2011-09-29 Sriraman Tallam <tmsriram@google.com>
[platform/upstream/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list.  Creates a single free list node that
75 // describes the entire region of length LEN.  If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82   this->list_.push_front(Free_list_node(0, len));
83   this->last_remove_ = this->list_.begin();
84   this->extend_ = extend;
85   this->length_ = len;
86   ++Free_list::num_lists;
87   ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list.  Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node.  We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102   if (start == end)
103     return;
104   gold_assert(start < end);
105
106   ++Free_list::num_removes;
107
108   Iterator p = this->last_remove_;
109   if (p->start_ > start)
110     p = this->list_.begin();
111
112   for (; p != this->list_.end(); ++p)
113     {
114       ++Free_list::num_remove_visits;
115       // Find a node that wholly contains the indicated region.
116       if (p->start_ <= start && p->end_ >= end)
117         {
118           // Case 1: the indicated region spans the whole node.
119           // Add some fuzz to avoid creating tiny free chunks.
120           if (p->start_ + 3 >= start && p->end_ <= end + 3)
121             p = this->list_.erase(p);
122           // Case 2: remove a chunk from the start of the node.
123           else if (p->start_ + 3 >= start)
124             p->start_ = end;
125           // Case 3: remove a chunk from the end of the node.
126           else if (p->end_ <= end + 3)
127             p->end_ = start;
128           // Case 4: remove a chunk from the middle, and split
129           // the node into two.
130           else
131             {
132               Free_list_node newnode(p->start_, start);
133               p->start_ = end;
134               this->list_.insert(p, newnode);
135               ++Free_list::num_nodes;
136             }
137           this->last_remove_ = p;
138           return;
139         }
140     }
141
142   // Did not find a node containing the given chunk.  This could happen
143   // because a small chunk was already removed due to the fuzz.
144   gold_debug(DEBUG_INCREMENTAL,
145              "Free_list::remove(%d,%d) not found",
146              static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156   gold_debug(DEBUG_INCREMENTAL,
157              "Free_list::allocate(%08lx, %d, %08lx)",
158              static_cast<long>(len), static_cast<int>(align),
159              static_cast<long>(minoff));
160   if (len == 0)
161     return align_address(minoff, align);
162
163   ++Free_list::num_allocates;
164
165   // We usually want to drop free chunks smaller than 4 bytes.
166   // If we need to guarantee a minimum hole size, though, we need
167   // to keep track of all free chunks.
168   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
169
170   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
171     {
172       ++Free_list::num_allocate_visits;
173       off_t start = p->start_ > minoff ? p->start_ : minoff;
174       start = align_address(start, align);
175       off_t end = start + len;
176       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
177         {
178           this->length_ = end;
179           p->end_ = end;
180         }
181       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
182         {
183           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
184             this->list_.erase(p);
185           else if (p->start_ + fuzz >= start)
186             p->start_ = end;
187           else if (p->end_ <= end + fuzz)
188             p->end_ = start;
189           else
190             {
191               Free_list_node newnode(p->start_, start);
192               p->start_ = end;
193               this->list_.insert(p, newnode);
194               ++Free_list::num_nodes;
195             }
196           return start;
197         }
198     }
199   if (this->extend_)
200     {
201       off_t start = align_address(this->length_, align);
202       this->length_ = start + len;
203       return start;
204     }
205   return -1;
206 }
207
208 // Dump the free list (for debugging).
209 void
210 Free_list::dump()
211 {
212   gold_info("Free list:\n     start      end   length\n");
213   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
214     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
215               static_cast<long>(p->end_),
216               static_cast<long>(p->end_ - p->start_));
217 }
218
219 // Print the statistics for the free lists.
220 void
221 Free_list::print_stats()
222 {
223   fprintf(stderr, _("%s: total free lists: %u\n"),
224           program_name, Free_list::num_lists);
225   fprintf(stderr, _("%s: total free list nodes: %u\n"),
226           program_name, Free_list::num_nodes);
227   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
228           program_name, Free_list::num_removes);
229   fprintf(stderr, _("%s: nodes visited: %u\n"),
230           program_name, Free_list::num_remove_visits);
231   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
232           program_name, Free_list::num_allocates);
233   fprintf(stderr, _("%s: nodes visited: %u\n"),
234           program_name, Free_list::num_allocate_visits);
235 }
236
237 // Layout::Relaxation_debug_check methods.
238
239 // Check that sections and special data are in reset states.
240 // We do not save states for Output_sections and special Output_data.
241 // So we check that they have not assigned any addresses or offsets.
242 // clean_up_after_relaxation simply resets their addresses and offsets.
243 void
244 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
245     const Layout::Section_list& sections,
246     const Layout::Data_list& special_outputs)
247 {
248   for(Layout::Section_list::const_iterator p = sections.begin();
249       p != sections.end();
250       ++p)
251     gold_assert((*p)->address_and_file_offset_have_reset_values());
252
253   for(Layout::Data_list::const_iterator p = special_outputs.begin();
254       p != special_outputs.end();
255       ++p)
256     gold_assert((*p)->address_and_file_offset_have_reset_values());
257 }
258   
259 // Save information of SECTIONS for checking later.
260
261 void
262 Layout::Relaxation_debug_check::read_sections(
263     const Layout::Section_list& sections)
264 {
265   for(Layout::Section_list::const_iterator p = sections.begin();
266       p != sections.end();
267       ++p)
268     {
269       Output_section* os = *p;
270       Section_info info;
271       info.output_section = os;
272       info.address = os->is_address_valid() ? os->address() : 0;
273       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
274       info.offset = os->is_offset_valid()? os->offset() : -1 ;
275       this->section_infos_.push_back(info);
276     }
277 }
278
279 // Verify SECTIONS using previously recorded information.
280
281 void
282 Layout::Relaxation_debug_check::verify_sections(
283     const Layout::Section_list& sections)
284 {
285   size_t i = 0;
286   for(Layout::Section_list::const_iterator p = sections.begin();
287       p != sections.end();
288       ++p, ++i)
289     {
290       Output_section* os = *p;
291       uint64_t address = os->is_address_valid() ? os->address() : 0;
292       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
293       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
294
295       if (i >= this->section_infos_.size())
296         {
297           gold_fatal("Section_info of %s missing.\n", os->name());
298         }
299       const Section_info& info = this->section_infos_[i];
300       if (os != info.output_section)
301         gold_fatal("Section order changed.  Expecting %s but see %s\n",
302                    info.output_section->name(), os->name());
303       if (address != info.address
304           || data_size != info.data_size
305           || offset != info.offset)
306         gold_fatal("Section %s changed.\n", os->name());
307     }
308 }
309
310 // Layout_task_runner methods.
311
312 // Lay out the sections.  This is called after all the input objects
313 // have been read.
314
315 void
316 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
317 {
318   Layout* layout = this->layout_;
319   off_t file_size = layout->finalize(this->input_objects_,
320                                      this->symtab_,
321                                      this->target_,
322                                      task);
323
324   // Now we know the final size of the output file and we know where
325   // each piece of information goes.
326
327   if (this->mapfile_ != NULL)
328     {
329       this->mapfile_->print_discarded_sections(this->input_objects_);
330       layout->print_to_mapfile(this->mapfile_);
331     }
332
333   Output_file* of;
334   if (layout->incremental_base() == NULL)
335     {
336       of = new Output_file(parameters->options().output_file_name());
337       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
338         of->set_is_temporary();
339       of->open(file_size);
340     }
341   else
342     {
343       of = layout->incremental_base()->output_file();
344
345       // Apply the incremental relocations for symbols whose values
346       // have changed.  We do this before we resize the file and start
347       // writing anything else to it, so that we can read the old
348       // incremental information from the file before (possibly)
349       // overwriting it.
350       if (parameters->incremental_update())
351         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
352                                                              this->layout_,
353                                                              of);
354
355       of->resize(file_size);
356     }
357
358   // Queue up the final set of tasks.
359   gold::queue_final_tasks(this->options_, this->input_objects_,
360                           this->symtab_, layout, workqueue, of);
361 }
362
363 // Layout methods.
364
365 Layout::Layout(int number_of_input_files, Script_options* script_options)
366   : number_of_input_files_(number_of_input_files),
367     script_options_(script_options),
368     namepool_(),
369     sympool_(),
370     dynpool_(),
371     signatures_(),
372     section_name_map_(),
373     segment_list_(),
374     section_list_(),
375     unattached_section_list_(),
376     special_output_list_(),
377     section_headers_(NULL),
378     tls_segment_(NULL),
379     relro_segment_(NULL),
380     interp_segment_(NULL),
381     increase_relro_(0),
382     symtab_section_(NULL),
383     symtab_xindex_(NULL),
384     dynsym_section_(NULL),
385     dynsym_xindex_(NULL),
386     dynamic_section_(NULL),
387     dynamic_symbol_(NULL),
388     dynamic_data_(NULL),
389     eh_frame_section_(NULL),
390     eh_frame_data_(NULL),
391     added_eh_frame_data_(false),
392     eh_frame_hdr_section_(NULL),
393     build_id_note_(NULL),
394     debug_abbrev_(NULL),
395     debug_info_(NULL),
396     group_signatures_(),
397     output_file_size_(-1),
398     have_added_input_section_(false),
399     sections_are_attached_(false),
400     input_requires_executable_stack_(false),
401     input_with_gnu_stack_note_(false),
402     input_without_gnu_stack_note_(false),
403     has_static_tls_(false),
404     any_postprocessing_sections_(false),
405     resized_signatures_(false),
406     have_stabstr_section_(false),
407     section_ordering_specified_(false),
408     incremental_inputs_(NULL),
409     record_output_section_data_from_script_(false),
410     script_output_section_data_list_(),
411     segment_states_(NULL),
412     relaxation_debug_check_(NULL),
413     section_order_map_(),
414     input_section_position_(),
415     input_section_glob_(),
416     incremental_base_(NULL),
417     free_list_()
418 {
419   // Make space for more than enough segments for a typical file.
420   // This is just for efficiency--it's OK if we wind up needing more.
421   this->segment_list_.reserve(12);
422
423   // We expect two unattached Output_data objects: the file header and
424   // the segment headers.
425   this->special_output_list_.reserve(2);
426
427   // Initialize structure needed for an incremental build.
428   if (parameters->incremental())
429     this->incremental_inputs_ = new Incremental_inputs;
430
431   // The section name pool is worth optimizing in all cases, because
432   // it is small, but there are often overlaps due to .rel sections.
433   this->namepool_.set_optimize();
434 }
435
436 // For incremental links, record the base file to be modified.
437
438 void
439 Layout::set_incremental_base(Incremental_binary* base)
440 {
441   this->incremental_base_ = base;
442   this->free_list_.init(base->output_file()->filesize(), true);
443 }
444
445 // Hash a key we use to look up an output section mapping.
446
447 size_t
448 Layout::Hash_key::operator()(const Layout::Key& k) const
449 {
450  return k.first + k.second.first + k.second.second;
451 }
452
453 // Returns whether the given section is in the list of
454 // debug-sections-used-by-some-version-of-gdb.  Currently,
455 // we've checked versions of gdb up to and including 6.7.1.
456
457 static const char* gdb_sections[] =
458 { ".debug_abbrev",
459   // ".debug_aranges",   // not used by gdb as of 6.7.1
460   ".debug_frame",
461   ".debug_info",
462   ".debug_types",
463   ".debug_line",
464   ".debug_loc",
465   ".debug_macinfo",
466   // ".debug_pubnames",  // not used by gdb as of 6.7.1
467   ".debug_ranges",
468   ".debug_str",
469 };
470
471 static const char* lines_only_debug_sections[] =
472 { ".debug_abbrev",
473   // ".debug_aranges",   // not used by gdb as of 6.7.1
474   // ".debug_frame",
475   ".debug_info",
476   // ".debug_types",
477   ".debug_line",
478   // ".debug_loc",
479   // ".debug_macinfo",
480   // ".debug_pubnames",  // not used by gdb as of 6.7.1
481   // ".debug_ranges",
482   ".debug_str",
483 };
484
485 static inline bool
486 is_gdb_debug_section(const char* str)
487 {
488   // We can do this faster: binary search or a hashtable.  But why bother?
489   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
490     if (strcmp(str, gdb_sections[i]) == 0)
491       return true;
492   return false;
493 }
494
495 static inline bool
496 is_lines_only_debug_section(const char* str)
497 {
498   // We can do this faster: binary search or a hashtable.  But why bother?
499   for (size_t i = 0;
500        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
501        ++i)
502     if (strcmp(str, lines_only_debug_sections[i]) == 0)
503       return true;
504   return false;
505 }
506
507 // Sometimes we compress sections.  This is typically done for
508 // sections that are not part of normal program execution (such as
509 // .debug_* sections), and where the readers of these sections know
510 // how to deal with compressed sections.  This routine doesn't say for
511 // certain whether we'll compress -- it depends on commandline options
512 // as well -- just whether this section is a candidate for compression.
513 // (The Output_compressed_section class decides whether to compress
514 // a given section, and picks the name of the compressed section.)
515
516 static bool
517 is_compressible_debug_section(const char* secname)
518 {
519   return (is_prefix_of(".debug", secname));
520 }
521
522 // We may see compressed debug sections in input files.  Return TRUE
523 // if this is the name of a compressed debug section.
524
525 bool
526 is_compressed_debug_section(const char* secname)
527 {
528   return (is_prefix_of(".zdebug", secname));
529 }
530
531 // Whether to include this section in the link.
532
533 template<int size, bool big_endian>
534 bool
535 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
536                         const elfcpp::Shdr<size, big_endian>& shdr)
537 {
538   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
539     return false;
540
541   switch (shdr.get_sh_type())
542     {
543     case elfcpp::SHT_NULL:
544     case elfcpp::SHT_SYMTAB:
545     case elfcpp::SHT_DYNSYM:
546     case elfcpp::SHT_HASH:
547     case elfcpp::SHT_DYNAMIC:
548     case elfcpp::SHT_SYMTAB_SHNDX:
549       return false;
550
551     case elfcpp::SHT_STRTAB:
552       // Discard the sections which have special meanings in the ELF
553       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
554       // checking the sh_link fields of the appropriate sections.
555       return (strcmp(name, ".dynstr") != 0
556               && strcmp(name, ".strtab") != 0
557               && strcmp(name, ".shstrtab") != 0);
558
559     case elfcpp::SHT_RELA:
560     case elfcpp::SHT_REL:
561     case elfcpp::SHT_GROUP:
562       // If we are emitting relocations these should be handled
563       // elsewhere.
564       gold_assert(!parameters->options().relocatable()
565                   && !parameters->options().emit_relocs());
566       return false;
567
568     case elfcpp::SHT_PROGBITS:
569       if (parameters->options().strip_debug()
570           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
571         {
572           if (is_debug_info_section(name))
573             return false;
574         }
575       if (parameters->options().strip_debug_non_line()
576           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
577         {
578           // Debugging sections can only be recognized by name.
579           if (is_prefix_of(".debug", name)
580               && !is_lines_only_debug_section(name))
581             return false;
582         }
583       if (parameters->options().strip_debug_gdb()
584           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
585         {
586           // Debugging sections can only be recognized by name.
587           if (is_prefix_of(".debug", name)
588               && !is_gdb_debug_section(name))
589             return false;
590         }
591       if (parameters->options().strip_lto_sections()
592           && !parameters->options().relocatable()
593           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
594         {
595           // Ignore LTO sections containing intermediate code.
596           if (is_prefix_of(".gnu.lto_", name))
597             return false;
598         }
599       // The GNU linker strips .gnu_debuglink sections, so we do too.
600       // This is a feature used to keep debugging information in
601       // separate files.
602       if (strcmp(name, ".gnu_debuglink") == 0)
603         return false;
604       return true;
605
606     default:
607       return true;
608     }
609 }
610
611 // Return an output section named NAME, or NULL if there is none.
612
613 Output_section*
614 Layout::find_output_section(const char* name) const
615 {
616   for (Section_list::const_iterator p = this->section_list_.begin();
617        p != this->section_list_.end();
618        ++p)
619     if (strcmp((*p)->name(), name) == 0)
620       return *p;
621   return NULL;
622 }
623
624 // Return an output segment of type TYPE, with segment flags SET set
625 // and segment flags CLEAR clear.  Return NULL if there is none.
626
627 Output_segment*
628 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
629                             elfcpp::Elf_Word clear) const
630 {
631   for (Segment_list::const_iterator p = this->segment_list_.begin();
632        p != this->segment_list_.end();
633        ++p)
634     if (static_cast<elfcpp::PT>((*p)->type()) == type
635         && ((*p)->flags() & set) == set
636         && ((*p)->flags() & clear) == 0)
637       return *p;
638   return NULL;
639 }
640
641 // When we put a .ctors or .dtors section with more than one word into
642 // a .init_array or .fini_array section, we need to reverse the words
643 // in the .ctors/.dtors section.  This is because .init_array executes
644 // constructors front to back, where .ctors executes them back to
645 // front, and vice-versa for .fini_array/.dtors.  Although we do want
646 // to remap .ctors/.dtors into .init_array/.fini_array because it can
647 // be more efficient, we don't want to change the order in which
648 // constructors/destructors are run.  This set just keeps track of
649 // these sections which need to be reversed.  It is only changed by
650 // Layout::layout.  It should be a private member of Layout, but that
651 // would require layout.h to #include object.h to get the definition
652 // of Section_id.
653 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
654
655 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
656 // .init_array/.fini_array section.
657
658 bool
659 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
660 {
661   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
662           != ctors_sections_in_init_array.end());
663 }
664
665 // Return the output section to use for section NAME with type TYPE
666 // and section flags FLAGS.  NAME must be canonicalized in the string
667 // pool, and NAME_KEY is the key.  ORDER is where this should appear
668 // in the output sections.  IS_RELRO is true for a relro section.
669
670 Output_section*
671 Layout::get_output_section(const char* name, Stringpool::Key name_key,
672                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
673                            Output_section_order order, bool is_relro)
674 {
675   elfcpp::Elf_Word lookup_type = type;
676
677   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
678   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
679   // .init_array, .fini_array, and .preinit_array sections by name
680   // whatever their type in the input file.  We do this because the
681   // types are not always right in the input files.
682   if (lookup_type == elfcpp::SHT_INIT_ARRAY
683       || lookup_type == elfcpp::SHT_FINI_ARRAY
684       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
685     lookup_type = elfcpp::SHT_PROGBITS;
686
687   elfcpp::Elf_Xword lookup_flags = flags;
688
689   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
690   // read-write with read-only sections.  Some other ELF linkers do
691   // not do this.  FIXME: Perhaps there should be an option
692   // controlling this.
693   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
694
695   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
696   const std::pair<Key, Output_section*> v(key, NULL);
697   std::pair<Section_name_map::iterator, bool> ins(
698     this->section_name_map_.insert(v));
699
700   if (!ins.second)
701     return ins.first->second;
702   else
703     {
704       // This is the first time we've seen this name/type/flags
705       // combination.  For compatibility with the GNU linker, we
706       // combine sections with contents and zero flags with sections
707       // with non-zero flags.  This is a workaround for cases where
708       // assembler code forgets to set section flags.  FIXME: Perhaps
709       // there should be an option to control this.
710       Output_section* os = NULL;
711
712       if (lookup_type == elfcpp::SHT_PROGBITS)
713         {
714           if (flags == 0)
715             {
716               Output_section* same_name = this->find_output_section(name);
717               if (same_name != NULL
718                   && (same_name->type() == elfcpp::SHT_PROGBITS
719                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
720                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
721                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
722                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
723                 os = same_name;
724             }
725           else if ((flags & elfcpp::SHF_TLS) == 0)
726             {
727               elfcpp::Elf_Xword zero_flags = 0;
728               const Key zero_key(name_key, std::make_pair(lookup_type,
729                                                           zero_flags));
730               Section_name_map::iterator p =
731                   this->section_name_map_.find(zero_key);
732               if (p != this->section_name_map_.end())
733                 os = p->second;
734             }
735         }
736
737       if (os == NULL)
738         os = this->make_output_section(name, type, flags, order, is_relro);
739
740       ins.first->second = os;
741       return os;
742     }
743 }
744
745 // Pick the output section to use for section NAME, in input file
746 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
747 // linker created section.  IS_INPUT_SECTION is true if we are
748 // choosing an output section for an input section found in a input
749 // file.  ORDER is where this section should appear in the output
750 // sections.  IS_RELRO is true for a relro section.  This will return
751 // NULL if the input section should be discarded.
752
753 Output_section*
754 Layout::choose_output_section(const Relobj* relobj, const char* name,
755                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
756                               bool is_input_section, Output_section_order order,
757                               bool is_relro)
758 {
759   // We should not see any input sections after we have attached
760   // sections to segments.
