Add -h/-soname option.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "compressed_output.h"
36 #include "layout.h"
37
38 namespace gold
39 {
40
41 // Layout_task_runner methods.
42
43 // Lay out the sections.  This is called after all the input objects
44 // have been read.
45
46 void
47 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
48 {
49   off_t file_size = this->layout_->finalize(this->input_objects_,
50                                             this->symtab_,
51                                             task);
52
53   // Now we know the final size of the output file and we know where
54   // each piece of information goes.
55   Output_file* of = new Output_file(this->options_,
56                                     this->input_objects_->target());
57   of->open(file_size);
58
59   // Queue up the final set of tasks.
60   gold::queue_final_tasks(this->options_, this->input_objects_,
61                           this->symtab_, this->layout_, workqueue, of);
62 }
63
64 // Layout methods.
65
66 Layout::Layout(const General_options& options)
67   : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
68     section_name_map_(), segment_list_(), section_list_(),
69     unattached_section_list_(), special_output_list_(),
70     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
71     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
72     eh_frame_section_(NULL), output_file_size_(-1),
73     input_requires_executable_stack_(false),
74     input_with_gnu_stack_note_(false),
75     input_without_gnu_stack_note_(false),
76     has_static_tls_(false),
77     any_postprocessing_sections_(false)
78 {
79   // Make space for more than enough segments for a typical file.
80   // This is just for efficiency--it's OK if we wind up needing more.
81   this->segment_list_.reserve(12);
82
83   // We expect two unattached Output_data objects: the file header and
84   // the segment headers.
85   this->special_output_list_.reserve(2);
86 }
87
88 // Hash a key we use to look up an output section mapping.
89
90 size_t
91 Layout::Hash_key::operator()(const Layout::Key& k) const
92 {
93  return k.first + k.second.first + k.second.second;
94 }
95
96 // Return whether PREFIX is a prefix of STR.
97
98 static inline bool
99 is_prefix_of(const char* prefix, const char* str)
100 {
101   return strncmp(prefix, str, strlen(prefix)) == 0;
102 }
103
104 // Returns whether the given section is in the list of
105 // debug-sections-used-by-some-version-of-gdb.  Currently,
106 // we've checked versions of gdb up to and including 6.7.1.
107
108 static const char* gdb_sections[] =
109 { ".debug_abbrev",
110   // ".debug_aranges",   // not used by gdb as of 6.7.1
111   ".debug_frame",
112   ".debug_info",
113   ".debug_line",
114   ".debug_loc",
115   ".debug_macinfo",
116   // ".debug_pubnames",  // not used by gdb as of 6.7.1
117   ".debug_ranges",
118   ".debug_str",
119 };
120
121 static inline bool
122 is_gdb_debug_section(const char* str)
123 {
124   // We can do this faster: binary search or a hashtable.  But why bother?
125   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
126     if (strcmp(str, gdb_sections[i]) == 0)
127       return true;
128   return false;
129 }
130
131 // Whether to include this section in the link.
132
133 template<int size, bool big_endian>
134 bool
135 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
136                         const elfcpp::Shdr<size, big_endian>& shdr)
137 {
138   // Some section types are never linked.  Some are only linked when
139   // doing a relocateable link.
140   switch (shdr.get_sh_type())
141     {
142     case elfcpp::SHT_NULL:
143     case elfcpp::SHT_SYMTAB:
144     case elfcpp::SHT_DYNSYM:
145     case elfcpp::SHT_STRTAB:
146     case elfcpp::SHT_HASH:
147     case elfcpp::SHT_DYNAMIC:
148     case elfcpp::SHT_SYMTAB_SHNDX:
149       return false;
150
151     case elfcpp::SHT_RELA:
152     case elfcpp::SHT_REL:
153     case elfcpp::SHT_GROUP:
154       return parameters->output_is_object();
155
156     case elfcpp::SHT_PROGBITS:
157       if (parameters->strip_debug()
158           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
159         {
160           // Debugging sections can only be recognized by name.
161           if (is_prefix_of(".debug", name)
162               || is_prefix_of(".gnu.linkonce.wi.", name)
163               || is_prefix_of(".line", name)
164               || is_prefix_of(".stab", name))
165             return false;
166         }
167       if (parameters->strip_debug_gdb()
168           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
169         {
170           // Debugging sections can only be recognized by name.
171           if (is_prefix_of(".debug", name)
172               && !is_gdb_debug_section(name))
173             return false;
174         }
175       return true;
176
177     default:
178       return true;
179     }
180 }
181
182 // Return an output section named NAME, or NULL if there is none.
183
184 Output_section*
185 Layout::find_output_section(const char* name) const
186 {
187   for (Section_name_map::const_iterator p = this->section_name_map_.begin();
188        p != this->section_name_map_.end();
189        ++p)
190     if (strcmp(p->second->name(), name) == 0)
191       return p->second;
192   return NULL;
193 }
194
195 // Return an output segment of type TYPE, with segment flags SET set
196 // and segment flags CLEAR clear.  Return NULL if there is none.
197
198 Output_segment*
199 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
200                             elfcpp::Elf_Word clear) const
201 {
202   for (Segment_list::const_iterator p = this->segment_list_.begin();
203        p != this->segment_list_.end();
204        ++p)
205     if (static_cast<elfcpp::PT>((*p)->type()) == type
206         && ((*p)->flags() & set) == set
207         && ((*p)->flags() & clear) == 0)
208       return *p;
209   return NULL;
210 }
211
212 // Return the output section to use for section NAME with type TYPE
213 // and section flags FLAGS.
214
215 Output_section*
216 Layout::get_output_section(const char* name, Stringpool::Key name_key,
217                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
218 {
219   // We should ignore some flags.
220   flags &= ~ (elfcpp::SHF_INFO_LINK
221               | elfcpp::SHF_LINK_ORDER
222               | elfcpp::SHF_GROUP
223               | elfcpp::SHF_MERGE
224               | elfcpp::SHF_STRINGS);
225
226   const Key key(name_key, std::make_pair(type, flags));
227   const std::pair<Key, Output_section*> v(key, NULL);
228   std::pair<Section_name_map::iterator, bool> ins(
229     this->section_name_map_.insert(v));
230
231   if (!ins.second)
232     return ins.first->second;
233   else
234     {
235       // This is the first time we've seen this name/type/flags
236       // combination.
237       Output_section* os = this->make_output_section(name, type, flags);
238       ins.first->second = os;
239       return os;
240     }
241 }
242
243 // Return the output section to use for input section SHNDX, with name
244 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
245 // index of a relocation section which applies to this section, or 0
246 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
247 // relocation section if there is one.  Set *OFF to the offset of this
248 // input section without the output section.  Return NULL if the
249 // section should be discarded.  Set *OFF to -1 if the section
250 // contents should not be written directly to the output file, but
251 // will instead receive special handling.
252
253 template<int size, bool big_endian>
254 Output_section*
255 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
256                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
257                unsigned int reloc_shndx, unsigned int, off_t* off)
258 {
259   if (!this->include_section(object, name, shdr))
260     return NULL;
261
262   // If we are not doing a relocateable link, choose the name to use
263   // for the output section.
264   size_t len = strlen(name);
265   if (!parameters->output_is_object())
266     name = Layout::output_section_name(name, &len);
267
268   // FIXME: Handle SHF_OS_NONCONFORMING here.
269
270   // Canonicalize the section name.
271   Stringpool::Key name_key;
272   name = this->namepool_.add_with_length(name, len, true, &name_key);
273
274   // Find the output section.  The output section is selected based on
275   // the section name, type, and flags.
276   Output_section* os = this->get_output_section(name, name_key,
277                                                 shdr.get_sh_type(),
278                                                 shdr.get_sh_flags());
279
280   // FIXME: Handle SHF_LINK_ORDER somewhere.
281
282   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
283
284   return os;
285 }
286
287 // Special GNU handling of sections name .eh_frame.  They will
288 // normally hold exception frame data as defined by the C++ ABI
289 // (http://codesourcery.com/cxx-abi/).
