Handle output sections with more than 0x7fffffff bytes.
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "layout.h"
49
50 namespace gold
51 {
52
53 // Layout_task_runner methods.
54
55 // Lay out the sections.  This is called after all the input objects
56 // have been read.
57
58 void
59 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
60 {
61   off_t file_size = this->layout_->finalize(this->input_objects_,
62                                             this->symtab_,
63                                             this->target_,
64                                             task);
65
66   // Now we know the final size of the output file and we know where
67   // each piece of information goes.
68
69   if (this->mapfile_ != NULL)
70     {
71       this->mapfile_->print_discarded_sections(this->input_objects_);
72       this->layout_->print_to_mapfile(this->mapfile_);
73     }
74
75   Output_file* of = new Output_file(parameters->options().output_file_name());
76   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
77     of->set_is_temporary();
78   of->open(file_size);
79
80   // Queue up the final set of tasks.
81   gold::queue_final_tasks(this->options_, this->input_objects_,
82                           this->symtab_, this->layout_, workqueue, of);
83 }
84
85 // Layout methods.
86
87 Layout::Layout(const General_options& options, Script_options* script_options)
88   : options_(options),
89     script_options_(script_options),
90     namepool_(),
91     sympool_(),
92     dynpool_(),
93     signatures_(),
94     section_name_map_(),
95     segment_list_(),
96     section_list_(),
97     unattached_section_list_(),
98     sections_are_attached_(false),
99     special_output_list_(),
100     section_headers_(NULL),
101     tls_segment_(NULL),
102     relro_segment_(NULL),
103     symtab_section_(NULL),
104     symtab_xindex_(NULL),
105     dynsym_section_(NULL),
106     dynsym_xindex_(NULL),
107     dynamic_section_(NULL),
108     dynamic_data_(NULL),
109     eh_frame_section_(NULL),
110     eh_frame_data_(NULL),
111     added_eh_frame_data_(false),
112     eh_frame_hdr_section_(NULL),
113     build_id_note_(NULL),
114     debug_abbrev_(NULL),
115     debug_info_(NULL),
116     group_signatures_(),
117     output_file_size_(-1),
118     input_requires_executable_stack_(false),
119     input_with_gnu_stack_note_(false),
120     input_without_gnu_stack_note_(false),
121     has_static_tls_(false),
122     any_postprocessing_sections_(false)
123 {
124   // Make space for more than enough segments for a typical file.
125   // This is just for efficiency--it's OK if we wind up needing more.
126   this->segment_list_.reserve(12);
127
128   // We expect two unattached Output_data objects: the file header and
129   // the segment headers.
130   this->special_output_list_.reserve(2);
131 }
132
133 // Hash a key we use to look up an output section mapping.
134
135 size_t
136 Layout::Hash_key::operator()(const Layout::Key& k) const
137 {
138  return k.first + k.second.first + k.second.second;
139 }
140
141 // Return whether PREFIX is a prefix of STR.
142
143 static inline bool
144 is_prefix_of(const char* prefix, const char* str)
145 {
146   return strncmp(prefix, str, strlen(prefix)) == 0;
147 }
148
149 // Returns whether the given section is in the list of
150 // debug-sections-used-by-some-version-of-gdb.  Currently,
151 // we've checked versions of gdb up to and including 6.7.1.
152
153 static const char* gdb_sections[] =
154 { ".debug_abbrev",
155   // ".debug_aranges",   // not used by gdb as of 6.7.1
156   ".debug_frame",
157   ".debug_info",
158   ".debug_line",
159   ".debug_loc",
160   ".debug_macinfo",
161   // ".debug_pubnames",  // not used by gdb as of 6.7.1
162   ".debug_ranges",
163   ".debug_str",
164 };
165
166 static const char* lines_only_debug_sections[] =
167 { ".debug_abbrev",
168   // ".debug_aranges",   // not used by gdb as of 6.7.1
169   // ".debug_frame",
170   ".debug_info",
171   ".debug_line",
172   // ".debug_loc",
173   // ".debug_macinfo",
174   // ".debug_pubnames",  // not used by gdb as of 6.7.1
175   // ".debug_ranges",
176   ".debug_str",
177 };
178
179 static inline bool
180 is_gdb_debug_section(const char* str)
181 {
182   // We can do this faster: binary search or a hashtable.  But why bother?
183   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
184     if (strcmp(str, gdb_sections[i]) == 0)
185       return true;
186   return false;
187 }
188
189 static inline bool
190 is_lines_only_debug_section(const char* str)
191 {
192   // We can do this faster: binary search or a hashtable.  But why bother?