761   gold_assert(!is_input_section || !this->sections_are_attached_);
762
763   // Some flags in the input section should not be automatically
764   // copied to the output section.
765   flags &= ~ (elfcpp::SHF_INFO_LINK
766               | elfcpp::SHF_GROUP
767               | elfcpp::SHF_MERGE
768               | elfcpp::SHF_STRINGS);
769
770   // We only clear the SHF_LINK_ORDER flag in for
771   // a non-relocatable link.
772   if (!parameters->options().relocatable())
773     flags &= ~elfcpp::SHF_LINK_ORDER;
774
775   if (this->script_options_->saw_sections_clause())
776     {
777       // We are using a SECTIONS clause, so the output section is
778       // chosen based only on the name.
779
780       Script_sections* ss = this->script_options_->script_sections();
781       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
782       Output_section** output_section_slot;
783       Script_sections::Section_type script_section_type;
784       const char* orig_name = name;
785       name = ss->output_section_name(file_name, name, &output_section_slot,
786                                      &script_section_type);
787       if (name == NULL)
788         {
789           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
790                                      "because it is not allowed by the "
791                                      "SECTIONS clause of the linker script"),
792                      orig_name);
793           // The SECTIONS clause says to discard this input section.
794           return NULL;
795         }
796
797       // We can only handle script section types ST_NONE and ST_NOLOAD.
798       switch (script_section_type)
799         {
800         case Script_sections::ST_NONE:
801           break;
802         case Script_sections::ST_NOLOAD:
803           flags &= elfcpp::SHF_ALLOC;
804           break;
805         default:
806           gold_unreachable();
807         }
808
809       // If this is an orphan section--one not mentioned in the linker
810       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
811       // default processing below.
812
813       if (output_section_slot != NULL)
814         {
815           if (*output_section_slot != NULL)
816             {
817               (*output_section_slot)->update_flags_for_input_section(flags);
818               return *output_section_slot;
819             }
820
821           // We don't put sections found in the linker script into
822           // SECTION_NAME_MAP_.  That keeps us from getting confused
823           // if an orphan section is mapped to a section with the same
824           // name as one in the linker script.
825
826           name = this->namepool_.add(name, false, NULL);
827
828           Output_section* os = this->make_output_section(name, type, flags,
829                                                          order, is_relro);
830
831           os->set_found_in_sections_clause();
832
833           // Special handling for NOLOAD sections.
834           if (script_section_type == Script_sections::ST_NOLOAD)
835             {
836               os->set_is_noload();
837
838               // The constructor of Output_section sets addresses of non-ALLOC
839               // sections to 0 by default.  We don't want that for NOLOAD
840               // sections even if they have no SHF_ALLOC flag.
841               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
842                   && os->is_address_valid())
843                 {
844                   gold_assert(os->address() == 0
845                               && !os->is_offset_valid()
846                               && !os->is_data_size_valid());
847                   os->reset_address_and_file_offset();
848                 }
849             }
850
851           *output_section_slot = os;
852           return os;
853         }
854     }
855
856   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
857
858   size_t len = strlen(name);
859   char* uncompressed_name = NULL;
860
861   // Compressed debug sections should be mapped to the corresponding
862   // uncompressed section.
863   if (is_compressed_debug_section(name))
864     {
865       uncompressed_name = new char[len];
866       uncompressed_name[0] = '.';
867       gold_assert(name[0] == '.' && name[1] == 'z');
868       strncpy(&uncompressed_name[1], &name[2], len - 2);
869       uncompressed_name[len - 1] = '\0';
870       len -= 1;
871       name = uncompressed_name;
872     }
873
874   // Turn NAME from the name of the input section into the name of the
875   // output section.
876   if (is_input_section
877       && !this->script_options_->saw_sections_clause()
878       && !parameters->options().relocatable())
879     name = Layout::output_section_name(relobj, name, &len);
880
881   Stringpool::Key name_key;
882   name = this->namepool_.add_with_length(name, len, true, &name_key);
883
884   if (uncompressed_name != NULL)
885     delete[] uncompressed_name;
886
887   // Find or make the output section.  The output section is selected
888   // based on the section name, type, and flags.
889   return this->get_output_section(name, name_key, type, flags, order, is_relro);
890 }
891
892 // For incremental links, record the initial fixed layout of a section
893 // from the base file, and return a pointer to the Output_section.
894
895 template<int size, bool big_endian>
896 Output_section*
897 Layout::init_fixed_output_section(const char* name,
898                                   elfcpp::Shdr<size, big_endian>& shdr)
899 {
900   unsigned int sh_type = shdr.get_sh_type();
901
902   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
903   // PRE_INIT_ARRAY, and NOTE sections.
904   // All others will be created from scratch and reallocated.
905   if (!can_incremental_update(sh_type))
906     return NULL;
907
908   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
909   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
910   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
911   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
912   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
913       shdr.get_sh_addralign();
914
915   // Make the output section.
916   Stringpool::Key name_key;
917   name = this->namepool_.add(name, true, &name_key);
918   Output_section* os = this->get_output_section(name, name_key, sh_type,
919                                                 sh_flags, ORDER_INVALID, false);
920   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
921   if (sh_type != elfcpp::SHT_NOBITS)
922     this->free_list_.remove(sh_offset, sh_offset + sh_size);
923   return os;
924 }
925
926 // Return the output section to use for input section SHNDX, with name
927 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
928 // index of a relocation section which applies to this section, or 0
929 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
930 // relocation section if there is one.  Set *OFF to the offset of this
931 // input section without the output section.  Return NULL if the
932 // section should be discarded.  Set *OFF to -1 if the section
933 // contents should not be written directly to the output file, but
934 // will instead receive special handling.
935
936 template<int size, bool big_endian>
937 Output_section*
938 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
939                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
940                unsigned int reloc_shndx, unsigned int, off_t* off)
941 {
942   *off = 0;
943
944   if (!this->include_section(object, name, shdr))
945     return NULL;
946
947   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
948
949   // In a relocatable link a grouped section must not be combined with
950   // any other sections.
951   Output_section* os;
952   if (parameters->options().relocatable()
953       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
954     {
955       name = this->namepool_.add(name, true, NULL);
956       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
957                                      ORDER_INVALID, false);
958     }
959   else
960     {
961       os = this->choose_output_section(object, name, sh_type,
962                                        shdr.get_sh_flags(), true,
963                                        ORDER_INVALID, false);
964       if (os == NULL)
965         return NULL;
966     }
967
968   // By default the GNU linker sorts input sections whose names match
969   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
970   // sections are sorted by name.  This is used to implement
971   // constructor priority ordering.  We are compatible.  When we put
972   // .ctor sections in .init_array and .dtor sections in .fini_array,
973   // we must also sort plain .ctor and .dtor sections.
974   if (!this->script_options_->saw_sections_clause()
975       && !parameters->options().relocatable()
976       && (is_prefix_of(".ctors.", name)
977           || is_prefix_of(".dtors.", name)
978           || is_prefix_of(".init_array.", name)
979           || is_prefix_of(".fini_array.", name)
980           || (parameters->options().ctors_in_init_array()
981               && (strcmp(name, ".ctors") == 0
982                   || strcmp(name, ".dtors") == 0))))
983     os->set_must_sort_attached_input_sections();
984
985   // If this is a .ctors or .ctors.* section being mapped to a
986   // .init_array section, or a .dtors or .dtors.* section being mapped
987   // to a .fini_array section, we will need to reverse the words if
988   // there is more than one.  Record this section for later.  See
989   // ctors_sections_in_init_array above.
990   if (!this->script_options_->saw_sections_clause()
991       && !parameters->options().relocatable()
992       && shdr.get_sh_size() > size / 8
993       && (((strcmp(name, ".ctors") == 0
994             || is_prefix_of(".ctors.", name))
995            && strcmp(os->name(), ".init_array") == 0)
996           || ((strcmp(name, ".dtors") == 0
997                || is_prefix_of(".dtors.", name))
998               && strcmp(os->name(), ".fini_array") == 0)))
999     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1000
1001   // FIXME: Handle SHF_LINK_ORDER somewhere.
1002
1003   elfcpp::Elf_Xword orig_flags = os->flags();
1004
1005   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1006                                this->script_options_->saw_sections_clause());
1007
1008   // If the flags changed, we may have to change the order.
1009   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1010     {
1011       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1012       elfcpp::Elf_Xword new_flags =
1013         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1014       if (orig_flags != new_flags)
1015         os->set_order(this->default_section_order(os, false));
1016     }
1017
1018   this->have_added_input_section_ = true;
1019
1020   return os;
1021 }
1022
1023 // Handle a relocation section when doing a relocatable link.
1024
1025 template<int size, bool big_endian>
1026 Output_section*
1027 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1028                      unsigned int,
1029                      const elfcpp::Shdr<size, big_endian>& shdr,
1030                      Output_section* data_section,
1031                      Relocatable_relocs* rr)
1032 {
1033   gold_assert(parameters->options().relocatable()
1034               || parameters->options().emit_relocs());
1035
1036   int sh_type = shdr.get_sh_type();
1037
1038   std::string name;
1039   if (sh_type == elfcpp::SHT_REL)
1040     name = ".rel";
1041   else if (sh_type == elfcpp::SHT_RELA)
1042     name = ".rela";
1043   else
1044     gold_unreachable();
1045   name += data_section->name();
1046
1047   // In a relocatable link relocs for a grouped section must not be
1048   // combined with other reloc sections.
1049   Output_section* os;
1050   if (!parameters->options().relocatable()
1051       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1052     os = this->choose_output_section(object, name.c_str(), sh_type,
1053                                      shdr.get_sh_flags(), false,
1054                                      ORDER_INVALID, false);
1055   else
1056     {
1057       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1058       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1059                                      ORDER_INVALID, false);
1060     }
1061
1062   os->set_should_link_to_symtab();
1063   os->set_info_section(data_section);
1064
1065   Output_section_data* posd;
1066   if (sh_type == elfcpp::SHT_REL)
1067     {
1068       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1069       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1070                                            size,
1071                                            big_endian>(rr);
1072     }
1073   else if (sh_type == elfcpp::SHT_RELA)
1074     {
1075       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1076       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1077                                            size,
1078                                            big_endian>(rr);
1079     }
1080   else
1081     gold_unreachable();
1082
1083   os->add_output_section_data(posd);
1084   rr->set_output_data(posd);
1085
1086   return os;
1087 }
1088
1089 // Handle a group section when doing a relocatable link.
1090
1091 template<int size, bool big_endian>
1092 void
1093 Layout::layout_group(Symbol_table* symtab,
1094                      Sized_relobj_file<size, big_endian>* object,
1095                      unsigned int,
1096                      const char* group_section_name,
1097                      const char* signature,
1098                      const elfcpp::Shdr<size, big_endian>& shdr,
1099                      elfcpp::Elf_Word flags,
1100                      std::vector<unsigned int>* shndxes)
1101 {
1102   gold_assert(parameters->options().relocatable());
1103   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1104   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1105   Output_section* os = this->make_output_section(group_section_name,
1106                                                  elfcpp::SHT_GROUP,
1107                                                  shdr.get_sh_flags(),
1108                                                  ORDER_INVALID, false);
1109
1110   // We need to find a symbol with the signature in the symbol table.
1111   // If we don't find one now, we need to look again later.
1112   Symbol* sym = symtab->lookup(signature, NULL);
1113   if (sym != NULL)
1114     os->set_info_symndx(sym);
1115   else
1116     {
1117       // Reserve some space to minimize reallocations.
1118       if (this->group_signatures_.empty())
1119         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1120
1121       // We will wind up using a symbol whose name is the signature.
1122       // So just put the signature in the symbol name pool to save it.
1123       signature = symtab->canonicalize_name(signature);
1124       this->group_signatures_.push_back(Group_signature(os, signature));
1125     }
1126
1127   os->set_should_link_to_symtab();
1128   os->set_entsize(4);
1129
1130   section_size_type entry_count =
1131     convert_to_section_size_type(shdr.get_sh_size() / 4);
1132   Output_section_data* posd =
1133     new Output_data_group<size, big_endian>(object, entry_count, flags,
1134                                             shndxes);
1135   os->add_output_section_data(posd);
1136 }
1137
1138 // Special GNU handling of sections name .eh_frame.  They will
1139 // normally hold exception frame data as defined by the C++ ABI
1140 // (http://codesourcery.com/cxx-abi/).
1141
1142 template<int size, bool big_endian>
1143 Output_section*
1144 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1145                         const unsigned char* symbols,
1146                         off_t symbols_size,
1147                         const unsigned char* symbol_names,
1148                         off_t symbol_names_size,
1149                         unsigned int shndx,
1150                         const elfcpp::Shdr<size, big_endian>& shdr,
1151                         unsigned int reloc_shndx, unsigned int reloc_type,
1152                         off_t* off)
1153 {
1154   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1155               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1156   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1157
1158   Output_section* os = this->make_eh_frame_section(object);
1159   if (os == NULL)
1160     return NULL;
1161
1162   gold_assert(this->eh_frame_section_ == os);
1163
1164   elfcpp::Elf_Xword orig_flags = os->flags();
1165
1166   if (!parameters->incremental()
1167       && this->eh_frame_data_->add_ehframe_input_section(object,
1168                                                          symbols,
1169                                                          symbols_size,
1170                                                          symbol_names,
1171                                                          symbol_names_size,
1172                                                          shndx,
1173                                                          reloc_shndx,
1174                                                          reloc_type))
1175     {
1176       os->update_flags_for_input_section(shdr.get_sh_flags());
1177
1178       // A writable .eh_frame section is a RELRO section.
1179       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1180           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1181         {
1182           os->set_is_relro();
1183           os->set_order(ORDER_RELRO);
1184         }
1185
1186       // We found a .eh_frame section we are going to optimize, so now
1187       // we can add the set of optimized sections to the output
1188       // section.  We need to postpone adding this until we've found a
1189       // section we can optimize so that the .eh_frame section in
1190       // crtbegin.o winds up at the start of the output section.
1191       if (!this->added_eh_frame_data_)
1192         {
1193           os->add_output_section_data(this->eh_frame_data_);
1194           this->added_eh_frame_data_ = true;
1195         }
1196       *off = -1;
1197     }
1198   else
1199     {
1200       // We couldn't handle this .eh_frame section for some reason.
1201       // Add it as a normal section.
1202       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1203       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1204                                    reloc_shndx, saw_sections_clause);
1205       this->have_added_input_section_ = true;
1206
1207       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1208           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1209         os->set_order(this->default_section_order(os, false));
1210     }
1211
1212   return os;
1213 }
1214
1215 // Create and return the magic .eh_frame section.  Create
1216 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1217 // input .eh_frame section; it may be NULL.
1218
1219 Output_section*
1220 Layout::make_eh_frame_section(const Relobj* object)
1221 {
1222   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1223   // SHT_PROGBITS.
1224   Output_section* os = this->choose_output_section(object, ".eh_frame",
1225                                                    elfcpp::SHT_PROGBITS,
1226                                                    elfcpp::SHF_ALLOC, false,
1227                                                    ORDER_EHFRAME, false);
1228   if (os == NULL)
1229     return NULL;
1230
1231   if (this->eh_frame_section_ == NULL)
1232     {
1233       this->eh_frame_section_ = os;
1234       this->eh_frame_data_ = new Eh_frame();
1235
1236       // For incremental linking, we do not optimize .eh_frame sections
1237       // or create a .eh_frame_hdr section.
1238       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1239         {
1240           Output_section* hdr_os =
1241             this->choose_output_section(NULL, ".eh_frame_hdr",
1242                                         elfcpp::SHT_PROGBITS,
1243                                         elfcpp::SHF_ALLOC, false,
1244                                         ORDER_EHFRAME, false);
1245
1246           if (hdr_os != NULL)
1247             {
1248               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1249                                                         this->eh_frame_data_);
1250               hdr_os->add_output_section_data(hdr_posd);
1251
1252               hdr_os->set_after_input_sections();
1253
1254               if (!this->script_options_->saw_phdrs_clause())
1255                 {
1256                   Output_segment* hdr_oseg;
1257                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1258                                                        elfcpp::PF_R);
1259                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1260                                                           elfcpp::PF_R);
1261                 }
1262
1263               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1264             }
1265         }
1266     }
1267
1268   return os;
1269 }
1270
1271 // Add an exception frame for a PLT.  This is called from target code.
1272
1273 void
1274 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1275                              size_t cie_length, const unsigned char* fde_data,
1276                              size_t fde_length)
1277 {
1278   if (parameters->incremental())
1279     {
1280       // FIXME: Maybe this could work some day....
1281       return;
1282     }
1283   Output_section* os = this->make_eh_frame_section(NULL);
1284   if (os == NULL)
1285     return;
1286   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1287                                             fde_data, fde_length);
1288   if (!this->added_eh_frame_data_)
1289     {
1290       os->add_output_section_data(this->eh_frame_data_);
1291       this->added_eh_frame_data_ = true;
1292     }
1293 }
1294
1295 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1296 // the output section.
1297
1298 Output_section*
1299 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1300                                 elfcpp::Elf_Xword flags,
1301                                 Output_section_data* posd,
1302                                 Output_section_order order, bool is_relro)
1303 {
1304   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1305                                                    false, order, is_relro);
1306   if (os != NULL)
1307     os->add_output_section_data(posd);
1308   return os;
1309 }
1310
1311 // Map section flags to segment flags.
1312
1313 elfcpp::Elf_Word
1314 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1315 {
1316   elfcpp::Elf_Word ret = elfcpp::PF_R;
1317   if ((flags & elfcpp::SHF_WRITE) != 0)
1318     ret |= elfcpp::PF_W;
1319   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1320     ret |= elfcpp::PF_X;
1321   return ret;
1322 }
1323
1324 // Make a new Output_section, and attach it to segments as
1325 // appropriate.  ORDER is the order in which this section should
1326 // appear in the output segment.  IS_RELRO is true if this is a relro
1327 // (read-only after relocations) section.
1328
1329 Output_section*
1330 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1331                             elfcpp::Elf_Xword flags,
1332                             Output_section_order order, bool is_relro)
1333 {
1334   Output_section* os;
1335   if ((flags & elfcpp::SHF_ALLOC) == 0
1336       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1337       && is_compressible_debug_section(name))
1338     os = new Output_compressed_section(&parameters->options(), name, type,
1339                                        flags);
1340   else if ((flags & elfcpp::SHF_ALLOC) == 0
1341            && parameters->options().strip_debug_non_line()
1342            && strcmp(".debug_abbrev", name) == 0)
1343     {
1344       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1345           name, type, flags);
1346       if (this->debug_info_)
1347         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1348     }
1349   else if ((flags & elfcpp::SHF_ALLOC) == 0
1350            && parameters->options().strip_debug_non_line()
1351            && strcmp(".debug_info", name) == 0)
1352     {
1353       os = this->debug_info_ = new Output_reduced_debug_info_section(
1354           name, type, flags);
1355       if (this->debug_abbrev_)
1356         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1357     }
1358   else
1359     {
1360       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1361       // not have correct section types.  Force them here.
1362       if (type == elfcpp::SHT_PROGBITS)
1363         {
1364           if (is_prefix_of(".init_array", name))
1365             type = elfcpp::SHT_INIT_ARRAY;
1366           else if (is_prefix_of(".preinit_array", name))
1367             type = elfcpp::SHT_PREINIT_ARRAY;
1368           else if (is_prefix_of(".fini_array", name))
1369             type = elfcpp::SHT_FINI_ARRAY;
1370         }
1371
1372       // FIXME: const_cast is ugly.
1373       Target* target = const_cast<Target*>(&parameters->target());
1374       os = target->make_output_section(name, type, flags);
1375     }
1376
1377   // With -z relro, we have to recognize the special sections by name.
1378   // There is no other way.
1379   bool is_relro_local = false;
1380   if (!this->script_options_->saw_sections_clause()
1381       && parameters->options().relro()
1382       && type == elfcpp::SHT_PROGBITS
1383       && (flags & elfcpp::SHF_ALLOC) != 0
1384       && (flags & elfcpp::SHF_WRITE) != 0)
1385     {
1386       if (strcmp(name, ".data.rel.ro") == 0)
1387         is_relro = true;
1388       else if (strcmp(name, ".data.rel.ro.local") == 0)
1389         {
1390           is_relro = true;
1391           is_relro_local = true;
1392         }
1393       else if (type == elfcpp::SHT_INIT_ARRAY
1394                || type == elfcpp::SHT_FINI_ARRAY
1395                || type == elfcpp::SHT_PREINIT_ARRAY)
1396         is_relro = true;
1397       else if (strcmp(name, ".ctors") == 0
1398                || strcmp(name, ".dtors") == 0
1399                || strcmp(name, ".jcr") == 0)
1400         is_relro = true;
1401     }
1402
1403   if (is_relro)
1404     os->set_is_relro();
1405
1406   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1407     order = this->default_section_order(os, is_relro_local);
1408
1409   os->set_order(order);
1410
1411   parameters->target().new_output_section(os);
1412
1413   this->section_list_.push_back(os);
1414
1415   // The GNU linker by default sorts some sections by priority, so we
1416   // do the same.  We need to know that this might happen before we
1417   // attach any input sections.