290
291 template<int size, bool big_endian>
292 Output_section*
293 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
294                         const unsigned char* symbols,
295                         off_t symbols_size,
296                         const unsigned char* symbol_names,
297                         off_t symbol_names_size,
298                         unsigned int shndx,
299                         const elfcpp::Shdr<size, big_endian>& shdr,
300                         unsigned int reloc_shndx, unsigned int reloc_type,
301                         off_t* off)
302 {
303   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
304   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
305
306   Stringpool::Key name_key;
307   const char* name = this->namepool_.add(".eh_frame", false, &name_key);
308
309   Output_section* os = this->get_output_section(name, name_key,
310                                                 elfcpp::SHT_PROGBITS,
311                                                 elfcpp::SHF_ALLOC);
312
313   if (this->eh_frame_section_ == NULL)
314     {
315       this->eh_frame_section_ = os;
316       this->eh_frame_data_ = new Eh_frame();
317       os->add_output_section_data(this->eh_frame_data_);
318
319       if (this->options_.create_eh_frame_hdr())
320         {
321           Stringpool::Key hdr_name_key;
322           const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
323                                                      false,
324                                                      &hdr_name_key);
325           Output_section* hdr_os =
326             this->get_output_section(hdr_name, hdr_name_key,
327                                      elfcpp::SHT_PROGBITS,
328                                      elfcpp::SHF_ALLOC);
329
330           Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
331           hdr_os->add_output_section_data(hdr_posd);
332
333           hdr_os->set_after_input_sections();
334
335           Output_segment* hdr_oseg =
336             new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
337           this->segment_list_.push_back(hdr_oseg);
338           hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
339
340           this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
341         }
342     }
343
344   gold_assert(this->eh_frame_section_ == os);
345
346   if (this->eh_frame_data_->add_ehframe_input_section(object,
347                                                       symbols,
348                                                       symbols_size,
349                                                       symbol_names,
350                                                       symbol_names_size,
351                                                       shndx,
352                                                       reloc_shndx,
353                                                       reloc_type))
354     *off = -1;
355   else
356     {
357       // We couldn't handle this .eh_frame section for some reason.
358       // Add it as a normal section.
359       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
360     }
361
362   return os;
363 }
364
365 // Add POSD to an output section using NAME, TYPE, and FLAGS.
366
367 void
368 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
369                                 elfcpp::Elf_Xword flags,
370                                 Output_section_data* posd)
371 {
372   // Canonicalize the name.
373   Stringpool::Key name_key;
374   name = this->namepool_.add(name, true, &name_key);
375
376   Output_section* os = this->get_output_section(name, name_key, type, flags);
377   os->add_output_section_data(posd);
378 }
379
380 // Map section flags to segment flags.
381
382 elfcpp::Elf_Word
383 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
384 {
385   elfcpp::Elf_Word ret = elfcpp::PF_R;
386   if ((flags & elfcpp::SHF_WRITE) != 0)
387     ret |= elfcpp::PF_W;
388   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
389     ret |= elfcpp::PF_X;
390   return ret;
391 }
392
393 // Sometimes we compress sections.  This is typically done for
394 // sections that are not part of normal program execution (such as
395 // .debug_* sections), and where the readers of these sections know
396 // how to deal with compressed sections.  (To make it easier for them,
397 // we will rename the ouput section in such cases from .foo to
398 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
399 // doesn't say for certain whether we'll compress -- it depends on
400 // commandline options as well -- just whether this section is a
401 // candidate for compression.
402
403 static bool
404 is_compressible_debug_section(const char* secname)
405 {
406   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
407 }
408
409 // Make a new Output_section, and attach it to segments as
410 // appropriate.
411
412 Output_section*
413 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
414                             elfcpp::Elf_Xword flags)
415 {
416   Output_section* os;
417   if ((flags & elfcpp::SHF_ALLOC) == 0
418       && this->options_.compress_debug_sections()
419       && is_compressible_debug_section(name))
420     os = new Output_compressed_section(&this->options_, name, type, flags);
421   else
422     os = new Output_section(name, type, flags);
423
424   this->section_list_.push_back(os);
425
426   if ((flags & elfcpp::SHF_ALLOC) == 0)
427     this->unattached_section_list_.push_back(os);
428   else
429     {
430       // This output section goes into a PT_LOAD segment.
431
432       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
433
434       // The only thing we really care about for PT_LOAD segments is
435       // whether or not they are writable, so that is how we search
436       // for them.  People who need segments sorted on some other
437       // basis will have to wait until we implement a mechanism for
438       // them to describe the segments they want.
439
440       Segment_list::const_iterator p;
441       for (p = this->segment_list_.begin();
442            p != this->segment_list_.end();
443            ++p)
444         {
445           if ((*p)->type() == elfcpp::PT_LOAD
446               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
447             {
448               (*p)->add_output_section(os, seg_flags);
449               break;
450             }
451         }
452
453       if (p == this->segment_list_.end())
454         {
455           Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
456                                                     seg_flags);
457           this->segment_list_.push_back(oseg);
458           oseg->add_output_section(os, seg_flags);
459         }
460
461       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
462       // segment.
463       if (type == elfcpp::SHT_NOTE)
464         {
465           // See if we already have an equivalent PT_NOTE segment.
466           for (p = this->segment_list_.begin();
467                p != segment_list_.end();
468                ++p)
469             {
470               if ((*p)->type() == elfcpp::PT_NOTE
471                   && (((*p)->flags() & elfcpp::PF_W)
472                       == (seg_flags & elfcpp::PF_W)))
473                 {
474                   (*p)->add_output_section(os, seg_flags);
475                   break;
476                 }
477             }
478
479           if (p == this->segment_list_.end())
480             {
481               Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
482                                                         seg_flags);
483               this->segment_list_.push_back(oseg);
484               oseg->add_output_section(os, seg_flags);
485             }
486         }
487
488       // If we see a loadable SHF_TLS section, we create a PT_TLS
489       // segment.  There can only be one such segment.
490       if ((flags & elfcpp::SHF_TLS) != 0)
491         {
492           if (this->tls_segment_ == NULL)
493             {
494               this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
495                                                       seg_flags);
496               this->segment_list_.push_back(this->tls_segment_);
497             }
498           this->tls_segment_->add_output_section(os, seg_flags);
499         }
500     }
501
502   return os;
503 }
504
505 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
506 // is whether we saw a .note.GNU-stack section in the object file.
507 // GNU_STACK_FLAGS is the section flags.  The flags give the
508 // protection required for stack memory.  We record this in an
509 // executable as a PT_GNU_STACK segment.  If an object file does not
510 // have a .note.GNU-stack segment, we must assume that it is an old
511 // object.  On some targets that will force an executable stack.
512
513 void
514 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
515 {
516   if (!seen_gnu_stack)
517     this->input_without_gnu_stack_note_ = true;
518   else
519     {
520       this->input_with_gnu_stack_note_ = true;
521       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
522         this->input_requires_executable_stack_ = true;
523     }
524 }
525
526 // Create the dynamic sections which are needed before we read the
527 // relocs.
528
529 void
530 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
531                                         Symbol_table* symtab)
532 {
533   if (parameters->doing_static_link())
534     return;
535
536   const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
537   this->dynamic_section_ = this->make_output_section(dynamic_name,
538                                                      elfcpp::SHT_DYNAMIC,
539                                                      (elfcpp::SHF_ALLOC
540                                                       | elfcpp::SHF_WRITE));
541
542   symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
543                                 this->dynamic_section_, 0, 0,
544                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
545                                 elfcpp::STV_HIDDEN, 0, false, false);
546
547   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
548
549   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
550 }
551
552 // For each output section whose name can be represented as C symbol,
553 // define __start and __stop symbols for the section.  This is a GNU
554 // extension.
555
556 void
557 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
558 {
559   for (Section_list::const_iterator p = this->section_list_.begin();
560        p != this->section_list_.end();
561        ++p)
562     {
563       const char* const name = (*p)->name();
564       if (name[strspn(name,
565                       ("0123456789"
566                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
567                        "abcdefghijklmnopqrstuvwxyz"
568                        "_"))]
569           == '\0')
570         {
571           const std::string name_string(name);
572           const std::string start_name("__start_" + name_string);
573           const std::string stop_name("__stop_" + name_string);
574
575           symtab->define_in_output_data(target,
576                                         start_name.c_str(),
577                                         NULL, // version
578                                         *p,
579                                         0, // value
580                                         0, // symsize
581                                         elfcpp::STT_NOTYPE,
582                                         elfcpp::STB_GLOBAL,
583                                         elfcpp::STV_DEFAULT,
584                                         0, // nonvis
585                                         false, // offset_is_from_end
586                                         false); // only_if_ref
587
588           symtab->define_in_output_data(target,
589                                         stop_name.c_str(),
590                                         NULL, // version
591                                         *p,
592                                         0, // value
593                                         0, // symsize
594                                         elfcpp::STT_NOTYPE,
595                                         elfcpp::STB_GLOBAL,
596                                         elfcpp::STV_DEFAULT,
597                                         0, // nonvis
598                                         true, // offset_is_from_end
599                                         false); // only_if_ref
600         }
601     }
602 }
603
604 // Find the first read-only PT_LOAD segment, creating one if
605 // necessary.
