Support creating empty output when there are no input objects.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections.  This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53   off_t file_size = this->layout_->finalize(this->input_objects_,
54                                             this->symtab_,
55                                             task);
56
57   // Now we know the final size of the output file and we know where
58   // each piece of information goes.
59   Output_file* of = new Output_file(parameters->output_file_name());
60   of->open(file_size);
61
62   // Queue up the final set of tasks.
63   gold::queue_final_tasks(this->options_, this->input_objects_,
64                           this->symtab_, this->layout_, workqueue, of);
65 }
66
67 // Layout methods.
68
69 Layout::Layout(const General_options& options, Script_options* script_options)
70   : options_(options), script_options_(script_options), namepool_(),
71     sympool_(), dynpool_(), signatures_(),
72     section_name_map_(), segment_list_(), section_list_(),
73     unattached_section_list_(), special_output_list_(),
74     section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
75     dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
76     eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
77     input_requires_executable_stack_(false),
78     input_with_gnu_stack_note_(false),
79     input_without_gnu_stack_note_(false),
80     has_static_tls_(false),
81     any_postprocessing_sections_(false)
82 {
83   // Make space for more than enough segments for a typical file.
84   // This is just for efficiency--it's OK if we wind up needing more.
85   this->segment_list_.reserve(12);
86
87   // We expect two unattached Output_data objects: the file header and
88   // the segment headers.
89   this->special_output_list_.reserve(2);
90 }
91
92 // Hash a key we use to look up an output section mapping.
93
94 size_t
95 Layout::Hash_key::operator()(const Layout::Key& k) const
96 {
97  return k.first + k.second.first + k.second.second;
98 }
99
100 // Return whether PREFIX is a prefix of STR.
101
102 static inline bool
103 is_prefix_of(const char* prefix, const char* str)
104 {
105   return strncmp(prefix, str, strlen(prefix)) == 0;
106 }
107
108 // Returns whether the given section is in the list of
109 // debug-sections-used-by-some-version-of-gdb.  Currently,
110 // we've checked versions of gdb up to and including 6.7.1.
111
112 static const char* gdb_sections[] =
113 { ".debug_abbrev",
114   // ".debug_aranges",   // not used by gdb as of 6.7.1
115   ".debug_frame",
116   ".debug_info",
117   ".debug_line",
118   ".debug_loc",
119   ".debug_macinfo",
120   // ".debug_pubnames",  // not used by gdb as of 6.7.1
121   ".debug_ranges",
122   ".debug_str",
123 };
124
125 static inline bool
126 is_gdb_debug_section(const char* str)
127 {
128   // We can do this faster: binary search or a hashtable.  But why bother?
129   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
130     if (strcmp(str, gdb_sections[i]) == 0)
131       return true;
132   return false;
133 }
134
135 // Whether to include this section in the link.
136
137 template<int size, bool big_endian>
138 bool
139 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
140                         const elfcpp::Shdr<size, big_endian>& shdr)
141 {
142   switch (shdr.get_sh_type())
143     {
144     case elfcpp::SHT_NULL:
145     case elfcpp::SHT_SYMTAB:
146     case elfcpp::SHT_DYNSYM:
147     case elfcpp::SHT_STRTAB:
148     case elfcpp::SHT_HASH:
149     case elfcpp::SHT_DYNAMIC:
150     case elfcpp::SHT_SYMTAB_SHNDX:
151       return false;
152
153     case elfcpp::SHT_RELA:
154     case elfcpp::SHT_REL:
155     case elfcpp::SHT_GROUP:
156       // For a relocatable link these should be handled elsewhere.
157       gold_assert(!parameters->output_is_object());
158       return false;
159
160     case elfcpp::SHT_PROGBITS:
161       if (parameters->strip_debug()
162           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
163         {
164           // Debugging sections can only be recognized by name.
165           if (is_prefix_of(".debug", name)
166               || is_prefix_of(".gnu.linkonce.wi.", name)
167               || is_prefix_of(".line", name)
168               || is_prefix_of(".stab", name))
169             return false;
170         }
171       if (parameters->strip_debug_gdb()
172           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
173         {
174           // Debugging sections can only be recognized by name.
175           if (is_prefix_of(".debug", name)
176               && !is_gdb_debug_section(name))
177             return false;
178         }
179       return true;
180
181     default:
182       return true;
183     }
184 }
185
186 // Return an output section named NAME, or NULL if there is none.
187
188 Output_section*
189 Layout::find_output_section(const char* name) const
190 {
191   for (Section_list::const_iterator p = this->section_list_.begin();
192        p != this->section_list_.end();
193        ++p)
194     if (strcmp((*p)->name(), name) == 0)
195       return *p;
196   return NULL;
197 }
198
199 // Return an output segment of type TYPE, with segment flags SET set
200 // and segment flags CLEAR clear.  Return NULL if there is none.
201
202 Output_segment*
203 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
204                             elfcpp::Elf_Word clear) const
205 {
206   for (Segment_list::const_iterator p = this->segment_list_.begin();
207        p != this->segment_list_.end();
208        ++p)
209     if (static_cast<elfcpp::PT>((*p)->type()) == type
210         && ((*p)->flags() & set) == set
211         && ((*p)->flags() & clear) == 0)
212       return *p;
213   return NULL;
214 }
215
216 // Return the output section to use for section NAME with type TYPE
217 // and section flags FLAGS.  NAME must be canonicalized in the string
218 // pool, and NAME_KEY is the key.
219
220 Output_section*
221 Layout::get_output_section(const char* name, Stringpool::Key name_key,
222                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
223 {
224   const Key key(name_key, std::make_pair(type, flags));
225   const std::pair<Key, Output_section*> v(key, NULL);
226   std::pair<Section_name_map::iterator, bool> ins(
227     this->section_name_map_.insert(v));
228
229   if (!ins.second)
230     return ins.first->second;
231   else
232     {
233       // This is the first time we've seen this name/type/flags
234       // combination.
235       Output_section* os = this->make_output_section(name, type, flags);
236       ins.first->second = os;
237       return os;
238     }
239 }
240
241 // Pick the output section to use for section NAME, in input file
242 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
243 // linker created section.  ADJUST_NAME is true if we should apply the
244 // standard name mappings in Layout::output_section_name.  This will
245 // return NULL if the input section should be discarded.
246
247 Output_section*
248 Layout::choose_output_section(const Relobj* relobj, const char* name,
249                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
250                               bool adjust_name)
251 {
252   // We should ignore some flags.  FIXME: This will need some
253   // adjustment for ld -r.
254   flags &= ~ (elfcpp::SHF_INFO_LINK
255               | elfcpp::SHF_LINK_ORDER
256               | elfcpp::SHF_GROUP
257               | elfcpp::SHF_MERGE
258               | elfcpp::SHF_STRINGS);
259
260   if (this->script_options_->saw_sections_clause())
261     {
262       // We are using a SECTIONS clause, so the output section is
263       // chosen based only on the name.
264
265       Script_sections* ss = this->script_options_->script_sections();
266       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
267       Output_section** output_section_slot;
268       name = ss->output_section_name(file_name, name, &output_section_slot);
269       if (name == NULL)
270         {
271           // The SECTIONS clause says to discard this input section.
272           return NULL;
273         }
274
275       // If this is an orphan section--one not mentioned in the linker
276       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
277       // default processing below.
278
279       if (output_section_slot != NULL)
280         {
281           if (*output_section_slot != NULL)
282             return *output_section_slot;
283
284           // We don't put sections found in the linker script into
285           // SECTION_NAME_MAP_.  That keeps us from getting confused
286           // if an orphan section is mapped to a section with the same
287           // name as one in the linker script.
288
289           name = this->namepool_.add(name, false, NULL);
290
291           Output_section* os = this->make_output_section(name, type, flags);
292           os->set_found_in_sections_clause();
293           *output_section_slot = os;
294           return os;
295         }
296     }
297
298   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
299
300   // Turn NAME from the name of the input section into the name of the
301   // output section.
302
303   size_t len = strlen(name);
304   if (adjust_name && !parameters->output_is_object())
305     name = Layout::output_section_name(name, &len);
306
307   Stringpool::Key name_key;
308   name = this->namepool_.add_with_length(name, len, true, &name_key);
309
310   // Find or make the output section.  The output section is selected
311   // based on the section name, type, and flags.
312   return this->get_output_section(name, name_key, type, flags);
313 }
314
315 // Return the output section to use for input section SHNDX, with name
316 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
317 // index of a relocation section which applies to this section, or 0
318 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
319 // relocation section if there is one.  Set *OFF to the offset of this
320 // input section without the output section.  Return NULL if the
321 // section should be discarded.  Set *OFF to -1 if the section
322 // contents should not be written directly to the output file, but
323 // will instead receive special handling.
324
325 template<int size, bool big_endian>
326 Output_section*
327 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
328                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
329                unsigned int reloc_shndx, unsigned int, off_t* off)
330 {
331   if (!this->include_section(object, name, shdr))
332     return NULL;
333
334   Output_section* os;
335
336   // In a relocatable link a grouped section must not be combined with
337   // any other sections.
338   if (parameters->output_is_object()
339       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
340     {
341       name = this->namepool_.add(name, true, NULL);
342       os = this->make_output_section(name, shdr.get_sh_type(),
343                                      shdr.get_sh_flags());
344     }
345   else
346     {
347       os = this->choose_output_section(object, name, shdr.get_sh_type(),
348                                        shdr.get_sh_flags(), true);
349       if (os == NULL)
350         return NULL;
351     }
352
353   // FIXME: Handle SHF_LINK_ORDER somewhere.
354
355   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
356                                this->script_options_->saw_sections_clause());
357
358   return os;
359 }
360
361 // Handle a relocation section when doing a relocatable link.
362
363 template<int size, bool big_endian>
364 Output_section*
365 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
366                      unsigned int,
367                      const elfcpp::Shdr<size, big_endian>& shdr,
368                      Output_section* data_section,
369                      Relocatable_relocs* rr)
370 {
371   gold_assert(parameters->output_is_object());
372
373   int sh_type = shdr.get_sh_type();
374
375   std::string name;
376   if (sh_type == elfcpp::SHT_REL)
377     name = ".rel";
378   else if (sh_type == elfcpp::SHT_RELA)
379     name = ".rela";
380   else
381     gold_unreachable();
382   name += data_section->name();
383
384   Output_section* os = this->choose_output_section(object, name.c_str(),
385                                                    sh_type,
386                                                    shdr.get_sh_flags(),
387                                                    false);
388
389   os->set_should_link_to_symtab();
390   os->set_info_section(data_section);
391
392   Output_section_data* posd;
393   if (sh_type == elfcpp::SHT_REL)
394     {
395       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
396       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
397                                            size,
398                                            big_endian>(rr);
399     }
400   else if (sh_type == elfcpp::SHT_RELA)
401     {
402       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
403       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
404                                            size,
405                                            big_endian>(rr);
406     }
407   else
408     gold_unreachable();
409
410   os->add_output_section_data(posd);
411   rr->set_output_data(posd);
412
413   return os;
414 }
415
416 // Handle a group section when doing a relocatable link.