1418   if (!this->script_options_->saw_sections_clause()
1419       && !parameters->options().relocatable()
1420       && (strcmp(name, ".init_array") == 0
1421           || strcmp(name, ".fini_array") == 0
1422           || (!parameters->options().ctors_in_init_array()
1423               && (strcmp(name, ".ctors") == 0
1424                   || strcmp(name, ".dtors") == 0))))
1425     os->set_may_sort_attached_input_sections();
1426
1427   // Check for .stab*str sections, as .stab* sections need to link to
1428   // them.
1429   if (type == elfcpp::SHT_STRTAB
1430       && !this->have_stabstr_section_
1431       && strncmp(name, ".stab", 5) == 0
1432       && strcmp(name + strlen(name) - 3, "str") == 0)
1433     this->have_stabstr_section_ = true;
1434
1435   // During a full incremental link, we add patch space to most
1436   // PROGBITS and NOBITS sections.  Flag those that may be
1437   // arbitrarily padded.
1438   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1439       && order != ORDER_INTERP
1440       && order != ORDER_INIT
1441       && order != ORDER_PLT
1442       && order != ORDER_FINI
1443       && order != ORDER_RELRO_LAST
1444       && order != ORDER_NON_RELRO_FIRST
1445       && strcmp(name, ".eh_frame") != 0
1446       && strcmp(name, ".ctors") != 0
1447       && strcmp(name, ".dtors") != 0
1448       && strcmp(name, ".jcr") != 0)
1449     {
1450       os->set_is_patch_space_allowed();
1451
1452       // Certain sections require "holes" to be filled with
1453       // specific fill patterns.  These fill patterns may have
1454       // a minimum size, so we must prevent allocations from the
1455       // free list that leave a hole smaller than the minimum.
1456       if (strcmp(name, ".debug_info") == 0)
1457         os->set_free_space_fill(new Output_fill_debug_info(false));
1458       else if (strcmp(name, ".debug_types") == 0)
1459         os->set_free_space_fill(new Output_fill_debug_info(true));
1460       else if (strcmp(name, ".debug_line") == 0)
1461         os->set_free_space_fill(new Output_fill_debug_line());
1462     }
1463
1464   // If we have already attached the sections to segments, then we
1465   // need to attach this one now.  This happens for sections created
1466   // directly by the linker.
1467   if (this->sections_are_attached_)
1468     this->attach_section_to_segment(os);
1469
1470   return os;
1471 }
1472
1473 // Return the default order in which a section should be placed in an
1474 // output segment.  This function captures a lot of the ideas in
1475 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1476 // linker created section is normally set when the section is created;
1477 // this function is used for input sections.
1478
1479 Output_section_order
1480 Layout::default_section_order(Output_section* os, bool is_relro_local)
1481 {
1482   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1483   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1484   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1485   bool is_bss = false;
1486
1487   switch (os->type())
1488     {
1489     default:
1490     case elfcpp::SHT_PROGBITS:
1491       break;
1492     case elfcpp::SHT_NOBITS:
1493       is_bss = true;
1494       break;
1495     case elfcpp::SHT_RELA:
1496     case elfcpp::SHT_REL:
1497       if (!is_write)
1498         return ORDER_DYNAMIC_RELOCS;
1499       break;
1500     case elfcpp::SHT_HASH:
1501     case elfcpp::SHT_DYNAMIC:
1502     case elfcpp::SHT_SHLIB:
1503     case elfcpp::SHT_DYNSYM:
1504     case elfcpp::SHT_GNU_HASH:
1505     case elfcpp::SHT_GNU_verdef:
1506     case elfcpp::SHT_GNU_verneed:
1507     case elfcpp::SHT_GNU_versym:
1508       if (!is_write)
1509         return ORDER_DYNAMIC_LINKER;
1510       break;
1511     case elfcpp::SHT_NOTE:
1512       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1513     }
1514
1515   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1516     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1517
1518   if (!is_bss && !is_write)
1519     {
1520       if (is_execinstr)
1521         {
1522           if (strcmp(os->name(), ".init") == 0)
1523             return ORDER_INIT;
1524           else if (strcmp(os->name(), ".fini") == 0)
1525             return ORDER_FINI;
1526         }
1527       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1528     }
1529
1530   if (os->is_relro())
1531     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1532
1533   if (os->is_small_section())
1534     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1535   if (os->is_large_section())
1536     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1537
1538   return is_bss ? ORDER_BSS : ORDER_DATA;
1539 }
1540
1541 // Attach output sections to segments.  This is called after we have
1542 // seen all the input sections.
1543
1544 void
1545 Layout::attach_sections_to_segments()
1546 {
1547   for (Section_list::iterator p = this->section_list_.begin();
1548        p != this->section_list_.end();
1549        ++p)
1550     this->attach_section_to_segment(*p);
1551
1552   this->sections_are_attached_ = true;
1553 }
1554
1555 // Attach an output section to a segment.
1556
1557 void
1558 Layout::attach_section_to_segment(Output_section* os)
1559 {
1560   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1561     this->unattached_section_list_.push_back(os);
1562   else
1563     this->attach_allocated_section_to_segment(os);
1564 }
1565
1566 // Attach an allocated output section to a segment.
1567
1568 void
1569 Layout::attach_allocated_section_to_segment(Output_section* os)
1570 {
1571   elfcpp::Elf_Xword flags = os->flags();
1572   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1573
1574   if (parameters->options().relocatable())
1575     return;
1576
1577   // If we have a SECTIONS clause, we can't handle the attachment to
1578   // segments until after we've seen all the sections.
1579   if (this->script_options_->saw_sections_clause())
1580     return;
1581
1582   gold_assert(!this->script_options_->saw_phdrs_clause());
1583
1584   // This output section goes into a PT_LOAD segment.
1585
1586   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1587
1588   // Check for --section-start.
1589   uint64_t addr;
1590   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1591
1592   // In general the only thing we really care about for PT_LOAD
1593   // segments is whether or not they are writable or executable,
1594   // so that is how we search for them.
1595   // Large data sections also go into their own PT_LOAD segment.
1596   // People who need segments sorted on some other basis will
1597   // have to use a linker script.
1598
1599   Segment_list::const_iterator p;
1600   for (p = this->segment_list_.begin();
1601        p != this->segment_list_.end();
1602        ++p)
1603     {
1604       if ((*p)->type() != elfcpp::PT_LOAD)
1605         continue;
1606       if (!parameters->options().omagic()
1607           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1608         continue;
1609       if (parameters->options().rosegment()
1610           && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1611         continue;
1612       // If -Tbss was specified, we need to separate the data and BSS
1613       // segments.
1614       if (parameters->options().user_set_Tbss())
1615         {
1616           if ((os->type() == elfcpp::SHT_NOBITS)
1617               == (*p)->has_any_data_sections())
1618             continue;
1619         }
1620       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1621         continue;
1622
1623       if (is_address_set)
1624         {
1625           if ((*p)->are_addresses_set())
1626             continue;
1627
1628           (*p)->add_initial_output_data(os);
1629           (*p)->update_flags_for_output_section(seg_flags);
1630           (*p)->set_addresses(addr, addr);
1631           break;
1632         }
1633
1634       (*p)->add_output_section_to_load(this, os, seg_flags);
1635       break;
1636     }
1637
1638   if (p == this->segment_list_.end())
1639     {
1640       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1641                                                        seg_flags);
1642       if (os->is_large_data_section())
1643         oseg->set_is_large_data_segment();
1644       oseg->add_output_section_to_load(this, os, seg_flags);
1645       if (is_address_set)
1646         oseg->set_addresses(addr, addr);
1647     }
1648
1649   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1650   // segment.
1651   if (os->type() == elfcpp::SHT_NOTE)
1652     {
1653       // See if we already have an equivalent PT_NOTE segment.
1654       for (p = this->segment_list_.begin();
1655            p != segment_list_.end();
1656            ++p)
1657         {
1658           if ((*p)->type() == elfcpp::PT_NOTE
1659               && (((*p)->flags() & elfcpp::PF_W)
1660                   == (seg_flags & elfcpp::PF_W)))
1661             {
1662               (*p)->add_output_section_to_nonload(os, seg_flags);
1663               break;
1664             }
1665         }
1666
1667       if (p == this->segment_list_.end())
1668         {
1669           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1670                                                            seg_flags);
1671           oseg->add_output_section_to_nonload(os, seg_flags);
1672         }
1673     }
1674
1675   // If we see a loadable SHF_TLS section, we create a PT_TLS
1676   // segment.  There can only be one such segment.
1677   if ((flags & elfcpp::SHF_TLS) != 0)
1678     {
1679       if (this->tls_segment_ == NULL)
1680         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1681       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1682     }
1683
1684   // If -z relro is in effect, and we see a relro section, we create a
1685   // PT_GNU_RELRO segment.  There can only be one such segment.
1686   if (os->is_relro() && parameters->options().relro())
1687     {
1688       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1689       if (this->relro_segment_ == NULL)
1690         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1691       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1692     }
1693
1694   // If we see a section named .interp, put it into a PT_INTERP
1695   // segment.  This seems broken to me, but this is what GNU ld does,
1696   // and glibc expects it.
1697   if (strcmp(os->name(), ".interp") == 0
1698       && !this->script_options_->saw_phdrs_clause())
1699     {
1700       if (this->interp_segment_ == NULL)
1701         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1702       else
1703         gold_warning(_("multiple '.interp' sections in input files "
1704                        "may cause confusing PT_INTERP segment"));
1705       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1706     }
1707 }
1708
1709 // Make an output section for a script.
1710
1711 Output_section*
1712 Layout::make_output_section_for_script(
1713     const char* name,
1714     Script_sections::Section_type section_type)
1715 {
1716   name = this->namepool_.add(name, false, NULL);
1717   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1718   if (section_type == Script_sections::ST_NOLOAD)
1719     sh_flags = 0;
1720   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1721                                                  sh_flags, ORDER_INVALID,
1722                                                  false);
1723   os->set_found_in_sections_clause();
1724   if (section_type == Script_sections::ST_NOLOAD)
1725     os->set_is_noload();
1726   return os;
1727 }
1728
1729 // Return the number of segments we expect to see.
1730
1731 size_t
1732 Layout::expected_segment_count() const
1733 {
1734   size_t ret = this->segment_list_.size();
1735
1736   // If we didn't see a SECTIONS clause in a linker script, we should
1737   // already have the complete list of segments.  Otherwise we ask the
1738   // SECTIONS clause how many segments it expects, and add in the ones
1739   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1740
1741   if (!this->script_options_->saw_sections_clause())
1742     return ret;
1743   else
1744     {
1745       const Script_sections* ss = this->script_options_->script_sections();
1746       return ret + ss->expected_segment_count(this);
1747     }
1748 }
1749
1750 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1751 // is whether we saw a .note.GNU-stack section in the object file.
1752 // GNU_STACK_FLAGS is the section flags.  The flags give the
1753 // protection required for stack memory.  We record this in an
1754 // executable as a PT_GNU_STACK segment.  If an object file does not
1755 // have a .note.GNU-stack segment, we must assume that it is an old
1756 // object.  On some targets that will force an executable stack.
1757
1758 void
1759 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1760                          const Object* obj)
1761 {
1762   if (!seen_gnu_stack)
1763     {
1764       this->input_without_gnu_stack_note_ = true;
1765       if (parameters->options().warn_execstack()
1766           && parameters->target().is_default_stack_executable())
1767         gold_warning(_("%s: missing .note.GNU-stack section"
1768                        " implies executable stack"),
1769                      obj->name().c_str());
1770     }
1771   else
1772     {
1773       this->input_with_gnu_stack_note_ = true;
1774       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1775         {
1776           this->input_requires_executable_stack_ = true;
1777           if (parameters->options().warn_execstack()
1778               || parameters->options().is_stack_executable())
1779             gold_warning(_("%s: requires executable stack"),
1780                          obj->name().c_str());
1781         }
1782     }
1783 }
1784
1785 // Create automatic note sections.
1786
1787 void
1788 Layout::create_notes()
1789 {
1790   this->create_gold_note();
1791   this->create_executable_stack_info();
1792   this->create_build_id();
1793 }
1794
1795 // Create the dynamic sections which are needed before we read the
1796 // relocs.
1797
1798 void
1799 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1800 {
1801   if (parameters->doing_static_link())
1802     return;
1803
1804   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1805                                                        elfcpp::SHT_DYNAMIC,
1806                                                        (elfcpp::SHF_ALLOC
1807                                                         | elfcpp::SHF_WRITE),
1808                                                        false, ORDER_RELRO,
1809                                                        true);
1810
1811   // A linker script may discard .dynamic, so check for NULL.
1812   if (this->dynamic_section_ != NULL)
1813     {
1814       this->dynamic_symbol_ =
1815         symtab->define_in_output_data("_DYNAMIC", NULL,
1816                                       Symbol_table::PREDEFINED,
1817                                       this->dynamic_section_, 0, 0,
1818                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1819                                       elfcpp::STV_HIDDEN, 0, false, false);
1820
1821       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1822
1823       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1824     }
1825 }
1826
1827 // For each output section whose name can be represented as C symbol,
1828 // define __start and __stop symbols for the section.  This is a GNU
1829 // extension.
1830
1831 void
1832 Layout::define_section_symbols(Symbol_table* symtab)
1833 {
1834   for (Section_list::const_iterator p = this->section_list_.begin();
1835        p != this->section_list_.end();
1836        ++p)
1837     {
1838       const char* const name = (*p)->name();
1839       if (is_cident(name))
1840         {
1841           const std::string name_string(name);
1842           const std::string start_name(cident_section_start_prefix
1843                                        + name_string);
1844           const std::string stop_name(cident_section_stop_prefix
1845                                       + name_string);
1846
1847           symtab->define_in_output_data(start_name.c_str(),
1848                                         NULL, // version
1849                                         Symbol_table::PREDEFINED,
1850                                         *p,
1851                                         0, // value
1852                                         0, // symsize
1853                                         elfcpp::STT_NOTYPE,
1854                                         elfcpp::STB_GLOBAL,
1855                                         elfcpp::STV_DEFAULT,
1856                                         0, // nonvis
1857                                         false, // offset_is_from_end
1858                                         true); // only_if_ref
1859
1860           symtab->define_in_output_data(stop_name.c_str(),
1861                                         NULL, // version
1862                                         Symbol_table::PREDEFINED,
1863                                         *p,
1864                                         0, // value
1865                                         0, // symsize
1866                                         elfcpp::STT_NOTYPE,
1867                                         elfcpp::STB_GLOBAL,
1868                                         elfcpp::STV_DEFAULT,
1869                                         0, // nonvis
1870                                         true, // offset_is_from_end
1871                                         true); // only_if_ref
1872         }
1873     }
1874 }
1875
1876 // Define symbols for group signatures.
1877
1878 void
1879 Layout::define_group_signatures(Symbol_table* symtab)
1880 {
1881   for (Group_signatures::iterator p = this->group_signatures_.begin();
1882        p != this->group_signatures_.end();
1883        ++p)
1884     {
1885       Symbol* sym = symtab->lookup(p->signature, NULL);
1886       if (sym != NULL)
1887         p->section->set_info_symndx(sym);
1888       else
1889         {
1890           // Force the name of the group section to the group
1891           // signature, and use the group's section symbol as the
1892           // signature symbol.
1893           if (strcmp(p->section->name(), p->signature) != 0)
1894             {
1895               const char* name = this->namepool_.add(p->signature,
1896                                                      true, NULL);
1897               p->section->set_name(name);
1898             }
1899           p->section->set_needs_symtab_index();
1900           p->section->set_info_section_symndx(p->section);
1901         }
1902     }
1903
1904   this->group_signatures_.clear();
1905 }
1906
1907 // Find the first read-only PT_LOAD segment, creating one if
1908 // necessary.
1909
1910 Output_segment*
1911 Layout::find_first_load_seg()
1912 {
1913   Output_segment* best = NULL;
1914   for (Segment_list::const_iterator p = this->segment_list_.begin();
1915        p != this->segment_list_.end();
1916        ++p)
1917     {
1918       if ((*p)->type() == elfcpp::PT_LOAD
1919           && ((*p)->flags() & elfcpp::PF_R) != 0
1920           && (parameters->options().omagic()
1921               || ((*p)->flags() & elfcpp::PF_W) == 0))
1922         {
1923           if (best == NULL || this->segment_precedes(*p, best))
1924             best = *p;
1925         }
1926     }
1927   if (best != NULL)
1928     return best;
1929
1930   gold_assert(!this->script_options_->saw_phdrs_clause());
1931
1932   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1933                                                        elfcpp::PF_R);
1934   return load_seg;
1935 }
1936
1937 // Save states of all current output segments.  Store saved states
1938 // in SEGMENT_STATES.
1939
1940 void
1941 Layout::save_segments(Segment_states* segment_states)
1942 {
1943   for (Segment_list::const_iterator p = this->segment_list_.begin();
1944        p != this->segment_list_.end();
1945        ++p)
1946     {
1947       Output_segment* segment = *p;
1948       // Shallow copy.
1949       Output_segment* copy = new Output_segment(*segment);
1950       (*segment_states)[segment] = copy;
1951     }
1952 }
1953
1954 // Restore states of output segments and delete any segment not found in
1955 // SEGMENT_STATES.
1956
1957 void
1958 Layout::restore_segments(const Segment_states* segment_states)
1959 {
1960   // Go through the segment list and remove any segment added in the
1961   // relaxation loop.
1962   this->tls_segment_ = NULL;
1963   this->relro_segment_ = NULL;
1964   Segment_list::iterator list_iter = this->segment_list_.begin();
1965   while (list_iter != this->segment_list_.end())
1966     {
1967       Output_segment* segment = *list_iter;
1968       Segment_states::const_iterator states_iter =
1969           segment_states->find(segment);
1970       if (states_iter != segment_states->end())
1971         {
1972           const Output_segment* copy = states_iter->second;
1973           // Shallow copy to restore states.
1974           *segment = *copy;
1975
1976           // Also fix up TLS and RELRO segment pointers as appropriate.
1977           if (segment->type() == elfcpp::PT_TLS)
1978             this->tls_segment_ = segment;
1979           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1980             this->relro_segment_ = segment;
1981
1982           ++list_iter;
1983         } 
1984       else
1985         {
1986           list_iter = this->segment_list_.erase(list_iter); 
1987           // This is a segment created during section layout.  It should be
1988           // safe to remove it since we should have removed all pointers to it.
1989           delete segment;
1990         }
1991     }
1992 }
1993
1994 // Clean up after relaxation so that sections can be laid out again.
1995
1996 void
1997 Layout::clean_up_after_relaxation()
1998 {
1999   // Restore the segments to point state just prior to the relaxation loop.
2000   Script_sections* script_section = this->script_options_->script_sections();
2001   script_section->release_segments();
2002   this->restore_segments(this->segment_states_);
2003
2004   // Reset section addresses and file offsets
2005   for (Section_list::iterator p = this->section_list_.begin();
2006        p != this->section_list_.end();
2007        ++p)
2008     {
2009       (*p)->restore_states();
2010
2011       // If an input section changes size because of relaxation,
2012       // we need to adjust the section offsets of all input sections.
2013       // after such a section.
2014       if ((*p)->section_offsets_need_adjustment())
2015         (*p)->adjust_section_offsets();
2016
2017       (*p)->reset_address_and_file_offset();
2018     }
2019   
2020   // Reset special output object address and file offsets.
2021   for (Data_list::iterator p = this->special_output_list_.begin();
2022        p != this->special_output_list_.end();
2023        ++p)
2024     (*p)->reset_address_and_file_offset();
2025
2026   // A linker script may have created some output section data objects.
2027   // They are useless now.
2028   for (Output_section_data_list::const_iterator p =
2029          this->script_output_section_data_list_.begin();
2030        p != this->script_output_section_data_list_.end();
2031        ++p)
2032     delete *p;
2033   this->script_output_section_data_list_.clear(); 
2034 }
2035
2036 // Prepare for relaxation.
2037
2038 void
2039 Layout::prepare_for_relaxation()
2040 {
2041   // Create an relaxation debug check if in debugging mode.
2042   if (is_debugging_enabled(DEBUG_RELAXATION))
2043     this->relaxation_debug_check_ = new Relaxation_debug_check();
2044
2045   // Save segment states.