606
607 Output_segment*
608 Layout::find_first_load_seg()
609 {
610   for (Segment_list::const_iterator p = this->segment_list_.begin();
611        p != this->segment_list_.end();
612        ++p)
613     {
614       if ((*p)->type() == elfcpp::PT_LOAD
615           && ((*p)->flags() & elfcpp::PF_R) != 0
616           && ((*p)->flags() & elfcpp::PF_W) == 0)
617         return *p;
618     }
619
620   Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
621   this->segment_list_.push_back(load_seg);
622   return load_seg;
623 }
624
625 // Finalize the layout.  When this is called, we have created all the
626 // output sections and all the output segments which are based on
627 // input sections.  We have several things to do, and we have to do
628 // them in the right order, so that we get the right results correctly
629 // and efficiently.
630
631 // 1) Finalize the list of output segments and create the segment
632 // table header.
633
634 // 2) Finalize the dynamic symbol table and associated sections.
635
636 // 3) Determine the final file offset of all the output segments.
637
638 // 4) Determine the final file offset of all the SHF_ALLOC output
639 // sections.
640
641 // 5) Create the symbol table sections and the section name table
642 // section.
643
644 // 6) Finalize the symbol table: set symbol values to their final
645 // value and make a final determination of which symbols are going
646 // into the output symbol table.
647
648 // 7) Create the section table header.
649
650 // 8) Determine the final file offset of all the output sections which
651 // are not SHF_ALLOC, including the section table header.
652
653 // 9) Finalize the ELF file header.
654
655 // This function returns the size of the output file.
656
657 off_t
658 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
659                  const Task* task)
660 {
661   Target* const target = input_objects->target();
662
663   target->finalize_sections(this);
664
665   this->count_local_symbols(task, input_objects);
666
667   this->create_gold_note();
668   this->create_executable_stack_info(target);
669
670   Output_segment* phdr_seg = NULL;
671   if (!parameters->doing_static_link())
672     {
673       // There was a dynamic object in the link.  We need to create
674       // some information for the dynamic linker.
675
676       // Create the PT_PHDR segment which will hold the program
677       // headers.
678       phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
679       this->segment_list_.push_back(phdr_seg);
680
681       // Create the dynamic symbol table, including the hash table.
682       Output_section* dynstr;
683       std::vector<Symbol*> dynamic_symbols;
684       unsigned int local_dynamic_count;
685       Versions versions;
686       this->create_dynamic_symtab(input_objects, target, symtab, &dynstr,
687                                   &local_dynamic_count, &dynamic_symbols,
688                                   &versions);
689
690       // Create the .interp section to hold the name of the
691       // interpreter, and put it in a PT_INTERP segment.
692       if (!parameters->output_is_shared())
693         this->create_interp(target);
694
695       // Finish the .dynamic section to hold the dynamic data, and put
696       // it in a PT_DYNAMIC segment.
697       this->finish_dynamic_section(input_objects, symtab);
698
699       // We should have added everything we need to the dynamic string
700       // table.
701       this->dynpool_.set_string_offsets();
702
703       // Create the version sections.  We can't do this until the
704       // dynamic string table is complete.
705       this->create_version_sections(&versions, symtab, local_dynamic_count,
706                                     dynamic_symbols, dynstr);
707     }
708
709   // FIXME: Handle PT_GNU_STACK.
710
711   Output_segment* load_seg = this->find_first_load_seg();
712
713   // Lay out the segment headers.
714   Output_segment_headers* segment_headers;
715   segment_headers = new Output_segment_headers(this->segment_list_);
716   load_seg->add_initial_output_data(segment_headers);
717   this->special_output_list_.push_back(segment_headers);
718   if (phdr_seg != NULL)
719     phdr_seg->add_initial_output_data(segment_headers);
720
721   // Lay out the file header.
722   Output_file_header* file_header;
723   file_header = new Output_file_header(target, symtab, segment_headers);
724   load_seg->add_initial_output_data(file_header);
725   this->special_output_list_.push_back(file_header);
726
727   // We set the output section indexes in set_segment_offsets and
728   // set_section_indexes.
729   unsigned int shndx = 1;
730
731   // Set the file offsets of all the segments, and all the sections
732   // they contain.
733   off_t off = this->set_segment_offsets(target, load_seg, &shndx);
734
735   // Set the file offsets of all the non-data sections we've seen so
736   // far which don't have to wait for the input sections.  We need
737   // this in order to finalize local symbols in non-allocated
738   // sections.
739   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
740
741   // Create the symbol table sections.
742   this->create_symtab_sections(input_objects, symtab, &off);
743   if (!parameters->doing_static_link())
744     this->assign_local_dynsym_offsets(input_objects);
745
746   // Create the .shstrtab section.
747   Output_section* shstrtab_section = this->create_shstrtab();
748
749   // Set the file offsets of the rest of the non-data sections which
750   // don't have to wait for the input sections.
751   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
752
753   // Now that all sections have been created, set the section indexes.
754   shndx = this->set_section_indexes(shndx);
755
756   // Create the section table header.
757   this->create_shdrs(&off);
758
759   // If there are no sections which require postprocessing, we can
760   // handle the section names now, and avoid a resize later.
761   if (!this->any_postprocessing_sections_)
762     off = this->set_section_offsets(off,
763                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
764
765   file_header->set_section_info(this->section_headers_, shstrtab_section);
766
767   // Now we know exactly where everything goes in the output file
768   // (except for non-allocated sections which require postprocessing).
769   Output_data::layout_complete();
770
771   this->output_file_size_ = off;
772
773   return off;
774 }
775
776 // Create a .note section for an executable or shared library.  This
777 // records the version of gold used to create the binary.
778
779 void
780 Layout::create_gold_note()
781 {
782   if (parameters->output_is_object())
783     return;
784
785   // Authorities all agree that the values in a .note field should
786   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
787   // they differ on what the alignment is for 64-bit binaries.
788   // The GABI says unambiguously they take 8-byte alignment:
789   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
790   // Other documentation says alignment should always be 4 bytes:
791   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
792   // GNU ld and GNU readelf both support the latter (at least as of
793   // version 2.16.91), and glibc always generates the latter for
794   // .note.ABI-tag (as of version 1.6), so that's the one we go with
795   // here.
796 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
797   const int size = parameters->get_size();
798 #else
799   const int size = 32;
800 #endif
801
802   // The contents of the .note section.
803   const char* name = "GNU";
804   std::string desc(std::string("gold ") + gold::get_version_string());
805   size_t namesz = strlen(name) + 1;
806   size_t aligned_namesz = align_address(namesz, size / 8);
807   size_t descsz = desc.length() + 1;
808   size_t aligned_descsz = align_address(descsz, size / 8);
809   const int note_type = 4;
810
811   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
812
813   unsigned char buffer[128];
814   gold_assert(sizeof buffer >= notesz);
815   memset(buffer, 0, notesz);
816
817   bool is_big_endian = parameters->is_big_endian();
818
819   if (size == 32)
820     {
821       if (!is_big_endian)
822         {
823           elfcpp::Swap<32, false>::writeval(buffer, namesz);
824           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
825           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
826         }
827       else
828         {
829           elfcpp::Swap<32, true>::writeval(buffer, namesz);
830           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
831           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
832         }
833     }
834   else if (size == 64)
835     {
836       if (!is_big_endian)
837         {
838           elfcpp::Swap<64, false>::writeval(buffer, namesz);
839           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
840           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
841         }
842       else
843         {
844           elfcpp::Swap<64, true>::writeval(buffer, namesz);
845           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
846           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
847         }
848     }
849   else
850     gold_unreachable();
851
852   memcpy(buffer + 3 * (size / 8), name, namesz);
853   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
854
855   const char* note_name = this->namepool_.add(".note", false, NULL);
856   Output_section* os = this->make_output_section(note_name,
857                                                  elfcpp::SHT_NOTE,
858                                                  0);
859   Output_section_data* posd = new Output_data_const(buffer, notesz,
860                                                     size / 8);
861   os->add_output_section_data(posd);
862 }
863
864 // Record whether the stack should be executable.  This can be set
865 // from the command line using the -z execstack or -z noexecstack
866 // options.  Otherwise, if any input file has a .note.GNU-stack
867 // section with the SHF_EXECINSTR flag set, the stack should be
868 // executable.  Otherwise, if at least one input file a
869 // .note.GNU-stack section, and some input file has no .note.GNU-stack
870 // section, we use the target default for whether the stack should be
871 // executable.  Otherwise, we don't generate a stack note.  When
872 // generating a object file, we create a .note.GNU-stack section with
873 // the appropriate marking.  When generating an executable or shared
874 // library, we create a PT_GNU_STACK segment.