417
418 template<int size, bool big_endian>
419 void
420 Layout::layout_group(Symbol_table* symtab,
421                      Sized_relobj<size, big_endian>* object,
422                      unsigned int,
423                      const char* group_section_name,
424                      const char* signature,
425                      const elfcpp::Shdr<size, big_endian>& shdr,
426                      const elfcpp::Elf_Word* contents)
427 {
428   gold_assert(parameters->output_is_object());
429   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
430   group_section_name = this->namepool_.add(group_section_name, true, NULL);
431   Output_section* os = this->make_output_section(group_section_name,
432                                                  elfcpp::SHT_GROUP,
433                                                  shdr.get_sh_flags());
434
435   // We need to find a symbol with the signature in the symbol table.
436   // If we don't find one now, we need to look again later.
437   Symbol* sym = symtab->lookup(signature, NULL);
438   if (sym != NULL)
439     os->set_info_symndx(sym);
440   else
441     {
442       // We will wind up using a symbol whose name is the signature.
443       // So just put the signature in the symbol name pool to save it.
444       signature = symtab->canonicalize_name(signature);
445       this->group_signatures_.push_back(Group_signature(os, signature));
446     }
447
448   os->set_should_link_to_symtab();
449   os->set_entsize(4);
450
451   section_size_type entry_count =
452     convert_to_section_size_type(shdr.get_sh_size() / 4);
453   Output_section_data* posd =
454     new Output_data_group<size, big_endian>(object, entry_count, contents);
455   os->add_output_section_data(posd);
456 }
457
458 // Special GNU handling of sections name .eh_frame.  They will
459 // normally hold exception frame data as defined by the C++ ABI
460 // (http://codesourcery.com/cxx-abi/).
461
462 template<int size, bool big_endian>
463 Output_section*
464 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
465                         const unsigned char* symbols,
466                         off_t symbols_size,
467                         const unsigned char* symbol_names,
468                         off_t symbol_names_size,
469                         unsigned int shndx,
470                         const elfcpp::Shdr<size, big_endian>& shdr,
471                         unsigned int reloc_shndx, unsigned int reloc_type,
472                         off_t* off)
473 {
474   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
475   gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
476
477   const char* const name = ".eh_frame";
478   Output_section* os = this->choose_output_section(object,
479                                                    name,
480                                                    elfcpp::SHT_PROGBITS,
481                                                    elfcpp::SHF_ALLOC,
482                                                    false);
483   if (os == NULL)
484     return NULL;
485
486   if (this->eh_frame_section_ == NULL)
487     {
488       this->eh_frame_section_ = os;
489       this->eh_frame_data_ = new Eh_frame();
490       os->add_output_section_data(this->eh_frame_data_);
491
492       if (this->options_.create_eh_frame_hdr())
493         {
494           Output_section* hdr_os =
495             this->choose_output_section(NULL,
496                                         ".eh_frame_hdr",
497                                         elfcpp::SHT_PROGBITS,
498                                         elfcpp::SHF_ALLOC,
499                                         false);
500
501           if (hdr_os != NULL)
502             {
503               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
504                                                         this->eh_frame_data_);
505               hdr_os->add_output_section_data(hdr_posd);
506
507               hdr_os->set_after_input_sections();
508
509               if (!this->script_options_->saw_phdrs_clause())
510                 {
511                   Output_segment* hdr_oseg;
512                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
513                                                        elfcpp::PF_R);
514                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
515                 }
516
517               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
518             }
519         }
520     }
521
522   gold_assert(this->eh_frame_section_ == os);
523
524   if (this->eh_frame_data_->add_ehframe_input_section(object,
525                                                       symbols,
526                                                       symbols_size,
527                                                       symbol_names,
528                                                       symbol_names_size,
529                                                       shndx,
530                                                       reloc_shndx,
531                                                       reloc_type))
532     *off = -1;
533   else
534     {
535       // We couldn't handle this .eh_frame section for some reason.
536       // Add it as a normal section.
537       bool saw_sections_clause = this->script_options_->saw_sections_clause();
538       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
539                                    saw_sections_clause);
540     }
541
542   return os;
543 }
544
545 // Add POSD to an output section using NAME, TYPE, and FLAGS.
546
547 void
548 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
549                                 elfcpp::Elf_Xword flags,
550                                 Output_section_data* posd)
551 {
552   Output_section* os = this->choose_output_section(NULL, name, type, flags,
553                                                    false);
554   if (os != NULL)
555     os->add_output_section_data(posd);
556 }
557
558 // Map section flags to segment flags.
559
560 elfcpp::Elf_Word
561 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
562 {
563   elfcpp::Elf_Word ret = elfcpp::PF_R;
564   if ((flags & elfcpp::SHF_WRITE) != 0)
565     ret |= elfcpp::PF_W;
566   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
567     ret |= elfcpp::PF_X;
568   return ret;
569 }
570
571 // Sometimes we compress sections.  This is typically done for
572 // sections that are not part of normal program execution (such as
573 // .debug_* sections), and where the readers of these sections know
574 // how to deal with compressed sections.  (To make it easier for them,
575 // we will rename the ouput section in such cases from .foo to
576 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
577 // doesn't say for certain whether we'll compress -- it depends on
578 // commandline options as well -- just whether this section is a
579 // candidate for compression.
580
581 static bool
582 is_compressible_debug_section(const char* secname)
583 {
584   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
585 }
586
587 // Make a new Output_section, and attach it to segments as
588 // appropriate.
589
590 Output_section*
591 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
592                             elfcpp::Elf_Xword flags)
593 {
594   Output_section* os;
595   if ((flags & elfcpp::SHF_ALLOC) == 0
596       && this->options_.compress_debug_sections()
597       && is_compressible_debug_section(name))
598     os = new Output_compressed_section(&this->options_, name, type, flags);
599   else
600     os = new Output_section(name, type, flags);
601
602   this->section_list_.push_back(os);
603
604   if ((flags & elfcpp::SHF_ALLOC) == 0)
605     this->unattached_section_list_.push_back(os);
606   else
607     {
608       if (parameters->output_is_object())
609         return os;
610
611       // If we have a SECTIONS clause, we can't handle the attachment
612       // to segments until after we've seen all the sections.
613       if (this->script_options_->saw_sections_clause())
614         return os;
615
616       gold_assert(!this->script_options_->saw_phdrs_clause());
617
618       // This output section goes into a PT_LOAD segment.
619
620       elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
621
622       // The only thing we really care about for PT_LOAD segments is
623       // whether or not they are writable, so that is how we search
624       // for them.  People who need segments sorted on some other
625       // basis will have to wait until we implement a mechanism for
626       // them to describe the segments they want.
627
628       Segment_list::const_iterator p;
629       for (p = this->segment_list_.begin();
630            p != this->segment_list_.end();
631            ++p)
632         {
633           if ((*p)->type() == elfcpp::PT_LOAD
634               && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
635             {
636               (*p)->add_output_section(os, seg_flags);
637               break;
638             }
639         }
640
641       if (p == this->segment_list_.end())
642         {
643           Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
644                                                            seg_flags);
645           oseg->add_output_section(os, seg_flags);
646         }
647
648       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
649       // segment.
650       if (type == elfcpp::SHT_NOTE)
651         {
652           // See if we already have an equivalent PT_NOTE segment.
653           for (p = this->segment_list_.begin();
654                p != segment_list_.end();
655                ++p)
656             {
657               if ((*p)->type() == elfcpp::PT_NOTE
658                   && (((*p)->flags() & elfcpp::PF_W)
659                       == (seg_flags & elfcpp::PF_W)))
660                 {
661                   (*p)->add_output_section(os, seg_flags);
662                   break;
663                 }
664             }
665
666           if (p == this->segment_list_.end())
667             {
668               Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
669                                                                seg_flags);
670               oseg->add_output_section(os, seg_flags);
671             }
672         }
673
674       // If we see a loadable SHF_TLS section, we create a PT_TLS
675       // segment.  There can only be one such segment.
676       if ((flags & elfcpp::SHF_TLS) != 0)
677         {
678           if (this->tls_segment_ == NULL)
679             this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
680                                                            seg_flags);
681           this->tls_segment_->add_output_section(os, seg_flags);
682         }
683     }
684
685   return os;
686 }
687
688 // Return the number of segments we expect to see.
689
690 size_t
691 Layout::expected_segment_count() const
692 {
693   size_t ret = this->segment_list_.size();
694
695   // If we didn't see a SECTIONS clause in a linker script, we should
696   // already have the complete list of segments.  Otherwise we ask the
697   // SECTIONS clause how many segments it expects, and add in the ones
698   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
699
700   if (!this->script_options_->saw_sections_clause())
701     return ret;
702   else
703     {
704       const Script_sections* ss = this->script_options_->script_sections();
705       return ret + ss->expected_segment_count(this);
706     }
707 }
708
709 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
710 // is whether we saw a .note.GNU-stack section in the object file.
711 // GNU_STACK_FLAGS is the section flags.  The flags give the
712 // protection required for stack memory.  We record this in an
713 // executable as a PT_GNU_STACK segment.  If an object file does not
714 // have a .note.GNU-stack segment, we must assume that it is an old
715 // object.  On some targets that will force an executable stack.
716
717 void
718 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
719 {
720   if (!seen_gnu_stack)
721     this->input_without_gnu_stack_note_ = true;
722   else
723     {
724       this->input_with_gnu_stack_note_ = true;
725       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
726         this->input_requires_executable_stack_ = true;
727     }
728 }
729
730 // Create the dynamic sections which are needed before we read the
731 // relocs.
732
733 void
734 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
735 {
736   if (parameters->doing_static_link())
737     return;
738
739   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
740                                                        elfcpp::SHT_DYNAMIC,
741                                                        (elfcpp::SHF_ALLOC
742                                                         | elfcpp::SHF_WRITE),
743                                                        false);
744
745   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
746                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
747                                 elfcpp::STV_HIDDEN, 0, false, false);
748
749   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
750
751   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
752 }
753
754 // For each output section whose name can be represented as C symbol,
755 // define __start and __stop symbols for the section.  This is a GNU
756 // extension.
