndx(), stub_section));
1657     return stub_section;
1658   }
1659
1660   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1661   // object doesn't have fn stub for R_SYM.
1662   Mips16_stub_section<size, big_endian>*
1663   get_local_mips16_fn_stub(unsigned int r_sym) const
1664   {
1665     typename Mips16_stubs_int_map::const_iterator it =
1666       this->local_mips16_fn_stubs_.find(r_sym);
1667     if (it != this->local_mips16_fn_stubs_.end())
1668       return (*it).second;
1669     return NULL;
1670   }
1671
1672   // Record that this object has MIPS16 fn stub for local symbol.  This method
1673   // is only called if we decided not to discard the stub.
1674   void
1675   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1676   {
1677     gold_assert(stub->is_for_local_function());
1678     unsigned int r_sym = stub->r_sym();
1679     this->local_mips16_fn_stubs_.insert(
1680       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1681         r_sym, stub));
1682   }
1683
1684   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1685   // object doesn't have call stub for R_SYM.
1686   Mips16_stub_section<size, big_endian>*
1687   get_local_mips16_call_stub(unsigned int r_sym) const
1688   {
1689     typename Mips16_stubs_int_map::const_iterator it =
1690       this->local_mips16_call_stubs_.find(r_sym);
1691     if (it != this->local_mips16_call_stubs_.end())
1692       return (*it).second;
1693     return NULL;
1694   }
1695
1696   // Record that this object has MIPS16 call stub for local symbol.  This method
1697   // is only called if we decided not to discard the stub.
1698   void
1699   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1700   {
1701     gold_assert(stub->is_for_local_function());
1702     unsigned int r_sym = stub->r_sym();
1703     this->local_mips16_call_stubs_.insert(
1704       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1705         r_sym, stub));
1706   }
1707
1708   // Record that we found "non 16-bit" call relocation against local symbol
1709   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1710   // is one.
1711   void
1712   add_local_non_16bit_call(unsigned int symndx)
1713   { this->local_non_16bit_calls_.insert(symndx); }
1714
1715   // Return true if there is any "non 16-bit" call relocation against local
1716   // symbol SYMNDX in this object.
1717   bool
1718   has_local_non_16bit_call_relocs(unsigned int symndx)
1719   {
1720     return (this->local_non_16bit_calls_.find(symndx)
1721             != this->local_non_16bit_calls_.end());
1722   }
1723
1724   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1725   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1726   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1727   void
1728   add_local_16bit_call(unsigned int symndx)
1729   { this->local_16bit_calls_.insert(symndx); }
1730
1731   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1732   // symbol SYMNDX in this object.
1733   bool
1734   has_local_16bit_call_relocs(unsigned int symndx)
1735   {
1736     return (this->local_16bit_calls_.find(symndx)
1737             != this->local_16bit_calls_.end());
1738   }
1739
1740   // Get gp value that was used to create this object.
1741   Mips_address
1742   gp_value() const
1743   { return this->gp_; }
1744
1745   // Return whether the object is a PIC object.
1746   bool
1747   is_pic() const
1748   { return this->is_pic_; }
1749
1750   // Return whether the object uses N32 ABI.
1751   bool
1752   is_n32() const
1753   { return this->is_n32_; }
1754
1755   // Return whether the object uses N64 ABI.
1756   bool
1757   is_n64() const
1758   { return size == 64; }
1759
1760   // Return whether the object uses NewABI conventions.
1761   bool
1762   is_newabi() const
1763   { return this->is_n32() || this->is_n64(); }
1764
1765   // Return Mips_got_info for this object.
1766   Mips_got_info<size, big_endian>*
1767   get_got_info() const
1768   { return this->got_info_; }
1769
1770   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1771   Mips_got_info<size, big_endian>*
1772   get_or_create_got_info()
1773   {
1774     if (!this->got_info_)
1775       this->got_info_ = new Mips_got_info<size, big_endian>();
1776     return this->got_info_;
1777   }
1778
1779   // Set Mips_got_info for this object.
1780   void
1781   set_got_info(Mips_got_info<size, big_endian>* got_info)
1782   { this->got_info_ = got_info; }
1783
1784   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1785   // after do_read_symbols is called.
1786   bool
1787   is_mips16_stub_section(unsigned int shndx)
1788   {
1789     return (is_mips16_fn_stub_section(shndx)
1790             || is_mips16_call_stub_section(shndx)
1791             || is_mips16_call_fp_stub_section(shndx));
1792   }
1793
1794   // Return TRUE if relocations in section SHNDX can refer directly to a
1795   // MIPS16 function rather than to a hard-float stub.  This is only valid
1796   // after do_read_symbols is called.
1797   bool
1798   section_allows_mips16_refs(unsigned int shndx)
1799   {
1800     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1801   }
1802
1803   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1804   // after do_read_symbols is called.
1805   bool
1806   is_mips16_fn_stub_section(unsigned int shndx)
1807   {
1808     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1809     return this->section_is_mips16_fn_stub_[shndx];
1810   }
1811
1812   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1813   // after do_read_symbols is called.
1814   bool
1815   is_mips16_call_stub_section(unsigned int shndx)
1816   {
1817     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1818     return this->section_is_mips16_call_stub_[shndx];
1819   }
1820
1821   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1822   // valid after do_read_symbols is called.
1823   bool
1824   is_mips16_call_fp_stub_section(unsigned int shndx)
1825   {
1826     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1827     return this->section_is_mips16_call_fp_stub_[shndx];
1828   }
1829
1830   // Discard MIPS16 stub secions that are not needed.
1831   void
1832   discard_mips16_stub_sections(Symbol_table* symtab);
1833
1834   // Return whether there is a .reginfo section.
1835   bool
1836   has_reginfo_section() const
1837   { return this->has_reginfo_section_; }
1838
1839   // Return gprmask from the .reginfo section of this object.
1840   Valtype
1841   gprmask() const
1842   { return this->gprmask_; }
1843
1844   // Return cprmask1 from the .reginfo section of this object.
1845   Valtype
1846   cprmask1() const
1847   { return this->cprmask1_; }
1848
1849   // Return cprmask2 from the .reginfo section of this object.
1850   Valtype
1851   cprmask2() const
1852   { return this->cprmask2_; }
1853
1854   // Return cprmask3 from the .reginfo section of this object.
1855   Valtype
1856   cprmask3() const
1857   { return this->cprmask3_; }
1858
1859   // Return cprmask4 from the .reginfo section of this object.
1860   Valtype
1861   cprmask4() const
1862   { return this->cprmask4_; }
1863
1864   // This is the contents of the .MIPS.abiflags section if there is one.
1865   Mips_abiflags<big_endian>*
1866   abiflags()
1867   { return this->abiflags_; }
1868
1869   // This is the contents of the .gnu.attribute section if there is one.
1870   const Attributes_section_data*
1871   attributes_section_data() const
1872   { return this->attributes_section_data_; }
1873
1874  protected:
1875   // Count the local symbols.
1876   void
1877   do_count_local_symbols(Stringpool_template<char>*,
1878                          Stringpool_template<char>*);
1879
1880   // Read the symbol information.
1881   void
1882   do_read_symbols(Read_symbols_data* sd);
1883
1884  private:
1885   // The name of the options section.
1886   const char* mips_elf_options_section_name()
1887   { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1888
1889   // processor-specific flags in ELF file header.
1890   elfcpp::Elf_Word processor_specific_flags_;
1891
1892   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1893   // This is only valid after do_count_local_symbol is called.
1894   std::vector<bool> local_symbol_is_mips16_;
1895
1896   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1897   // This is only valid after do_count_local_symbol is called.
1898   std::vector<bool> local_symbol_is_micromips_;
1899
1900   // Map from section index to the MIPS16 stub for that section.  This contains
1901   // all stubs found in this object.
1902   Mips16_stubs_int_map mips16_stub_sections_;
1903
1904   // Local symbols that have "non 16-bit" call relocation.  This relocation
1905   // would need to refer to a MIPS16 fn stub, if there is one.
1906   std::set<unsigned int> local_non_16bit_calls_;
1907
1908   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1909   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1910   // relocation that refers to the stub symbol.
1911   std::set<unsigned int> local_16bit_calls_;
1912
1913   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1914   // This contains only the stubs that we decided not to discard.
1915   Mips16_stubs_int_map local_mips16_fn_stubs_;
1916
1917   // Map from local symbol index to the MIPS16 call stub for that symbol.
1918   // This contains only the stubs that we decided not to discard.
1919   Mips16_stubs_int_map local_mips16_call_stubs_;
1920
1921   // gp value that was used to create this object.
1922   Mips_address gp_;
1923   // Whether the object is a PIC object.
1924   bool is_pic_ : 1;
1925   // Whether the object uses N32 ABI.
1926   bool is_n32_ : 1;
1927   // Whether the object contains a .reginfo section.
1928   bool has_reginfo_section_ : 1;
1929   // The Mips_got_info for this object.
1930   Mips_got_info<size, big_endian>* got_info_;
1931
1932   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1933   // This is only valid after do_read_symbols is called.
1934   std::vector<bool> section_is_mips16_fn_stub_;
1935
1936   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1937   // This is only valid after do_read_symbols is called.
1938   std::vector<bool> section_is_mips16_call_stub_;
1939
1940   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1941   // This is only valid after do_read_symbols is called.
1942   std::vector<bool> section_is_mips16_call_fp_stub_;
1943
1944   // .pdr section index.
1945   unsigned int pdr_shndx_;
1946
1947   // Object attributes if there is a .gnu.attributes section or NULL.
1948   Attributes_section_data* attributes_section_data_;
1949
1950   // Object abiflags if there is a .MIPS.abiflags section or NULL.
1951   Mips_abiflags<big_endian>* abiflags_;
1952
1953   // gprmask from the .reginfo section of this object.
1954   Valtype gprmask_;
1955   // cprmask1 from the .reginfo section of this object.
1956   Valtype cprmask1_;
1957   // cprmask2 from the .reginfo section of this object.
1958   Valtype cprmask2_;
1959   // cprmask3 from the .reginfo section of this object.
1960   Valtype cprmask3_;
1961   // cprmask4 from the .reginfo section of this object.
1962   Valtype cprmask4_;
1963 };
1964
1965 // Mips_output_data_got class.
1966
1967 template<int size, bool big_endian>
1968 class Mips_output_data_got : public Output_data_got<size, big_endian>
1969 {
1970   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1971   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1972     Reloc_section;
1973   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1974
1975  public:
1976   Mips_output_data_got(Target_mips<size, big_endian>* target,
1977       Symbol_table* symtab, Layout* layout)
1978     : Output_data_got<size, big_endian>(), target_(target),
1979       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1980       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1981       secondary_got_relocs_()
1982   {
1983     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1984     this->set_addralign(16);
1985   }
1986
1987   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1988   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1989   void
1990   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1991                           unsigned int symndx, Mips_address addend,
1992                           unsigned int r_type, unsigned int shndx,
1993                           bool is_section_symbol)
1994   {
1995     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1996                                                     r_type, shndx,
1997                                                     is_section_symbol);
1998   }
1999
2000   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2001   // in OBJECT.  FOR_CALL is true if the caller is only interested in
2002   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
2003   // relocation.
2004   void
2005   record_global_got_symbol(Mips_symbol<size>* mips_sym,
2006                            Mips_relobj<size, big_endian>* object,
2007                            unsigned int r_type, bool dyn_reloc, bool for_call)
2008   {
2009     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2010                                                      dyn_reloc, for_call);
2011   }
2012
2013   // Record that OBJECT has a page relocation against symbol SYMNDX and
2014   // that ADDEND is the addend for that relocation.
2015   void
2016   record_got_page_entry(Mips_relobj<size, big_endian>* object,
2017                         unsigned int symndx, int addend)
2018   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2019
2020   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
2021   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2022   // applied in a static link.
2023   void
2024   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2025                    Mips_symbol<size>* gsym)
2026   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2027
2028   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
2029   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
2030   // relocation that needs to be applied in a static link.
2031   void
2032   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033                    Sized_relobj_file<size, big_endian>* relobj,
2034                    unsigned int index)
2035   {
2036     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2037                                                 index));
2038   }
2039
2040   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2041   // secondary GOT at OFFSET.
2042   void
2043   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2044                           Mips_symbol<size>* gsym)
2045   {
2046     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2047                                                        r_type, gsym));
2048   }
2049
2050   // Update GOT entry at OFFSET with VALUE.
2051   void
2052   update_got_entry(unsigned int offset, Mips_address value)
2053   {
2054     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2055   }
2056
2057   // Return the number of entries in local part of the GOT.  This includes
2058   // local entries, page entries and 2 reserved entries.
2059   unsigned int
2060   get_local_gotno() const
2061   {
2062     if (!this->multi_got())
2063       {
2064         return (2 + this->master_got_info_->local_gotno()
2065                 + this->master_got_info_->page_gotno());
2066       }
2067     else
2068       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2069   }
2070
2071   // Return dynamic symbol table index of the first symbol with global GOT
2072   // entry.
2073   unsigned int
2074   first_global_got_dynsym_index() const
2075   { return this->first_global_got_dynsym_index_; }
2076
2077   // Set dynamic symbol table index of the first symbol with global GOT entry.
2078   void
2079   set_first_global_got_dynsym_index(unsigned int index)
2080   { this->first_global_got_dynsym_index_ = index; }
2081
2082   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
2083   // larger than 64K, create multi-GOT.
2084   void
2085   lay_out_got(Layout* layout, Symbol_table* symtab,
2086               const Input_objects* input_objects);
2087
2088   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
2089   void
2090   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2091
2092   // Attempt to merge GOTs of different input objects.
2093   void
2094   merge_gots(const Input_objects* input_objects);
2095
2096   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
2097   // this would lead to overflow, true if they were merged successfully.
2098   bool
2099   merge_got_with(Mips_got_info<size, big_endian>* from,
2100                  Mips_relobj<size, big_endian>* object,
2101                  Mips_got_info<size, big_endian>* to);
2102
2103   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
2104   // use OBJECT's GOT.
2105   unsigned int
2106   get_got_page_offset(Mips_address value,
2107                       const Mips_relobj<size, big_endian>* object)
2108   {
2109     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2110                                           ? this->master_got_info_
2111                                           : object->get_got_info());
2112     gold_assert(g != NULL);
2113     return g->get_got_page_offset(value, this);
2114   }
2115
2116   // Return the GOT offset of type GOT_TYPE of the global symbol
2117   // GSYM.  For multi-GOT links, use OBJECT's GOT.
2118   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2119                           Mips_relobj<size, big_endian>* object) const
2120   {
2121     if (!this->multi_got())
2122       return gsym->got_offset(got_type);
2123     else
2124       {
2125         Mips_got_info<size, big_endian>* g = object->get_got_info();
2126         gold_assert(g != NULL);
2127         return gsym->got_offset(g->multigot_got_type(got_type));
2128       }
2129   }
2130
2131   // Return the GOT offset of type GOT_TYPE of the local symbol
2132   // SYMNDX.
2133   unsigned int
2134   got_offset(unsigned int symndx, unsigned int got_type,
2135              Sized_relobj_file<size, big_endian>* object,
2136              uint64_t addend) const
2137   { return object->local_got_offset(symndx, got_type, addend); }
2138
2139   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2140   unsigned int
2141   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2142   {
2143     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2144                                           ? this->master_got_info_
2145                                           : object->get_got_info());
2146     gold_assert(g != NULL);
2147     return g->tls_ldm_offset();
2148   }
2149
2150   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2151   void
2152   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2153                      Mips_relobj<size, big_endian>* object)
2154   {
2155     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2156                                           ? this->master_got_info_
2157                                           : object->get_got_info());
2158     gold_assert(g != NULL);
2159     g->set_tls_ldm_offset(tls_ldm_offset);
2160   }
2161
2162   // Return true for multi-GOT links.
2163   bool
2164   multi_got() const
2165   { return this->primary_got_ != NULL; }
2166
2167   // Return the offset of OBJECT's GOT from the start of .got section.
2168   unsigned int
2169   get_got_offset(const Mips_relobj<size, big_endian>* object)
2170   {
2171     if (!this->multi_got())
2172       return 0;
2173     else
2174       {
2175         Mips_got_info<size, big_endian>* g = object->get_got_info();
2176         return g != NULL ? g->offset() : 0;
2177       }
2178   }
2179
2180   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2181   void
2182   add_reloc_only_entries()
2183   { this->master_got_info_->add_reloc_only_entries(this); }
2184
2185   // Return offset of the primary GOT's entry for global symbol.
2186   unsigned int
2187   get_primary_got_offset(const Mips_symbol<size>* sym) const
2188   {
2189     gold_assert(sym->global_got_area() != GGA_NONE);
2190     return (this->get_local_gotno() + sym->dynsym_index()
2191             - this->first_global_got_dynsym_index()) * size/8;
2192   }
2193
2194   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2195   // Input argument GOT_OFFSET is always global offset from the start of
2196   // .got section, for both single and multi-GOT links.
2197   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2198   // links, the return value is object_got_offset - 0x7FF0, where
2199   // object_got_offset is offset in the OBJECT's GOT.
2200   int
2201   gp_offset(unsigned int got_offset,
2202             const Mips_relobj<size, big_endian>* object) const
2203   {
2204     return (this->address() + got_offset
2205             - this->target_->adjusted_gp_value(object));
2206   }
2207
2208  protected:
2209   // Write out the GOT table.
2210   void
2211   do_write(Output_file*);
2212
2213  private:
2214
2215   // This class represent dynamic relocations that need to be applied by
2216   // gold because we are using TLS relocations in a static link.
2217   class Static_reloc
2218   {
2219    public:
2220     Static_reloc(unsigned int got_offset, unsigned int r_type,
2221                  Mips_symbol<size>* gsym)
2222       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2223     { this->u_.global.symbol = gsym; }
2224
2225     Static_reloc(unsigned int got_offset, unsigned int r_type,
2226           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2227       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2228     {
2229       this->u_.local.relobj = relobj;
2230       this->u_.local.index = index;
2231     }
2232
2233     // Return the GOT offset.
2234     unsigned int
2235     got_offset() const
2236     { return this->got_offset_; }
2237
2238     // Relocation type.
2239     unsigned int
2240     r_type() const
2241     { return this->r_type_; }
2242
2243     // Whether the symbol is global or not.
2244     bool
2245     symbol_is_global() const
2246     { return this->symbol_is_global_; }
2247
2248     // For a relocation against a global symbol, the global symbol.
2249     Mips_symbol<size>*
2250     symbol() const
2251     {
2252       gold_assert(this->symbol_is_global_);
2253       return this->u_.global.symbol;
2254     }
2255
2256     // For a relocation against a local symbol, the defining object.
2257     Sized_relobj_file<size, big_endian>*
2258     relobj() const
2259     {
2260       gold_assert(!this->symbol_is_global_);
2261       return this->u_.local.relobj;
2262     }
2263
2264     // For a relocation against a local symbol, the local symbol index.
2265     unsigned int
2266     index() const
2267     {
2268       gold_assert(!this->symbol_is_global_);
2269       return this->u_.local.index;
2270     }
2271
2272    private:
2273     // GOT offset of the entry to which this relocation is applied.
2274     unsigned int got_offset_;
2275     // Type of relocation.
2276     unsigned int r_type_;
2277     // Whether this relocation is against a global symbol.
2278     bool symbol_is_global_;
2279     // A global or local symbol.
2280     union
2281     {
2282       struct
2283       {
2284         // For a global symbol, the symbol itself.
2285         Mips_symbol<size>* symbol;
2286       } global;
2287       struct
2288       {
2289         // For a local symbol, the object defining object.
2290         Sized_relobj_file<size, big_endian>* relobj;
2291         // For a local symbol, the symbol index.
2292         unsigned int index;
2293       } local;
2294     } u_;
2295   };
2296
2297   // The target.
2298   Target_mips<size, big_endian>* target_;
2299   // The symbol table.
2300   Symbol_table* symbol_table_;
2301   // The layout.
2302   Layout* layout_;
2303   // Static relocs to be applied to the GOT.
2304   std::vector<Static_reloc> static_relocs_;
2305   // .got section view.
2306   unsigned char* got_view_;
2307   // The dynamic symbol table index of the first symbol with global GOT entry.
2308   unsigned int first_global_got_dynsym_index_;
2309   // The master GOT information.
2310   Mips_got_info<size, big_endian>* master_got_info_;
2311   // The  primary GOT information.
2312   Mips_got_info<size, big_endian>* primary_got_;
2313   // Secondary GOT fixups.
2314   std::vector<Static_reloc> secondary_got_relocs_;
2315 };
2316
2317 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2318 // two ways of creating these interfaces.  The first is to add:
2319 //
2320 //      lui     $25,%hi(func)
2321 //      j       func
2322 //      addiu   $25,$25,%lo(func)
2323 //
2324 // to a separate trampoline section.  The second is to add:
2325 //
2326 //      lui     $25,%hi(func)
2327 //      addiu   $25,$25,%lo(func)
2328 //
2329 // immediately before a PIC function "func", but only if a function is at the
2330 // beginning of the section, and the section is not too heavily aligned (i.e we
2331 // would need to add no more than 2 nops before the stub.)
2332 //
2333 // We only create stubs of the first type.
2334
2335 template<int size, bool big_endian>
2336 class Mips_output_data_la25_stub : public Output_section_data
2337 {
2338   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2339
2340  public:
2341   Mips_output_data_la25_stub()
2342   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2343   { }
2344
2345   // Create LA25 stub for a symbol.
2346   void
2347   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2348                    Mips_symbol<size>* gsym);
2349
2350   // Return output address of a stub.
2351   Mips_address
2352   stub_address(const Mips_symbol<size>* sym) const
2353   {
2354     gold_assert(sym->has_la25_stub());
2355     return this->address() + sym->la25_stub_offset();
2356   }
2357
2358  protected:
2359   void
2360   do_adjust_output_section(Output_section* os)
2361   { os->set_entsize(0); }
2362
2363  private:
2364   // Template for standard LA25 stub.
2365   static const uint32_t la25_stub_entry[];
2366   // Template for microMIPS LA25 stub.
2367   static const uint32_t la25_stub_micromips_entry[];
2368
2369   // Set the final size.
2370   void
2371   set_final_data_size()
2372   { this->set_data_size(this->symbols_.size() * 16); }
2373
2374   // Create a symbol for SYM stub's value and size, to help make the
2375   // disassembly easier to read.
2376   void
2377   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2378                      Target_mips<size, big_endian>* target, uint64_t symsize);
2379
2380   // Write to a map file.
2381   void
2382   do_print_to_mapfile(Mapfile* mapfile) const
2383   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2384
2385   // Write out the LA25 stub section.
2386   void
2387   do_write(Output_file*);
2388
2389   // Symbols that have LA25 stubs.
2390   std::vector<Mips_symbol<size>*> symbols_;
2391 };
2392
2393 // MIPS-specific relocation writer.
2394
2395 template<int sh_type, bool dynamic, int size, bool big_endian>
2396 struct Mips_output_reloc_writer;
2397
2398 template<int sh_type, bool dynamic, bool big_endian>
2399 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2400 {
2401   typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2402   typedef std::vector<Output_reloc_type> Relocs;
2403
2404   static void
2405   write(typename Relocs::const_iterator p, unsigned char* pov)
2406   { p->write(pov); }
2407 };
2408
2409 template<int sh_type, bool dynamic, bool big_endian>
2410 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2411 {
2412   typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2413   typedef std::vector<Output_reloc_type> Relocs;
2414
2415   static void
2416   write(typename Relocs::const_iterator p, unsigned char* pov)
2417   {
2418     elfcpp::Mips64_rel_write<big_endian> orel(pov);
2419     orel.put_r_offset(p->get_address());
2420     orel.put_r_sym(p->get_symbol_index());
2421     orel.put_r_ssym(RSS_UNDEF);
2422     orel.put_r_type(p->type());
2423     if (p->type() == elfcpp::R_MIPS_REL32)
2424       orel.put_r_type2(elfcpp::R_MIPS_64);
2425     else
2426       orel.put_r_type2(elfcpp::R_MIPS_NONE);
2427     orel.put_r_type3(elfcpp::R_MIPS_NONE);
2428   }
2429 };
2430
2431 template<int sh_type, bool dynamic, int size, bool big_endian>
2432 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2433                                                         size, big_endian>
2434 {
2435  public:
2436   Mips_output_data_reloc(bool sort_relocs)
2437     : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2438   { }
2439
2440  protected:
2441   // Write out the data.
2442   void
2443   do_write(Output_file* of)
2444   {
2445     typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2446         big_endian> Writer;
2447     this->template do_write_generic<Writer>(of);
2448   }
2449 };
2450
2451
2452 // A class to handle the PLT data.
2453
2454 template<int size, bool big_endian>
2455 class Mips_output_data_plt : public Output_section_data
2456 {
2457   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2458   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2459                                  size, big_endian> Reloc_section;
2460
2461  public:
2462   // Create the PLT section.  The ordinary .got section is an argument,
2463   // since we need to refer to the start.
2464   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2465                        Target_mips<size, big_endian>* target)
2466     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2467       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2468       target_(target)
2469   {
2470     this->rel_ = new Reloc_section(false);
2471     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2472                                     elfcpp::SHF_ALLOC, this->rel_,
2473                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2474   }
2475
2476   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2477   void
2478   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2479
2480   // Return the .rel.plt section data.
2481   Reloc_section*
2482   rel_plt() const
2483   { return this->rel_; }
2484
2485   // Return the number of PLT entries.
2486   unsigned int
2487   entry_count() const
2488   { return this->symbols_.size(); }
2489
2490   // Return the offset of the first non-reserved PLT entry.
2491   unsigned int
2492   first_plt_entry_offset() const
2493   { return sizeof(plt0_entry_o32); }
2494
2495   // Return the size of a PLT entry.
2496   unsigned int
2497   plt_entry_size() const
2498   { return sizeof(plt_entry); }
2499
2500   // Set final PLT offsets.  For each symbol, determine whether standard or
2501   // compressed (MIPS16 or microMIPS) PLT entry is used.
2502   void
2503   set_plt_offsets();
2504
2505   // Return the offset of the first standard PLT entry.
2506   unsigned int
2507   first_mips_plt_offset() const
2508   { return this->plt_header_size_; }
2509
2510   // Return the offset of the first compressed PLT entry.
2511   unsigned int
2512   first_comp_plt_offset() const
2513   { return this->plt_header_size_ + this->plt_mips_offset_; }
2514
2515   // Return whether there are any standard PLT entries.
2516   bool
2517   has_standard_entries() const
2518   { return this->plt_mips_offset_ > 0; }
2519
2520   // Return the output address of standard PLT entry.
2521   Mips_address
2522   mips_entry_address(const Mips_symbol<size>* sym) const
2523   {
2524     gold_assert (sym->has_mips_plt_offset());
2525     return (this->address() + this->first_mips_plt_offset()
2526             + sym->mips_plt_offset());
2527   }
2528
2529   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2530   Mips_address
2531   comp_entry_address(const Mips_symbol<size>* sym) const
2532   {
2533     gold_assert (sym->has_comp_plt_offset());
2534     return (this->address() + this->first_comp_plt_offset()
2535             + sym->comp_plt_offset());
2536   }
2537
2538  protected:
2539   void
2540   do_adjust_output_section(Output_section* os)
2541   { os->set_entsize(0); }
2542
2543   // Write to a map file.
2544   void
2545   do_print_to_mapfile(Mapfile* mapfile) const
2546   { mapfile->print_output_data(this, _(".plt")); }
2547
2548  private:
2549   // Template for the first PLT entry.
2550   static const uint32_t plt0_entry_o32[];
2551   static const uint32_t plt0_entry_n32[];
2552   static const uint32_t plt0_entry_n64[];
2553   static const uint32_t plt0_entry_micromips_o32[];
2554   static const uint32_t plt0_entry_micromips32_o32[];
2555
2556   // Template for subsequent PLT entries.
2557   static const uint32_t plt_entry[];
2558   static const uint32_t plt_entry_r6[];
2559   static const uint32_t plt_entry_mips16_o32[];
2560   static const uint32_t plt_entry_micromips_o32[];
2561   static const uint32_t plt_entry_micromips32_o32[];
2562
2563   // Set the final size.
2564   void
2565   set_final_data_size()
2566   {
2567     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2568                         + this->plt_comp_offset_);
2569   }
2570
2571   // Write out the PLT data.
2572   void
2573   do_write(Output_file*);
2574
2575   // Return whether the plt header contains microMIPS code.  For the sake of
2576   // cache alignment always use a standard header whenever any standard entries
2577   // are present even if microMIPS entries are present as well.  This also lets
2578   // the microMIPS header rely on the value of $v0 only set by microMIPS
2579   // entries, for a small size reduction.
2580   bool
2581   is_plt_header_compressed() const
2582   {
2583     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2584     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2585   }
2586
2587   // Return the size of the PLT header.
2588   unsigned int
2589   get_plt_header_size() const
2590   {
2591     if (this->target_->is_output_n64())
2592       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2593     else if (this->target_->is_output_n32())
2594       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2595     else if (!this->is_plt_header_compressed())
2596       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2597     else if (this->target_->use_32bit_micromips_instructions())
2598       return (2 * sizeof(plt0_entry_micromips32_o32)
2599               / sizeof(plt0_entry_micromips32_o32[0]));
2600     else
2601       return (2 * sizeof(plt0_entry_micromips_o32)
2602               / sizeof(plt0_entry_micromips_o32[0]));
2603   }
2604
2605   // Return the PLT header entry.
2606   const uint32_t*
2607   get_plt_header_entry() const
2608   {
2609     if (this->target_->is_output_n64())
2610       return plt0_entry_n64;
2611     else if (this->target_->is_output_n32())
2612       return plt0_entry_n32;
2613     else if (!this->is_plt_header_compressed())
2614       return plt0_entry_o32;
2615     else if (this->target_->use_32bit_micromips_instructions())
2616       return plt0_entry_micromips32_o32;
2617     else
2618       return plt0_entry_micromips_o32;
2619   }
2620
2621   // Return the size of the standard PLT entry.
2622   unsigned int
2623   standard_plt_entry_size() const
2624   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2625
2626   // Return the size of the compressed PLT entry.
2627   unsigned int
2628   compressed_plt_entry_size() const
2629   {
2630     gold_assert(!this->target_->is_output_newabi());
2631
2632     if (!this->target_->is_output_micromips())
2633       return (2 * sizeof(plt_entry_mips16_o32)
2634               / sizeof(plt_entry_mips16_o32[0]));
2635     else if (this->target_->use_32bit_micromips_instructions())
2636       return (2 * sizeof(plt_entry_micromips32_o32)
2637               / sizeof(plt_entry_micromips32_o32[0]));
2638     else
2639       return (2 * sizeof(plt_entry_micromips_o32)
2640               / sizeof(plt_entry_micromips_o32[0]));
2641   }
2642
2643   // The reloc section.
2644   Reloc_section* rel_;
2645   // The .got.plt section.
2646   Output_data_space* got_plt_;
2647   // Symbols that have PLT entry.
2648   std::vector<Mips_symbol<size>*> symbols_;
2649   // The offset of the next standard PLT entry to create.
2650   unsigned int plt_mips_offset_;
2651   // The offset of the next compressed PLT entry to create.
2652   unsigned int plt_comp_offset_;
2653   // The size of the PLT header in bytes.
2654   unsigned int plt_header_size_;
2655   // The target.
2656   Target_mips<size, big_endian>* target_;
2657 };
2658
2659 // A class to handle the .MIPS.stubs data.
2660
2661 template<int size, bool big_endian>
2662 class Mips_output_data_mips_stubs : public Output_section_data
2663 {
2664   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2665
2666   // Unordered set of .MIPS.stubs entries.
2667   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2668       Mips_stubs_entry_set;
2669
2670  public:
2671    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2672      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2673        stub_offsets_are_set_(false), target_(target)
2674    { }
2675
2676   // Create entry for a symbol.
2677   void
2678   make_entry(Mips_symbol<size>*);
2679
2680   // Remove entry for a symbol.
2681   void
2682   remove_entry(Mips_symbol<size>* gsym);
2683
2684   // Set stub offsets for symbols.  This method expects that the number of
2685   // entries in dynamic symbol table is set.
2686   void
2687   set_lazy_stub_offsets();
2688
2689   void
2690   set_needs_dynsym_value();
2691
2692    // Set the number of entries in dynamic symbol table.
2693   void
2694   set_dynsym_count(unsigned int dynsym_count)
2695   { this->dynsym_count_ = dynsym_count; }
2696
2697   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2698   // count is greater than 0x10000.  If the dynamic symbol count is less than
2699   // 0x10000, the stub will be 4 bytes smaller.
2700   // There's no disadvantage from using microMIPS code here, so for the sake of
2701   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2702   // output produced at all.  This has a benefit of stubs being shorter by
2703   // 4 bytes each too, unless in the insn32 mode.
2704   unsigned int
2705   stub_max_size() const
2706   {
2707     if (!this->target_->is_output_micromips()
2708         || this->target_->use_32bit_micromips_instructions())
2709       return 20;
2710     else
2711       return 16;
2712   }
2713
2714   // Return the size of the stub.  This method expects that the final dynsym
2715   // count is set.
2716   unsigned int
2717   stub_size() const
2718   {
2719     gold_assert(this->dynsym_count_ != -1U);
2720     if (this->dynsym_count_ > 0x10000)
2721       return this->stub_max_size();
2722     else
2723       return this->stub_max_size() - 4;
2724   }
2725
2726   // Return output address of a stub.
2727   Mips_address
2728   stub_address(const Mips_symbol<size>* sym) const
2729   {
2730     gold_assert(sym->has_lazy_stub());
2731     return this->address() + sym->lazy_stub_offset();
2732   }
2733
2734  protected:
2735   void
2736   do_adjust_output_section(Output_section* os)
2737   { os->set_entsize(0); }
2738
2739   // Write to a map file.
2740   void
2741   do_print_to_mapfile(Mapfile* mapfile) const
2742   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2743
2744  private:
2745   static const uint32_t lazy_stub_normal_1[];
2746   static const uint32_t lazy_stub_normal_1_n64[];
2747   static const uint32_t lazy_stub_normal_2[];
2748   static const uint32_t lazy_stub_normal_2_n64[];
2749   static const uint32_t lazy_stub_big[];
2750   static const uint32_t lazy_stub_big_n64[];
2751
2752   static const uint32_t lazy_stub_micromips_normal_1[];
2753   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2754   static const uint32_t lazy_stub_micromips_normal_2[];
2755   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2756   static const uint32_t lazy_stub_micromips_big[];
2757   static const uint32_t lazy_stub_micromips_big_n64[];
2758
2759   static const uint32_t lazy_stub_micromips32_normal_1[];
2760   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2761   static const uint32_t lazy_stub_micromips32_normal_2[];
2762   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2763   static const uint32_t lazy_stub_micromips32_big[];
2764   static const uint32_t lazy_stub_micromips32_big_n64[];
2765
2766   // Set the final size.
2767   void
2768   set_final_data_size()
2769   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2770
2771   // Write out the .MIPS.stubs data.
2772   void
2773   do_write(Output_file*);
2774
2775   // .MIPS.stubs symbols
2776   Mips_stubs_entry_set symbols_;
2777   // Number of entries in dynamic symbol table.
2778   unsigned int dynsym_count_;
2779   // Whether the stub offsets are set.
2780   bool stub_offsets_are_set_;
2781   // The target.
2782   Target_mips<size, big_endian>* target_;
2783 };
2784
2785 // This class handles Mips .reginfo output section.
2786
2787 template<int size, bool big_endian>
2788 class Mips_output_section_reginfo : public Output_section_data
2789 {
2790   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2791
2792  public:
2793   Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2794                               Valtype gprmask, Valtype cprmask1,
2795                               Valtype cprmask2, Valtype cprmask3,
2796                               Valtype cprmask4)
2797     : Output_section_data(24, 4, true), target_(target),
2798       gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2799       cprmask3_(cprmask3), cprmask4_(cprmask4)
2800   { }
2801
2802  protected:
2803   // Write to a map file.
2804   void
2805   do_print_to_mapfile(Mapfile* mapfile) const
2806   { mapfile->print_output_data(this, _(".reginfo")); }
2807
2808   // Write out reginfo section.
2809   void
2810   do_write(Output_file* of);
2811
2812  private:
2813   Target_mips<size, big_endian>* target_;
2814
2815   // gprmask of the output .reginfo section.
2816   Valtype gprmask_;
2817   // cprmask1 of the output .reginfo section.
2818   Valtype cprmask1_;
2819   // cprmask2 of the output .reginfo section.
2820   Valtype cprmask2_;
2821   // cprmask3 of the output .reginfo section.
2822   Valtype cprmask3_;
2823   // cprmask4 of the output .reginfo section.
2824   Valtype cprmask4_;
2825 };
2826
2827 // This class handles .MIPS.options output section.
2828
2829 template<int size, bool big_endian>
2830 class Mips_output_section_options : public Output_section
2831 {
2832  public:
2833   Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2834                               elfcpp::Elf_Xword flags,
2835                               Target_mips<size, big_endian>* target)
2836     : Output_section(name, type, flags), target_(target)
2837   {
2838     // After the input sections are written, we only need to update
2839     // ri_gp_value field of ODK_REGINFO entries.
2840     this->set_after_input_sections();
2841   }
2842
2843  protected:
2844   // Write out option section.
2845   void
2846   do_write(Output_file* of);
2847
2848  private:
2849   Target_mips<size, big_endian>* target_;
2850 };
2851
2852 // This class handles .MIPS.abiflags output section.
2853
2854 template<int size, bool big_endian>
2855 class Mips_output_section_abiflags : public Output_section_data
2856 {
2857  public:
2858   Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2859     : Output_section_data(24, 8, true), abiflags_(abiflags)
2860   { }
2861
2862  protected:
2863   // Write to a map file.
2864   void
2865   do_print_to_mapfile(Mapfile* mapfile) const
2866   { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2867
2868   void
2869   do_write(Output_file* of);
2870
2871  private:
2872   const Mips_abiflags<big_endian>& abiflags_;
2873 };
2874
2875 // The MIPS target has relocation types which default handling of relocatable
2876 // relocation cannot process.  So we have to extend the default code.
2877
2878 template<bool big_endian, typename Classify_reloc>
2879 class Mips_scan_relocatable_relocs :
2880   public Default_scan_relocatable_relocs<Classify_reloc>
2881 {
2882  public:
2883   // Return the strategy to use for a local symbol which is a section
2884   // symbol, given the relocation type.
2885   inline Relocatable_relocs::Reloc_strategy
2886   local_section_strategy(unsigned int r_type, Relobj* object)
2887   {
2888     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2889       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2890     else
2891       {
2892         switch (r_type)
2893           {
2894           case elfcpp::R_MIPS_26:
2895             return Relocatable_relocs::RELOC_SPECIAL;
2896
2897           default:
2898             return Default_scan_relocatable_relocs<Classify_reloc>::
2899                 local_section_strategy(r_type, object);
2900           }
2901       }
2902   }
2903 };
2904
2905 // Mips_copy_relocs class.  The only difference from the base class is the
2906 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2907 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2908 // cannot be made dynamic, a COPY reloc is emitted.
2909
2910 template<int sh_type, int size, bool big_endian>
2911 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2912 {
2913  public:
2914   Mips_copy_relocs()
2915     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2916   { }
2917
2918   // Emit any saved relocations which turn out to be needed.  This is
2919   // called after all the relocs have been scanned.
2920   void
2921   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2922             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2923
2924  private:
2925   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2926     Copy_reloc_entry;
2927
2928   // Emit this reloc if appropriate.  This is called after we have
2929   // scanned all the relocations, so we know whether we emitted a
2930   // COPY relocation for SYM_.
2931   void
2932   emit_entry(Copy_reloc_entry& entry,
2933              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2934              Symbol_table* symtab, Layout* layout,
2935              Target_mips<size, big_endian>* target);
2936 };
2937
2938
2939 // Return true if the symbol SYM should be considered to resolve local
2940 // to the current module, and false otherwise.  The logic is taken from
2941 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2942 static bool
2943 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2944                   bool local_protected)
2945 {
2946   // If it's a local sym, of course we resolve locally.
2947   if (sym == NULL)
2948     return true;
2949
2950   // STV_HIDDEN or STV_INTERNAL ones must be local.
2951   if (sym->visibility() == elfcpp::STV_HIDDEN
2952       || sym->visibility() == elfcpp::STV_INTERNAL)
2953     return true;
2954
2955   // If we don't have a definition in a regular file, then we can't
2956   // resolve locally.  The sym is either undefined or dynamic.
2957   if (sym->is_from_dynobj() || sym->is_undefined())
2958     return false;
2959
2960   // Forced local symbols resolve locally.
2961   if (sym->is_forced_local())
2962     return true;
2963
2964   // As do non-dynamic symbols.
2965   if (!has_dynsym_entry)
2966     return true;
2967
2968   // At this point, we know the symbol is defined and dynamic.  In an
2969   // executable it must resolve locally, likewise when building symbolic
2970   // shared libraries.
2971   if (parameters->options().output_is_executable()
2972       || parameters->options().Bsymbolic())
2973     return true;
2974
2975   // Now deal with defined dynamic symbols in shared libraries.  Ones
2976   // with default visibility might not resolve locally.
2977   if (sym->visibility() == elfcpp::STV_DEFAULT)
2978     return false;
2979
2980   // STV_PROTECTED non-function symbols are local.
2981   if (sym->type() != elfcpp::STT_FUNC)
2982     return true;
2983
2984   // Function pointer equality tests may require that STV_PROTECTED
2985   // symbols be treated as dynamic symbols.  If the address of a
2986   // function not defined in an executable is set to that function's
2987   // plt entry in the executable, then the address of the function in
2988   // a shared library must also be the plt entry in the executable.
2989   return local_protected;
2990 }
2991
2992 // Return TRUE if references to this symbol always reference the symbol in this
2993 // object.
2994 static bool
2995 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2996 {
2997   return symbol_refs_local(sym, has_dynsym_entry, false);
2998 }
2999
3000 // Return TRUE if calls to this symbol always call the version in this object.
3001 static bool
3002 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3003 {
3004   return symbol_refs_local(sym, has_dynsym_entry, true);
3005 }
3006
3007 // Compare GOT offsets of two symbols.
3008
3009 template<int size, bool big_endian>
3010 static bool
3011 got_offset_compare(Symbol* sym1, Symbol* sym2)
3012 {
3013   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3014   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3015   unsigned int area1 = mips_sym1->global_got_area();
3016   unsigned int area2 = mips_sym2->global_got_area();
3017   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3018
3019   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3020   if (area1 != area2)
3021     return area1 < area2;
3022
3023   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3024 }
3025
3026 // This method divides dynamic symbols into symbols that have GOT entry, and
3027 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
3028 // Mips ABI requires that symbols with the GOT entry must be at the end of
3029 // dynamic symbol table, and the order in dynamic symbol table must match the
3030 // order in GOT.
3031
3032 template<int size, bool big_endian>
3033 static void
3034 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3035                     std::vector<Symbol*>* non_got_symbols,
3036                     std::vector<Symbol*>* got_symbols)
3037 {
3038   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3039        p != dyn_symbols->end();
3040        ++p)
3041     {
3042       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3043       if (mips_sym->global_got_area() == GGA_NORMAL
3044           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3045         got_symbols->push_back(mips_sym);
3046       else
3047         non_got_symbols->push_back(mips_sym);
3048     }
3049
3050   std::sort(got_symbols->begin(), got_symbols->end(),
3051             got_offset_compare<size, big_endian>);
3052 }
3053
3054 // Functor class for processing the global symbol table.
3055
3056 template<int size, bool big_endian>
3057 class Symbol_visitor_check_symbols
3058 {
3059  public:
3060   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3061     Layout* layout, Symbol_table* symtab)
3062     : target_(target), layout_(layout), symtab_(symtab)
3063   { }
3064
3065   void
3066   operator()(Sized_symbol<size>* sym)
3067   {
3068     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3069     if (local_pic_function<size, big_endian>(mips_sym))
3070       {
3071         // SYM is a function that might need $25 to be valid on entry.