875
876 void
877 Layout::create_executable_stack_info(const Target* target)
878 {
879   bool is_stack_executable;
880   if (this->options_.is_execstack_set())
881     is_stack_executable = this->options_.is_stack_executable();
882   else if (!this->input_with_gnu_stack_note_)
883     return;
884   else
885     {
886       if (this->input_requires_executable_stack_)
887         is_stack_executable = true;
888       else if (this->input_without_gnu_stack_note_)
889         is_stack_executable = target->is_default_stack_executable();
890       else
891         is_stack_executable = false;
892     }
893
894   if (parameters->output_is_object())
895     {
896       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
897       elfcpp::Elf_Xword flags = 0;
898       if (is_stack_executable)
899         flags |= elfcpp::SHF_EXECINSTR;
900       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
901     }
902   else
903     {
904       int flags = elfcpp::PF_R | elfcpp::PF_W;
905       if (is_stack_executable)
906         flags |= elfcpp::PF_X;
907       Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
908       this->segment_list_.push_back(oseg);
909     }
910 }
911
912 // Return whether SEG1 should be before SEG2 in the output file.  This
913 // is based entirely on the segment type and flags.  When this is
914 // called the segment addresses has normally not yet been set.
915
916 bool
917 Layout::segment_precedes(const Output_segment* seg1,
918                          const Output_segment* seg2)
919 {
920   elfcpp::Elf_Word type1 = seg1->type();
921   elfcpp::Elf_Word type2 = seg2->type();
922
923   // The single PT_PHDR segment is required to precede any loadable
924   // segment.  We simply make it always first.
925   if (type1 == elfcpp::PT_PHDR)
926     {
927       gold_assert(type2 != elfcpp::PT_PHDR);
928       return true;
929     }
930   if (type2 == elfcpp::PT_PHDR)
931     return false;
932
933   // The single PT_INTERP segment is required to precede any loadable
934   // segment.  We simply make it always second.
935   if (type1 == elfcpp::PT_INTERP)
936     {
937       gold_assert(type2 != elfcpp::PT_INTERP);
938       return true;
939     }
940   if (type2 == elfcpp::PT_INTERP)
941     return false;
942
943   // We then put PT_LOAD segments before any other segments.
944   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
945     return true;
946   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
947     return false;
948
949   // We put the PT_TLS segment last, because that is where the dynamic
950   // linker expects to find it (this is just for efficiency; other
951   // positions would also work correctly).
952   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
953     return false;
954   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
955     return true;
956
957   const elfcpp::Elf_Word flags1 = seg1->flags();
958   const elfcpp::Elf_Word flags2 = seg2->flags();
959
960   // The order of non-PT_LOAD segments is unimportant.  We simply sort
961   // by the numeric segment type and flags values.  There should not
962   // be more than one segment with the same type and flags.
963   if (type1 != elfcpp::PT_LOAD)
964     {
965       if (type1 != type2)
966         return type1 < type2;
967       gold_assert(flags1 != flags2);
968       return flags1 < flags2;
969     }
970
971   // We sort PT_LOAD segments based on the flags.  Readonly segments
972   // come before writable segments.  Then executable segments come
973   // before non-executable segments.  Then the unlikely case of a
974   // non-readable segment comes before the normal case of a readable
975   // segment.  If there are multiple segments with the same type and
976   // flags, we require that the address be set, and we sort by
977   // virtual address and then physical address.
978   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
979     return (flags1 & elfcpp::PF_W) == 0;
980   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
981     return (flags1 & elfcpp::PF_X) != 0;
982   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
983     return (flags1 & elfcpp::PF_R) == 0;
984
985   uint64_t vaddr1 = seg1->vaddr();
986   uint64_t vaddr2 = seg2->vaddr();
987   if (vaddr1 != vaddr2)
988     return vaddr1 < vaddr2;
989
990   uint64_t paddr1 = seg1->paddr();
991   uint64_t paddr2 = seg2->paddr();
992   gold_assert(paddr1 != paddr2);
993   return paddr1 < paddr2;
994 }
995
996 // Set the file offsets of all the segments, and all the sections they
997 // contain.  They have all been created.  LOAD_SEG must be be laid out
998 // first.  Return the offset of the data to follow.
999
1000 off_t
1001 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1002                             unsigned int *pshndx)
1003 {
1004   // Sort them into the final order.
1005   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1006             Layout::Compare_segments());
1007
1008   // Find the PT_LOAD segments, and set their addresses and offsets
1009   // and their section's addresses and offsets.
1010   uint64_t addr;
1011   if (parameters->output_is_shared())
1012     addr = 0;
1013   else if (options_.user_set_text_segment_address())
1014     addr = options_.text_segment_address();
1015   else
1016     addr = target->default_text_segment_address();
1017   off_t off = 0;
1018   bool was_readonly = false;
1019   for (Segment_list::iterator p = this->segment_list_.begin();
1020        p != this->segment_list_.end();
1021        ++p)
1022     {
1023       if ((*p)->type() == elfcpp::PT_LOAD)
1024         {
1025           if (load_seg != NULL && load_seg != *p)
1026             gold_unreachable();
1027           load_seg = NULL;
1028
1029           // If the last segment was readonly, and this one is not,
1030           // then skip the address forward one page, maintaining the
1031           // same position within the page.  This lets us store both
1032           // segments overlapping on a single page in the file, but
1033           // the loader will put them on different pages in memory.
1034
1035           uint64_t orig_addr = addr;
1036           uint64_t orig_off = off;
1037
1038           uint64_t aligned_addr = addr;
1039           uint64_t abi_pagesize = target->abi_pagesize();
1040
1041           // FIXME: This should depend on the -n and -N options.
1042           (*p)->set_minimum_addralign(target->common_pagesize());
1043
1044           if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1045             {
1046               uint64_t align = (*p)->addralign();
1047
1048               addr = align_address(addr, align);
1049               aligned_addr = addr;
1050               if ((addr & (abi_pagesize - 1)) != 0)
1051                 addr = addr + abi_pagesize;
1052             }
1053
1054           unsigned int shndx_hold = *pshndx;
1055           off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1056           uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1057
1058           // Now that we know the size of this segment, we may be able
1059           // to save a page in memory, at the cost of wasting some
1060           // file space, by instead aligning to the start of a new
1061           // page.  Here we use the real machine page size rather than
1062           // the ABI mandated page size.
1063
1064           if (aligned_addr != addr)
1065             {
1066               uint64_t common_pagesize = target->common_pagesize();
1067               uint64_t first_off = (common_pagesize
1068                                     - (aligned_addr
1069                                        & (common_pagesize - 1)));
1070               uint64_t last_off = new_addr & (common_pagesize - 1);
1071               if (first_off > 0
1072                   && last_off > 0
1073                   && ((aligned_addr & ~ (common_pagesize - 1))
1074                       != (new_addr & ~ (common_pagesize - 1)))
1075                   && first_off + last_off <= common_pagesize)
1076                 {
1077                   *pshndx = shndx_hold;
1078                   addr = align_address(aligned_addr, common_pagesize);
1079                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1080                   new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1081                 }
1082             }
1083
1084           addr = new_addr;
1085
1086           if (((*p)->flags() & elfcpp::PF_W) == 0)
1087             was_readonly = true;
1088         }
1089     }
1090
1091   // Handle the non-PT_LOAD segments, setting their offsets from their
1092   // section's offsets.
1093   for (Segment_list::iterator p = this->segment_list_.begin();
1094        p != this->segment_list_.end();
1095        ++p)
1096     {
1097       if ((*p)->type() != elfcpp::PT_LOAD)
1098         (*p)->set_offset();
1099     }
1100
1101   // Set the TLS offsets for each section in the PT_TLS segment.
1102   if (this->tls_segment_ != NULL)
1103     this->tls_segment_->set_tls_offsets();
1104
1105   return off;
1106 }
1107
1108 // Set the file offset of all the sections not associated with a
1109 // segment.
1110
1111 off_t
1112 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1113 {
1114   for (Section_list::iterator p = this->unattached_section_list_.begin();
1115        p != this->unattached_section_list_.end();
1116        ++p)
1117     {
1118       // The symtab section is handled in create_symtab_sections.
1119       if (*p == this->symtab_section_)
1120         continue;
1121
1122       // If we've already set the data size, don't set it again.
1123       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1124         continue;
1125
1126       if (pass == BEFORE_INPUT_SECTIONS_PASS
1127           && (*p)->requires_postprocessing())
1128         {
1129           (*p)->create_postprocessing_buffer();
1130           this->any_postprocessing_sections_ = true;
1131         }
1132
1133       if (pass == BEFORE_INPUT_SECTIONS_PASS
1134           && (*p)->after_input_sections())
1135         continue;
1136       else if (pass == POSTPROCESSING_SECTIONS_PASS
1137                && (!(*p)->after_input_sections()
1138                    || (*p)->type() == elfcpp::SHT_STRTAB))
1139         continue;
1140       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1141                && (!(*p)->after_input_sections()
1142                    || (*p)->type() != elfcpp::SHT_STRTAB))
1143         continue;
1144
1145       off = align_address(off, (*p)->addralign());
1146       (*p)->set_file_offset(off);
1147       (*p)->finalize_data_size();
1148       off += (*p)->data_size();
1149
1150       // At this point the name must be set.