757
758 void
759 Layout::define_section_symbols(Symbol_table* symtab)
760 {
761   for (Section_list::const_iterator p = this->section_list_.begin();
762        p != this->section_list_.end();
763        ++p)
764     {
765       const char* const name = (*p)->name();
766       if (name[strspn(name,
767                       ("0123456789"
768                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
769                        "abcdefghijklmnopqrstuvwxyz"
770                        "_"))]
771           == '\0')
772         {
773           const std::string name_string(name);
774           const std::string start_name("__start_" + name_string);
775           const std::string stop_name("__stop_" + name_string);
776
777           symtab->define_in_output_data(start_name.c_str(),
778                                         NULL, // version
779                                         *p,
780                                         0, // value
781                                         0, // symsize
782                                         elfcpp::STT_NOTYPE,
783                                         elfcpp::STB_GLOBAL,
784                                         elfcpp::STV_DEFAULT,
785                                         0, // nonvis
786                                         false, // offset_is_from_end
787                                         true); // only_if_ref
788
789           symtab->define_in_output_data(stop_name.c_str(),
790                                         NULL, // version
791                                         *p,
792                                         0, // value
793                                         0, // symsize
794                                         elfcpp::STT_NOTYPE,
795                                         elfcpp::STB_GLOBAL,
796                                         elfcpp::STV_DEFAULT,
797                                         0, // nonvis
798                                         true, // offset_is_from_end
799                                         true); // only_if_ref
800         }
801     }
802 }
803
804 // Define symbols for group signatures.
805
806 void
807 Layout::define_group_signatures(Symbol_table* symtab)
808 {
809   for (Group_signatures::iterator p = this->group_signatures_.begin();
810        p != this->group_signatures_.end();
811        ++p)
812     {
813       Symbol* sym = symtab->lookup(p->signature, NULL);
814       if (sym != NULL)
815         p->section->set_info_symndx(sym);
816       else
817         {
818           // Force the name of the group section to the group
819           // signature, and use the group's section symbol as the
820           // signature symbol.
821           if (strcmp(p->section->name(), p->signature) != 0)
822             {
823               const char* name = this->namepool_.add(p->signature,
824                                                      true, NULL);
825               p->section->set_name(name);
826             }
827           p->section->set_needs_symtab_index();
828           p->section->set_info_section_symndx(p->section);
829         }
830     }
831
832   this->group_signatures_.clear();
833 }
834
835 // Find the first read-only PT_LOAD segment, creating one if
836 // necessary.
837
838 Output_segment*
839 Layout::find_first_load_seg()
840 {
841   for (Segment_list::const_iterator p = this->segment_list_.begin();
842        p != this->segment_list_.end();
843        ++p)
844     {
845       if ((*p)->type() == elfcpp::PT_LOAD
846           && ((*p)->flags() & elfcpp::PF_R) != 0
847           && ((*p)->flags() & elfcpp::PF_W) == 0)
848         return *p;
849     }
850
851   gold_assert(!this->script_options_->saw_phdrs_clause());
852
853   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
854                                                        elfcpp::PF_R);
855   return load_seg;
856 }
857
858 // Finalize the layout.  When this is called, we have created all the
859 // output sections and all the output segments which are based on
860 // input sections.  We have several things to do, and we have to do
861 // them in the right order, so that we get the right results correctly
862 // and efficiently.
863
864 // 1) Finalize the list of output segments and create the segment
865 // table header.
866
867 // 2) Finalize the dynamic symbol table and associated sections.
868
869 // 3) Determine the final file offset of all the output segments.
870
871 // 4) Determine the final file offset of all the SHF_ALLOC output
872 // sections.
873
874 // 5) Create the symbol table sections and the section name table
875 // section.
876
877 // 6) Finalize the symbol table: set symbol values to their final
878 // value and make a final determination of which symbols are going
879 // into the output symbol table.
880
881 // 7) Create the section table header.
882
883 // 8) Determine the final file offset of all the output sections which
884 // are not SHF_ALLOC, including the section table header.
885
886 // 9) Finalize the ELF file header.
887
888 // This function returns the size of the output file.
889
890 off_t
891 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
892                  const Task* task)
893 {
894   Target* const target = parameters->target();
895
896   target->finalize_sections(this);
897
898   this->count_local_symbols(task, input_objects);
899
900   this->create_gold_note();
901   this->create_executable_stack_info(target);
902
903   Output_segment* phdr_seg = NULL;
904   if (!parameters->output_is_object() && !parameters->doing_static_link())
905     {
906       // There was a dynamic object in the link.  We need to create
907       // some information for the dynamic linker.
908
909       // Create the PT_PHDR segment which will hold the program
910       // headers.
911       if (!this->script_options_->saw_phdrs_clause())
912         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
913
914       // Create the dynamic symbol table, including the hash table.
915       Output_section* dynstr;
916       std::vector<Symbol*> dynamic_symbols;
917       unsigned int local_dynamic_count;
918       Versions versions(this->options_, &this->dynpool_);
919       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
920                                   &local_dynamic_count, &dynamic_symbols,
921                                   &versions);
922
923       // Create the .interp section to hold the name of the
924       // interpreter, and put it in a PT_INTERP segment.
925       if (!parameters->output_is_shared())
926         this->create_interp(target);
927
928       // Finish the .dynamic section to hold the dynamic data, and put
929       // it in a PT_DYNAMIC segment.
930       this->finish_dynamic_section(input_objects, symtab);
931
932       // We should have added everything we need to the dynamic string
933       // table.
934       this->dynpool_.set_string_offsets();
935
936       // Create the version sections.  We can't do this until the
937       // dynamic string table is complete.
938       this->create_version_sections(&versions, symtab, local_dynamic_count,
939                                     dynamic_symbols, dynstr);
940     }
941
942   // If there is a SECTIONS clause, put all the input sections into
943   // the required order.
944   Output_segment* load_seg;
945   if (parameters->output_is_object())
946     load_seg = NULL;
947   else if (this->script_options_->saw_sections_clause())
948     load_seg = this->set_section_addresses_from_script(symtab);
949   else
950     load_seg = this->find_first_load_seg();
951
952   gold_assert(phdr_seg == NULL || load_seg != NULL);
953
954   // Lay out the segment headers.
955   Output_segment_headers* segment_headers;
956   if (parameters->output_is_object())
957     segment_headers = NULL;
958   else
959     {
960       segment_headers = new Output_segment_headers(this->segment_list_);
961       if (load_seg != NULL)
962         load_seg->add_initial_output_data(segment_headers);
963       if (phdr_seg != NULL)
964         phdr_seg->add_initial_output_data(segment_headers);
965     }
966
967   // Lay out the file header.
968   Output_file_header* file_header;
969   file_header = new Output_file_header(target, symtab, segment_headers,
970                                        this->script_options_->entry());
971   if (load_seg != NULL)
972     load_seg->add_initial_output_data(file_header);
973
974   this->special_output_list_.push_back(file_header);
975   if (segment_headers != NULL)
976     this->special_output_list_.push_back(segment_headers);
977
978   if (this->script_options_->saw_phdrs_clause()
979       && !parameters->output_is_object())
980     {
981       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
982       // clause in a linker script.
983       Script_sections* ss = this->script_options_->script_sections();
984       ss->put_headers_in_phdrs(file_header, segment_headers);
985     }
986
987   // We set the output section indexes in set_segment_offsets and
988   // set_section_indexes.
989   unsigned int shndx = 1;
990
991   // Set the file offsets of all the segments, and all the sections
992   // they contain.
993   off_t off;
994   if (!parameters->output_is_object())
995     off = this->set_segment_offsets(target, load_seg, &shndx);
996   else
997     off = this->set_relocatable_section_offsets(file_header, &shndx);
998
999   // Set the file offsets of all the non-data sections we've seen so
1000   // far which don't have to wait for the input sections.  We need
1001   // this in order to finalize local symbols in non-allocated
1002   // sections.
1003   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1004
1005   // Create the symbol table sections.
1006   this->create_symtab_sections(input_objects, symtab, &off);
1007   if (!parameters->doing_static_link())
1008     this->assign_local_dynsym_offsets(input_objects);
1009
1010   // Process any symbol assignments from a linker script.  This must
1011   // be called after the symbol table has been finalized.
1012   this->script_options_->finalize_symbols(symtab, this);
1013
1014   // Create the .shstrtab section.
1015   Output_section* shstrtab_section = this->create_shstrtab();
1016
1017   // Set the file offsets of the rest of the non-data sections which
1018   // don't have to wait for the input sections.
1019   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1020
1021   // Now that all sections have been created, set the section indexes.
1022   shndx = this->set_section_indexes(shndx);
1023
1024   // Create the section table header.
1025   this->create_shdrs(&off);
1026
1027   // If there are no sections which require postprocessing, we can
1028   // handle the section names now, and avoid a resize later.
1029   if (!this->any_postprocessing_sections_)
1030     off = this->set_section_offsets(off,
1031                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1032
1033   file_header->set_section_info(this->section_headers_, shstrtab_section);
1034
1035   // Now we know exactly where everything goes in the output file
1036   // (except for non-allocated sections which require postprocessing).
1037   Output_data::layout_complete();
1038
1039   this->output_file_size_ = off;
1040
1041   return off;
1042 }
1043
1044 // Create a .note section for an executable or shared library.  This
1045 // records the version of gold used to create the binary.
1046
1047 void
1048 Layout::create_gold_note()
1049 {
1050   if (parameters->output_is_object())
1051     return;
1052
1053   // Authorities all agree that the values in a .note field should
1054   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1055   // they differ on what the alignment is for 64-bit binaries.
1056   // The GABI says unambiguously they take 8-byte alignment:
1057   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1058   // Other documentation says alignment should always be 4 bytes:
1059   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1060   // GNU ld and GNU readelf both support the latter (at least as of
1061   // version 2.16.91), and glibc always generates the latter for
1062   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1063   // here.
1064 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1065   const int size = parameters->get_size();
1066 #else
1067   const int size = 32;
1068 #endif
1069
1070   // The contents of the .note section.