3072         // If we're creating a non-PIC relocatable object, mark SYM as
3073         // being PIC.  If we're creating a non-relocatable object with
3074         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3075         // stub.
3076         if (parameters->options().relocatable())
3077           {
3078             if (!parameters->options().output_is_position_independent())
3079               mips_sym->set_pic();
3080           }
3081         else if (mips_sym->has_nonpic_branches())
3082           {
3083             this->target_->la25_stub_section(layout_)
3084                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3085           }
3086       }
3087   }
3088
3089  private:
3090   Target_mips<size, big_endian>* target_;
3091   Layout* layout_;
3092   Symbol_table* symtab_;
3093 };
3094
3095 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3096 // and endianness. The relocation format for MIPS-64 is non-standard.
3097
3098 template<int sh_type, int size, bool big_endian>
3099 struct Mips_reloc_types;
3100
3101 template<bool big_endian>
3102 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3103 {
3104   typedef typename elfcpp::Rel<32, big_endian> Reloc;
3105   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3106
3107   static typename elfcpp::Elf_types<32>::Elf_Swxword
3108   get_r_addend(const Reloc*)
3109   { return 0; }
3110
3111   static inline void
3112   set_reloc_addend(Reloc_write*,
3113                    typename elfcpp::Elf_types<32>::Elf_Swxword)
3114   { gold_unreachable(); }
3115 };
3116
3117 template<bool big_endian>
3118 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3119 {
3120   typedef typename elfcpp::Rela<32, big_endian> Reloc;
3121   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3122
3123   static typename elfcpp::Elf_types<32>::Elf_Swxword
3124   get_r_addend(const Reloc* reloc)
3125   { return reloc->get_r_addend(); }
3126
3127   static inline void
3128   set_reloc_addend(Reloc_write* p,
3129                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
3130   { p->put_r_addend(val); }
3131 };
3132
3133 template<bool big_endian>
3134 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3135 {
3136   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3137   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3138
3139   static typename elfcpp::Elf_types<64>::Elf_Swxword
3140   get_r_addend(const Reloc*)
3141   { return 0; }
3142
3143   static inline void
3144   set_reloc_addend(Reloc_write*,
3145                    typename elfcpp::Elf_types<64>::Elf_Swxword)
3146   { gold_unreachable(); }
3147 };
3148
3149 template<bool big_endian>
3150 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3151 {
3152   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3153   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3154
3155   static typename elfcpp::Elf_types<64>::Elf_Swxword
3156   get_r_addend(const Reloc* reloc)
3157   { return reloc->get_r_addend(); }
3158
3159   static inline void
3160   set_reloc_addend(Reloc_write* p,
3161                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
3162   { p->put_r_addend(val); }
3163 };
3164
3165 // Forward declaration.
3166 static unsigned int
3167 mips_get_size_for_reloc(unsigned int, Relobj*);
3168
3169 // A class for inquiring about properties of a relocation,
3170 // used while scanning relocs during a relocatable link and
3171 // garbage collection.
3172
3173 template<int sh_type_, int size, bool big_endian>
3174 class Mips_classify_reloc;
3175
3176 template<int sh_type_, bool big_endian>
3177 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3178     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3179 {
3180  public:
3181   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3182       Reltype;
3183   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3184       Reltype_write;
3185
3186   // Return the symbol referred to by the relocation.
3187   static inline unsigned int
3188   get_r_sym(const Reltype* reloc)
3189   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3190
3191   // Return the type of the relocation.
3192   static inline unsigned int
3193   get_r_type(const Reltype* reloc)
3194   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3195
3196   static inline unsigned int
3197   get_r_type2(const Reltype*)
3198   { return 0; }
3199
3200   static inline unsigned int
3201   get_r_type3(const Reltype*)
3202   { return 0; }
3203
3204   static inline unsigned int
3205   get_r_ssym(const Reltype*)
3206   { return 0; }
3207
3208   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3209   static inline unsigned int
3210   get_r_addend(const Reltype* reloc)
3211   {
3212     if (sh_type_ == elfcpp::SHT_REL)
3213       return 0;
3214     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3215   }
3216
3217   // Write the r_info field to a new reloc, using the r_info field from
3218   // the original reloc, replacing the r_sym field with R_SYM.
3219   static inline void
3220   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3221   {
3222     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3223     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3224   }
3225
3226   // Write the r_addend field to a new reloc.
3227   static inline void
3228   put_r_addend(Reltype_write* to,
3229                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3230   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3231
3232   // Return the size of the addend of the relocation (only used for SHT_REL).
3233   static unsigned int
3234   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3235   { return mips_get_size_for_reloc(r_type, obj); }
3236 };
3237
3238 template<int sh_type_, bool big_endian>
3239 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3240     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3241 {
3242  public:
3243   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3244       Reltype;
3245   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3246       Reltype_write;
3247
3248   // Return the symbol referred to by the relocation.
3249   static inline unsigned int
3250   get_r_sym(const Reltype* reloc)
3251   { return reloc->get_r_sym(); }
3252
3253   // Return the r_type of the relocation.
3254   static inline unsigned int
3255   get_r_type(const Reltype* reloc)
3256   { return reloc->get_r_type(); }
3257
3258   // Return the r_type2 of the relocation.
3259   static inline unsigned int
3260   get_r_type2(const Reltype* reloc)
3261   { return reloc->get_r_type2(); }
3262
3263   // Return the r_type3 of the relocation.
3264   static inline unsigned int
3265   get_r_type3(const Reltype* reloc)
3266   { return reloc->get_r_type3(); }
3267
3268   // Return the special symbol of the relocation.
3269   static inline unsigned int
3270   get_r_ssym(const Reltype* reloc)
3271   { return reloc->get_r_ssym(); }
3272
3273   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3274   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3275   get_r_addend(const Reltype* reloc)
3276   {
3277     if (sh_type_ == elfcpp::SHT_REL)
3278       return 0;
3279     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3280   }
3281
3282   // Write the r_info field to a new reloc, using the r_info field from
3283   // the original reloc, replacing the r_sym field with R_SYM.
3284   static inline void
3285   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3286   {
3287     new_reloc->put_r_sym(r_sym);
3288     new_reloc->put_r_ssym(reloc->get_r_ssym());
3289     new_reloc->put_r_type3(reloc->get_r_type3());
3290     new_reloc->put_r_type2(reloc->get_r_type2());
3291     new_reloc->put_r_type(reloc->get_r_type());
3292   }
3293
3294   // Write the r_addend field to a new reloc.
3295   static inline void
3296   put_r_addend(Reltype_write* to,
3297                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3298   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3299
3300   // Return the size of the addend of the relocation (only used for SHT_REL).
3301   static unsigned int
3302   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3303   { return mips_get_size_for_reloc(r_type, obj); }
3304 };
3305
3306 template<int size, bool big_endian>
3307 class Target_mips : public Sized_target<size, big_endian>
3308 {
3309   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3310   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3311     Reloc_section;
3312   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3313   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3314   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3315       Reltype;
3316   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3317       Relatype;
3318
3319  public:
3320   Target_mips(const Target::Target_info* info = &mips_info)
3321     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3322       got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3323       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3324       mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3325       mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3326       entry_symbol_is_compressed_(false), insn32_(false)
3327   {
3328     this->add_machine_extensions();
3329   }
3330
3331   // The offset of $gp from the beginning of the .got section.
3332   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3333
3334   // The maximum size of the GOT for it to be addressable using 16-bit
3335   // offsets from $gp.
3336   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3337
3338   // Make a new symbol table entry for the Mips target.
3339   Sized_symbol<size>*
3340   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3341   { return new Mips_symbol<size>(); }
3342
3343   // Process the relocations to determine unreferenced sections for
3344   // garbage collection.
3345   void
3346   gc_process_relocs(Symbol_table* symtab,
3347                     Layout* layout,
3348                     Sized_relobj_file<size, big_endian>* object,
3349                     unsigned int data_shndx,
3350                     unsigned int sh_type,
3351                     const unsigned char* prelocs,
3352                     size_t reloc_count,
3353                     Output_section* output_section,
3354                     bool needs_special_offset_handling,
3355                     size_t local_symbol_count,
3356                     const unsigned char* plocal_symbols);
3357
3358   // Scan the relocations to look for symbol adjustments.
3359   void
3360   scan_relocs(Symbol_table* symtab,
3361               Layout* layout,
3362               Sized_relobj_file<size, big_endian>* object,
3363               unsigned int data_shndx,
3364               unsigned int sh_type,
3365               const unsigned char* prelocs,
3366               size_t reloc_count,
3367               Output_section* output_section,
3368               bool needs_special_offset_handling,
3369               size_t local_symbol_count,
3370               const unsigned char* plocal_symbols);
3371
3372   // Finalize the sections.
3373   void
3374   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3375
3376   // Relocate a section.
3377   void
3378   relocate_section(const Relocate_info<size, big_endian>*,
3379                    unsigned int sh_type,
3380                    const unsigned char* prelocs,
3381                    size_t reloc_count,
3382                    Output_section* output_section,
3383                    bool needs_special_offset_handling,
3384                    unsigned char* view,
3385                    Mips_address view_address,
3386                    section_size_type view_size,
3387                    const Reloc_symbol_changes*);
3388
3389   // Scan the relocs during a relocatable link.
3390   void
3391   scan_relocatable_relocs(Symbol_table* symtab,
3392                           Layout* layout,
3393                           Sized_relobj_file<size, big_endian>* object,
3394                           unsigned int data_shndx,
3395                           unsigned int sh_type,
3396                           const unsigned char* prelocs,
3397                           size_t reloc_count,
3398                           Output_section* output_section,
3399                           bool needs_special_offset_handling,
3400                           size_t local_symbol_count,
3401                           const unsigned char* plocal_symbols,
3402                           Relocatable_relocs*);
3403
3404   // Scan the relocs for --emit-relocs.
3405   void
3406   emit_relocs_scan(Symbol_table* symtab,
3407                    Layout* layout,
3408                    Sized_relobj_file<size, big_endian>* object,
3409                    unsigned int data_shndx,
3410                    unsigned int sh_type,
3411                    const unsigned char* prelocs,
3412                    size_t reloc_count,
3413                    Output_section* output_section,
3414                    bool needs_special_offset_handling,
3415                    size_t local_symbol_count,
3416                    const unsigned char* plocal_syms,
3417                    Relocatable_relocs* rr);
3418
3419   // Emit relocations for a section.
3420   void
3421   relocate_relocs(const Relocate_info<size, big_endian>*,
3422                   unsigned int sh_type,
3423                   const unsigned char* prelocs,
3424                   size_t reloc_count,
3425                   Output_section* output_section,
3426                   typename elfcpp::Elf_types<size>::Elf_Off
3427                     offset_in_output_section,
3428                   unsigned char* view,
3429                   Mips_address view_address,
3430                   section_size_type view_size,
3431                   unsigned char* reloc_view,
3432                   section_size_type reloc_view_size);
3433
3434   // Perform target-specific processing in a relocatable link.  This is
3435   // only used if we use the relocation strategy RELOC_SPECIAL.
3436   void
3437   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3438                                unsigned int sh_type,
3439                                const unsigned char* preloc_in,
3440                                size_t relnum,
3441                                Output_section* output_section,
3442                                typename elfcpp::Elf_types<size>::Elf_Off
3443                                  offset_in_output_section,
3444                                unsigned char* view,
3445                                Mips_address view_address,
3446                                section_size_type view_size,
3447                                unsigned char* preloc_out);
3448
3449   // Return whether SYM is defined by the ABI.
3450   bool
3451   do_is_defined_by_abi(const Symbol* sym) const
3452   {
3453     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3454             || (strcmp(sym->name(), "_gp_disp") == 0)
3455             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3456   }
3457
3458   // Return the number of entries in the GOT.
3459   unsigned int
3460   got_entry_count() const
3461   {
3462     if (!this->has_got_section())
3463       return 0;
3464     return this->got_size() / (size/8);
3465   }
3466
3467   // Return the number of entries in the PLT.
3468   unsigned int
3469   plt_entry_count() const
3470   {
3471     if (this->plt_ == NULL)
3472       return 0;
3473     return this->plt_->entry_count();
3474   }
3475
3476   // Return the offset of the first non-reserved PLT entry.
3477   unsigned int
3478   first_plt_entry_offset() const
3479   { return this->plt_->first_plt_entry_offset(); }
3480
3481   // Return the size of each PLT entry.
3482   unsigned int
3483   plt_entry_size() const
3484   { return this->plt_->plt_entry_size(); }
3485
3486   // Get the GOT section, creating it if necessary.
3487   Mips_output_data_got<size, big_endian>*
3488   got_section(Symbol_table*, Layout*);
3489
3490   // Get the GOT section.
3491   Mips_output_data_got<size, big_endian>*
3492   got_section() const
3493   {
3494     gold_assert(this->got_ != NULL);
3495     return this->got_;
3496   }
3497
3498   // Get the .MIPS.stubs section, creating it if necessary.
3499   Mips_output_data_mips_stubs<size, big_endian>*
3500   mips_stubs_section(Layout* layout);
3501
3502   // Get the .MIPS.stubs section.
3503   Mips_output_data_mips_stubs<size, big_endian>*
3504   mips_stubs_section() const
3505   {
3506     gold_assert(this->mips_stubs_ != NULL);
3507     return this->mips_stubs_;
3508   }
3509
3510   // Get the LA25 stub section, creating it if necessary.
3511   Mips_output_data_la25_stub<size, big_endian>*
3512   la25_stub_section(Layout*);
3513
3514   // Get the LA25 stub section.
3515   Mips_output_data_la25_stub<size, big_endian>*
3516   la25_stub_section()
3517   {
3518     gold_assert(this->la25_stub_ != NULL);
3519     return this->la25_stub_;
3520   }
3521
3522   // Get gp value.  It has the value of .got + 0x7FF0.
3523   Mips_address
3524   gp_value() const
3525   {
3526     if (this->gp_ != NULL)
3527       return this->gp_->value();
3528     return 0;
3529   }
3530
3531   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3532   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3533   Mips_address
3534   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3535   {
3536     if (this->gp_ == NULL)
3537       return 0;
3538
3539     bool multi_got = false;
3540     if (this->has_got_section())
3541       multi_got = this->got_section()->multi_got();
3542     if (!multi_got)
3543       return this->gp_->value();
3544     else
3545       return this->gp_->value() + this->got_section()->get_got_offset(object);
3546   }
3547
3548   // Get the dynamic reloc section, creating it if necessary.
3549   Reloc_section*
3550   rel_dyn_section(Layout*);
3551
3552   bool
3553   do_has_custom_set_dynsym_indexes() const
3554   { return true; }
3555
3556   // Don't emit input .reginfo/.MIPS.abiflags sections to
3557   // output .reginfo/.MIPS.abiflags.
3558   bool
3559   do_should_include_section(elfcpp::Elf_Word sh_type) const
3560   {
3561     return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3562              && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3563   }
3564
3565   // Set the dynamic symbol indexes.  INDEX is the index of the first
3566   // global dynamic symbol.  Pointers to the symbols are stored into the
3567   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3568   // updated dynamic symbol index.
3569   unsigned int
3570   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3571                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3572                         Versions* versions, Symbol_table* symtab) const;
3573
3574   // Remove .MIPS.stubs entry for a symbol.
3575   void
3576   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3577   {
3578     if (this->mips_stubs_ != NULL)
3579       this->mips_stubs_->remove_entry(sym);
3580   }
3581
3582   // The value to write into got[1] for SVR4 targets, to identify it is
3583   // a GNU object.  The dynamic linker can then use got[1] to store the
3584   // module pointer.
3585   uint64_t
3586   mips_elf_gnu_got1_mask()
3587   {
3588     if (this->is_output_n64())
3589       return (uint64_t)1 << 63;
3590     else
3591       return 1 << 31;
3592   }
3593
3594   // Whether the output has microMIPS code.  This is valid only after
3595   // merge_obj_e_flags() is called.
3596   bool
3597   is_output_micromips() const
3598   {
3599     gold_assert(this->are_processor_specific_flags_set());
3600     return elfcpp::is_micromips(this->processor_specific_flags());
3601   }
3602
3603   // Whether the output uses N32 ABI.  This is valid only after
3604   // merge_obj_e_flags() is called.
3605   bool
3606   is_output_n32() const
3607   {
3608     gold_assert(this->are_processor_specific_flags_set());
3609     return elfcpp::abi_n32(this->processor_specific_flags());
3610   }
3611
3612   // Whether the output uses R6 ISA.  This is valid only after
3613   // merge_obj_e_flags() is called.
3614   bool
3615   is_output_r6() const
3616   {
3617     gold_assert(this->are_processor_specific_flags_set());
3618     return elfcpp::r6_isa(this->processor_specific_flags());
3619   }
3620
3621   // Whether the output uses N64 ABI.
3622   bool
3623   is_output_n64() const
3624   { return size == 64; }
3625
3626   // Whether the output uses NEWABI.  This is valid only after
3627   // merge_obj_e_flags() is called.
3628   bool
3629   is_output_newabi() const
3630   { return this->is_output_n32() || this->is_output_n64(); }
3631
3632   // Whether we can only use 32-bit microMIPS instructions.
3633   bool
3634   use_32bit_micromips_instructions() const
3635   { return this->insn32_; }
3636
3637   // Return the r_sym field from a relocation.
3638   unsigned int
3639   get_r_sym(const unsigned char* preloc) const
3640   {
3641     // Since REL and RELA relocs share the same structure through
3642     // the r_info field, we can just use REL here.
3643     Reltype rel(preloc);
3644     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3645         get_r_sym(&rel);
3646   }
3647
3648  protected:
3649   // Return the value to use for a dynamic symbol which requires special
3650   // treatment.  This is how we support equality comparisons of function
3651   // pointers across shared library boundaries, as described in the
3652   // processor specific ABI supplement.
3653   uint64_t
3654   do_dynsym_value(const Symbol* gsym) const;
3655
3656   // Make an ELF object.
3657   Object*
3658   do_make_elf_object(const std::string&, Input_file*, off_t,
3659                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3660
3661   Object*
3662   do_make_elf_object(const std::string&, Input_file*, off_t,
3663                      const elfcpp::Ehdr<size, !big_endian>&)
3664   { gold_unreachable(); }
3665
3666   // Make an output section.
3667   Output_section*
3668   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3669                          elfcpp::Elf_Xword flags)
3670     {
3671       if (type == elfcpp::SHT_MIPS_OPTIONS)
3672         return new Mips_output_section_options<size, big_endian>(name, type,
3673                                                                  flags, this);
3674       else
3675         return new Output_section(name, type, flags);
3676     }
3677
3678   // Adjust ELF file header.
3679   void
3680   do_adjust_elf_header(unsigned char* view, int len);
3681
3682   // Get the custom dynamic tag value.
3683   unsigned int
3684   do_dynamic_tag_custom_value(elfcpp::DT) const;
3685
3686   // Adjust the value written to the dynamic symbol table.
3687   virtual void
3688   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3689   {
3690     elfcpp::Sym<size, big_endian> isym(view);
3691     elfcpp::Sym_write<size, big_endian> osym(view);
3692     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3693
3694     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3695     // to treat compressed symbols like any other.
3696     Mips_address value = isym.get_st_value();
3697     if (mips_sym->is_mips16() && value != 0)
3698       {
3699         if (!mips_sym->has_mips16_fn_stub())
3700           value |= 1;
3701         else
3702           {
3703             // If we have a MIPS16 function with a stub, the dynamic symbol
3704             // must refer to the stub, since only the stub uses the standard
3705             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3706             // in this case.
3707
3708             // There is a code which does this in the method
3709             // Target_mips::do_dynsym_value, but that code will only be
3710             // executed if the symbol is from dynobj.
3711             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3712             // table.
3713
3714             Mips16_stub_section<size, big_endian>* fn_stub =
3715               mips_sym->template get_mips16_fn_stub<big_endian>();
3716             value = fn_stub->output_address();
3717             osym.put_st_size(fn_stub->section_size());
3718           }
3719
3720         osym.put_st_value(value);
3721         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3722                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3723       }
3724     else if ((mips_sym->is_micromips()
3725               // Stubs are always microMIPS if there is any microMIPS code in
3726               // the output.
3727               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3728              && value != 0)
3729       {
3730         osym.put_st_value(value | 1);
3731         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3732                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3733       }
3734   }
3735
3736  private:
3737   // The class which scans relocations.
3738   class Scan
3739   {
3740    public:
3741     Scan()
3742     { }
3743
3744     static inline int
3745     get_reference_flags(unsigned int r_type);
3746
3747     inline void
3748     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3749           Sized_relobj_file<size, big_endian>* object,
3750           unsigned int data_shndx,
3751           Output_section* output_section,
3752           const Reltype& reloc, unsigned int r_type,
3753           const elfcpp::Sym<size, big_endian>& lsym,
3754           bool is_discarded);
3755
3756     inline void
3757     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3758           Sized_relobj_file<size, big_endian>* object,
3759           unsigned int data_shndx,
3760           Output_section* output_section,
3761           const Relatype& reloc, unsigned int r_type,
3762           const elfcpp::Sym<size, big_endian>& lsym,
3763           bool is_discarded);
3764
3765     inline void
3766     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3767           Sized_relobj_file<size, big_endian>* object,
3768           unsigned int data_shndx,
3769           Output_section* output_section,
3770           const Relatype* rela,
3771           const Reltype* rel,
3772           unsigned int rel_type,
3773           unsigned int r_type,
3774           const elfcpp::Sym<size, big_endian>& lsym,
3775           bool is_discarded);
3776
3777     inline void
3778     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3779            Sized_relobj_file<size, big_endian>* object,
3780            unsigned int data_shndx,
3781            Output_section* output_section,
3782            const Reltype& reloc, unsigned int r_type,
3783            Symbol* gsym);
3784
3785     inline void
3786     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787            Sized_relobj_file<size, big_endian>* object,
3788            unsigned int data_shndx,
3789            Output_section* output_section,
3790            const Relatype& reloc, unsigned int r_type,
3791            Symbol* gsym);
3792
3793     inline void
3794     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795            Sized_relobj_file<size, big_endian>* object,
3796            unsigned int data_shndx,
3797            Output_section* output_section,
3798            const Relatype* rela,
3799            const Reltype* rel,
3800            unsigned int rel_type,
3801            unsigned int r_type,
3802            Symbol* gsym);
3803
3804     inline bool
3805     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3806                                         Target_mips*,
3807                                         Sized_relobj_file<size, big_endian>*,
3808                                         unsigned int,
3809                                         Output_section*,
3810                                         const Reltype&,
3811                                         unsigned int,
3812                                         const elfcpp::Sym<size, big_endian>&)
3813     { return false; }
3814
3815     inline bool
3816     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3817                                          Target_mips*,
3818                                          Sized_relobj_file<size, big_endian>*,
3819                                          unsigned int,
3820                                          Output_section*,
3821                                          const Reltype&,
3822                                          unsigned int, Symbol*)
3823     { return false; }
3824
3825     inline bool
3826     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3827                                         Target_mips*,
3828                                         Sized_relobj_file<size, big_endian>*,
3829                                         unsigned int,
3830                                         Output_section*,
3831                                         const Relatype&,
3832                                         unsigned int,
3833                                         const elfcpp::Sym<size, big_endian>&)
3834     { return false; }
3835
3836     inline bool
3837     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3838                                          Target_mips*,
3839                                          Sized_relobj_file<size, big_endian>*,
3840                                          unsigned int,
3841                                          Output_section*,
3842                                          const Relatype&,
3843                                          unsigned int, Symbol*)
3844     { return false; }
3845    private:
3846     static void
3847     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3848                             unsigned int r_type);
3849
3850     static void
3851     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3852                              unsigned int r_type, Symbol*);
3853   };
3854
3855   // The class which implements relocation.
3856   class Relocate
3857   {
3858    public:
3859     Relocate()
3860       : calculated_value_(0), calculate_only_(false)
3861     { }
3862
3863     ~Relocate()
3864     { }
3865
3866     // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3867     inline bool
3868     should_apply_static_reloc(const Mips_symbol<size>* gsym,
3869                               unsigned int r_type,
3870                               Output_section* output_section,
3871                               Target_mips* target);
3872
3873     // Do a relocation.  Return false if the caller should not issue
3874     // any warnings about this relocation.
3875     inline bool
3876     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3877              Target_mips*, Output_section*, size_t, const unsigned char*,
3878              const Sized_symbol<size>*, const Symbol_value<size>*,
3879              unsigned char*, Mips_address, section_size_type);
3880
3881    private:
3882     // Result of the relocation.
3883     Valtype calculated_value_;
3884     // Whether we have to calculate relocation instead of applying it.
3885     bool calculate_only_;
3886   };
3887
3888   // This POD class holds the dynamic relocations that should be emitted instead
3889   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3890   // relocations if it turns out that the symbol does not have static
3891   // relocations.
3892   class Dyn_reloc
3893   {
3894    public:
3895     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3896               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3897               Output_section* output_section, Mips_address r_offset)
3898       : sym_(sym), r_type_(r_type), relobj_(relobj),
3899         shndx_(shndx), output_section_(output_section),
3900         r_offset_(r_offset)
3901     { }
3902
3903     // Emit this reloc if appropriate.  This is called after we have
3904     // scanned all the relocations, so we know whether the symbol has
3905     // static relocations.
3906     void
3907     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3908          Symbol_table* symtab)
3909     {
3910       if (!this->sym_->has_static_relocs())
3911         {
3912           got->record_global_got_symbol(this->sym_, this->relobj_,
3913                                         this->r_type_, true, false);
3914           if (!symbol_references_local(this->sym_,
3915                                 this->sym_->should_add_dynsym_entry(symtab)))
3916             rel_dyn->add_global(this->sym_, this->r_type_,
3917                                 this->output_section_, this->relobj_,
3918                                 this->shndx_, this->r_offset_);
3919           else
3920             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3921                                           this->output_section_, this->relobj_,
3922                                           this->shndx_, this->r_offset_);
3923         }
3924     }
3925
3926    private:
3927     Mips_symbol<size>* sym_;
3928     unsigned int r_type_;
3929     Mips_relobj<size, big_endian>* relobj_;
3930     unsigned int shndx_;
3931     Output_section* output_section_;
3932     Mips_address r_offset_;
3933   };
3934
3935   // Adjust TLS relocation type based on the options and whether this
3936   // is a local symbol.
3937   static tls::Tls_optimization
3938   optimize_tls_reloc(bool is_final, int r_type);
3939
3940   // Return whether there is a GOT section.
3941   bool
3942   has_got_section() const
3943   { return this->got_ != NULL; }
3944
3945   // Check whether the given ELF header flags describe a 32-bit binary.
3946   bool
3947   mips_32bit_flags(elfcpp::Elf_Word);
3948
3949   enum Mips_mach {
3950     mach_mips3000             = 3000,
3951     mach_mips3900             = 3900,
3952     mach_mips4000             = 4000,
3953     mach_mips4010             = 4010,
3954     mach_mips4100             = 4100,
3955     mach_mips4111             = 4111,
3956     mach_mips4120             = 4120,
3957     mach_mips4300             = 4300,
3958     mach_mips4400             = 4400,
3959     mach_mips4600             = 4600,
3960     mach_mips4650             = 4650,
3961     mach_mips5000             = 5000,
3962     mach_mips5400             = 5400,
3963     mach_mips5500             = 5500,
3964     mach_mips5900             = 5900,
3965     mach_mips6000             = 6000,
3966     mach_mips7000             = 7000,
3967     mach_mips8000             = 8000,
3968     mach_mips9000             = 9000,
3969     mach_mips10000            = 10000,
3970     mach_mips12000            = 12000,
3971     mach_mips14000            = 14000,
3972     mach_mips16000            = 16000,
3973     mach_mips16               = 16,
3974     mach_mips5                = 5,
3975     mach_mips_loongson_2e     = 3001,
3976     mach_mips_loongson_2f     = 3002,
3977     mach_mips_loongson_3a     = 3003,
3978     mach_mips_sb1             = 12310201, // octal 'SB', 01
3979     mach_mips_octeon          = 6501,
3980     mach_mips_octeonp         = 6601,
3981     mach_mips_octeon2         = 6502,
3982     mach_mips_octeon3         = 6503,
3983     mach_mips_xlr             = 887682,   // decimal 'XLR'
3984     mach_mipsisa32            = 32,
3985     mach_mipsisa32r2          = 33,
3986     mach_mipsisa32r3          = 34,
3987     mach_mipsisa32r5          = 36,
3988     mach_mipsisa32r6          = 37,
3989     mach_mipsisa64            = 64,
3990     mach_mipsisa64r2          = 65,
3991     mach_mipsisa64r3          = 66,
3992     mach_mipsisa64r5          = 68,
3993     mach_mipsisa64r6          = 69,
3994     mach_mips_micromips       = 96
3995   };
3996
3997   // Return the MACH for a MIPS e_flags value.
3998   unsigned int
3999   elf_mips_mach(elfcpp::Elf_Word);
4000
4001   // Return the MACH for each .MIPS.abiflags ISA Extension.
4002   unsigned int
4003   mips_isa_ext_mach(unsigned int);
4004
4005   // Return the .MIPS.abiflags value representing each ISA Extension.
4006   unsigned int
4007   mips_isa_ext(unsigned int);
4008
4009   // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4010   void
4011   update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4012                       Mips_abiflags<big_endian>*);
4013
4014   // Infer the content of the ABI flags based on the elf header.
4015   void
4016   infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4017
4018   // Create abiflags from elf header or from .MIPS.abiflags section.
4019   void
4020   create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4021
4022   // Return the meaning of fp_abi, or "unknown" if not known.
4023   const char*
4024   fp_abi_string(int);
4025
4026   // Select fp_abi.
4027   int
4028   select_fp_abi(const std::string&, int, int);
4029
4030   // Merge attributes from input object.
4031   void
4032   merge_obj_attributes(const std::string&, const Attributes_section_data*);
4033
4034   // Merge abiflags from input object.
4035   void
4036   merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4037
4038   // Check whether machine EXTENSION is an extension of machine BASE.
4039   bool
4040   mips_mach_extends(unsigned int, unsigned int);
4041
4042   // Merge file header flags from input object.
4043   void
4044   merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4045
4046   // Encode ISA level and revision as a single value.
4047   int
4048   level_rev(unsigned char isa_level, unsigned char isa_rev) const
4049   { return (isa_level << 3) | isa_rev; }
4050
4051   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4052   static inline bool
4053   jal_to_bal()
4054   { return false; }
4055
4056   // True if we are linking for CPUs that are faster if JALR is converted to
4057   // BAL.  This should be safe for all architectures.  We enable this predicate
4058   // for all CPUs.
4059   static inline bool
4060   jalr_to_bal()
4061   { return true; }
4062
4063   // True if we are linking for CPUs that are faster if JR is converted to B.
4064   // This should be safe for all architectures.  We enable this predicate for
4065   // all CPUs.
4066   static inline bool
4067   jr_to_b()
4068   { return true; }
4069
4070   // Return the size of the GOT section.
4071   section_size_type
4072   got_size() const
4073   {
4074     gold_assert(this->got_ != NULL);
4075     return this->got_->data_size();
4076   }
4077
4078   // Create a PLT entry for a global symbol referenced by r_type relocation.
4079   void
4080   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4081                  unsigned int r_type);
4082
4083   // Get the PLT section.
4084   Mips_output_data_plt<size, big_endian>*
4085   plt_section() const
4086   {
4087     gold_assert(this->plt_ != NULL);
4088     return this->plt_;
4089   }
4090
4091   // Get the GOT PLT section.
4092   const Mips_output_data_plt<size, big_endian>*
4093   got_plt_section() const
4094   {
4095     gold_assert(this->got_plt_ != NULL);
4096     return this->got_plt_;
4097   }
4098
4099   // Copy a relocation against a global symbol.
4100   void
4101   copy_reloc(Symbol_table* symtab, Layout* layout,
4102              Sized_relobj_file<size, big_endian>* object,
4103              unsigned int shndx, Output_section* output_section,
4104              Symbol* sym, unsigned int r_type, Mips_address r_offset)
4105   {
4106     this->copy_relocs_.copy_reloc(symtab, layout,
4107                                   symtab->get_sized_symbol<size>(sym),
4108                                   object, shndx, output_section,
4109                                   r_type, r_offset, 0,
4110                                   this->rel_dyn_section(layout));
4111   }
4112
4113   void
4114   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4115                 Mips_relobj<size, big_endian>* relobj,
4116                 unsigned int shndx, Output_section* output_section,
4117                 Mips_address r_offset)
4118   {
4119     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4120                                           output_section, r_offset));
4121   }
4122
4123   // Calculate value of _gp symbol.
4124   void
4125   set_gp(Layout*, Symbol_table*);
4126
4127   const char*
4128   elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4129   const char*
4130   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4131
4132   // Adds entries that describe how machines relate to one another.  The entries
4133   // are ordered topologically with MIPS I extensions listed last.  First
4134   // element is extension, second element is base.
4135   void
4136   add_machine_extensions()
4137   {
4138     // MIPS64r2 extensions.
4139     this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4140     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4141     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4142     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4143     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4144
4145     // MIPS64 extensions.
4146     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4147     this->add_extension(mach_mips_sb1, mach_mipsisa64);
4148     this->add_extension(mach_mips_xlr, mach_mipsisa64);
4149
4150     // MIPS V extensions.
4151     this->add_extension(mach_mipsisa64, mach_mips5);
4152
4153     // R10000 extensions.
4154     this->add_extension(mach_mips12000, mach_mips10000);
4155     this->add_extension(mach_mips14000, mach_mips10000);
4156     this->add_extension(mach_mips16000, mach_mips10000);
4157
4158     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
4159     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
4160     // better to allow vr5400 and vr5500 code to be merged anyway, since
4161     // many libraries will just use the core ISA.  Perhaps we could add
4162     // some sort of ASE flag if this ever proves a problem.
4163     this->add_extension(mach_mips5500, mach_mips5400);
4164     this->add_extension(mach_mips5400, mach_mips5000);
4165
4166     // MIPS IV extensions.
4167     this->add_extension(mach_mips5, mach_mips8000);
4168     this->add_extension(mach_mips10000, mach_mips8000);
4169     this->add_extension(mach_mips5000, mach_mips8000);
4170     this->add_extension(mach_mips7000, mach_mips8000);
4171     this->add_extension(mach_mips9000, mach_mips8000);
4172
4173     // VR4100 extensions.
4174     this->add_extension(mach_mips4120, mach_mips4100);
4175     this->add_extension(mach_mips4111, mach_mips4100);
4176
4177     // MIPS III extensions.
4178     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4179     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4180     this->add_extension(mach_mips8000, mach_mips4000);
4181     this->add_extension(mach_mips4650, mach_mips4000);
4182     this->add_extension(mach_mips4600, mach_mips4000);
4183     this->add_extension(mach_mips4400, mach_mips4000);
4184     this->add_extension(mach_mips4300, mach_mips4000);
4185     this->add_extension(mach_mips4100, mach_mips4000);
4186     this->add_extension(mach_mips4010, mach_mips4000);
4187     this->add_extension(mach_mips5900, mach_mips4000);
4188
4189     // MIPS32 extensions.
4190     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4191
4192     // MIPS II extensions.
4193     this->add_extension(mach_mips4000, mach_mips6000);
4194     this->add_extension(mach_mipsisa32, mach_mips6000);
4195
4196     // MIPS I extensions.
4197     this->add_extension(mach_mips6000, mach_mips3000);
4198     this->add_extension(mach_mips3900, mach_mips3000);
4199   }
4200
4201   // Add value to MIPS extenstions.
4202   void
4203   add_extension(unsigned int base, unsigned int extension)
4204   {
4205     std::pair<unsigned int, unsigned int> ext(base, extension);
4206     this->mips_mach_extensions_.push_back(ext);
4207   }
4208
4209   // Return the number of entries in the .dynsym section.
4210   unsigned int get_dt_mips_symtabno() const
4211   {
4212     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4213                            / elfcpp::Elf_sizes<size>::sym_size));
4214     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4215   }
4216
4217   // Information about this specific target which we pass to the
4218   // general Target structure.
4219   static const Target::Target_info mips_info;
4220   // The GOT section.
4221   Mips_output_data_got<size, big_endian>* got_;
4222   // gp symbol.  It has the value of .got + 0x7FF0.
4223   Sized_symbol<size>* gp_;
4224   // The PLT section.
4225   Mips_output_data_plt<size, big_endian>* plt_;
4226   // The GOT PLT section.
4227   Output_data_space* got_plt_;
4228   // The dynamic reloc section.
4229   Reloc_section* rel_dyn_;
4230   // The .rld_map section.
4231   Output_data_zero_fill* rld_map_;
4232   // Relocs saved to avoid a COPY reloc.
4233   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4234
4235   // A list of dyn relocs to be saved.
4236   std::vector<Dyn_reloc> dyn_relocs_;
4237
4238   // The LA25 stub section.
4239   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4240   // Architecture extensions.
4241   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4242   // .MIPS.stubs
4243   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4244
4245   // Attributes section data in output.
4246   Attributes_section_data* attributes_section_data_;
4247   // .MIPS.abiflags section data in output.
4248   Mips_abiflags<big_endian>* abiflags_;
4249
4250   unsigned int mach_;
4251   Layout* layout_;
4252
4253   typename std::list<got16_addend<size, big_endian> > got16_addends_;
4254
4255   // Whether there is an input .MIPS.abiflags section.
4256   bool has_abiflags_section_;
4257
4258   // Whether the entry symbol is mips16 or micromips.
4259   bool entry_symbol_is_compressed_;
4260
4261   // Whether we can use only 32-bit microMIPS instructions.
4262   // TODO(sasa): This should be a linker option.
4263   bool insn32_;
4264 };
4265
4266 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4267 // It records high part of the relocation pair.
4268
4269 template<int size, bool big_endian>
4270 struct reloc_high
4271 {
4272   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4273
4274   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4275              const Symbol_value<size>* _psymval, Mips_address _addend,
4276              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4277              Mips_address _address = 0, bool _gp_disp = false)
4278     : view(_view), object(_object), psymval(_psymval), addend(_addend),
4279       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4280       address(_address), gp_disp(_gp_disp)
4281   { }
4282
4283   unsigned char* view;
4284   const Mips_relobj<size, big_endian>* object;
4285   const Symbol_value<size>* psymval;
4286   Mips_address addend;
4287   unsigned int r_type;
4288   unsigned int r_sym;
4289   bool extract_addend;
4290   Mips_address address;
4291   bool gp_disp;
4292 };
4293
4294 template<int size, bool big_endian>
4295 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4296 {
4297   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4298   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4299   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4300   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4301   typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4302
4303  public:
4304   typedef enum
4305   {
4306     STATUS_OKAY,            // No error during relocation.
4307     STATUS_OVERFLOW,        // Relocation overflow.
4308     STATUS_BAD_RELOC,       // Relocation cannot be applied.
4309     STATUS_PCREL_UNALIGNED  // Unaligned PC-relative relocation.
4310   } Status;
4311
4312  private:
4313   typedef Relocate_functions<size, big_endian> Base;
4314   typedef Mips_relocate_functions<size, big_endian> This;
4315
4316   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4317   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4318   static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4319
4320   template<int valsize>
4321   static inline typename This::Status
4322   check_overflow(Valtype value)
4323   {
4324     if (size == 32)
4325       return (Bits<valsize>::has_overflow32(value)
4326               ? This::STATUS_OVERFLOW
4327               : This::STATUS_OKAY);
4328
4329     return (Bits<valsize>::has_overflow(value)
4330             ? This::STATUS_OVERFLOW
4331             : This::STATUS_OKAY);
4332   }
4333
4334   static inline bool
4335   should_shuffle_micromips_reloc(unsigned int r_type)
4336   {
4337     return (micromips_reloc(r_type)
4338             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4339             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4340   }
4341
4342  public:
4343   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4344   //   Most mips16 instructions are 16 bits, but these instructions
4345   //   are 32 bits.
4346   //
4347   //   The format of these instructions is:
4348   //
4349   //   +--------------+--------------------------------+
4350   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
4351   //   +--------------+--------------------------------+
4352   //   |                Immediate  15:0                |
4353   //   +-----------------------------------------------+
4354   //
4355   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4356   //   Note that the immediate value in the first word is swapped.
4357   //
4358   //   When producing a relocatable object file, R_MIPS16_26 is
4359   //   handled mostly like R_MIPS_26.  In particular, the addend is
4360   //   stored as a straight 26-bit value in a 32-bit instruction.
4361   //   (gas makes life simpler for itself by never adjusting a
4362   //   R_MIPS16_26 reloc to be against a section, so the addend is
4363   //   always zero).  However, the 32 bit instruction is stored as 2
4364   //   16-bit values, rather than a single 32-bit value.  In a
4365   //   big-endian file, the result is the same; in a little-endian
4366   //   file, the two 16-bit halves of the 32 bit value are swapped.
4367   //   This is so that a disassembler can recognize the jal
4368   //   instruction.
4369   //
4370   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4371   //   instruction stored as two 16-bit values.  The addend A is the
4372   //   contents of the targ26 field.  The calculation is the same as
4373   //   R_MIPS_26.  When storing the calculated value, reorder the
4374   //   immediate value as shown above, and don't forget to store the
4375   //   value as two 16-bit values.
4376   //
4377   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4378   //   defined as
4379   //
4380   //   big-endian:
4381   //   +--------+----------------------+
4382   //   |        |                      |
4383   //   |        |    targ26-16         |
4384   //   |31    26|25                   0|
4385   //   +--------+----------------------+
4386   //
4387   //   little-endian:
4388   //   +----------+------+-------------+
4389   //   |          |      |             |
4390   //   |  sub1    |      |     sub2    |
4391   //   |0        9|10  15|16         31|
4392   //   +----------+--------------------+
4393   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4394   //   ((sub1 << 16) | sub2)).
4395   //
4396   //   When producing a relocatable object file, the calculation is
4397   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4398   //   When producing a fully linked file, the calculation is
4399   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4400   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4401   //
4402   //   The table below lists the other MIPS16 instruction relocations.
4403   //   Each one is calculated in the same way as the non-MIPS16 relocation
4404   //   given on the right, but using the extended MIPS16 layout of 16-bit
4405   //   immediate fields:
4406   //
4407   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4408   //      R_MIPS16_GOT16          R_MIPS_GOT16
4409   //      R_MIPS16_CALL16         R_MIPS_CALL16
4410   //      R_MIPS16_HI16           R_MIPS_HI16
4411   //      R_MIPS16_LO16           R_MIPS_LO16
4412   //
4413   //   A typical instruction will have a format like this:
4414   //
4415   //   +--------------+--------------------------------+
4416   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4417   //   +--------------+--------------------------------+
4418   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4419   //   +--------------+--------------------------------+
4420   //
4421   //   EXTEND is the five bit value 11110.  Major is the instruction
4422   //   opcode.
4423   //
4424   //   All we need to do here is shuffle the bits appropriately.
4425   //   As above, the two 16-bit halves must be swapped on a
4426   //   little-endian system.
4427
4428   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4429   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4430   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4431
4432   static void
4433   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4434                        bool jal_shuffle)
4435   {
4436     if (!mips16_reloc(r_type)
4437         && !should_shuffle_micromips_reloc(r_type))
4438       return;
4439
4440     // Pick up the first and second halfwords of the instruction.