193   for (size_t i = 0;
194        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
195        ++i)
196     if (strcmp(str, lines_only_debug_sections[i]) == 0)
197       return true;
198   return false;
199 }
200
201 // Whether to include this section in the link.
202
203 template<int size, bool big_endian>
204 bool
205 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
206                         const elfcpp::Shdr<size, big_endian>& shdr)
207 {
208   switch (shdr.get_sh_type())
209     {
210     case elfcpp::SHT_NULL:
211     case elfcpp::SHT_SYMTAB:
212     case elfcpp::SHT_DYNSYM:
213     case elfcpp::SHT_HASH:
214     case elfcpp::SHT_DYNAMIC:
215     case elfcpp::SHT_SYMTAB_SHNDX:
216       return false;
217
218     case elfcpp::SHT_STRTAB:
219       // Discard the sections which have special meanings in the ELF
220       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
221       // checking the sh_link fields of the appropriate sections.
222       return (strcmp(name, ".dynstr") != 0
223               && strcmp(name, ".strtab") != 0
224               && strcmp(name, ".shstrtab") != 0);
225
226     case elfcpp::SHT_RELA:
227     case elfcpp::SHT_REL:
228     case elfcpp::SHT_GROUP:
229       // If we are emitting relocations these should be handled
230       // elsewhere.
231       gold_assert(!parameters->options().relocatable()
232                   && !parameters->options().emit_relocs());
233       return false;
234
235     case elfcpp::SHT_PROGBITS:
236       if (parameters->options().strip_debug()
237           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
238         {
239           if (is_debug_info_section(name))
240             return false;
241         }
242       if (parameters->options().strip_debug_non_line()
243           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
244         {
245           // Debugging sections can only be recognized by name.
246           if (is_prefix_of(".debug", name)
247               && !is_lines_only_debug_section(name))
248             return false;
249         }
250       if (parameters->options().strip_debug_gdb()
251           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
252         {
253           // Debugging sections can only be recognized by name.
254           if (is_prefix_of(".debug", name)
255               && !is_gdb_debug_section(name))
256             return false;
257         }
258       return true;
259
260     default:
261       return true;
262     }
263 }
264
265 // Return an output section named NAME, or NULL if there is none.
266
267 Output_section*
268 Layout::find_output_section(const char* name) const
269 {
270   for (Section_list::const_iterator p = this->section_list_.begin();
271        p != this->section_list_.end();
272        ++p)
273     if (strcmp((*p)->name(), name) == 0)
274       return *p;
275   return NULL;
276 }
277
278 // Return an output segment of type TYPE, with segment flags SET set
279 // and segment flags CLEAR clear.  Return NULL if there is none.
280
281 Output_segment*
282 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
283                             elfcpp::Elf_Word clear) const
284 {
285   for (Segment_list::const_iterator p = this->segment_list_.begin();
286        p != this->segment_list_.end();
287        ++p)
288     if (static_cast<elfcpp::PT>((*p)->type()) == type
289         && ((*p)->flags() & set) == set
290         && ((*p)->flags() & clear) == 0)
291       return *p;
292   return NULL;
293 }
294
295 // Return the output section to use for section NAME with type TYPE
296 // and section flags FLAGS.  NAME must be canonicalized in the string
297 // pool, and NAME_KEY is the key.
298
299 Output_section*
300 Layout::get_output_section(const char* name, Stringpool::Key name_key,
301                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
302 {
303   elfcpp::Elf_Xword lookup_flags = flags;
304
305   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
306   // read-write with read-only sections.  Some other ELF linkers do
307   // not do this.  FIXME: Perhaps there should be an option
308   // controlling this.
309   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
310
311   const Key key(name_key, std::make_pair(type, lookup_flags));
312   const std::pair<Key, Output_section*> v(key, NULL);
313   std::pair<Section_name_map::iterator, bool> ins(
314     this->section_name_map_.insert(v));
315
316   if (!ins.second)
317     return ins.first->second;
318   else
319     {
320       // This is the first time we've seen this name/type/flags
321       // combination.  For compatibility with the GNU linker, we
322       // combine sections with contents and zero flags with sections
323       // with non-zero flags.  This is a workaround for cases where
324       // assembler code forgets to set section flags.  FIXME: Perhaps
325       // there should be an option to control this.