2046   this->segment_states_ = new Segment_states();
2047   this->save_segments(this->segment_states_);
2048
2049   for(Section_list::const_iterator p = this->section_list_.begin();
2050       p != this->section_list_.end();
2051       ++p)
2052     (*p)->save_states();
2053
2054   if (is_debugging_enabled(DEBUG_RELAXATION))
2055     this->relaxation_debug_check_->check_output_data_for_reset_values(
2056         this->section_list_, this->special_output_list_);
2057
2058   // Also enable recording of output section data from scripts.
2059   this->record_output_section_data_from_script_ = true;
2060 }
2061
2062 // Relaxation loop body:  If target has no relaxation, this runs only once
2063 // Otherwise, the target relaxation hook is called at the end of
2064 // each iteration.  If the hook returns true, it means re-layout of
2065 // section is required.  
2066 //
2067 // The number of segments created by a linking script without a PHDRS
2068 // clause may be affected by section sizes and alignments.  There is
2069 // a remote chance that relaxation causes different number of PT_LOAD
2070 // segments are created and sections are attached to different segments.
2071 // Therefore, we always throw away all segments created during section
2072 // layout.  In order to be able to restart the section layout, we keep
2073 // a copy of the segment list right before the relaxation loop and use
2074 // that to restore the segments.
2075 // 
2076 // PASS is the current relaxation pass number. 
2077 // SYMTAB is a symbol table.
2078 // PLOAD_SEG is the address of a pointer for the load segment.
2079 // PHDR_SEG is a pointer to the PHDR segment.
2080 // SEGMENT_HEADERS points to the output segment header.
2081 // FILE_HEADER points to the output file header.
2082 // PSHNDX is the address to store the output section index.
2083
2084 off_t inline
2085 Layout::relaxation_loop_body(
2086     int pass,
2087     Target* target,
2088     Symbol_table* symtab,
2089     Output_segment** pload_seg,
2090     Output_segment* phdr_seg,
2091     Output_segment_headers* segment_headers,
2092     Output_file_header* file_header,
2093     unsigned int* pshndx)
2094 {
2095   // If this is not the first iteration, we need to clean up after
2096   // relaxation so that we can lay out the sections again.
2097   if (pass != 0)
2098     this->clean_up_after_relaxation();
2099
2100   // If there is a SECTIONS clause, put all the input sections into
2101   // the required order.
2102   Output_segment* load_seg;
2103   if (this->script_options_->saw_sections_clause())
2104     load_seg = this->set_section_addresses_from_script(symtab);
2105   else if (parameters->options().relocatable())
2106     load_seg = NULL;
2107   else
2108     load_seg = this->find_first_load_seg();
2109
2110   if (parameters->options().oformat_enum()
2111       != General_options::OBJECT_FORMAT_ELF)
2112     load_seg = NULL;
2113
2114   // If the user set the address of the text segment, that may not be
2115   // compatible with putting the segment headers and file headers into
2116   // that segment.
2117   if (parameters->options().user_set_Ttext()
2118       && parameters->options().Ttext() % target->common_pagesize() != 0)
2119     {
2120       load_seg = NULL;
2121       phdr_seg = NULL;
2122     }
2123
2124   gold_assert(phdr_seg == NULL
2125               || load_seg != NULL
2126               || this->script_options_->saw_sections_clause());
2127
2128   // If the address of the load segment we found has been set by
2129   // --section-start rather than by a script, then adjust the VMA and
2130   // LMA downward if possible to include the file and section headers.
2131   uint64_t header_gap = 0;
2132   if (load_seg != NULL
2133       && load_seg->are_addresses_set()
2134       && !this->script_options_->saw_sections_clause()
2135       && !parameters->options().relocatable())
2136     {
2137       file_header->finalize_data_size();
2138       segment_headers->finalize_data_size();
2139       size_t sizeof_headers = (file_header->data_size()
2140                                + segment_headers->data_size());
2141       const uint64_t abi_pagesize = target->abi_pagesize();
2142       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2143       hdr_paddr &= ~(abi_pagesize - 1);
2144       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2145       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2146         load_seg = NULL;
2147       else
2148         {
2149           load_seg->set_addresses(load_seg->vaddr() - subtract,
2150                                   load_seg->paddr() - subtract);
2151           header_gap = subtract - sizeof_headers;
2152         }
2153     }
2154
2155   // Lay out the segment headers.
2156   if (!parameters->options().relocatable())
2157     {
2158       gold_assert(segment_headers != NULL);
2159       if (header_gap != 0 && load_seg != NULL)
2160         {
2161           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2162           load_seg->add_initial_output_data(z);
2163         }
2164       if (load_seg != NULL)
2165         load_seg->add_initial_output_data(segment_headers);
2166       if (phdr_seg != NULL)
2167         phdr_seg->add_initial_output_data(segment_headers);
2168     }
2169
2170   // Lay out the file header.
2171   if (load_seg != NULL)
2172     load_seg->add_initial_output_data(file_header);
2173
2174   if (this->script_options_->saw_phdrs_clause()
2175       && !parameters->options().relocatable())
2176     {
2177       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2178       // clause in a linker script.
2179       Script_sections* ss = this->script_options_->script_sections();
2180       ss->put_headers_in_phdrs(file_header, segment_headers);
2181     }
2182
2183   // We set the output section indexes in set_segment_offsets and
2184   // set_section_indexes.
2185   *pshndx = 1;
2186
2187   // Set the file offsets of all the segments, and all the sections
2188   // they contain.
2189   off_t off;
2190   if (!parameters->options().relocatable())
2191     off = this->set_segment_offsets(target, load_seg, pshndx);
2192   else
2193     off = this->set_relocatable_section_offsets(file_header, pshndx);
2194
2195    // Verify that the dummy relaxation does not change anything.
2196   if (is_debugging_enabled(DEBUG_RELAXATION))
2197     {
2198       if (pass == 0)
2199         this->relaxation_debug_check_->read_sections(this->section_list_);
2200       else
2201         this->relaxation_debug_check_->verify_sections(this->section_list_);
2202     }
2203
2204   *pload_seg = load_seg;
2205   return off;
2206 }
2207
2208 // Search the list of patterns and find the postion of the given section
2209 // name in the output section.  If the section name matches a glob
2210 // pattern and a non-glob name, then the non-glob position takes
2211 // precedence.  Return 0 if no match is found.
2212
2213 unsigned int
2214 Layout::find_section_order_index(const std::string& section_name)
2215 {
2216   Unordered_map<std::string, unsigned int>::iterator map_it;
2217   map_it = this->input_section_position_.find(section_name);
2218   if (map_it != this->input_section_position_.end())
2219     return map_it->second;
2220
2221   // Absolute match failed.  Linear search the glob patterns.
2222   std::vector<std::string>::iterator it;
2223   for (it = this->input_section_glob_.begin();
2224        it != this->input_section_glob_.end();
2225        ++it)
2226     {
2227        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2228          {
2229            map_it = this->input_section_position_.find(*it);
2230            gold_assert(map_it != this->input_section_position_.end());
2231            return map_it->second;
2232          }
2233     }
2234   return 0;
2235 }
2236
2237 // Read the sequence of input sections from the file specified with
2238 // option --section-ordering-file.
2239
2240 void
2241 Layout::read_layout_from_file()
2242 {
2243   const char* filename = parameters->options().section_ordering_file();
2244   std::ifstream in;
2245   std::string line;
2246
2247   in.open(filename);
2248   if (!in)
2249     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2250                filename, strerror(errno));
2251
2252   std::getline(in, line);   // this chops off the trailing \n, if any
2253   unsigned int position = 1;
2254   this->set_section_ordering_specified();
2255
2256   while (in)
2257     {
2258       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2259         line.resize(line.length() - 1);
2260       // Ignore comments, beginning with '#'
2261       if (line[0] == '#')
2262         {
2263           std::getline(in, line);
2264           continue;
2265         }
2266       this->input_section_position_[line] = position;
2267       // Store all glob patterns in a vector.
2268       if (is_wildcard_string(line.c_str()))
2269         this->input_section_glob_.push_back(line);
2270       position++;
2271       std::getline(in, line);
2272     }
2273 }
2274
2275 // Finalize the layout.  When this is called, we have created all the
2276 // output sections and all the output segments which are based on
2277 // input sections.  We have several things to do, and we have to do
2278 // them in the right order, so that we get the right results correctly
2279 // and efficiently.
2280
2281 // 1) Finalize the list of output segments and create the segment
2282 // table header.
2283
2284 // 2) Finalize the dynamic symbol table and associated sections.
2285
2286 // 3) Determine the final file offset of all the output segments.
2287
2288 // 4) Determine the final file offset of all the SHF_ALLOC output
2289 // sections.
2290
2291 // 5) Create the symbol table sections and the section name table
2292 // section.
2293
2294 // 6) Finalize the symbol table: set symbol values to their final
2295 // value and make a final determination of which symbols are going
2296 // into the output symbol table.
2297
2298 // 7) Create the section table header.
2299
2300 // 8) Determine the final file offset of all the output sections which
2301 // are not SHF_ALLOC, including the section table header.
2302
2303 // 9) Finalize the ELF file header.
2304
2305 // This function returns the size of the output file.
2306
2307 off_t
2308 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2309                  Target* target, const Task* task)
2310 {
2311   target->finalize_sections(this, input_objects, symtab);
2312
2313   this->count_local_symbols(task, input_objects);
2314
2315   this->link_stabs_sections();
2316
2317   Output_segment* phdr_seg = NULL;
2318   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2319     {
2320       // There was a dynamic object in the link.  We need to create
2321       // some information for the dynamic linker.
2322
2323       // Create the PT_PHDR segment which will hold the program
2324       // headers.
2325       if (!this->script_options_->saw_phdrs_clause())
2326         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2327
2328       // Create the dynamic symbol table, including the hash table.
2329       Output_section* dynstr;
2330       std::vector<Symbol*> dynamic_symbols;
2331       unsigned int local_dynamic_count;
2332       Versions versions(*this->script_options()->version_script_info(),
2333                         &this->dynpool_);
2334       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2335                                   &local_dynamic_count, &dynamic_symbols,
2336                                   &versions);
2337
2338       // Create the .interp section to hold the name of the
2339       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2340       // if we saw a .interp section in an input file.
2341       if ((!parameters->options().shared()
2342            || parameters->options().dynamic_linker() != NULL)
2343           && this->interp_segment_ == NULL)
2344         this->create_interp(target);
2345
2346       // Finish the .dynamic section to hold the dynamic data, and put
2347       // it in a PT_DYNAMIC segment.
2348       this->finish_dynamic_section(input_objects, symtab);
2349
2350       // We should have added everything we need to the dynamic string
2351       // table.
2352       this->dynpool_.set_string_offsets();
2353
2354       // Create the version sections.  We can't do this until the
2355       // dynamic string table is complete.
2356       this->create_version_sections(&versions, symtab, local_dynamic_count,
2357                                     dynamic_symbols, dynstr);
2358
2359       // Set the size of the _DYNAMIC symbol.  We can't do this until
2360       // after we call create_version_sections.
2361       this->set_dynamic_symbol_size(symtab);
2362     }
2363   
2364   // Create segment headers.
2365   Output_segment_headers* segment_headers =
2366     (parameters->options().relocatable()
2367      ? NULL
2368      : new Output_segment_headers(this->segment_list_));
2369
2370   // Lay out the file header.
2371   Output_file_header* file_header = new Output_file_header(target, symtab,
2372                                                            segment_headers);
2373
2374   this->special_output_list_.push_back(file_header);
2375   if (segment_headers != NULL)
2376     this->special_output_list_.push_back(segment_headers);
2377
2378   // Find approriate places for orphan output sections if we are using
2379   // a linker script.
2380   if (this->script_options_->saw_sections_clause())
2381     this->place_orphan_sections_in_script();
2382   
2383   Output_segment* load_seg;
2384   off_t off;
2385   unsigned int shndx;
2386   int pass = 0;
2387
2388   // Take a snapshot of the section layout as needed.
2389   if (target->may_relax())
2390     this->prepare_for_relaxation();
2391   
2392   // Run the relaxation loop to lay out sections.
2393   do
2394     {
2395       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2396                                        phdr_seg, segment_headers, file_header,
2397                                        &shndx);
2398       pass++;
2399     }
2400   while (target->may_relax()
2401          && target->relax(pass, input_objects, symtab, this, task));
2402
2403   // Set the file offsets of all the non-data sections we've seen so
2404   // far which don't have to wait for the input sections.  We need
2405   // this in order to finalize local symbols in non-allocated
2406   // sections.
2407   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2408
2409   // Set the section indexes of all unallocated sections seen so far,
2410   // in case any of them are somehow referenced by a symbol.
2411   shndx = this->set_section_indexes(shndx);
2412
2413   // Create the symbol table sections.
2414   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2415   if (!parameters->doing_static_link())
2416     this->assign_local_dynsym_offsets(input_objects);
2417
2418   // Process any symbol assignments from a linker script.  This must
2419   // be called after the symbol table has been finalized.
2420   this->script_options_->finalize_symbols(symtab, this);
2421
2422   // Create the incremental inputs sections.
2423   if (this->incremental_inputs_)
2424     {
2425       this->incremental_inputs_->finalize();
2426       this->create_incremental_info_sections(symtab);
2427     }
2428
2429   // Create the .shstrtab section.
2430   Output_section* shstrtab_section = this->create_shstrtab();
2431
2432   // Set the file offsets of the rest of the non-data sections which
2433   // don't have to wait for the input sections.
2434   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2435
2436   // Now that all sections have been created, set the section indexes
2437   // for any sections which haven't been done yet.
2438   shndx = this->set_section_indexes(shndx);
2439
2440   // Create the section table header.
2441   this->create_shdrs(shstrtab_section, &off);
2442
2443   // If there are no sections which require postprocessing, we can
2444   // handle the section names now, and avoid a resize later.
2445   if (!this->any_postprocessing_sections_)
2446     {
2447       off = this->set_section_offsets(off,
2448                                       POSTPROCESSING_SECTIONS_PASS);
2449       off =
2450           this->set_section_offsets(off,
2451                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2452     }
2453
2454   file_header->set_section_info(this->section_headers_, shstrtab_section);
2455
2456   // Now we know exactly where everything goes in the output file
2457   // (except for non-allocated sections which require postprocessing).
2458   Output_data::layout_complete();
2459
2460   this->output_file_size_ = off;
2461
2462   return off;
2463 }
2464
2465 // Create a note header following the format defined in the ELF ABI.
2466 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2467 // of the section to create, DESCSZ is the size of the descriptor.
2468 // ALLOCATE is true if the section should be allocated in memory.
2469 // This returns the new note section.  It sets *TRAILING_PADDING to
2470 // the number of trailing zero bytes required.
2471
2472 Output_section*
2473 Layout::create_note(const char* name, int note_type,
2474                     const char* section_name, size_t descsz,
2475                     bool allocate, size_t* trailing_padding)
2476 {
2477   // Authorities all agree that the values in a .note field should
2478   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2479   // they differ on what the alignment is for 64-bit binaries.
2480   // The GABI says unambiguously they take 8-byte alignment:
2481   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2482   // Other documentation says alignment should always be 4 bytes:
2483   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2484   // GNU ld and GNU readelf both support the latter (at least as of
2485   // version 2.16.91), and glibc always generates the latter for
2486   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2487   // here.
2488 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2489   const int size = parameters->target().get_size();
2490 #else
2491   const int size = 32;
2492 #endif
2493
2494   // The contents of the .note section.
2495   size_t namesz = strlen(name) + 1;
2496   size_t aligned_namesz = align_address(namesz, size / 8);
2497   size_t aligned_descsz = align_address(descsz, size / 8);
2498
2499   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2500
2501   unsigned char* buffer = new unsigned char[notehdrsz];
2502   memset(buffer, 0, notehdrsz);
2503
2504   bool is_big_endian = parameters->target().is_big_endian();
2505
2506   if (size == 32)
2507     {
2508       if (!is_big_endian)
2509         {
2510           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2511           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2512           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2513         }
2514       else
2515         {
2516           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2517           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2518           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2519         }
2520     }
2521   else if (size == 64)
2522     {
2523       if (!is_big_endian)
2524         {
2525           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2526           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2527           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2528         }
2529       else
2530         {
2531           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2532           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2533           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2534         }
2535     }
2536   else
2537     gold_unreachable();
2538
2539   memcpy(buffer + 3 * (size / 8), name, namesz);
2540
2541   elfcpp::Elf_Xword flags = 0;
2542   Output_section_order order = ORDER_INVALID;
2543   if (allocate)
2544     {
2545       flags = elfcpp::SHF_ALLOC;
2546       order = ORDER_RO_NOTE;
2547     }
2548   Output_section* os = this->choose_output_section(NULL, section_name,
2549                                                    elfcpp::SHT_NOTE,
2550                                                    flags, false, order, false);
2551   if (os == NULL)
2552     return NULL;
2553
2554   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2555                                                            size / 8,
2556                                                            "** note header");
2557   os->add_output_section_data(posd);
2558
2559   *trailing_padding = aligned_descsz - descsz;
2560
2561   return os;
2562 }
2563
2564 // For an executable or shared library, create a note to record the
2565 // version of gold used to create the binary.
2566
2567 void
2568 Layout::create_gold_note()
2569 {
2570   if (parameters->options().relocatable()
2571       || parameters->incremental_update())
2572     return;
2573
2574   std::string desc = std::string("gold ") + gold::get_version_string();
2575
2576   size_t trailing_padding;
2577   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2578                                          ".note.gnu.gold-version", desc.size(),
2579                                          false, &trailing_padding);
2580   if (os == NULL)
2581     return;
2582
2583   Output_section_data* posd = new Output_data_const(desc, 4);
2584   os->add_output_section_data(posd);
2585
2586   if (trailing_padding > 0)
2587     {
2588       posd = new Output_data_zero_fill(trailing_padding, 0);
2589       os->add_output_section_data(posd);
2590     }
2591 }
2592
2593 // Record whether the stack should be executable.  This can be set
2594 // from the command line using the -z execstack or -z noexecstack
2595 // options.  Otherwise, if any input file has a .note.GNU-stack
2596 // section with the SHF_EXECINSTR flag set, the stack should be
2597 // executable.  Otherwise, if at least one input file a
2598 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2599 // section, we use the target default for whether the stack should be
2600 // executable.  Otherwise, we don't generate a stack note.  When
2601 // generating a object file, we create a .note.GNU-stack section with
2602 // the appropriate marking.  When generating an executable or shared
2603 // library, we create a PT_GNU_STACK segment.
2604
2605 void
2606 Layout::create_executable_stack_info()
2607 {
2608   bool is_stack_executable;
2609   if (parameters->options().is_execstack_set())
2610     is_stack_executable = parameters->options().is_stack_executable();
2611   else if (!this->input_with_gnu_stack_note_)
2612     return;
2613   else
2614     {
2615       if (this->input_requires_executable_stack_)
2616         is_stack_executable = true;
2617       else if (this->input_without_gnu_stack_note_)
2618         is_stack_executable =
2619           parameters->target().is_default_stack_executable();
2620       else
2621         is_stack_executable = false;
2622     }
2623
2624   if (parameters->options().relocatable())
2625     {
2626       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2627       elfcpp::Elf_Xword flags = 0;
2628       if (is_stack_executable)
2629         flags |= elfcpp::SHF_EXECINSTR;
2630       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2631                                 ORDER_INVALID, false);
2632     }
2633   else
2634     {
2635       if (this->script_options_->saw_phdrs_clause())
2636         return;
2637       int flags = elfcpp::PF_R | elfcpp::PF_W;
2638       if (is_stack_executable)
2639         flags |= elfcpp::PF_X;
2640       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2641     }
2642 }
2643
2644 // If --build-id was used, set up the build ID note.
2645
2646 void
2647 Layout::create_build_id()
2648 {
2649   if (!parameters->options().user_set_build_id())
2650     return;
2651
2652   const char* style = parameters->options().build_id();
2653   if (strcmp(style, "none") == 0)
2654     return;
2655
2656   // Set DESCSZ to the size of the note descriptor.  When possible,
2657   // set DESC to the note descriptor contents.
2658   size_t descsz;
2659   std::string desc;
2660   if (strcmp(style, "md5") == 0)
2661     descsz = 128 / 8;
2662   else if (strcmp(style, "sha1") == 0)
2663     descsz = 160 / 8;
2664   else if (strcmp(style, "uuid") == 0)
2665     {
2666       const size_t uuidsz = 128 / 8;
2667
2668       char buffer[uuidsz];
2669       memset(buffer, 0, uuidsz);
2670
2671       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2672       if (descriptor < 0)
2673         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2674                    strerror(errno));
2675       else
2676         {
2677           ssize_t got = ::read(descriptor, buffer, uuidsz);
2678           release_descriptor(descriptor, true);
2679           if (got < 0)
2680             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2681           else if (static_cast<size_t>(got) != uuidsz)
2682             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2683                        uuidsz, got);
2684         }
2685
2686       desc.assign(buffer, uuidsz);
2687       descsz = uuidsz;
2688     }
2689   else if (strncmp(style, "0x", 2) == 0)
2690     {
2691       hex_init();
2692       const char* p = style + 2;
2693       while (*p != '\0')
2694         {
2695           if (hex_p(p[0]) && hex_p(p[1]))
2696             {
2697               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2698               desc += c;
2699               p += 2;
2700             }
2701           else if (*p == '-' || *p == ':')
2702             ++p;
2703           else
2704             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2705                        style);
2706         }
2707       descsz = desc.size();
2708     }
2709   else
2710     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2711
2712   // Create the note.