4441     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4442     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4443     Valtype32 val;
4444
4445     if (micromips_reloc(r_type)
4446         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4447       val = first << 16 | second;
4448     else if (r_type != elfcpp::R_MIPS16_26)
4449       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4450              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4451     else
4452       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4453              | ((first & 0x1f) << 21) | second);
4454
4455     elfcpp::Swap<32, big_endian>::writeval(view, val);
4456   }
4457
4458   static void
4459   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4460   {
4461     if (!mips16_reloc(r_type)
4462         && !should_shuffle_micromips_reloc(r_type))
4463       return;
4464
4465     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4466     Valtype16 first, second;
4467
4468     if (micromips_reloc(r_type)
4469         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4470       {
4471         second = val & 0xffff;
4472         first = val >> 16;
4473       }
4474     else if (r_type != elfcpp::R_MIPS16_26)
4475       {
4476         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4477         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4478       }
4479     else
4480       {
4481         second = val & 0xffff;
4482         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4483                  | ((val >> 21) & 0x1f);
4484       }
4485
4486     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4487     elfcpp::Swap<16, big_endian>::writeval(view, first);
4488   }
4489
4490   // R_MIPS_16: S + sign-extend(A)
4491   static inline typename This::Status
4492   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4493         const Symbol_value<size>* psymval, Mips_address addend_a,
4494         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4495   {
4496     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4497     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4498
4499     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4500                                      : addend_a);
4501
4502     Valtype x = psymval->value(object, addend);
4503     val = Bits<16>::bit_select32(val, x, 0xffffU);
4504
4505     if (calculate_only)
4506       {
4507         *calculated_value = x;
4508         return This::STATUS_OKAY;
4509       }
4510     else
4511       elfcpp::Swap<16, big_endian>::writeval(wv, val);
4512
4513     return check_overflow<16>(x);
4514   }
4515
4516   // R_MIPS_32: S + A
4517   static inline typename This::Status
4518   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4519         const Symbol_value<size>* psymval, Mips_address addend_a,
4520         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4521   {
4522     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4523     Valtype addend = (extract_addend
4524                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4525                         : addend_a);
4526     Valtype x = psymval->value(object, addend);
4527
4528     if (calculate_only)
4529       *calculated_value = x;
4530     else
4531       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4532
4533     return This::STATUS_OKAY;
4534   }
4535
4536   // R_MIPS_JALR, R_MICROMIPS_JALR
4537   static inline typename This::Status
4538   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4539           const Symbol_value<size>* psymval, Mips_address address,
4540           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4541           unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4542           bool calculate_only, Valtype* calculated_value)
4543   {
4544     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4545     Valtype addend = extract_addend ? 0 : addend_a;
4546     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4547
4548     // Try converting J(AL)R to B(AL), if the target is in range.
4549     if (r_type == elfcpp::R_MIPS_JALR
4550         && !cross_mode_jump
4551         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4552             || (jr_to_b && val == 0x03200008)))   // jr t9
4553       {
4554         int offset = psymval->value(object, addend) - (address + 4);
4555         if (!Bits<18>::has_overflow32(offset))
4556           {
4557             if (val == 0x03200008)   // jr t9
4558               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4559             else
4560               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4561           }
4562       }
4563
4564     if (calculate_only)
4565       *calculated_value = val;
4566     else
4567       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4568
4569     return This::STATUS_OKAY;
4570   }
4571
4572   // R_MIPS_PC32: S + A - P
4573   static inline typename This::Status
4574   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4575           const Symbol_value<size>* psymval, Mips_address address,
4576           Mips_address addend_a, bool extract_addend, bool calculate_only,
4577           Valtype* calculated_value)
4578   {
4579     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4580     Valtype addend = (extract_addend
4581                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4582                         : addend_a);
4583     Valtype x = psymval->value(object, addend) - address;
4584
4585     if (calculate_only)
4586        *calculated_value = x;
4587     else
4588       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4589
4590     return This::STATUS_OKAY;
4591   }
4592
4593   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4594   static inline typename This::Status
4595   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4596         const Symbol_value<size>* psymval, Mips_address address,
4597         bool local, Mips_address addend_a, bool extract_addend,
4598         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4599         bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4600   {
4601     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4602     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4603
4604     Valtype addend;
4605     if (extract_addend)
4606       {
4607         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4608           addend = (val & 0x03ffffff) << 1;
4609         else
4610           addend = (val & 0x03ffffff) << 2;
4611       }
4612     else
4613       addend = addend_a;
4614
4615     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4616     // the correct ISA mode selector and bit 1 must be 0.
4617     if (!calculate_only && cross_mode_jump
4618         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4619       {
4620         gold_warning(_("JALX to a non-word-aligned address"));
4621         return This::STATUS_BAD_RELOC;
4622       }
4623
4624     // Shift is 2, unusually, for microMIPS JALX.
4625     unsigned int shift =
4626         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4627
4628     Valtype x;
4629     if (local)
4630       x = addend | ((address + 4) & (0xfc000000 << shift));
4631     else
4632       {
4633         if (shift == 1)
4634           x = Bits<27>::sign_extend32(addend);
4635         else
4636           x = Bits<28>::sign_extend32(addend);
4637       }
4638     x = psymval->value(object, x) >> shift;
4639
4640     if (!calculate_only && !local && !gsym->is_weak_undefined()
4641         && ((x >> 26) != ((address + 4) >> (26 + shift))))
4642       return This::STATUS_OVERFLOW;
4643
4644     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4645
4646     // If required, turn JAL into JALX.
4647     if (cross_mode_jump)
4648       {
4649         bool ok;
4650         Valtype32 opcode = val >> 26;
4651         Valtype32 jalx_opcode;
4652
4653         // Check to see if the opcode is already JAL or JALX.
4654         if (r_type == elfcpp::R_MIPS16_26)
4655           {
4656             ok = (opcode == 0x6) || (opcode == 0x7);
4657             jalx_opcode = 0x7;
4658           }
4659         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4660           {
4661             ok = (opcode == 0x3d) || (opcode == 0x3c);
4662             jalx_opcode = 0x3c;
4663           }
4664         else
4665           {
4666             ok = (opcode == 0x3) || (opcode == 0x1d);
4667             jalx_opcode = 0x1d;
4668           }
4669
4670         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4671         // convert J or JALS to JALX.
4672         if (!calculate_only && !ok)
4673           {
4674             gold_error(_("Unsupported jump between ISA modes; consider "
4675                          "recompiling with interlinking enabled."));
4676             return This::STATUS_BAD_RELOC;
4677           }
4678
4679         // Make this the JALX opcode.
4680         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4681       }
4682
4683     // Try converting JAL to BAL, if the target is in range.
4684     if (!parameters->options().relocatable()
4685         && !cross_mode_jump
4686         && ((jal_to_bal
4687             && r_type == elfcpp::R_MIPS_26
4688             && (val >> 26) == 0x3)))    // jal addr
4689       {
4690         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4691         int offset = dest - (address + 4);
4692         if (!Bits<18>::has_overflow32(offset))
4693           {
4694             if (val == 0x03200008)   // jr t9
4695               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4696             else
4697               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4698           }
4699       }
4700
4701     if (calculate_only)
4702       *calculated_value = val;
4703     else
4704       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4705
4706     return This::STATUS_OKAY;
4707   }
4708
4709   // R_MIPS_PC16
4710   static inline typename This::Status
4711   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4712           const Symbol_value<size>* psymval, Mips_address address,
4713           Mips_address addend_a, bool extract_addend, bool calculate_only,
4714           Valtype* calculated_value)
4715   {
4716     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4717     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4718
4719     Valtype addend = (extract_addend
4720                       ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4721                       : addend_a);
4722
4723     Valtype x = psymval->value(object, addend) - address;
4724     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4725
4726     if (calculate_only)
4727       {
4728         *calculated_value = x >> 2;
4729         return This::STATUS_OKAY;
4730       }
4731     else
4732       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4733
4734     if (psymval->value(object, addend) & 3)
4735       return This::STATUS_PCREL_UNALIGNED;
4736
4737     return check_overflow<18>(x);
4738   }
4739
4740   // R_MIPS_PC21_S2
4741   static inline typename This::Status
4742   relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4743           const Symbol_value<size>* psymval, Mips_address address,
4744           Mips_address addend_a, bool extract_addend, bool calculate_only,
4745           Valtype* calculated_value)
4746   {
4747     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4748     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4749
4750     Valtype addend = (extract_addend
4751                       ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4752                       : addend_a);
4753
4754     Valtype x = psymval->value(object, addend) - address;
4755     val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4756
4757     if (calculate_only)
4758       {
4759         *calculated_value = x >> 2;
4760         return This::STATUS_OKAY;
4761       }
4762     else
4763       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4764
4765     if (psymval->value(object, addend) & 3)
4766       return This::STATUS_PCREL_UNALIGNED;
4767
4768     return check_overflow<23>(x);
4769   }
4770
4771   // R_MIPS_PC26_S2
4772   static inline typename This::Status
4773   relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4774           const Symbol_value<size>* psymval, Mips_address address,
4775           Mips_address addend_a, bool extract_addend, bool calculate_only,
4776           Valtype* calculated_value)
4777   {
4778     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4779     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4780
4781     Valtype addend = (extract_addend
4782                       ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4783                       : addend_a);
4784
4785     Valtype x = psymval->value(object, addend) - address;
4786     val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4787
4788     if (calculate_only)
4789       {
4790         *calculated_value = x >> 2;
4791         return This::STATUS_OKAY;
4792       }
4793     else
4794       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4795
4796     if (psymval->value(object, addend) & 3)
4797       return This::STATUS_PCREL_UNALIGNED;
4798
4799     return check_overflow<28>(x);
4800   }
4801
4802   // R_MIPS_PC18_S3
4803   static inline typename This::Status
4804   relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4805           const Symbol_value<size>* psymval, Mips_address address,
4806           Mips_address addend_a, bool extract_addend, bool calculate_only,
4807           Valtype* calculated_value)
4808   {
4809     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4810     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4811
4812     Valtype addend = (extract_addend
4813                       ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4814                       : addend_a);
4815
4816     Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4817     val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4818
4819     if (calculate_only)
4820       {
4821         *calculated_value = x >> 3;
4822         return This::STATUS_OKAY;
4823       }
4824     else
4825       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4826
4827     if (psymval->value(object, addend) & 7)
4828       return This::STATUS_PCREL_UNALIGNED;
4829
4830     return check_overflow<21>(x);
4831   }
4832
4833   // R_MIPS_PC19_S2
4834   static inline typename This::Status
4835   relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4836           const Symbol_value<size>* psymval, Mips_address address,
4837           Mips_address addend_a, bool extract_addend, bool calculate_only,
4838           Valtype* calculated_value)
4839   {
4840     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4841     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4842
4843     Valtype addend = (extract_addend
4844                       ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4845                       : addend_a);
4846
4847     Valtype x = psymval->value(object, addend) - address;
4848     val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4849
4850     if (calculate_only)
4851       {
4852         *calculated_value = x >> 2;
4853         return This::STATUS_OKAY;
4854       }
4855     else
4856       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4857
4858     if (psymval->value(object, addend) & 3)
4859       return This::STATUS_PCREL_UNALIGNED;
4860
4861     return check_overflow<21>(x);
4862   }
4863
4864   // R_MIPS_PCHI16
4865   static inline typename This::Status
4866   relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4867             const Symbol_value<size>* psymval, Mips_address addend,
4868             Mips_address address, unsigned int r_sym, bool extract_addend)
4869   {
4870     // Record the relocation.  It will be resolved when we find pclo16 part.
4871     pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4872                             addend, 0, r_sym, extract_addend, address));
4873     return This::STATUS_OKAY;
4874   }
4875
4876   // R_MIPS_PCHI16
4877   static inline typename This::Status
4878   do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4879              const Symbol_value<size>* psymval, Mips_address addend_hi,
4880              Mips_address address, bool extract_addend, Valtype32 addend_lo,
4881              bool calculate_only, Valtype* calculated_value)
4882   {
4883     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4884     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4885
4886     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4887                                        : addend_hi);
4888
4889     Valtype value = psymval->value(object, addend) - address;
4890     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4891     val = Bits<32>::bit_select32(val, x, 0xffff);
4892
4893     if (calculate_only)
4894       *calculated_value = x;
4895     else
4896       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4897
4898     return This::STATUS_OKAY;
4899   }
4900
4901   // R_MIPS_PCLO16
4902   static inline typename This::Status
4903   relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4904             const Symbol_value<size>* psymval, Mips_address addend_a,
4905             bool extract_addend, Mips_address address, unsigned int r_sym,
4906             unsigned int rel_type, bool calculate_only,
4907             Valtype* calculated_value)
4908   {
4909     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4910     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4911
4912     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4913                                      : addend_a);
4914
4915     if (rel_type == elfcpp::SHT_REL)
4916       {
4917         // Resolve pending R_MIPS_PCHI16 relocations.
4918         typename std::list<reloc_high<size, big_endian> >::iterator it =
4919             pchi16_relocs.begin();
4920         while (it != pchi16_relocs.end())
4921           {
4922             reloc_high<size, big_endian> pchi16 = *it;
4923             if (pchi16.r_sym == r_sym)
4924               {
4925                 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4926                              pchi16.addend, pchi16.address,
4927                              pchi16.extract_addend, addend, calculate_only,
4928                              calculated_value);
4929                 it = pchi16_relocs.erase(it);
4930               }
4931             else
4932               ++it;
4933           }
4934       }
4935
4936     // Resolve R_MIPS_PCLO16 relocation.
4937     Valtype x = psymval->value(object, addend) - address;
4938     val = Bits<32>::bit_select32(val, x, 0xffff);
4939
4940     if (calculate_only)
4941       *calculated_value = x;
4942     else
4943       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4944
4945     return This::STATUS_OKAY;
4946   }
4947
4948   // R_MICROMIPS_PC7_S1
4949   static inline typename This::Status
4950   relmicromips_pc7_s1(unsigned char* view,
4951                       const Mips_relobj<size, big_endian>* object,
4952                       const Symbol_value<size>* psymval, Mips_address address,
4953                       Mips_address addend_a, bool extract_addend,
4954                       bool calculate_only, Valtype* calculated_value)
4955   {
4956     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4957     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4958
4959     Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4960                                     : addend_a;
4961
4962     Valtype x = psymval->value(object, addend) - address;
4963     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4964
4965     if (calculate_only)
4966       {
4967         *calculated_value = x >> 1;
4968         return This::STATUS_OKAY;
4969       }
4970     else
4971       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4972
4973     return check_overflow<8>(x);
4974   }
4975
4976   // R_MICROMIPS_PC10_S1
4977   static inline typename This::Status
4978   relmicromips_pc10_s1(unsigned char* view,
4979                        const Mips_relobj<size, big_endian>* object,
4980                        const Symbol_value<size>* psymval, Mips_address address,
4981                        Mips_address addend_a, bool extract_addend,
4982                        bool calculate_only, Valtype* calculated_value)
4983   {
4984     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4985     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4986
4987     Valtype addend = (extract_addend
4988                       ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4989                       : addend_a);
4990
4991     Valtype x = psymval->value(object, addend) - address;
4992     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4993
4994     if (calculate_only)
4995       {
4996         *calculated_value = x >> 1;
4997         return This::STATUS_OKAY;
4998       }
4999     else
5000       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5001
5002     return check_overflow<11>(x);
5003   }
5004
5005   // R_MICROMIPS_PC16_S1
5006   static inline typename This::Status
5007   relmicromips_pc16_s1(unsigned char* view,
5008                        const Mips_relobj<size, big_endian>* object,
5009                        const Symbol_value<size>* psymval, Mips_address address,
5010                        Mips_address addend_a, bool extract_addend,
5011                        bool calculate_only, Valtype* calculated_value)
5012   {
5013     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5014     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5015
5016     Valtype addend = (extract_addend
5017                       ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5018                       : addend_a);
5019
5020     Valtype x = psymval->value(object, addend) - address;
5021     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5022
5023     if (calculate_only)
5024       {
5025         *calculated_value = x >> 1;
5026         return This::STATUS_OKAY;
5027       }
5028     else
5029       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5030
5031     return check_overflow<17>(x);
5032   }
5033
5034   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5035   static inline typename This::Status
5036   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5037           const Symbol_value<size>* psymval, Mips_address addend,
5038           Mips_address address, bool gp_disp, unsigned int r_type,
5039           unsigned int r_sym, bool extract_addend)
5040   {
5041     // Record the relocation.  It will be resolved when we find lo16 part.
5042     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5043                           addend, r_type, r_sym, extract_addend, address,
5044                           gp_disp));
5045     return This::STATUS_OKAY;
5046   }
5047
5048   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5049   static inline typename This::Status
5050   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5051              const Symbol_value<size>* psymval, Mips_address addend_hi,
5052              Mips_address address, bool is_gp_disp, unsigned int r_type,
5053              bool extract_addend, Valtype32 addend_lo,
5054              Target_mips<size, big_endian>* target, bool calculate_only,
5055              Valtype* calculated_value)
5056   {
5057     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5058     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5059
5060     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5061                                        : addend_hi);
5062
5063     Valtype32 value;
5064     if (!is_gp_disp)
5065       value = psymval->value(object, addend);
5066     else
5067       {
5068         // For MIPS16 ABI code we generate this sequence
5069         //    0: li      $v0,%hi(_gp_disp)
5070         //    4: addiupc $v1,%lo(_gp_disp)
5071         //    8: sll     $v0,16
5072         //   12: addu    $v0,$v1
5073         //   14: move    $gp,$v0
5074         // So the offsets of hi and lo relocs are the same, but the
5075         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5076         // ADDIUPC clears the low two bits of the instruction address,
5077         // so the base is ($t9 + 4) & ~3.
5078         Valtype32 gp_disp;
5079         if (r_type == elfcpp::R_MIPS16_HI16)
5080           gp_disp = (target->adjusted_gp_value(object)
5081                      - ((address + 4) & ~0x3));
5082         // The microMIPS .cpload sequence uses the same assembly
5083         // instructions as the traditional psABI version, but the
5084         // incoming $t9 has the low bit set.
5085         else if (r_type == elfcpp::R_MICROMIPS_HI16)
5086           gp_disp = target->adjusted_gp_value(object) - address - 1;
5087         else
5088           gp_disp = target->adjusted_gp_value(object) - address;
5089         value = gp_disp + addend;
5090       }
5091     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5092     val = Bits<32>::bit_select32(val, x, 0xffff);
5093
5094     if (calculate_only)
5095       {
5096         *calculated_value = x;
5097         return This::STATUS_OKAY;
5098       }
5099     else
5100       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5101
5102     return (is_gp_disp ? check_overflow<16>(x)
5103                        : This::STATUS_OKAY);
5104   }
5105
5106   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5107   static inline typename This::Status
5108   relgot16_local(unsigned char* view,
5109                  const Mips_relobj<size, big_endian>* object,
5110                  const Symbol_value<size>* psymval, Mips_address addend_a,
5111                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
5112   {
5113     // Record the relocation.  It will be resolved when we find lo16 part.
5114     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5115                            addend_a, r_type, r_sym, extract_addend));
5116     return This::STATUS_OKAY;
5117   }
5118
5119   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5120   static inline typename This::Status
5121   do_relgot16_local(unsigned char* view,
5122                     const Mips_relobj<size, big_endian>* object,
5123                     const Symbol_value<size>* psymval, Mips_address addend_hi,
5124                     bool extract_addend, Valtype32 addend_lo,
5125                     Target_mips<size, big_endian>* target, bool calculate_only,
5126                     Valtype* calculated_value)
5127   {
5128     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5129     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5130
5131     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5132                                        : addend_hi);
5133
5134     // Find GOT page entry.
5135     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5136                           & 0xffff;
5137     value <<= 16;
5138     unsigned int got_offset =
5139       target->got_section()->get_got_page_offset(value, object);
5140
5141     // Resolve the relocation.
5142     Valtype x = target->got_section()->gp_offset(got_offset, object);
5143     val = Bits<32>::bit_select32(val, x, 0xffff);
5144
5145     if (calculate_only)
5146       {
5147         *calculated_value = x;
5148         return This::STATUS_OKAY;
5149       }
5150     else
5151       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5152
5153     return check_overflow<16>(x);
5154   }
5155
5156   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5157   static inline typename This::Status
5158   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5159           const Mips_relobj<size, big_endian>* object,
5160           const Symbol_value<size>* psymval, Mips_address addend_a,
5161           bool extract_addend, Mips_address address, bool is_gp_disp,
5162           unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5163           bool calculate_only, Valtype* calculated_value)
5164   {
5165     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5166     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5167
5168     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5169                                      : addend_a);
5170
5171     if (rel_type == elfcpp::SHT_REL)
5172       {
5173         typename This::Status reloc_status = This::STATUS_OKAY;
5174         // Resolve pending R_MIPS_HI16 relocations.
5175         typename std::list<reloc_high<size, big_endian> >::iterator it =
5176           hi16_relocs.begin();
5177         while (it != hi16_relocs.end())
5178           {
5179             reloc_high<size, big_endian> hi16 = *it;
5180             if (hi16.r_sym == r_sym
5181                 && is_matching_lo16_reloc(hi16.r_type, r_type))
5182               {
5183                 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5184                 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5185                                        hi16.addend, hi16.address, hi16.gp_disp,
5186                                        hi16.r_type, hi16.extract_addend, addend,
5187                                        target, calculate_only, calculated_value);
5188                 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5189                 if (reloc_status == This::STATUS_OVERFLOW)
5190                   return This::STATUS_OVERFLOW;
5191                 it = hi16_relocs.erase(it);
5192               }
5193             else
5194               ++it;
5195           }
5196
5197         // Resolve pending local R_MIPS_GOT16 relocations.
5198         typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5199           got16_relocs.begin();
5200         while (it2 != got16_relocs.end())
5201           {
5202             reloc_high<size, big_endian> got16 = *it2;
5203             if (got16.r_sym == r_sym
5204                 && is_matching_lo16_reloc(got16.r_type, r_type))
5205               {
5206                 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5207
5208                 reloc_status = do_relgot16_local(got16.view, got16.object,
5209                                      got16.psymval, got16.addend,
5210                                      got16.extract_addend, addend, target,
5211                                      calculate_only, calculated_value);
5212
5213                 mips_reloc_shuffle(got16.view, got16.r_type, false);
5214                 if (reloc_status == This::STATUS_OVERFLOW)
5215                   return This::STATUS_OVERFLOW;
5216                 it2 = got16_relocs.erase(it2);
5217               }
5218             else
5219               ++it2;
5220           }
5221       }
5222
5223     // Resolve R_MIPS_LO16 relocation.
5224     Valtype x;
5225     if (!is_gp_disp)
5226       x = psymval->value(object, addend);
5227     else
5228       {
5229         // See the comment for R_MIPS16_HI16 above for the reason
5230         // for this conditional.
5231         Valtype32 gp_disp;
5232         if (r_type == elfcpp::R_MIPS16_LO16)
5233           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5234         else if (r_type == elfcpp::R_MICROMIPS_LO16
5235                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5236           gp_disp = target->adjusted_gp_value(object) - address + 3;
5237         else
5238           gp_disp = target->adjusted_gp_value(object) - address + 4;
5239         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5240         // for overflow.  Relocations against _gp_disp are normally
5241         // generated from the .cpload pseudo-op.  It generates code
5242         // that normally looks like this:
5243
5244         //   lui    $gp,%hi(_gp_disp)
5245         //   addiu  $gp,$gp,%lo(_gp_disp)
5246         //   addu   $gp,$gp,$t9
5247
5248         // Here $t9 holds the address of the function being called,
5249         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
5250         // relocation can easily overflow in this situation, but the
5251         // R_MIPS_HI16 relocation will handle the overflow.
5252         // Therefore, we consider this a bug in the MIPS ABI, and do
5253         // not check for overflow here.
5254         x = gp_disp + addend;
5255       }
5256     val = Bits<32>::bit_select32(val, x, 0xffff);
5257
5258     if (calculate_only)
5259       *calculated_value = x;
5260     else
5261       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5262
5263     return This::STATUS_OKAY;
5264   }
5265
5266   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5267   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5268   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5269   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5270   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5271   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5272   static inline typename This::Status
5273   relgot(unsigned char* view, int gp_offset, bool calculate_only,
5274          Valtype* calculated_value)
5275   {
5276     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5277     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5278     Valtype x = gp_offset;
5279     val = Bits<32>::bit_select32(val, x, 0xffff);
5280
5281     if (calculate_only)
5282       {
5283         *calculated_value = x;
5284         return This::STATUS_OKAY;
5285       }
5286     else
5287       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5288
5289     return check_overflow<16>(x);
5290   }
5291
5292   // R_MIPS_EH
5293   static inline typename This::Status
5294   releh(unsigned char* view, int gp_offset, bool calculate_only,
5295         Valtype* calculated_value)
5296   {
5297     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5298     Valtype x = gp_offset;
5299
5300     if (calculate_only)
5301       {
5302         *calculated_value = x;
5303         return This::STATUS_OKAY;
5304       }
5305     else
5306       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5307
5308     return check_overflow<32>(x);
5309   }
5310
5311   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5312   static inline typename This::Status
5313   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5314              const Mips_relobj<size, big_endian>* object,
5315              const Symbol_value<size>* psymval, Mips_address addend_a,
5316              bool extract_addend, bool calculate_only,
5317              Valtype* calculated_value)
5318   {
5319     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5320     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5321     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5322
5323     // Find a GOT page entry that points to within 32KB of symbol + addend.
5324     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5325     unsigned int  got_offset =
5326       target->got_section()->get_got_page_offset(value, object);
5327
5328     Valtype x = target->got_section()->gp_offset(got_offset, object);
5329     val = Bits<32>::bit_select32(val, x, 0xffff);
5330
5331     if (calculate_only)
5332       {
5333         *calculated_value = x;
5334         return This::STATUS_OKAY;
5335       }
5336     else
5337       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5338
5339     return check_overflow<16>(x);
5340   }
5341
5342   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5343   static inline typename This::Status
5344   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5345              const Mips_relobj<size, big_endian>* object,
5346              const Symbol_value<size>* psymval, Mips_address addend_a,
5347              bool extract_addend, bool local, bool calculate_only,
5348              Valtype* calculated_value)
5349   {
5350     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5351     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5352     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5353
5354     // For a local symbol, find a GOT page entry that points to within 32KB of
5355     // symbol + addend.  Relocation value is the offset of the GOT page entry's
5356     // value from symbol + addend.
5357     // For a global symbol, relocation value is addend.
5358     Valtype x;
5359     if (local)
5360       {
5361         // Find GOT page entry.
5362         Mips_address value = ((psymval->value(object, addend) + 0x8000)
5363                               & ~0xffff);
5364         target->got_section()->get_got_page_offset(value, object);
5365
5366         x = psymval->value(object, addend) - value;
5367       }
5368     else
5369       x = addend;
5370     val = Bits<32>::bit_select32(val, x, 0xffff);
5371
5372     if (calculate_only)
5373       {
5374         *calculated_value = x;
5375         return This::STATUS_OKAY;
5376       }
5377     else
5378       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5379
5380     return check_overflow<16>(x);
5381   }
5382
5383   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5384   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5385   static inline typename This::Status
5386   relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5387               Valtype* calculated_value)
5388   {
5389     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5390     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5391     Valtype x = gp_offset;
5392     x = ((x + 0x8000) >> 16) & 0xffff;
5393     val = Bits<32>::bit_select32(val, x, 0xffff);
5394
5395     if (calculate_only)
5396       *calculated_value = x;
5397     else
5398       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5399
5400     return This::STATUS_OKAY;
5401   }
5402
5403   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5404   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5405   static inline typename This::Status
5406   relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5407               Valtype* calculated_value)
5408   {
5409     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5410     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5411     Valtype x = gp_offset;
5412     val = Bits<32>::bit_select32(val, x, 0xffff);
5413
5414     if (calculate_only)
5415       *calculated_value = x;
5416     else
5417       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5418
5419     return This::STATUS_OKAY;
5420   }
5421
5422   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5423   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5424   static inline typename This::Status
5425   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5426            const Symbol_value<size>* psymval, Mips_address gp,
5427            Mips_address addend_a, bool extract_addend, bool local,
5428            unsigned int r_type, bool calculate_only,
5429            Valtype* calculated_value)
5430   {
5431     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5432     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5433
5434     Valtype addend;
5435     if (extract_addend)
5436       {
5437         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5438           addend = (val & 0x7f) << 2;
5439         else
5440           addend = val & 0xffff;
5441         // Only sign-extend the addend if it was extracted from the
5442         // instruction.  If the addend was separate, leave it alone,
5443         // otherwise we may lose significant bits.
5444         addend = Bits<16>::sign_extend32(addend);
5445       }
5446     else
5447       addend = addend_a;
5448
5449     Valtype x = psymval->value(object, addend) - gp;
5450
5451     // If the symbol was local, any earlier relocatable links will
5452     // have adjusted its addend with the gp offset, so compensate
5453     // for that now.  Don't do it for symbols forced local in this
5454     // link, though, since they won't have had the gp offset applied
5455     // to them before.
5456     if (local)
5457       x += object->gp_value();
5458
5459     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5460       val = Bits<32>::bit_select32(val, x, 0x7f);
5461     else
5462       val = Bits<32>::bit_select32(val, x, 0xffff);
5463
5464     if (calculate_only)
5465       {
5466         *calculated_value = x;
5467         return This::STATUS_OKAY;
5468       }
5469     else
5470       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5471
5472     if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5473       {
5474         gold_error(_("small-data section exceeds 64KB; lower small-data size "
5475                      "limit (see option -G)"));
5476         return This::STATUS_OVERFLOW;
5477       }
5478     return This::STATUS_OKAY;
5479   }
5480
5481   // R_MIPS_GPREL32
5482   static inline typename This::Status
5483   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5484              const Symbol_value<size>* psymval, Mips_address gp,
5485              Mips_address addend_a, bool extract_addend, bool calculate_only,
5486              Valtype* calculated_value)
5487   {
5488     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5489     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5490     Valtype addend = extract_addend ? val : addend_a;
5491
5492     // R_MIPS_GPREL32 relocations are defined for local symbols only.
5493     Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5494
5495     if (calculate_only)
5496       *calculated_value = x;
5497     else
5498       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5499
5500     return This::STATUS_OKAY;
5501  }
5502
5503   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5504   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5505   // R_MICROMIPS_TLS_DTPREL_HI16
5506   static inline typename This::Status
5507   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5508              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5509              Mips_address addend_a, bool extract_addend, bool calculate_only,
5510              Valtype* calculated_value)
5511   {
5512     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5513     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5514     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5515
5516     // tls symbol values are relative to tls_segment()->vaddr()
5517     Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5518     val = Bits<32>::bit_select32(val, x, 0xffff);
5519
5520     if (calculate_only)
5521       *calculated_value = x;
5522     else
5523       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5524
5525     return This::STATUS_OKAY;
5526   }
5527
5528   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5529   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5530   // R_MICROMIPS_TLS_DTPREL_LO16,
5531   static inline typename This::Status
5532   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5533              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5534              Mips_address addend_a, bool extract_addend, bool calculate_only,
5535              Valtype* calculated_value)
5536   {
5537     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5538     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5539     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5540
5541     // tls symbol values are relative to tls_segment()->vaddr()
5542     Valtype x = psymval->value(object, addend) - tp_offset;
5543     val = Bits<32>::bit_select32(val, x, 0xffff);
5544
5545     if (calculate_only)
5546       *calculated_value = x;
5547     else
5548       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5549
5550     return This::STATUS_OKAY;
5551   }
5552
5553   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5554   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5555   static inline typename This::Status
5556   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5557            const Symbol_value<size>* psymval, Valtype32 tp_offset,
5558            Mips_address addend_a, bool extract_addend, bool calculate_only,
5559            Valtype* calculated_value)
5560   {
5561     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5562     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5563     Valtype addend = extract_addend ? val : addend_a;
5564
5565     // tls symbol values are relative to tls_segment()->vaddr()
5566     Valtype x = psymval->value(object, addend) - tp_offset;
5567
5568     if (calculate_only)
5569       *calculated_value = x;
5570     else
5571       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5572
5573     return This::STATUS_OKAY;
5574   }
5575
5576   // R_MIPS_SUB, R_MICROMIPS_SUB
5577   static inline typename This::Status
5578   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5579          const Symbol_value<size>* psymval, Mips_address addend_a,
5580          bool extract_addend, bool calculate_only, Valtype* calculated_value)
5581   {
5582     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5583     Valtype64 addend = (extract_addend
5584                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5585                         : addend_a);
5586
5587     Valtype64 x = psymval->value(object, -addend);
5588     if (calculate_only)
5589       *calculated_value = x;
5590     else
5591       elfcpp::Swap<64, big_endian>::writeval(wv, x);
5592
5593     return This::STATUS_OKAY;
5594   }
5595
5596   // R_MIPS_64: S + A
5597   static inline typename This::Status
5598   rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5599         const Symbol_value<size>* psymval, Mips_address addend_a,
5600         bool extract_addend, bool calculate_only, Valtype* calculated_value,
5601         bool apply_addend_only)
5602   {
5603     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5604     Valtype64 addend = (extract_addend
5605                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5606                         : addend_a);
5607
5608     Valtype64 x = psymval->value(object, addend);
5609     if (calculate_only)
5610       *calculated_value = x;
5611     else
5612       {
5613         if (apply_addend_only)
5614           x = addend;
5615         elfcpp::Swap<64, big_endian>::writeval(wv, x);
5616       }
5617
5618     return This::STATUS_OKAY;
5619   }
5620
5621   // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5622   static inline typename This::Status
5623   relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5624             const Symbol_value<size>* psymval, Mips_address addend_a,
5625             bool extract_addend, bool calculate_only, Valtype* calculated_value)
5626   {
5627     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5628     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5629     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5630                                      : addend_a);
5631
5632     Valtype x = psymval->value(object, addend);
5633     x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5634     val = Bits<32>::bit_select32(val, x, 0xffff);
5635
5636     if (calculate_only)
5637       *calculated_value = x;
5638     else
5639       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5640
5641     return This::STATUS_OKAY;
5642   }
5643
5644   // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5645   static inline typename This::Status
5646   relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5647              const Symbol_value<size>* psymval, Mips_address addend_a,
5648              bool extract_addend, bool calculate_only,
5649              Valtype* calculated_value)
5650   {
5651     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5652     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5653     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5654                                      : addend_a);
5655
5656     Valtype x = psymval->value(object, addend);
5657     x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5658     val = Bits<32>::bit_select32(val, x, 0xffff);
5659
5660     if (calculate_only)
5661       *calculated_value = x;
5662     else
5663       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5664
5665     return This::STATUS_OKAY;
5666   }
5667 };
5668
5669 template<int size, bool big_endian>
5670 typename std::list<reloc_high<size, big_endian> >
5671     Mips_relocate_functions<size, big_endian>::hi16_relocs;
5672
5673 template<int size, bool big_endian>
5674 typename std::list<reloc_high<size, big_endian> >
5675     Mips_relocate_functions<size, big_endian>::got16_relocs;
5676
5677 template<int size, bool big_endian>
5678 typename std::list<reloc_high<size, big_endian> >
5679     Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5680
5681 // Mips_got_info methods.
5682
5683 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5684 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5685
5686 template<int size, bool big_endian>
5687 void
5688 Mips_got_info<size, big_endian>::record_local_got_symbol(
5689     Mips_relobj<size, big_endian>* object, unsigned int symndx,
5690     Mips_address addend, unsigned int r_type, unsigned int shndx,
5691     bool is_section_symbol)
5692 {
5693   Mips_got_entry<size, big_endian>* entry =
5694     new Mips_got_entry<size, big_endian>(object, symndx, addend,
5695                                          mips_elf_reloc_tls_type(r_type),
5696                                          shndx, is_section_symbol);
5697   this->record_got_entry(entry, object);
5698 }
5699
5700 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5701 // in OBJECT.  FOR_CALL is true if the caller is only interested in
5702 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
5703 // relocation.
5704
5705 template<int size, bool big_endian>
5706 void
5707 Mips_got_info<size, big_endian>::record_global_got_symbol(
5708     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5709     unsigned int r_type, bool dyn_reloc, bool for_call)
5710 {
5711   if (!for_call)
5712     mips_sym->set_got_not_only_for_calls();
5713
5714   // A global symbol in the GOT must also be in the dynamic symbol table.
5715   if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5716     {
5717       switch (mips_sym->visibility())
5718         {
5719         case elfcpp::STV_INTERNAL:
5720         case elfcpp::STV_HIDDEN:
5721           mips_sym->set_is_forced_local();
5722           break;
5723         default:
5724           mips_sym->set_needs_dynsym_entry();
5725           break;
5726         }
5727     }
5728
5729   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5730   if (tls_type == GOT_TLS_NONE)
5731     this->global_got_symbols_.insert(mips_sym);
5732
5733   if (dyn_reloc)
5734     {
5735       if (mips_sym->global_got_area() == GGA_NONE)
5736         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5737       return;
5738     }
5739
5740   Mips_got_entry<size, big_endian>* entry =
5741     new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5742
5743   this->record_got_entry(entry, object);
5744 }
5745
5746 // Add ENTRY to master GOT and to OBJECT's GOT.
5747
5748 template<int size, bool big_endian>
5749 void
5750 Mips_got_info<size, big_endian>::record_got_entry(
5751     Mips_got_entry<size, big_endian>* entry,
5752     Mips_relobj<size, big_endian>* object)
5753 {
5754   this->got_entries_.insert(entry);
5755
5756   // Create the GOT entry for the OBJECT's GOT.
5757   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5758   Mips_got_entry<size, big_endian>* entry2 =
5759     new Mips_got_entry<size, big_endian>(*entry);
5760
5761   g->got_entries_.insert(entry2);
5762 }
5763
5764 // Record that OBJECT has a page relocation against symbol SYMNDX and
5765 // that ADDEND is the addend for that relocation.
5766 // This function creates an upper bound on the number of GOT slots
5767 // required; no attempt is made to combine references to non-overridable
5768 // global symbols across multiple input files.
5769
5770 template<int size, bool big_endian>
5771 void
5772 Mips_got_info<size, big_endian>::record_got_page_entry(
5773     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5774 {
5775   struct Got_page_range **range_ptr, *range;
5776   int old_pages, new_pages;
5777
5778   // Find the Got_page_entry for this symbol.
5779   Got_page_entry* entry = new Got_page_entry(object, symndx);
5780   typename Got_page_entry_set::iterator it =
5781     this->got_page_entries_.find(entry);
5782   if (it != this->got_page_entries_.end())
5783     entry = *it;
5784   else
5785     this->got_page_entries_.insert(entry);
5786
5787   // Add the same entry to the OBJECT's GOT.
5788   Got_page_entry* entry2 = NULL;
5789   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5790   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5791     {
5792       entry2 = new Got_page_entry(*entry);
5793       g2->got_page_entries_.insert(entry2);
5794     }
5795
5796   // Skip over ranges whose maximum extent cannot share a page entry
5797   // with ADDEND.
5798   range_ptr = &entry->ranges;
5799   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5800     range_ptr = &(*range_ptr)->next;
5801
5802   // If we scanned to the end of the list, or found a range whose
5803   // minimum extent cannot share a page entry with ADDEND, create
5804   // a new singleton range.
5805   range = *range_ptr;
5806   if (!range || addend < range->min_addend - 0xffff)
5807     {
5808       range = new Got_page_range();
5809       range->next = *range_ptr;
5810       range->min_addend = addend;
5811       range->max_addend = addend;
5812
5813       *range_ptr = range;
5814       ++entry->num_pages;
5815       if (entry2 != NULL)
5816         ++entry2->num_pages;
5817       ++this->page_gotno_;
5818       ++g2->page_gotno_;
5819       return;
5820     }
5821
5822   // Remember how many pages the old range contributed.
5823   old_pages = range->get_max_pages();
5824
5825   // Update the ranges.
5826   if (addend < range->min_addend)
5827     range->min_addend = addend;
5828   else if (addend > range->max_addend)
5829     {
5830       if (range->next && addend >= range->next->min_addend - 0xffff)
5831         {
5832           old_pages += range->next->get_max_pages();
5833           range->max_addend = range->next->max_addend;
5834           range->next = range->next->next;
5835         }
5836       else
5837         range->max_addend = addend;
5838     }
5839
5840   // Record any change in the total estimate.
5841   new_pages = range->get_max_pages();
5842   if (old_pages != new_pages)
5843     {
5844       entry->num_pages += new_pages - old_pages;
5845       if (entry2 != NULL)
5846         entry2->num_pages += new_pages - old_pages;
5847       this->page_gotno_ += new_pages - old_pages;
5848       g2->page_gotno_ += new_pages - old_pages;
5849     }
5850 }
5851
5852 // Create all entries that should be in the local part of the GOT.
5853
5854 template<int size, bool big_endian>
5855 void
5856 Mips_got_info<size, big_endian>::add_local_entries(
5857     Target_mips<size, big_endian>* target, Layout* layout)
5858 {
5859   Mips_output_data_got<size, big_endian>* got = target->got_section();
5860   // First two GOT entries are reserved.  The first entry will be filled at
5861   // runtime.  The second entry will be used by some runtime loaders.
5862   got->add_constant(0);
5863   got->add_constant(target->mips_elf_gnu_got1_mask());
5864
5865   for (typename Got_entry_set::iterator
5866        p = this->got_entries_.begin();
5867        p != this->got_entries_.end();
5868        ++p)
5869     {
5870       Mips_got_entry<size, big_endian>* entry = *p;
5871       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5872         {
5873           got->add_local(entry->object(), entry->symndx(),
5874                          GOT_TYPE_STANDARD, entry->addend());
5875           unsigned int got_offset = entry->object()->local_got_offset(
5876               entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5877           if (got->multi_got() && this->index_ > 0
5878               && parameters->options().output_is_position_independent())
5879           {
5880             if (!entry->is_section_symbol())
5881               target->rel_dyn_section(layout)->add_local(entry->object(),
5882                   entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5883             else
5884               target->rel_dyn_section(layout)->add_symbolless_local_addend(
5885                   entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5886                   got, got_offset);
5887           }
5888         }
5889     }
5890
5891   this->add_page_entries(target, layout);
5892
5893   // Add global entries that should be in the local area.
5894   for (typename Got_entry_set::iterator
5895        p = this->got_entries_.begin();
5896        p != this->got_entries_.end();
5897        ++p)
5898     {
5899       Mips_got_entry<size, big_endian>* entry = *p;
5900       if (!entry->is_for_global_symbol())
5901         continue;
5902
5903       Mips_symbol<size>* mips_sym = entry->sym();
5904       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5905         {
5906           unsigned int got_type;
5907           if (!got->multi_got())
5908             got_type = GOT_TYPE_STANDARD;
5909           else
5910             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5911           if (got->add_global(mips_sym, got_type))
5912             {
5913               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5914               if (got->multi_got() && this->index_ > 0
5915                   && parameters->options().output_is_position_independent())
5916                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5917                     mips_sym, elfcpp::R_MIPS_REL32, got,
5918                     mips_sym->got_offset(got_type));
5919             }
5920         }
5921     }
5922 }
5923
5924 // Create GOT page entries.
5925
5926 template<int size, bool big_endian>
5927 void
5928 Mips_got_info<size, big_endian>::add_page_entries(
5929     Target_mips<size, big_endian>* target, Layout* layout)
5930 {
5931   if (this->page_gotno_ == 0)
5932     return;
5933
5934   Mips_output_data_got<size, big_endian>* got = target->got_section();
5935   this->got_page_offset_start_ = got->add_constant(0);
5936   if (got->multi_got() && this->index_ > 0
5937       && parameters->options().output_is_position_independent())
5938     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5939                                                   this->got_page_offset_start_);
5940   int num_entries = this->page_gotno_;
5941   unsigned int prev_offset = this->got_page_offset_start_;
5942   while (--num_entries > 0)
5943     {
5944       unsigned int next_offset = got->add_constant(0);
5945       if (got->multi_got() && this->index_ > 0
5946           && parameters->options().output_is_position_independent())
5947         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5948                                                       next_offset);
5949       gold_assert(next_offset == prev_offset + size/8);
5950       prev_offset = next_offset;
5951     }
5952   this->got_page_offset_next_ = this->got_page_offset_start_;
5953 }
5954
5955 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5956
5957 template<int size, bool big_endian>
5958 void
5959 Mips_got_info<size, big_endian>::add_global_entries(
5960     Target_mips<size, big_endian>* target, Layout* layout,
5961     unsigned int non_reloc_only_global_gotno)
5962 {
5963   Mips_output_data_got<size, big_endian>* got = target->got_section();
5964   // Add GGA_NORMAL entries.