1071   const char* name = "GNU";
1072   std::string desc(std::string("gold ") + gold::get_version_string());
1073   size_t namesz = strlen(name) + 1;
1074   size_t aligned_namesz = align_address(namesz, size / 8);
1075   size_t descsz = desc.length() + 1;
1076   size_t aligned_descsz = align_address(descsz, size / 8);
1077   const int note_type = 4;
1078
1079   size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1080
1081   unsigned char buffer[128];
1082   gold_assert(sizeof buffer >= notesz);
1083   memset(buffer, 0, notesz);
1084
1085   bool is_big_endian = parameters->is_big_endian();
1086
1087   if (size == 32)
1088     {
1089       if (!is_big_endian)
1090         {
1091           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1092           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1093           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1094         }
1095       else
1096         {
1097           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1098           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1099           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1100         }
1101     }
1102   else if (size == 64)
1103     {
1104       if (!is_big_endian)
1105         {
1106           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1107           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1108           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1109         }
1110       else
1111         {
1112           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1113           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1114           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1115         }
1116     }
1117   else
1118     gold_unreachable();
1119
1120   memcpy(buffer + 3 * (size / 8), name, namesz);
1121   memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1122
1123   const char* note_name = this->namepool_.add(".note", false, NULL);
1124   Output_section* os = this->make_output_section(note_name,
1125                                                  elfcpp::SHT_NOTE,
1126                                                  0);
1127   Output_section_data* posd = new Output_data_const(buffer, notesz,
1128                                                     size / 8);
1129   os->add_output_section_data(posd);
1130 }
1131
1132 // Record whether the stack should be executable.  This can be set
1133 // from the command line using the -z execstack or -z noexecstack
1134 // options.  Otherwise, if any input file has a .note.GNU-stack
1135 // section with the SHF_EXECINSTR flag set, the stack should be
1136 // executable.  Otherwise, if at least one input file a
1137 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1138 // section, we use the target default for whether the stack should be
1139 // executable.  Otherwise, we don't generate a stack note.  When
1140 // generating a object file, we create a .note.GNU-stack section with
1141 // the appropriate marking.  When generating an executable or shared
1142 // library, we create a PT_GNU_STACK segment.
1143
1144 void
1145 Layout::create_executable_stack_info(const Target* target)
1146 {
1147   bool is_stack_executable;
1148   if (this->options_.is_execstack_set())
1149     is_stack_executable = this->options_.is_stack_executable();
1150   else if (!this->input_with_gnu_stack_note_)
1151     return;
1152   else
1153     {
1154       if (this->input_requires_executable_stack_)
1155         is_stack_executable = true;
1156       else if (this->input_without_gnu_stack_note_)
1157         is_stack_executable = target->is_default_stack_executable();
1158       else
1159         is_stack_executable = false;
1160     }
1161
1162   if (parameters->output_is_object())
1163     {
1164       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1165       elfcpp::Elf_Xword flags = 0;
1166       if (is_stack_executable)
1167         flags |= elfcpp::SHF_EXECINSTR;
1168       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1169     }
1170   else
1171     {
1172       if (this->script_options_->saw_phdrs_clause())
1173         return;
1174       int flags = elfcpp::PF_R | elfcpp::PF_W;
1175       if (is_stack_executable)
1176         flags |= elfcpp::PF_X;
1177       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1178     }
1179 }
1180
1181 // Return whether SEG1 should be before SEG2 in the output file.  This
1182 // is based entirely on the segment type and flags.  When this is
1183 // called the segment addresses has normally not yet been set.
1184
1185 bool
1186 Layout::segment_precedes(const Output_segment* seg1,
1187                          const Output_segment* seg2)
1188 {
1189   elfcpp::Elf_Word type1 = seg1->type();
1190   elfcpp::Elf_Word type2 = seg2->type();
1191
1192   // The single PT_PHDR segment is required to precede any loadable
1193   // segment.  We simply make it always first.
1194   if (type1 == elfcpp::PT_PHDR)
1195     {
1196       gold_assert(type2 != elfcpp::PT_PHDR);
1197       return true;
1198     }
1199   if (type2 == elfcpp::PT_PHDR)
1200     return false;
1201
1202   // The single PT_INTERP segment is required to precede any loadable
1203   // segment.  We simply make it always second.
1204   if (type1 == elfcpp::PT_INTERP)
1205     {
1206       gold_assert(type2 != elfcpp::PT_INTERP);
1207       return true;
1208     }
1209   if (type2 == elfcpp::PT_INTERP)
1210     return false;
1211
1212   // We then put PT_LOAD segments before any other segments.
1213   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1214     return true;
1215   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1216     return false;
1217
1218   // We put the PT_TLS segment last, because that is where the dynamic
1219   // linker expects to find it (this is just for efficiency; other
1220   // positions would also work correctly).
1221   if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1222     return false;
1223   if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1224     return true;
1225
1226   const elfcpp::Elf_Word flags1 = seg1->flags();
1227   const elfcpp::Elf_Word flags2 = seg2->flags();
1228
1229   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1230   // by the numeric segment type and flags values.  There should not
1231   // be more than one segment with the same type and flags.
1232   if (type1 != elfcpp::PT_LOAD)
1233     {
1234       if (type1 != type2)
1235         return type1 < type2;
1236       gold_assert(flags1 != flags2);
1237       return flags1 < flags2;
1238     }
1239
1240   // If the addresses are set already, sort by load address.
1241   if (seg1->are_addresses_set())
1242     {
1243       if (!seg2->are_addresses_set())
1244         return true;
1245
1246       unsigned int section_count1 = seg1->output_section_count();
1247       unsigned int section_count2 = seg2->output_section_count();
1248       if (section_count1 == 0 && section_count2 > 0)
1249         return true;
1250       if (section_count1 > 0 && section_count2 == 0)
1251         return false;
1252
1253       uint64_t paddr1 = seg1->first_section_load_address();
1254       uint64_t paddr2 = seg2->first_section_load_address();
1255       if (paddr1 != paddr2)
1256         return paddr1 < paddr2;
1257     }
1258   else if (seg2->are_addresses_set())
1259     return false;
1260
1261   // We sort PT_LOAD segments based on the flags.  Readonly segments
1262   // come before writable segments.  Then executable segments come
1263   // before non-executable segments.  Then the unlikely case of a
1264   // non-readable segment comes before the normal case of a readable
1265   // segment.  If there are multiple segments with the same type and
1266   // flags, we require that the address be set, and we sort by
1267   // virtual address and then physical address.
1268   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1269     return (flags1 & elfcpp::PF_W) == 0;
1270   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1271     return (flags1 & elfcpp::PF_X) != 0;
1272   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1273     return (flags1 & elfcpp::PF_R) == 0;
1274
1275   // We shouldn't get here--we shouldn't create segments which we
1276   // can't distinguish.
1277   gold_unreachable();
1278 }
1279
1280 // Set the file offsets of all the segments, and all the sections they
1281 // contain.  They have all been created.  LOAD_SEG must be be laid out
1282 // first.  Return the offset of the data to follow.
1283
1284 off_t
1285 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1286                             unsigned int *pshndx)
1287 {
1288   // Sort them into the final order.
1289   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1290             Layout::Compare_segments());
1291
1292   // Find the PT_LOAD segments, and set their addresses and offsets
1293   // and their section's addresses and offsets.
1294   uint64_t addr;
1295   if (this->options_.user_set_text_segment_address())
1296     addr = options_.text_segment_address();
1297   else if (parameters->output_is_shared())
1298     addr = 0;
1299   else
1300     addr = target->default_text_segment_address();
1301   off_t off = 0;
1302
1303   // If LOAD_SEG is NULL, then the file header and segment headers
1304   // will not be loadable.  But they still need to be at offset 0 in
1305   // the file.  Set their offsets now.
1306   if (load_seg == NULL)
1307     {
1308       for (Data_list::iterator p = this->special_output_list_.begin();
1309            p != this->special_output_list_.end();
1310            ++p)
1311         {
1312           off = align_address(off, (*p)->addralign());
1313           (*p)->set_address_and_file_offset(0, off);
1314           off += (*p)->data_size();
1315         }
1316     }
1317
1318   bool was_readonly = false;
1319   for (Segment_list::iterator p = this->segment_list_.begin();
1320        p != this->segment_list_.end();
1321        ++p)
1322     {
1323       if ((*p)->type() == elfcpp::PT_LOAD)
1324         {
1325           if (load_seg != NULL && load_seg != *p)
1326             gold_unreachable();
1327           load_seg = NULL;
1328
1329           uint64_t orig_addr = addr;
1330           uint64_t orig_off = off;
1331
1332           uint64_t aligned_addr = 0;
1333           uint64_t abi_pagesize = target->abi_pagesize();
1334
1335           // FIXME: This should depend on the -n and -N options.
1336           (*p)->set_minimum_p_align(target->common_pagesize());
1337
1338           bool are_addresses_set = (*p)->are_addresses_set();
1339           if (are_addresses_set)
1340             {
1341               // When it comes to setting file offsets, we care about
1342               // the physical address.
1343               addr = (*p)->paddr();
1344
1345               // Adjust the file offset to the same address modulo the
1346               // page size.
1347               uint64_t unsigned_off = off;
1348               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1349                                       | (addr & (abi_pagesize - 1)));
1350               if (aligned_off < unsigned_off)
1351                 aligned_off += abi_pagesize;
1352               off = aligned_off;
1353             }
1354           else
1355             {
1356               // If the last segment was readonly, and this one is
1357               // not, then skip the address forward one page,
1358               // maintaining the same position within the page.  This
1359               // lets us store both segments overlapping on a single
1360               // page in the file, but the loader will put them on
1361               // different pages in memory.
1362
1363               addr = align_address(addr, (*p)->maximum_alignment());
1364               aligned_addr = addr;
1365
1366               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1367                 {
1368                   if ((addr & (abi_pagesize - 1)) != 0)
1369                     addr = addr + abi_pagesize;
1370                 }
1371
1372               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1373             }
1374
1375           unsigned int shndx_hold = *pshndx;
1376           uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1377                                                           pshndx);
1378
1379           // Now that we know the size of this segment, we may be able
1380           // to save a page in memory, at the cost of wasting some
1381           // file space, by instead aligning to the start of a new
1382           // page.  Here we use the real machine page size rather than
1383           // the ABI mandated page size.
1384
1385           if (!are_addresses_set && aligned_addr != addr)
1386             {
1387               uint64_t common_pagesize = target->common_pagesize();
1388               uint64_t first_off = (common_pagesize
1389                                     - (aligned_addr
1390                                        & (common_pagesize - 1)));
1391               uint64_t last_off = new_addr & (common_pagesize - 1);
1392               if (first_off > 0
1393                   && last_off > 0
1394                   && ((aligned_addr & ~ (common_pagesize - 1))
1395                       != (new_addr & ~ (common_pagesize - 1)))
1396                   && first_off + last_off <= common_pagesize)
1397                 {
1398                   *pshndx = shndx_hold;
1399                   addr = align_address(aligned_addr, common_pagesize);
1400                   addr = align_address(addr, (*p)->maximum_alignment());
1401                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1402                   new_addr = (*p)->set_section_addresses(true, addr, &off,
1403                                                          pshndx);
1404                 }
1405             }
1406
1407           addr = new_addr;
1408
1409           if (((*p)->flags() & elfcpp::PF_W) == 0)
1410             was_readonly = true;
1411         }
1412     }
1413
1414   // Handle the non-PT_LOAD segments, setting their offsets from their
1415   // section's offsets.
1416   for (Segment_list::iterator p = this->segment_list_.begin();
1417        p != this->segment_list_.end();
1418        ++p)
1419     {
1420       if ((*p)->type() != elfcpp::PT_LOAD)
1421         (*p)->set_offset();
1422     }
1423
1424   // Set the TLS offsets for each section in the PT_TLS segment.