2713   size_t trailing_padding;
2714   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2715                                          ".note.gnu.build-id", descsz, true,
2716                                          &trailing_padding);
2717   if (os == NULL)
2718     return;
2719
2720   if (!desc.empty())
2721     {
2722       // We know the value already, so we fill it in now.
2723       gold_assert(desc.size() == descsz);
2724
2725       Output_section_data* posd = new Output_data_const(desc, 4);
2726       os->add_output_section_data(posd);
2727
2728       if (trailing_padding != 0)
2729         {
2730           posd = new Output_data_zero_fill(trailing_padding, 0);
2731           os->add_output_section_data(posd);
2732         }
2733     }
2734   else
2735     {
2736       // We need to compute a checksum after we have completed the
2737       // link.
2738       gold_assert(trailing_padding == 0);
2739       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2740       os->add_output_section_data(this->build_id_note_);
2741     }
2742 }
2743
2744 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2745 // field of the former should point to the latter.  I'm not sure who
2746 // started this, but the GNU linker does it, and some tools depend
2747 // upon it.
2748
2749 void
2750 Layout::link_stabs_sections()
2751 {
2752   if (!this->have_stabstr_section_)
2753     return;
2754
2755   for (Section_list::iterator p = this->section_list_.begin();
2756        p != this->section_list_.end();
2757        ++p)
2758     {
2759       if ((*p)->type() != elfcpp::SHT_STRTAB)
2760         continue;
2761
2762       const char* name = (*p)->name();
2763       if (strncmp(name, ".stab", 5) != 0)
2764         continue;
2765
2766       size_t len = strlen(name);
2767       if (strcmp(name + len - 3, "str") != 0)
2768         continue;
2769
2770       std::string stab_name(name, len - 3);
2771       Output_section* stab_sec;
2772       stab_sec = this->find_output_section(stab_name.c_str());
2773       if (stab_sec != NULL)
2774         stab_sec->set_link_section(*p);
2775     }
2776 }
2777
2778 // Create .gnu_incremental_inputs and related sections needed
2779 // for the next run of incremental linking to check what has changed.
2780
2781 void
2782 Layout::create_incremental_info_sections(Symbol_table* symtab)
2783 {
2784   Incremental_inputs* incr = this->incremental_inputs_;
2785
2786   gold_assert(incr != NULL);
2787
2788   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2789   incr->create_data_sections(symtab);
2790
2791   // Add the .gnu_incremental_inputs section.
2792   const char* incremental_inputs_name =
2793     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2794   Output_section* incremental_inputs_os =
2795     this->make_output_section(incremental_inputs_name,
2796                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2797                               ORDER_INVALID, false);
2798   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2799
2800   // Add the .gnu_incremental_symtab section.
2801   const char* incremental_symtab_name =
2802     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2803   Output_section* incremental_symtab_os =
2804     this->make_output_section(incremental_symtab_name,
2805                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2806                               ORDER_INVALID, false);
2807   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2808   incremental_symtab_os->set_entsize(4);
2809
2810   // Add the .gnu_incremental_relocs section.
2811   const char* incremental_relocs_name =
2812     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2813   Output_section* incremental_relocs_os =
2814     this->make_output_section(incremental_relocs_name,
2815                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2816                               ORDER_INVALID, false);
2817   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2818   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2819
2820   // Add the .gnu_incremental_got_plt section.
2821   const char* incremental_got_plt_name =
2822     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2823   Output_section* incremental_got_plt_os =
2824     this->make_output_section(incremental_got_plt_name,
2825                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2826                               ORDER_INVALID, false);
2827   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2828
2829   // Add the .gnu_incremental_strtab section.
2830   const char* incremental_strtab_name =
2831     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2832   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2833                                                         elfcpp::SHT_STRTAB, 0,
2834                                                         ORDER_INVALID, false);
2835   Output_data_strtab* strtab_data =
2836       new Output_data_strtab(incr->get_stringpool());
2837   incremental_strtab_os->add_output_section_data(strtab_data);
2838
2839   incremental_inputs_os->set_after_input_sections();
2840   incremental_symtab_os->set_after_input_sections();
2841   incremental_relocs_os->set_after_input_sections();
2842   incremental_got_plt_os->set_after_input_sections();
2843
2844   incremental_inputs_os->set_link_section(incremental_strtab_os);
2845   incremental_symtab_os->set_link_section(incremental_inputs_os);
2846   incremental_relocs_os->set_link_section(incremental_inputs_os);
2847   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2848 }
2849
2850 // Return whether SEG1 should be before SEG2 in the output file.  This
2851 // is based entirely on the segment type and flags.  When this is
2852 // called the segment addresses have normally not yet been set.
2853
2854 bool
2855 Layout::segment_precedes(const Output_segment* seg1,
2856                          const Output_segment* seg2)
2857 {
2858   elfcpp::Elf_Word type1 = seg1->type();
2859   elfcpp::Elf_Word type2 = seg2->type();
2860
2861   // The single PT_PHDR segment is required to precede any loadable
2862   // segment.  We simply make it always first.
2863   if (type1 == elfcpp::PT_PHDR)
2864     {
2865       gold_assert(type2 != elfcpp::PT_PHDR);
2866       return true;
2867     }
2868   if (type2 == elfcpp::PT_PHDR)
2869     return false;
2870
2871   // The single PT_INTERP segment is required to precede any loadable
2872   // segment.  We simply make it always second.
2873   if (type1 == elfcpp::PT_INTERP)
2874     {
2875       gold_assert(type2 != elfcpp::PT_INTERP);
2876       return true;
2877     }
2878   if (type2 == elfcpp::PT_INTERP)
2879     return false;
2880
2881   // We then put PT_LOAD segments before any other segments.
2882   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2883     return true;
2884   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2885     return false;
2886
2887   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2888   // segment, because that is where the dynamic linker expects to find
2889   // it (this is just for efficiency; other positions would also work
2890   // correctly).
2891   if (type1 == elfcpp::PT_TLS
2892       && type2 != elfcpp::PT_TLS
2893       && type2 != elfcpp::PT_GNU_RELRO)
2894     return false;
2895   if (type2 == elfcpp::PT_TLS
2896       && type1 != elfcpp::PT_TLS
2897       && type1 != elfcpp::PT_GNU_RELRO)
2898     return true;
2899
2900   // We put the PT_GNU_RELRO segment last, because that is where the
2901   // dynamic linker expects to find it (as with PT_TLS, this is just
2902   // for efficiency).
2903   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2904     return false;
2905   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2906     return true;
2907
2908   const elfcpp::Elf_Word flags1 = seg1->flags();
2909   const elfcpp::Elf_Word flags2 = seg2->flags();
2910
2911   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2912   // by the numeric segment type and flags values.  There should not
2913   // be more than one segment with the same type and flags.
2914   if (type1 != elfcpp::PT_LOAD)
2915     {
2916       if (type1 != type2)
2917         return type1 < type2;
2918       gold_assert(flags1 != flags2);
2919       return flags1 < flags2;
2920     }
2921
2922   // If the addresses are set already, sort by load address.
2923   if (seg1->are_addresses_set())
2924     {
2925       if (!seg2->are_addresses_set())
2926         return true;
2927
2928       unsigned int section_count1 = seg1->output_section_count();
2929       unsigned int section_count2 = seg2->output_section_count();
2930       if (section_count1 == 0 && section_count2 > 0)
2931         return true;
2932       if (section_count1 > 0 && section_count2 == 0)
2933         return false;
2934
2935       uint64_t paddr1 = (seg1->are_addresses_set()
2936                          ? seg1->paddr()
2937                          : seg1->first_section_load_address());
2938       uint64_t paddr2 = (seg2->are_addresses_set()
2939                          ? seg2->paddr()
2940                          : seg2->first_section_load_address());
2941
2942       if (paddr1 != paddr2)
2943         return paddr1 < paddr2;
2944     }
2945   else if (seg2->are_addresses_set())
2946     return false;
2947
2948   // A segment which holds large data comes after a segment which does
2949   // not hold large data.
2950   if (seg1->is_large_data_segment())
2951     {
2952       if (!seg2->is_large_data_segment())
2953         return false;
2954     }
2955   else if (seg2->is_large_data_segment())
2956     return true;
2957
2958   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2959   // segments come before writable segments.  Then writable segments
2960   // with data come before writable segments without data.  Then
2961   // executable segments come before non-executable segments.  Then
2962   // the unlikely case of a non-readable segment comes before the
2963   // normal case of a readable segment.  If there are multiple
2964   // segments with the same type and flags, we require that the
2965   // address be set, and we sort by virtual address and then physical
2966   // address.
2967   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2968     return (flags1 & elfcpp::PF_W) == 0;
2969   if ((flags1 & elfcpp::PF_W) != 0
2970       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2971     return seg1->has_any_data_sections();
2972   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2973     return (flags1 & elfcpp::PF_X) != 0;
2974   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2975     return (flags1 & elfcpp::PF_R) == 0;
2976
2977   // We shouldn't get here--we shouldn't create segments which we
2978   // can't distinguish.  Unless of course we are using a weird linker
2979   // script.
2980   gold_assert(this->script_options_->saw_phdrs_clause());
2981   return false;
2982 }
2983
2984 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2985
2986 static off_t
2987 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2988 {
2989   uint64_t unsigned_off = off;
2990   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2991                           | (addr & (abi_pagesize - 1)));
2992   if (aligned_off < unsigned_off)
2993     aligned_off += abi_pagesize;
2994   return aligned_off;
2995 }
2996
2997 // Set the file offsets of all the segments, and all the sections they
2998 // contain.  They have all been created.  LOAD_SEG must be be laid out
2999 // first.  Return the offset of the data to follow.
3000
3001 off_t
3002 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3003                             unsigned int* pshndx)
3004 {
3005   // Sort them into the final order.  We use a stable sort so that we
3006   // don't randomize the order of indistinguishable segments created
3007   // by linker scripts.
3008   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3009                    Layout::Compare_segments(this));
3010
3011   // Find the PT_LOAD segments, and set their addresses and offsets
3012   // and their section's addresses and offsets.
3013   uint64_t addr;
3014   if (parameters->options().user_set_Ttext())
3015     addr = parameters->options().Ttext();
3016   else if (parameters->options().output_is_position_independent())
3017     addr = 0;
3018   else
3019     addr = target->default_text_segment_address();
3020   off_t off = 0;
3021
3022   // If LOAD_SEG is NULL, then the file header and segment headers
3023   // will not be loadable.  But they still need to be at offset 0 in
3024   // the file.  Set their offsets now.
3025   if (load_seg == NULL)
3026     {
3027       for (Data_list::iterator p = this->special_output_list_.begin();
3028            p != this->special_output_list_.end();
3029            ++p)
3030         {
3031           off = align_address(off, (*p)->addralign());
3032           (*p)->set_address_and_file_offset(0, off);
3033           off += (*p)->data_size();
3034         }
3035     }
3036
3037   unsigned int increase_relro = this->increase_relro_;
3038   if (this->script_options_->saw_sections_clause())
3039     increase_relro = 0;
3040
3041   const bool check_sections = parameters->options().check_sections();
3042   Output_segment* last_load_segment = NULL;
3043
3044   for (Segment_list::iterator p = this->segment_list_.begin();
3045        p != this->segment_list_.end();
3046        ++p)
3047     {
3048       if ((*p)->type() == elfcpp::PT_LOAD)
3049         {
3050           if (load_seg != NULL && load_seg != *p)
3051             gold_unreachable();
3052           load_seg = NULL;
3053
3054           bool are_addresses_set = (*p)->are_addresses_set();
3055           if (are_addresses_set)
3056             {
3057               // When it comes to setting file offsets, we care about
3058               // the physical address.
3059               addr = (*p)->paddr();
3060             }
3061           else if (parameters->options().user_set_Ttext()
3062                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3063             {
3064               are_addresses_set = true;
3065             }
3066           else if (parameters->options().user_set_Tdata()
3067                    && ((*p)->flags() & elfcpp::PF_W) != 0
3068                    && (!parameters->options().user_set_Tbss()
3069                        || (*p)->has_any_data_sections()))
3070             {
3071               addr = parameters->options().Tdata();
3072               are_addresses_set = true;
3073             }
3074           else if (parameters->options().user_set_Tbss()
3075                    && ((*p)->flags() & elfcpp::PF_W) != 0
3076                    && !(*p)->has_any_data_sections())
3077             {
3078               addr = parameters->options().Tbss();
3079               are_addresses_set = true;
3080             }
3081
3082           uint64_t orig_addr = addr;
3083           uint64_t orig_off = off;
3084
3085           uint64_t aligned_addr = 0;
3086           uint64_t abi_pagesize = target->abi_pagesize();
3087           uint64_t common_pagesize = target->common_pagesize();
3088
3089           if (!parameters->options().nmagic()
3090               && !parameters->options().omagic())
3091             (*p)->set_minimum_p_align(common_pagesize);
3092
3093           if (!are_addresses_set)
3094             {
3095               // Skip the address forward one page, maintaining the same
3096               // position within the page.  This lets us store both segments
3097               // overlapping on a single page in the file, but the loader will
3098               // put them on different pages in memory. We will revisit this
3099               // decision once we know the size of the segment.
3100
3101               addr = align_address(addr, (*p)->maximum_alignment());
3102               aligned_addr = addr;
3103
3104               if ((addr & (abi_pagesize - 1)) != 0)
3105                 addr = addr + abi_pagesize;
3106
3107               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3108             }
3109
3110           if (!parameters->options().nmagic()
3111               && !parameters->options().omagic())
3112             off = align_file_offset(off, addr, abi_pagesize);
3113           else if (load_seg == NULL)
3114             {
3115               // This is -N or -n with a section script which prevents
3116               // us from using a load segment.  We need to ensure that
3117               // the file offset is aligned to the alignment of the
3118               // segment.  This is because the linker script
3119               // implicitly assumed a zero offset.  If we don't align
3120               // here, then the alignment of the sections in the
3121               // linker script may not match the alignment of the
3122               // sections in the set_section_addresses call below,
3123               // causing an error about dot moving backward.
3124               off = align_address(off, (*p)->maximum_alignment());
3125             }
3126
3127           unsigned int shndx_hold = *pshndx;
3128           bool has_relro = false;
3129           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3130                                                           &increase_relro,
3131                                                           &has_relro,
3132                                                           &off, pshndx);
3133
3134           // Now that we know the size of this segment, we may be able
3135           // to save a page in memory, at the cost of wasting some
3136           // file space, by instead aligning to the start of a new
3137           // page.  Here we use the real machine page size rather than
3138           // the ABI mandated page size.  If the segment has been
3139           // aligned so that the relro data ends at a page boundary,
3140           // we do not try to realign it.
3141
3142           if (!are_addresses_set
3143               && !has_relro
3144               && aligned_addr != addr
3145               && !parameters->incremental())
3146             {
3147               uint64_t first_off = (common_pagesize
3148                                     - (aligned_addr
3149                                        & (common_pagesize - 1)));
3150               uint64_t last_off = new_addr & (common_pagesize - 1);
3151               if (first_off > 0
3152                   && last_off > 0
3153                   && ((aligned_addr & ~ (common_pagesize - 1))
3154                       != (new_addr & ~ (common_pagesize - 1)))
3155                   && first_off + last_off <= common_pagesize)
3156                 {
3157                   *pshndx = shndx_hold;
3158                   addr = align_address(aligned_addr, common_pagesize);
3159                   addr = align_address(addr, (*p)->maximum_alignment());
3160                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3161                   off = align_file_offset(off, addr, abi_pagesize);
3162
3163                   increase_relro = this->increase_relro_;
3164                   if (this->script_options_->saw_sections_clause())
3165                     increase_relro = 0;
3166                   has_relro = false;
3167
3168                   new_addr = (*p)->set_section_addresses(this, true, addr,
3169                                                          &increase_relro,
3170                                                          &has_relro,
3171                                                          &off, pshndx);
3172                 }
3173             }
3174
3175           addr = new_addr;
3176
3177           // Implement --check-sections.  We know that the segments
3178           // are sorted by LMA.
3179           if (check_sections && last_load_segment != NULL)
3180             {
3181               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3182               if (last_load_segment->paddr() + last_load_segment->memsz()
3183                   > (*p)->paddr())
3184                 {
3185                   unsigned long long lb1 = last_load_segment->paddr();
3186                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3187                   unsigned long long lb2 = (*p)->paddr();
3188                   unsigned long long le2 = lb2 + (*p)->memsz();
3189                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3190                                "[0x%llx -> 0x%llx]"),
3191                              lb1, le1, lb2, le2);
3192                 }
3193             }
3194           last_load_segment = *p;
3195         }
3196     }
3197
3198   // Handle the non-PT_LOAD segments, setting their offsets from their
3199   // section's offsets.
3200   for (Segment_list::iterator p = this->segment_list_.begin();
3201        p != this->segment_list_.end();
3202        ++p)
3203     {
3204       if ((*p)->type() != elfcpp::PT_LOAD)
3205         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3206                          ? increase_relro
3207                          : 0);
3208     }
3209
3210   // Set the TLS offsets for each section in the PT_TLS segment.
3211   if (this->tls_segment_ != NULL)
3212     this->tls_segment_->set_tls_offsets();
3213
3214   return off;
3215 }
3216
3217 // Set the offsets of all the allocated sections when doing a
3218 // relocatable link.  This does the same jobs as set_segment_offsets,
3219 // only for a relocatable link.
3220
3221 off_t
3222 Layout::set_relocatable_section_offsets(Output_data* file_header,
3223                                         unsigned int* pshndx)
3224 {
3225   off_t off = 0;
3226
3227   file_header->set_address_and_file_offset(0, 0);
3228   off += file_header->data_size();
3229
3230   for (Section_list::iterator p = this->section_list_.begin();
3231        p != this->section_list_.end();
3232        ++p)
3233     {
3234       // We skip unallocated sections here, except that group sections
3235       // have to come first.
3236       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3237           && (*p)->type() != elfcpp::SHT_GROUP)
3238         continue;
3239
3240       off = align_address(off, (*p)->addralign());
3241
3242       // The linker script might have set the address.
3243       if (!(*p)->is_address_valid())
3244         (*p)->set_address(0);
3245       (*p)->set_file_offset(off);
3246       (*p)->finalize_data_size();
3247       off += (*p)->data_size();
3248
3249       (*p)->set_out_shndx(*pshndx);
3250       ++*pshndx;
3251     }
3252
3253   return off;
3254 }
3255
3256 // Set the file offset of all the sections not associated with a
3257 // segment.
3258
3259 off_t
3260 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3261 {
3262   off_t startoff = off;
3263   off_t maxoff = off;
3264
3265   for (Section_list::iterator p = this->unattached_section_list_.begin();
3266        p != this->unattached_section_list_.end();
3267        ++p)
3268     {
3269       // The symtab section is handled in create_symtab_sections.
3270       if (*p == this->symtab_section_)
3271         continue;
3272
3273       // If we've already set the data size, don't set it again.
3274       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3275         continue;
3276
3277       if (pass == BEFORE_INPUT_SECTIONS_PASS
3278           && (*p)->requires_postprocessing())
3279         {
3280           (*p)->create_postprocessing_buffer();
3281           this->any_postprocessing_sections_ = true;
3282         }
3283
3284       if (pass == BEFORE_INPUT_SECTIONS_PASS
3285           && (*p)->after_input_sections())
3286         continue;
3287       else if (pass == POSTPROCESSING_SECTIONS_PASS
3288                && (!(*p)->after_input_sections()
3289                    || (*p)->type() == elfcpp::SHT_STRTAB))
3290         continue;
3291       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3292                && (!(*p)->after_input_sections()
3293                    || (*p)->type() != elfcpp::SHT_STRTAB))
3294         continue;
3295
3296       if (!parameters->incremental_update())
3297         {
3298           off = align_address(off, (*p)->addralign());
3299           (*p)->set_file_offset(off);
3300           (*p)->finalize_data_size();
3301         }
3302       else
3303         {
3304           // Incremental update: allocate file space from free list.