5965   unsigned int count = 0;
5966   for (typename Got_entry_set::iterator
5967        p = this->got_entries_.begin();
5968        p != this->got_entries_.end();
5969        ++p)
5970     {
5971       Mips_got_entry<size, big_endian>* entry = *p;
5972       if (!entry->is_for_global_symbol())
5973         continue;
5974
5975       Mips_symbol<size>* mips_sym = entry->sym();
5976       if (mips_sym->global_got_area() != GGA_NORMAL)
5977         continue;
5978
5979       unsigned int got_type;
5980       if (!got->multi_got())
5981         got_type = GOT_TYPE_STANDARD;
5982       else
5983         // In multi-GOT links, global symbol can be in both primary and
5984         // secondary GOT(s).  By creating custom GOT type
5985         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5986         // is added to secondary GOT(s).
5987         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5988       if (!got->add_global(mips_sym, got_type))
5989         continue;
5990
5991       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5992       if (got->multi_got() && this->index_ == 0)
5993         count++;
5994       if (got->multi_got() && this->index_ > 0)
5995         {
5996           if (parameters->options().output_is_position_independent()
5997               || (!parameters->doing_static_link()
5998                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5999             {
6000               target->rel_dyn_section(layout)->add_global(
6001                   mips_sym, elfcpp::R_MIPS_REL32, got,
6002                   mips_sym->got_offset(got_type));
6003               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
6004                                            elfcpp::R_MIPS_REL32, mips_sym);
6005             }
6006         }
6007     }
6008
6009   if (!got->multi_got() || this->index_ == 0)
6010     {
6011       if (got->multi_got())
6012         {
6013           // We need to allocate space in the primary GOT for GGA_NORMAL entries
6014           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6015           // entries correspond to dynamic symbol indexes.
6016           while (count < non_reloc_only_global_gotno)
6017             {
6018               got->add_constant(0);
6019               ++count;
6020             }
6021         }
6022
6023       // Add GGA_RELOC_ONLY entries.
6024       got->add_reloc_only_entries();
6025     }
6026 }
6027
6028 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6029
6030 template<int size, bool big_endian>
6031 void
6032 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6033     Mips_output_data_got<size, big_endian>* got)
6034 {
6035   for (typename Global_got_entry_set::iterator
6036        p = this->global_got_symbols_.begin();
6037        p != this->global_got_symbols_.end();
6038        ++p)
6039     {
6040       Mips_symbol<size>* mips_sym = *p;
6041       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6042         {
6043           unsigned int got_type;
6044           if (!got->multi_got())
6045             got_type = GOT_TYPE_STANDARD;
6046           else
6047             got_type = GOT_TYPE_STANDARD_MULTIGOT;
6048           if (got->add_global(mips_sym, got_type))
6049             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6050         }
6051     }
6052 }
6053
6054 // Create TLS GOT entries.
6055
6056 template<int size, bool big_endian>
6057 void
6058 Mips_got_info<size, big_endian>::add_tls_entries(
6059     Target_mips<size, big_endian>* target, Layout* layout)
6060 {
6061   Mips_output_data_got<size, big_endian>* got = target->got_section();
6062   // Add local tls entries.
6063   for (typename Got_entry_set::iterator
6064        p = this->got_entries_.begin();
6065        p != this->got_entries_.end();
6066        ++p)
6067     {
6068       Mips_got_entry<size, big_endian>* entry = *p;
6069       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6070         continue;
6071
6072       if (entry->tls_type() == GOT_TLS_GD)
6073         {
6074           unsigned int got_type = GOT_TYPE_TLS_PAIR;
6075           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6076                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6077           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6078                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6079
6080           if (!parameters->doing_static_link())
6081             {
6082               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6083                                            entry->shndx(), got_type,
6084                                            target->rel_dyn_section(layout),
6085                                            r_type1, entry->addend());
6086               unsigned int got_offset =
6087                 entry->object()->local_got_offset(entry->symndx(), got_type,
6088                                                   entry->addend());
6089               got->add_static_reloc(got_offset + size/8, r_type2,
6090                                     entry->object(), entry->symndx());
6091             }
6092           else
6093             {
6094               // We are doing a static link.  Mark it as belong to module 1,
6095               // the executable.
6096               unsigned int got_offset = got->add_constant(1);
6097               entry->object()->set_local_got_offset(entry->symndx(), got_type,
6098                                                     got_offset,
6099                                                     entry->addend());
6100               got->add_constant(0);
6101               got->add_static_reloc(got_offset + size/8, r_type2,
6102                                     entry->object(), entry->symndx());
6103             }
6104         }
6105       else if (entry->tls_type() == GOT_TLS_IE)
6106         {
6107           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6108           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6109                                             : elfcpp::R_MIPS_TLS_TPREL64);
6110           if (!parameters->doing_static_link())
6111             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6112                                     target->rel_dyn_section(layout), r_type,
6113                                     entry->addend());
6114           else
6115             {
6116               got->add_local(entry->object(), entry->symndx(), got_type,
6117                              entry->addend());
6118               unsigned int got_offset =
6119                   entry->object()->local_got_offset(entry->symndx(), got_type,
6120                                                     entry->addend());
6121               got->add_static_reloc(got_offset, r_type, entry->object(),
6122                                     entry->symndx());
6123             }
6124         }
6125       else if (entry->tls_type() == GOT_TLS_LDM)
6126         {
6127           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6128                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
6129           unsigned int got_offset;
6130           if (!parameters->doing_static_link())
6131             {
6132               got_offset = got->add_constant(0);
6133               target->rel_dyn_section(layout)->add_local(
6134                   entry->object(), 0, r_type, got, got_offset);
6135             }
6136           else
6137             // We are doing a static link.  Just mark it as belong to module 1,
6138             // the executable.
6139             got_offset = got->add_constant(1);
6140
6141           got->add_constant(0);
6142           got->set_tls_ldm_offset(got_offset, entry->object());
6143         }
6144       else
6145         gold_unreachable();
6146     }
6147
6148   // Add global tls entries.
6149   for (typename Got_entry_set::iterator
6150        p = this->got_entries_.begin();
6151        p != this->got_entries_.end();
6152        ++p)
6153     {
6154       Mips_got_entry<size, big_endian>* entry = *p;
6155       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6156         continue;
6157
6158       Mips_symbol<size>* mips_sym = entry->sym();
6159       if (entry->tls_type() == GOT_TLS_GD)
6160         {
6161           unsigned int got_type;
6162           if (!got->multi_got())
6163             got_type = GOT_TYPE_TLS_PAIR;
6164           else
6165             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6166           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6167                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6168           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6169                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6170           if (!parameters->doing_static_link())
6171             got->add_global_pair_with_rel(mips_sym, got_type,
6172                              target->rel_dyn_section(layout), r_type1, r_type2);
6173           else
6174             {
6175               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
6176               // GOT entries.  The first one is initialized to be 1, which is the
6177               // module index for the main executable and the second one 0.  A
6178               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6179               // the second GOT entry and will be applied by gold.
6180               unsigned int got_offset = got->add_constant(1);
6181               mips_sym->set_got_offset(got_type, got_offset);
6182               got->add_constant(0);
6183               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6184             }
6185         }
6186       else if (entry->tls_type() == GOT_TLS_IE)
6187         {
6188           unsigned int got_type;
6189           if (!got->multi_got())
6190             got_type = GOT_TYPE_TLS_OFFSET;
6191           else
6192             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6193           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6194                                             : elfcpp::R_MIPS_TLS_TPREL64);
6195           if (!parameters->doing_static_link())
6196             got->add_global_with_rel(mips_sym, got_type,
6197                                      target->rel_dyn_section(layout), r_type);
6198           else
6199             {
6200               got->add_global(mips_sym, got_type);
6201               unsigned int got_offset = mips_sym->got_offset(got_type);
6202               got->add_static_reloc(got_offset, r_type, mips_sym);
6203             }
6204         }
6205       else
6206         gold_unreachable();
6207     }
6208 }
6209
6210 // Decide whether the symbol needs an entry in the global part of the primary
6211 // GOT, setting global_got_area accordingly.  Count the number of global
6212 // symbols that are in the primary GOT only because they have dynamic
6213 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6214
6215 template<int size, bool big_endian>
6216 void
6217 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6218 {
6219   for (typename Global_got_entry_set::iterator
6220        p = this->global_got_symbols_.begin();
6221        p != this->global_got_symbols_.end();
6222        ++p)
6223     {
6224       Mips_symbol<size>* sym = *p;
6225       // Make a final decision about whether the symbol belongs in the
6226       // local or global GOT.  Symbols that bind locally can (and in the
6227       // case of forced-local symbols, must) live in the local GOT.
6228       // Those that are aren't in the dynamic symbol table must also
6229       // live in the local GOT.
6230
6231       if (!sym->should_add_dynsym_entry(symtab)
6232           || (sym->got_only_for_calls()
6233               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6234               : symbol_references_local(sym,
6235                                         sym->should_add_dynsym_entry(symtab))))
6236         // The symbol belongs in the local GOT.  We no longer need this
6237         // entry if it was only used for relocations; those relocations
6238         // will be against the null or section symbol instead.
6239         sym->set_global_got_area(GGA_NONE);
6240       else if (sym->global_got_area() == GGA_RELOC_ONLY)
6241         {
6242           ++this->reloc_only_gotno_;
6243           ++this->global_gotno_ ;
6244         }
6245     }
6246 }
6247
6248 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
6249 // VALUE if it is not initialized.
6250
6251 template<int size, bool big_endian>
6252 unsigned int
6253 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6254     Mips_output_data_got<size, big_endian>* got)
6255 {
6256   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6257   if (it != this->got_page_offsets_.end())
6258     return it->second;
6259
6260   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6261               + (size/8) * this->page_gotno_);
6262
6263   unsigned int got_offset = this->got_page_offset_next_;
6264   this->got_page_offsets_[value] = got_offset;
6265   this->got_page_offset_next_ += size/8;
6266   got->update_got_entry(got_offset, value);
6267   return got_offset;
6268 }
6269
6270 // Remove lazy-binding stubs for global symbols in this GOT.
6271
6272 template<int size, bool big_endian>
6273 void
6274 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6275     Target_mips<size, big_endian>* target)
6276 {
6277   for (typename Got_entry_set::iterator
6278        p = this->got_entries_.begin();
6279        p != this->got_entries_.end();
6280        ++p)
6281     {
6282       Mips_got_entry<size, big_endian>* entry = *p;
6283       if (entry->is_for_global_symbol())
6284         target->remove_lazy_stub_entry(entry->sym());
6285     }
6286 }
6287
6288 // Count the number of GOT entries required.
6289
6290 template<int size, bool big_endian>
6291 void
6292 Mips_got_info<size, big_endian>::count_got_entries()
6293 {
6294   for (typename Got_entry_set::iterator
6295        p = this->got_entries_.begin();
6296        p != this->got_entries_.end();
6297        ++p)
6298     {
6299       this->count_got_entry(*p);
6300     }
6301 }
6302
6303 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
6304
6305 template<int size, bool big_endian>
6306 void
6307 Mips_got_info<size, big_endian>::count_got_entry(
6308     Mips_got_entry<size, big_endian>* entry)
6309 {
6310   if (entry->is_tls_entry())
6311     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6312   else if (entry->is_for_local_symbol()
6313            || entry->sym()->global_got_area() == GGA_NONE)
6314     ++this->local_gotno_;
6315   else
6316     ++this->global_gotno_;
6317 }
6318
6319 // Add FROM's GOT entries.
6320
6321 template<int size, bool big_endian>
6322 void
6323 Mips_got_info<size, big_endian>::add_got_entries(
6324     Mips_got_info<size, big_endian>* from)
6325 {
6326   for (typename Got_entry_set::iterator
6327        p = from->got_entries_.begin();
6328        p != from->got_entries_.end();
6329        ++p)
6330     {
6331       Mips_got_entry<size, big_endian>* entry = *p;
6332       if (this->got_entries_.find(entry) == this->got_entries_.end())
6333         {
6334           Mips_got_entry<size, big_endian>* entry2 =
6335             new Mips_got_entry<size, big_endian>(*entry);
6336           this->got_entries_.insert(entry2);
6337           this->count_got_entry(entry);
6338         }
6339     }
6340 }
6341
6342 // Add FROM's GOT page entries.
6343
6344 template<int size, bool big_endian>
6345 void
6346 Mips_got_info<size, big_endian>::add_got_page_entries(
6347     Mips_got_info<size, big_endian>* from)
6348 {
6349   for (typename Got_page_entry_set::iterator
6350        p = from->got_page_entries_.begin();
6351        p != from->got_page_entries_.end();
6352        ++p)
6353     {
6354       Got_page_entry* entry = *p;
6355       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6356         {
6357           Got_page_entry* entry2 = new Got_page_entry(*entry);
6358           this->got_page_entries_.insert(entry2);
6359           this->page_gotno_ += entry->num_pages;
6360         }
6361     }
6362 }
6363
6364 // Mips_output_data_got methods.
6365
6366 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
6367 // larger than 64K, create multi-GOT.
6368
6369 template<int size, bool big_endian>
6370 void
6371 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6372     Symbol_table* symtab, const Input_objects* input_objects)
6373 {
6374   // Decide which symbols need to go in the global part of the GOT and
6375   // count the number of reloc-only GOT symbols.
6376   this->master_got_info_->count_got_symbols(symtab);
6377
6378   // Count the number of GOT entries.
6379   this->master_got_info_->count_got_entries();
6380
6381   unsigned int got_size = this->master_got_info_->got_size();
6382   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6383     this->lay_out_multi_got(layout, input_objects);
6384   else
6385     {
6386       // Record that all objects use single GOT.
6387       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6388            p != input_objects->relobj_end();
6389            ++p)
6390         {
6391           Mips_relobj<size, big_endian>* object =
6392             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6393           if (object->get_got_info() != NULL)
6394             object->set_got_info(this->master_got_info_);
6395         }
6396
6397       this->master_got_info_->add_local_entries(this->target_, layout);
6398       this->master_got_info_->add_global_entries(this->target_, layout,
6399                                                  /*not used*/-1U);
6400       this->master_got_info_->add_tls_entries(this->target_, layout);
6401     }
6402 }
6403
6404 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
6405
6406 template<int size, bool big_endian>
6407 void
6408 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6409     const Input_objects* input_objects)
6410 {
6411   // Try to merge the GOTs of input objects together, as long as they
6412   // don't seem to exceed the maximum GOT size, choosing one of them
6413   // to be the primary GOT.
6414   this->merge_gots(input_objects);
6415
6416   // Every symbol that is referenced in a dynamic relocation must be
6417   // present in the primary GOT.
6418   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6419
6420   // Add GOT entries.
6421   unsigned int i = 0;
6422   unsigned int offset = 0;
6423   Mips_got_info<size, big_endian>* g = this->primary_got_;
6424   do
6425     {
6426       g->set_index(i);
6427       g->set_offset(offset);
6428
6429       g->add_local_entries(this->target_, layout);
6430       if (i == 0)
6431         g->add_global_entries(this->target_, layout,
6432                               (this->master_got_info_->global_gotno()
6433                                - this->master_got_info_->reloc_only_gotno()));
6434       else
6435         g->add_global_entries(this->target_, layout, /*not used*/-1U);
6436       g->add_tls_entries(this->target_, layout);
6437
6438       // Forbid global symbols in every non-primary GOT from having
6439       // lazy-binding stubs.
6440       if (i > 0)
6441         g->remove_lazy_stubs(this->target_);
6442
6443       ++i;
6444       offset += g->got_size();
6445       g = g->next();
6446     }
6447   while (g);
6448 }
6449
6450 // Attempt to merge GOTs of different input objects.  Try to use as much as
6451 // possible of the primary GOT, since it doesn't require explicit dynamic
6452 // relocations, but don't use objects that would reference global symbols
6453 // out of the addressable range.  Failing the primary GOT, attempt to merge
6454 // with the current GOT, or finish the current GOT and then make make the new
6455 // GOT current.
6456
6457 template<int size, bool big_endian>
6458 void
6459 Mips_output_data_got<size, big_endian>::merge_gots(
6460     const Input_objects* input_objects)
6461 {
6462   gold_assert(this->primary_got_ == NULL);
6463   Mips_got_info<size, big_endian>* current = NULL;
6464
6465   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6466        p != input_objects->relobj_end();
6467        ++p)
6468     {
6469       Mips_relobj<size, big_endian>* object =
6470         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6471
6472       Mips_got_info<size, big_endian>* g = object->get_got_info();
6473       if (g == NULL)
6474         continue;
6475
6476       g->count_got_entries();
6477
6478       // Work out the number of page, local and TLS entries.
6479       unsigned int estimate = this->master_got_info_->page_gotno();
6480       if (estimate > g->page_gotno())
6481         estimate = g->page_gotno();
6482       estimate += g->local_gotno() + g->tls_gotno();
6483
6484       // We place TLS GOT entries after both locals and globals.  The globals
6485       // for the primary GOT may overflow the normal GOT size limit, so be
6486       // sure not to merge a GOT which requires TLS with the primary GOT in that
6487       // case.  This doesn't affect non-primary GOTs.
6488       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6489                                       : g->global_gotno());
6490
6491       unsigned int max_count =
6492         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6493       if (estimate <= max_count)
6494         {
6495           // If we don't have a primary GOT, use it as
6496           // a starting point for the primary GOT.
6497           if (!this->primary_got_)
6498             {
6499               this->primary_got_ = g;
6500               continue;
6501             }
6502
6503           // Try merging with the primary GOT.
6504           if (this->merge_got_with(g, object, this->primary_got_))
6505             continue;
6506         }
6507
6508       // If we can merge with the last-created GOT, do it.
6509       if (current && this->merge_got_with(g, object, current))
6510         continue;
6511
6512       // Well, we couldn't merge, so create a new GOT.  Don't check if it
6513       // fits; if it turns out that it doesn't, we'll get relocation
6514       // overflows anyway.
6515       g->set_next(current);
6516       current = g;
6517     }
6518
6519   // If we do not find any suitable primary GOT, create an empty one.
6520   if (this->primary_got_ == NULL)
6521     this->primary_got_ = new Mips_got_info<size, big_endian>();
6522
6523   // Link primary GOT with secondary GOTs.
6524   this->primary_got_->set_next(current);
6525 }
6526
6527 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
6528 // this would lead to overflow, true if they were merged successfully.
6529
6530 template<int size, bool big_endian>
6531 bool
6532 Mips_output_data_got<size, big_endian>::merge_got_with(
6533     Mips_got_info<size, big_endian>* from,
6534     Mips_relobj<size, big_endian>* object,
6535     Mips_got_info<size, big_endian>* to)
6536 {
6537   // Work out how many page entries we would need for the combined GOT.
6538   unsigned int estimate = this->master_got_info_->page_gotno();
6539   if (estimate >= from->page_gotno() + to->page_gotno())
6540     estimate = from->page_gotno() + to->page_gotno();
6541
6542   // Conservatively estimate how many local and TLS entries would be needed.
6543   estimate += from->local_gotno() + to->local_gotno();
6544   estimate += from->tls_gotno() + to->tls_gotno();
6545
6546   // If we're merging with the primary got, any TLS relocations will
6547   // come after the full set of global entries.  Otherwise estimate those
6548   // conservatively as well.
6549   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6550     estimate += this->master_got_info_->global_gotno();
6551   else
6552     estimate += from->global_gotno() + to->global_gotno();
6553
6554   // Bail out if the combined GOT might be too big.
6555   unsigned int max_count =
6556     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6557   if (estimate > max_count)
6558     return false;
6559
6560   // Transfer the object's GOT information from FROM to TO.
6561   to->add_got_entries(from);
6562   to->add_got_page_entries(from);
6563
6564   // Record that OBJECT should use output GOT TO.
6565   object->set_got_info(to);
6566
6567   return true;
6568 }
6569
6570 // Write out the GOT.
6571
6572 template<int size, bool big_endian>
6573 void
6574 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6575 {
6576   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6577       Mips_stubs_entry_set;
6578
6579   // Call parent to write out GOT.
6580   Output_data_got<size, big_endian>::do_write(of);
6581
6582   const off_t offset = this->offset();
6583   const section_size_type oview_size =
6584     convert_to_section_size_type(this->data_size());
6585   unsigned char* const oview = of->get_output_view(offset, oview_size);
6586
6587   // Needed for fixing values of .got section.
6588   this->got_view_ = oview;
6589
6590   // Write lazy stub addresses.
6591   for (typename Mips_stubs_entry_set::iterator
6592        p = this->master_got_info_->global_got_symbols().begin();
6593        p != this->master_got_info_->global_got_symbols().end();
6594        ++p)
6595     {
6596       Mips_symbol<size>* mips_sym = *p;
6597       if (mips_sym->has_lazy_stub())
6598         {
6599           Valtype* wv = reinterpret_cast<Valtype*>(
6600             oview + this->get_primary_got_offset(mips_sym));
6601           Valtype value =
6602             this->target_->mips_stubs_section()->stub_address(mips_sym);
6603           elfcpp::Swap<size, big_endian>::writeval(wv, value);
6604         }
6605     }
6606
6607   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6608   for (typename Mips_stubs_entry_set::iterator
6609        p = this->master_got_info_->global_got_symbols().begin();
6610        p != this->master_got_info_->global_got_symbols().end();
6611        ++p)
6612     {
6613       Mips_symbol<size>* mips_sym = *p;
6614       if (!this->multi_got()
6615           && (mips_sym->is_mips16() || mips_sym->is_micromips())
6616           && mips_sym->global_got_area() == GGA_NONE
6617           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6618         {
6619           Valtype* wv = reinterpret_cast<Valtype*>(
6620             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6621           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6622           if (value != 0)
6623             {
6624               value |= 1;
6625               elfcpp::Swap<size, big_endian>::writeval(wv, value);
6626             }
6627         }
6628     }
6629
6630   if (!this->secondary_got_relocs_.empty())
6631     {
6632       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
6633       // secondary GOT entries with non-zero initial value copy the value
6634       // to the corresponding primary GOT entry, and set the secondary GOT
6635       // entry to zero.
6636       // TODO(sasa): This is workaround.  It needs to be investigated further.
6637
6638       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6639         {
6640           Static_reloc& reloc(this->secondary_got_relocs_[i]);
6641           if (reloc.symbol_is_global())
6642             {
6643               Mips_symbol<size>* gsym = reloc.symbol();
6644               gold_assert(gsym != NULL);
6645
6646               unsigned got_offset = reloc.got_offset();
6647               gold_assert(got_offset < oview_size);
6648
6649               // Find primary GOT entry.
6650               Valtype* wv_prim = reinterpret_cast<Valtype*>(
6651                 oview + this->get_primary_got_offset(gsym));
6652
6653               // Find secondary GOT entry.
6654               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6655
6656               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6657               if (value != 0)
6658                 {
6659                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6660                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6661                   gsym->set_applied_secondary_got_fixup();
6662                 }
6663             }
6664         }
6665
6666       of->write_output_view(offset, oview_size, oview);
6667     }
6668
6669   // We are done if there is no fix up.
6670   if (this->static_relocs_.empty())
6671     return;
6672
6673   Output_segment* tls_segment = this->layout_->tls_segment();
6674   gold_assert(tls_segment != NULL);
6675
6676   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6677     {
6678       Static_reloc& reloc(this->static_relocs_[i]);
6679
6680       Mips_address value;
6681       if (!reloc.symbol_is_global())
6682         {
6683           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6684           const Symbol_value<size>* psymval =
6685             object->local_symbol(reloc.index());
6686
6687           // We are doing static linking.  Issue an error and skip this
6688           // relocation if the symbol is undefined or in a discarded_section.
6689           bool is_ordinary;
6690           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6691           if ((shndx == elfcpp::SHN_UNDEF)
6692               || (is_ordinary
6693                   && shndx != elfcpp::SHN_UNDEF
6694                   && !object->is_section_included(shndx)
6695                   && !this->symbol_table_->is_section_folded(object, shndx)))
6696             {
6697               gold_error(_("undefined or discarded local symbol %u from "
6698                            " object %s in GOT"),
6699                          reloc.index(), reloc.relobj()->name().c_str());
6700               continue;
6701             }
6702
6703           value = psymval->value(object, 0);
6704         }
6705       else
6706         {
6707           const Mips_symbol<size>* gsym = reloc.symbol();
6708           gold_assert(gsym != NULL);
6709
6710           // We are doing static linking.  Issue an error and skip this
6711           // relocation if the symbol is undefined or in a discarded_section
6712           // unless it is a weakly_undefined symbol.
6713           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6714               && !gsym->is_weak_undefined())
6715             {
6716               gold_error(_("undefined or discarded symbol %s in GOT"),
6717                          gsym->name());
6718               continue;
6719             }
6720
6721           if (!gsym->is_weak_undefined())
6722             value = gsym->value();
6723           else
6724             value = 0;
6725         }
6726
6727       unsigned got_offset = reloc.got_offset();
6728       gold_assert(got_offset < oview_size);
6729
6730       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6731       Valtype x;
6732
6733       switch (reloc.r_type())
6734         {
6735         case elfcpp::R_MIPS_TLS_DTPMOD32:
6736         case elfcpp::R_MIPS_TLS_DTPMOD64:
6737           x = value;
6738           break;
6739         case elfcpp::R_MIPS_TLS_DTPREL32:
6740         case elfcpp::R_MIPS_TLS_DTPREL64:
6741           x = value - elfcpp::DTP_OFFSET;
6742           break;
6743         case elfcpp::R_MIPS_TLS_TPREL32:
6744         case elfcpp::R_MIPS_TLS_TPREL64:
6745           x = value - elfcpp::TP_OFFSET;
6746           break;
6747         default:
6748           gold_unreachable();
6749           break;
6750         }
6751
6752       elfcpp::Swap<size, big_endian>::writeval(wv, x);
6753     }
6754
6755   of->write_output_view(offset, oview_size, oview);
6756 }
6757
6758 // Mips_relobj methods.
6759
6760 // Count the local symbols.  The Mips backend needs to know if a symbol
6761 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
6762 // because the Symbol object keeps the ELF symbol type and st_other field.
6763 // For local symbol it is harder because we cannot access this information.
6764 // So we override the do_count_local_symbol in parent and scan local symbols to
6765 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
6766 // I do not want to slow down other ports by calling a per symbol target hook
6767 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6768
6769 template<int size, bool big_endian>
6770 void
6771 Mips_relobj<size, big_endian>::do_count_local_symbols(
6772     Stringpool_template<char>* pool,
6773     Stringpool_template<char>* dynpool)
6774 {
6775   // Ask parent to count the local symbols.
6776   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6777   const unsigned int loccount = this->local_symbol_count();
6778   if (loccount == 0)
6779     return;
6780
6781   // Initialize the mips16 and micromips function bit-vector.
6782   this->local_symbol_is_mips16_.resize(loccount, false);
6783   this->local_symbol_is_micromips_.resize(loccount, false);
6784
6785   // Read the symbol table section header.
6786   const unsigned int symtab_shndx = this->symtab_shndx();
6787   elfcpp::Shdr<size, big_endian>
6788     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6789   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6790
6791   // Read the local symbols.
6792   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6793   gold_assert(loccount == symtabshdr.get_sh_info());
6794   off_t locsize = loccount * sym_size;
6795   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6796                                               locsize, true, true);
6797
6798   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6799
6800   // Skip the first dummy symbol.
6801   psyms += sym_size;
6802   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6803     {
6804       elfcpp::Sym<size, big_endian> sym(psyms);
6805       unsigned char st_other = sym.get_st_other();
6806       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6807       this->local_symbol_is_micromips_[i] =
6808         elfcpp::elf_st_is_micromips(st_other);
6809     }
6810 }
6811
6812 // Read the symbol information.
6813
6814 template<int size, bool big_endian>
6815 void
6816 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6817 {
6818   // Call parent class to read symbol information.
6819   this->base_read_symbols(sd);
6820
6821   // Read processor-specific flags in ELF file header.
6822   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6823                                             elfcpp::Elf_sizes<size>::ehdr_size,
6824                                             true, false);
6825   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6826   this->processor_specific_flags_ = ehdr.get_e_flags();
6827
6828   // Get the section names.
6829   const unsigned char* pnamesu = sd->section_names->data();
6830   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6831
6832   // Initialize the mips16 stub section bit-vectors.
6833   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6834   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6835   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6836
6837   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6838   const unsigned char* pshdrs = sd->section_headers->data();
6839   const unsigned char* ps = pshdrs + shdr_size;
6840   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6841     {
6842       elfcpp::Shdr<size, big_endian> shdr(ps);
6843
6844       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6845         {
6846           this->has_reginfo_section_ = true;
6847           // Read the gp value that was used to create this object.  We need the
6848           // gp value while processing relocs.  The .reginfo section is not used
6849           // in the 64-bit MIPS ELF ABI.
6850           section_offset_type section_offset = shdr.get_sh_offset();
6851           section_size_type section_size =
6852             convert_to_section_size_type(shdr.get_sh_size());
6853           const unsigned char* view =
6854              this->get_view(section_offset, section_size, true, false);
6855
6856           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6857
6858           // Read the rest of .reginfo.
6859           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6860           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6861           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6862           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6863           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6864         }
6865
6866       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6867         {
6868           gold_assert(this->attributes_section_data_ == NULL);
6869           section_offset_type section_offset = shdr.get_sh_offset();
6870           section_size_type section_size =
6871             convert_to_section_size_type(shdr.get_sh_size());
6872           const unsigned char* view =
6873             this->get_view(section_offset, section_size, true, false);
6874           this->attributes_section_data_ =
6875             new Attributes_section_data(view, section_size);
6876         }
6877
6878       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6879         {
6880           gold_assert(this->abiflags_ == NULL);
6881           section_offset_type section_offset = shdr.get_sh_offset();
6882           section_size_type section_size =
6883             convert_to_section_size_type(shdr.get_sh_size());
6884           const unsigned char* view =
6885             this->get_view(section_offset, section_size, true, false);
6886           this->abiflags_ = new Mips_abiflags<big_endian>();
6887
6888           this->abiflags_->version =
6889             elfcpp::Swap<16, big_endian>::readval(view);
6890           if (this->abiflags_->version != 0)
6891             {
6892               gold_error(_("%s: .MIPS.abiflags section has "
6893                            "unsupported version %u"),
6894                          this->name().c_str(),
6895                          this->abiflags_->version);
6896               break;
6897             }
6898           this->abiflags_->isa_level =
6899             elfcpp::Swap<8, big_endian>::readval(view + 2);
6900           this->abiflags_->isa_rev =
6901             elfcpp::Swap<8, big_endian>::readval(view + 3);
6902           this->abiflags_->gpr_size =
6903             elfcpp::Swap<8, big_endian>::readval(view + 4);
6904           this->abiflags_->cpr1_size =
6905             elfcpp::Swap<8, big_endian>::readval(view + 5);
6906           this->abiflags_->cpr2_size =
6907             elfcpp::Swap<8, big_endian>::readval(view + 6);
6908           this->abiflags_->fp_abi =
6909             elfcpp::Swap<8, big_endian>::readval(view + 7);
6910           this->abiflags_->isa_ext =
6911             elfcpp::Swap<32, big_endian>::readval(view + 8);
6912           this->abiflags_->ases =
6913             elfcpp::Swap<32, big_endian>::readval(view + 12);
6914           this->abiflags_->flags1 =
6915             elfcpp::Swap<32, big_endian>::readval(view + 16);
6916           this->abiflags_->flags2 =
6917             elfcpp::Swap<32, big_endian>::readval(view + 20);
6918         }
6919
6920       // In the 64-bit ABI, .MIPS.options section holds register information.
6921       // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6922       // starts with this header:
6923       //
6924       // typedef struct
6925       // {
6926       //   // Type of option.
6927       //   unsigned char kind[1];
6928       //   // Size of option descriptor, including header.
6929       //   unsigned char size[1];
6930       //   // Section index of affected section, or 0 for global option.
6931       //   unsigned char section[2];
6932       //   // Information specific to this kind of option.
6933       //   unsigned char info[4];
6934       // };
6935       //
6936       // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6937       // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
6938       // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6939
6940       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6941         {
6942           section_offset_type section_offset = shdr.get_sh_offset();
6943           section_size_type section_size =
6944             convert_to_section_size_type(shdr.get_sh_size());
6945           const unsigned char* view =
6946              this->get_view(section_offset, section_size, true, false);
6947           const unsigned char* end = view + section_size;
6948
6949           while (view + 8 <= end)
6950             {
6951               unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6952               unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6953               if (sz < 8)
6954                 {
6955                   gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6956                                "than its header"),
6957                              this->name().c_str(),
6958                              this->mips_elf_options_section_name(), sz);
6959                   break;
6960                 }
6961
6962               if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6963                 {
6964                   // In the 64 bit ABI, an ODK_REGINFO option is the following
6965                   // structure.  The info field of the options header is not
6966                   // used.
6967                   //
6968                   // typedef struct
6969                   // {
6970                   //   // Mask of general purpose registers used.
6971                   //   unsigned char ri_gprmask[4];
6972                   //   // Padding.
6973                   //   unsigned char ri_pad[4];
6974                   //   // Mask of co-processor registers used.
6975                   //   unsigned char ri_cprmask[4][4];
6976                   //   // GP register value for this object file.
6977                   //   unsigned char ri_gp_value[8];
6978                   // };
6979
6980                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6981                                                                       + 32);
6982                 }
6983               else if (kind == elfcpp::ODK_REGINFO)
6984                 {
6985                   // In the 32 bit ABI, an ODK_REGINFO option is the following
6986                   // structure.  The info field of the options header is not
6987                   // used.  The same structure is used in .reginfo section.
6988                   //
6989                   // typedef struct
6990                   // {
6991                   //   unsigned char ri_gprmask[4];
6992                   //   unsigned char ri_cprmask[4][4];
6993                   //   unsigned char ri_gp_value[4];
6994                   // };
6995
6996                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6997                                                                       + 28);
6998                 }
6999               view += sz;
7000             }
7001         }
7002
7003       const char* name = pnames + shdr.get_sh_name();
7004       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
7005       this->section_is_mips16_call_stub_[i] =
7006         is_prefix_of(".mips16.call.", name);
7007       this->section_is_mips16_call_fp_stub_[i] =
7008         is_prefix_of(".mips16.call.fp.", name);
7009
7010       if (strcmp(name, ".pdr") == 0)
7011         {
7012           gold_assert(this->pdr_shndx_ == -1U);
7013           this->pdr_shndx_ = i;
7014         }
7015     }
7016 }
7017
7018 // Discard MIPS16 stub secions that are not needed.
7019
7020 template<int size, bool big_endian>
7021 void
7022 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7023 {
7024   for (typename Mips16_stubs_int_map::const_iterator
7025        it = this->mips16_stub_sections_.begin();
7026        it != this->mips16_stub_sections_.end(); ++it)
7027     {
7028       Mips16_stub_section<size, big_endian>* stub_section = it->second;
7029       if (!stub_section->is_target_found())
7030         {
7031           gold_error(_("no relocation found in mips16 stub section '%s'"),
7032                      stub_section->object()
7033                        ->section_name(stub_section->shndx()).c_str());
7034         }
7035
7036       bool discard = false;
7037       if (stub_section->is_for_local_function())
7038         {
7039           if (stub_section->is_fn_stub())
7040             {
7041               // This stub is for a local symbol.  This stub will only
7042               // be needed if there is some relocation in this object,
7043               // other than a 16 bit function call, which refers to this
7044               // symbol.
7045               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7046                 discard = true;
7047               else
7048                 this->add_local_mips16_fn_stub(stub_section);
7049             }
7050           else
7051             {
7052               // This stub is for a local symbol.  This stub will only
7053               // be needed if there is some relocation (R_MIPS16_26) in
7054               // this object that refers to this symbol.
7055               gold_assert(stub_section->is_call_stub()
7056                           || stub_section->is_call_fp_stub());
7057               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7058                 discard = true;
7059               else
7060                 this->add_local_mips16_call_stub(stub_section);
7061             }
7062         }
7063       else
7064         {
7065           Mips_symbol<size>* gsym = stub_section->gsym();
7066           if (stub_section->is_fn_stub())
7067             {
7068               if (gsym->has_mips16_fn_stub())
7069                 // We already have a stub for this function.
7070                 discard = true;
7071               else
7072                 {
7073                   gsym->set_mips16_fn_stub(stub_section);
7074                   if (gsym->should_add_dynsym_entry(symtab))
7075                     {
7076                       // If we have a MIPS16 function with a stub, the
7077                       // dynamic symbol must refer to the stub, since only
7078                       // the stub uses the standard calling conventions.
7079                       gsym->set_need_fn_stub();
7080                       if (gsym->is_from_dynobj())
7081                         gsym->set_needs_dynsym_value();
7082                     }
7083                 }
7084               if (!gsym->need_fn_stub())
7085                 discard = true;
7086             }
7087           else if (stub_section->is_call_stub())
7088             {
7089               if (gsym->is_mips16())
7090                 // We don't need the call_stub; this is a 16 bit
7091                 // function, so calls from other 16 bit functions are
7092                 // OK.
7093                 discard = true;
7094               else if (gsym->has_mips16_call_stub())
7095                 // We already have a stub for this function.
7096                 discard = true;
7097               else
7098                 gsym->set_mips16_call_stub(stub_section);
7099             }
7100           else
7101             {
7102               gold_assert(stub_section->is_call_fp_stub());
7103               if (gsym->is_mips16())
7104                 // We don't need the call_stub; this is a 16 bit
7105                 // function, so calls from other 16 bit functions are
7106                 // OK.
7107                 discard = true;
7108               else if (gsym->has_mips16_call_fp_stub())
7109                 // We already have a stub for this function.
7110                 discard = true;
7111               else
7112                 gsym->set_mips16_call_fp_stub(stub_section);
7113             }
7114         }
7115       if (discard)
7116         this->set_output_section(stub_section->shndx(), NULL);
7117    }
7118 }
7119
7120 // Mips_output_data_la25_stub methods.
7121
7122 // Template for standard LA25 stub.
7123 template<int size, bool big_endian>
7124 const uint32_t
7125 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7126 {
7127   0x3c190000,           // lui $25,%hi(func)
7128   0x08000000,           // j func
7129   0x27390000,           // add $25,$25,%lo(func)
7130   0x00000000            // nop
7131 };
7132
7133 // Template for microMIPS LA25 stub.
7134 template<int size, bool big_endian>
7135 const uint32_t
7136 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7137 {
7138   0x41b9, 0x0000,       // lui t9,%hi(func)
7139   0xd400, 0x0000,       // j func
7140   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
7141   0x0000, 0x0000        // nop
7142 };
7143
7144 // Create la25 stub for a symbol.
7145
7146 template<int size, bool big_endian>
7147 void
7148 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7149     Symbol_table* symtab, Target_mips<size, big_endian>* target,
7150     Mips_symbol<size>* gsym)
7151 {
7152   if (!gsym->has_la25_stub())
7153     {
7154       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7155       this->symbols_.push_back(gsym);
7156       this->create_stub_symbol(gsym, symtab, target, 16);
7157     }
7158 }
7159
7160 // Create a symbol for SYM stub's value and size, to help make the disassembly
7161 // easier to read.
7162
7163 template<int size, bool big_endian>
7164 void
7165 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7166     Mips_symbol<size>* sym, Symbol_table* symtab,
7167     Target_mips<size, big_endian>* target, uint64_t symsize)
7168 {
7169   std::string name(".pic.");
7170   name += sym->name();
7171
7172   unsigned int offset = sym->la25_stub_offset();
7173   if (sym->is_micromips())
7174     offset |= 1;
7175
7176   // Make it a local function.
7177   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7178                                       Symbol_table::PREDEFINED,
7179                                       target->la25_stub_section(),
7180                                       offset, symsize, elfcpp::STT_FUNC,
7181                                       elfcpp::STB_LOCAL,
7182                                       elfcpp::STV_DEFAULT, 0,
7183                                       false, false);
7184   new_sym->set_is_forced_local();
7185 }
7186
7187 // Write out la25 stubs.  This uses the hand-coded instructions above,
7188 // and adjusts them as needed.
7189
7190 template<int size, bool big_endian>
7191 void
7192 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7193 {
7194   const off_t offset = this->offset();
7195   const section_size_type oview_size =
7196     convert_to_section_size_type(this->data_size());
7197   unsigned char* const oview = of->get_output_view(offset, oview_size);
7198
7199   for (typename std::vector<Mips_symbol<size>*>::iterator
7200        p = this->symbols_.begin();
7201        p != this->symbols_.end();
7202        ++p)
7203     {
7204       Mips_symbol<size>* sym = *p;
7205       unsigned char* pov = oview + sym->la25_stub_offset();
7206
7207       Mips_address target = sym->value();
7208       if (!sym->is_micromips())
7209         {
7210           elfcpp::Swap<32, big_endian>::writeval(pov,
7211               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7212           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7213               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7214           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7215               la25_stub_entry[2] | (target & 0xffff));
7216           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7217         }
7218       else
7219         {
7220           target |= 1;
7221           // First stub instruction.  Paste high 16-bits of the target.
7222           elfcpp::Swap<16, big_endian>::writeval(pov,
7223                                                  la25_stub_micromips_entry[0]);
7224           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7225               ((target + 0x8000) >> 16) & 0xffff);
7226           // Second stub instruction.  Paste low 26-bits of the target, shifted
7227           // right by 1.
7228           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7229               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7230           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7231               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7232           // Third stub instruction.  Paste low 16-bits of the target.
7233           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7234                                                  la25_stub_micromips_entry[4]);
7235           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7236           // Fourth stub instruction.
7237           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7238                                                  la25_stub_micromips_entry[6]);
7239           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7240                                                  la25_stub_micromips_entry[7]);
7241         }
7242     }
7243
7244   of->write_output_view(offset, oview_size, oview);
7245 }
7246
7247 // Mips_output_data_plt methods.
7248
7249 // The format of the first PLT entry in an O32 executable.
7250 template<int size, bool big_endian>
7251 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7252 {
7253   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
7254   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
7255   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
7256   0x031cc023,         // subu $24, $24, $28
7257   0x03e07825,         // or $15, $31, zero
7258   0x0018c082,         // srl $24, $24, 2
7259   0x0320f809,         // jalr $25
7260   0x2718fffe          // subu $24, $24, 2
7261 };
7262
7263 // The format of the first PLT entry in an N32 executable.  Different
7264 // because gp ($28) is not available; we use t2 ($14) instead.
7265 template<int size, bool big_endian>
7266 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7267 {
7268   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7269   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
7270   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7271   0x030ec023,         // subu $24, $24, $14
7272   0x03e07825,         // or $15, $31, zero
7273   0x0018c082,         // srl $24, $24, 2
7274   0x0320f809,         // jalr $25
7275   0x2718fffe          // subu $24, $24, 2
7276 };
7277
7278 // The format of the first PLT entry in an N64 executable.  Different
7279 // from N32 because of the increased size of GOT entries.
7280 template<int size, bool big_endian>
7281 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7282 {
7283   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7284   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
7285   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7286   0x030ec023,         // subu $24, $24, $14
7287   0x03e07825,         // or $15, $31, zero
7288   0x0018c0c2,         // srl $24, $24, 3
7289   0x0320f809,         // jalr $25
7290   0x2718fffe          // subu $24, $24, 2
7291 };
7292
7293 // The format of the microMIPS first PLT entry in an O32 executable.