1425   if (this->tls_segment_ != NULL)
1426     this->tls_segment_->set_tls_offsets();
1427
1428   return off;
1429 }
1430
1431 // Set the offsets of all the allocated sections when doing a
1432 // relocatable link.  This does the same jobs as set_segment_offsets,
1433 // only for a relocatable link.
1434
1435 off_t
1436 Layout::set_relocatable_section_offsets(Output_data* file_header,
1437                                         unsigned int *pshndx)
1438 {
1439   off_t off = 0;
1440
1441   file_header->set_address_and_file_offset(0, 0);
1442   off += file_header->data_size();
1443
1444   for (Section_list::iterator p = this->section_list_.begin();
1445        p != this->section_list_.end();
1446        ++p)
1447     {
1448       // We skip unallocated sections here, except that group sections
1449       // have to come first.
1450       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1451           && (*p)->type() != elfcpp::SHT_GROUP)
1452         continue;
1453
1454       off = align_address(off, (*p)->addralign());
1455
1456       // The linker script might have set the address.
1457       if (!(*p)->is_address_valid())
1458         (*p)->set_address(0);
1459       (*p)->set_file_offset(off);
1460       (*p)->finalize_data_size();
1461       off += (*p)->data_size();
1462
1463       (*p)->set_out_shndx(*pshndx);
1464       ++*pshndx;
1465     }
1466
1467   return off;
1468 }
1469
1470 // Set the file offset of all the sections not associated with a
1471 // segment.
1472
1473 off_t
1474 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1475 {
1476   for (Section_list::iterator p = this->unattached_section_list_.begin();
1477        p != this->unattached_section_list_.end();
1478        ++p)
1479     {
1480       // The symtab section is handled in create_symtab_sections.
1481       if (*p == this->symtab_section_)
1482         continue;
1483
1484       // If we've already set the data size, don't set it again.
1485       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1486         continue;
1487
1488       if (pass == BEFORE_INPUT_SECTIONS_PASS
1489           && (*p)->requires_postprocessing())
1490         {
1491           (*p)->create_postprocessing_buffer();
1492           this->any_postprocessing_sections_ = true;
1493         }
1494
1495       if (pass == BEFORE_INPUT_SECTIONS_PASS
1496           && (*p)->after_input_sections())
1497         continue;
1498       else if (pass == POSTPROCESSING_SECTIONS_PASS
1499                && (!(*p)->after_input_sections()
1500                    || (*p)->type() == elfcpp::SHT_STRTAB))
1501         continue;
1502       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1503                && (!(*p)->after_input_sections()
1504                    || (*p)->type() != elfcpp::SHT_STRTAB))
1505         continue;
1506
1507       off = align_address(off, (*p)->addralign());
1508       (*p)->set_file_offset(off);
1509       (*p)->finalize_data_size();
1510       off += (*p)->data_size();
1511
1512       // At this point the name must be set.
1513       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1514         this->namepool_.add((*p)->name(), false, NULL);
1515     }
1516   return off;
1517 }
1518
1519 // Set the section indexes of all the sections not associated with a
1520 // segment.
1521
1522 unsigned int
1523 Layout::set_section_indexes(unsigned int shndx)
1524 {
1525   const bool output_is_object = parameters->output_is_object();
1526   for (Section_list::iterator p = this->unattached_section_list_.begin();
1527        p != this->unattached_section_list_.end();
1528        ++p)
1529     {
1530       // In a relocatable link, we already did group sections.
1531       if (output_is_object
1532           && (*p)->type() == elfcpp::SHT_GROUP)
1533         continue;
1534
1535       (*p)->set_out_shndx(shndx);
1536       ++shndx;
1537     }
1538   return shndx;
1539 }
1540
1541 // Set the section addresses according to the linker script.  This is
1542 // only called when we see a SECTIONS clause.  This returns the
1543 // program segment which should hold the file header and segment
1544 // headers, if any.  It will return NULL if they should not be in a
1545 // segment.
1546
1547 Output_segment*
1548 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1549 {
1550   Script_sections* ss = this->script_options_->script_sections();
1551   gold_assert(ss->saw_sections_clause());
1552
1553   // Place each orphaned output section in the script.
1554   for (Section_list::iterator p = this->section_list_.begin();
1555        p != this->section_list_.end();
1556        ++p)
1557     {
1558       if (!(*p)->found_in_sections_clause())
1559         ss->place_orphan(*p);
1560     }
1561
1562   return this->script_options_->set_section_addresses(symtab, this);
1563 }
1564
1565 // Count the local symbols in the regular symbol table and the dynamic
1566 // symbol table, and build the respective string pools.
1567
1568 void
1569 Layout::count_local_symbols(const Task* task,
1570                             const Input_objects* input_objects)
1571 {
1572   // First, figure out an upper bound on the number of symbols we'll
1573   // be inserting into each pool.  This helps us create the pools with
1574   // the right size, to avoid unnecessary hashtable resizing.
1575   unsigned int symbol_count = 0;
1576   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1577        p != input_objects->relobj_end();
1578        ++p)
1579     symbol_count += (*p)->local_symbol_count();
1580
1581   // Go from "upper bound" to "estimate."  We overcount for two
1582   // reasons: we double-count symbols that occur in more than one
1583   // object file, and we count symbols that are dropped from the
1584   // output.  Add it all together and assume we overcount by 100%.
1585   symbol_count /= 2;
1586
1587   // We assume all symbols will go into both the sympool and dynpool.
1588   this->sympool_.reserve(symbol_count);
1589   this->dynpool_.reserve(symbol_count);
1590
1591   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1592        p != input_objects->relobj_end();
1593        ++p)
1594     {
1595       Task_lock_obj<Object> tlo(task, *p);
1596       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1597     }
1598 }
1599
1600 // Create the symbol table sections.  Here we also set the final
1601 // values of the symbols.  At this point all the loadable sections are
1602 // fully laid out.
1603
1604 void
1605 Layout::create_symtab_sections(const Input_objects* input_objects,
1606                                Symbol_table* symtab,
1607                                off_t* poff)
1608 {
1609   int symsize;
1610   unsigned int align;
1611   if (parameters->get_size() == 32)
1612     {
1613       symsize = elfcpp::Elf_sizes<32>::sym_size;
1614       align = 4;
1615     }
1616   else if (parameters->get_size() == 64)
1617     {
1618       symsize = elfcpp::Elf_sizes<64>::sym_size;
1619       align = 8;
1620     }
1621   else
1622     gold_unreachable();
1623
1624   off_t off = *poff;
1625   off = align_address(off, align);
1626   off_t startoff = off;
1627
1628   // Save space for the dummy symbol at the start of the section.  We
1629   // never bother to write this out--it will just be left as zero.
1630   off += symsize;
1631   unsigned int local_symbol_index = 1;
1632
1633   // Add STT_SECTION symbols for each Output section which needs one.
1634   for (Section_list::iterator p = this->section_list_.begin();
1635        p != this->section_list_.end();
1636        ++p)
1637     {
1638       if (!(*p)->needs_symtab_index())
1639         (*p)->set_symtab_index(-1U);
1640       else
1641         {
1642           (*p)->set_symtab_index(local_symbol_index);
1643           ++local_symbol_index;
1644           off += symsize;
1645         }
1646     }
1647
1648   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1649        p != input_objects->relobj_end();
1650        ++p)
1651     {
1652       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1653                                                         off);
1654       off += (index - local_symbol_index) * symsize;
1655       local_symbol_index = index;
1656     }
1657
1658   unsigned int local_symcount = local_symbol_index;
1659   gold_assert(local_symcount * symsize == off - startoff);
1660
1661   off_t dynoff;
1662   size_t dyn_global_index;
1663   size_t dyncount;
1664   if (this->dynsym_section_ == NULL)
1665     {
1666       dynoff = 0;
1667       dyn_global_index = 0;
1668       dyncount = 0;
1669     }
1670   else
1671     {
1672       dyn_global_index = this->dynsym_section_->info();
1673       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1674       dynoff = this->dynsym_section_->offset() + locsize;
1675       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1676       gold_assert(static_cast<off_t>(dyncount * symsize)
1677                   == this->dynsym_section_->data_size() - locsize);
1678     }
1679
1680   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1681                          &this->sympool_, &local_symcount);
1682
1683   if (!parameters->strip_all())
1684     {
1685       this->sympool_.set_string_offsets();
1686
1687       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1688       Output_section* osymtab = this->make_output_section(symtab_name,
1689                                                           elfcpp::SHT_SYMTAB,
1690                                                           0);
1691       this->symtab_section_ = osymtab;
1692
1693       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1694                                                              align);
1695       osymtab->add_output_section_data(pos);
1696
1697       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1698       Output_section* ostrtab = this->make_output_section(strtab_name,
1699                                                           elfcpp::SHT_STRTAB,
1700                                                           0);
1701
1702       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1703       ostrtab->add_output_section_data(pstr);
1704
1705       osymtab->set_file_offset(startoff);
1706       osymtab->finalize_data_size();
1707       osymtab->set_link_section(ostrtab);
1708       osymtab->set_info(local_symcount);
1709       osymtab->set_entsize(symsize);
1710
1711       *poff = off;
1712     }
1713 }
1714
1715 // Create the .shstrtab section, which holds the names of the
1716 // sections.  At the time this is called, we have created all the
1717 // output sections except .shstrtab itself.
1718
1719 Output_section*
1720 Layout::create_shstrtab()
1721 {
1722   // FIXME: We don't need to create a .shstrtab section if we are
1723   // stripping everything.
1724
1725   const char* name = this->namepool_.add(".shstrtab", false, NULL);
1726
1727   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1728
1729   // We can't write out this section until we've set all the section
1730   // names, and we don't set the names of compressed output sections
1731   // until relocations are complete.
1732   os->set_after_input_sections();
1733
1734   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1735   os->add_output_section_data(posd);
1736
1737   return os;
1738 }
1739
1740 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
1741 // offset.
1742
1743 void
1744 Layout::create_shdrs(off_t* poff)
1745 {
1746   Output_section_headers* oshdrs;
1747   oshdrs = new Output_section_headers(this,
1748                                       &this->segment_list_,
1749                                       &this->section_list_,
1750                                       &this->unattached_section_list_,
1751                                       &this->namepool_);
1752   off_t off = align_address(*poff, oshdrs->addralign());
1753   oshdrs->set_address_and_file_offset(0, off);
1754   off += oshdrs->data_size();
1755   *poff = off;
1756   this->section_headers_ = oshdrs;
1757 }
1758
1759 // Create the dynamic symbol table.