1151       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1152         this->namepool_.add((*p)->name(), false, NULL);
1153     }
1154   return off;
1155 }
1156
1157 // Set the section indexes of all the sections not associated with a
1158 // segment.
1159
1160 unsigned int
1161 Layout::set_section_indexes(unsigned int shndx)
1162 {
1163   for (Section_list::iterator p = this->unattached_section_list_.begin();
1164        p != this->unattached_section_list_.end();
1165        ++p)
1166     {
1167       (*p)->set_out_shndx(shndx);
1168       ++shndx;
1169     }
1170   return shndx;
1171 }
1172
1173 // Count the local symbols in the regular symbol table and the dynamic
1174 // symbol table, and build the respective string pools.
1175
1176 void
1177 Layout::count_local_symbols(const Task* task,
1178                             const Input_objects* input_objects)
1179 {
1180   // First, figure out an upper bound on the number of symbols we'll
1181   // be inserting into each pool.  This helps us create the pools with
1182   // the right size, to avoid unnecessary hashtable resizing.
1183   unsigned int symbol_count = 0;
1184   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1185        p != input_objects->relobj_end();
1186        ++p)
1187     symbol_count += (*p)->local_symbol_count();
1188
1189   // Go from "upper bound" to "estimate."  We overcount for two
1190   // reasons: we double-count symbols that occur in more than one
1191   // object file, and we count symbols that are dropped from the
1192   // output.  Add it all together and assume we overcount by 100%.
1193   symbol_count /= 2;
1194
1195   // We assume all symbols will go into both the sympool and dynpool.
1196   this->sympool_.reserve(symbol_count);
1197   this->dynpool_.reserve(symbol_count);
1198
1199   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1200        p != input_objects->relobj_end();
1201        ++p)
1202     {
1203       Task_lock_obj<Object> tlo(task, *p);
1204       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1205     }
1206 }
1207
1208 // Create the symbol table sections.  Here we also set the final
1209 // values of the symbols.  At this point all the loadable sections are
1210 // fully laid out.
1211
1212 void
1213 Layout::create_symtab_sections(const Input_objects* input_objects,
1214                                Symbol_table* symtab,
1215                                off_t* poff)
1216 {
1217   int symsize;
1218   unsigned int align;
1219   if (parameters->get_size() == 32)
1220     {
1221       symsize = elfcpp::Elf_sizes<32>::sym_size;
1222       align = 4;
1223     }
1224   else if (parameters->get_size() == 64)
1225     {
1226       symsize = elfcpp::Elf_sizes<64>::sym_size;
1227       align = 8;
1228     }
1229   else
1230     gold_unreachable();
1231
1232   off_t off = *poff;
1233   off = align_address(off, align);
1234   off_t startoff = off;
1235
1236   // Save space for the dummy symbol at the start of the section.  We
1237   // never bother to write this out--it will just be left as zero.
1238   off += symsize;
1239   unsigned int local_symbol_index = 1;
1240
1241   // Add STT_SECTION symbols for each Output section which needs one.
1242   for (Section_list::iterator p = this->section_list_.begin();
1243        p != this->section_list_.end();
1244        ++p)
1245     {
1246       if (!(*p)->needs_symtab_index())
1247         (*p)->set_symtab_index(-1U);
1248       else
1249         {
1250           (*p)->set_symtab_index(local_symbol_index);
1251           ++local_symbol_index;
1252           off += symsize;
1253         }
1254     }
1255
1256   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1257        p != input_objects->relobj_end();
1258        ++p)
1259     {
1260       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1261                                                         off);
1262       off += (index - local_symbol_index) * symsize;
1263       local_symbol_index = index;
1264     }
1265
1266   unsigned int local_symcount = local_symbol_index;
1267   gold_assert(local_symcount * symsize == off - startoff);
1268
1269   off_t dynoff;
1270   size_t dyn_global_index;
1271   size_t dyncount;
1272   if (this->dynsym_section_ == NULL)
1273     {
1274       dynoff = 0;
1275       dyn_global_index = 0;
1276       dyncount = 0;
1277     }
1278   else
1279     {
1280       dyn_global_index = this->dynsym_section_->info();
1281       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1282       dynoff = this->dynsym_section_->offset() + locsize;
1283       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1284       gold_assert(static_cast<off_t>(dyncount * symsize)
1285                   == this->dynsym_section_->data_size() - locsize);
1286     }
1287
1288   off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1289                          dyncount, &this->sympool_);
1290
1291   if (!parameters->strip_all())
1292     {
1293       this->sympool_.set_string_offsets();
1294
1295       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1296       Output_section* osymtab = this->make_output_section(symtab_name,
1297                                                           elfcpp::SHT_SYMTAB,
1298                                                           0);
1299       this->symtab_section_ = osymtab;
1300
1301       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1302                                                              align);
1303       osymtab->add_output_section_data(pos);
1304
1305       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1306       Output_section* ostrtab = this->make_output_section(strtab_name,
1307                                                           elfcpp::SHT_STRTAB,
1308                                                           0);
1309
1310       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1311       ostrtab->add_output_section_data(pstr);
1312
1313       osymtab->set_file_offset(startoff);
1314       osymtab->finalize_data_size();
1315       osymtab->set_link_section(ostrtab);
1316       osymtab->set_info(local_symcount);
1317       osymtab->set_entsize(symsize);
1318
1319       *poff = off;
1320     }
1321 }
1322
1323 // Create the .shstrtab section, which holds the names of the
1324 // sections.  At the time this is called, we have created all the
1325 // output sections except .shstrtab itself.
1326
1327 Output_section*
1328 Layout::create_shstrtab()
1329 {
1330   // FIXME: We don't need to create a .shstrtab section if we are
1331   // stripping everything.
1332
1333   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1334
1335   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1336
1337   // We can't write out this section until we've set all the section
1338   // names, and we don't set the names of compressed output sections
1339   // until relocations are complete.
1340   os->set_after_input_sections();
1341
1342   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1343   os->add_output_section_data(posd);
1344
1345   return os;
1346 }
1347
1348 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1349 // offset.
1350
1351 void
1352 Layout::create_shdrs(off_t* poff)
1353 {
1354   Output_section_headers* oshdrs;
1355   oshdrs = new Output_section_headers(this,
1356                                       &this->segment_list_,
1357                                       &this->unattached_section_list_,
1358                                       &this->namepool_);
1359   off_t off = align_address(*poff, oshdrs->addralign());
1360   oshdrs->set_address_and_file_offset(0, off);
1361   off += oshdrs->data_size();
1362   *poff = off;
1363   this->section_headers_ = oshdrs;
1364 }
1365
1366 // Create the dynamic symbol table.
1367
1368 void
1369 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1370                               const Target* target, Symbol_table* symtab,
1371                               Output_section **pdynstr,
1372                               unsigned int* plocal_dynamic_count,
1373                               std::vector<Symbol*>* pdynamic_symbols,
1374                               Versions* pversions)
1375 {
1376   // Count all the symbols in the dynamic symbol table, and set the
1377   // dynamic symbol indexes.
1378
1379   // Skip symbol 0, which is always all zeroes.
1380   unsigned int index = 1;
1381
1382   // Add STT_SECTION symbols for each Output section which needs one.
1383   for (Section_list::iterator p = this->section_list_.begin();
1384        p != this->section_list_.end();
1385        ++p)
1386     {
1387       if (!(*p)->needs_dynsym_index())
1388         (*p)->set_dynsym_index(-1U);
1389       else
1390         {
1391           (*p)->set_dynsym_index(index);
1392           ++index;
1393         }
1394     }
1395
1396   // Count the local symbols that need to go in the dynamic symbol table,
1397   // and set the dynamic symbol indexes.
1398   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1399        p != input_objects->relobj_end();
1400        ++p)
1401     {
1402       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1403       index = new_index;
1404     }
1405
1406   unsigned int local_symcount = index;
1407   *plocal_dynamic_count = local_symcount;
1408
1409   // FIXME: We have to tell set_dynsym_indexes whether the
1410   // -E/--export-dynamic option was used.
1411   index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1412                                      &this->dynpool_, pversions);
1413
1414   int symsize;
1415   unsigned int align;
1416   const int size = parameters->get_size();
1417   if (size == 32)
1418     {
1419       symsize = elfcpp::Elf_sizes<32>::sym_size;
1420       align = 4;
1421     }
1422   else if (size == 64)
1423     {
1424       symsize = elfcpp::Elf_sizes<64>::sym_size;
1425       align = 8;
1426     }
1427   else
1428     gold_unreachable();
1429
1430   // Create the dynamic symbol table section.