3305           (*p)->pre_finalize_data_size();
3306           off_t current_size = (*p)->current_data_size();
3307           off = this->allocate(current_size, (*p)->addralign(), startoff);
3308           if (off == -1)
3309             {
3310               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3311                 this->free_list_.dump();
3312               gold_assert((*p)->output_section() != NULL);
3313               gold_fallback(_("out of patch space for section %s; "
3314                               "relink with --incremental-full"),
3315                             (*p)->output_section()->name());
3316             }
3317           (*p)->set_file_offset(off);
3318           (*p)->finalize_data_size();
3319           if ((*p)->data_size() > current_size)
3320             {
3321               gold_assert((*p)->output_section() != NULL);
3322               gold_fallback(_("%s: section changed size; "
3323                               "relink with --incremental-full"),
3324                             (*p)->output_section()->name());
3325             }
3326           gold_debug(DEBUG_INCREMENTAL,
3327                      "set_section_offsets: %08lx %08lx %s",
3328                      static_cast<long>(off),
3329                      static_cast<long>((*p)->data_size()),
3330                      ((*p)->output_section() != NULL
3331                       ? (*p)->output_section()->name() : "(special)"));
3332         }
3333
3334       off += (*p)->data_size();
3335       if (off > maxoff)
3336         maxoff = off;
3337
3338       // At this point the name must be set.
3339       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3340         this->namepool_.add((*p)->name(), false, NULL);
3341     }
3342   return maxoff;
3343 }
3344
3345 // Set the section indexes of all the sections not associated with a
3346 // segment.
3347
3348 unsigned int
3349 Layout::set_section_indexes(unsigned int shndx)
3350 {
3351   for (Section_list::iterator p = this->unattached_section_list_.begin();
3352        p != this->unattached_section_list_.end();
3353        ++p)
3354     {
3355       if (!(*p)->has_out_shndx())
3356         {
3357           (*p)->set_out_shndx(shndx);
3358           ++shndx;
3359         }
3360     }
3361   return shndx;
3362 }
3363
3364 // Set the section addresses according to the linker script.  This is
3365 // only called when we see a SECTIONS clause.  This returns the
3366 // program segment which should hold the file header and segment
3367 // headers, if any.  It will return NULL if they should not be in a
3368 // segment.
3369
3370 Output_segment*
3371 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3372 {
3373   Script_sections* ss = this->script_options_->script_sections();
3374   gold_assert(ss->saw_sections_clause());
3375   return this->script_options_->set_section_addresses(symtab, this);
3376 }
3377
3378 // Place the orphan sections in the linker script.
3379
3380 void
3381 Layout::place_orphan_sections_in_script()
3382 {
3383   Script_sections* ss = this->script_options_->script_sections();
3384   gold_assert(ss->saw_sections_clause());
3385
3386   // Place each orphaned output section in the script.
3387   for (Section_list::iterator p = this->section_list_.begin();
3388        p != this->section_list_.end();
3389        ++p)
3390     {
3391       if (!(*p)->found_in_sections_clause())
3392         ss->place_orphan(*p);
3393     }
3394 }
3395
3396 // Count the local symbols in the regular symbol table and the dynamic
3397 // symbol table, and build the respective string pools.
3398
3399 void
3400 Layout::count_local_symbols(const Task* task,
3401                             const Input_objects* input_objects)
3402 {
3403   // First, figure out an upper bound on the number of symbols we'll
3404   // be inserting into each pool.  This helps us create the pools with
3405   // the right size, to avoid unnecessary hashtable resizing.
3406   unsigned int symbol_count = 0;
3407   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3408        p != input_objects->relobj_end();
3409        ++p)
3410     symbol_count += (*p)->local_symbol_count();
3411
3412   // Go from "upper bound" to "estimate."  We overcount for two
3413   // reasons: we double-count symbols that occur in more than one
3414   // object file, and we count symbols that are dropped from the
3415   // output.  Add it all together and assume we overcount by 100%.
3416   symbol_count /= 2;
3417
3418   // We assume all symbols will go into both the sympool and dynpool.
3419   this->sympool_.reserve(symbol_count);
3420   this->dynpool_.reserve(symbol_count);
3421
3422   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3423        p != input_objects->relobj_end();
3424        ++p)
3425     {
3426       Task_lock_obj<Object> tlo(task, *p);
3427       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3428     }
3429 }
3430
3431 // Create the symbol table sections.  Here we also set the final
3432 // values of the symbols.  At this point all the loadable sections are
3433 // fully laid out.  SHNUM is the number of sections so far.
3434
3435 void
3436 Layout::create_symtab_sections(const Input_objects* input_objects,
3437                                Symbol_table* symtab,
3438                                unsigned int shnum,
3439                                off_t* poff)
3440 {
3441   int symsize;
3442   unsigned int align;
3443   if (parameters->target().get_size() == 32)
3444     {
3445       symsize = elfcpp::Elf_sizes<32>::sym_size;
3446       align = 4;
3447     }
3448   else if (parameters->target().get_size() == 64)
3449     {
3450       symsize = elfcpp::Elf_sizes<64>::sym_size;
3451       align = 8;
3452     }
3453   else
3454     gold_unreachable();
3455
3456   // Compute file offsets relative to the start of the symtab section.
3457   off_t off = 0;
3458
3459   // Save space for the dummy symbol at the start of the section.  We
3460   // never bother to write this out--it will just be left as zero.
3461   off += symsize;
3462   unsigned int local_symbol_index = 1;
3463
3464   // Add STT_SECTION symbols for each Output section which needs one.
3465   for (Section_list::iterator p = this->section_list_.begin();
3466        p != this->section_list_.end();
3467        ++p)
3468     {
3469       if (!(*p)->needs_symtab_index())
3470         (*p)->set_symtab_index(-1U);
3471       else
3472         {
3473           (*p)->set_symtab_index(local_symbol_index);
3474           ++local_symbol_index;
3475           off += symsize;
3476         }
3477     }
3478
3479   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3480        p != input_objects->relobj_end();
3481        ++p)
3482     {
3483       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3484                                                         off, symtab);
3485       off += (index - local_symbol_index) * symsize;
3486       local_symbol_index = index;
3487     }
3488
3489   unsigned int local_symcount = local_symbol_index;
3490   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3491
3492   off_t dynoff;
3493   size_t dyn_global_index;
3494   size_t dyncount;
3495   if (this->dynsym_section_ == NULL)
3496     {
3497       dynoff = 0;
3498       dyn_global_index = 0;
3499       dyncount = 0;
3500     }
3501   else
3502     {
3503       dyn_global_index = this->dynsym_section_->info();
3504       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3505       dynoff = this->dynsym_section_->offset() + locsize;
3506       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3507       gold_assert(static_cast<off_t>(dyncount * symsize)
3508                   == this->dynsym_section_->data_size() - locsize);
3509     }
3510
3511   off_t global_off = off;
3512   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3513                          &this->sympool_, &local_symcount);
3514
3515   if (!parameters->options().strip_all())
3516     {
3517       this->sympool_.set_string_offsets();
3518
3519       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3520       Output_section* osymtab = this->make_output_section(symtab_name,
3521                                                           elfcpp::SHT_SYMTAB,
3522                                                           0, ORDER_INVALID,
3523                                                           false);
3524       this->symtab_section_ = osymtab;
3525
3526       Output_section_data* pos = new Output_data_fixed_space(off, align,
3527                                                              "** symtab");
3528       osymtab->add_output_section_data(pos);
3529
3530       // We generate a .symtab_shndx section if we have more than
3531       // SHN_LORESERVE sections.  Technically it is possible that we
3532       // don't need one, because it is possible that there are no
3533       // symbols in any of sections with indexes larger than
3534       // SHN_LORESERVE.  That is probably unusual, though, and it is
3535       // easier to always create one than to compute section indexes
3536       // twice (once here, once when writing out the symbols).
3537       if (shnum >= elfcpp::SHN_LORESERVE)
3538         {
3539           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3540                                                                false, NULL);
3541           Output_section* osymtab_xindex =
3542             this->make_output_section(symtab_xindex_name,
3543                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3544                                       ORDER_INVALID, false);
3545
3546           size_t symcount = off / symsize;
3547           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3548
3549           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3550
3551           osymtab_xindex->set_link_section(osymtab);
3552           osymtab_xindex->set_addralign(4);
3553           osymtab_xindex->set_entsize(4);
3554
3555           osymtab_xindex->set_after_input_sections();
3556
3557           // This tells the driver code to wait until the symbol table
3558           // has written out before writing out the postprocessing
3559           // sections, including the .symtab_shndx section.
3560           this->any_postprocessing_sections_ = true;
3561         }
3562
3563       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3564       Output_section* ostrtab = this->make_output_section(strtab_name,
3565                                                           elfcpp::SHT_STRTAB,
3566                                                           0, ORDER_INVALID,
3567                                                           false);
3568
3569       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3570       ostrtab->add_output_section_data(pstr);
3571
3572       off_t symtab_off;
3573       if (!parameters->incremental_update())
3574         symtab_off = align_address(*poff, align);
3575       else
3576         {
3577           symtab_off = this->allocate(off, align, *poff);
3578           if (off == -1)
3579             gold_fallback(_("out of patch space for symbol table; "
3580                             "relink with --incremental-full"));
3581           gold_debug(DEBUG_INCREMENTAL,
3582                      "create_symtab_sections: %08lx %08lx .symtab",
3583                      static_cast<long>(symtab_off),
3584                      static_cast<long>(off));
3585         }
3586
3587       symtab->set_file_offset(symtab_off + global_off);
3588       osymtab->set_file_offset(symtab_off);
3589       osymtab->finalize_data_size();
3590       osymtab->set_link_section(ostrtab);
3591       osymtab->set_info(local_symcount);
3592       osymtab->set_entsize(symsize);
3593
3594       if (symtab_off + off > *poff)
3595         *poff = symtab_off + off;
3596     }
3597 }
3598
3599 // Create the .shstrtab section, which holds the names of the
3600 // sections.  At the time this is called, we have created all the
3601 // output sections except .shstrtab itself.
3602
3603 Output_section*
3604 Layout::create_shstrtab()
3605 {
3606   // FIXME: We don't need to create a .shstrtab section if we are
3607   // stripping everything.
3608
3609   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3610
3611   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3612                                                  ORDER_INVALID, false);
3613
3614   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3615     {
3616       // We can't write out this section until we've set all the
3617       // section names, and we don't set the names of compressed
3618       // output sections until relocations are complete.  FIXME: With
3619       // the current names we use, this is unnecessary.
3620       os->set_after_input_sections();
3621     }
3622
3623   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3624   os->add_output_section_data(posd);
3625
3626   return os;
3627 }
3628
3629 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3630 // offset.
3631
3632 void
3633 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3634 {
3635   Output_section_headers* oshdrs;
3636   oshdrs = new Output_section_headers(this,
3637                                       &this->segment_list_,
3638                                       &this->section_list_,
3639                                       &this->unattached_section_list_,
3640                                       &this->namepool_,
3641                                       shstrtab_section);
3642   off_t off;
3643   if (!parameters->incremental_update())
3644     off = align_address(*poff, oshdrs->addralign());
3645   else
3646     {
3647       oshdrs->pre_finalize_data_size();
3648       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3649       if (off == -1)
3650           gold_fallback(_("out of patch space for section header table; "
3651                           "relink with --incremental-full"));
3652       gold_debug(DEBUG_INCREMENTAL,
3653                  "create_shdrs: %08lx %08lx (section header table)",
3654                  static_cast<long>(off),
3655                  static_cast<long>(off + oshdrs->data_size()));
3656     }
3657   oshdrs->set_address_and_file_offset(0, off);
3658   off += oshdrs->data_size();
3659   if (off > *poff)
3660     *poff = off;
3661   this->section_headers_ = oshdrs;
3662 }
3663
3664 // Count the allocated sections.
3665
3666 size_t
3667 Layout::allocated_output_section_count() const
3668 {
3669   size_t section_count = 0;
3670   for (Segment_list::const_iterator p = this->segment_list_.begin();
3671        p != this->segment_list_.end();
3672        ++p)
3673     section_count += (*p)->output_section_count();
3674   return section_count;
3675 }
3676
3677 // Create the dynamic symbol table.
3678
3679 void
3680 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3681                               Symbol_table* symtab,
3682                               Output_section** pdynstr,
3683                               unsigned int* plocal_dynamic_count,
3684                               std::vector<Symbol*>* pdynamic_symbols,
3685                               Versions* pversions)
3686 {
3687   // Count all the symbols in the dynamic symbol table, and set the
3688   // dynamic symbol indexes.
3689
3690   // Skip symbol 0, which is always all zeroes.
3691   unsigned int index = 1;
3692
3693   // Add STT_SECTION symbols for each Output section which needs one.
3694   for (Section_list::iterator p = this->section_list_.begin();
3695        p != this->section_list_.end();
3696        ++p)
3697     {
3698       if (!(*p)->needs_dynsym_index())
3699         (*p)->set_dynsym_index(-1U);
3700       else
3701         {
3702           (*p)->set_dynsym_index(index);
3703           ++index;
3704         }
3705     }
3706
3707   // Count the local symbols that need to go in the dynamic symbol table,
3708   // and set the dynamic symbol indexes.
3709   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3710        p != input_objects->relobj_end();
3711        ++p)
3712     {
3713       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3714       index = new_index;
3715     }
3716
3717   unsigned int local_symcount = index;
3718   *plocal_dynamic_count = local_symcount;
3719
3720   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3721                                      &this->dynpool_, pversions);
3722
3723   int symsize;
3724   unsigned int align;
3725   const int size = parameters->target().get_size();
3726   if (size == 32)
3727     {
3728       symsize = elfcpp::Elf_sizes<32>::sym_size;
3729       align = 4;
3730     }
3731   else if (size == 64)
3732     {
3733       symsize = elfcpp::Elf_sizes<64>::sym_size;
3734       align = 8;
3735     }
3736   else
3737     gold_unreachable();
3738
3739   // Create the dynamic symbol table section.
3740
3741   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3742                                                        elfcpp::SHT_DYNSYM,
3743                                                        elfcpp::SHF_ALLOC,
3744                                                        false,
3745                                                        ORDER_DYNAMIC_LINKER,
3746                                                        false);
3747
3748   // Check for NULL as a linker script may discard .dynsym.
3749   if (dynsym != NULL)
3750     {
3751       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3752                                                                align,
3753                                                                "** dynsym");
3754       dynsym->add_output_section_data(odata);
3755
3756       dynsym->set_info(local_symcount);
3757       dynsym->set_entsize(symsize);
3758       dynsym->set_addralign(align);
3759
3760       this->dynsym_section_ = dynsym;
3761     }
3762
3763   Output_data_dynamic* const odyn = this->dynamic_data_;
3764   if (odyn != NULL)
3765     {
3766       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3767       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3768     }
3769
3770   // If there are more than SHN_LORESERVE allocated sections, we
3771   // create a .dynsym_shndx section.  It is possible that we don't
3772   // need one, because it is possible that there are no dynamic
3773   // symbols in any of the sections with indexes larger than
3774   // SHN_LORESERVE.  This is probably unusual, though, and at this
3775   // time we don't know the actual section indexes so it is
3776   // inconvenient to check.
3777   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3778     {
3779       Output_section* dynsym_xindex =
3780         this->choose_output_section(NULL, ".dynsym_shndx",
3781                                     elfcpp::SHT_SYMTAB_SHNDX,
3782                                     elfcpp::SHF_ALLOC,
3783                                     false, ORDER_DYNAMIC_LINKER, false);
3784
3785       if (dynsym_xindex != NULL)
3786         {
3787           this->dynsym_xindex_ = new Output_symtab_xindex(index);
3788
3789           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3790
3791           dynsym_xindex->set_link_section(dynsym);
3792           dynsym_xindex->set_addralign(4);
3793           dynsym_xindex->set_entsize(4);
3794
3795           dynsym_xindex->set_after_input_sections();
3796
3797           // This tells the driver code to wait until the symbol table
3798           // has written out before writing out the postprocessing
3799           // sections, including the .dynsym_shndx section.
3800           this->any_postprocessing_sections_ = true;
3801         }
3802     }
3803
3804   // Create the dynamic string table section.
3805
3806   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3807                                                        elfcpp::SHT_STRTAB,
3808                                                        elfcpp::SHF_ALLOC,
3809                                                        false,
3810                                                        ORDER_DYNAMIC_LINKER,
3811                                                        false);
3812
3813   if (dynstr != NULL)
3814     {
3815       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3816       dynstr->add_output_section_data(strdata);
3817
3818       if (dynsym != NULL)
3819         dynsym->set_link_section(dynstr);
3820       if (this->dynamic_section_ != NULL)
3821         this->dynamic_section_->set_link_section(dynstr);
3822
3823       if (odyn != NULL)
3824         {
3825           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3826           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3827         }
3828
3829       *pdynstr = dynstr;
3830     }
3831
3832   // Create the hash tables.
3833
3834   if (strcmp(parameters->options().hash_style(), "sysv") == 0
3835       || strcmp(parameters->options().hash_style(), "both") == 0)
3836     {
3837       unsigned char* phash;
3838       unsigned int hashlen;
3839       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3840                                     &phash, &hashlen);
3841
3842       Output_section* hashsec =
3843         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3844                                     elfcpp::SHF_ALLOC, false,
3845                                     ORDER_DYNAMIC_LINKER, false);
3846
3847       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3848                                                                    hashlen,
3849                                                                    align,
3850                                                                    "** hash");
3851       if (hashsec != NULL && hashdata != NULL)
3852         hashsec->add_output_section_data(hashdata);
3853
3854       if (hashsec != NULL)
3855         {
3856           if (dynsym != NULL)
3857             hashsec->set_link_section(dynsym);
3858           hashsec->set_entsize(4);
3859         }
3860
3861       if (odyn != NULL)
3862         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3863     }
3864
3865   if (strcmp(parameters->options().hash_style(), "gnu") == 0
3866       || strcmp(parameters->options().hash_style(), "both") == 0)
3867     {
3868       unsigned char* phash;
3869       unsigned int hashlen;
3870       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3871                                     &phash, &hashlen);
3872
3873       Output_section* hashsec =
3874         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3875                                     elfcpp::SHF_ALLOC, false,
3876                                     ORDER_DYNAMIC_LINKER, false);
3877
3878       Output_section_data* hashdata = new Output_data_const_buffer(phash,
3879                                                                    hashlen,
3880                                                                    align,
3881                                                                    "** hash");
3882       if (hashsec != NULL && hashdata != NULL)
3883         hashsec->add_output_section_data(hashdata);
3884
3885       if (hashsec != NULL)
3886         {
3887           if (dynsym != NULL)
3888             hashsec->set_link_section(dynsym);
3889
3890           // For a 64-bit target, the entries in .gnu.hash do not have
3891           // a uniform size, so we only set the entry size for a
3892           // 32-bit target.
3893           if (parameters->target().get_size() == 32)
3894             hashsec->set_entsize(4);
3895
3896           if (odyn != NULL)
3897             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3898         }
3899     }
3900 }
3901
3902 // Assign offsets to each local portion of the dynamic symbol table.
3903
3904 void
3905 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3906 {
3907   Output_section* dynsym = this->dynsym_section_;
3908   if (dynsym == NULL)
3909     return;
3910
3911   off_t off = dynsym->offset();
3912
3913   // Skip the dummy symbol at the start of the section.
3914   off += dynsym->entsize();
3915
3916   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3917        p != input_objects->relobj_end();
3918        ++p)
3919     {
3920       unsigned int count = (*p)->set_local_dynsym_offset(off);
3921       off += count * dynsym->entsize();
3922     }
3923 }
3924
3925 // Create the version sections.
3926
3927 void
3928 Layout::create_version_sections(const Versions* versions,
3929                                 const Symbol_table* symtab,
3930                                 unsigned int local_symcount,
3931                                 const std::vector<Symbol*>& dynamic_symbols,
3932                                 const Output_section* dynstr)
3933 {
3934   if (!versions->any_defs() && !versions->any_needs())
3935     return;
3936
3937   switch (parameters->size_and_endianness())
3938     {
3939 #ifdef HAVE_TARGET_32_LITTLE
3940     case Parameters::TARGET_32_LITTLE:
3941       this->sized_create_version_sections<32, false>(versions, symtab,
3942                                                      local_symcount,
3943                                                      dynamic_symbols, dynstr);
3944       break;
3945 #endif
3946 #ifdef HAVE_TARGET_32_BIG
3947     case Parameters::TARGET_32_BIG:
3948       this->sized_create_version_sections<32, true>(versions, symtab,
3949                                                     local_symcount,
3950                                                     dynamic_symbols, dynstr);
3951       break;
3952 #endif
3953 #ifdef HAVE_TARGET_64_LITTLE
3954     case Parameters::TARGET_64_LITTLE:
3955       this->sized_create_version_sections<64, false>(versions, symtab,
3956                                                      local_symcount,
3957                                                      dynamic_symbols, dynstr);
3958       break;
3959 #endif
3960 #ifdef HAVE_TARGET_64_BIG
3961     case Parameters::TARGET_64_BIG:
3962       this->sized_create_version_sections<64, true>(versions, symtab,
3963                                                     local_symcount,
3964                                                     dynamic_symbols, dynstr);
3965       break;
3966 #endif
3967     default:
3968       gold_unreachable();
3969     }
3970 }
3971
3972 // Create the version sections, sized version.