7294 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7295 // of the GOTPLT entry handled, so this stub may only be used when
7296 // all the subsequent PLT entries are microMIPS code too.
7297 //
7298 // The trailing NOP is for alignment and correct disassembly only.
7299 template<int size, bool big_endian>
7300 const uint32_t Mips_output_data_plt<size, big_endian>::
7301 plt0_entry_micromips_o32[] =
7302 {
7303   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
7304   0xff23, 0x0000,      // lw $25, 0($3)
7305   0x0535,              // subu $2, $2, $3
7306   0x2525,              // srl $2, $2, 2
7307   0x3302, 0xfffe,      // subu $24, $2, 2
7308   0x0dff,              // move $15, $31
7309   0x45f9,              // jalrs $25
7310   0x0f83,              // move $28, $3
7311   0x0c00               // nop
7312 };
7313
7314 // The format of the microMIPS first PLT entry in an O32 executable
7315 // in the insn32 mode.
7316 template<int size, bool big_endian>
7317 const uint32_t Mips_output_data_plt<size, big_endian>::
7318 plt0_entry_micromips32_o32[] =
7319 {
7320   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
7321   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
7322   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
7323   0x0398, 0xc1d0,      // subu $24, $24, $28
7324   0x001f, 0x7a90,      // or $15, $31, zero
7325   0x0318, 0x1040,      // srl $24, $24, 2
7326   0x03f9, 0x0f3c,      // jalr $25
7327   0x3318, 0xfffe       // subu $24, $24, 2
7328 };
7329
7330 // The format of subsequent standard entries in the PLT.
7331 template<int size, bool big_endian>
7332 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7333 {
7334   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7335   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7336   0x03200008,           // jr $25
7337   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7338 };
7339
7340 // The format of subsequent R6 PLT entries.
7341 template<int size, bool big_endian>
7342 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7343 {
7344   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7345   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7346   0x03200009,           // jr $25
7347   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7348 };
7349
7350 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
7351 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7352 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7353 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7354 // target function address in register v0.
7355 template<int size, bool big_endian>
7356 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7357 {
7358   0xb303,              // lw $3, 12($pc)
7359   0x651b,              // move $24, $3
7360   0x9b60,              // lw $3, 0($3)
7361   0xeb00,              // jr $3
7362   0x653b,              // move $25, $3
7363   0x6500,              // nop
7364   0x0000, 0x0000       // .word (.got.plt entry)
7365 };
7366
7367 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
7368 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7369 template<int size, bool big_endian>
7370 const uint32_t Mips_output_data_plt<size, big_endian>::
7371 plt_entry_micromips_o32[] =
7372 {
7373   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
7374   0xff22, 0x0000,      // lw $25, 0($2)
7375   0x4599,              // jr $25
7376   0x0f02               // move $24, $2
7377 };
7378
7379 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7380 template<int size, bool big_endian>
7381 const uint32_t Mips_output_data_plt<size, big_endian>::
7382 plt_entry_micromips32_o32[] =
7383 {
7384   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
7385   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
7386   0x0019, 0x0f3c,      // jr $25
7387   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
7388 };
7389
7390 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7391
7392 template<int size, bool big_endian>
7393 void
7394 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7395                                                   unsigned int r_type)
7396 {
7397   gold_assert(!gsym->has_plt_offset());
7398
7399   // Final PLT offset for a symbol will be set in method set_plt_offsets().
7400   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7401                        + sizeof(plt0_entry_o32));
7402   this->symbols_.push_back(gsym);
7403
7404   // Record whether the relocation requires a standard MIPS
7405   // or a compressed code entry.
7406   if (jal_reloc(r_type))
7407    {
7408      if (r_type == elfcpp::R_MIPS_26)
7409        gsym->set_needs_mips_plt(true);
7410      else
7411        gsym->set_needs_comp_plt(true);
7412    }
7413
7414   section_offset_type got_offset = this->got_plt_->current_data_size();
7415
7416   // Every PLT entry needs a GOT entry which points back to the PLT
7417   // entry (this will be changed by the dynamic linker, normally
7418   // lazily when the function is called).
7419   this->got_plt_->set_current_data_size(got_offset + size/8);
7420
7421   gsym->set_needs_dynsym_entry();
7422   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7423                          got_offset);
7424 }
7425
7426 // Set final PLT offsets.  For each symbol, determine whether standard or
7427 // compressed (MIPS16 or microMIPS) PLT entry is used.
7428
7429 template<int size, bool big_endian>
7430 void
7431 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7432 {
7433   // The sizes of individual PLT entries.
7434   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7435   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7436                                       ? this->compressed_plt_entry_size() : 0);
7437
7438   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7439        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7440     {
7441       Mips_symbol<size>* mips_sym = *p;
7442
7443       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7444       // so always use a standard entry there.
7445       //
7446       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7447       // all MIPS16 calls will go via that stub, and there is no benefit
7448       // to having a MIPS16 entry.  And in the case of call_stub a
7449       // standard entry actually has to be used as the stub ends with a J
7450       // instruction.
7451       if (this->target_->is_output_newabi()
7452           || mips_sym->has_mips16_call_stub()
7453           || mips_sym->has_mips16_call_fp_stub())
7454         {
7455           mips_sym->set_needs_mips_plt(true);
7456           mips_sym->set_needs_comp_plt(false);
7457         }
7458
7459       // Otherwise, if there are no direct calls to the function, we
7460       // have a free choice of whether to use standard or compressed
7461       // entries.  Prefer microMIPS entries if the object is known to
7462       // contain microMIPS code, so that it becomes possible to create
7463       // pure microMIPS binaries.  Prefer standard entries otherwise,
7464       // because MIPS16 ones are no smaller and are usually slower.
7465       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7466         {
7467           if (this->target_->is_output_micromips())
7468             mips_sym->set_needs_comp_plt(true);
7469           else
7470             mips_sym->set_needs_mips_plt(true);
7471         }
7472
7473       if (mips_sym->needs_mips_plt())
7474         {
7475           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7476           this->plt_mips_offset_ += plt_mips_entry_size;
7477         }
7478       if (mips_sym->needs_comp_plt())
7479         {
7480           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7481           this->plt_comp_offset_ += plt_comp_entry_size;
7482         }
7483     }
7484
7485     // Figure out the size of the PLT header if we know that we are using it.
7486     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7487       this->plt_header_size_ = this->get_plt_header_size();
7488 }
7489
7490 // Write out the PLT.  This uses the hand-coded instructions above,
7491 // and adjusts them as needed.
7492
7493 template<int size, bool big_endian>
7494 void
7495 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7496 {
7497   const off_t offset = this->offset();
7498   const section_size_type oview_size =
7499     convert_to_section_size_type(this->data_size());
7500   unsigned char* const oview = of->get_output_view(offset, oview_size);
7501
7502   const off_t gotplt_file_offset = this->got_plt_->offset();
7503   const section_size_type gotplt_size =
7504     convert_to_section_size_type(this->got_plt_->data_size());
7505   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7506                                                          gotplt_size);
7507   unsigned char* pov = oview;
7508
7509   Mips_address plt_address = this->address();
7510
7511   // Calculate the address of .got.plt.
7512   Mips_address gotplt_addr = this->got_plt_->address();
7513   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7514   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7515
7516   // The PLT sequence is not safe for N64 if .got.plt's address can
7517   // not be loaded in two instructions.
7518   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7519               || ~(gotplt_addr | 0x7fffffff) == 0);
7520
7521   // Write the PLT header.
7522   const uint32_t* plt0_entry = this->get_plt_header_entry();
7523   if (plt0_entry == plt0_entry_micromips_o32)
7524     {
7525       // Write microMIPS PLT header.
7526       gold_assert(gotplt_addr % 4 == 0);
7527
7528       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7529
7530       // ADDIUPC has a span of +/-16MB, check we're in range.
7531       if (gotpc_offset + 0x1000000 >= 0x2000000)
7532        {
7533          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7534                     "ADDIUPC"), (long)gotpc_offset);
7535          return;
7536        }
7537
7538       elfcpp::Swap<16, big_endian>::writeval(pov,
7539                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7540       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7541                                              (gotpc_offset >> 2) & 0xffff);
7542       pov += 4;
7543       for (unsigned int i = 2;
7544            i < (sizeof(plt0_entry_micromips_o32)
7545                 / sizeof(plt0_entry_micromips_o32[0]));
7546            i++)
7547         {
7548           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7549           pov += 2;
7550         }
7551     }
7552   else if (plt0_entry == plt0_entry_micromips32_o32)
7553     {
7554       // Write microMIPS PLT header in insn32 mode.
7555       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7556       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7557       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7558       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7559       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7560       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7561       pov += 12;
7562       for (unsigned int i = 6;
7563            i < (sizeof(plt0_entry_micromips32_o32)
7564                 / sizeof(plt0_entry_micromips32_o32[0]));
7565            i++)
7566         {
7567           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7568           pov += 2;
7569         }
7570     }
7571   else
7572     {
7573       // Write standard PLT header.
7574       elfcpp::Swap<32, big_endian>::writeval(pov,
7575                                              plt0_entry[0] | gotplt_addr_high);
7576       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7577                                              plt0_entry[1] | gotplt_addr_low);
7578       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7579                                              plt0_entry[2] | gotplt_addr_low);
7580       pov += 12;
7581       for (int i = 3; i < 8; i++)
7582         {
7583           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7584           pov += 4;
7585         }
7586     }
7587
7588
7589   unsigned char* gotplt_pov = gotplt_view;
7590   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7591
7592   // The first two entries in .got.plt are reserved.
7593   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7594   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7595
7596   unsigned int gotplt_offset = 2 * got_entry_size;
7597   gotplt_pov += 2 * got_entry_size;
7598
7599   // Calculate the address of the PLT header.
7600   Mips_address header_address = (plt_address
7601                                  + (this->is_plt_header_compressed() ? 1 : 0));
7602
7603   // Initialize compressed PLT area view.
7604   unsigned char* pov2 = pov + this->plt_mips_offset_;
7605
7606   // Write the PLT entries.
7607   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7608        p = this->symbols_.begin();
7609        p != this->symbols_.end();
7610        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7611     {
7612       Mips_symbol<size>* mips_sym = *p;
7613
7614       // Calculate the address of the .got.plt entry.
7615       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7616       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7617                                        & 0xffff);
7618       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7619
7620       // Initially point the .got.plt entry at the PLT header.
7621       if (this->target_->is_output_n64())
7622         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7623       else
7624         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7625
7626       // Now handle the PLT itself.  First the standard entry.
7627       if (mips_sym->has_mips_plt_offset())
7628         {
7629           // Pick the load opcode (LW or LD).
7630           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7631                                                          : 0x8c000000;
7632
7633           const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7634                                                                 : plt_entry;
7635
7636           // Fill in the PLT entry itself.
7637           elfcpp::Swap<32, big_endian>::writeval(pov,
7638               entry[0] | gotplt_entry_addr_hi);
7639           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7640               entry[1] | gotplt_entry_addr_lo | load);
7641           elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7642           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7643               entry[3] | gotplt_entry_addr_lo);
7644           pov += 16;
7645         }
7646
7647       // Now the compressed entry.  They come after any standard ones.
7648       if (mips_sym->has_comp_plt_offset())
7649         {
7650           if (!this->target_->is_output_micromips())
7651             {
7652               // Write MIPS16 PLT entry.
7653               const uint32_t* plt_entry = plt_entry_mips16_o32;
7654
7655               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7656               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7657               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7658               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7659               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7660               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7661               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7662                                                      gotplt_entry_addr);
7663               pov2 += 16;
7664             }
7665           else if (this->target_->use_32bit_micromips_instructions())
7666             {
7667               // Write microMIPS PLT entry in insn32 mode.
7668               const uint32_t* plt_entry = plt_entry_micromips32_o32;
7669
7670               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7671               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7672                                                      gotplt_entry_addr_hi);
7673               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7674               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7675                                                      gotplt_entry_addr_lo);
7676               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7677               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7678               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7679               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7680                                                      gotplt_entry_addr_lo);
7681               pov2 += 16;
7682             }
7683           else
7684             {
7685               // Write microMIPS PLT entry.
7686               const uint32_t* plt_entry = plt_entry_micromips_o32;
7687
7688               gold_assert(gotplt_entry_addr % 4 == 0);
7689
7690               Mips_address loc_address = plt_address + pov2 - oview;
7691               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7692
7693               // ADDIUPC has a span of +/-16MB, check we're in range.
7694               if (gotpc_offset + 0x1000000 >= 0x2000000)
7695                 {
7696                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
7697                              "range of ADDIUPC"), (long)gotpc_offset);
7698                   return;
7699                 }
7700
7701               elfcpp::Swap<16, big_endian>::writeval(pov2,
7702                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7703               elfcpp::Swap<16, big_endian>::writeval(
7704                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7705               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7706               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7707               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7708               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7709               pov2 += 12;
7710             }
7711         }
7712     }
7713
7714   // Check the number of bytes written for standard entries.
7715   gold_assert(static_cast<section_size_type>(
7716       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7717   // Check the number of bytes written for compressed entries.
7718   gold_assert((static_cast<section_size_type>(pov2 - pov)
7719                == this->plt_comp_offset_));
7720   // Check the total number of bytes written.
7721   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7722
7723   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7724               == gotplt_size);
7725
7726   of->write_output_view(offset, oview_size, oview);
7727   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7728 }
7729
7730 // Mips_output_data_mips_stubs methods.
7731
7732 // The format of the lazy binding stub when dynamic symbol count is less than
7733 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7734 template<int size, bool big_endian>
7735 const uint32_t
7736 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7737 {
7738   0x8f998010,         // lw t9,0x8010(gp)
7739   0x03e07825,         // or t7,ra,zero
7740   0x0320f809,         // jalr t9,ra
7741   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
7742 };
7743
7744 // The format of the lazy binding stub when dynamic symbol count is less than
7745 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7746 template<int size, bool big_endian>
7747 const uint32_t
7748 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7749 {
7750   0xdf998010,         // ld t9,0x8010(gp)
7751   0x03e07825,         // or t7,ra,zero
7752   0x0320f809,         // jalr t9,ra
7753   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
7754 };
7755
7756 // The format of the lazy binding stub when dynamic symbol count is less than
7757 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7758 template<int size, bool big_endian>
7759 const uint32_t
7760 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7761 {
7762   0x8f998010,         // lw t9,0x8010(gp)
7763   0x03e07825,         // or t7,ra,zero
7764   0x0320f809,         // jalr t9,ra
7765   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7766 };
7767
7768 // The format of the lazy binding stub when dynamic symbol count is less than
7769 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7770 template<int size, bool big_endian>
7771 const uint32_t
7772 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7773 {
7774   0xdf998010,         // ld t9,0x8010(gp)
7775   0x03e07825,         // or t7,ra,zero
7776   0x0320f809,         // jalr t9,ra
7777   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7778 };
7779
7780 // The format of the lazy binding stub when dynamic symbol count is greater than
7781 // 64K, and ABI is not N64.
7782 template<int size, bool big_endian>
7783 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7784 {
7785   0x8f998010,         // lw t9,0x8010(gp)
7786   0x03e07825,         // or t7,ra,zero
7787   0x3c180000,         // lui t8,DYN_INDEX
7788   0x0320f809,         // jalr t9,ra
7789   0x37180000          // ori t8,t8,DYN_INDEX
7790 };
7791
7792 // The format of the lazy binding stub when dynamic symbol count is greater than
7793 // 64K, and ABI is N64.
7794 template<int size, bool big_endian>
7795 const uint32_t
7796 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7797 {
7798   0xdf998010,         // ld t9,0x8010(gp)
7799   0x03e07825,         // or t7,ra,zero
7800   0x3c180000,         // lui t8,DYN_INDEX
7801   0x0320f809,         // jalr t9,ra
7802   0x37180000          // ori t8,t8,DYN_INDEX
7803 };
7804
7805 // microMIPS stubs.
7806
7807 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7808 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7809 template<int size, bool big_endian>
7810 const uint32_t
7811 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7812 {
7813   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7814   0x0dff,             // move t7,ra
7815   0x45d9,             // jalr t9
7816   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7817 };
7818
7819 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7820 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7821 template<int size, bool big_endian>
7822 const uint32_t
7823 Mips_output_data_mips_stubs<size, big_endian>::
7824 lazy_stub_micromips_normal_1_n64[] =
7825 {
7826   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7827   0x0dff,             // move t7,ra
7828   0x45d9,             // jalr t9
7829   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7830 };
7831
7832 // The format of the microMIPS lazy binding stub when dynamic symbol
7833 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7834 // and ABI is not N64.
7835 template<int size, bool big_endian>
7836 const uint32_t
7837 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7838 {
7839   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7840   0x0dff,             // move t7,ra
7841   0x45d9,             // jalr t9
7842   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7843 };
7844
7845 // The format of the microMIPS lazy binding stub when dynamic symbol
7846 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7847 // and ABI is N64.
7848 template<int size, bool big_endian>
7849 const uint32_t
7850 Mips_output_data_mips_stubs<size, big_endian>::
7851 lazy_stub_micromips_normal_2_n64[] =
7852 {
7853   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7854   0x0dff,             // move t7,ra
7855   0x45d9,             // jalr t9
7856   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7857 };
7858
7859 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7860 // greater than 64K, and ABI is not N64.
7861 template<int size, bool big_endian>
7862 const uint32_t
7863 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7864 {
7865   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7866   0x0dff,             // move t7,ra
7867   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7868   0x45d9,             // jalr t9
7869   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7870 };
7871
7872 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7873 // greater than 64K, and ABI is N64.
7874 template<int size, bool big_endian>
7875 const uint32_t
7876 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7877 {
7878   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7879   0x0dff,             // move t7,ra
7880   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7881   0x45d9,             // jalr t9
7882   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7883 };
7884
7885 // 32-bit microMIPS stubs.
7886
7887 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7888 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7889 // can use only 32-bit instructions.
7890 template<int size, bool big_endian>
7891 const uint32_t
7892 Mips_output_data_mips_stubs<size, big_endian>::
7893 lazy_stub_micromips32_normal_1[] =
7894 {
7895   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7896   0x001f, 0x7a90,     // or t7,ra,zero
7897   0x03f9, 0x0f3c,     // jalr ra,t9
7898   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7899 };
7900
7901 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7902 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7903 // use only 32-bit instructions.
7904 template<int size, bool big_endian>
7905 const uint32_t
7906 Mips_output_data_mips_stubs<size, big_endian>::
7907 lazy_stub_micromips32_normal_1_n64[] =
7908 {
7909   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7910   0x001f, 0x7a90,     // or t7,ra,zero
7911   0x03f9, 0x0f3c,     // jalr ra,t9
7912   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7913 };
7914
7915 // The format of the microMIPS lazy binding stub when dynamic symbol
7916 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7917 // ABI is not N64, and we can use only 32-bit instructions.
7918 template<int size, bool big_endian>
7919 const uint32_t
7920 Mips_output_data_mips_stubs<size, big_endian>::
7921 lazy_stub_micromips32_normal_2[] =
7922 {
7923   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7924   0x001f, 0x7a90,     // or t7,ra,zero
7925   0x03f9, 0x0f3c,     // jalr ra,t9
7926   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7927 };
7928
7929 // The format of the microMIPS lazy binding stub when dynamic symbol
7930 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7931 // ABI is N64, and we can use only 32-bit instructions.
7932 template<int size, bool big_endian>
7933 const uint32_t
7934 Mips_output_data_mips_stubs<size, big_endian>::
7935 lazy_stub_micromips32_normal_2_n64[] =
7936 {
7937   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7938   0x001f, 0x7a90,     // or t7,ra,zero
7939   0x03f9, 0x0f3c,     // jalr ra,t9
7940   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7941 };
7942
7943 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7944 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7945 template<int size, bool big_endian>
7946 const uint32_t
7947 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7948 {
7949   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7950   0x001f, 0x7a90,     // or t7,ra,zero
7951   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7952   0x03f9, 0x0f3c,     // jalr ra,t9
7953   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7954 };
7955
7956 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7957 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7958 template<int size, bool big_endian>
7959 const uint32_t
7960 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7961 {
7962   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7963   0x001f, 0x7a90,     // or t7,ra,zero
7964   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7965   0x03f9, 0x0f3c,     // jalr ra,t9
7966   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7967 };
7968
7969 // Create entry for a symbol.
7970
7971 template<int size, bool big_endian>
7972 void
7973 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7974     Mips_symbol<size>* gsym)
7975 {
7976   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7977     {
7978       this->symbols_.insert(gsym);
7979       gsym->set_has_lazy_stub(true);
7980     }
7981 }
7982
7983 // Remove entry for a symbol.
7984
7985 template<int size, bool big_endian>
7986 void
7987 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7988     Mips_symbol<size>* gsym)
7989 {
7990   if (gsym->has_lazy_stub())
7991     {
7992       this->symbols_.erase(gsym);
7993       gsym->set_has_lazy_stub(false);
7994     }
7995 }
7996
7997 // Set stub offsets for symbols.  This method expects that the number of
7998 // entries in dynamic symbol table is set.
7999
8000 template<int size, bool big_endian>
8001 void
8002 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
8003 {
8004   gold_assert(this->dynsym_count_ != -1U);
8005
8006   if (this->stub_offsets_are_set_)
8007     return;
8008
8009   unsigned int stub_size = this->stub_size();
8010   unsigned int offset = 0;
8011   for (typename Mips_stubs_entry_set::const_iterator
8012        p = this->symbols_.begin();
8013        p != this->symbols_.end();
8014        ++p, offset += stub_size)
8015     {
8016       Mips_symbol<size>* mips_sym = *p;
8017       mips_sym->set_lazy_stub_offset(offset);
8018     }
8019   this->stub_offsets_are_set_ = true;
8020 }
8021
8022 template<int size, bool big_endian>
8023 void
8024 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8025 {
8026   for (typename Mips_stubs_entry_set::const_iterator
8027        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8028     {
8029       Mips_symbol<size>* sym = *p;
8030       if (sym->is_from_dynobj())
8031         sym->set_needs_dynsym_value();
8032     }
8033 }
8034
8035 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
8036 // adjusts them as needed.
8037
8038 template<int size, bool big_endian>
8039 void
8040 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8041 {
8042   const off_t offset = this->offset();
8043   const section_size_type oview_size =
8044     convert_to_section_size_type(this->data_size());
8045   unsigned char* const oview = of->get_output_view(offset, oview_size);
8046
8047   bool big_stub = this->dynsym_count_ > 0x10000;
8048
8049   unsigned char* pov = oview;
8050   for (typename Mips_stubs_entry_set::const_iterator
8051        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8052     {
8053       Mips_symbol<size>* sym = *p;
8054       const uint32_t* lazy_stub;
8055       bool n64 = this->target_->is_output_n64();
8056
8057       if (!this->target_->is_output_micromips())
8058         {
8059           // Write standard (non-microMIPS) stub.
8060           if (!big_stub)
8061             {
8062               if (sym->dynsym_index() & ~0x7fff)
8063                 // Dynsym index is between 32K and 64K.
8064                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8065               else
8066                 // Dynsym index is less than 32K.
8067                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8068             }
8069           else
8070             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8071
8072           unsigned int i = 0;
8073           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8074           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8075           pov += 8;
8076
8077           i += 2;
8078           if (big_stub)
8079             {
8080               // LUI instruction of the big stub.  Paste high 16 bits of the
8081               // dynsym index.
8082               elfcpp::Swap<32, big_endian>::writeval(pov,
8083                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8084               pov += 4;
8085               i += 1;
8086             }
8087           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8088           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8089           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8090               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8091           pov += 8;
8092         }
8093       else if (this->target_->use_32bit_micromips_instructions())
8094         {
8095           // Write microMIPS stub in insn32 mode.
8096           if (!big_stub)
8097             {
8098               if (sym->dynsym_index() & ~0x7fff)
8099                 // Dynsym index is between 32K and 64K.
8100                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8101                                 : lazy_stub_micromips32_normal_2;
8102               else
8103                 // Dynsym index is less than 32K.
8104                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8105                                 : lazy_stub_micromips32_normal_1;
8106             }
8107           else
8108             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8109                             : lazy_stub_micromips32_big;
8110
8111           unsigned int i = 0;
8112           // First stub instruction.  We emit 32-bit microMIPS instructions by
8113           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8114           // the instruction where the opcode is must always come first, for
8115           // both little and big endian.
8116           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8117           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8118           // Second stub instruction.
8119           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8120           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8121           pov += 8;
8122           i += 4;
8123           if (big_stub)
8124             {
8125               // LUI instruction of the big stub.  Paste high 16 bits of the
8126               // dynsym index.
8127               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8128               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8129                   (sym->dynsym_index() >> 16) & 0x7fff);
8130               pov += 4;
8131               i += 2;
8132             }
8133           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8134           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8135           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8136           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8137           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8138               sym->dynsym_index() & 0xffff);
8139           pov += 8;
8140         }
8141       else
8142         {
8143           // Write microMIPS stub.
8144           if (!big_stub)
8145             {
8146               if (sym->dynsym_index() & ~0x7fff)
8147                 // Dynsym index is between 32K and 64K.
8148                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8149                                 : lazy_stub_micromips_normal_2;
8150               else
8151                 // Dynsym index is less than 32K.
8152                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8153                                 : lazy_stub_micromips_normal_1;
8154             }
8155           else
8156             lazy_stub = n64 ? lazy_stub_micromips_big_n64
8157                             : lazy_stub_micromips_big;
8158
8159           unsigned int i = 0;
8160           // First stub instruction.  We emit 32-bit microMIPS instructions by
8161           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8162           // the instruction where the opcode is must always come first, for
8163           // both little and big endian.
8164           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8165           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8166           // Second stub instruction.
8167           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8168           pov += 6;
8169           i += 3;
8170           if (big_stub)
8171             {
8172               // LUI instruction of the big stub.  Paste high 16 bits of the
8173               // dynsym index.
8174               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8175               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8176                   (sym->dynsym_index() >> 16) & 0x7fff);
8177               pov += 4;
8178               i += 2;
8179             }
8180           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8181           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8182           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8183           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8184               sym->dynsym_index() & 0xffff);
8185           pov += 6;
8186         }
8187     }
8188
8189   // We always allocate 20 bytes for every stub, because final dynsym count is
8190   // not known in method do_finalize_sections.  There are 4 unused bytes per
8191   // stub if final dynsym count is less than 0x10000.
8192   unsigned int used = pov - oview;
8193   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8194   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8195
8196   // Fill the unused space with zeroes.
8197   // TODO(sasa): Can we strip unused bytes during the relaxation?
8198   if (unused > 0)
8199     memset(pov, 0, unused);
8200
8201   of->write_output_view(offset, oview_size, oview);
8202 }
8203
8204 // Mips_output_section_reginfo methods.
8205
8206 template<int size, bool big_endian>
8207 void
8208 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8209 {
8210   off_t offset = this->offset();
8211   off_t data_size = this->data_size();
8212
8213   unsigned char* view = of->get_output_view(offset, data_size);
8214   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8215   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8216   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8217   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8218   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8219   // Write the gp value.
8220   elfcpp::Swap<size, big_endian>::writeval(view + 20,
8221                                            this->target_->gp_value());
8222
8223   of->write_output_view(offset, data_size, view);
8224 }
8225
8226 // Mips_output_section_options methods.
8227
8228 template<int size, bool big_endian>
8229 void
8230 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8231 {
8232   off_t offset = this->offset();
8233   const section_size_type oview_size =
8234     convert_to_section_size_type(this->data_size());
8235   unsigned char* view = of->get_output_view(offset, oview_size);
8236   const unsigned char* end = view + oview_size;
8237
8238   while (view + 8 <= end)
8239     {
8240       unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8241       unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8242       if (sz < 8)
8243         {
8244           gold_error(_("Warning: bad `%s' option size %u smaller "
8245                        "than its header in output section"),
8246                      this->name(), sz);
8247           break;
8248         }
8249
8250       // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8251       if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8252         elfcpp::Swap<size, big_endian>::writeval(view + 32,
8253                                                  this->target_->gp_value());
8254       else if (kind == elfcpp::ODK_REGINFO)
8255         elfcpp::Swap<size, big_endian>::writeval(view + 28,
8256                                                  this->target_->gp_value());
8257
8258       view += sz;
8259     }
8260
8261   of->write_output_view(offset, oview_size, view);
8262 }
8263
8264 // Mips_output_section_abiflags methods.
8265
8266 template<int size, bool big_endian>
8267 void
8268 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8269 {
8270   off_t offset = this->offset();
8271   off_t data_size = this->data_size();
8272
8273   unsigned char* view = of->get_output_view(offset, data_size);
8274   elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8275   elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8276   elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8277   elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8278   elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8279   elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8280   elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8281   elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8282   elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8283   elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8284   elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8285
8286   of->write_output_view(offset, data_size, view);
8287 }
8288
8289 // Mips_copy_relocs methods.
8290
8291 // Emit any saved relocs.
8292
8293 template<int sh_type, int size, bool big_endian>
8294 void
8295 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8296     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8297     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8298 {
8299   for (typename Copy_relocs<sh_type, size, big_endian>::
8300        Copy_reloc_entries::iterator p = this->entries_.begin();
8301        p != this->entries_.end();
8302        ++p)
8303     emit_entry(*p, reloc_section, symtab, layout, target);
8304
8305   // We no longer need the saved information.
8306   this->entries_.clear();
8307 }
8308
8309 // Emit the reloc if appropriate.
8310
8311 template<int sh_type, int size, bool big_endian>
8312 void
8313 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8314     Copy_reloc_entry& entry,
8315     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8316     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8317 {
8318   // If the symbol is no longer defined in a dynamic object, then we
8319   // emitted a COPY relocation, and we do not want to emit this
8320   // dynamic relocation.
8321   if (!entry.sym_->is_from_dynobj())
8322     return;
8323
8324   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8325                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8326                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
8327
8328   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8329   if (can_make_dynamic && !sym->has_static_relocs())
8330     {
8331       Mips_relobj<size, big_endian>* object =
8332         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8333       target->got_section(symtab, layout)->record_global_got_symbol(
8334                           sym, object, entry.reloc_type_, true, false);
8335       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8336         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8337             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8338       else
8339         target->rel_dyn_section(layout)->add_symbolless_global_addend(
8340             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8341             entry.shndx_, entry.address_);
8342     }
8343   else
8344     this->make_copy_reloc(symtab, layout,
8345                           static_cast<Sized_symbol<size>*>(entry.sym_),
8346                           entry.relobj_,
8347                           reloc_section);
8348 }
8349
8350 // Target_mips methods.
8351
8352 // Return the value to use for a dynamic symbol which requires special
8353 // treatment.  This is how we support equality comparisons of function
8354 // pointers across shared library boundaries, as described in the
8355 // processor specific ABI supplement.
8356
8357 template<int size, bool big_endian>
8358 uint64_t
8359 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8360 {
8361   uint64_t value = 0;
8362   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8363
8364   if (!mips_sym->has_lazy_stub())
8365     {
8366       if (mips_sym->has_plt_offset())
8367         {
8368           // We distinguish between PLT entries and lazy-binding stubs by
8369           // giving the former an st_other value of STO_MIPS_PLT.  Set the
8370           // value to the stub address if there are any relocations in the
8371           // binary where pointer equality matters.
8372           if (mips_sym->pointer_equality_needed())
8373             {
8374               // Prefer a standard MIPS PLT entry.
8375               if (mips_sym->has_mips_plt_offset())
8376                 value = this->plt_section()->mips_entry_address(mips_sym);
8377               else
8378                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8379             }
8380           else
8381             value = 0;
8382         }
8383     }
8384   else
8385     {
8386       // First, set stub offsets for symbols.  This method expects that the
8387       // number of entries in dynamic symbol table is set.
8388       this->mips_stubs_section()->set_lazy_stub_offsets();
8389
8390       // The run-time linker uses the st_value field of the symbol
8391       // to reset the global offset table entry for this external
8392       // to its stub address when unlinking a shared object.
8393       value = this->mips_stubs_section()->stub_address(mips_sym);
8394     }
8395
8396   if (mips_sym->has_mips16_fn_stub())
8397     {
8398       // If we have a MIPS16 function with a stub, the dynamic symbol must
8399       // refer to the stub, since only the stub uses the standard calling
8400       // conventions.
8401       value = mips_sym->template
8402               get_mips16_fn_stub<big_endian>()->output_address();
8403     }
8404
8405   return value;
8406 }
8407
8408 // Get the dynamic reloc section, creating it if necessary.  It's always
8409 // .rel.dyn, even for MIPS64.
8410
8411 template<int size, bool big_endian>
8412 typename Target_mips<size, big_endian>::Reloc_section*
8413 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8414 {
8415   if (this->rel_dyn_ == NULL)
8416     {
8417       gold_assert(layout != NULL);
8418       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8419       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8420                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
8421                                       ORDER_DYNAMIC_RELOCS, false);
8422
8423       // First entry in .rel.dyn has to be null.
8424       // This is hack - we define dummy output data and set its address to 0,
8425       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8426       // This ensures that the entry is null.
8427       Output_data* od = new Output_data_zero_fill(0, 0);
8428       od->set_address(0);
8429       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8430     }
8431   return this->rel_dyn_;
8432 }
8433
8434 // Get the GOT section, creating it if necessary.
8435
8436 template<int size, bool big_endian>
8437 Mips_output_data_got<size, big_endian>*
8438 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8439                                            Layout* layout)
8440 {
8441   if (this->got_ == NULL)
8442     {
8443       gold_assert(symtab != NULL && layout != NULL);
8444
8445       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8446                                                               layout);
8447       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8448                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8449                                       elfcpp::SHF_MIPS_GPREL),
8450                                       this->got_, ORDER_DATA, false);
8451
8452       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8453       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8454                                     Symbol_table::PREDEFINED,
8455                                     this->got_,
8456                                     0, 0, elfcpp::STT_OBJECT,
8457                                     elfcpp::STB_GLOBAL,
8458                                     elfcpp::STV_HIDDEN, 0,
8459                                     false, false);
8460     }
8461
8462   return this->got_;
8463 }
8464
8465 // Calculate value of _gp symbol.
8466
8467 template<int size, bool big_endian>
8468 void
8469 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8470 {
8471   gold_assert(this->gp_ == NULL);
8472
8473   Sized_symbol<size>* gp =
8474     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8475
8476   // Set _gp symbol if the linker script hasn't created it.
8477   if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8478     {
8479       // If there is no .got section, gp should be based on .sdata.
8480       Output_data* gp_section = (this->got_ != NULL
8481                                  ? this->got_->output_section()
8482                                  : layout->find_output_section(".sdata"));
8483
8484       if (gp_section != NULL)
8485         gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8486                                           "_gp", NULL, Symbol_table::PREDEFINED,
8487                                           gp_section, MIPS_GP_OFFSET, 0,
8488                                           elfcpp::STT_NOTYPE,
8489                                           elfcpp::STB_LOCAL,
8490                                           elfcpp::STV_DEFAULT,
8491                                           0, false, false));
8492     }
8493
8494   this->gp_ = gp;
8495 }
8496
8497 // Set the dynamic symbol indexes.  INDEX is the index of the first
8498 // global dynamic symbol.  Pointers to the symbols are stored into the
8499 // vector SYMS.  The names are added to DYNPOOL.  This returns an
8500 // updated dynamic symbol index.
8501
8502 template<int size, bool big_endian>
8503 unsigned int
8504 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8505     std::vector<Symbol*>* dyn_symbols, unsigned int index,
8506     std::vector<Symbol*>* syms, Stringpool* dynpool,
8507     Versions* versions, Symbol_table* symtab) const
8508 {
8509   std::vector<Symbol*> non_got_symbols;
8510   std::vector<Symbol*> got_symbols;
8511
8512   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8513                                         &got_symbols);
8514
8515   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8516        p != non_got_symbols.end();
8517        ++p)
8518     {
8519       Symbol* sym = *p;
8520
8521       // Note that SYM may already have a dynamic symbol index, since
8522       // some symbols appear more than once in the symbol table, with
8523       // and without a version.
8524
8525       if (!sym->has_dynsym_index())
8526         {
8527           sym->set_dynsym_index(index);
8528           ++index;
8529           syms->push_back(sym);
8530           dynpool->add(sym->name(), false, NULL);
8531
8532           // Record any version information.
8533           if (sym->version() != NULL)
8534             versions->record_version(symtab, dynpool, sym);
8535
8536           // If the symbol is defined in a dynamic object and is
8537           // referenced in a regular object, then mark the dynamic
8538           // object as needed.  This is used to implement --as-needed.
8539           if (sym->is_from_dynobj() && sym->in_reg())
8540             sym->object()->set_is_needed();
8541         }
8542     }
8543
8544   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8545        p != got_symbols.end();
8546        ++p)
8547     {
8548       Symbol* sym = *p;
8549       if (!sym->has_dynsym_index())
8550         {
8551           // Record any version information.
8552           if (sym->version() != NULL)
8553             versions->record_version(symtab, dynpool, sym);
8554         }
8555     }
8556
8557   index = versions->finalize(symtab, index, syms);
8558
8559   int got_sym_count = 0;
8560   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8561        p != got_symbols.end();
8562        ++p)
8563     {
8564       Symbol* sym = *p;
8565
8566       if (!sym->has_dynsym_index())
8567         {
8568           ++got_sym_count;
8569           sym->set_dynsym_index(index);
8570           ++index;
8571           syms->push_back(sym);
8572           dynpool->add(sym->name(), false, NULL);
8573
8574           // If the symbol is defined in a dynamic object and is
8575           // referenced in a regular object, then mark the dynamic
8576           // object as needed.  This is used to implement --as-needed.
8577           if (sym->is_from_dynobj() && sym->in_reg())
8578             sym->object()->set_is_needed();
8579         }
8580     }
8581
8582   // Set index of the first symbol that has .got entry.
8583   this->got_->set_first_global_got_dynsym_index(
8584     got_sym_count > 0 ? index - got_sym_count : -1U);
8585
8586   if (this->mips_stubs_ != NULL)
8587     this->mips_stubs_->set_dynsym_count(index);
8588
8589   return index;
8590 }
8591
8592 // Create a PLT entry for a global symbol referenced by r_type relocation.
8593
8594 template<int size, bool big_endian>
8595 void
8596 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8597                                               Layout* layout,
8598                                               Mips_symbol<size>* gsym,
8599                                               unsigned int r_type)
8600 {
8601   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8602     return;
8603
8604   if (this->plt_ == NULL)
8605     {
8606       // Create the GOT section first.
8607       this->got_section(symtab, layout);
8608
8609       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8610       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8611                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8612                                       this->got_plt_, ORDER_DATA, false);
8613
8614       // The first two entries are reserved.
8615       this->got_plt_->set_current_data_size(2 * size/8);
8616
8617       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8618                                                               this->got_plt_,
8619                                                               this);
8620       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8621                                       (elfcpp::SHF_ALLOC
8622                                        | elfcpp::SHF_EXECINSTR),
8623                                       this->plt_, ORDER_PLT, false);
8624
8625       // Make the sh_info field of .rel.plt point to .plt.
8626       Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8627       rel_plt_os->set_info_section(this->plt_->output_section());
8628     }
8629
8630   this->plt_->add_entry(gsym, r_type);
8631 }
8632
8633
8634 // Get the .MIPS.stubs section, creating it if necessary.
8635
8636 template<int size, bool big_endian>
8637 Mips_output_data_mips_stubs<size, big_endian>*
8638 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8639 {
8640   if (this->mips_stubs_ == NULL)
8641     {
8642       this->mips_stubs_ =
8643         new Mips_output_data_mips_stubs<size, big_endian>(this);
8644       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8645                                       (elfcpp::SHF_ALLOC
8646                                        | elfcpp::SHF_EXECINSTR),
8647                                       this->mips_stubs_, ORDER_PLT, false);
8648     }
8649   return this->mips_stubs_;
8650 }
8651
8652 // Get the LA25 stub section, creating it if necessary.
8653
8654 template<int size, bool big_endian>
8655 Mips_output_data_la25_stub<size, big_endian>*
8656 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8657 {
8658   if (this->la25_stub_ == NULL)
8659     {
8660       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8661       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8662                                       (elfcpp::SHF_ALLOC
8663                                        | elfcpp::SHF_EXECINSTR),
8664                                       this->la25_stub_, ORDER_TEXT, false);
8665     }
8666   return this->la25_stub_;
8667 }
8668
8669 // Process the relocations to determine unreferenced sections for
8670 // garbage collection.
8671
8672 template<int size, bool big_endian>
8673 void
8674 Target_mips<size, big_endian>::gc_process_relocs(
8675                         Symbol_table* symtab,
8676                         Layout* layout,
8677                         Sized_relobj_file<size, big_endian>* object,
8678                         unsigned int data_shndx,
8679                         unsigned int sh_type,
8680                         const unsigned char* prelocs,
8681                         size_t reloc_count,
8682                         Output_section* output_section,
8683                         bool needs_special_offset_handling,
8684                         size_t local_symbol_count,
8685                         const unsigned char* plocal_symbols)
8686 {
8687   typedef Target_mips<size, big_endian> Mips;
8688
8689   if (sh_type == elfcpp::SHT_REL)
8690     {
8691       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8692           Classify_reloc;
8693
8694       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8695         symtab,
8696         layout,
8697         this,
8698         object,
8699         data_shndx,
8700         prelocs,
8701         reloc_count,
8702         output_section,
8703         needs_special_offset_handling,
8704         local_symbol_count,
8705         plocal_symbols);
8706     }
8707   else if (sh_type == elfcpp::SHT_RELA)
8708     {
8709       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8710           Classify_reloc;
8711
8712       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8713         symtab,
8714         layout,
8715         this,
8716         object,
8717         data_shndx,
8718         prelocs,
8719         reloc_count,
8720         output_section,
8721         needs_special_offset_handling,
8722         local_symbol_count,
8723         plocal_symbols);
8724     }
8725   else
8726     gold_unreachable();
8727 }
8728
8729 // Scan relocations for a section.
8730
8731 template<int size, bool big_endian>
8732 void
8733 Target_mips<size, big_endian>::scan_relocs(
8734                         Symbol_table* symtab,
8735                         Layout* layout,
8736                         Sized_relobj_file<size, big_endian>* object,
8737                         unsigned int data_shndx,
8738                         unsigned int sh_type,
8739                         const unsigned char* prelocs,
8740                         size_t reloc_count,
8741                         Output_section* output_section,
8742                         bool needs_special_offset_handling,
8743                         size_t local_symbol_count,
8744                         const unsigned char* plocal_symbols)
8745 {
8746   typedef Target_mips<size, big_endian> Mips;
8747
8748   if (sh_type == elfcpp::SHT_REL)
8749     {
8750       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8751           Classify_reloc;
8752
8753       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8754         symtab,
8755         layout,
8756         this,
8757         object,
8758         data_shndx,
8759         prelocs,
8760         reloc_count,
8761         output_section,
8762         needs_special_offset_handling,
8763         local_symbol_count,
8764         plocal_symbols);
8765     }
8766   else if (sh_type == elfcpp::SHT_RELA)
8767     {
8768       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8769           Classify_reloc;
8770
8771       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8772         symtab,
8773         layout,
8774         this,
8775         object,
8776         data_shndx,
8777         prelocs,
8778         reloc_count,
8779         output_section,
8780         needs_special_offset_handling,
8781         local_symbol_count,
8782         plocal_symbols);
8783     }
8784 }
8785
8786 template<int size, bool big_endian>
8787 bool
8788 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8789 {
8790   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8791           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8792           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8793           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8794           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8795           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8796           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8797           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8798 }
8799
8800 // Return the MACH for a MIPS e_flags value.