326       Output_section* os = NULL;
327
328       if (type == elfcpp::SHT_PROGBITS)
329         {
330           if (flags == 0)
331             {
332               Output_section* same_name = this->find_output_section(name);
333               if (same_name != NULL
334                   && same_name->type() == elfcpp::SHT_PROGBITS
335                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
336                 os = same_name;
337             }
338           else if ((flags & elfcpp::SHF_TLS) == 0)
339             {
340               elfcpp::Elf_Xword zero_flags = 0;
341               const Key zero_key(name_key, std::make_pair(type, zero_flags));
342               Section_name_map::iterator p =
343                   this->section_name_map_.find(zero_key);
344               if (p != this->section_name_map_.end())
345                 os = p->second;
346             }
347         }
348
349       if (os == NULL)
350         os = this->make_output_section(name, type, flags);
351       ins.first->second = os;
352       return os;
353     }
354 }
355
356 // Pick the output section to use for section NAME, in input file
357 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
358 // linker created section.  IS_INPUT_SECTION is true if we are
359 // choosing an output section for an input section found in a input
360 // file.  This will return NULL if the input section should be
361 // discarded.
362
363 Output_section*
364 Layout::choose_output_section(const Relobj* relobj, const char* name,
365                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
366                               bool is_input_section)
367 {
368   // We should not see any input sections after we have attached
369   // sections to segments.
370   gold_assert(!is_input_section || !this->sections_are_attached_);
371
372   // Some flags in the input section should not be automatically
373   // copied to the output section.
374   flags &= ~ (elfcpp::SHF_INFO_LINK
375               | elfcpp::SHF_LINK_ORDER
376               | elfcpp::SHF_GROUP
377               | elfcpp::SHF_MERGE
378               | elfcpp::SHF_STRINGS);
379
380   if (this->script_options_->saw_sections_clause())
381     {
382       // We are using a SECTIONS clause, so the output section is
383       // chosen based only on the name.
384
385       Script_sections* ss = this->script_options_->script_sections();
386       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
387       Output_section** output_section_slot;
388       name = ss->output_section_name(file_name, name, &output_section_slot);
389       if (name == NULL)
390         {
391           // The SECTIONS clause says to discard this input section.
392           return NULL;
393         }
394
395       // If this is an orphan section--one not mentioned in the linker
396       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
397       // default processing below.
398
399       if (output_section_slot != NULL)
400         {
401           if (*output_section_slot != NULL)
402             return *output_section_slot;
403
404           // We don't put sections found in the linker script into
405           // SECTION_NAME_MAP_.  That keeps us from getting confused
406           // if an orphan section is mapped to a section with the same
407           // name as one in the linker script.
408
409           name = this->namepool_.add(name, false, NULL);
410
411           Output_section* os = this->make_output_section(name, type, flags);
412           os->set_found_in_sections_clause();
413           *output_section_slot = os;
414           return os;
415         }
416     }
417
418   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
419
420   // Turn NAME from the name of the input section into the name of the
421   // output section.
422
423   size_t len = strlen(name);
424   if (is_input_section && !parameters->options().relocatable())
425     name = Layout::output_section_name(name, &len);
426
427   Stringpool::Key name_key;
428   name = this->namepool_.add_with_length(name, len, true, &name_key);
429
430   // Find or make the output section.  The output section is selected
431   // based on the section name, type, and flags.
432   return this->get_output_section(name, name_key, type, flags);
433 }
434
435 // Return the output section to use for input section SHNDX, with name
436 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
437 // index of a relocation section which applies to this section, or 0
438 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
439 // relocation section if there is one.  Set *OFF to the offset of this
440 // input section without the output section.  Return NULL if the
441 // section should be discarded.  Set *OFF to -1 if the section
442 // contents should not be written directly to the output file, but
443 // will instead receive special handling.
444
445 template<int size, bool big_endian>
446 Output_section*
447 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
448                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
449                unsigned int reloc_shndx, unsigned int, off_t* off)
450 {
451   *off = 0;
452
453   if (!this->include_section(object, name, shdr))
454     return NULL;
455
456   Output_section* os;
457
458   // In a relocatable link a grouped section must not be combined with
459   // any other sections.
460   if (parameters->options().relocatable()
461       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
462     {
463       name = this->namepool_.add(name, true, NULL);
464       os = this->make_output_section(name, shdr.get_sh_type(),
465                                      shdr.get_sh_flags());
466     }
467   else
468     {
469       os = this->choose_output_section(object, name, shdr.get_sh_type(),
470                                        shdr.get_sh_flags(), true);
471       if (os == NULL)
472         return NULL;
473     }
474
475   // By default the GNU linker sorts input sections whose names match
476   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
477   // are sorted by name.  This is used to implement constructor
478   // priority ordering.  We are compatible.