3973
3974 template<int size, bool big_endian>
3975 void
3976 Layout::sized_create_version_sections(
3977     const Versions* versions,
3978     const Symbol_table* symtab,
3979     unsigned int local_symcount,
3980     const std::vector<Symbol*>& dynamic_symbols,
3981     const Output_section* dynstr)
3982 {
3983   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3984                                                      elfcpp::SHT_GNU_versym,
3985                                                      elfcpp::SHF_ALLOC,
3986                                                      false,
3987                                                      ORDER_DYNAMIC_LINKER,
3988                                                      false);
3989
3990   // Check for NULL since a linker script may discard this section.
3991   if (vsec != NULL)
3992     {
3993       unsigned char* vbuf;
3994       unsigned int vsize;
3995       versions->symbol_section_contents<size, big_endian>(symtab,
3996                                                           &this->dynpool_,
3997                                                           local_symcount,
3998                                                           dynamic_symbols,
3999                                                           &vbuf, &vsize);
4000
4001       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4002                                                                 "** versions");
4003
4004       vsec->add_output_section_data(vdata);
4005       vsec->set_entsize(2);
4006       vsec->set_link_section(this->dynsym_section_);
4007     }
4008
4009   Output_data_dynamic* const odyn = this->dynamic_data_;
4010   if (odyn != NULL && vsec != NULL)
4011     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4012
4013   if (versions->any_defs())
4014     {
4015       Output_section* vdsec;
4016       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4017                                           elfcpp::SHT_GNU_verdef,
4018                                           elfcpp::SHF_ALLOC,
4019                                           false, ORDER_DYNAMIC_LINKER, false);
4020
4021       if (vdsec != NULL)
4022         {
4023           unsigned char* vdbuf;
4024           unsigned int vdsize;
4025           unsigned int vdentries;
4026           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4027                                                            &vdbuf, &vdsize,
4028                                                            &vdentries);
4029
4030           Output_section_data* vddata =
4031             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4032
4033           vdsec->add_output_section_data(vddata);
4034           vdsec->set_link_section(dynstr);
4035           vdsec->set_info(vdentries);
4036
4037           if (odyn != NULL)
4038             {
4039               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4040               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4041             }
4042         }
4043     }
4044
4045   if (versions->any_needs())
4046     {
4047       Output_section* vnsec;
4048       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4049                                           elfcpp::SHT_GNU_verneed,
4050                                           elfcpp::SHF_ALLOC,
4051                                           false, ORDER_DYNAMIC_LINKER, false);
4052
4053       if (vnsec != NULL)
4054         {
4055           unsigned char* vnbuf;
4056           unsigned int vnsize;
4057           unsigned int vnentries;
4058           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4059                                                             &vnbuf, &vnsize,
4060                                                             &vnentries);
4061
4062           Output_section_data* vndata =
4063             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4064
4065           vnsec->add_output_section_data(vndata);
4066           vnsec->set_link_section(dynstr);
4067           vnsec->set_info(vnentries);
4068
4069           if (odyn != NULL)
4070             {
4071               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4072               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4073             }
4074         }
4075     }
4076 }
4077
4078 // Create the .interp section and PT_INTERP segment.
4079
4080 void
4081 Layout::create_interp(const Target* target)
4082 {
4083   gold_assert(this->interp_segment_ == NULL);
4084
4085   const char* interp = parameters->options().dynamic_linker();
4086   if (interp == NULL)
4087     {
4088       interp = target->dynamic_linker();
4089       gold_assert(interp != NULL);
4090     }
4091
4092   size_t len = strlen(interp) + 1;
4093
4094   Output_section_data* odata = new Output_data_const(interp, len, 1);
4095
4096   Output_section* osec = this->choose_output_section(NULL, ".interp",
4097                                                      elfcpp::SHT_PROGBITS,
4098                                                      elfcpp::SHF_ALLOC,
4099                                                      false, ORDER_INTERP,
4100                                                      false);
4101   if (osec != NULL)
4102     osec->add_output_section_data(odata);
4103 }
4104
4105 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4106 // called by the target-specific code.  This does nothing if not doing
4107 // a dynamic link.
4108
4109 // USE_REL is true for REL relocs rather than RELA relocs.
4110
4111 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4112
4113 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4114 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4115 // some targets have multiple reloc sections in PLT_REL.
4116
4117 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4118 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4119 // section.
4120
4121 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4122 // executable.
4123
4124 void
4125 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4126                                 const Output_data* plt_rel,
4127                                 const Output_data_reloc_generic* dyn_rel,
4128                                 bool add_debug, bool dynrel_includes_plt)
4129 {
4130   Output_data_dynamic* odyn = this->dynamic_data_;
4131   if (odyn == NULL)
4132     return;
4133
4134   if (plt_got != NULL && plt_got->output_section() != NULL)
4135     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4136
4137   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4138     {
4139       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4140       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4141       odyn->add_constant(elfcpp::DT_PLTREL,
4142                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4143     }
4144
4145   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4146     {
4147       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4148                                 dyn_rel->output_section());
4149       if (plt_rel != NULL
4150           && plt_rel->output_section() != NULL
4151           && dynrel_includes_plt)
4152         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4153                                dyn_rel->output_section(),
4154                                plt_rel->output_section());
4155       else
4156         odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4157                                dyn_rel->output_section());
4158       const int size = parameters->target().get_size();
4159       elfcpp::DT rel_tag;
4160       int rel_size;
4161       if (use_rel)
4162         {
4163           rel_tag = elfcpp::DT_RELENT;
4164           if (size == 32)
4165             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4166           else if (size == 64)
4167             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4168           else
4169             gold_unreachable();
4170         }
4171       else
4172         {
4173           rel_tag = elfcpp::DT_RELAENT;
4174           if (size == 32)
4175             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4176           else if (size == 64)
4177             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4178           else
4179             gold_unreachable();
4180         }
4181       odyn->add_constant(rel_tag, rel_size);
4182
4183       if (parameters->options().combreloc())
4184         {
4185           size_t c = dyn_rel->relative_reloc_count();
4186           if (c > 0)
4187             odyn->add_constant((use_rel
4188                                 ? elfcpp::DT_RELCOUNT
4189                                 : elfcpp::DT_RELACOUNT),
4190                                c);
4191         }
4192     }
4193
4194   if (add_debug && !parameters->options().shared())
4195     {
4196       // The value of the DT_DEBUG tag is filled in by the dynamic
4197       // linker at run time, and used by the debugger.
4198       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4199     }
4200 }
4201
4202 // Finish the .dynamic section and PT_DYNAMIC segment.
4203
4204 void
4205 Layout::finish_dynamic_section(const Input_objects* input_objects,
4206                                const Symbol_table* symtab)
4207 {
4208   if (!this->script_options_->saw_phdrs_clause()
4209       && this->dynamic_section_ != NULL)
4210     {
4211       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4212                                                        (elfcpp::PF_R
4213                                                         | elfcpp::PF_W));
4214       oseg->add_output_section_to_nonload(this->dynamic_section_,
4215                                           elfcpp::PF_R | elfcpp::PF_W);
4216     }
4217
4218   Output_data_dynamic* const odyn = this->dynamic_data_;
4219   if (odyn == NULL)
4220     return;
4221
4222   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4223        p != input_objects->dynobj_end();
4224        ++p)
4225     {
4226       if (!(*p)->is_needed() && (*p)->as_needed())
4227         {
4228           // This dynamic object was linked with --as-needed, but it
4229           // is not needed.
4230           continue;
4231         }
4232
4233       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4234     }
4235
4236   if (parameters->options().shared())
4237     {
4238       const char* soname = parameters->options().soname();
4239       if (soname != NULL)
4240         odyn->add_string(elfcpp::DT_SONAME, soname);
4241     }
4242
4243   Symbol* sym = symtab->lookup(parameters->options().init());
4244   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4245     odyn->add_symbol(elfcpp::DT_INIT, sym);
4246
4247   sym = symtab->lookup(parameters->options().fini());
4248   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4249     odyn->add_symbol(elfcpp::DT_FINI, sym);
4250
4251   // Look for .init_array, .preinit_array and .fini_array by checking
4252   // section types.
4253   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4254       p != this->section_list_.end();
4255       ++p)
4256     switch((*p)->type())
4257       {
4258       case elfcpp::SHT_FINI_ARRAY:
4259         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4260         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
4261         break;
4262       case elfcpp::SHT_INIT_ARRAY:
4263         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4264         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
4265         break;
4266       case elfcpp::SHT_PREINIT_ARRAY:
4267         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4268         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
4269         break;
4270       default:
4271         break;
4272       }
4273   
4274   // Add a DT_RPATH entry if needed.
4275   const General_options::Dir_list& rpath(parameters->options().rpath());
4276   if (!rpath.empty())
4277     {
4278       std::string rpath_val;
4279       for (General_options::Dir_list::const_iterator p = rpath.begin();
4280            p != rpath.end();
4281            ++p)
4282         {
4283           if (rpath_val.empty())
4284             rpath_val = p->name();
4285           else
4286             {
4287               // Eliminate duplicates.
4288               General_options::Dir_list::const_iterator q;
4289               for (q = rpath.begin(); q != p; ++q)
4290                 if (q->name() == p->name())
4291                   break;
4292               if (q == p)
4293                 {
4294                   rpath_val += ':';
4295                   rpath_val += p->name();
4296                 }
4297             }
4298         }
4299
4300       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4301       if (parameters->options().enable_new_dtags())
4302         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4303     }
4304
4305   // Look for text segments that have dynamic relocations.
4306   bool have_textrel = false;
4307   if (!this->script_options_->saw_sections_clause())
4308     {
4309       for (Segment_list::const_iterator p = this->segment_list_.begin();
4310            p != this->segment_list_.end();
4311            ++p)
4312         {
4313           if ((*p)->type() == elfcpp::PT_LOAD
4314               && ((*p)->flags() & elfcpp::PF_W) == 0
4315               && (*p)->has_dynamic_reloc())
4316             {
4317               have_textrel = true;
4318               break;
4319             }
4320         }
4321     }
4322   else
4323     {
4324       // We don't know the section -> segment mapping, so we are
4325       // conservative and just look for readonly sections with
4326       // relocations.  If those sections wind up in writable segments,
4327       // then we have created an unnecessary DT_TEXTREL entry.
4328       for (Section_list::const_iterator p = this->section_list_.begin();
4329            p != this->section_list_.end();
4330            ++p)
4331         {
4332           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4333               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4334               && (*p)->has_dynamic_reloc())
4335             {
4336               have_textrel = true;
4337               break;
4338             }
4339         }
4340     }
4341
4342   if (parameters->options().filter() != NULL)
4343     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4344   if (parameters->options().any_auxiliary())
4345     {
4346       for (options::String_set::const_iterator p =
4347              parameters->options().auxiliary_begin();
4348            p != parameters->options().auxiliary_end();
4349            ++p)
4350         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4351     }
4352
4353   // Add a DT_FLAGS entry if necessary.
4354   unsigned int flags = 0;
4355   if (have_textrel)
4356     {
4357       // Add a DT_TEXTREL for compatibility with older loaders.
4358       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4359       flags |= elfcpp::DF_TEXTREL;
4360
4361       if (parameters->options().text())
4362         gold_error(_("read-only segment has dynamic relocations"));
4363       else if (parameters->options().warn_shared_textrel()
4364                && parameters->options().shared())
4365         gold_warning(_("shared library text segment is not shareable"));
4366     }
4367   if (parameters->options().shared() && this->has_static_tls())
4368     flags |= elfcpp::DF_STATIC_TLS;
4369   if (parameters->options().origin())
4370     flags |= elfcpp::DF_ORIGIN;
4371   if (parameters->options().Bsymbolic())
4372     {
4373       flags |= elfcpp::DF_SYMBOLIC;
4374       // Add DT_SYMBOLIC for compatibility with older loaders.
4375       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4376     }
4377   if (parameters->options().now())
4378     flags |= elfcpp::DF_BIND_NOW;
4379   if (flags != 0)
4380     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4381
4382   flags = 0;
4383   if (parameters->options().initfirst())
4384     flags |= elfcpp::DF_1_INITFIRST;
4385   if (parameters->options().interpose())
4386     flags |= elfcpp::DF_1_INTERPOSE;
4387   if (parameters->options().loadfltr())
4388     flags |= elfcpp::DF_1_LOADFLTR;
4389   if (parameters->options().nodefaultlib())
4390     flags |= elfcpp::DF_1_NODEFLIB;
4391   if (parameters->options().nodelete())
4392     flags |= elfcpp::DF_1_NODELETE;
4393   if (parameters->options().nodlopen())
4394     flags |= elfcpp::DF_1_NOOPEN;
4395   if (parameters->options().nodump())
4396     flags |= elfcpp::DF_1_NODUMP;
4397   if (!parameters->options().shared())
4398     flags &= ~(elfcpp::DF_1_INITFIRST
4399                | elfcpp::DF_1_NODELETE
4400                | elfcpp::DF_1_NOOPEN);
4401   if (parameters->options().origin())
4402     flags |= elfcpp::DF_1_ORIGIN;
4403   if (parameters->options().now())
4404     flags |= elfcpp::DF_1_NOW;
4405   if (parameters->options().Bgroup())
4406     flags |= elfcpp::DF_1_GROUP;
4407   if (flags != 0)
4408     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4409 }
4410
4411 // Set the size of the _DYNAMIC symbol table to be the size of the
4412 // dynamic data.
4413
4414 void
4415 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4416 {
4417   Output_data_dynamic* const odyn = this->dynamic_data_;
4418   if (odyn == NULL)
4419     return;
4420   odyn->finalize_data_size();
4421   if (this->dynamic_symbol_ == NULL)
4422     return;
4423   off_t data_size = odyn->data_size();
4424   const int size = parameters->target().get_size();
4425   if (size == 32)
4426     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4427   else if (size == 64)
4428     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4429   else
4430     gold_unreachable();
4431 }
4432
4433 // The mapping of input section name prefixes to output section names.
4434 // In some cases one prefix is itself a prefix of another prefix; in
4435 // such a case the longer prefix must come first.  These prefixes are
4436 // based on the GNU linker default ELF linker script.
4437
4438 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4439 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4440 {
4441   MAPPING_INIT(".text.", ".text"),
4442   MAPPING_INIT(".rodata.", ".rodata"),
4443   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4444   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4445   MAPPING_INIT(".data.", ".data"),
4446   MAPPING_INIT(".bss.", ".bss"),
4447   MAPPING_INIT(".tdata.", ".tdata"),
4448   MAPPING_INIT(".tbss.", ".tbss"),
4449   MAPPING_INIT(".init_array.", ".init_array"),
4450   MAPPING_INIT(".fini_array.", ".fini_array"),
4451   MAPPING_INIT(".sdata.", ".sdata"),
4452   MAPPING_INIT(".sbss.", ".sbss"),
4453   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4454   // differently depending on whether it is creating a shared library.
4455   MAPPING_INIT(".sdata2.", ".sdata"),
4456   MAPPING_INIT(".sbss2.", ".sbss"),
4457   MAPPING_INIT(".lrodata.", ".lrodata"),
4458   MAPPING_INIT(".ldata.", ".ldata"),
4459   MAPPING_INIT(".lbss.", ".lbss"),
4460   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4461   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4462   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4463   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4464   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4465   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4466   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4467   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4468   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4469   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4470   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4471   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4472   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4473   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4474   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4475   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4476   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4477   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4478   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4479   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4480   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4481 };
4482 #undef MAPPING_INIT
4483
4484 const int Layout::section_name_mapping_count =
4485   (sizeof(Layout::section_name_mapping)
4486    / sizeof(Layout::section_name_mapping[0]));
4487
4488 // Choose the output section name to use given an input section name.
4489 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4490 // length of NAME.
4491
4492 const char*
4493 Layout::output_section_name(const Relobj* relobj, const char* name,
4494                             size_t* plen)
4495 {
4496   // gcc 4.3 generates the following sorts of section names when it
4497   // needs a section name specific to a function:
4498   //   .text.FN
4499   //   .rodata.FN
4500   //   .sdata2.FN
4501   //   .data.FN
4502   //   .data.rel.FN
4503   //   .data.rel.local.FN
4504   //   .data.rel.ro.FN
4505   //   .data.rel.ro.local.FN
4506   //   .sdata.FN
4507   //   .bss.FN
4508   //   .sbss.FN
4509   //   .tdata.FN
4510   //   .tbss.FN
4511
4512   // The GNU linker maps all of those to the part before the .FN,
4513   // except that .data.rel.local.FN is mapped to .data, and
4514   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4515   // beginning with .data.rel.ro.local are grouped together.
4516
4517   // For an anonymous namespace, the string FN can contain a '.'.
4518
4519   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4520   // GNU linker maps to .rodata.
4521
4522   // The .data.rel.ro sections are used with -z relro.  The sections
4523   // are recognized by name.  We use the same names that the GNU
4524   // linker does for these sections.
4525
4526   // It is hard to handle this in a principled way, so we don't even
4527   // try.  We use a table of mappings.  If the input section name is
4528   // not found in the table, we simply use it as the output section
4529   // name.
4530
4531   const Section_name_mapping* psnm = section_name_mapping;
4532   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4533     {
4534       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4535         {
4536           *plen = psnm->tolen;
4537           return psnm->to;
4538         }
4539     }
4540
4541   // As an additional complication, .ctors sections are output in
4542   // either .ctors or .init_array sections, and .dtors sections are
4543   // output in either .dtors or .fini_array sections.
4544   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4545     {
4546       if (parameters->options().ctors_in_init_array())
4547         {
4548           *plen = 11;
4549           return name[1] == 'c' ? ".init_array" : ".fini_array";
4550         }
4551       else
4552         {
4553           *plen = 6;
4554           return name[1] == 'c' ? ".ctors" : ".dtors";
4555         }
4556     }
4557   if (parameters->options().ctors_in_init_array()
4558       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4559     {
4560       // To make .init_array/.fini_array work with gcc we must exclude
4561       // .ctors and .dtors sections from the crtbegin and crtend
4562       // files.
4563       if (relobj == NULL
4564           || (!Layout::match_file_name(relobj, "crtbegin")
4565               && !Layout::match_file_name(relobj, "crtend")))
4566         {
4567           *plen = 11;
4568           return name[1] == 'c' ? ".init_array" : ".fini_array";
4569         }
4570     }
4571
4572   return name;
4573 }
4574
4575 // Return true if RELOBJ is an input file whose base name matches
4576 // FILE_NAME.  The base name must have an extension of ".o", and must
4577 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4578 // to match crtbegin.o as well as crtbeginS.o without getting confused
4579 // by other possibilities.  Overall matching the file name this way is
4580 // a dreadful hack, but the GNU linker does it in order to better
4581 // support gcc, and we need to be compatible.
4582
4583 bool
4584 Layout::match_file_name(const Relobj* relobj, const char* match)
4585 {
4586   const std::string& file_name(relobj->name());
4587   const char* base_name = lbasename(file_name.c_str());
4588   size_t match_len = strlen(match);
4589   if (strncmp(base_name, match, match_len) != 0)
4590     return false;
4591   size_t base_len = strlen(base_name);
4592   if (base_len != match_len + 2 && base_len != match_len + 3)
4593     return false;
4594   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4595 }
4596
4597 // Check if a comdat group or .gnu.linkonce section with the given
4598 // NAME is selected for the link.  If there is already a section,
4599 // *KEPT_SECTION is set to point to the existing section and the
4600 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4601 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4602 // *KEPT_SECTION is set to the internal copy and the function returns
4603 // true.
4604
4605 bool
4606 Layout::find_or_add_kept_section(const std::string& name,
4607                                  Relobj* object,
4608                                  unsigned int shndx,
4609                                  bool is_comdat,
4610                                  bool is_group_name,
4611                                  Kept_section** kept_section)
4612 {
4613   // It's normal to see a couple of entries here, for the x86 thunk
4614   // sections.  If we see more than a few, we're linking a C++
4615   // program, and we resize to get more space to minimize rehashing.