8801 template<int size, bool big_endian>
8802 unsigned int
8803 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8804 {
8805   switch (flags & elfcpp::EF_MIPS_MACH)
8806     {
8807     case elfcpp::E_MIPS_MACH_3900:
8808       return mach_mips3900;
8809
8810     case elfcpp::E_MIPS_MACH_4010:
8811       return mach_mips4010;
8812
8813     case elfcpp::E_MIPS_MACH_4100:
8814       return mach_mips4100;
8815
8816     case elfcpp::E_MIPS_MACH_4111:
8817       return mach_mips4111;
8818
8819     case elfcpp::E_MIPS_MACH_4120:
8820       return mach_mips4120;
8821
8822     case elfcpp::E_MIPS_MACH_4650:
8823       return mach_mips4650;
8824
8825     case elfcpp::E_MIPS_MACH_5400:
8826       return mach_mips5400;
8827
8828     case elfcpp::E_MIPS_MACH_5500:
8829       return mach_mips5500;
8830
8831     case elfcpp::E_MIPS_MACH_5900:
8832       return mach_mips5900;
8833
8834     case elfcpp::E_MIPS_MACH_9000:
8835       return mach_mips9000;
8836
8837     case elfcpp::E_MIPS_MACH_SB1:
8838       return mach_mips_sb1;
8839
8840     case elfcpp::E_MIPS_MACH_LS2E:
8841       return mach_mips_loongson_2e;
8842
8843     case elfcpp::E_MIPS_MACH_LS2F:
8844       return mach_mips_loongson_2f;
8845
8846     case elfcpp::E_MIPS_MACH_LS3A:
8847       return mach_mips_loongson_3a;
8848
8849     case elfcpp::E_MIPS_MACH_OCTEON3:
8850       return mach_mips_octeon3;
8851
8852     case elfcpp::E_MIPS_MACH_OCTEON2:
8853       return mach_mips_octeon2;
8854
8855     case elfcpp::E_MIPS_MACH_OCTEON:
8856       return mach_mips_octeon;
8857
8858     case elfcpp::E_MIPS_MACH_XLR:
8859       return mach_mips_xlr;
8860
8861     default:
8862       switch (flags & elfcpp::EF_MIPS_ARCH)
8863         {
8864         default:
8865         case elfcpp::E_MIPS_ARCH_1:
8866           return mach_mips3000;
8867
8868         case elfcpp::E_MIPS_ARCH_2:
8869           return mach_mips6000;
8870
8871         case elfcpp::E_MIPS_ARCH_3:
8872           return mach_mips4000;
8873
8874         case elfcpp::E_MIPS_ARCH_4:
8875           return mach_mips8000;
8876
8877         case elfcpp::E_MIPS_ARCH_5:
8878           return mach_mips5;
8879
8880         case elfcpp::E_MIPS_ARCH_32:
8881           return mach_mipsisa32;
8882
8883         case elfcpp::E_MIPS_ARCH_64:
8884           return mach_mipsisa64;
8885
8886         case elfcpp::E_MIPS_ARCH_32R2:
8887           return mach_mipsisa32r2;
8888
8889         case elfcpp::E_MIPS_ARCH_32R6:
8890           return mach_mipsisa32r6;
8891
8892         case elfcpp::E_MIPS_ARCH_64R2:
8893           return mach_mipsisa64r2;
8894
8895         case elfcpp::E_MIPS_ARCH_64R6:
8896           return mach_mipsisa64r6;
8897         }
8898     }
8899
8900   return 0;
8901 }
8902
8903 // Return the MACH for each .MIPS.abiflags ISA Extension.
8904
8905 template<int size, bool big_endian>
8906 unsigned int
8907 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8908 {
8909   switch (isa_ext)
8910     {
8911     case elfcpp::AFL_EXT_3900:
8912       return mach_mips3900;
8913
8914     case elfcpp::AFL_EXT_4010:
8915       return mach_mips4010;
8916
8917     case elfcpp::AFL_EXT_4100:
8918       return mach_mips4100;
8919
8920     case elfcpp::AFL_EXT_4111:
8921       return mach_mips4111;
8922
8923     case elfcpp::AFL_EXT_4120:
8924       return mach_mips4120;
8925
8926     case elfcpp::AFL_EXT_4650:
8927       return mach_mips4650;
8928
8929     case elfcpp::AFL_EXT_5400:
8930       return mach_mips5400;
8931
8932     case elfcpp::AFL_EXT_5500:
8933       return mach_mips5500;
8934
8935     case elfcpp::AFL_EXT_5900:
8936       return mach_mips5900;
8937
8938     case elfcpp::AFL_EXT_10000:
8939       return mach_mips10000;
8940
8941     case elfcpp::AFL_EXT_LOONGSON_2E:
8942       return mach_mips_loongson_2e;
8943
8944     case elfcpp::AFL_EXT_LOONGSON_2F:
8945       return mach_mips_loongson_2f;
8946
8947     case elfcpp::AFL_EXT_LOONGSON_3A:
8948       return mach_mips_loongson_3a;
8949
8950     case elfcpp::AFL_EXT_SB1:
8951       return mach_mips_sb1;
8952
8953     case elfcpp::AFL_EXT_OCTEON:
8954       return mach_mips_octeon;
8955
8956     case elfcpp::AFL_EXT_OCTEONP:
8957       return mach_mips_octeonp;
8958
8959     case elfcpp::AFL_EXT_OCTEON2:
8960       return mach_mips_octeon2;
8961
8962     case elfcpp::AFL_EXT_XLR:
8963       return mach_mips_xlr;
8964
8965     default:
8966       return mach_mips3000;
8967     }
8968 }
8969
8970 // Return the .MIPS.abiflags value representing each ISA Extension.
8971
8972 template<int size, bool big_endian>
8973 unsigned int
8974 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8975 {
8976   switch (mips_mach)
8977     {
8978     case mach_mips3900:
8979       return elfcpp::AFL_EXT_3900;
8980
8981     case mach_mips4010:
8982       return elfcpp::AFL_EXT_4010;
8983
8984     case mach_mips4100:
8985       return elfcpp::AFL_EXT_4100;
8986
8987     case mach_mips4111:
8988       return elfcpp::AFL_EXT_4111;
8989
8990     case mach_mips4120:
8991       return elfcpp::AFL_EXT_4120;
8992
8993     case mach_mips4650:
8994       return elfcpp::AFL_EXT_4650;
8995
8996     case mach_mips5400:
8997       return elfcpp::AFL_EXT_5400;
8998
8999     case mach_mips5500:
9000       return elfcpp::AFL_EXT_5500;
9001
9002     case mach_mips5900:
9003       return elfcpp::AFL_EXT_5900;
9004
9005     case mach_mips10000:
9006       return elfcpp::AFL_EXT_10000;
9007
9008     case mach_mips_loongson_2e:
9009       return elfcpp::AFL_EXT_LOONGSON_2E;
9010
9011     case mach_mips_loongson_2f:
9012       return elfcpp::AFL_EXT_LOONGSON_2F;
9013
9014     case mach_mips_loongson_3a:
9015       return elfcpp::AFL_EXT_LOONGSON_3A;
9016
9017     case mach_mips_sb1:
9018       return elfcpp::AFL_EXT_SB1;
9019
9020     case mach_mips_octeon:
9021       return elfcpp::AFL_EXT_OCTEON;
9022
9023     case mach_mips_octeonp:
9024       return elfcpp::AFL_EXT_OCTEONP;
9025
9026     case mach_mips_octeon3:
9027       return elfcpp::AFL_EXT_OCTEON3;
9028
9029     case mach_mips_octeon2:
9030       return elfcpp::AFL_EXT_OCTEON2;
9031
9032     case mach_mips_xlr:
9033       return elfcpp::AFL_EXT_XLR;
9034
9035     default:
9036       return 0;
9037     }
9038 }
9039
9040 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9041
9042 template<int size, bool big_endian>
9043 void
9044 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9045     elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9046 {
9047   int new_isa = 0;
9048   switch (e_flags & elfcpp::EF_MIPS_ARCH)
9049     {
9050     case elfcpp::E_MIPS_ARCH_1:
9051       new_isa = this->level_rev(1, 0);
9052       break;
9053     case elfcpp::E_MIPS_ARCH_2:
9054       new_isa = this->level_rev(2, 0);
9055       break;
9056     case elfcpp::E_MIPS_ARCH_3:
9057       new_isa = this->level_rev(3, 0);
9058       break;
9059     case elfcpp::E_MIPS_ARCH_4:
9060       new_isa = this->level_rev(4, 0);
9061       break;
9062     case elfcpp::E_MIPS_ARCH_5:
9063       new_isa = this->level_rev(5, 0);
9064       break;
9065     case elfcpp::E_MIPS_ARCH_32:
9066       new_isa = this->level_rev(32, 1);
9067       break;
9068     case elfcpp::E_MIPS_ARCH_32R2:
9069       new_isa = this->level_rev(32, 2);
9070       break;
9071     case elfcpp::E_MIPS_ARCH_32R6:
9072       new_isa = this->level_rev(32, 6);
9073       break;
9074     case elfcpp::E_MIPS_ARCH_64:
9075       new_isa = this->level_rev(64, 1);
9076       break;
9077     case elfcpp::E_MIPS_ARCH_64R2:
9078       new_isa = this->level_rev(64, 2);
9079       break;
9080     case elfcpp::E_MIPS_ARCH_64R6:
9081       new_isa = this->level_rev(64, 6);
9082       break;
9083     default:
9084       gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9085                  this->elf_mips_mach_name(e_flags));
9086     }
9087
9088   if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9089     {
9090       // Decode a single value into level and revision.
9091       abiflags->isa_level = new_isa >> 3;
9092       abiflags->isa_rev = new_isa & 0x7;
9093     }
9094
9095   // Update the isa_ext if needed.
9096   if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9097       this->elf_mips_mach(e_flags)))
9098     abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9099 }
9100
9101 // Infer the content of the ABI flags based on the elf header.
9102
9103 template<int size, bool big_endian>
9104 void
9105 Target_mips<size, big_endian>::infer_abiflags(
9106     Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9107 {
9108   const Attributes_section_data* pasd = relobj->attributes_section_data();
9109   int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9110   elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9111
9112   this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9113   if (pasd != NULL)
9114     {
9115       // Read fp_abi from the .gnu.attribute section.
9116       const Object_attribute* attr =
9117         pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9118       attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9119     }
9120
9121   abiflags->fp_abi = attr_fp_abi;
9122   abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9123   abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9124   abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9125                                                        : elfcpp::AFL_REG_64;
9126
9127   if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9128       || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9129       || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9130       && abiflags->gpr_size == elfcpp::AFL_REG_32))
9131     abiflags->cpr1_size = elfcpp::AFL_REG_32;
9132   else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9133            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9134            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9135     abiflags->cpr1_size = elfcpp::AFL_REG_64;
9136
9137   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9138     abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9139   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9140     abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9141   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9142     abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9143
9144   if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9145       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9146       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9147       && abiflags->isa_level >= 32
9148       && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9149     abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9150 }
9151
9152 // Create abiflags from elf header or from .MIPS.abiflags section.
9153
9154 template<int size, bool big_endian>
9155 void
9156 Target_mips<size, big_endian>::create_abiflags(
9157     Mips_relobj<size, big_endian>* relobj,
9158     Mips_abiflags<big_endian>* abiflags)
9159 {
9160   Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9161   Mips_abiflags<big_endian> header_abiflags;
9162
9163   this->infer_abiflags(relobj, &header_abiflags);
9164
9165   if (sec_abiflags == NULL)
9166     {
9167       // If there is no input .MIPS.abiflags section, use abiflags created
9168       // from elf header.
9169       *abiflags = header_abiflags;
9170       return;
9171     }
9172
9173   this->has_abiflags_section_ = true;
9174
9175   // It is not possible to infer the correct ISA revision for R3 or R5
9176   // so drop down to R2 for the checks.
9177   unsigned char isa_rev = sec_abiflags->isa_rev;
9178   if (isa_rev == 3 || isa_rev == 5)
9179     isa_rev = 2;
9180
9181   // Check compatibility between abiflags created from elf header
9182   // and abiflags from .MIPS.abiflags section in this object file.
9183   if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9184       < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9185     gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9186                  relobj->name().c_str());
9187   if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9188       && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9189     gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9190                    ".MIPS.abiflags"), relobj->name().c_str());
9191   if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9192     gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9193                  relobj->name().c_str());
9194   // The isa_ext is allowed to be an extension of what can be inferred
9195   // from e_flags.
9196   if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9197                                this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9198     gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9199                    ".MIPS.abiflags"), relobj->name().c_str());
9200   if (sec_abiflags->flags2 != 0)
9201     gold_warning(_("%s: Unexpected flag in the flags2 field of "
9202                    ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9203                                              sec_abiflags->flags2);
9204   // Use abiflags from .MIPS.abiflags section.
9205   *abiflags = *sec_abiflags;
9206 }
9207
9208 // Return the meaning of fp_abi, or "unknown" if not known.
9209
9210 template<int size, bool big_endian>
9211 const char*
9212 Target_mips<size, big_endian>::fp_abi_string(int fp)
9213 {
9214   switch (fp)
9215     {
9216     case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9217       return "-mdouble-float";
9218     case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9219       return "-msingle-float";
9220     case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9221       return "-msoft-float";
9222     case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9223       return _("-mips32r2 -mfp64 (12 callee-saved)");
9224     case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9225       return "-mfpxx";
9226     case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9227       return "-mgp32 -mfp64";
9228     case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9229       return "-mgp32 -mfp64 -mno-odd-spreg";
9230     default:
9231       return "unknown";
9232     }
9233 }
9234
9235 // Select fp_abi.
9236
9237 template<int size, bool big_endian>
9238 int
9239 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9240                                              int out_fp)
9241 {
9242   if (in_fp == out_fp)
9243     return out_fp;
9244
9245   if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9246     return in_fp;
9247   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9248            && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9249                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9250                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9251     return in_fp;
9252   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9253            && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9254                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9255                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9256     return out_fp; // Keep the current setting.
9257   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9258            && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9259     return in_fp;
9260   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9261            && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9262     return out_fp; // Keep the current setting.
9263   else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9264     gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9265                  fp_abi_string(in_fp), fp_abi_string(out_fp));
9266   return out_fp;
9267 }
9268
9269 // Merge attributes from input object.
9270
9271 template<int size, bool big_endian>
9272 void
9273 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9274     const Attributes_section_data* pasd)
9275 {
9276   // Return if there is no attributes section data.
9277   if (pasd == NULL)
9278     return;
9279
9280   // If output has no object attributes, just copy.
9281   if (this->attributes_section_data_ == NULL)
9282     {
9283       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9284       return;
9285     }
9286
9287   Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9288       Object_attribute::OBJ_ATTR_GNU);
9289
9290   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9291   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9292
9293   // Merge Tag_compatibility attributes and any common GNU ones.
9294   this->attributes_section_data_->merge(name.c_str(), pasd);
9295 }
9296
9297 // Merge abiflags from input object.
9298
9299 template<int size, bool big_endian>
9300 void
9301 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9302     Mips_abiflags<big_endian>* in_abiflags)
9303 {
9304   // If output has no abiflags, just copy.
9305   if (this->abiflags_ == NULL)
9306   {
9307     this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9308     return;
9309   }
9310
9311   this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9312                                                 this->abiflags_->fp_abi);
9313
9314   // Merge abiflags.
9315   this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9316                                         in_abiflags->isa_level);
9317   this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9318                                       in_abiflags->isa_rev);
9319   this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9320                                        in_abiflags->gpr_size);
9321   this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9322                                         in_abiflags->cpr1_size);
9323   this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9324                                         in_abiflags->cpr2_size);
9325   this->abiflags_->ases |= in_abiflags->ases;
9326   this->abiflags_->flags1 |= in_abiflags->flags1;
9327 }
9328
9329 // Check whether machine EXTENSION is an extension of machine BASE.
9330 template<int size, bool big_endian>
9331 bool
9332 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9333                                                  unsigned int extension)
9334 {
9335   if (extension == base)
9336     return true;
9337
9338   if ((base == mach_mipsisa32)
9339       && this->mips_mach_extends(mach_mipsisa64, extension))
9340     return true;
9341
9342   if ((base == mach_mipsisa32r2)
9343       && this->mips_mach_extends(mach_mipsisa64r2, extension))
9344     return true;
9345
9346   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9347     if (extension == this->mips_mach_extensions_[i].first)
9348       {
9349         extension = this->mips_mach_extensions_[i].second;
9350         if (extension == base)
9351           return true;
9352       }
9353
9354   return false;
9355 }
9356
9357 // Merge file header flags from input object.
9358
9359 template<int size, bool big_endian>
9360 void
9361 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9362                                                  elfcpp::Elf_Word in_flags)
9363 {
9364   // If flags are not set yet, just copy them.
9365   if (!this->are_processor_specific_flags_set())
9366     {
9367       this->set_processor_specific_flags(in_flags);
9368       this->mach_ = this->elf_mips_mach(in_flags);
9369       return;
9370     }
9371
9372   elfcpp::Elf_Word new_flags = in_flags;
9373   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9374   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9375   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9376
9377   // Check flag compatibility.
9378   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9379   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9380
9381   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
9382   // doesn't seem to matter.
9383   new_flags &= ~elfcpp::EF_MIPS_XGOT;
9384   old_flags &= ~elfcpp::EF_MIPS_XGOT;
9385
9386   // MIPSpro generates ucode info in n64 objects.  Again, we should
9387   // just be able to ignore this.
9388   new_flags &= ~elfcpp::EF_MIPS_UCODE;
9389   old_flags &= ~elfcpp::EF_MIPS_UCODE;
9390
9391   if (new_flags == old_flags)
9392     {
9393       this->set_processor_specific_flags(merged_flags);
9394       return;
9395     }
9396
9397   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9398       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9399     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9400                  name.c_str());
9401
9402   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9403     merged_flags |= elfcpp::EF_MIPS_CPIC;
9404   if (!(new_flags & elfcpp::EF_MIPS_PIC))
9405     merged_flags &= ~elfcpp::EF_MIPS_PIC;
9406
9407   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9408   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9409
9410   // Compare the ISAs.
9411   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9412     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9413   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9414     {
9415       // Output ISA isn't the same as, or an extension of, input ISA.
9416       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9417         {
9418           // Copy the architecture info from input object to output.  Also copy
9419           // the 32-bit flag (if set) so that we continue to recognise
9420           // output as a 32-bit binary.
9421           this->mach_ = this->elf_mips_mach(in_flags);
9422           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9423           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9424                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9425
9426           // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9427           this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9428
9429           // Copy across the ABI flags if output doesn't use them
9430           // and if that was what caused us to treat input object as 32-bit.
9431           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9432               && this->mips_32bit_flags(new_flags)
9433               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9434             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9435         }
9436       else
9437         // The ISAs aren't compatible.
9438         gold_error(_("%s: linking %s module with previous %s modules"),
9439                    name.c_str(), this->elf_mips_mach_name(in_flags),
9440                    this->elf_mips_mach_name(merged_flags));
9441     }
9442
9443   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9444                 | elfcpp::EF_MIPS_32BITMODE));
9445   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9446                 | elfcpp::EF_MIPS_32BITMODE));
9447
9448   // Compare ABIs.
9449   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9450     {
9451       // Only error if both are set (to different values).
9452       if ((new_flags & elfcpp::EF_MIPS_ABI)
9453            && (old_flags & elfcpp::EF_MIPS_ABI))
9454         gold_error(_("%s: ABI mismatch: linking %s module with "
9455                      "previous %s modules"), name.c_str(),
9456                    this->elf_mips_abi_name(in_flags),
9457                    this->elf_mips_abi_name(merged_flags));
9458
9459       new_flags &= ~elfcpp::EF_MIPS_ABI;
9460       old_flags &= ~elfcpp::EF_MIPS_ABI;
9461     }
9462
9463   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
9464   // and allow arbitrary mixing of the remaining ASEs (retain the union).
9465   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9466       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9467     {
9468       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9469       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9470       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9471       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9472       int micro_mis = old_m16 && new_micro;
9473       int m16_mis = old_micro && new_m16;
9474
9475       if (m16_mis || micro_mis)
9476         gold_error(_("%s: ASE mismatch: linking %s module with "
9477                      "previous %s modules"), name.c_str(),
9478                    m16_mis ? "MIPS16" : "microMIPS",
9479                    m16_mis ? "microMIPS" : "MIPS16");
9480
9481       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9482
9483       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9484       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9485     }
9486
9487   // Compare NaN encodings.
9488   if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9489     {
9490       gold_error(_("%s: linking %s module with previous %s modules"),
9491                  name.c_str(),
9492                  (new_flags & elfcpp::EF_MIPS_NAN2008
9493                   ? "-mnan=2008" : "-mnan=legacy"),
9494                  (old_flags & elfcpp::EF_MIPS_NAN2008
9495                   ? "-mnan=2008" : "-mnan=legacy"));
9496
9497       new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9498       old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9499     }
9500
9501   // Compare FP64 state.
9502   if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9503     {
9504       gold_error(_("%s: linking %s module with previous %s modules"),
9505                  name.c_str(),
9506                  (new_flags & elfcpp::EF_MIPS_FP64
9507                   ? "-mfp64" : "-mfp32"),
9508                  (old_flags & elfcpp::EF_MIPS_FP64
9509                   ? "-mfp64" : "-mfp32"));
9510
9511       new_flags &= ~elfcpp::EF_MIPS_FP64;
9512       old_flags &= ~elfcpp::EF_MIPS_FP64;
9513     }
9514
9515   // Warn about any other mismatches.
9516   if (new_flags != old_flags)
9517     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9518                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9519
9520   this->set_processor_specific_flags(merged_flags);
9521 }
9522
9523 // Adjust ELF file header.
9524
9525 template<int size, bool big_endian>
9526 void
9527 Target_mips<size, big_endian>::do_adjust_elf_header(
9528     unsigned char* view,
9529     int len)
9530 {
9531   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9532
9533   elfcpp::Ehdr<size, big_endian> ehdr(view);
9534   unsigned char e_ident[elfcpp::EI_NIDENT];
9535   elfcpp::Elf_Word flags = this->processor_specific_flags();
9536   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9537
9538   unsigned char ei_abiversion = 0;
9539   elfcpp::Elf_Half type = ehdr.get_e_type();
9540   if (type == elfcpp::ET_EXEC
9541       && parameters->options().copyreloc()
9542       && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9543           == elfcpp::EF_MIPS_CPIC)
9544     ei_abiversion = 1;
9545
9546   if (this->abiflags_ != NULL
9547       && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9548           || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9549     ei_abiversion = 3;
9550
9551   e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9552   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9553   oehdr.put_e_ident(e_ident);
9554
9555   if (this->entry_symbol_is_compressed_)
9556     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9557 }
9558
9559 // do_make_elf_object to override the same function in the base class.
9560 // We need to use a target-specific sub-class of
9561 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9562 // Hence we need to have our own ELF object creation.
9563
9564 template<int size, bool big_endian>
9565 Object*
9566 Target_mips<size, big_endian>::do_make_elf_object(
9567     const std::string& name,
9568     Input_file* input_file,
9569     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9570 {
9571   int et = ehdr.get_e_type();
9572   // ET_EXEC files are valid input for --just-symbols/-R,
9573   // and we treat them as relocatable objects.
9574   if (et == elfcpp::ET_REL
9575       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9576     {
9577       Mips_relobj<size, big_endian>* obj =
9578         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9579       obj->setup();
9580       return obj;
9581     }
9582   else if (et == elfcpp::ET_DYN)
9583     {
9584       // TODO(sasa): Should we create Mips_dynobj?
9585       return Target::do_make_elf_object(name, input_file, offset, ehdr);
9586     }
9587   else
9588     {
9589       gold_error(_("%s: unsupported ELF file type %d"),
9590                  name.c_str(), et);
9591       return NULL;
9592     }
9593 }
9594
9595 // Finalize the sections.
9596
9597 template <int size, bool big_endian>
9598 void
9599 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9600                                         const Input_objects* input_objects,
9601                                         Symbol_table* symtab)
9602 {
9603   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9604   // DT_FINI have correct values.
9605   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9606       symtab->lookup(parameters->options().init()));
9607   if (init != NULL && (init->is_mips16() || init->is_micromips()))
9608     init->set_value(init->value() | 1);
9609   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9610       symtab->lookup(parameters->options().fini()));
9611   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9612     fini->set_value(fini->value() | 1);
9613
9614   // Check whether the entry symbol is mips16 or micromips.  This is needed to
9615   // adjust entry address in ELF header.
9616   Mips_symbol<size>* entry =
9617     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9618   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9619                                        || entry->is_micromips()));
9620
9621   if (!parameters->doing_static_link()
9622       && (strcmp(parameters->options().hash_style(), "gnu") == 0
9623           || strcmp(parameters->options().hash_style(), "both") == 0))
9624     {
9625       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9626       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
9627       // MIPS ABI requires a mapping between the GOT and the symbol table.
9628       gold_error(".gnu.hash is incompatible with the MIPS ABI");
9629     }
9630
9631   // Check whether the final section that was scanned has HI16 or GOT16
9632   // relocations without the corresponding LO16 part.
9633   if (this->got16_addends_.size() > 0)
9634       gold_error("Can't find matching LO16 reloc");
9635
9636   // Check for any mips16 stub sections that we can discard.
9637   if (!parameters->options().relocatable())
9638     {
9639       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9640           p != input_objects->relobj_end();
9641           ++p)
9642         {
9643           Mips_relobj<size, big_endian>* object =
9644             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9645           object->discard_mips16_stub_sections(symtab);
9646         }
9647     }
9648
9649   Valtype gprmask = 0;
9650   Valtype cprmask1 = 0;
9651   Valtype cprmask2 = 0;
9652   Valtype cprmask3 = 0;
9653   Valtype cprmask4 = 0;
9654   bool has_reginfo_section = false;
9655
9656   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9657        p != input_objects->relobj_end();
9658        ++p)
9659     {
9660       Mips_relobj<size, big_endian>* relobj =
9661         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9662
9663       // Merge .reginfo contents of input objects.
9664       if (relobj->has_reginfo_section())
9665         {
9666           has_reginfo_section = true;
9667           gprmask |= relobj->gprmask();
9668           cprmask1 |= relobj->cprmask1();
9669           cprmask2 |= relobj->cprmask2();
9670           cprmask3 |= relobj->cprmask3();
9671           cprmask4 |= relobj->cprmask4();
9672         }
9673
9674       Input_file::Format format = relobj->input_file()->format();
9675       if (format != Input_file::FORMAT_ELF)
9676         continue;
9677
9678       // If all input sections will be discarded, don't use this object
9679       // file for merging processor specific flags.
9680       bool should_merge_processor_specific_flags = false;
9681
9682       for (unsigned int i = 1; i < relobj->shnum(); ++i)
9683         if (relobj->output_section(i) != NULL)
9684           {
9685             should_merge_processor_specific_flags = true;
9686             break;
9687           }
9688
9689       if (!should_merge_processor_specific_flags)
9690         continue;
9691
9692       // Merge processor specific flags.
9693       Mips_abiflags<big_endian> in_abiflags;
9694
9695       this->create_abiflags(relobj, &in_abiflags);
9696       this->merge_obj_e_flags(relobj->name(),
9697                               relobj->processor_specific_flags());
9698       this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9699       this->merge_obj_attributes(relobj->name(),
9700                                  relobj->attributes_section_data());
9701     }
9702
9703   // Create a .gnu.attributes section if we have merged any attributes
9704   // from inputs.
9705   if (this->attributes_section_data_ != NULL)
9706     {
9707       Output_attributes_section_data* attributes_section =
9708         new Output_attributes_section_data(*this->attributes_section_data_);
9709       layout->add_output_section_data(".gnu.attributes",
9710                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
9711                                       attributes_section, ORDER_INVALID, false);
9712     }
9713
9714   // Create .MIPS.abiflags output section if there is an input section.
9715   if (this->has_abiflags_section_)
9716     {
9717       Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9718         new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9719
9720       Output_section* os =
9721         layout->add_output_section_data(".MIPS.abiflags",
9722                                         elfcpp::SHT_MIPS_ABIFLAGS,
9723                                         elfcpp::SHF_ALLOC,
9724                                         abiflags_section, ORDER_INVALID, false);
9725
9726       if (!parameters->options().relocatable() && os != NULL)
9727         {
9728           Output_segment* abiflags_segment =
9729             layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9730           abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9731         }
9732     }
9733
9734   if (has_reginfo_section && !parameters->options().gc_sections())
9735     {
9736       // Create .reginfo output section.
9737       Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9738         new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9739                                                           cprmask1, cprmask2,
9740                                                           cprmask3, cprmask4);
9741
9742       Output_section* os =
9743         layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9744                                         elfcpp::SHF_ALLOC, reginfo_section,
9745                                         ORDER_INVALID, false);
9746
9747       if (!parameters->options().relocatable() && os != NULL)
9748         {
9749           Output_segment* reginfo_segment =
9750             layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9751                                         elfcpp::PF_R);
9752           reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9753         }
9754     }
9755
9756   if (this->plt_ != NULL)
9757     {
9758       // Set final PLT offsets for symbols.
9759       this->plt_section()->set_plt_offsets();
9760
9761       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9762       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9763       // there are no standard PLT entries present.
9764       unsigned char nonvis = 0;
9765       if (this->is_output_micromips()
9766           && !this->plt_section()->has_standard_entries())
9767         nonvis = elfcpp::STO_MICROMIPS >> 2;
9768       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9769                                     Symbol_table::PREDEFINED,
9770                                     this->plt_,
9771                                     0, 0, elfcpp::STT_FUNC,
9772                                     elfcpp::STB_LOCAL,
9773                                     elfcpp::STV_DEFAULT, nonvis,
9774                                     false, false);
9775     }
9776
9777   if (this->mips_stubs_ != NULL)
9778     {
9779       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9780       unsigned char nonvis = 0;
9781       if (this->is_output_micromips())
9782         nonvis = elfcpp::STO_MICROMIPS >> 2;
9783       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9784                                     Symbol_table::PREDEFINED,
9785                                     this->mips_stubs_,
9786                                     0, 0, elfcpp::STT_FUNC,
9787                                     elfcpp::STB_LOCAL,
9788                                     elfcpp::STV_DEFAULT, nonvis,
9789                                     false, false);
9790     }
9791
9792   if (!parameters->options().relocatable() && !parameters->doing_static_link())
9793     // In case there is no .got section, create one.
9794     this->got_section(symtab, layout);
9795
9796   // Emit any relocs we saved in an attempt to avoid generating COPY
9797   // relocs.
9798   if (this->copy_relocs_.any_saved_relocs())
9799     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9800                                  this);
9801
9802   // Set _gp value.
9803   this->set_gp(layout, symtab);
9804
9805   // Emit dynamic relocs.
9806   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9807        p != this->dyn_relocs_.end();
9808        ++p)
9809     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9810
9811   if (this->has_got_section())
9812     this->got_section()->lay_out_got(layout, symtab, input_objects);
9813
9814   if (this->mips_stubs_ != NULL)
9815     this->mips_stubs_->set_needs_dynsym_value();
9816
9817   // Check for functions that might need $25 to be valid on entry.
9818   // TODO(sasa): Can we do this without iterating over all symbols?
9819   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9820   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9821                                                                symtab));
9822
9823   // Add NULL segment.
9824   if (!parameters->options().relocatable())
9825     layout->make_output_segment(elfcpp::PT_NULL, 0);
9826
9827   // Fill in some more dynamic tags.
9828   // TODO(sasa): Add more dynamic tags.
9829   const Reloc_section* rel_plt = (this->plt_ == NULL
9830                                   ? NULL : this->plt_->rel_plt());
9831   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9832                                   this->rel_dyn_, true, false);
9833
9834   Output_data_dynamic* const odyn = layout->dynamic_data();
9835   if (odyn != NULL
9836       && !parameters->options().relocatable()
9837       && !parameters->doing_static_link())
9838   {
9839     unsigned int d_val;
9840     // This element holds a 32-bit version id for the Runtime
9841     // Linker Interface.  This will start at integer value 1.
9842     d_val = 0x01;
9843     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9844
9845     // Dynamic flags
9846     d_val = elfcpp::RHF_NOTPOT;
9847     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9848
9849     // Save layout for using when emitting custom dynamic tags.
9850     this->layout_ = layout;
9851
9852     // This member holds the base address of the segment.
9853     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9854
9855     // This member holds the number of entries in the .dynsym section.
9856     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9857
9858     // This member holds the index of the first dynamic symbol
9859     // table entry that corresponds to an entry in the global offset table.
9860     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9861
9862     // This member holds the number of local GOT entries.
9863     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9864                        this->got_->get_local_gotno());
9865
9866     if (this->plt_ != NULL)
9867       // DT_MIPS_PLTGOT dynamic tag
9868       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9869
9870     if (!parameters->options().shared())
9871       {
9872         this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9873
9874         layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9875                                         (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9876                                         this->rld_map_, ORDER_INVALID, false);
9877
9878         // __RLD_MAP will be filled in by the runtime loader to contain
9879         // a pointer to the _r_debug structure.
9880         Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9881                                             Symbol_table::PREDEFINED,
9882                                             this->rld_map_,
9883                                             0, 0, elfcpp::STT_OBJECT,
9884                                             elfcpp::STB_GLOBAL,
9885                                             elfcpp::STV_DEFAULT, 0,
9886                                             false, false);
9887
9888         if (!rld_map->is_forced_local())
9889           rld_map->set_needs_dynsym_entry();
9890
9891         if (!parameters->options().pie())
9892           // This member holds the absolute address of the debug pointer.
9893           odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9894         else
9895           // This member holds the offset to the debug pointer,
9896           // relative to the address of the tag.
9897           odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9898       }
9899   }
9900 }
9901
9902 // Get the custom dynamic tag value.
9903 template<int size, bool big_endian>
9904 unsigned int
9905 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9906 {
9907   switch (tag)
9908     {
9909     case elfcpp::DT_MIPS_BASE_ADDRESS:
9910       {
9911         // The base address of the segment.
9912         // At this point, the segment list has been sorted into final order,
9913         // so just return vaddr of the first readable PT_LOAD segment.
9914         Output_segment* seg =
9915           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9916         gold_assert(seg != NULL);
9917         return seg->vaddr();
9918       }
9919
9920     case elfcpp::DT_MIPS_SYMTABNO:
9921       // The number of entries in the .dynsym section.
9922       return this->get_dt_mips_symtabno();
9923
9924     case elfcpp::DT_MIPS_GOTSYM:
9925       {
9926         // The index of the first dynamic symbol table entry that corresponds
9927         // to an entry in the GOT.
9928         if (this->got_->first_global_got_dynsym_index() != -1U)
9929           return this->got_->first_global_got_dynsym_index();
9930         else
9931           // In case if we don't have global GOT symbols we default to setting
9932           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9933           return this->get_dt_mips_symtabno();
9934       }
9935
9936     case elfcpp::DT_MIPS_RLD_MAP_REL:
9937       {
9938         // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9939         // relative to the address of the tag.
9940         Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9941         unsigned int entry_offset =
9942           odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9943         gold_assert(entry_offset != -1U);
9944         return this->rld_map_->address() - (odyn->address() + entry_offset);
9945       }
9946     default:
9947       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9948     }
9949
9950   return (unsigned int)-1;
9951 }
9952
9953 // Relocate section data.
9954
9955 template<int size, bool big_endian>
9956 void
9957 Target_mips<size, big_endian>::relocate_section(
9958                         const Relocate_info<size, big_endian>* relinfo,
9959                         unsigned int sh_type,
9960                         const unsigned char* prelocs,
9961                         size_t reloc_count,
9962                         Output_section* output_section,
9963                         bool needs_special_offset_handling,
9964                         unsigned char* view,
9965                         Mips_address address,
9966                         section_size_type view_size,
9967                         const Reloc_symbol_changes* reloc_symbol_changes)
9968 {
9969   typedef Target_mips<size, big_endian> Mips;
9970   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9971
9972   if (sh_type == elfcpp::SHT_REL)
9973     {
9974       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9975           Classify_reloc;
9976
9977       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9978                              gold::Default_comdat_behavior, Classify_reloc>(
9979         relinfo,
9980         this,
9981         prelocs,
9982         reloc_count,
9983         output_section,
9984         needs_special_offset_handling,
9985         view,
9986         address,
9987         view_size,
9988         reloc_symbol_changes);
9989     }
9990   else if (sh_type == elfcpp::SHT_RELA)
9991     {
9992       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9993           Classify_reloc;
9994
9995       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9996                              gold::Default_comdat_behavior, Classify_reloc>(
9997         relinfo,
9998         this,
9999         prelocs,
10000         reloc_count,
10001         output_section,
10002         needs_special_offset_handling,
10003         view,
10004         address,
10005         view_size,
10006         reloc_symbol_changes);
10007     }
10008 }
10009
10010 // Return the size of a relocation while scanning during a relocatable
10011 // link.
10012
10013 unsigned int
10014 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10015 {
10016   switch (r_type)
10017     {
10018     case elfcpp::R_MIPS_NONE:
10019     case elfcpp::R_MIPS_TLS_DTPMOD64:
10020     case elfcpp::R_MIPS_TLS_DTPREL64:
10021     case elfcpp::R_MIPS_TLS_TPREL64:
10022       return 0;
10023
10024     case elfcpp::R_MIPS_32:
10025     case elfcpp::R_MIPS_TLS_DTPMOD32:
10026     case elfcpp::R_MIPS_TLS_DTPREL32:
10027     case elfcpp::R_MIPS_TLS_TPREL32:
10028     case elfcpp::R_MIPS_REL32:
10029     case elfcpp::R_MIPS_PC32:
10030     case elfcpp::R_MIPS_GPREL32:
10031     case elfcpp::R_MIPS_JALR:
10032     case elfcpp::R_MIPS_EH:
10033       return 4;
10034
10035     case elfcpp::R_MIPS_16:
10036     case elfcpp::R_MIPS_HI16:
10037     case elfcpp::R_MIPS_LO16:
10038     case elfcpp::R_MIPS_HIGHER:
10039     case elfcpp::R_MIPS_HIGHEST:
10040     case elfcpp::R_MIPS_GPREL16:
10041     case elfcpp::R_MIPS16_HI16:
10042     case elfcpp::R_MIPS16_LO16:
10043     case elfcpp::R_MIPS_PC16:
10044     case elfcpp::R_MIPS_PCHI16:
10045     case elfcpp::R_MIPS_PCLO16:
10046     case elfcpp::R_MIPS_GOT16:
10047     case elfcpp::R_MIPS16_GOT16:
10048     case elfcpp::R_MIPS_CALL16:
10049     case elfcpp::R_MIPS16_CALL16:
10050     case elfcpp::R_MIPS_GOT_HI16:
10051     case elfcpp::R_MIPS_CALL_HI16:
10052     case elfcpp::R_MIPS_GOT_LO16:
10053     case elfcpp::R_MIPS_CALL_LO16:
10054     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10055     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10056     case elfcpp::R_MIPS_TLS_TPREL_HI16:
10057     case elfcpp::R_MIPS_TLS_TPREL_LO16:
10058     case elfcpp::R_MIPS16_GPREL:
10059     case elfcpp::R_MIPS_GOT_DISP:
10060     case elfcpp::R_MIPS_LITERAL:
10061     case elfcpp::R_MIPS_GOT_PAGE:
10062     case elfcpp::R_MIPS_GOT_OFST:
10063     case elfcpp::R_MIPS_TLS_GD:
10064     case elfcpp::R_MIPS_TLS_LDM:
10065     case elfcpp::R_MIPS_TLS_GOTTPREL:
10066       return 2;
10067
10068     // These relocations are not byte sized
10069     case elfcpp::R_MIPS_26:
10070     case elfcpp::R_MIPS16_26:
10071     case elfcpp::R_MIPS_PC21_S2:
10072     case elfcpp::R_MIPS_PC26_S2:
10073     case elfcpp::R_MIPS_PC18_S3:
10074     case elfcpp::R_MIPS_PC19_S2:
10075       return 4;
10076
10077     case elfcpp::R_MIPS_COPY:
10078     case elfcpp::R_MIPS_JUMP_SLOT:
10079       object->error(_("unexpected reloc %u in object file"), r_type);
10080       return 0;
10081
10082     default:
10083       object->error(_("unsupported reloc %u in object file"), r_type);
10084       return 0;
10085   }
10086 }
10087
10088 // Scan the relocs during a relocatable link.
10089
10090 template<int size, bool big_endian>
10091 void
10092 Target_mips<size, big_endian>::scan_relocatable_relocs(
10093                         Symbol_table* symtab,
10094                         Layout* layout,
10095                         Sized_relobj_file<size, big_endian>* object,
10096                         unsigned int data_shndx,
10097                         unsigned int sh_type,
10098                         const unsigned char* prelocs,
10099                         size_t reloc_count,
10100                         Output_section* output_section,
10101                         bool needs_special_offset_handling,
10102                         size_t local_symbol_count,
10103                         const unsigned char* plocal_symbols,
10104                         Relocatable_relocs* rr)
10105 {
10106   if (sh_type == elfcpp::SHT_REL)
10107     {
10108       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10109           Classify_reloc;
10110       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10111           Scan_relocatable_relocs;
10112
10113       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10114         symtab,
10115         layout,
10116         object,
10117         data_shndx,
10118         prelocs,
10119         reloc_count,
10120         output_section,
10121         needs_special_offset_handling,
10122         local_symbol_count,
10123         plocal_symbols,
10124         rr);
10125     }
10126   else if (sh_type == elfcpp::SHT_RELA)
10127     {
10128       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10129           Classify_reloc;
10130       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10131           Scan_relocatable_relocs;
10132
10133       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10134         symtab,
10135         layout,
10136         object,
10137         data_shndx,
10138         prelocs,
10139         reloc_count,
10140         output_section,
10141         needs_special_offset_handling,
10142         local_symbol_count,
10143         plocal_symbols,
10144         rr);
10145     }
10146   else
10147     gold_unreachable();
10148 }
10149
10150 // Scan the relocs for --emit-relocs.
10151
10152 template<int size, bool big_endian>
10153 void
10154 Target_mips<size, big_endian>::emit_relocs_scan(
10155     Symbol_table* symtab,
10156     Layout* layout,
10157     Sized_relobj_file<size, big_endian>* object,
10158     unsigned int data_shndx,
10159     unsigned int sh_type,
10160     const unsigned char* prelocs,
10161     size_t reloc_count,
10162     Output_section* output_section,
10163     bool needs_special_offset_handling,
10164     size_t local_symbol_count,
10165     const unsigned char* plocal_syms,
10166     Relocatable_relocs* rr)
10167 {
10168   if (sh_type == elfcpp::SHT_REL)
10169     {
10170       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10171           Classify_reloc;
10172       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10173           Emit_relocs_strategy;
10174
10175       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10176         symtab,
10177         layout,
10178         object,
10179         data_shndx,
10180         prelocs,
10181         reloc_count,
10182         output_section,
10183         needs_special_offset_handling,
10184         local_symbol_count,
10185         plocal_syms,
10186         rr);
10187     }
10188   else if (sh_type == elfcpp::SHT_RELA)
10189     {
10190       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10191           Classify_reloc;
10192       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10193           Emit_relocs_strategy;
10194
10195       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10196         symtab,
10197         layout,
10198         object,
10199         data_shndx,
10200         prelocs,
10201         reloc_count,
10202         output_section,
10203         needs_special_offset_handling,
10204         local_symbol_count,
10205         plocal_syms,
10206         rr);
10207     }
10208   else
10209     gold_unreachable();
10210 }
10211
10212 // Emit relocations for a section.