479   if (!this->script_options_->saw_sections_clause()
480       && (is_prefix_of(".ctors.", name)
481           || is_prefix_of(".dtors.", name)
482           || is_prefix_of(".init_array.", name)
483           || is_prefix_of(".fini_array.", name)))
484     os->set_must_sort_attached_input_sections();
485
486   // FIXME: Handle SHF_LINK_ORDER somewhere.
487
488   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
489                                this->script_options_->saw_sections_clause());
490
491   return os;
492 }
493
494 // Handle a relocation section when doing a relocatable link.
495
496 template<int size, bool big_endian>
497 Output_section*
498 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
499                      unsigned int,
500                      const elfcpp::Shdr<size, big_endian>& shdr,
501                      Output_section* data_section,
502                      Relocatable_relocs* rr)
503 {
504   gold_assert(parameters->options().relocatable()
505               || parameters->options().emit_relocs());
506
507   int sh_type = shdr.get_sh_type();
508
509   std::string name;
510   if (sh_type == elfcpp::SHT_REL)
511     name = ".rel";
512   else if (sh_type == elfcpp::SHT_RELA)
513     name = ".rela";
514   else
515     gold_unreachable();
516   name += data_section->name();
517
518   Output_section* os = this->choose_output_section(object, name.c_str(),
519                                                    sh_type,
520                                                    shdr.get_sh_flags(),
521                                                    false);
522
523   os->set_should_link_to_symtab();
524   os->set_info_section(data_section);
525
526   Output_section_data* posd;
527   if (sh_type == elfcpp::SHT_REL)
528     {
529       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
530       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
531                                            size,
532                                            big_endian>(rr);
533     }
534   else if (sh_type == elfcpp::SHT_RELA)
535     {
536       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
537       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
538                                            size,
539                                            big_endian>(rr);
540     }
541   else
542     gold_unreachable();
543
544   os->add_output_section_data(posd);
545   rr->set_output_data(posd);
546
547   return os;
548 }
549
550 // Handle a group section when doing a relocatable link.
551
552 template<int size, bool big_endian>
553 void
554 Layout::layout_group(Symbol_table* symtab,
555                      Sized_relobj<size, big_endian>* object,
556                      unsigned int,
557                      const char* group_section_name,
558                      const char* signature,
559                      const elfcpp::Shdr<size, big_endian>& shdr,
560                      elfcpp::Elf_Word flags,
561                      std::vector<unsigned int>* shndxes)
562 {
563   gold_assert(parameters->options().relocatable());
564   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
565   group_section_name = this->namepool_.add(group_section_name, true, NULL);
566   Output_section* os = this->make_output_section(group_section_name,
567                                                  elfcpp::SHT_GROUP,
568                                                  shdr.get_sh_flags());
569
570   // We need to find a symbol with the signature in the symbol table.
571   // If we don't find one now, we need to look again later.
572   Symbol* sym = symtab->lookup(signature, NULL);
573   if (sym != NULL)
574     os->set_info_symndx(sym);
575   else
576     {
577       // We will wind up using a symbol whose name is the signature.
578       // So just put the signature in the symbol name pool to save it.
579       signature = symtab->canonicalize_name(signature);
580       this->group_signatures_.push_back(Group_signature(os, signature));
581     }
582
583   os->set_should_link_to_symtab();
584   os->set_entsize(4);
585
586   section_size_type entry_count =
587     convert_to_section_size_type(shdr.get_sh_size() / 4);
588   Output_section_data* posd =
589     new Output_data_group<size, big_endian>(object, entry_count, flags,
590                                             shndxes);
591   os->add_output_section_data(posd);
592 }
593
594 // Special GNU handling of sections name .eh_frame.  They will
595 // normally hold exception frame data as defined by the C++ ABI
596 // (http://codesourcery.com/cxx-abi/).