1431
1432   const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1433   Output_section* dynsym = this->make_output_section(dynsym_name,
1434                                                      elfcpp::SHT_DYNSYM,
1435                                                      elfcpp::SHF_ALLOC);
1436
1437   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1438                                                            align);
1439   dynsym->add_output_section_data(odata);
1440
1441   dynsym->set_info(local_symcount);
1442   dynsym->set_entsize(symsize);
1443   dynsym->set_addralign(align);
1444
1445   this->dynsym_section_ = dynsym;
1446
1447   Output_data_dynamic* const odyn = this->dynamic_data_;
1448   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1449   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1450
1451   // Create the dynamic string table section.
1452
1453   const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1454   Output_section* dynstr = this->make_output_section(dynstr_name,
1455                                                      elfcpp::SHT_STRTAB,
1456                                                      elfcpp::SHF_ALLOC);
1457
1458   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1459   dynstr->add_output_section_data(strdata);
1460
1461   dynsym->set_link_section(dynstr);
1462   this->dynamic_section_->set_link_section(dynstr);
1463
1464   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1465   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1466
1467   *pdynstr = dynstr;
1468
1469   // Create the hash tables.
1470
1471   // FIXME: We need an option to create a GNU hash table.
1472
1473   unsigned char* phash;
1474   unsigned int hashlen;
1475   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1476                                 &phash, &hashlen);
1477
1478   const char* hash_name = this->namepool_.add(".hash", false, NULL);
1479   Output_section* hashsec = this->make_output_section(hash_name,
1480                                                       elfcpp::SHT_HASH,
1481                                                       elfcpp::SHF_ALLOC);
1482
1483   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1484                                                                hashlen,
1485                                                                align);
1486   hashsec->add_output_section_data(hashdata);
1487
1488   hashsec->set_link_section(dynsym);
1489   hashsec->set_entsize(4);
1490
1491   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1492 }
1493
1494 // Assign offsets to each local portion of the dynamic symbol table.
1495
1496 void
1497 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1498 {
1499   Output_section* dynsym = this->dynsym_section_;
1500   gold_assert(dynsym != NULL);
1501
1502   off_t off = dynsym->offset();
1503
1504   // Skip the dummy symbol at the start of the section.
1505   off += dynsym->entsize();
1506
1507   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1508        p != input_objects->relobj_end();
1509        ++p)
1510     {
1511       unsigned int count = (*p)->set_local_dynsym_offset(off);
1512       off += count * dynsym->entsize();
1513     }
1514 }
1515
1516 // Create the version sections.
1517
1518 void
1519 Layout::create_version_sections(const Versions* versions,
1520                                 const Symbol_table* symtab,
1521                                 unsigned int local_symcount,
1522                                 const std::vector<Symbol*>& dynamic_symbols,
1523                                 const Output_section* dynstr)
1524 {
1525   if (!versions->any_defs() && !versions->any_needs())
1526     return;
1527
1528   if (parameters->get_size() == 32)
1529     {
1530       if (parameters->is_big_endian())
1531         {
1532 #ifdef HAVE_TARGET_32_BIG
1533           this->sized_create_version_sections
1534               SELECT_SIZE_ENDIAN_NAME(32, true)(
1535                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1536                   SELECT_SIZE_ENDIAN(32, true));
1537 #else
1538           gold_unreachable();
1539 #endif
1540         }
1541       else
1542         {
1543 #ifdef HAVE_TARGET_32_LITTLE
1544           this->sized_create_version_sections
1545               SELECT_SIZE_ENDIAN_NAME(32, false)(
1546                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1547                   SELECT_SIZE_ENDIAN(32, false));
1548 #else
1549           gold_unreachable();
1550 #endif
1551         }
1552     }
1553   else if (parameters->get_size() == 64)
1554     {
1555       if (parameters->is_big_endian())
1556         {
1557 #ifdef HAVE_TARGET_64_BIG
1558           this->sized_create_version_sections
1559               SELECT_SIZE_ENDIAN_NAME(64, true)(
1560                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1561                   SELECT_SIZE_ENDIAN(64, true));
1562 #else
1563           gold_unreachable();
1564 #endif
1565         }
1566       else
1567         {
1568 #ifdef HAVE_TARGET_64_LITTLE
1569           this->sized_create_version_sections
1570               SELECT_SIZE_ENDIAN_NAME(64, false)(
1571                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1572                   SELECT_SIZE_ENDIAN(64, false));
1573 #else
1574           gold_unreachable();
1575 #endif
1576         }
1577     }
1578   else
1579     gold_unreachable();
1580 }
1581
1582 // Create the version sections, sized version.
1583
1584 template<int size, bool big_endian>
1585 void
1586 Layout::sized_create_version_sections(
1587     const Versions* versions,
1588     const Symbol_table* symtab,
1589     unsigned int local_symcount,
1590     const std::vector<Symbol*>& dynamic_symbols,
1591     const Output_section* dynstr
1592     ACCEPT_SIZE_ENDIAN)
1593 {
1594   const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1595   Output_section* vsec = this->make_output_section(vname,
1596                                                    elfcpp::SHT_GNU_versym,
1597                                                    elfcpp::SHF_ALLOC);
1598
1599   unsigned char* vbuf;
1600   unsigned int vsize;
1601   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1602       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1603       SELECT_SIZE_ENDIAN(size, big_endian));
1604
1605   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1606
1607   vsec->add_output_section_data(vdata);
1608   vsec->set_entsize(2);
1609   vsec->set_link_section(this->dynsym_section_);
1610
1611   Output_data_dynamic* const odyn = this->dynamic_data_;
1612   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1613
1614   if (versions->any_defs())
1615     {
1616       const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1617       Output_section *vdsec;
1618       vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1619                                         elfcpp::SHF_ALLOC);
1620
1621       unsigned char* vdbuf;
1622       unsigned int vdsize;
1623       unsigned int vdentries;
1624       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1625           &this->dynpool_, &vdbuf, &vdsize, &vdentries
1626           SELECT_SIZE_ENDIAN(size, big_endian));
1627
1628       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1629                                                                  vdsize,
1630                                                                  4);
1631
1632       vdsec->add_output_section_data(vddata);
1633       vdsec->set_link_section(dynstr);
1634       vdsec->set_info(vdentries);
1635
1636       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1637       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1638     }
1639
1640   if (versions->any_needs())
1641     {
1642       const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1643       Output_section* vnsec;
1644       vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1645                                         elfcpp::SHF_ALLOC);
1646
1647       unsigned char* vnbuf;
1648       unsigned int vnsize;
1649       unsigned int vnentries;
1650       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1651         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1652          SELECT_SIZE_ENDIAN(size, big_endian));
1653
1654       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1655                                                                  vnsize,
1656                                                                  4);
1657
1658       vnsec->add_output_section_data(vndata);
1659       vnsec->set_link_section(dynstr);
1660       vnsec->set_info(vnentries);
1661
1662       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1663       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1664     }
1665 }
1666
1667 // Create the .interp section and PT_INTERP segment.
1668
1669 void
1670 Layout::create_interp(const Target* target)
1671 {
1672   const char* interp = this->options_.dynamic_linker();
1673   if (interp == NULL)
1674     {
1675       interp = target->dynamic_linker();
1676       gold_assert(interp != NULL);
1677     }
1678
1679   size_t len = strlen(interp) + 1;
1680
1681   Output_section_data* odata = new Output_data_const(interp, len, 1);
1682
1683   const char* interp_name = this->namepool_.add(".interp", false, NULL);
1684   Output_section* osec = this->make_output_section(interp_name,
1685                                                    elfcpp::SHT_PROGBITS,
1686                                                    elfcpp::SHF_ALLOC);
1687   osec->add_output_section_data(odata);
1688
1689   Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1690   this->segment_list_.push_back(oseg);
1691   oseg->add_initial_output_section(osec, elfcpp::PF_R);
1692 }
1693
1694 // Finish the .dynamic section and PT_DYNAMIC segment.
1695
1696 void
1697 Layout::finish_dynamic_section(const Input_objects* input_objects,
1698                                const Symbol_table* symtab)
1699 {
1700   Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1701                                             elfcpp::PF_R | elfcpp::PF_W);
1702   this->segment_list_.push_back(oseg);
1703   oseg->add_initial_output_section(this->dynamic_section_,
1704                                    elfcpp::PF_R | elfcpp::PF_W);
1705
1706   Output_data_dynamic* const odyn = this->dynamic_data_;
1707
1708   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1709        p != input_objects->dynobj_end();
1710        ++p)
1711     {
1712       // FIXME: Handle --as-needed.
1713       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1714     }
1715
1716   if (parameters->output_is_shared())
1717     {
1718       const char* soname = this->options_.soname();
1719       if (soname != NULL)
1720         odyn->add_string(elfcpp::DT_SONAME, soname);
1721     }
1722
1723   // FIXME: Support --init and --fini.
1724   Symbol* sym = symtab->lookup("_init");
1725   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1726     odyn->add_symbol(elfcpp::DT_INIT, sym);
1727
1728   sym = symtab->lookup("_fini");
1729   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1730     odyn->add_symbol(elfcpp::DT_FINI, sym);
1731
1732   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1733
1734   // Add a DT_RPATH entry if needed.