1760
1761 void
1762 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1763                               Symbol_table* symtab,
1764                               Output_section **pdynstr,
1765                               unsigned int* plocal_dynamic_count,
1766                               std::vector<Symbol*>* pdynamic_symbols,
1767                               Versions* pversions)
1768 {
1769   // Count all the symbols in the dynamic symbol table, and set the
1770   // dynamic symbol indexes.
1771
1772   // Skip symbol 0, which is always all zeroes.
1773   unsigned int index = 1;
1774
1775   // Add STT_SECTION symbols for each Output section which needs one.
1776   for (Section_list::iterator p = this->section_list_.begin();
1777        p != this->section_list_.end();
1778        ++p)
1779     {
1780       if (!(*p)->needs_dynsym_index())
1781         (*p)->set_dynsym_index(-1U);
1782       else
1783         {
1784           (*p)->set_dynsym_index(index);
1785           ++index;
1786         }
1787     }
1788
1789   // Count the local symbols that need to go in the dynamic symbol table,
1790   // and set the dynamic symbol indexes.
1791   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1792        p != input_objects->relobj_end();
1793        ++p)
1794     {
1795       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1796       index = new_index;
1797     }
1798
1799   unsigned int local_symcount = index;
1800   *plocal_dynamic_count = local_symcount;
1801
1802   // FIXME: We have to tell set_dynsym_indexes whether the
1803   // -E/--export-dynamic option was used.
1804   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1805                                      &this->dynpool_, pversions);
1806
1807   int symsize;
1808   unsigned int align;
1809   const int size = parameters->get_size();
1810   if (size == 32)
1811     {
1812       symsize = elfcpp::Elf_sizes<32>::sym_size;
1813       align = 4;
1814     }
1815   else if (size == 64)
1816     {
1817       symsize = elfcpp::Elf_sizes<64>::sym_size;
1818       align = 8;
1819     }
1820   else
1821     gold_unreachable();
1822
1823   // Create the dynamic symbol table section.
1824
1825   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1826                                                        elfcpp::SHT_DYNSYM,
1827                                                        elfcpp::SHF_ALLOC,
1828                                                        false);
1829
1830   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1831                                                            align);
1832   dynsym->add_output_section_data(odata);
1833
1834   dynsym->set_info(local_symcount);
1835   dynsym->set_entsize(symsize);
1836   dynsym->set_addralign(align);
1837
1838   this->dynsym_section_ = dynsym;
1839
1840   Output_data_dynamic* const odyn = this->dynamic_data_;
1841   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1842   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1843
1844   // Create the dynamic string table section.
1845
1846   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1847                                                        elfcpp::SHT_STRTAB,
1848                                                        elfcpp::SHF_ALLOC,
1849                                                        false);
1850
1851   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1852   dynstr->add_output_section_data(strdata);
1853
1854   dynsym->set_link_section(dynstr);
1855   this->dynamic_section_->set_link_section(dynstr);
1856
1857   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1858   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1859
1860   *pdynstr = dynstr;
1861
1862   // Create the hash tables.
1863
1864   // FIXME: We need an option to create a GNU hash table.
1865
1866   unsigned char* phash;
1867   unsigned int hashlen;
1868   Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1869                                 &phash, &hashlen);
1870
1871   Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1872                                                         elfcpp::SHT_HASH,
1873                                                         elfcpp::SHF_ALLOC,
1874                                                         false);
1875
1876   Output_section_data* hashdata = new Output_data_const_buffer(phash,
1877                                                                hashlen,
1878                                                                align);
1879   hashsec->add_output_section_data(hashdata);
1880
1881   hashsec->set_link_section(dynsym);
1882   hashsec->set_entsize(4);
1883
1884   odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1885 }
1886
1887 // Assign offsets to each local portion of the dynamic symbol table.
1888
1889 void
1890 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1891 {
1892   Output_section* dynsym = this->dynsym_section_;
1893   gold_assert(dynsym != NULL);
1894
1895   off_t off = dynsym->offset();
1896
1897   // Skip the dummy symbol at the start of the section.
1898   off += dynsym->entsize();
1899
1900   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1901        p != input_objects->relobj_end();
1902        ++p)
1903     {
1904       unsigned int count = (*p)->set_local_dynsym_offset(off);
1905       off += count * dynsym->entsize();
1906     }
1907 }
1908
1909 // Create the version sections.
1910
1911 void
1912 Layout::create_version_sections(const Versions* versions,
1913                                 const Symbol_table* symtab,
1914                                 unsigned int local_symcount,
1915                                 const std::vector<Symbol*>& dynamic_symbols,
1916                                 const Output_section* dynstr)
1917 {
1918   if (!versions->any_defs() && !versions->any_needs())
1919     return;
1920
1921   if (parameters->get_size() == 32)
1922     {
1923       if (parameters->is_big_endian())
1924         {
1925 #ifdef HAVE_TARGET_32_BIG
1926           this->sized_create_version_sections
1927               SELECT_SIZE_ENDIAN_NAME(32, true)(
1928                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1929                   SELECT_SIZE_ENDIAN(32, true));
1930 #else
1931           gold_unreachable();
1932 #endif
1933         }
1934       else
1935         {
1936 #ifdef HAVE_TARGET_32_LITTLE
1937           this->sized_create_version_sections
1938               SELECT_SIZE_ENDIAN_NAME(32, false)(
1939                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1940                   SELECT_SIZE_ENDIAN(32, false));
1941 #else
1942           gold_unreachable();
1943 #endif
1944         }
1945     }
1946   else if (parameters->get_size() == 64)
1947     {
1948       if (parameters->is_big_endian())
1949         {
1950 #ifdef HAVE_TARGET_64_BIG
1951           this->sized_create_version_sections
1952               SELECT_SIZE_ENDIAN_NAME(64, true)(
1953                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1954                   SELECT_SIZE_ENDIAN(64, true));
1955 #else
1956           gold_unreachable();
1957 #endif
1958         }
1959       else
1960         {
1961 #ifdef HAVE_TARGET_64_LITTLE
1962           this->sized_create_version_sections
1963               SELECT_SIZE_ENDIAN_NAME(64, false)(
1964                   versions, symtab, local_symcount, dynamic_symbols, dynstr
1965                   SELECT_SIZE_ENDIAN(64, false));
1966 #else
1967           gold_unreachable();
1968 #endif
1969         }
1970     }
1971   else
1972     gold_unreachable();
1973 }
1974
1975 // Create the version sections, sized version.
1976
1977 template<int size, bool big_endian>
1978 void
1979 Layout::sized_create_version_sections(
1980     const Versions* versions,
1981     const Symbol_table* symtab,
1982     unsigned int local_symcount,
1983     const std::vector<Symbol*>& dynamic_symbols,
1984     const Output_section* dynstr
1985     ACCEPT_SIZE_ENDIAN)
1986 {
1987   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
1988                                                      elfcpp::SHT_GNU_versym,
1989                                                      elfcpp::SHF_ALLOC,
1990                                                      false);
1991
1992   unsigned char* vbuf;
1993   unsigned int vsize;
1994   versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1995       symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1996       SELECT_SIZE_ENDIAN(size, big_endian));
1997
1998   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1999
2000   vsec->add_output_section_data(vdata);
2001   vsec->set_entsize(2);
2002   vsec->set_link_section(this->dynsym_section_);
2003
2004   Output_data_dynamic* const odyn = this->dynamic_data_;
2005   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2006
2007   if (versions->any_defs())
2008     {
2009       Output_section* vdsec;
2010       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2011                                          elfcpp::SHT_GNU_verdef,
2012                                          elfcpp::SHF_ALLOC,
2013                                          false);
2014
2015       unsigned char* vdbuf;
2016       unsigned int vdsize;
2017       unsigned int vdentries;
2018       versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2019           &this->dynpool_, &vdbuf, &vdsize, &vdentries
2020           SELECT_SIZE_ENDIAN(size, big_endian));
2021
2022       Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2023                                                                  vdsize,
2024                                                                  4);
2025
2026       vdsec->add_output_section_data(vddata);
2027       vdsec->set_link_section(dynstr);
2028       vdsec->set_info(vdentries);
2029
2030       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2031       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2032     }
2033
2034   if (versions->any_needs())
2035     {
2036       Output_section* vnsec;
2037       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2038                                           elfcpp::SHT_GNU_verneed,
2039                                           elfcpp::SHF_ALLOC,
2040                                           false);
2041
2042       unsigned char* vnbuf;
2043       unsigned int vnsize;
2044       unsigned int vnentries;
2045       versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2046         (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2047          SELECT_SIZE_ENDIAN(size, big_endian));
2048
2049       Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2050                                                                  vnsize,
2051                                                                  4);
2052
2053       vnsec->add_output_section_data(vndata);
2054       vnsec->set_link_section(dynstr);
2055       vnsec->set_info(vnentries);
2056
2057       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2058       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2059     }
2060 }
2061
2062 // Create the .interp section and PT_INTERP segment.
2063
2064 void
2065 Layout::create_interp(const Target* target)
2066 {
2067   const char* interp = this->options_.dynamic_linker();
2068   if (interp == NULL)
2069     {
2070       interp = target->dynamic_linker();
2071       gold_assert(interp != NULL);
2072     }
2073
2074   size_t len = strlen(interp) + 1;
2075
2076   Output_section_data* odata = new Output_data_const(interp, len, 1);
2077
2078   Output_section* osec = this->choose_output_section(NULL, ".interp",
2079                                                      elfcpp::SHT_PROGBITS,
2080                                                      elfcpp::SHF_ALLOC,
2081                                                      false);
2082   osec->add_output_section_data(odata);
2083
2084   if (!this->script_options_->saw_phdrs_clause())
2085     {
2086       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2087                                                        elfcpp::PF_R);
2088       oseg->add_initial_output_section(osec, elfcpp::PF_R);
2089     }
2090 }
2091
2092 // Finish the .dynamic section and PT_DYNAMIC segment.
2093
2094 void
2095 Layout::finish_dynamic_section(const Input_objects* input_objects,
2096                                const Symbol_table* symtab)
2097 {
2098   if (!this->script_options_->saw_phdrs_clause())
2099     {
2100       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2101                                                        (elfcpp::PF_R
2102                                                         | elfcpp::PF_W));
2103       oseg->add_initial_output_section(this->dynamic_section_,
2104                                        elfcpp::PF_R | elfcpp::PF_W);
2105     }
2106
2107   Output_data_dynamic* const odyn = this->dynamic_data_;
2108
2109   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2110        p != input_objects->dynobj_end();
2111        ++p)
2112     {
2113       // FIXME: Handle --as-needed.
2114       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2115     }
2116
2117   if (parameters->output_is_shared())
2118     {
2119       const char* soname = this->options_.soname();
2120       if (soname != NULL)
2121         odyn->add_string(elfcpp::DT_SONAME, soname);
2122     }
2123
2124   // FIXME: Support --init and --fini.