597
598 template<int size, bool big_endian>
599 Output_section*
600 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
601                         const unsigned char* symbols,
602                         off_t symbols_size,
603                         const unsigned char* symbol_names,
604                         off_t symbol_names_size,
605                         unsigned int shndx,
606                         const elfcpp::Shdr<size, big_endian>& shdr,
607                         unsigned int reloc_shndx, unsigned int reloc_type,
608                         off_t* off)
609 {
610   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
611   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
612
613   const char* const name = ".eh_frame";
614   Output_section* os = this->choose_output_section(object,
615                                                    name,
616                                                    elfcpp::SHT_PROGBITS,
617                                                    elfcpp::SHF_ALLOC,
618                                                    false);
619   if (os == NULL)
620     return NULL;
621
622   if (this->eh_frame_section_ == NULL)
623     {
624       this->eh_frame_section_ = os;
625       this->eh_frame_data_ = new Eh_frame();
626
627       if (this->options_.eh_frame_hdr())
628         {
629           Output_section* hdr_os =
630             this->choose_output_section(NULL,
631                                         ".eh_frame_hdr",
632                                         elfcpp::SHT_PROGBITS,
633                                         elfcpp::SHF_ALLOC,
634                                         false);
635
636           if (hdr_os != NULL)
637             {
638               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
639                                                         this->eh_frame_data_);
640               hdr_os->add_output_section_data(hdr_posd);
641
642               hdr_os->set_after_input_sections();
643
644               if (!this->script_options_->saw_phdrs_clause())
645                 {
646                   Output_segment* hdr_oseg;
647                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
648                                                        elfcpp::PF_R);
649                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
650                 }
651
652               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
653             }
654         }
655     }
656
657   gold_assert(this->eh_frame_section_ == os);
658
659   if (this->eh_frame_data_->add_ehframe_input_section(object,
660                                                       symbols,
661                                                       symbols_size,
662                                                       symbol_names,
663                                                       symbol_names_size,
664                                                       shndx,
665                                                       reloc_shndx,
666                                                       reloc_type))
667     {
668       os->update_flags_for_input_section(shdr.get_sh_flags());
669
670       // We found a .eh_frame section we are going to optimize, so now
671       // we can add the set of optimized sections to the output
672       // section.  We need to postpone adding this until we've found a
673       // section we can optimize so that the .eh_frame section in
674       // crtbegin.o winds up at the start of the output section.
675       if (!this->added_eh_frame_data_)
676         {
677           os->add_output_section_data(this->eh_frame_data_);
678           this->added_eh_frame_data_ = true;
679         }
680       *off = -1;
681     }
682   else
683     {
684       // We couldn't handle this .eh_frame section for some reason.
685       // Add it as a normal section.
686       bool saw_sections_clause = this->script_options_->saw_sections_clause();
687       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
688                                    saw_sections_clause);
689     }
690
691   return os;
692 }
693
694 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
695 // the output section.
696
697 Output_section*
698 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
699                                 elfcpp::Elf_Xword flags,
700                                 Output_section_data* posd)
701 {
702   Output_section* os = this->choose_output_section(NULL, name, type, flags,
703                                                    false);
704   if (os != NULL)
705     os->add_output_section_data(posd);
706   return os;
707 }
708
709 // Map section flags to segment flags.
710
711 elfcpp::Elf_Word
712 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
713 {
714   elfcpp::Elf_Word ret = elfcpp::PF_R;
715   if ((flags & elfcpp::SHF_WRITE) != 0)
716     ret |= elfcpp::PF_W;
717   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
718     ret |= elfcpp::PF_X;
719   return ret;
720 }
721
722 // Sometimes we compress sections.  This is typically done for
723 // sections that are not part of normal program execution (such as
724 // .debug_* sections), and where the readers of these sections know
725 // how to deal with compressed sections.  (To make it easier for them,
726 // we will rename the ouput section in such cases from .foo to
727 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
728 // doesn't say for certain whether we'll compress -- it depends on
729 // commandline options as well -- just whether this section is a
730 // candidate for compression.
731
732 static bool
733 is_compressible_debug_section(const char* secname)
734 {
735   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
736 }
737
738 // Make a new Output_section, and attach it to segments as
739 // appropriate.