1735   const General_options::Dir_list& rpath(this->options_.rpath());
1736   if (!rpath.empty())
1737     {
1738       std::string rpath_val;
1739       for (General_options::Dir_list::const_iterator p = rpath.begin();
1740            p != rpath.end();
1741            ++p)
1742         {
1743           if (rpath_val.empty())
1744             rpath_val = p->name();
1745           else
1746             {
1747               // Eliminate duplicates.
1748               General_options::Dir_list::const_iterator q;
1749               for (q = rpath.begin(); q != p; ++q)
1750                 if (q->name() == p->name())
1751                   break;
1752               if (q == p)
1753                 {
1754                   rpath_val += ':';
1755                   rpath_val += p->name();
1756                 }
1757             }
1758         }
1759
1760       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1761     }
1762
1763   // Look for text segments that have dynamic relocations.
1764   bool have_textrel = false;
1765   for (Segment_list::const_iterator p = this->segment_list_.begin();
1766        p != this->segment_list_.end();
1767        ++p)
1768     {
1769       if (((*p)->flags() & elfcpp::PF_W) == 0
1770           && (*p)->dynamic_reloc_count() > 0)
1771         {
1772           have_textrel = true;
1773           break;
1774         }
1775     }
1776
1777   // Add a DT_FLAGS entry. We add it even if no flags are set so that
1778   // post-link tools can easily modify these flags if desired.
1779   unsigned int flags = 0;
1780   if (have_textrel)
1781     {
1782       // Add a DT_TEXTREL for compatibility with older loaders.
1783       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1784       flags |= elfcpp::DF_TEXTREL;
1785     }
1786   if (parameters->output_is_shared() && this->has_static_tls())
1787     flags |= elfcpp::DF_STATIC_TLS;
1788   odyn->add_constant(elfcpp::DT_FLAGS, flags);
1789 }
1790
1791 // The mapping of .gnu.linkonce section names to real section names.
1792
1793 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1794 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1795 {
1796   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
1797   MAPPING_INIT("t", ".text"),
1798   MAPPING_INIT("r", ".rodata"),
1799   MAPPING_INIT("d", ".data"),
1800   MAPPING_INIT("b", ".bss"),
1801   MAPPING_INIT("s", ".sdata"),
1802   MAPPING_INIT("sb", ".sbss"),
1803   MAPPING_INIT("s2", ".sdata2"),
1804   MAPPING_INIT("sb2", ".sbss2"),
1805   MAPPING_INIT("wi", ".debug_info"),
1806   MAPPING_INIT("td", ".tdata"),
1807   MAPPING_INIT("tb", ".tbss"),
1808   MAPPING_INIT("lr", ".lrodata"),
1809   MAPPING_INIT("l", ".ldata"),
1810   MAPPING_INIT("lb", ".lbss"),
1811 };
1812 #undef MAPPING_INIT
1813
1814 const int Layout::linkonce_mapping_count =
1815   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1816
1817 // Return the name of the output section to use for a .gnu.linkonce
1818 // section.  This is based on the default ELF linker script of the old
1819 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
1820 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
1821 // initialized to the length of NAME.
1822
1823 const char*
1824 Layout::linkonce_output_name(const char* name, size_t *plen)
1825 {
1826   const char* s = name + sizeof(".gnu.linkonce") - 1;
1827   if (*s != '.')
1828     return name;
1829   ++s;
1830   const Linkonce_mapping* plm = linkonce_mapping;
1831   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1832     {
1833       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1834         {
1835           *plen = plm->tolen;
1836           return plm->to;
1837         }
1838     }
1839   return name;
1840 }
1841
1842 // Choose the output section name to use given an input section name.
1843 // Set *PLEN to the length of the name.  *PLEN is initialized to the
1844 // length of NAME.
1845
1846 const char*
1847 Layout::output_section_name(const char* name, size_t* plen)
1848 {
1849   if (Layout::is_linkonce(name))
1850     {
1851       // .gnu.linkonce sections are laid out as though they were named
1852       // for the sections are placed into.
1853       return Layout::linkonce_output_name(name, plen);
1854     }
1855
1856   // gcc 4.3 generates the following sorts of section names when it
1857   // needs a section name specific to a function:
1858   //   .text.FN
1859   //   .rodata.FN
1860   //   .sdata2.FN
1861   //   .data.FN
1862   //   .data.rel.FN
1863   //   .data.rel.local.FN
1864   //   .data.rel.ro.FN
1865   //   .data.rel.ro.local.FN
1866   //   .sdata.FN
1867   //   .bss.FN
1868   //   .sbss.FN
1869   //   .tdata.FN
1870   //   .tbss.FN
1871
1872   // The GNU linker maps all of those to the part before the .FN,
1873   // except that .data.rel.local.FN is mapped to .data, and
1874   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
1875   // beginning with .data.rel.ro.local are grouped together.
1876
1877   // For an anonymous namespace, the string FN can contain a '.'.
1878
1879   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1880   // GNU linker maps to .rodata.
1881
1882   // The .data.rel.ro sections enable a security feature triggered by
1883   // the -z relro option.  Section which need to be relocated at
1884   // program startup time but which may be readonly after startup are
1885   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
1886   // segment.  The dynamic linker will make that segment writable,
1887   // perform relocations, and then make it read-only.  FIXME: We do
1888   // not yet implement this optimization.
1889
1890   // It is hard to handle this in a principled way.
1891
1892   // These are the rules we follow:
1893
1894   // If the section name has no initial '.', or no dot other than an
1895   // initial '.', we use the name unchanged (i.e., "mysection" and
1896   // ".text" are unchanged).
1897
1898   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1899
1900   // Otherwise, we drop the second '.' and everything that comes after
1901   // it (i.e., ".text.XXX" becomes ".text").
1902
1903   const char* s = name;
1904   if (*s != '.')
1905     return name;
1906   ++s;
1907   const char* sdot = strchr(s, '.');
1908   if (sdot == NULL)
1909     return name;
1910
1911   const char* const data_rel_ro = ".data.rel.ro";
1912   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1913     {
1914       *plen = strlen(data_rel_ro);
1915       return data_rel_ro;
1916     }
1917
1918   *plen = sdot - name;
1919   return name;
1920 }
1921
1922 // Record the signature of a comdat section, and return whether to
1923 // include it in the link.  If GROUP is true, this is a regular
1924 // section group.  If GROUP is false, this is a group signature
1925 // derived from the name of a linkonce section.  We want linkonce
1926 // signatures and group signatures to block each other, but we don't
1927 // want a linkonce signature to block another linkonce signature.
1928
1929 bool
1930 Layout::add_comdat(const char* signature, bool group)
1931 {
1932   std::string sig(signature);
1933   std::pair<Signatures::iterator, bool> ins(
1934     this->signatures_.insert(std::make_pair(sig, group)));
1935
1936   if (ins.second)
1937     {
1938       // This is the first time we've seen this signature.
1939       return true;
1940     }
1941
1942   if (ins.first->second)
1943     {
1944       // We've already seen a real section group with this signature.
1945       return false;
1946     }
1947   else if (group)
1948     {
1949       // This is a real section group, and we've already seen a
1950       // linkonce section with this signature.  Record that we've seen
1951       // a section group, and don't include this section group.
1952       ins.first->second = true;
1953       return false;
1954     }
1955   else
1956     {
1957       // We've already seen a linkonce section and this is a linkonce
1958       // section.  These don't block each other--this may be the same
1959       // symbol name with different section types.
1960       return true;
1961     }
1962 }
1963
1964 // Write out the Output_sections.  Most won't have anything to write,
1965 // since most of the data will come from input sections which are
1966 // handled elsewhere.  But some Output_sections do have Output_data.
1967
1968 void
1969 Layout::write_output_sections(Output_file* of) const
1970 {
1971   for (Section_list::const_iterator p = this->section_list_.begin();
1972        p != this->section_list_.end();
1973        ++p)
1974     {
1975       if (!(*p)->after_input_sections())
1976         (*p)->write(of);
1977     }
1978 }
1979
1980 // Write out data not associated with a section or the symbol table.