2125   Symbol* sym = symtab->lookup("_init");
2126   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2127     odyn->add_symbol(elfcpp::DT_INIT, sym);
2128
2129   sym = symtab->lookup("_fini");
2130   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2131     odyn->add_symbol(elfcpp::DT_FINI, sym);
2132
2133   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2134
2135   // Add a DT_RPATH entry if needed.
2136   const General_options::Dir_list& rpath(this->options_.rpath());
2137   if (!rpath.empty())
2138     {
2139       std::string rpath_val;
2140       for (General_options::Dir_list::const_iterator p = rpath.begin();
2141            p != rpath.end();
2142            ++p)
2143         {
2144           if (rpath_val.empty())
2145             rpath_val = p->name();
2146           else
2147             {
2148               // Eliminate duplicates.
2149               General_options::Dir_list::const_iterator q;
2150               for (q = rpath.begin(); q != p; ++q)
2151                 if (q->name() == p->name())
2152                   break;
2153               if (q == p)
2154                 {
2155                   rpath_val += ':';
2156                   rpath_val += p->name();
2157                 }
2158             }
2159         }
2160
2161       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2162     }
2163
2164   // Look for text segments that have dynamic relocations.
2165   bool have_textrel = false;
2166   for (Segment_list::const_iterator p = this->segment_list_.begin();
2167        p != this->segment_list_.end();
2168        ++p)
2169     {
2170       if (((*p)->flags() & elfcpp::PF_W) == 0
2171           && (*p)->dynamic_reloc_count() > 0)
2172         {
2173           have_textrel = true;
2174           break;
2175         }
2176     }
2177
2178   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2179   // post-link tools can easily modify these flags if desired.
2180   unsigned int flags = 0;
2181   if (have_textrel)
2182     {
2183       // Add a DT_TEXTREL for compatibility with older loaders.
2184       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2185       flags |= elfcpp::DF_TEXTREL;
2186     }
2187   if (parameters->output_is_shared() && this->has_static_tls())
2188     flags |= elfcpp::DF_STATIC_TLS;
2189   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2190 }
2191
2192 // The mapping of .gnu.linkonce section names to real section names.
2193
2194 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2195 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2196 {
2197   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),     // Must be before "d".
2198   MAPPING_INIT("t", ".text"),
2199   MAPPING_INIT("r", ".rodata"),
2200   MAPPING_INIT("d", ".data"),
2201   MAPPING_INIT("b", ".bss"),
2202   MAPPING_INIT("s", ".sdata"),
2203   MAPPING_INIT("sb", ".sbss"),
2204   MAPPING_INIT("s2", ".sdata2"),
2205   MAPPING_INIT("sb2", ".sbss2"),
2206   MAPPING_INIT("wi", ".debug_info"),
2207   MAPPING_INIT("td", ".tdata"),
2208   MAPPING_INIT("tb", ".tbss"),
2209   MAPPING_INIT("lr", ".lrodata"),
2210   MAPPING_INIT("l", ".ldata"),
2211   MAPPING_INIT("lb", ".lbss"),
2212 };
2213 #undef MAPPING_INIT
2214
2215 const int Layout::linkonce_mapping_count =
2216   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2217
2218 // Return the name of the output section to use for a .gnu.linkonce
2219 // section.  This is based on the default ELF linker script of the old
2220 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2221 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2222 // initialized to the length of NAME.
2223
2224 const char*
2225 Layout::linkonce_output_name(const char* name, size_t *plen)
2226 {
2227   const char* s = name + sizeof(".gnu.linkonce") - 1;
2228   if (*s != '.')
2229     return name;
2230   ++s;
2231   const Linkonce_mapping* plm = linkonce_mapping;
2232   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2233     {
2234       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2235         {
2236           *plen = plm->tolen;
2237           return plm->to;
2238         }
2239     }
2240   return name;
2241 }
2242
2243 // Choose the output section name to use given an input section name.
2244 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2245 // length of NAME.
2246
2247 const char*
2248 Layout::output_section_name(const char* name, size_t* plen)
2249 {
2250   if (Layout::is_linkonce(name))
2251     {
2252       // .gnu.linkonce sections are laid out as though they were named
2253       // for the sections are placed into.
2254       return Layout::linkonce_output_name(name, plen);
2255     }
2256
2257   // gcc 4.3 generates the following sorts of section names when it
2258   // needs a section name specific to a function:
2259   //   .text.FN
2260   //   .rodata.FN
2261   //   .sdata2.FN
2262   //   .data.FN
2263   //   .data.rel.FN
2264   //   .data.rel.local.FN
2265   //   .data.rel.ro.FN
2266   //   .data.rel.ro.local.FN
2267   //   .sdata.FN
2268   //   .bss.FN
2269   //   .sbss.FN
2270   //   .tdata.FN
2271   //   .tbss.FN
2272
2273   // The GNU linker maps all of those to the part before the .FN,
2274   // except that .data.rel.local.FN is mapped to .data, and
2275   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2276   // beginning with .data.rel.ro.local are grouped together.
2277
2278   // For an anonymous namespace, the string FN can contain a '.'.
2279
2280   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2281   // GNU linker maps to .rodata.
2282
2283   // The .data.rel.ro sections enable a security feature triggered by
2284   // the -z relro option.  Section which need to be relocated at
2285   // program startup time but which may be readonly after startup are
2286   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2287   // segment.  The dynamic linker will make that segment writable,
2288   // perform relocations, and then make it read-only.  FIXME: We do
2289   // not yet implement this optimization.
2290
2291   // It is hard to handle this in a principled way.
2292
2293   // These are the rules we follow:
2294
2295   // If the section name has no initial '.', or no dot other than an
2296   // initial '.', we use the name unchanged (i.e., "mysection" and
2297   // ".text" are unchanged).
2298
2299   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2300
2301   // Otherwise, we drop the second '.' and everything that comes after
2302   // it (i.e., ".text.XXX" becomes ".text").
2303
2304   const char* s = name;
2305   if (*s != '.')
2306     return name;
2307   ++s;
2308   const char* sdot = strchr(s, '.');
2309   if (sdot == NULL)
2310     return name;
2311
2312   const char* const data_rel_ro = ".data.rel.ro";
2313   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2314     {
2315       *plen = strlen(data_rel_ro);
2316       return data_rel_ro;
2317     }
2318
2319   *plen = sdot - name;
2320   return name;
2321 }
2322
2323 // Record the signature of a comdat section, and return whether to
2324 // include it in the link.  If GROUP is true, this is a regular
2325 // section group.  If GROUP is false, this is a group signature
2326 // derived from the name of a linkonce section.  We want linkonce
2327 // signatures and group signatures to block each other, but we don't
2328 // want a linkonce signature to block another linkonce signature.
2329
2330 bool
2331 Layout::add_comdat(const char* signature, bool group)
2332 {
2333   std::string sig(signature);
2334   std::pair<Signatures::iterator, bool> ins(
2335     this->signatures_.insert(std::make_pair(sig, group)));
2336
2337   if (ins.second)
2338     {
2339       // This is the first time we've seen this signature.
2340       return true;
2341     }
2342
2343   if (ins.first->second)
2344     {
2345       // We've already seen a real section group with this signature.
2346       return false;
2347     }
2348   else if (group)
2349     {
2350       // This is a real section group, and we've already seen a
2351       // linkonce section with this signature.  Record that we've seen
2352       // a section group, and don't include this section group.
2353       ins.first->second = true;
2354       return false;
2355     }
2356   else
2357     {
2358       // We've already seen a linkonce section and this is a linkonce
2359       // section.  These don't block each other--this may be the same
2360       // symbol name with different section types.
2361       return true;
2362     }
2363 }
2364
2365 // Store the allocated sections into the section list.
2366
2367 void
2368 Layout::get_allocated_sections(Section_list* section_list) const
2369 {
2370   for (Section_list::const_iterator p = this->section_list_.begin();
2371        p != this->section_list_.end();
2372        ++p)
2373     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2374       section_list->push_back(*p);
2375 }
2376
2377 // Create an output segment.
2378
2379 Output_segment*
2380 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2381 {
2382   gold_assert(!parameters->output_is_object());
2383   Output_segment* oseg = new Output_segment(type, flags);
2384   this->segment_list_.push_back(oseg);
2385   return oseg;
2386 }
2387
2388 // Write out the Output_sections.  Most won't have anything to write,
2389 // since most of the data will come from input sections which are
2390 // handled elsewhere.  But some Output_sections do have Output_data.
2391
2392 void
2393 Layout::write_output_sections(Output_file* of) const
2394 {
2395   for (Section_list::const_iterator p = this->section_list_.begin();
2396        p != this->section_list_.end();
2397        ++p)
2398     {
2399       if (!(*p)->after_input_sections())
2400         (*p)->write(of);
2401     }
2402 }
2403
2404 // Write out data not associated with a section or the symbol table.
2405
2406 void
2407 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2408 {
2409   if (!parameters->strip_all())
2410     {
2411       const Output_section* symtab_section = this->symtab_section_;
2412       for (Section_list::const_iterator p = this->section_list_.begin();
2413            p != this->section_list_.end();
2414            ++p)
2415         {
2416           if ((*p)->needs_symtab_index())
2417             {
2418               gold_assert(symtab_section != NULL);
2419               unsigned int index = (*p)->symtab_index();
2420               gold_assert(index > 0 && index != -1U);
2421               off_t off = (symtab_section->offset()
2422                            + index * symtab_section->entsize());
2423               symtab->write_section_symbol(*p, of, off);
2424             }
2425         }
2426     }
2427
2428   const Output_section* dynsym_section = this->dynsym_section_;
2429   for (Section_list::const_iterator p = this->section_list_.begin();
2430        p != this->section_list_.end();
2431        ++p)
2432     {
2433       if ((*p)->needs_dynsym_index())
2434         {
2435           gold_assert(dynsym_section != NULL);
2436           unsigned int index = (*p)->dynsym_index();
2437           gold_assert(index > 0 && index != -1U);
2438           off_t off = (dynsym_section->offset()
2439                        + index * dynsym_section->entsize());
2440           symtab->write_section_symbol(*p, of, off);
2441         }
2442     }
2443
2444   // Write out the Output_data which are not in an Output_section.
2445   for (Data_list::const_iterator p = this->special_output_list_.begin();
2446        p != this->special_output_list_.end();
2447        ++p)
2448     (*p)->write(of);
2449 }
2450
2451 // Write out the Output_sections which can only be written after the
2452 // input sections are complete.