4616   if (this->signatures_.size() > 4
4617       && !this->resized_signatures_)
4618     {
4619       reserve_unordered_map(&this->signatures_,
4620                             this->number_of_input_files_ * 64);
4621       this->resized_signatures_ = true;
4622     }
4623
4624   Kept_section candidate;
4625   std::pair<Signatures::iterator, bool> ins =
4626     this->signatures_.insert(std::make_pair(name, candidate));
4627
4628   if (kept_section != NULL)
4629     *kept_section = &ins.first->second;
4630   if (ins.second)
4631     {
4632       // This is the first time we've seen this signature.
4633       ins.first->second.set_object(object);
4634       ins.first->second.set_shndx(shndx);
4635       if (is_comdat)
4636         ins.first->second.set_is_comdat();
4637       if (is_group_name)
4638         ins.first->second.set_is_group_name();
4639       return true;
4640     }
4641
4642   // We have already seen this signature.
4643
4644   if (ins.first->second.is_group_name())
4645     {
4646       // We've already seen a real section group with this signature.
4647       // If the kept group is from a plugin object, and we're in the
4648       // replacement phase, accept the new one as a replacement.
4649       if (ins.first->second.object() == NULL
4650           && parameters->options().plugins()->in_replacement_phase())
4651         {
4652           ins.first->second.set_object(object);
4653           ins.first->second.set_shndx(shndx);
4654           return true;
4655         }
4656       return false;
4657     }
4658   else if (is_group_name)
4659     {
4660       // This is a real section group, and we've already seen a
4661       // linkonce section with this signature.  Record that we've seen
4662       // a section group, and don't include this section group.
4663       ins.first->second.set_is_group_name();
4664       return false;
4665     }
4666   else
4667     {
4668       // We've already seen a linkonce section and this is a linkonce
4669       // section.  These don't block each other--this may be the same
4670       // symbol name with different section types.
4671       return true;
4672     }
4673 }
4674
4675 // Store the allocated sections into the section list.
4676
4677 void
4678 Layout::get_allocated_sections(Section_list* section_list) const
4679 {
4680   for (Section_list::const_iterator p = this->section_list_.begin();
4681        p != this->section_list_.end();
4682        ++p)
4683     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4684       section_list->push_back(*p);
4685 }
4686
4687 // Create an output segment.
4688
4689 Output_segment*
4690 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4691 {
4692   gold_assert(!parameters->options().relocatable());
4693   Output_segment* oseg = new Output_segment(type, flags);
4694   this->segment_list_.push_back(oseg);
4695
4696   if (type == elfcpp::PT_TLS)
4697     this->tls_segment_ = oseg;
4698   else if (type == elfcpp::PT_GNU_RELRO)
4699     this->relro_segment_ = oseg;
4700   else if (type == elfcpp::PT_INTERP)
4701     this->interp_segment_ = oseg;
4702
4703   return oseg;
4704 }
4705
4706 // Return the file offset of the normal symbol table.
4707
4708 off_t
4709 Layout::symtab_section_offset() const
4710 {
4711   if (this->symtab_section_ != NULL)
4712     return this->symtab_section_->offset();
4713   return 0;
4714 }
4715
4716 // Return the section index of the normal symbol table.  It may have
4717 // been stripped by the -s/--strip-all option.
4718
4719 unsigned int
4720 Layout::symtab_section_shndx() const
4721 {
4722   if (this->symtab_section_ != NULL)
4723     return this->symtab_section_->out_shndx();
4724   return 0;
4725 }
4726
4727 // Write out the Output_sections.  Most won't have anything to write,
4728 // since most of the data will come from input sections which are
4729 // handled elsewhere.  But some Output_sections do have Output_data.
4730
4731 void
4732 Layout::write_output_sections(Output_file* of) const
4733 {
4734   for (Section_list::const_iterator p = this->section_list_.begin();
4735        p != this->section_list_.end();
4736        ++p)
4737     {
4738       if (!(*p)->after_input_sections())
4739         (*p)->write(of);
4740     }
4741 }
4742
4743 // Write out data not associated with a section or the symbol table.
4744
4745 void
4746 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4747 {
4748   if (!parameters->options().strip_all())
4749     {
4750       const Output_section* symtab_section = this->symtab_section_;
4751       for (Section_list::const_iterator p = this->section_list_.begin();
4752            p != this->section_list_.end();
4753            ++p)
4754         {
4755           if ((*p)->needs_symtab_index())
4756             {
4757               gold_assert(symtab_section != NULL);
4758               unsigned int index = (*p)->symtab_index();
4759               gold_assert(index > 0 && index != -1U);
4760               off_t off = (symtab_section->offset()
4761                            + index * symtab_section->entsize());
4762               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4763             }
4764         }
4765     }
4766
4767   const Output_section* dynsym_section = this->dynsym_section_;
4768   for (Section_list::const_iterator p = this->section_list_.begin();
4769        p != this->section_list_.end();
4770        ++p)
4771     {
4772       if ((*p)->needs_dynsym_index())
4773         {
4774           gold_assert(dynsym_section != NULL);
4775           unsigned int index = (*p)->dynsym_index();
4776           gold_assert(index > 0 && index != -1U);
4777           off_t off = (dynsym_section->offset()
4778                        + index * dynsym_section->entsize());
4779           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4780         }
4781     }
4782
4783   // Write out the Output_data which are not in an Output_section.
4784   for (Data_list::const_iterator p = this->special_output_list_.begin();
4785        p != this->special_output_list_.end();
4786        ++p)
4787     (*p)->write(of);
4788 }
4789
4790 // Write out the Output_sections which can only be written after the
4791 // input sections are complete.
4792
4793 void
4794 Layout::write_sections_after_input_sections(Output_file* of)
4795 {
4796   // Determine the final section offsets, and thus the final output
4797   // file size.  Note we finalize the .shstrab last, to allow the
4798   // after_input_section sections to modify their section-names before
4799   // writing.
4800   if (this->any_postprocessing_sections_)
4801     {
4802       off_t off = this->output_file_size_;
4803       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4804
4805       // Now that we've finalized the names, we can finalize the shstrab.
4806       off =
4807         this->set_section_offsets(off,
4808                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4809
4810       if (off > this->output_file_size_)
4811         {
4812           of->resize(off);
4813           this->output_file_size_ = off;
4814         }
4815     }
4816
4817   for (Section_list::const_iterator p = this->section_list_.begin();
4818        p != this->section_list_.end();
4819        ++p)
4820     {
4821       if ((*p)->after_input_sections())
4822         (*p)->write(of);
4823     }
4824
4825   this->section_headers_->write(of);
4826 }
4827
4828 // If the build ID requires computing a checksum, do so here, and
4829 // write it out.  We compute a checksum over the entire file because
4830 // that is simplest.
4831
4832 void
4833 Layout::write_build_id(Output_file* of) const
4834 {
4835   if (this->build_id_note_ == NULL)
4836     return;
4837
4838   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4839
4840   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4841                                           this->build_id_note_->data_size());
4842
4843   const char* style = parameters->options().build_id();
4844   if (strcmp(style, "sha1") == 0)
4845     {
4846       sha1_ctx ctx;
4847       sha1_init_ctx(&ctx);
4848       sha1_process_bytes(iv, this->output_file_size_, &ctx);
4849       sha1_finish_ctx(&ctx, ov);
4850     }
4851   else if (strcmp(style, "md5") == 0)
4852     {
4853       md5_ctx ctx;
4854       md5_init_ctx(&ctx);
4855       md5_process_bytes(iv, this->output_file_size_, &ctx);
4856       md5_finish_ctx(&ctx, ov);
4857     }
4858   else
4859     gold_unreachable();
4860
4861   of->write_output_view(this->build_id_note_->offset(),
4862                         this->build_id_note_->data_size(),
4863                         ov);
4864
4865   of->free_input_view(0, this->output_file_size_, iv);
4866 }
4867
4868 // Write out a binary file.  This is called after the link is
4869 // complete.  IN is the temporary output file we used to generate the
4870 // ELF code.  We simply walk through the segments, read them from
4871 // their file offset in IN, and write them to their load address in
4872 // the output file.  FIXME: with a bit more work, we could support
4873 // S-records and/or Intel hex format here.
4874
4875 void
4876 Layout::write_binary(Output_file* in) const
4877 {
4878   gold_assert(parameters->options().oformat_enum()
4879               == General_options::OBJECT_FORMAT_BINARY);
4880
4881   // Get the size of the binary file.
4882   uint64_t max_load_address = 0;
4883   for (Segment_list::const_iterator p = this->segment_list_.begin();
4884        p != this->segment_list_.end();
4885        ++p)
4886     {
4887       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4888         {
4889           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4890           if (max_paddr > max_load_address)
4891             max_load_address = max_paddr;
4892         }
4893     }
4894
4895   Output_file out(parameters->options().output_file_name());
4896   out.open(max_load_address);
4897
4898   for (Segment_list::const_iterator p = this->segment_list_.begin();
4899        p != this->segment_list_.end();
4900        ++p)
4901     {
4902       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4903         {
4904           const unsigned char* vin = in->get_input_view((*p)->offset(),
4905                                                         (*p)->filesz());
4906           unsigned char* vout = out.get_output_view((*p)->paddr(),
4907                                                     (*p)->filesz());
4908           memcpy(vout, vin, (*p)->filesz());
4909           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4910           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4911         }
4912     }
4913
4914   out.close();
4915 }
4916
4917 // Print the output sections to the map file.
4918
4919 void
4920 Layout::print_to_mapfile(Mapfile* mapfile) const
4921 {
4922   for (Segment_list::const_iterator p = this->segment_list_.begin();
4923        p != this->segment_list_.end();
4924        ++p)
4925     (*p)->print_sections_to_mapfile(mapfile);
4926 }
4927
4928 // Print statistical information to stderr.  This is used for --stats.
4929
4930 void
4931 Layout::print_stats() const
4932 {
4933   this->namepool_.print_stats("section name pool");
4934   this->sympool_.print_stats("output symbol name pool");
4935   this->dynpool_.print_stats("dynamic name pool");
4936
4937   for (Section_list::const_iterator p = this->section_list_.begin();
4938        p != this->section_list_.end();
4939        ++p)
4940     (*p)->print_merge_stats();
4941 }
4942
4943 // Write_sections_task methods.
4944
4945 // We can always run this task.
4946
4947 Task_token*
4948 Write_sections_task::is_runnable()
4949 {
4950   return NULL;
4951 }
4952
4953 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4954 // when finished.
4955
4956 void
4957 Write_sections_task::locks(Task_locker* tl)
4958 {
4959   tl->add(this, this->output_sections_blocker_);
4960   tl->add(this, this->final_blocker_);
4961 }
4962
4963 // Run the task--write out the data.
4964
4965 void
4966 Write_sections_task::run(Workqueue*)
4967 {
4968   this->layout_->write_output_sections(this->of_);
4969 }
4970
4971 // Write_data_task methods.
4972
4973 // We can always run this task.
4974
4975 Task_token*
4976 Write_data_task::is_runnable()
4977 {
4978   return NULL;
4979 }
4980
4981 // We need to unlock FINAL_BLOCKER when finished.
4982
4983 void
4984 Write_data_task::locks(Task_locker* tl)
4985 {
4986   tl->add(this, this->final_blocker_);
4987 }
4988
4989 // Run the task--write out the data.
4990
4991 void
4992 Write_data_task::run(Workqueue*)
4993 {
4994   this->layout_->write_data(this->symtab_, this->of_);
4995 }
4996
4997 // Write_symbols_task methods.
4998
4999 // We can always run this task.
5000
5001 Task_token*
5002 Write_symbols_task::is_runnable()
5003 {
5004   return NULL;
5005 }
5006
5007 // We need to unlock FINAL_BLOCKER when finished.
5008
5009 void
5010 Write_symbols_task::locks(Task_locker* tl)
5011 {
5012   tl->add(this, this->final_blocker_);
5013 }
5014
5015 // Run the task--write out the symbols.
5016
5017 void
5018 Write_symbols_task::run(Workqueue*)
5019 {
5020   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5021                                this->layout_->symtab_xindex(),
5022                                this->layout_->dynsym_xindex(), this->of_);
5023 }
5024
5025 // Write_after_input_sections_task methods.
5026
5027 // We can only run this task after the input sections have completed.
5028
5029 Task_token*
5030 Write_after_input_sections_task::is_runnable()
5031 {
5032   if (this->input_sections_blocker_->is_blocked())
5033     return this->input_sections_blocker_;
5034   return NULL;
5035 }
5036
5037 // We need to unlock FINAL_BLOCKER when finished.
5038
5039 void
5040 Write_after_input_sections_task::locks(Task_locker* tl)
5041 {
5042   tl->add(this, this->final_blocker_);
5043 }
5044
5045 // Run the task.
5046
5047 void
5048 Write_after_input_sections_task::run(Workqueue*)
5049 {
5050   this->layout_->write_sections_after_input_sections(this->of_);
5051 }
5052
5053 // Close_task_runner methods.
5054
5055 // Run the task--close the file.
5056
5057 void
5058 Close_task_runner::run(Workqueue*, const Task*)
5059 {
5060   // If we need to compute a checksum for the BUILD if, we do so here.
5061   this->layout_->write_build_id(this->of_);
5062
5063   // If we've been asked to create a binary file, we do so here.
5064   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5065     this->layout_->write_binary(this->of_);
5066
5067   this->of_->close();
5068 }
5069
5070 // Instantiate the templates we need.  We could use the configure
5071 // script to restrict this to only the ones for implemented targets.
5072
5073 #ifdef HAVE_TARGET_32_LITTLE
5074 template
5075 Output_section*
5076 Layout::init_fixed_output_section<32, false>(
5077     const char* name,
5078     elfcpp::Shdr<32, false>& shdr);
5079 #endif
5080
5081 #ifdef HAVE_TARGET_32_BIG
5082 template
5083 Output_section*
5084 Layout::init_fixed_output_section<32, true>(
5085     const char* name,
5086     elfcpp::Shdr<32, true>& shdr);
5087 #endif
5088
5089 #ifdef HAVE_TARGET_64_LITTLE
5090 template
5091 Output_section*
5092 Layout::init_fixed_output_section<64, false>(
5093     const char* name,
5094     elfcpp::Shdr<64, false>& shdr);
5095 #endif
5096
5097 #ifdef HAVE_TARGET_64_BIG
5098 template
5099 Output_section*
5100 Layout::init_fixed_output_section<64, true>(
5101     const char* name,
5102     elfcpp::Shdr<64, true>& shdr);
5103 #endif
5104
5105 #ifdef HAVE_TARGET_32_LITTLE
5106 template
5107 Output_section*
5108 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5109                           unsigned int shndx,
5110                           const char* name,
5111                           const elfcpp::Shdr<32, false>& shdr,
5112                           unsigned int, unsigned int, off_t*);
5113 #endif
5114
5115 #ifdef HAVE_TARGET_32_BIG
5116 template
5117 Output_section*
5118 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5119                          unsigned int shndx,
5120                          const char* name,
5121                          const elfcpp::Shdr<32, true>& shdr,
5122                          unsigned int, unsigned int, off_t*);
5123 #endif
5124
5125 #ifdef HAVE_TARGET_64_LITTLE
5126 template
5127 Output_section*
5128 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5129                           unsigned int shndx,
5130                           const char* name,
5131                           const elfcpp::Shdr<64, false>& shdr,
5132                           unsigned int, unsigned int, off_t*);
5133 #endif
5134
5135 #ifdef HAVE_TARGET_64_BIG
5136 template
5137 Output_section*
5138 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5139                          unsigned int shndx,
5140                          const char* name,
5141                          const elfcpp::Shdr<64, true>& shdr,
5142                          unsigned int, unsigned int, off_t*);
5143 #endif
5144
5145 #ifdef HAVE_TARGET_32_LITTLE
5146 template
5147 Output_section*
5148 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5149                                 unsigned int reloc_shndx,
5150                                 const elfcpp::Shdr<32, false>& shdr,
5151                                 Output_section* data_section,
5152                                 Relocatable_relocs* rr);
5153 #endif
5154
5155 #ifdef HAVE_TARGET_32_BIG
5156 template
5157 Output_section*
5158 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5159                                unsigned int reloc_shndx,
5160                                const elfcpp::Shdr<32, true>& shdr,
5161                                Output_section* data_section,
5162                                Relocatable_relocs* rr);
5163 #endif
5164
5165 #ifdef HAVE_TARGET_64_LITTLE
5166 template
5167 Output_section*
5168 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5169                                 unsigned int reloc_shndx,
5170                                 const elfcpp::Shdr<64, false>& shdr,
5171                                 Output_section* data_section,
5172                                 Relocatable_relocs* rr);
5173 #endif
5174
5175 #ifdef HAVE_TARGET_64_BIG
5176 template
5177 Output_section*
5178 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5179                                unsigned int reloc_shndx,
5180                                const elfcpp::Shdr<64, true>& shdr,
5181                                Output_section* data_section,
5182                                Relocatable_relocs* rr);
5183 #endif
5184
5185 #ifdef HAVE_TARGET_32_LITTLE
5186 template
5187 void
5188 Layout::layout_group<32, false>(Symbol_table* symtab,
5189                                 Sized_relobj_file<32, false>* object,
5190                                 unsigned int,
5191                                 const char* group_section_name,
5192                                 const char* signature,
5193                                 const elfcpp::Shdr<32, false>& shdr,
5194                                 elfcpp::Elf_Word flags,
5195                                 std::vector<unsigned int>* shndxes);
5196 #endif
5197
5198 #ifdef HAVE_TARGET_32_BIG
5199 template
5200 void
5201 Layout::layout_group<32, true>(Symbol_table* symtab,
5202                                Sized_relobj_file<32, true>* object,
5203                                unsigned int,
5204                                const char* group_section_name,
5205                                const char* signature,
5206                                const elfcpp::Shdr<32, true>& shdr,
5207                                elfcpp::Elf_Word flags,
5208                                std::vector<unsigned int>* shndxes);
5209 #endif
5210
5211 #ifdef HAVE_TARGET_64_LITTLE
5212 template
5213 void
5214 Layout::layout_group<64, false>(Symbol_table* symtab,
5215                                 Sized_relobj_file<64, false>* object,
5216                                 unsigned int,
5217                                 const char* group_section_name,
5218                                 const char* signature,
5219                                 const elfcpp::Shdr<64, false>& shdr,
5220                                 elfcpp::Elf_Word flags,
5221                                 std::vector<unsigned int>* shndxes);
5222 #endif
5223
5224 #ifdef HAVE_TARGET_64_BIG
5225 template
5226 void
5227 Layout::layout_group<64, true>(Symbol_table* symtab,
5228                                Sized_relobj_file<64, true>* object,
5229                                unsigned int,
5230                                const char* group_section_name,
5231                                const char* signature,
5232                                const elfcpp::Shdr<64, true>& shdr,
5233                                elfcpp::Elf_Word flags,
5234                                std::vector<unsigned int>* shndxes);
5235 #endif
5236
5237 #ifdef HAVE_TARGET_32_LITTLE
5238 template
5239 Output_section*
5240 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5241                                    const unsigned char* symbols,
5242                                    off_t symbols_size,
5243                                    const unsigned char* symbol_names,
5244                                    off_t symbol_names_size,
5245                                    unsigned int shndx,
5246                                    const elfcpp::Shdr<32, false>& shdr,
5247                                    unsigned int reloc_shndx,
5248                                    unsigned int reloc_type,
5249                                    off_t* off);
5250 #endif
5251
5252 #ifdef HAVE_TARGET_32_BIG
5253 template
5254 Output_section*
5255 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5256                                   const unsigned char* symbols,
5257                                   off_t symbols_size,
5258                                   const unsigned char* symbol_names,
5259                                   off_t symbol_names_size,
5260                                   unsigned int shndx,
5261                                   const elfcpp::Shdr<32, true>& shdr,
5262                                   unsigned int reloc_shndx,
5263                                   unsigned int reloc_type,
5264                                   off_t* off);
5265 #endif
5266
5267 #ifdef HAVE_TARGET_64_LITTLE
5268 template
5269 Output_section*
5270 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5271                                    const unsigned char* symbols,
5272                                    off_t symbols_size,
5273                                    const unsigned char* symbol_names,
5274                                    off_t symbol_names_size,
5275                                    unsigned int shndx,
5276                                    const elfcpp::Shdr<64, false>& shdr,
5277                                    unsigned int reloc_shndx,
5278                                    unsigned int reloc_type,
5279                                    off_t* off);
5280 #endif
5281
5282 #ifdef HAVE_TARGET_64_BIG
5283 template
5284 Output_section*
5285 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5286                                   const unsigned char* symbols,
5287                                   off_t symbols_size,
5288                                   const unsigned char* symbol_names,
5289                                   off_t symbol_names_size,
5290                                   unsigned int shndx,
5291                                   const elfcpp::Shdr<64, true>& shdr,
5292                                   unsigned int reloc_shndx,
5293                                   unsigned int reloc_type,
5294                                   off_t* off);
5295 #endif
5296
5297 } // End namespace gold.