10213
10214 template<int size, bool big_endian>
10215 void
10216 Target_mips<size, big_endian>::relocate_relocs(
10217                         const Relocate_info<size, big_endian>* relinfo,
10218                         unsigned int sh_type,
10219                         const unsigned char* prelocs,
10220                         size_t reloc_count,
10221                         Output_section* output_section,
10222                         typename elfcpp::Elf_types<size>::Elf_Off
10223                           offset_in_output_section,
10224                         unsigned char* view,
10225                         Mips_address view_address,
10226                         section_size_type view_size,
10227                         unsigned char* reloc_view,
10228                         section_size_type reloc_view_size)
10229 {
10230   if (sh_type == elfcpp::SHT_REL)
10231     {
10232       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10233           Classify_reloc;
10234
10235       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10236         relinfo,
10237         prelocs,
10238         reloc_count,
10239         output_section,
10240         offset_in_output_section,
10241         view,
10242         view_address,
10243         view_size,
10244         reloc_view,
10245         reloc_view_size);
10246     }
10247   else if (sh_type == elfcpp::SHT_RELA)
10248     {
10249       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10250           Classify_reloc;
10251
10252       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10253         relinfo,
10254         prelocs,
10255         reloc_count,
10256         output_section,
10257         offset_in_output_section,
10258         view,
10259         view_address,
10260         view_size,
10261         reloc_view,
10262         reloc_view_size);
10263     }
10264   else
10265     gold_unreachable();
10266 }
10267
10268 // Perform target-specific processing in a relocatable link.  This is
10269 // only used if we use the relocation strategy RELOC_SPECIAL.
10270
10271 template<int size, bool big_endian>
10272 void
10273 Target_mips<size, big_endian>::relocate_special_relocatable(
10274     const Relocate_info<size, big_endian>* relinfo,
10275     unsigned int sh_type,
10276     const unsigned char* preloc_in,
10277     size_t relnum,
10278     Output_section* output_section,
10279     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10280     unsigned char* view,
10281     Mips_address view_address,
10282     section_size_type,
10283     unsigned char* preloc_out)
10284 {
10285   // We can only handle REL type relocation sections.
10286   gold_assert(sh_type == elfcpp::SHT_REL);
10287
10288   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10289     Reltype;
10290   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10291     Reltype_write;
10292
10293   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10294
10295   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10296
10297   Mips_relobj<size, big_endian>* object =
10298     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10299   const unsigned int local_count = object->local_symbol_count();
10300
10301   Reltype reloc(preloc_in);
10302   Reltype_write reloc_write(preloc_out);
10303
10304   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10305   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10306   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10307
10308   // Get the new symbol index.
10309   // We only use RELOC_SPECIAL strategy in local relocations.
10310   gold_assert(r_sym < local_count);
10311
10312   // We are adjusting a section symbol.  We need to find
10313   // the symbol table index of the section symbol for
10314   // the output section corresponding to input section
10315   // in which this symbol is defined.
10316   bool is_ordinary;
10317   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10318   gold_assert(is_ordinary);
10319   Output_section* os = object->output_section(shndx);
10320   gold_assert(os != NULL);
10321   gold_assert(os->needs_symtab_index());
10322   unsigned int new_symndx = os->symtab_index();
10323
10324   // Get the new offset--the location in the output section where
10325   // this relocation should be applied.
10326
10327   Mips_address offset = reloc.get_r_offset();
10328   Mips_address new_offset;
10329   if (offset_in_output_section != invalid_address)
10330     new_offset = offset + offset_in_output_section;
10331   else
10332     {
10333       section_offset_type sot_offset =
10334         convert_types<section_offset_type, Mips_address>(offset);
10335       section_offset_type new_sot_offset =
10336         output_section->output_offset(object, relinfo->data_shndx,
10337                                       sot_offset);
10338       gold_assert(new_sot_offset != -1);
10339       new_offset = new_sot_offset;
10340     }
10341
10342   // In an object file, r_offset is an offset within the section.
10343   // In an executable or dynamic object, generated by
10344   // --emit-relocs, r_offset is an absolute address.
10345   if (!parameters->options().relocatable())
10346     {
10347       new_offset += view_address;
10348       if (offset_in_output_section != invalid_address)
10349         new_offset -= offset_in_output_section;
10350     }
10351
10352   reloc_write.put_r_offset(new_offset);
10353   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10354
10355   // Handle the reloc addend.
10356   // The relocation uses a section symbol in the input file.
10357   // We are adjusting it to use a section symbol in the output
10358   // file.  The input section symbol refers to some address in
10359   // the input section.  We need the relocation in the output
10360   // file to refer to that same address.  This adjustment to
10361   // the addend is the same calculation we use for a simple
10362   // absolute relocation for the input section symbol.
10363   Valtype calculated_value = 0;
10364   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10365
10366   unsigned char* paddend = view + offset;
10367   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10368   switch (r_type)
10369     {
10370     case elfcpp::R_MIPS_26:
10371       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10372           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10373           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10374           false, &calculated_value);
10375       break;
10376
10377     default:
10378       gold_unreachable();
10379     }
10380
10381   // Report any errors.
10382   switch (reloc_status)
10383     {
10384     case Reloc_funcs::STATUS_OKAY:
10385       break;
10386     case Reloc_funcs::STATUS_OVERFLOW:
10387       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10388                              _("relocation overflow: "
10389                                "%u against local symbol %u in %s"),
10390                              r_type, r_sym, object->name().c_str());
10391       break;
10392     case Reloc_funcs::STATUS_BAD_RELOC:
10393       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10394         _("unexpected opcode while processing relocation"));
10395       break;
10396     default:
10397       gold_unreachable();
10398     }
10399 }
10400
10401 // Optimize the TLS relocation type based on what we know about the
10402 // symbol.  IS_FINAL is true if the final address of this symbol is
10403 // known at link time.
10404
10405 template<int size, bool big_endian>
10406 tls::Tls_optimization
10407 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10408 {
10409   // FIXME: Currently we do not do any TLS optimization.
10410   return tls::TLSOPT_NONE;
10411 }
10412
10413 // Scan a relocation for a local symbol.
10414
10415 template<int size, bool big_endian>
10416 inline void
10417 Target_mips<size, big_endian>::Scan::local(
10418                         Symbol_table* symtab,
10419                         Layout* layout,
10420                         Target_mips<size, big_endian>* target,
10421                         Sized_relobj_file<size, big_endian>* object,
10422                         unsigned int data_shndx,
10423                         Output_section* output_section,
10424                         const Relatype* rela,
10425                         const Reltype* rel,
10426                         unsigned int rel_type,
10427                         unsigned int r_type,
10428                         const elfcpp::Sym<size, big_endian>& lsym,
10429                         bool is_discarded)
10430 {
10431   if (is_discarded)
10432     return;
10433
10434   Mips_address r_offset;
10435   unsigned int r_sym;
10436   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10437
10438   if (rel_type == elfcpp::SHT_RELA)
10439     {
10440       r_offset = rela->get_r_offset();
10441       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10442           get_r_sym(rela);
10443       r_addend = rela->get_r_addend();
10444     }
10445   else
10446     {
10447       r_offset = rel->get_r_offset();
10448       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10449           get_r_sym(rel);
10450       r_addend = 0;
10451     }
10452
10453   Mips_relobj<size, big_endian>* mips_obj =
10454     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10455
10456   if (mips_obj->is_mips16_stub_section(data_shndx))
10457     {
10458       mips_obj->get_mips16_stub_section(data_shndx)
10459               ->new_local_reloc_found(r_type, r_sym);
10460     }
10461
10462   if (r_type == elfcpp::R_MIPS_NONE)
10463     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10464     // mips16 stub.
10465     return;
10466
10467   if (!mips16_call_reloc(r_type)
10468       && !mips_obj->section_allows_mips16_refs(data_shndx))
10469     // This reloc would need to refer to a MIPS16 hard-float stub, if
10470     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10471     // looking for relocs that would need to refer to MIPS16 stubs.
10472     mips_obj->add_local_non_16bit_call(r_sym);
10473
10474   if (r_type == elfcpp::R_MIPS16_26
10475       && !mips_obj->section_allows_mips16_refs(data_shndx))
10476     mips_obj->add_local_16bit_call(r_sym);
10477
10478   switch (r_type)
10479     {
10480     case elfcpp::R_MIPS_GOT16:
10481     case elfcpp::R_MIPS_CALL16:
10482     case elfcpp::R_MIPS_CALL_HI16:
10483     case elfcpp::R_MIPS_CALL_LO16:
10484     case elfcpp::R_MIPS_GOT_HI16:
10485     case elfcpp::R_MIPS_GOT_LO16:
10486     case elfcpp::R_MIPS_GOT_PAGE:
10487     case elfcpp::R_MIPS_GOT_OFST:
10488     case elfcpp::R_MIPS_GOT_DISP:
10489     case elfcpp::R_MIPS_TLS_GOTTPREL:
10490     case elfcpp::R_MIPS_TLS_GD:
10491     case elfcpp::R_MIPS_TLS_LDM:
10492     case elfcpp::R_MIPS16_GOT16:
10493     case elfcpp::R_MIPS16_CALL16:
10494     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10495     case elfcpp::R_MIPS16_TLS_GD:
10496     case elfcpp::R_MIPS16_TLS_LDM:
10497     case elfcpp::R_MICROMIPS_GOT16:
10498     case elfcpp::R_MICROMIPS_CALL16:
10499     case elfcpp::R_MICROMIPS_CALL_HI16:
10500     case elfcpp::R_MICROMIPS_CALL_LO16:
10501     case elfcpp::R_MICROMIPS_GOT_HI16:
10502     case elfcpp::R_MICROMIPS_GOT_LO16:
10503     case elfcpp::R_MICROMIPS_GOT_PAGE:
10504     case elfcpp::R_MICROMIPS_GOT_OFST:
10505     case elfcpp::R_MICROMIPS_GOT_DISP:
10506     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10507     case elfcpp::R_MICROMIPS_TLS_GD:
10508     case elfcpp::R_MICROMIPS_TLS_LDM:
10509     case elfcpp::R_MIPS_EH:
10510       // We need a GOT section.
10511       target->got_section(symtab, layout);
10512       break;
10513
10514     default:
10515       break;
10516     }
10517
10518   if (call_lo16_reloc(r_type)
10519       || got_lo16_reloc(r_type)
10520       || got_disp_reloc(r_type)
10521       || eh_reloc(r_type))
10522     {
10523       // We may need a local GOT entry for this relocation.  We
10524       // don't count R_MIPS_GOT_PAGE because we can estimate the
10525       // maximum number of pages needed by looking at the size of
10526       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
10527       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
10528       // R_MIPS_CALL_HI16 because these are always followed by an
10529       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10530       Mips_output_data_got<size, big_endian>* got =
10531         target->got_section(symtab, layout);
10532       bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10533       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10534                                    is_section_symbol);
10535     }
10536
10537   switch (r_type)
10538     {
10539     case elfcpp::R_MIPS_CALL16:
10540     case elfcpp::R_MIPS16_CALL16:
10541     case elfcpp::R_MICROMIPS_CALL16:
10542       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10543                  (unsigned long)r_offset);
10544       return;
10545
10546     case elfcpp::R_MIPS_GOT_PAGE:
10547     case elfcpp::R_MICROMIPS_GOT_PAGE:
10548     case elfcpp::R_MIPS16_GOT16:
10549     case elfcpp::R_MIPS_GOT16:
10550     case elfcpp::R_MIPS_GOT_HI16:
10551     case elfcpp::R_MIPS_GOT_LO16:
10552     case elfcpp::R_MICROMIPS_GOT16:
10553     case elfcpp::R_MICROMIPS_GOT_HI16:
10554     case elfcpp::R_MICROMIPS_GOT_LO16:
10555       {
10556         // This relocation needs a page entry in the GOT.
10557         // Get the section contents.
10558         section_size_type view_size = 0;
10559         const unsigned char* view = object->section_contents(data_shndx,
10560                                                              &view_size, false);
10561         view += r_offset;
10562
10563         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10564         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10565                                                         : r_addend);
10566
10567         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10568           target->got16_addends_.push_back(got16_addend<size, big_endian>(
10569               object, data_shndx, r_type, r_sym, addend));
10570         else
10571           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10572         break;
10573       }
10574
10575     case elfcpp::R_MIPS_HI16:
10576     case elfcpp::R_MIPS_PCHI16:
10577     case elfcpp::R_MIPS16_HI16:
10578     case elfcpp::R_MICROMIPS_HI16:
10579       // Record the reloc so that we can check whether the corresponding LO16
10580       // part exists.
10581       if (rel_type == elfcpp::SHT_REL)
10582         target->got16_addends_.push_back(got16_addend<size, big_endian>(
10583             object, data_shndx, r_type, r_sym, 0));
10584       break;
10585
10586     case elfcpp::R_MIPS_LO16:
10587     case elfcpp::R_MIPS_PCLO16:
10588     case elfcpp::R_MIPS16_LO16:
10589     case elfcpp::R_MICROMIPS_LO16:
10590       {
10591         if (rel_type != elfcpp::SHT_REL)
10592           break;
10593
10594         // Find corresponding GOT16/HI16 relocation.
10595
10596         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10597         // be immediately following.  However, for the IRIX6 ABI, the next
10598         // relocation may be a composed relocation consisting of several
10599         // relocations for the same address.  In that case, the R_MIPS_LO16
10600         // relocation may occur as one of these.  We permit a similar
10601         // extension in general, as that is useful for GCC.
10602
10603         // In some cases GCC dead code elimination removes the LO16 but
10604         // keeps the corresponding HI16.  This is strictly speaking a
10605         // violation of the ABI but not immediately harmful.
10606
10607         typename std::list<got16_addend<size, big_endian> >::iterator it =
10608           target->got16_addends_.begin();
10609         while (it != target->got16_addends_.end())
10610           {
10611             got16_addend<size, big_endian> _got16_addend = *it;
10612
10613             // TODO(sasa): Split got16_addends_ list into two lists - one for
10614             // GOT16 relocs and the other for HI16 relocs.
10615
10616             // Report an error if we find HI16 or GOT16 reloc from the
10617             // previous section without the matching LO16 part.
10618             if (_got16_addend.object != object
10619                 || _got16_addend.shndx != data_shndx)
10620               {
10621                 gold_error("Can't find matching LO16 reloc");
10622                 break;
10623               }
10624
10625             if (_got16_addend.r_sym != r_sym
10626                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10627               {
10628                 ++it;
10629                 continue;
10630               }
10631
10632             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10633             // For GOT16, we need to calculate combined addend and record GOT page
10634             // entry.
10635             if (got16_reloc(_got16_addend.r_type))
10636               {
10637
10638                 section_size_type view_size = 0;
10639                 const unsigned char* view = object->section_contents(data_shndx,
10640                                                                      &view_size,
10641                                                                      false);
10642                 view += r_offset;
10643
10644                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10645                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10646
10647                 addend = (_got16_addend.addend << 16) + addend;
10648                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10649                                                              addend);
10650               }
10651
10652             it = target->got16_addends_.erase(it);
10653           }
10654         break;
10655       }
10656     }
10657
10658   switch (r_type)
10659     {
10660     case elfcpp::R_MIPS_32:
10661     case elfcpp::R_MIPS_REL32:
10662     case elfcpp::R_MIPS_64:
10663       {
10664         if (parameters->options().output_is_position_independent())
10665           {
10666             // If building a shared library (or a position-independent
10667             // executable), we need to create a dynamic relocation for
10668             // this location.
10669             if (is_readonly_section(output_section))
10670               break;
10671             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10672             rel_dyn->add_symbolless_local_addend(object, r_sym,
10673                                                  elfcpp::R_MIPS_REL32,
10674                                                  output_section, data_shndx,
10675                                                  r_offset);
10676           }
10677         break;
10678       }
10679
10680     case elfcpp::R_MIPS_TLS_GOTTPREL:
10681     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10682     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10683     case elfcpp::R_MIPS_TLS_LDM:
10684     case elfcpp::R_MIPS16_TLS_LDM:
10685     case elfcpp::R_MICROMIPS_TLS_LDM:
10686     case elfcpp::R_MIPS_TLS_GD:
10687     case elfcpp::R_MIPS16_TLS_GD:
10688     case elfcpp::R_MICROMIPS_TLS_GD:
10689       {
10690         bool output_is_shared = parameters->options().shared();
10691         const tls::Tls_optimization optimized_type
10692             = Target_mips<size, big_endian>::optimize_tls_reloc(
10693                                              !output_is_shared, r_type);
10694         switch (r_type)
10695           {
10696           case elfcpp::R_MIPS_TLS_GD:
10697           case elfcpp::R_MIPS16_TLS_GD:
10698           case elfcpp::R_MICROMIPS_TLS_GD:
10699             if (optimized_type == tls::TLSOPT_NONE)
10700               {
10701                 // Create a pair of GOT entries for the module index and
10702                 // dtv-relative offset.
10703                 Mips_output_data_got<size, big_endian>* got =
10704                   target->got_section(symtab, layout);
10705                 unsigned int shndx = lsym.get_st_shndx();
10706                 bool is_ordinary;
10707                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10708                 if (!is_ordinary)
10709                   {
10710                     object->error(_("local symbol %u has bad shndx %u"),
10711                                   r_sym, shndx);
10712                     break;
10713                   }
10714                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10715                                              shndx, false);
10716               }
10717             else
10718               {
10719                 // FIXME: TLS optimization not supported yet.
10720                 gold_unreachable();
10721               }
10722             break;
10723
10724           case elfcpp::R_MIPS_TLS_LDM:
10725           case elfcpp::R_MIPS16_TLS_LDM:
10726           case elfcpp::R_MICROMIPS_TLS_LDM:
10727             if (optimized_type == tls::TLSOPT_NONE)
10728               {
10729                 // We always record LDM symbols as local with index 0.
10730                 target->got_section()->record_local_got_symbol(mips_obj, 0,
10731                                                                r_addend, r_type,
10732                                                                -1U, false);
10733               }
10734             else
10735               {
10736                 // FIXME: TLS optimization not supported yet.
10737                 gold_unreachable();
10738               }
10739             break;
10740           case elfcpp::R_MIPS_TLS_GOTTPREL:
10741           case elfcpp::R_MIPS16_TLS_GOTTPREL:
10742           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10743             layout->set_has_static_tls();
10744             if (optimized_type == tls::TLSOPT_NONE)
10745               {
10746                 // Create a GOT entry for the tp-relative offset.
10747                 Mips_output_data_got<size, big_endian>* got =
10748                   target->got_section(symtab, layout);
10749                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10750                                              -1U, false);
10751               }
10752             else
10753               {
10754                 // FIXME: TLS optimization not supported yet.
10755                 gold_unreachable();
10756               }
10757             break;
10758
10759           default:
10760             gold_unreachable();
10761         }
10762       }
10763       break;
10764
10765     default:
10766       break;
10767     }
10768
10769   // Refuse some position-dependent relocations when creating a
10770   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
10771   // not PIC, but we can create dynamic relocations and the result
10772   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
10773   // combined with R_MIPS_GOT16.
10774   if (parameters->options().shared())
10775     {
10776       switch (r_type)
10777         {
10778         case elfcpp::R_MIPS16_HI16:
10779         case elfcpp::R_MIPS_HI16:
10780         case elfcpp::R_MIPS_HIGHER:
10781         case elfcpp::R_MIPS_HIGHEST:
10782         case elfcpp::R_MICROMIPS_HI16:
10783         case elfcpp::R_MICROMIPS_HIGHER:
10784         case elfcpp::R_MICROMIPS_HIGHEST:
10785           // Don't refuse a high part relocation if it's against
10786           // no symbol (e.g. part of a compound relocation).
10787           if (r_sym == 0)
10788             break;
10789           // Fall through.
10790
10791         case elfcpp::R_MIPS16_26:
10792         case elfcpp::R_MIPS_26:
10793         case elfcpp::R_MICROMIPS_26_S1:
10794           gold_error(_("%s: relocation %u against `%s' can not be used when "
10795                        "making a shared object; recompile with -fPIC"),
10796                      object->name().c_str(), r_type, "a local symbol");
10797         default:
10798           break;
10799         }
10800     }
10801 }
10802
10803 template<int size, bool big_endian>
10804 inline void
10805 Target_mips<size, big_endian>::Scan::local(
10806                         Symbol_table* symtab,
10807                         Layout* layout,
10808                         Target_mips<size, big_endian>* target,
10809                         Sized_relobj_file<size, big_endian>* object,
10810                         unsigned int data_shndx,
10811                         Output_section* output_section,
10812                         const Reltype& reloc,
10813                         unsigned int r_type,
10814                         const elfcpp::Sym<size, big_endian>& lsym,
10815                         bool is_discarded)
10816 {
10817   if (is_discarded)
10818     return;
10819
10820   local(
10821     symtab,
10822     layout,
10823     target,
10824     object,
10825     data_shndx,
10826     output_section,
10827     (const Relatype*) NULL,
10828     &reloc,
10829     elfcpp::SHT_REL,
10830     r_type,
10831     lsym, is_discarded);
10832 }
10833
10834
10835 template<int size, bool big_endian>
10836 inline void
10837 Target_mips<size, big_endian>::Scan::local(
10838                         Symbol_table* symtab,
10839                         Layout* layout,
10840                         Target_mips<size, big_endian>* target,
10841                         Sized_relobj_file<size, big_endian>* object,
10842                         unsigned int data_shndx,
10843                         Output_section* output_section,
10844                         const Relatype& reloc,
10845                         unsigned int r_type,
10846                         const elfcpp::Sym<size, big_endian>& lsym,
10847                         bool is_discarded)
10848 {
10849   if (is_discarded)
10850     return;
10851
10852   local(
10853     symtab,
10854     layout,
10855     target,
10856     object,
10857     data_shndx,
10858     output_section,
10859     &reloc,
10860     (const Reltype*) NULL,
10861     elfcpp::SHT_RELA,
10862     r_type,
10863     lsym, is_discarded);
10864 }
10865
10866 // Scan a relocation for a global symbol.
10867
10868 template<int size, bool big_endian>
10869 inline void
10870 Target_mips<size, big_endian>::Scan::global(
10871                                 Symbol_table* symtab,
10872                                 Layout* layout,
10873                                 Target_mips<size, big_endian>* target,
10874                                 Sized_relobj_file<size, big_endian>* object,
10875                                 unsigned int data_shndx,
10876                                 Output_section* output_section,
10877                                 const Relatype* rela,
10878                                 const Reltype* rel,
10879                                 unsigned int rel_type,
10880                                 unsigned int r_type,
10881                                 Symbol* gsym)
10882 {
10883   Mips_address r_offset;
10884   unsigned int r_sym;
10885   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10886
10887   if (rel_type == elfcpp::SHT_RELA)
10888     {
10889       r_offset = rela->get_r_offset();
10890       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10891           get_r_sym(rela);
10892       r_addend = rela->get_r_addend();
10893     }
10894   else
10895     {
10896       r_offset = rel->get_r_offset();
10897       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10898           get_r_sym(rel);
10899       r_addend = 0;
10900     }
10901
10902   Mips_relobj<size, big_endian>* mips_obj =
10903     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10904   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10905
10906   if (mips_obj->is_mips16_stub_section(data_shndx))
10907     {
10908       mips_obj->get_mips16_stub_section(data_shndx)
10909               ->new_global_reloc_found(r_type, mips_sym);
10910     }
10911
10912   if (r_type == elfcpp::R_MIPS_NONE)
10913     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10914     // mips16 stub.
10915     return;
10916
10917   if (!mips16_call_reloc(r_type)
10918       && !mips_obj->section_allows_mips16_refs(data_shndx))
10919     // This reloc would need to refer to a MIPS16 hard-float stub, if
10920     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10921     // looking for relocs that would need to refer to MIPS16 stubs.
10922     mips_sym->set_need_fn_stub();
10923
10924   // We need PLT entries if there are static-only relocations against
10925   // an externally-defined function.  This can technically occur for
10926   // shared libraries if there are branches to the symbol, although it
10927   // is unlikely that this will be used in practice due to the short
10928   // ranges involved.  It can occur for any relative or absolute relocation
10929   // in executables; in that case, the PLT entry becomes the function's
10930   // canonical address.
10931   bool static_reloc = false;
10932
10933   // Set CAN_MAKE_DYNAMIC to true if we can convert this
10934   // relocation into a dynamic one.
10935   bool can_make_dynamic = false;
10936   switch (r_type)
10937     {
10938     case elfcpp::R_MIPS_GOT16:
10939     case elfcpp::R_MIPS_CALL16:
10940     case elfcpp::R_MIPS_CALL_HI16:
10941     case elfcpp::R_MIPS_CALL_LO16:
10942     case elfcpp::R_MIPS_GOT_HI16:
10943     case elfcpp::R_MIPS_GOT_LO16:
10944     case elfcpp::R_MIPS_GOT_PAGE:
10945     case elfcpp::R_MIPS_GOT_OFST:
10946     case elfcpp::R_MIPS_GOT_DISP:
10947     case elfcpp::R_MIPS_TLS_GOTTPREL:
10948     case elfcpp::R_MIPS_TLS_GD:
10949     case elfcpp::R_MIPS_TLS_LDM:
10950     case elfcpp::R_MIPS16_GOT16:
10951     case elfcpp::R_MIPS16_CALL16:
10952     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10953     case elfcpp::R_MIPS16_TLS_GD:
10954     case elfcpp::R_MIPS16_TLS_LDM:
10955     case elfcpp::R_MICROMIPS_GOT16:
10956     case elfcpp::R_MICROMIPS_CALL16:
10957     case elfcpp::R_MICROMIPS_CALL_HI16:
10958     case elfcpp::R_MICROMIPS_CALL_LO16:
10959     case elfcpp::R_MICROMIPS_GOT_HI16:
10960     case elfcpp::R_MICROMIPS_GOT_LO16:
10961     case elfcpp::R_MICROMIPS_GOT_PAGE:
10962     case elfcpp::R_MICROMIPS_GOT_OFST:
10963     case elfcpp::R_MICROMIPS_GOT_DISP:
10964     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10965     case elfcpp::R_MICROMIPS_TLS_GD:
10966     case elfcpp::R_MICROMIPS_TLS_LDM:
10967     case elfcpp::R_MIPS_EH:
10968       // We need a GOT section.
10969       target->got_section(symtab, layout);
10970       break;
10971
10972     // This is just a hint; it can safely be ignored.  Don't set
10973     // has_static_relocs for the corresponding symbol.
10974     case elfcpp::R_MIPS_JALR:
10975     case elfcpp::R_MICROMIPS_JALR:
10976       break;
10977
10978     case elfcpp::R_MIPS_GPREL16:
10979     case elfcpp::R_MIPS_GPREL32:
10980     case elfcpp::R_MIPS16_GPREL:
10981     case elfcpp::R_MICROMIPS_GPREL16:
10982       // TODO(sasa)
10983       // GP-relative relocations always resolve to a definition in a
10984       // regular input file, ignoring the one-definition rule.  This is
10985       // important for the GP setup sequence in NewABI code, which
10986       // always resolves to a local function even if other relocations
10987       // against the symbol wouldn't.
10988       //constrain_symbol_p = FALSE;
10989       break;
10990
10991     case elfcpp::R_MIPS_32:
10992     case elfcpp::R_MIPS_REL32:
10993     case elfcpp::R_MIPS_64:
10994       if ((parameters->options().shared()
10995           || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10996           && (!is_readonly_section(output_section)
10997           || mips_obj->is_pic())))
10998           && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10999         {
11000           if (r_type != elfcpp::R_MIPS_REL32)
11001             mips_sym->set_pointer_equality_needed();
11002           can_make_dynamic = true;
11003           break;
11004         }
11005       // Fall through.
11006
11007     default:
11008       // Most static relocations require pointer equality, except
11009       // for branches.
11010       mips_sym->set_pointer_equality_needed();
11011       // Fall through.
11012
11013     case elfcpp::R_MIPS_26:
11014     case elfcpp::R_MIPS_PC16:
11015     case elfcpp::R_MIPS_PC21_S2:
11016     case elfcpp::R_MIPS_PC26_S2:
11017     case elfcpp::R_MIPS16_26:
11018     case elfcpp::R_MICROMIPS_26_S1:
11019     case elfcpp::R_MICROMIPS_PC7_S1:
11020     case elfcpp::R_MICROMIPS_PC10_S1:
11021     case elfcpp::R_MICROMIPS_PC16_S1:
11022     case elfcpp::R_MICROMIPS_PC23_S2:
11023       static_reloc = true;
11024       mips_sym->set_has_static_relocs();
11025       break;
11026     }
11027
11028   // If there are call relocations against an externally-defined symbol,
11029   // see whether we can create a MIPS lazy-binding stub for it.  We can
11030   // only do this if all references to the function are through call
11031   // relocations, and in that case, the traditional lazy-binding stubs
11032   // are much more efficient than PLT entries.
11033   switch (r_type)
11034     {
11035     case elfcpp::R_MIPS16_CALL16:
11036     case elfcpp::R_MIPS_CALL16:
11037     case elfcpp::R_MIPS_CALL_HI16:
11038     case elfcpp::R_MIPS_CALL_LO16:
11039     case elfcpp::R_MIPS_JALR:
11040     case elfcpp::R_MICROMIPS_CALL16:
11041     case elfcpp::R_MICROMIPS_CALL_HI16:
11042     case elfcpp::R_MICROMIPS_CALL_LO16:
11043     case elfcpp::R_MICROMIPS_JALR:
11044       if (!mips_sym->no_lazy_stub())
11045         {
11046           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11047               // Calls from shared objects to undefined symbols of type
11048               // STT_NOTYPE need lazy-binding stub.
11049               || (mips_sym->is_undefined() && parameters->options().shared()))
11050             target->mips_stubs_section(layout)->make_entry(mips_sym);
11051         }
11052       break;
11053     default:
11054       {
11055         // We must not create a stub for a symbol that has relocations
11056         // related to taking the function's address.
11057         mips_sym->set_no_lazy_stub();
11058         target->remove_lazy_stub_entry(mips_sym);
11059         break;
11060       }
11061   }
11062
11063   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11064                                                    mips_sym->is_mips16()))
11065     mips_sym->set_has_nonpic_branches();
11066
11067   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11068   // and has a special meaning.
11069   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11070                                && strcmp(gsym->name(), "_gp_disp") == 0
11071                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11072   if (static_reloc && gsym->needs_plt_entry())
11073     {
11074       target->make_plt_entry(symtab, layout, mips_sym, r_type);
11075
11076       // Since this is not a PC-relative relocation, we may be
11077       // taking the address of a function.  In that case we need to
11078       // set the entry in the dynamic symbol table to the address of
11079       // the PLT entry.
11080       if (gsym->is_from_dynobj() && !parameters->options().shared())
11081         {
11082           gsym->set_needs_dynsym_value();
11083           // We distinguish between PLT entries and lazy-binding stubs by
11084           // giving the former an st_other value of STO_MIPS_PLT.  Set the
11085           // flag if there are any relocations in the binary where pointer
11086           // equality matters.
11087           if (mips_sym->pointer_equality_needed())
11088             mips_sym->set_mips_plt();
11089         }
11090     }
11091   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11092     {
11093       // Absolute addressing relocations.
11094       // Make a dynamic relocation if necessary.
11095       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11096         {
11097           if (gsym->may_need_copy_reloc())
11098             {
11099               target->copy_reloc(symtab, layout, object, data_shndx,
11100                                  output_section, gsym, r_type, r_offset);
11101             }
11102           else if (can_make_dynamic)
11103             {
11104               // Create .rel.dyn section.
11105               target->rel_dyn_section(layout);
11106               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11107                                     data_shndx, output_section, r_offset);
11108             }
11109           else
11110             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11111                        gsym->name());
11112         }
11113     }
11114
11115   bool for_call = false;
11116   switch (r_type)
11117     {
11118     case elfcpp::R_MIPS_CALL16:
11119     case elfcpp::R_MIPS16_CALL16:
11120     case elfcpp::R_MICROMIPS_CALL16:
11121     case elfcpp::R_MIPS_CALL_HI16:
11122     case elfcpp::R_MIPS_CALL_LO16:
11123     case elfcpp::R_MICROMIPS_CALL_HI16:
11124     case elfcpp::R_MICROMIPS_CALL_LO16:
11125       for_call = true;
11126       // Fall through.
11127
11128     case elfcpp::R_MIPS16_GOT16:
11129     case elfcpp::R_MIPS_GOT16:
11130     case elfcpp::R_MIPS_GOT_HI16:
11131     case elfcpp::R_MIPS_GOT_LO16:
11132     case elfcpp::R_MICROMIPS_GOT16:
11133     case elfcpp::R_MICROMIPS_GOT_HI16:
11134     case elfcpp::R_MICROMIPS_GOT_LO16:
11135     case elfcpp::R_MIPS_GOT_DISP:
11136     case elfcpp::R_MICROMIPS_GOT_DISP:
11137     case elfcpp::R_MIPS_EH:
11138       {
11139         // The symbol requires a GOT entry.
11140         Mips_output_data_got<size, big_endian>* got =
11141           target->got_section(symtab, layout);
11142         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11143                                       for_call);
11144         mips_sym->set_global_got_area(GGA_NORMAL);
11145       }
11146       break;
11147
11148     case elfcpp::R_MIPS_GOT_PAGE:
11149     case elfcpp::R_MICROMIPS_GOT_PAGE:
11150       {
11151         // This relocation needs a page entry in the GOT.
11152         // Get the section contents.
11153         section_size_type view_size = 0;
11154         const unsigned char* view =
11155           object->section_contents(data_shndx, &view_size, false);
11156         view += r_offset;
11157
11158         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11159         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11160                                                         : r_addend);
11161         Mips_output_data_got<size, big_endian>* got =
11162           target->got_section(symtab, layout);
11163         got->record_got_page_entry(mips_obj, r_sym, addend);
11164
11165         // If this is a global, overridable symbol, GOT_PAGE will
11166         // decay to GOT_DISP, so we'll need a GOT entry for it.
11167         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11168                             && !mips_sym->object()->is_dynamic()
11169                             && !mips_sym->is_undefined());
11170         if (!def_regular
11171             || (parameters->options().output_is_position_independent()
11172                 && !parameters->options().Bsymbolic()
11173                 && !mips_sym->is_forced_local()))
11174           {
11175             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11176                                           for_call);
11177             mips_sym->set_global_got_area(GGA_NORMAL);
11178           }
11179       }
11180       break;
11181
11182     case elfcpp::R_MIPS_TLS_GOTTPREL:
11183     case elfcpp::R_MIPS16_TLS_GOTTPREL:
11184     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11185     case elfcpp::R_MIPS_TLS_LDM:
11186     case elfcpp::R_MIPS16_TLS_LDM:
11187     case elfcpp::R_MICROMIPS_TLS_LDM:
11188     case elfcpp::R_MIPS_TLS_GD:
11189     case elfcpp::R_MIPS16_TLS_GD:
11190     case elfcpp::R_MICROMIPS_TLS_GD:
11191       {
11192         const bool is_final = gsym->final_value_is_known();
11193         const tls::Tls_optimization optimized_type =
11194           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11195
11196         switch (r_type)
11197           {
11198           case elfcpp::R_MIPS_TLS_GD:
11199           case elfcpp::R_MIPS16_TLS_GD:
11200           case elfcpp::R_MICROMIPS_TLS_GD:
11201             if (optimized_type == tls::TLSOPT_NONE)
11202               {
11203                 // Create a pair of GOT entries for the module index and
11204                 // dtv-relative offset.
11205                 Mips_output_data_got<size, big_endian>* got =
11206                   target->got_section(symtab, layout);
11207                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11208                                               false);
11209               }
11210             else
11211               {
11212                 // FIXME: TLS optimization not supported yet.
11213                 gold_unreachable();
11214               }
11215             break;
11216
11217           case elfcpp::R_MIPS_TLS_LDM:
11218           case elfcpp::R_MIPS16_TLS_LDM:
11219           case elfcpp::R_MICROMIPS_TLS_LDM:
11220             if (optimized_type == tls::TLSOPT_NONE)
11221               {
11222                 // We always record LDM symbols as local with index 0.
11223                 target->got_section()->record_local_got_symbol(mips_obj, 0,
11224                                                                r_addend, r_type,
11225                                                                -1U, false);
11226               }
11227             else
11228               {
11229                 // FIXME: TLS optimization not supported yet.
11230                 gold_unreachable();
11231               }
11232             break;
11233           case elfcpp::R_MIPS_TLS_GOTTPREL:
11234           case elfcpp::R_MIPS16_TLS_GOTTPREL:
11235           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11236             layout->set_has_static_tls();
11237             if (optimized_type == tls::TLSOPT_NONE)
11238               {
11239                 // Create a GOT entry for the tp-relative offset.
11240                 Mips_output_data_got<size, big_endian>* got =
11241                   target->got_section(symtab, layout);
11242                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11243                                               false);
11244               }
11245             else
11246               {
11247                 // FIXME: TLS optimization not supported yet.
11248                 gold_unreachable();
11249               }
11250             break;
11251
11252           default:
11253             gold_unreachable();
11254         }
11255       }
11256       break;
11257     case elfcpp::R_MIPS_COPY:
11258     case elfcpp::R_MIPS_JUMP_SLOT:
11259       // These are relocations which should only be seen by the
11260       // dynamic linker, and should never be seen here.
11261       gold_error(_("%s: unexpected reloc %u in object file"),
11262                  object->name().c_str(), r_type);
11263       break;
11264
11265     default:
11266       break;
11267     }
11268
11269   // Refuse some position-dependent relocations when creating a
11270   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
11271   // not PIC, but we can create dynamic relocations and the result
11272   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
11273   // combined with R_MIPS_GOT16.
11274   if (parameters->options().shared())
11275     {
11276       switch (r_type)
11277         {
11278         case elfcpp::R_MIPS16_HI16:
11279         case elfcpp::R_MIPS_HI16:
11280         case elfcpp::R_MIPS_HIGHER:
11281         case elfcpp::R_MIPS_HIGHEST:
11282         case elfcpp::R_MICROMIPS_HI16:
11283         case elfcpp::R_MICROMIPS_HIGHER:
11284         case elfcpp::R_MICROMIPS_HIGHEST:
11285           // Don't refuse a high part relocation if it's against
11286           // no symbol (e.g. part of a compound relocation).
11287           if (r_sym == 0)
11288             break;
11289
11290           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11291           // and has a special meaning.
11292           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11293             break;
11294           // Fall through.
11295
11296         case elfcpp::R_MIPS16_26:
11297         case elfcpp::R_MIPS_26:
11298         case elfcpp::R_MICROMIPS_26_S1:
11299           gold_error(_("%s: relocation %u against `%s' can not be used when "
11300                        "making a shared object; recompile with -fPIC"),
11301                      object->name().c_str(), r_type, gsym->name());
11302         default:
11303           break;
11304         }
11305     }
11306 }
11307
11308 template<int size, bool big_endian>
11309 inline void
11310 Target_mips<size, big_endian>::Scan::global(
11311                                 Symbol_table* symtab,
11312                                 Layout* layout,
11313                                 Target_mips<size, big_endian>* target,
11314                                 Sized_relobj_file<size, big_endian>* object,
11315                                 unsigned int data_shndx,
11316                                 Output_section* output_section,
11317                                 const Relatype& reloc,
11318                                 unsigned int r_type,
11319                                 Symbol* gsym)
11320 {
11321   global(
11322     symtab,
11323     layout,
11324     target,
11325     object,
11326     data_shndx,
11327     output_section,
11328     &reloc,
11329     (const Reltype*) NULL,
11330     elfcpp::SHT_RELA,
11331     r_type,
11332     gsym);
11333 }
11334
11335 template<int size, bool big_endian>
11336 inline void
11337 Target_mips<size, big_endian>::Scan::global(
11338                                 Symbol_table* symtab,
11339                                 Layout* layout,
11340                                 Target_mips<size, big_endian>* target,
11341                                 Sized_relobj_file<size, big_endian>* object,
11342                                 unsigned int data_shndx,
11343                                 Output_section* output_section,
11344                                 const Reltype& reloc,
11345                                 unsigned int r_type,
11346                                 Symbol* gsym)
11347 {
11348   global(
11349     symtab,
11350     layout,
11351     target,
11352     object,
11353     data_shndx,
11354     output_section,
11355     (const Relatype*) NULL,
11356     &reloc,
11357     elfcpp::SHT_REL,
11358     r_type,
11359     gsym);
11360 }
11361
11362 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11363 // In cases where Scan::local() or Scan::global() has created
11364 // a dynamic relocation, the addend of the relocation is carried
11365 // in the data, and we must not apply the static relocation.
11366
11367 template<int size, bool big_endian>
11368 inline bool
11369 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11370     const Mips_symbol<size>* gsym,
11371     unsigned int r_type,
11372     Output_section* output_section,
11373     Target_mips* target)
11374 {
11375   // If the output section is not allocated, then we didn't call
11376   // scan_relocs, we didn't create a dynamic reloc, and we must apply
11377   // the reloc here.
11378   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11379       return true;
11380
11381   if (gsym == NULL)
11382     return true;
11383   else
11384     {
11385       // For global symbols, we use the same helper routines used in the
11386       // scan pass.
11387       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11388           && !gsym->may_need_copy_reloc())
11389         {
11390           // We have generated dynamic reloc (R_MIPS_REL32).
11391
11392           bool multi_got = false;
11393           if (target->has_got_section())
11394             multi_got = target->got_section()->multi_got();
11395           bool has_got_offset;
11396           if (!multi_got)
11397             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11398           else
11399             has_got_offset = gsym->global_gotoffset() != -1U;
11400           if (!has_got_offset)
11401             return true;
11402           else
11403             // Apply the relocation only if the symbol is in the local got.
11404             // Do not apply the relocation if the symbol is in the global
11405             // got.
11406             return symbol_references_local(gsym, gsym->has_dynsym_index());
11407         }
11408       else
11409         // We have not generated dynamic reloc.
11410         return true;
11411     }
11412 }
11413
11414 // Perform a relocation.
11415
11416 template<int size, bool big_endian>
11417 inline bool
11418 Target_mips<size, big_endian>::Relocate::relocate(
11419                         const Relocate_info<size, big_endian>* relinfo,
11420                         unsigned int rel_type,
11421                         Target_mips* target,
11422                         Output_section* output_section,
11423                         size_t relnum,
11424                         const unsigned char* preloc,
11425                         const Sized_symbol<size>* gsym,
11426                         const Symbol_value<size>* psymval,
11427                         unsigned char* view,
11428                         Mips_address address,
11429                         section_size_type)
11430 {
11431   Mips_address r_offset;
11432   unsigned int r_sym;
11433   unsigned int r_type;
11434   unsigned int r_type2;
11435   unsigned int r_type3;
11436   unsigned char r_ssym;
11437   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11438   // r_offset and r_type of the next relocation is needed for resolving multiple
11439   // consecutive relocations with the same offset.
11440   Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
11441   unsigned int next_r_type = elfcpp::R_MIPS_NONE;
11442
11443   elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11444   size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
11445
11446   if (rel_type == elfcpp::SHT_RELA)
11447     {
11448       const Relatype rela(preloc);
11449       r_offset = rela.get_r_offset();
11450       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11451           get_r_sym(&rela);
11452       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11453           get_r_type(&rela);
11454       r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11455           get_r_type2(&rela);
11456       r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11457           get_r_type3(&rela);
11458       r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11459           get_r_ssym(&rela);
11460       r_addend = rela.get_r_addend();
11461       // If this is not last relocation, get r_offset and r_type of the next
11462       // relocation.
11463       if (relnum + 1 < reloc_count)
11464         {
11465           const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11466           const Relatype next_rela(preloc + reloc_size);
11467           next_r_offset = next_rela.get_r_offset();
11468           next_r_type =
11469             Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11470               get_r_type(&next_rela);
11471         }
11472     }
11473   else
11474     {
11475       const Reltype rel(preloc);
11476       r_offset = rel.get_r_offset();
11477       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11478           get_r_sym(&rel);
11479       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11480           get_r_type(&rel);
11481       r_ssym = 0;
11482       r_type2 = elfcpp::R_MIPS_NONE;
11483       r_type3 = elfcpp::R_MIPS_NONE;
11484       r_addend = 0;
11485       // If this is not last relocation, get r_offset and r_type of the next
11486       // relocation.