2453
2454 void
2455 Layout::write_sections_after_input_sections(Output_file* of)
2456 {
2457   // Determine the final section offsets, and thus the final output
2458   // file size.  Note we finalize the .shstrab last, to allow the
2459   // after_input_section sections to modify their section-names before
2460   // writing.
2461   if (this->any_postprocessing_sections_)
2462     {
2463       off_t off = this->output_file_size_;
2464       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2465       
2466       // Now that we've finalized the names, we can finalize the shstrab.
2467       off =
2468         this->set_section_offsets(off,
2469                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2470
2471       if (off > this->output_file_size_)
2472         {
2473           of->resize(off);
2474           this->output_file_size_ = off;
2475         }
2476     }
2477
2478   for (Section_list::const_iterator p = this->section_list_.begin();
2479        p != this->section_list_.end();
2480        ++p)
2481     {
2482       if ((*p)->after_input_sections())
2483         (*p)->write(of);
2484     }
2485
2486   this->section_headers_->write(of);
2487 }
2488
2489 // Print statistical information to stderr.  This is used for --stats.
2490
2491 void
2492 Layout::print_stats() const
2493 {
2494   this->namepool_.print_stats("section name pool");
2495   this->sympool_.print_stats("output symbol name pool");
2496   this->dynpool_.print_stats("dynamic name pool");
2497
2498   for (Section_list::const_iterator p = this->section_list_.begin();
2499        p != this->section_list_.end();
2500        ++p)
2501     (*p)->print_merge_stats();
2502 }
2503
2504 // Write_sections_task methods.
2505
2506 // We can always run this task.
2507
2508 Task_token*
2509 Write_sections_task::is_runnable()
2510 {
2511   return NULL;
2512 }
2513
2514 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2515 // when finished.
2516
2517 void
2518 Write_sections_task::locks(Task_locker* tl)
2519 {
2520   tl->add(this, this->output_sections_blocker_);
2521   tl->add(this, this->final_blocker_);
2522 }
2523
2524 // Run the task--write out the data.
2525
2526 void
2527 Write_sections_task::run(Workqueue*)
2528 {
2529   this->layout_->write_output_sections(this->of_);
2530 }
2531
2532 // Write_data_task methods.
2533
2534 // We can always run this task.
2535
2536 Task_token*
2537 Write_data_task::is_runnable()
2538 {
2539   return NULL;
2540 }
2541
2542 // We need to unlock FINAL_BLOCKER when finished.
2543
2544 void
2545 Write_data_task::locks(Task_locker* tl)
2546 {
2547   tl->add(this, this->final_blocker_);
2548 }
2549
2550 // Run the task--write out the data.
2551
2552 void
2553 Write_data_task::run(Workqueue*)
2554 {
2555   this->layout_->write_data(this->symtab_, this->of_);
2556 }
2557
2558 // Write_symbols_task methods.
2559
2560 // We can always run this task.
2561
2562 Task_token*
2563 Write_symbols_task::is_runnable()
2564 {
2565   return NULL;
2566 }
2567
2568 // We need to unlock FINAL_BLOCKER when finished.
2569
2570 void
2571 Write_symbols_task::locks(Task_locker* tl)
2572 {
2573   tl->add(this, this->final_blocker_);
2574 }
2575
2576 // Run the task--write out the symbols.
2577
2578 void
2579 Write_symbols_task::run(Workqueue*)
2580 {
2581   this->symtab_->write_globals(this->input_objects_, this->sympool_,
2582                                this->dynpool_, this->of_);
2583 }
2584
2585 // Write_after_input_sections_task methods.
2586
2587 // We can only run this task after the input sections have completed.
2588
2589 Task_token*
2590 Write_after_input_sections_task::is_runnable()
2591 {
2592   if (this->input_sections_blocker_->is_blocked())
2593     return this->input_sections_blocker_;
2594   return NULL;
2595 }
2596
2597 // We need to unlock FINAL_BLOCKER when finished.
2598
2599 void
2600 Write_after_input_sections_task::locks(Task_locker* tl)
2601 {
2602   tl->add(this, this->final_blocker_);
2603 }
2604
2605 // Run the task.
2606
2607 void
2608 Write_after_input_sections_task::run(Workqueue*)
2609 {
2610   this->layout_->write_sections_after_input_sections(this->of_);
2611 }
2612
2613 // Close_task_runner methods.
2614
2615 // Run the task--close the file.
2616
2617 void
2618 Close_task_runner::run(Workqueue*, const Task*)
2619 {
2620   this->of_->close();
2621 }
2622
2623 // Instantiate the templates we need.  We could use the configure
2624 // script to restrict this to only the ones for implemented targets.
2625
2626 #ifdef HAVE_TARGET_32_LITTLE
2627 template
2628 Output_section*
2629 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2630                           const char* name,
2631                           const elfcpp::Shdr<32, false>& shdr,
2632                           unsigned int, unsigned int, off_t*);
2633 #endif
2634
2635 #ifdef HAVE_TARGET_32_BIG
2636 template
2637 Output_section*
2638 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2639                          const char* name,
2640                          const elfcpp::Shdr<32, true>& shdr,
2641                          unsigned int, unsigned int, off_t*);
2642 #endif
2643
2644 #ifdef HAVE_TARGET_64_LITTLE
2645 template
2646 Output_section*
2647 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2648                           const char* name,
2649                           const elfcpp::Shdr<64, false>& shdr,
2650                           unsigned int, unsigned int, off_t*);
2651 #endif
2652
2653 #ifdef HAVE_TARGET_64_BIG
2654 template
2655 Output_section*
2656 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2657                          const char* name,
2658                          const elfcpp::Shdr<64, true>& shdr,
2659                          unsigned int, unsigned int, off_t*);
2660 #endif
2661
2662 #ifdef HAVE_TARGET_32_LITTLE
2663 template
2664 Output_section*
2665 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2666                                 unsigned int reloc_shndx,
2667                                 const elfcpp::Shdr<32, false>& shdr,
2668                                 Output_section* data_section,
2669                                 Relocatable_relocs* rr);
2670 #endif
2671
2672 #ifdef HAVE_TARGET_32_BIG
2673 template
2674 Output_section*
2675 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2676                                unsigned int reloc_shndx,
2677                                const elfcpp::Shdr<32, true>& shdr,
2678                                Output_section* data_section,
2679                                Relocatable_relocs* rr);
2680 #endif
2681
2682 #ifdef HAVE_TARGET_64_LITTLE
2683 template
2684 Output_section*
2685 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2686                                 unsigned int reloc_shndx,
2687                                 const elfcpp::Shdr<64, false>& shdr,
2688                                 Output_section* data_section,
2689                                 Relocatable_relocs* rr);
2690 #endif
2691
2692 #ifdef HAVE_TARGET_64_BIG
2693 template
2694 Output_section*
2695 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2696                                unsigned int reloc_shndx,
2697                                const elfcpp::Shdr<64, true>& shdr,
2698                                Output_section* data_section,
2699                                Relocatable_relocs* rr);
2700 #endif
2701
2702 #ifdef HAVE_TARGET_32_LITTLE
2703 template
2704 void
2705 Layout::layout_group<32, false>(Symbol_table* symtab,
2706                                 Sized_relobj<32, false>* object,
2707                                 unsigned int,
2708                                 const char* group_section_name,
2709                                 const char* signature,
2710                                 const elfcpp::Shdr<32, false>& shdr,
2711                                 const elfcpp::Elf_Word* contents);
2712 #endif
2713
2714 #ifdef HAVE_TARGET_32_BIG
2715 template
2716 void
2717 Layout::layout_group<32, true>(Symbol_table* symtab,
2718                                Sized_relobj<32, true>* object,
2719                                unsigned int,
2720                                const char* group_section_name,
2721                                const char* signature,
2722                                const elfcpp::Shdr<32, true>& shdr,
2723                                const elfcpp::Elf_Word* contents);
2724 #endif
2725
2726 #ifdef HAVE_TARGET_64_LITTLE
2727 template
2728 void
2729 Layout::layout_group<64, false>(Symbol_table* symtab,
2730                                 Sized_relobj<64, false>* object,
2731                                 unsigned int,
2732                                 const char* group_section_name,
2733                                 const char* signature,
2734                                 const elfcpp::Shdr<64, false>& shdr,
2735                                 const elfcpp::Elf_Word* contents);
2736 #endif
2737
2738 #ifdef HAVE_TARGET_64_BIG
2739 template
2740 void
2741 Layout::layout_group<64, true>(Symbol_table* symtab,
2742                                Sized_relobj<64, true>* object,
2743                                unsigned int,
2744                                const char* group_section_name,
2745                                const char* signature,
2746                                const elfcpp::Shdr<64, true>& shdr,
2747                                const elfcpp::Elf_Word* contents);
2748 #endif
2749
2750 #ifdef HAVE_TARGET_32_LITTLE
2751 template
2752 Output_section*
2753 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2754                                    const unsigned char* symbols,
2755                                    off_t symbols_size,
2756                                    const unsigned char* symbol_names,
2757                                    off_t symbol_names_size,
2758                                    unsigned int shndx,
2759                                    const elfcpp::Shdr<32, false>& shdr,
2760                                    unsigned int reloc_shndx,
2761                                    unsigned int reloc_type,
2762                                    off_t* off);
2763 #endif
2764
2765 #ifdef HAVE_TARGET_32_BIG
2766 template
2767 Output_section*
2768 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2769                                    const unsigned char* symbols,
2770                                    off_t symbols_size,
2771                                   const unsigned char* symbol_names,
2772                                   off_t symbol_names_size,
2773                                   unsigned int shndx,
2774                                   const elfcpp::Shdr<32, true>& shdr,
2775                                   unsigned int reloc_shndx,
2776                                   unsigned int reloc_type,
2777                                   off_t* off);
2778 #endif
2779
2780 #ifdef HAVE_TARGET_64_LITTLE
2781 template
2782 Output_section*
2783 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2784                                    const unsigned char* symbols,
2785                                    off_t symbols_size,
2786                                    const unsigned char* symbol_names,
2787                                    off_t symbol_names_size,
2788                                    unsigned int shndx,
2789                                    const elfcpp::Shdr<64, false>& shdr,
2790                                    unsigned int reloc_shndx,
2791                                    unsigned int reloc_type,
2792                                    off_t* off);
2793 #endif
2794
2795 #ifdef HAVE_TARGET_64_BIG
2796 template
2797 Output_section*
2798 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2799                                    const unsigned char* symbols,
2800                                    off_t symbols_size,
2801                                   const unsigned char* symbol_names,
2802                                   off_t symbol_names_size,
2803                                   unsigned int shndx,
2804                                   const elfcpp::Shdr<64, true>& shdr,
2805                                   unsigned int reloc_shndx,
2806                                   unsigned int reloc_type,
2807                                   off_t* off);
2808 #endif
2809
2810 } // End namespace gold.