1981
1982 void
1983 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1984 {
1985   if (!parameters->strip_all())
1986     {
1987       const Output_section* symtab_section = this->symtab_section_;
1988       for (Section_list::const_iterator p = this->section_list_.begin();
1989            p != this->section_list_.end();
1990            ++p)
1991         {
1992           if ((*p)->needs_symtab_index())
1993             {
1994               gold_assert(symtab_section != NULL);
1995               unsigned int index = (*p)->symtab_index();
1996               gold_assert(index > 0 && index != -1U);
1997               off_t off = (symtab_section->offset()
1998                            + index * symtab_section->entsize());
1999               symtab->write_section_symbol(*p, of, off);
2000             }
2001         }
2002     }
2003
2004   const Output_section* dynsym_section = this->dynsym_section_;
2005   for (Section_list::const_iterator p = this->section_list_.begin();
2006        p != this->section_list_.end();
2007        ++p)
2008     {
2009       if ((*p)->needs_dynsym_index())
2010         {
2011           gold_assert(dynsym_section != NULL);
2012           unsigned int index = (*p)->dynsym_index();
2013           gold_assert(index > 0 && index != -1U);
2014           off_t off = (dynsym_section->offset()
2015                        + index * dynsym_section->entsize());
2016           symtab->write_section_symbol(*p, of, off);
2017         }
2018     }
2019
2020   // Write out the Output_data which are not in an Output_section.
2021   for (Data_list::const_iterator p = this->special_output_list_.begin();
2022        p != this->special_output_list_.end();
2023        ++p)
2024     (*p)->write(of);
2025 }
2026
2027 // Write out the Output_sections which can only be written after the
2028 // input sections are complete.
2029
2030 void
2031 Layout::write_sections_after_input_sections(Output_file* of)
2032 {
2033   // Determine the final section offsets, and thus the final output
2034   // file size.  Note we finalize the .shstrab last, to allow the
2035   // after_input_section sections to modify their section-names before
2036   // writing.
2037   if (this->any_postprocessing_sections_)
2038     {
2039       off_t off = this->output_file_size_;
2040       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2041       
2042       // Now that we've finalized the names, we can finalize the shstrab.
2043       off =
2044         this->set_section_offsets(off,
2045                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2046
2047       if (off > this->output_file_size_)
2048         {
2049           of->resize(off);
2050           this->output_file_size_ = off;
2051         }
2052     }
2053
2054   for (Section_list::const_iterator p = this->section_list_.begin();
2055        p != this->section_list_.end();
2056        ++p)
2057     {
2058       if ((*p)->after_input_sections())
2059         (*p)->write(of);
2060     }
2061
2062   this->section_headers_->write(of);
2063 }
2064
2065 // Print statistical information to stderr.  This is used for --stats.
2066
2067 void
2068 Layout::print_stats() const
2069 {
2070   this->namepool_.print_stats("section name pool");
2071   this->sympool_.print_stats("output symbol name pool");
2072   this->dynpool_.print_stats("dynamic name pool");
2073
2074   for (Section_list::const_iterator p = this->section_list_.begin();
2075        p != this->section_list_.end();
2076        ++p)
2077     (*p)->print_merge_stats();
2078 }
2079
2080 // Write_sections_task methods.
2081
2082 // We can always run this task.
2083
2084 Task_token*
2085 Write_sections_task::is_runnable()
2086 {
2087   return NULL;
2088 }
2089
2090 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2091 // when finished.
2092
2093 void
2094 Write_sections_task::locks(Task_locker* tl)
2095 {
2096   tl->add(this, this->output_sections_blocker_);
2097   tl->add(this, this->final_blocker_);
2098 }
2099
2100 // Run the task--write out the data.
2101
2102 void
2103 Write_sections_task::run(Workqueue*)
2104 {
2105   this->layout_->write_output_sections(this->of_);
2106 }
2107
2108 // Write_data_task methods.
2109
2110 // We can always run this task.
2111
2112 Task_token*
2113 Write_data_task::is_runnable()
2114 {
2115   return NULL;
2116 }
2117
2118 // We need to unlock FINAL_BLOCKER when finished.
2119
2120 void
2121 Write_data_task::locks(Task_locker* tl)
2122 {
2123   tl->add(this, this->final_blocker_);
2124 }
2125
2126 // Run the task--write out the data.
2127
2128 void
2129 Write_data_task::run(Workqueue*)
2130 {
2131   this->layout_->write_data(this->symtab_, this->of_);
2132 }
2133
2134 // Write_symbols_task methods.
2135
2136 // We can always run this task.
2137
2138 Task_token*
2139 Write_symbols_task::is_runnable()
2140 {
2141   return NULL;
2142 }
2143
2144 // We need to unlock FINAL_BLOCKER when finished.
2145
2146 void
2147 Write_symbols_task::locks(Task_locker* tl)
2148 {
2149   tl->add(this, this->final_blocker_);
2150 }
2151
2152 // Run the task--write out the symbols.
2153
2154 void
2155 Write_symbols_task::run(Workqueue*)
2156 {
2157   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2158                                this->dynpool_, this->of_);
2159 }
2160
2161 // Write_after_input_sections_task methods.
2162
2163 // We can only run this task after the input sections have completed.
2164
2165 Task_token*
2166 Write_after_input_sections_task::is_runnable()
2167 {
2168   if (this->input_sections_blocker_->is_blocked())
2169     return this->input_sections_blocker_;
2170   return NULL;
2171 }
2172
2173 // We need to unlock FINAL_BLOCKER when finished.
2174
2175 void
2176 Write_after_input_sections_task::locks(Task_locker* tl)
2177 {
2178   tl->add(this, this->final_blocker_);
2179 }
2180
2181 // Run the task.
2182
2183 void
2184 Write_after_input_sections_task::run(Workqueue*)
2185 {
2186   this->layout_->write_sections_after_input_sections(this->of_);
2187 }
2188
2189 // Close_task_runner methods.
2190
2191 // Run the task--close the file.
2192
2193 void
2194 Close_task_runner::run(Workqueue*, const Task*)
2195 {
2196   this->of_->close();
2197 }
2198
2199 // Instantiate the templates we need.  We could use the configure
2200 // script to restrict this to only the ones for implemented targets.
2201
2202 #ifdef HAVE_TARGET_32_LITTLE
2203 template
2204 Output_section*
2205 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2206                           const char* name,
2207                           const elfcpp::Shdr<32, false>& shdr,
2208                           unsigned int, unsigned int, off_t*);
2209 #endif
2210
2211 #ifdef HAVE_TARGET_32_BIG
2212 template
2213 Output_section*
2214 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2215                          const char* name,
2216                          const elfcpp::Shdr<32, true>& shdr,
2217                          unsigned int, unsigned int, off_t*);
2218 #endif
2219
2220 #ifdef HAVE_TARGET_64_LITTLE
2221 template
2222 Output_section*
2223 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2224                           const char* name,
2225                           const elfcpp::Shdr<64, false>& shdr,
2226                           unsigned int, unsigned int, off_t*);
2227 #endif
2228
2229 #ifdef HAVE_TARGET_64_BIG
2230 template
2231 Output_section*
2232 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2233                          const char* name,
2234                          const elfcpp::Shdr<64, true>& shdr,
2235                          unsigned int, unsigned int, off_t*);
2236 #endif
2237
2238 #ifdef HAVE_TARGET_32_LITTLE
2239 template
2240 Output_section*
2241 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2242                                    const unsigned char* symbols,
2243                                    off_t symbols_size,
2244                                    const unsigned char* symbol_names,
2245                                    off_t symbol_names_size,
2246                                    unsigned int shndx,
2247                                    const elfcpp::Shdr<32, false>& shdr,
2248                                    unsigned int reloc_shndx,
2249                                    unsigned int reloc_type,
2250                                    off_t* off);
2251 #endif
2252
2253 #ifdef HAVE_TARGET_32_BIG
2254 template
2255 Output_section*
2256 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2257                                    const unsigned char* symbols,
2258                                    off_t symbols_size,
2259                                   const unsigned char* symbol_names,
2260                                   off_t symbol_names_size,
2261                                   unsigned int shndx,
2262                                   const elfcpp::Shdr<32, true>& shdr,
2263                                   unsigned int reloc_shndx,
2264                                   unsigned int reloc_type,
2265                                   off_t* off);
2266 #endif
2267
2268 #ifdef HAVE_TARGET_64_LITTLE
2269 template
2270 Output_section*
2271 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2272                                    const unsigned char* symbols,
2273                                    off_t symbols_size,
2274                                    const unsigned char* symbol_names,
2275                                    off_t symbol_names_size,
2276                                    unsigned int shndx,
2277                                    const elfcpp::Shdr<64, false>& shdr,
2278                                    unsigned int reloc_shndx,
2279                                    unsigned int reloc_type,
2280                                    off_t* off);
2281 #endif
2282
2283 #ifdef HAVE_TARGET_64_BIG
2284 template
2285 Output_section*
2286 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2287                                    const unsigned char* symbols,
2288                                    off_t symbols_size,
2289                                   const unsigned char* symbol_names,
2290                                   off_t symbol_names_size,
2291                                   unsigned int shndx,
2292                                   const elfcpp::Shdr<64, true>& shdr,
2293                                   unsigned int reloc_shndx,
2294                                   unsigned int reloc_type,
2295                                   off_t* off);
2296 #endif
2297
2298 } // End namespace gold.