11487       if (relnum + 1 < reloc_count)
11488         {
11489           const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
11490           const Reltype next_rel(preloc + reloc_size);
11491           next_r_offset = next_rel.get_r_offset();
11492           next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11493             get_r_type(&next_rel);
11494         }
11495     }
11496
11497   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11498   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11499
11500   Mips_relobj<size, big_endian>* object =
11501       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11502
11503   bool target_is_16_bit_code = false;
11504   bool target_is_micromips_code = false;
11505   bool cross_mode_jump;
11506
11507   Symbol_value<size> symval;
11508
11509   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11510
11511   bool changed_symbol_value = false;
11512   if (gsym == NULL)
11513     {
11514       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11515       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11516       if (target_is_16_bit_code || target_is_micromips_code)
11517         {
11518           // MIPS16/microMIPS text labels should be treated as odd.
11519           symval.set_output_value(psymval->value(object, 1));
11520           psymval = &symval;
11521           changed_symbol_value = true;
11522         }
11523     }
11524   else
11525     {
11526       target_is_16_bit_code = mips_sym->is_mips16();
11527       target_is_micromips_code = mips_sym->is_micromips();
11528
11529       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11530       // it odd.  This will cause something like .word SYM to come up with
11531       // the right value when it is loaded into the PC.
11532
11533       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11534           && psymval->value(object, 0) != 0)
11535         {
11536           symval.set_output_value(psymval->value(object, 0) | 1);
11537           psymval = &symval;
11538           changed_symbol_value = true;
11539         }
11540
11541       // Pick the value to use for symbols defined in shared objects.
11542       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11543           || mips_sym->has_lazy_stub())
11544         {
11545           Mips_address value;
11546           if (!mips_sym->has_lazy_stub())
11547             {
11548               // Prefer a standard MIPS PLT entry.
11549               if (mips_sym->has_mips_plt_offset())
11550                 {
11551                   value = target->plt_section()->mips_entry_address(mips_sym);
11552                   target_is_micromips_code = false;
11553                   target_is_16_bit_code = false;
11554                 }
11555               else
11556                 {
11557                   value = (target->plt_section()->comp_entry_address(mips_sym)
11558                            + 1);
11559                   if (target->is_output_micromips())
11560                     target_is_micromips_code = true;
11561                   else
11562                     target_is_16_bit_code = true;
11563                 }
11564             }
11565           else
11566             value = target->mips_stubs_section()->stub_address(mips_sym);
11567
11568           symval.set_output_value(value);
11569           psymval = &symval;
11570         }
11571     }
11572
11573   // TRUE if the symbol referred to by this relocation is "_gp_disp".
11574   // Note that such a symbol must always be a global symbol.
11575   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11576                   && !object->is_newabi());
11577
11578   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11579   // Note that such a symbol must always be a global symbol.
11580   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11581
11582
11583   if (gp_disp)
11584     {
11585       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11586         gold_error_at_location(relinfo, relnum, r_offset,
11587           _("relocations against _gp_disp are permitted only"
11588             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11589     }
11590   else if (gnu_local_gp)
11591     {
11592       // __gnu_local_gp is _gp symbol.
11593       symval.set_output_value(target->adjusted_gp_value(object));
11594       psymval = &symval;
11595     }
11596
11597   // If this is a reference to a 16-bit function with a stub, we need
11598   // to redirect the relocation to the stub unless:
11599   //
11600   // (a) the relocation is for a MIPS16 JAL;
11601   //
11602   // (b) the relocation is for a MIPS16 PIC call, and there are no
11603   //     non-MIPS16 uses of the GOT slot; or
11604   //
11605   // (c) the section allows direct references to MIPS16 functions.
11606   if (r_type != elfcpp::R_MIPS16_26
11607       && ((mips_sym != NULL
11608            && mips_sym->has_mips16_fn_stub()
11609            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11610           || (mips_sym == NULL
11611               && object->get_local_mips16_fn_stub(r_sym) != NULL))
11612       && !object->section_allows_mips16_refs(relinfo->data_shndx))
11613     {
11614       // This is a 32- or 64-bit call to a 16-bit function.  We should
11615       // have already noticed that we were going to need the
11616       // stub.
11617       Mips_address value;
11618       if (mips_sym == NULL)
11619         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11620       else
11621         {
11622           gold_assert(mips_sym->need_fn_stub());
11623           if (mips_sym->has_la25_stub())
11624             value = target->la25_stub_section()->stub_address(mips_sym);
11625           else
11626             {
11627               value = mips_sym->template
11628                       get_mips16_fn_stub<big_endian>()->output_address();
11629             }
11630           }
11631       symval.set_output_value(value);
11632       psymval = &symval;
11633       changed_symbol_value = true;
11634
11635       // The target is 16-bit, but the stub isn't.
11636       target_is_16_bit_code = false;
11637     }
11638   // If this is a MIPS16 call with a stub, that is made through the PLT or
11639   // to a standard MIPS function, we need to redirect the call to the stub.
11640   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11641   // indirect calls should use an indirect stub instead.
11642   else if (r_type == elfcpp::R_MIPS16_26
11643            && ((mips_sym != NULL
11644                 && (mips_sym->has_mips16_call_stub()
11645                     || mips_sym->has_mips16_call_fp_stub()))
11646                || (mips_sym == NULL
11647                    && object->get_local_mips16_call_stub(r_sym) != NULL))
11648            && ((mips_sym != NULL && mips_sym->has_plt_offset())
11649                || !target_is_16_bit_code))
11650     {
11651       Mips16_stub_section<size, big_endian>* call_stub;
11652       if (mips_sym == NULL)
11653         call_stub = object->get_local_mips16_call_stub(r_sym);
11654       else
11655         {
11656           // If both call_stub and call_fp_stub are defined, we can figure
11657           // out which one to use by checking which one appears in the input
11658           // file.
11659           if (mips_sym->has_mips16_call_stub()
11660               && mips_sym->has_mips16_call_fp_stub())
11661             {
11662               call_stub = NULL;
11663               for (unsigned int i = 1; i < object->shnum(); ++i)
11664                 {
11665                   if (object->is_mips16_call_fp_stub_section(i))
11666                     {
11667                       call_stub = mips_sym->template
11668                                   get_mips16_call_fp_stub<big_endian>();
11669                       break;
11670                     }
11671
11672                 }
11673               if (call_stub == NULL)
11674                 call_stub =
11675                   mips_sym->template get_mips16_call_stub<big_endian>();
11676             }
11677           else if (mips_sym->has_mips16_call_stub())
11678             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11679           else
11680             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11681         }
11682
11683       symval.set_output_value(call_stub->output_address());
11684       psymval = &symval;
11685       changed_symbol_value = true;
11686     }
11687   // If this is a direct call to a PIC function, redirect to the
11688   // non-PIC stub.
11689   else if (mips_sym != NULL
11690            && mips_sym->has_la25_stub()
11691            && relocation_needs_la25_stub<size, big_endian>(
11692                                        object, r_type, target_is_16_bit_code))
11693     {
11694       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11695       if (mips_sym->is_micromips())
11696         value += 1;
11697       symval.set_output_value(value);
11698       psymval = &symval;
11699     }
11700   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11701   // entry is used if a standard PLT entry has also been made.
11702   else if ((r_type == elfcpp::R_MIPS16_26
11703             || r_type == elfcpp::R_MICROMIPS_26_S1)
11704           && mips_sym != NULL
11705           && mips_sym->has_plt_offset()
11706           && mips_sym->has_comp_plt_offset()
11707           && mips_sym->has_mips_plt_offset())
11708     {
11709       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11710                             + 1);
11711       symval.set_output_value(value);
11712       psymval = &symval;
11713
11714       target_is_16_bit_code = !target->is_output_micromips();
11715       target_is_micromips_code = target->is_output_micromips();
11716     }
11717
11718   // Make sure MIPS16 and microMIPS are not used together.
11719   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11720       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11721    {
11722       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11723    }
11724
11725   // Calls from 16-bit code to 32-bit code and vice versa require the
11726   // mode change.  However, we can ignore calls to undefined weak symbols,
11727   // which should never be executed at runtime.  This exception is important
11728   // because the assembly writer may have "known" that any definition of the
11729   // symbol would be 16-bit code, and that direct jumps were therefore
11730   // acceptable.
11731   cross_mode_jump =
11732     (!(gsym != NULL && gsym->is_weak_undefined())
11733      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11734          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11735          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11736              && (target_is_16_bit_code || target_is_micromips_code))));
11737
11738   bool local = (mips_sym == NULL
11739                 || (mips_sym->got_only_for_calls()
11740                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11741                     : symbol_references_local(mips_sym,
11742                                               mips_sym->has_dynsym_index())));
11743
11744   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11745   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
11746   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11747   if (got_page_reloc(r_type) && !local)
11748     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11749                                       : elfcpp::R_MIPS_GOT_DISP);
11750
11751   unsigned int got_offset = 0;
11752   int gp_offset = 0;
11753
11754   // Whether we have to extract addend from instruction.
11755   bool extract_addend = rel_type == elfcpp::SHT_REL;
11756   unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11757
11758   Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11759
11760   // For Mips64 N64 ABI, there may be up to three operations specified per
11761   // record, by the fields r_type, r_type2, and r_type3. The first operation
11762   // takes its addend from the relocation record. Each subsequent operation
11763   // takes as its addend the result of the previous operation.
11764   // The first operation in a record which references a symbol uses the symbol
11765   // implied by r_sym. The next operation in a record which references a symbol
11766   // uses the special symbol value given by the r_ssym field. A third operation
11767   // in a record which references a symbol will assume a NULL symbol,
11768   // i.e. value zero.
11769
11770   // TODO(Vladimir)
11771   // Check if a record references to a symbol.
11772   for (unsigned int i = 0; i < 3; ++i)
11773     {
11774       if (r_types[i] == elfcpp::R_MIPS_NONE)
11775         break;
11776
11777       // If we didn't apply previous relocation, use its result as addend
11778       // for current.
11779       if (this->calculate_only_)
11780         {
11781           r_addend = this->calculated_value_;
11782           extract_addend = false;
11783         }
11784
11785       // In the N32 and 64-bit ABIs there may be multiple consecutive
11786       // relocations for the same offset.  In that case we are
11787       // supposed to treat the output of each relocation as the addend
11788       // for the next.  For N64 ABI, we are checking offsets only in a
11789       // third operation in a record (r_type3).
11790       this->calculate_only_ =
11791         (object->is_n64() && i < 2
11792          ? r_types[i+1] != elfcpp::R_MIPS_NONE
11793          : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
11794
11795       if (object->is_n64())
11796         {
11797           if (i == 1)
11798             {
11799               // Handle special symbol for r_type2 relocation type.
11800               switch (r_ssym)
11801                 {
11802                 case RSS_UNDEF:
11803                   symval.set_output_value(0);
11804                   break;
11805                 case RSS_GP:
11806                   symval.set_output_value(target->gp_value());
11807                   break;
11808                 case RSS_GP0:
11809                   symval.set_output_value(object->gp_value());
11810                   break;
11811                 case RSS_LOC:
11812                   symval.set_output_value(address);
11813                   break;
11814                 default:
11815                   gold_unreachable();
11816                 }
11817               psymval = &symval;
11818             }
11819           else if (i == 2)
11820            {
11821             // For r_type3 symbol value is 0.
11822             symval.set_output_value(0);
11823            }
11824         }
11825
11826       bool update_got_entry = false;
11827       switch (r_types[i])
11828         {
11829         case elfcpp::R_MIPS_NONE:
11830           break;
11831         case elfcpp::R_MIPS_16:
11832           reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11833                                             extract_addend,
11834                                             this->calculate_only_,
11835                                             &this->calculated_value_);
11836           break;
11837
11838         case elfcpp::R_MIPS_32:
11839           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11840                                         target))
11841             reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11842                                               extract_addend,
11843                                               this->calculate_only_,
11844                                               &this->calculated_value_);
11845           if (mips_sym != NULL
11846               && (mips_sym->is_mips16() || mips_sym->is_micromips())
11847               && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11848             {
11849               // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11850               // already updated by adding +1.
11851               if (mips_sym->has_mips16_fn_stub())
11852                 {
11853                   gold_assert(mips_sym->need_fn_stub());
11854                   Mips16_stub_section<size, big_endian>* fn_stub =
11855                     mips_sym->template get_mips16_fn_stub<big_endian>();
11856
11857                   symval.set_output_value(fn_stub->output_address());
11858                   psymval = &symval;
11859                 }
11860               got_offset = mips_sym->global_gotoffset();
11861               update_got_entry = true;
11862             }
11863           break;
11864
11865         case elfcpp::R_MIPS_64:
11866           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11867                                         target))
11868             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11869                                               extract_addend,
11870                                               this->calculate_only_,
11871                                               &this->calculated_value_, false);
11872           else if (target->is_output_n64() && r_addend != 0)
11873             // Only apply the addend.  The static relocation was RELA, but the
11874             // dynamic relocation is REL, so we need to apply the addend.
11875             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11876                                               extract_addend,
11877                                               this->calculate_only_,
11878                                               &this->calculated_value_, true);
11879           break;
11880         case elfcpp::R_MIPS_REL32:
11881           gold_unreachable();
11882
11883         case elfcpp::R_MIPS_PC32:
11884           reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11885                                               r_addend, extract_addend,
11886                                               this->calculate_only_,
11887                                               &this->calculated_value_);
11888           break;
11889
11890         case elfcpp::R_MIPS16_26:
11891           // The calculation for R_MIPS16_26 is just the same as for an
11892           // R_MIPS_26.  It's only the storage of the relocated field into
11893           // the output file that's different.  So, we just fall through to the
11894           // R_MIPS_26 case here.
11895         case elfcpp::R_MIPS_26:
11896         case elfcpp::R_MICROMIPS_26_S1:
11897           reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11898               gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11899               r_types[i], target->jal_to_bal(), this->calculate_only_,
11900               &this->calculated_value_);
11901           break;
11902
11903         case elfcpp::R_MIPS_HI16:
11904         case elfcpp::R_MIPS16_HI16:
11905         case elfcpp::R_MICROMIPS_HI16:
11906           if (rel_type == elfcpp::SHT_RELA)
11907             reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11908                                                    r_addend, address,
11909                                                    gp_disp, r_types[i],
11910                                                    extract_addend, 0,
11911                                                    target,
11912                                                    this->calculate_only_,
11913                                                    &this->calculated_value_);
11914           else if (rel_type == elfcpp::SHT_REL)
11915             reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11916                                                 address, gp_disp, r_types[i],
11917                                                 r_sym, extract_addend);
11918           else
11919             gold_unreachable();
11920           break;
11921
11922         case elfcpp::R_MIPS_LO16:
11923         case elfcpp::R_MIPS16_LO16:
11924         case elfcpp::R_MICROMIPS_LO16:
11925         case elfcpp::R_MICROMIPS_HI0_LO16:
11926           reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11927                                               r_addend, extract_addend, address,
11928                                               gp_disp, r_types[i], r_sym,
11929                                               rel_type, this->calculate_only_,
11930                                               &this->calculated_value_);
11931           break;
11932
11933         case elfcpp::R_MIPS_LITERAL:
11934         case elfcpp::R_MICROMIPS_LITERAL:
11935           // Because we don't merge literal sections, we can handle this
11936           // just like R_MIPS_GPREL16.  In the long run, we should merge
11937           // shared literals, and then we will need to additional work
11938           // here.
11939
11940           // Fall through.
11941
11942         case elfcpp::R_MIPS_GPREL16:
11943         case elfcpp::R_MIPS16_GPREL:
11944         case elfcpp::R_MICROMIPS_GPREL7_S2:
11945         case elfcpp::R_MICROMIPS_GPREL16:
11946           reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11947                                              target->adjusted_gp_value(object),
11948                                              r_addend, extract_addend,
11949                                              gsym == NULL, r_types[i],
11950                                              this->calculate_only_,
11951                                              &this->calculated_value_);
11952           break;
11953
11954         case elfcpp::R_MIPS_PC16:
11955           reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11956                                               r_addend, extract_addend,
11957                                               this->calculate_only_,
11958                                               &this->calculated_value_);
11959           break;
11960
11961         case elfcpp::R_MIPS_PC21_S2:
11962           reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11963                                               r_addend, extract_addend,
11964                                               this->calculate_only_,
11965                                               &this->calculated_value_);
11966           break;
11967
11968         case elfcpp::R_MIPS_PC26_S2:
11969           reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11970                                               r_addend, extract_addend,
11971                                               this->calculate_only_,
11972                                               &this->calculated_value_);
11973           break;
11974
11975         case elfcpp::R_MIPS_PC18_S3:
11976           reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11977                                               r_addend, extract_addend,
11978                                               this->calculate_only_,
11979                                               &this->calculated_value_);
11980           break;
11981
11982         case elfcpp::R_MIPS_PC19_S2:
11983           reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11984                                               r_addend, extract_addend,
11985                                               this->calculate_only_,
11986                                               &this->calculated_value_);
11987           break;
11988
11989         case elfcpp::R_MIPS_PCHI16:
11990           if (rel_type == elfcpp::SHT_RELA)
11991             reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11992                                                      r_addend, address,
11993                                                      extract_addend, 0,
11994                                                      this->calculate_only_,
11995                                                      &this->calculated_value_);
11996           else if (rel_type == elfcpp::SHT_REL)
11997             reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11998                                                   r_addend, address, r_sym,
11999                                                   extract_addend);
12000           else
12001             gold_unreachable();
12002           break;
12003
12004         case elfcpp::R_MIPS_PCLO16:
12005           reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
12006                                                 extract_addend, address, r_sym,
12007                                                 rel_type, this->calculate_only_,
12008                                                 &this->calculated_value_);
12009           break;
12010         case elfcpp::R_MICROMIPS_PC7_S1:
12011           reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
12012                                                       address, r_addend,
12013                                                       extract_addend,
12014                                                       this->calculate_only_,
12015                                                       &this->calculated_value_);
12016           break;
12017         case elfcpp::R_MICROMIPS_PC10_S1:
12018           reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
12019                                                       psymval, address,
12020                                                       r_addend, extract_addend,
12021                                                       this->calculate_only_,
12022                                                       &this->calculated_value_);
12023           break;
12024         case elfcpp::R_MICROMIPS_PC16_S1:
12025           reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
12026                                                       psymval, address,
12027                                                       r_addend, extract_addend,
12028                                                       this->calculate_only_,
12029                                                       &this->calculated_value_);
12030           break;
12031         case elfcpp::R_MIPS_GPREL32:
12032           reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
12033                                               target->adjusted_gp_value(object),
12034                                               r_addend, extract_addend,
12035                                               this->calculate_only_,
12036                                               &this->calculated_value_);
12037           break;
12038         case elfcpp::R_MIPS_GOT_HI16:
12039         case elfcpp::R_MIPS_CALL_HI16:
12040         case elfcpp::R_MICROMIPS_GOT_HI16:
12041         case elfcpp::R_MICROMIPS_CALL_HI16:
12042           if (gsym != NULL)
12043             got_offset = target->got_section()->got_offset(gsym,
12044                                                            GOT_TYPE_STANDARD,
12045                                                            object);
12046           else
12047             got_offset = target->got_section()->got_offset(r_sym,
12048                                                            GOT_TYPE_STANDARD,
12049                                                            object, r_addend);
12050           gp_offset = target->got_section()->gp_offset(got_offset, object);
12051           reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
12052                                                   this->calculate_only_,
12053                                                   &this->calculated_value_);
12054           update_got_entry = changed_symbol_value;
12055           break;
12056
12057         case elfcpp::R_MIPS_GOT_LO16:
12058         case elfcpp::R_MIPS_CALL_LO16:
12059         case elfcpp::R_MICROMIPS_GOT_LO16:
12060         case elfcpp::R_MICROMIPS_CALL_LO16:
12061           if (gsym != NULL)
12062             got_offset = target->got_section()->got_offset(gsym,
12063                                                            GOT_TYPE_STANDARD,
12064                                                            object);
12065           else
12066             got_offset = target->got_section()->got_offset(r_sym,
12067                                                            GOT_TYPE_STANDARD,
12068                                                            object, r_addend);
12069           gp_offset = target->got_section()->gp_offset(got_offset, object);
12070           reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12071                                                   this->calculate_only_,
12072                                                   &this->calculated_value_);
12073           update_got_entry = changed_symbol_value;
12074           break;
12075
12076         case elfcpp::R_MIPS_GOT_DISP:
12077         case elfcpp::R_MICROMIPS_GOT_DISP:
12078         case elfcpp::R_MIPS_EH:
12079           if (gsym != NULL)
12080             got_offset = target->got_section()->got_offset(gsym,
12081                                                            GOT_TYPE_STANDARD,
12082                                                            object);
12083           else
12084             got_offset = target->got_section()->got_offset(r_sym,
12085                                                            GOT_TYPE_STANDARD,
12086                                                            object, r_addend);
12087           gp_offset = target->got_section()->gp_offset(got_offset, object);
12088           if (eh_reloc(r_types[i]))
12089             reloc_status = Reloc_funcs::releh(view, gp_offset,
12090                                               this->calculate_only_,
12091                                               &this->calculated_value_);
12092           else
12093             reloc_status = Reloc_funcs::relgot(view, gp_offset,
12094                                                this->calculate_only_,
12095                                                &this->calculated_value_);
12096           break;
12097         case elfcpp::R_MIPS_CALL16:
12098         case elfcpp::R_MIPS16_CALL16:
12099         case elfcpp::R_MICROMIPS_CALL16:
12100           gold_assert(gsym != NULL);
12101           got_offset = target->got_section()->got_offset(gsym,
12102                                                          GOT_TYPE_STANDARD,
12103                                                          object);
12104           gp_offset = target->got_section()->gp_offset(got_offset, object);
12105           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12106                                              this->calculate_only_,
12107                                              &this->calculated_value_);
12108           // TODO(sasa): We should also initialize update_got_entry
12109           // in other place swhere relgot is called.
12110           update_got_entry = changed_symbol_value;
12111           break;
12112
12113         case elfcpp::R_MIPS_GOT16:
12114         case elfcpp::R_MIPS16_GOT16:
12115         case elfcpp::R_MICROMIPS_GOT16:
12116           if (gsym != NULL)
12117             {
12118               got_offset = target->got_section()->got_offset(gsym,
12119                                                              GOT_TYPE_STANDARD,
12120                                                              object);
12121               gp_offset = target->got_section()->gp_offset(got_offset, object);
12122               reloc_status = Reloc_funcs::relgot(view, gp_offset,
12123                                                  this->calculate_only_,
12124                                                  &this->calculated_value_);
12125             }
12126           else
12127             {
12128               if (rel_type == elfcpp::SHT_RELA)
12129                 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12130                                                       psymval, r_addend,
12131                                                       extract_addend, 0,
12132                                                       target,
12133                                                       this->calculate_only_,
12134                                                       &this->calculated_value_);
12135               else if (rel_type == elfcpp::SHT_REL)
12136                 reloc_status = Reloc_funcs::relgot16_local(view, object,
12137                                                            psymval, r_addend,
12138                                                            extract_addend,
12139                                                            r_types[i], r_sym);
12140               else
12141                 gold_unreachable();
12142             }
12143           update_got_entry = changed_symbol_value;
12144           break;
12145
12146         case elfcpp::R_MIPS_TLS_GD:
12147         case elfcpp::R_MIPS16_TLS_GD:
12148         case elfcpp::R_MICROMIPS_TLS_GD:
12149           if (gsym != NULL)
12150             got_offset = target->got_section()->got_offset(gsym,
12151                                                            GOT_TYPE_TLS_PAIR,
12152                                                            object);
12153           else
12154             got_offset = target->got_section()->got_offset(r_sym,
12155                                                            GOT_TYPE_TLS_PAIR,
12156                                                            object, r_addend);
12157           gp_offset = target->got_section()->gp_offset(got_offset, object);
12158           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12159                                              this->calculate_only_,
12160                                              &this->calculated_value_);
12161           break;
12162
12163         case elfcpp::R_MIPS_TLS_GOTTPREL:
12164         case elfcpp::R_MIPS16_TLS_GOTTPREL:
12165         case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12166           if (gsym != NULL)
12167             got_offset = target->got_section()->got_offset(gsym,
12168                                                            GOT_TYPE_TLS_OFFSET,
12169                                                            object);
12170           else
12171             got_offset = target->got_section()->got_offset(r_sym,
12172                                                            GOT_TYPE_TLS_OFFSET,
12173                                                            object, r_addend);
12174           gp_offset = target->got_section()->gp_offset(got_offset, object);
12175           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12176                                              this->calculate_only_,
12177                                              &this->calculated_value_);
12178           break;
12179
12180         case elfcpp::R_MIPS_TLS_LDM:
12181         case elfcpp::R_MIPS16_TLS_LDM:
12182         case elfcpp::R_MICROMIPS_TLS_LDM:
12183           // Relocate the field with the offset of the GOT entry for
12184           // the module index.
12185           got_offset = target->got_section()->tls_ldm_offset(object);
12186           gp_offset = target->got_section()->gp_offset(got_offset, object);
12187           reloc_status = Reloc_funcs::relgot(view, gp_offset,
12188                                              this->calculate_only_,
12189                                              &this->calculated_value_);
12190           break;
12191
12192         case elfcpp::R_MIPS_GOT_PAGE:
12193         case elfcpp::R_MICROMIPS_GOT_PAGE:
12194           reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12195                                                  r_addend, extract_addend,
12196                                                  this->calculate_only_,
12197                                                  &this->calculated_value_);
12198           break;
12199
12200         case elfcpp::R_MIPS_GOT_OFST:
12201         case elfcpp::R_MICROMIPS_GOT_OFST:
12202           reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12203                                                  r_addend, extract_addend,
12204                                                  local, this->calculate_only_,
12205                                                  &this->calculated_value_);
12206           break;
12207
12208         case elfcpp::R_MIPS_JALR:
12209         case elfcpp::R_MICROMIPS_JALR:
12210           // This relocation is only a hint.  In some cases, we optimize
12211           // it into a bal instruction.  But we don't try to optimize
12212           // when the symbol does not resolve locally.
12213           if (gsym == NULL
12214               || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12215             reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12216                                                 r_addend, extract_addend,
12217                                                 cross_mode_jump, r_types[i],
12218                                                 target->jalr_to_bal(),
12219                                                 target->jr_to_b(),
12220                                                 this->calculate_only_,
12221                                                 &this->calculated_value_);
12222           break;
12223
12224         case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12225         case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12226         case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12227           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12228                                                  elfcpp::DTP_OFFSET, r_addend,
12229                                                  extract_addend,
12230                                                  this->calculate_only_,
12231                                                  &this->calculated_value_);
12232           break;
12233         case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12234         case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12235         case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12236           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12237                                                  elfcpp::DTP_OFFSET, r_addend,
12238                                                  extract_addend,
12239                                                  this->calculate_only_,
12240                                                  &this->calculated_value_);
12241           break;
12242         case elfcpp::R_MIPS_TLS_DTPREL32:
12243         case elfcpp::R_MIPS_TLS_DTPREL64:
12244           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12245                                                elfcpp::DTP_OFFSET, r_addend,
12246                                                extract_addend,
12247                                                this->calculate_only_,
12248                                                &this->calculated_value_);
12249           break;
12250         case elfcpp::R_MIPS_TLS_TPREL_HI16:
12251         case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12252         case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12253           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12254                                                  elfcpp::TP_OFFSET, r_addend,
12255                                                  extract_addend,
12256                                                  this->calculate_only_,
12257                                                  &this->calculated_value_);
12258           break;
12259         case elfcpp::R_MIPS_TLS_TPREL_LO16:
12260         case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12261         case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12262           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12263                                                  elfcpp::TP_OFFSET, r_addend,
12264                                                  extract_addend,
12265                                                  this->calculate_only_,
12266                                                  &this->calculated_value_);
12267           break;
12268         case elfcpp::R_MIPS_TLS_TPREL32:
12269         case elfcpp::R_MIPS_TLS_TPREL64:
12270           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12271                                                elfcpp::TP_OFFSET, r_addend,
12272                                                extract_addend,
12273                                                this->calculate_only_,
12274                                                &this->calculated_value_);
12275           break;
12276         case elfcpp::R_MIPS_SUB:
12277         case elfcpp::R_MICROMIPS_SUB:
12278           reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12279                                              extract_addend,
12280                                              this->calculate_only_,
12281                                              &this->calculated_value_);
12282           break;
12283         case elfcpp::R_MIPS_HIGHER:
12284         case elfcpp::R_MICROMIPS_HIGHER:
12285           reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12286                                                 extract_addend,
12287                                                 this->calculate_only_,
12288                                                 &this->calculated_value_);
12289           break;
12290         case elfcpp::R_MIPS_HIGHEST:
12291         case elfcpp::R_MICROMIPS_HIGHEST:
12292           reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12293                                                  r_addend, extract_addend,
12294                                                  this->calculate_only_,
12295                                                  &this->calculated_value_);
12296           break;
12297         default:
12298           gold_error_at_location(relinfo, relnum, r_offset,
12299                                  _("unsupported reloc %u"), r_types[i]);
12300           break;
12301         }
12302
12303       if (update_got_entry)
12304         {
12305           Mips_output_data_got<size, big_endian>* got = target->got_section();
12306           if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12307             got->update_got_entry(got->get_primary_got_offset(mips_sym),
12308                                   psymval->value(object, 0));
12309           else
12310             got->update_got_entry(got_offset, psymval->value(object, 0));
12311         }
12312     }
12313
12314   bool jal_shuffle = jal_reloc(r_type);
12315   Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12316
12317   // Report any errors.
12318   switch (reloc_status)
12319     {
12320     case Reloc_funcs::STATUS_OKAY:
12321       break;
12322     case Reloc_funcs::STATUS_OVERFLOW:
12323       if (gsym == NULL)
12324         gold_error_at_location(relinfo, relnum, r_offset,
12325                                _("relocation overflow: "
12326                                  "%u against local symbol %u in %s"),
12327                                r_type, r_sym, object->name().c_str());
12328       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12329         gold_error_at_location(relinfo, relnum, r_offset,
12330                                _("relocation overflow: "
12331                                  "%u against '%s' defined in %s"),
12332                                r_type, gsym->demangled_name().c_str(),
12333                                gsym->object()->name().c_str());
12334       else
12335         gold_error_at_location(relinfo, relnum, r_offset,
12336                                _("relocation overflow: %u against '%s'"),
12337                                r_type, gsym->demangled_name().c_str());
12338       break;
12339     case Reloc_funcs::STATUS_BAD_RELOC:
12340       gold_error_at_location(relinfo, relnum, r_offset,
12341         _("unexpected opcode while processing relocation"));
12342       break;
12343     case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12344       gold_error_at_location(relinfo, relnum, r_offset,
12345         _("unaligned PC-relative relocation"));
12346       break;
12347     default:
12348       gold_unreachable();
12349     }
12350
12351   return true;
12352 }
12353
12354 // Get the Reference_flags for a particular relocation.
12355
12356 template<int size, bool big_endian>
12357 int
12358 Target_mips<size, big_endian>::Scan::get_reference_flags(
12359                        unsigned int r_type)
12360 {
12361   switch (r_type)
12362     {
12363     case elfcpp::R_MIPS_NONE:
12364       // No symbol reference.
12365       return 0;
12366
12367     case elfcpp::R_MIPS_16:
12368     case elfcpp::R_MIPS_32:
12369     case elfcpp::R_MIPS_64:
12370     case elfcpp::R_MIPS_HI16:
12371     case elfcpp::R_MIPS_LO16:
12372     case elfcpp::R_MIPS_HIGHER:
12373     case elfcpp::R_MIPS_HIGHEST:
12374     case elfcpp::R_MIPS16_HI16:
12375     case elfcpp::R_MIPS16_LO16:
12376     case elfcpp::R_MICROMIPS_HI16:
12377     case elfcpp::R_MICROMIPS_LO16:
12378     case elfcpp::R_MICROMIPS_HIGHER:
12379     case elfcpp::R_MICROMIPS_HIGHEST:
12380       return Symbol::ABSOLUTE_REF;
12381
12382     case elfcpp::R_MIPS_26:
12383     case elfcpp::R_MIPS16_26:
12384     case elfcpp::R_MICROMIPS_26_S1:
12385       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12386
12387     case elfcpp::R_MIPS_PC18_S3:
12388     case elfcpp::R_MIPS_PC19_S2:
12389     case elfcpp::R_MIPS_PCHI16:
12390     case elfcpp::R_MIPS_PCLO16:
12391     case elfcpp::R_MIPS_GPREL32:
12392     case elfcpp::R_MIPS_GPREL16:
12393     case elfcpp::R_MIPS_REL32:
12394     case elfcpp::R_MIPS16_GPREL:
12395       return Symbol::RELATIVE_REF;
12396
12397     case elfcpp::R_MIPS_PC16:
12398     case elfcpp::R_MIPS_PC32:
12399     case elfcpp::R_MIPS_PC21_S2:
12400     case elfcpp::R_MIPS_PC26_S2:
12401     case elfcpp::R_MIPS_JALR:
12402     case elfcpp::R_MICROMIPS_JALR:
12403       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12404
12405     case elfcpp::R_MIPS_GOT16:
12406     case elfcpp::R_MIPS_CALL16:
12407     case elfcpp::R_MIPS_GOT_DISP:
12408     case elfcpp::R_MIPS_GOT_HI16:
12409     case elfcpp::R_MIPS_GOT_LO16:
12410     case elfcpp::R_MIPS_CALL_HI16:
12411     case elfcpp::R_MIPS_CALL_LO16:
12412     case elfcpp::R_MIPS_LITERAL:
12413     case elfcpp::R_MIPS_GOT_PAGE:
12414     case elfcpp::R_MIPS_GOT_OFST:
12415     case elfcpp::R_MIPS16_GOT16:
12416     case elfcpp::R_MIPS16_CALL16:
12417     case elfcpp::R_MICROMIPS_GOT16:
12418     case elfcpp::R_MICROMIPS_CALL16:
12419     case elfcpp::R_MICROMIPS_GOT_HI16:
12420     case elfcpp::R_MICROMIPS_GOT_LO16:
12421     case elfcpp::R_MICROMIPS_CALL_HI16:
12422     case elfcpp::R_MICROMIPS_CALL_LO16:
12423     case elfcpp::R_MIPS_EH:
12424       // Absolute in GOT.
12425       return Symbol::RELATIVE_REF;
12426
12427     case elfcpp::R_MIPS_TLS_DTPMOD32:
12428     case elfcpp::R_MIPS_TLS_DTPREL32:
12429     case elfcpp::R_MIPS_TLS_DTPMOD64:
12430     case elfcpp::R_MIPS_TLS_DTPREL64:
12431     case elfcpp::R_MIPS_TLS_GD:
12432     case elfcpp::R_MIPS_TLS_LDM:
12433     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12434     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12435     case elfcpp::R_MIPS_TLS_GOTTPREL:
12436     case elfcpp::R_MIPS_TLS_TPREL32:
12437     case elfcpp::R_MIPS_TLS_TPREL64:
12438     case elfcpp::R_MIPS_TLS_TPREL_HI16:
12439     case elfcpp::R_MIPS_TLS_TPREL_LO16:
12440     case elfcpp::R_MIPS16_TLS_GD:
12441     case elfcpp::R_MIPS16_TLS_GOTTPREL:
12442     case elfcpp::R_MICROMIPS_TLS_GD:
12443     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12444     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12445     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12446       return Symbol::TLS_REF;
12447
12448     case elfcpp::R_MIPS_COPY:
12449     case elfcpp::R_MIPS_JUMP_SLOT:
12450     default:
12451       // Not expected.  We will give an error later.
12452       return 0;
12453     }
12454 }
12455
12456 // Report an unsupported relocation against a local symbol.
12457
12458 template<int size, bool big_endian>
12459 void
12460 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12461                         Sized_relobj_file<size, big_endian>* object,
12462                         unsigned int r_type)
12463 {
12464   gold_error(_("%s: unsupported reloc %u against local symbol"),
12465              object->name().c_str(), r_type);
12466 }
12467
12468 // Report an unsupported relocation against a global symbol.
12469
12470 template<int size, bool big_endian>
12471 void
12472 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12473                         Sized_relobj_file<size, big_endian>* object,
12474                         unsigned int r_type,
12475                         Symbol* gsym)
12476 {
12477   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12478              object->name().c_str(), r_type, gsym->demangled_name().c_str());
12479 }
12480
12481 // Return printable name for ABI.
12482 template<int size, bool big_endian>
12483 const char*
12484 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12485 {
12486   switch (e_flags & elfcpp::EF_MIPS_ABI)
12487     {
12488     case 0:
12489       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12490         return "N32";
12491       else if (size == 64)
12492         return "64";
12493       else
12494         return "none";
12495     case elfcpp::E_MIPS_ABI_O32:
12496       return "O32";
12497     case elfcpp::E_MIPS_ABI_O64:
12498       return "O64";
12499     case elfcpp::E_MIPS_ABI_EABI32:
12500       return "EABI32";
12501     case elfcpp::E_MIPS_ABI_EABI64:
12502       return "EABI64";
12503     default:
12504       return "unknown abi";
12505     }
12506 }
12507
12508 template<int size, bool big_endian>
12509 const char*
12510 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12511 {
12512   switch (e_flags & elfcpp::EF_MIPS_MACH)
12513     {
12514     case elfcpp::E_MIPS_MACH_3900:
12515       return "mips:3900";
12516     case elfcpp::E_MIPS_MACH_4010:
12517       return "mips:4010";
12518     case elfcpp::E_MIPS_MACH_4100:
12519       return "mips:4100";
12520     case elfcpp::E_MIPS_MACH_4111:
12521       return "mips:4111";
12522     case elfcpp::E_MIPS_MACH_4120:
12523       return "mips:4120";
12524     case elfcpp::E_MIPS_MACH_4650:
12525       return "mips:4650";
12526     case elfcpp::E_MIPS_MACH_5400:
12527       return "mips:5400";
12528     case elfcpp::E_MIPS_MACH_5500:
12529       return "mips:5500";
12530     case elfcpp::E_MIPS_MACH_5900:
12531       return "mips:5900";
12532     case elfcpp::E_MIPS_MACH_SB1:
12533       return "mips:sb1";
12534     case elfcpp::E_MIPS_MACH_9000:
12535       return "mips:9000";
12536     case elfcpp::E_MIPS_MACH_LS2E:
12537       return "mips:loongson_2e";
12538     case elfcpp::E_MIPS_MACH_LS2F:
12539       return "mips:loongson_2f";
12540     case elfcpp::E_MIPS_MACH_LS3A:
12541       return "mips:loongson_3a";
12542     case elfcpp::E_MIPS_MACH_OCTEON:
12543       return "mips:octeon";
12544     case elfcpp::E_MIPS_MACH_OCTEON2:
12545       return "mips:octeon2";
12546     case elfcpp::E_MIPS_MACH_OCTEON3:
12547       return "mips:octeon3";
12548     case elfcpp::E_MIPS_MACH_XLR:
12549       return "mips:xlr";
12550     default:
12551       switch (e_flags & elfcpp::EF_MIPS_ARCH)
12552         {
12553         default:
12554         case elfcpp::E_MIPS_ARCH_1:
12555           return "mips:3000";
12556
12557         case elfcpp::E_MIPS_ARCH_2:
12558           return "mips:6000";
12559
12560         case elfcpp::E_MIPS_ARCH_3:
12561           return "mips:4000";
12562
12563         case elfcpp::E_MIPS_ARCH_4:
12564           return "mips:8000";
12565
12566         case elfcpp::E_MIPS_ARCH_5:
12567           return "mips:mips5";
12568
12569         case elfcpp::E_MIPS_ARCH_32:
12570           return "mips:isa32";
12571
12572         case elfcpp::E_MIPS_ARCH_64:
12573           return "mips:isa64";
12574
12575         case elfcpp::E_MIPS_ARCH_32R2:
12576           return "mips:isa32r2";
12577
12578         case elfcpp::E_MIPS_ARCH_32R6:
12579           return "mips:isa32r6";
12580
12581         case elfcpp::E_MIPS_ARCH_64R2:
12582           return "mips:isa64r2";
12583
12584         case elfcpp::E_MIPS_ARCH_64R6:
12585           return "mips:isa64r6";
12586         }
12587     }
12588     return "unknown CPU";
12589 }
12590
12591 template<int size, bool big_endian>
12592 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12593 {
12594   size,                 // size
12595   big_endian,           // is_big_endian
12596   elfcpp::EM_MIPS,      // machine_code
12597   true,                 // has_make_symbol
12598   false,                // has_resolve
12599   false,                // has_code_fill
12600   true,                 // is_default_stack_executable
12601   false,                // can_icf_inline_merge_sections
12602   '\0',                 // wrap_char
12603   size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
12604   0x400000,             // default_text_segment_address
12605   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
12606   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
12607   false,                // isolate_execinstr
12608   0,                    // rosegment_gap
12609   elfcpp::SHN_UNDEF,    // small_common_shndx
12610   elfcpp::SHN_UNDEF,    // large_common_shndx
12611   0,                    // small_common_section_flags
12612   0,                    // large_common_section_flags
12613   NULL,                 // attributes_section
12614   NULL,                 // attributes_vendor
12615   "__start",            // entry_symbol_name
12616   32,                   // hash_entry_size
12617 };
12618
12619 template<int size, bool big_endian>
12620 class Target_mips_nacl : public Target_mips<size, big_endian>
12621 {
12622  public:
12623   Target_mips_nacl()
12624     : Target_mips<size, big_endian>(&mips_nacl_info)
12625   { }
12626
12627  private:
12628   static const Target::Target_info mips_nacl_info;
12629 };
12630
12631 template<int size, bool big_endian>
12632 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12633 {
12634   size,                 // size
12635   big_endian,           // is_big_endian
12636   elfcpp::EM_MIPS,      // machine_code
12637   true,                 // has_make_symbol
12638   false,                // has_resolve
12639   false,                // has_code_fill
12640   true,                 // is_default_stack_executable
12641   false,                // can_icf_inline_merge_sections
12642   '\0',                 // wrap_char
12643   "/lib/ld.so.1",       // dynamic_linker
12644   0x20000,              // default_text_segment_address
12645   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12646   0x10000,              // common_pagesize (overridable by -z common-page-size)
12647   true,                 // isolate_execinstr
12648   0x10000000,           // rosegment_gap
12649   elfcpp::SHN_UNDEF,    // small_common_shndx
12650   elfcpp::SHN_UNDEF,    // large_common_shndx
12651   0,                    // small_common_section_flags
12652   0,                    // large_common_section_flags
12653   NULL,                 // attributes_section
12654   NULL,                 // attributes_vendor
12655   "_start",             // entry_symbol_name
12656   32,                   // hash_entry_size
12657 };
12658
12659 // Target selector for Mips.  Note this is never instantiated directly.
12660 // It's only used in Target_selector_mips_nacl, below.
12661
12662 template<int size, bool big_endian>
12663 class Target_selector_mips : public Target_selector
12664 {
12665 public:
12666   Target_selector_mips()
12667     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12668                 (size == 64 ?
12669                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12670                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12671                 (size == 64 ?
12672                   (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12673                   (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12674   { }
12675
12676   Target* do_instantiate_target()
12677   { return new Target_mips<size, big_endian>(); }
12678 };
12679
12680 template<int size, bool big_endian>
12681 class Target_selector_mips_nacl
12682   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12683                                 Target_mips_nacl<size, big_endian> >
12684 {
12685  public:
12686   Target_selector_mips_nacl()
12687     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12688                            Target_mips_nacl<size, big_endian> >(
12689         // NaCl currently supports only MIPS32 little-endian.
12690         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12691   { }
12692 };
12693
12694 Target_selector_mips_nacl<32, true> target_selector_mips32;
12695 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12696 Target_selector_mips_nacl<64, true> target_selector_mips64;
12697 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12698
12699 } // End anonymous namespace.