740
741 Output_section*
742 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
743                             elfcpp::Elf_Xword flags)
744 {
745   Output_section* os;
746   if ((flags & elfcpp::SHF_ALLOC) == 0
747       && strcmp(this->options_.compress_debug_sections(), "none") != 0
748       && is_compressible_debug_section(name))
749     os = new Output_compressed_section(&this->options_, name, type, flags);
750
751   else if ((flags & elfcpp::SHF_ALLOC) == 0
752            && this->options_.strip_debug_non_line()
753            && strcmp(".debug_abbrev", name) == 0)
754     {
755       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
756           name, type, flags);
757       if (this->debug_info_)
758         this->debug_info_->set_abbreviations(this->debug_abbrev_);
759     }
760   else if ((flags & elfcpp::SHF_ALLOC) == 0
761            && this->options_.strip_debug_non_line()
762            && strcmp(".debug_info", name) == 0)
763     {
764       os = this->debug_info_ = new Output_reduced_debug_info_section(
765           name, type, flags);
766       if (this->debug_abbrev_)
767         this->debug_info_->set_abbreviations(this->debug_abbrev_);
768     }
769  else
770     os = new Output_section(name, type, flags);
771
772   this->section_list_.push_back(os);
773
774   // The GNU linker by default sorts some sections by priority, so we
775   // do the same.  We need to know that this might happen before we
776   // attach any input sections.
777   if (!this->script_options_->saw_sections_clause()
778       && (strcmp(name, ".ctors") == 0
779           || strcmp(name, ".dtors") == 0
780           || strcmp(name, ".init_array") == 0
781           || strcmp(name, ".fini_array") == 0))
782     os->set_may_sort_attached_input_sections();
783
784   // With -z relro, we have to recognize the special sections by name.
785   // There is no other way.
786   if (!this->script_options_->saw_sections_clause()
787       && parameters->options().relro()
788       && type == elfcpp::SHT_PROGBITS
789       && (flags & elfcpp::SHF_ALLOC) != 0
790       && (flags & elfcpp::SHF_WRITE) != 0)
791     {
792       if (strcmp(name, ".data.rel.ro") == 0)
793         os->set_is_relro();
794       else if (strcmp(name, ".data.rel.ro.local") == 0)
795         {
796           os->set_is_relro();
797           os->set_is_relro_local();
798         }
799     }
800
801   // If we have already attached the sections to segments, then we
802   // need to attach this one now.  This happens for sections created
803   // directly by the linker.
804   if (this->sections_are_attached_)
805     this->attach_section_to_segment(os);
806
807   return os;
808 }
809
810 // Attach output sections to segments.  This is called after we have
811 // seen all the input sections.
812
813 void
814 Layout::attach_sections_to_segments()
815 {
816   for (Section_list::iterator p = this->section_list_.begin();
817        p != this->section_list_.end();
818        ++p)
819     this->attach_section_to_segment(*p);
820
821   this->sections_are_attached_ = true;
822 }
823
824 // Attach an output section to a segment.
825
826 void
827 Layout::attach_section_to_segment(Output_section* os)
828 {
829   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
830     this->unattached_section_list_.push_back(os);
831   else
832     this->attach_allocated_section_to_segment(os);
833 }
834
835 // Attach an allocated output section to a segment.
836
837 void
838 Layout::attach_allocated_section_to_segment(Output_section* os)
839 {
840   elfcpp::Elf_Xword flags = os->flags();
841   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
842
843   if (parameters->options().relocatable())
844     return;
845
846   // If we have a SECTIONS clause, we can't handle the attachment to
847   // segments until after we've seen all the sections.
848   if (this->script_options_->saw_sections_clause())
849     return;
850
851   gold_assert(!this->script_options_->saw_phdrs_clause());
852
853   // This output section goes into a PT_LOAD segment.
854
855   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
856
857   // In general the only thing we really care about for PT_LOAD
858   // segments is whether or not they are writable, so that is how we
859   // search for them.  People who need segments sorted on some other
860   // basis will have to use a linker script.
861
862   Segment_list::const_iterator p;
863   for (p = this->segment_list_.begin();
864        p != this->segment_list_.end();
865        ++p)
866     {
867       if ((*p)->type() == elfcpp::PT_LOAD
868           && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
869         {
870           // If -Tbss was specified, we need to separate the data
871           // and BSS segments.
872           if (this->options_.user_set_Tbss())
873             {
874               if ((os->type() == elfcpp::SHT_NOBITS)
875                   == (*p)->has_any_data_sections())
876                 continue;
877             }
878
879           (*p)->add_output_section(os, seg_flags);
880           break;
881         }
882     }
883
884   if (p == this->segment_list_.end())
885     {
886       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
887                                                        seg_flags);
888       oseg->add_output_section(os, seg_flags);
889     }
890
891   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
892   // segment.
893   if (os->type() == elfcpp::SHT_NOTE)
894     {
895       // See if we already have an equivalent PT_NOTE segment.
896       for (p = this->segment_list_.begin();
897            p != segment_list_.end();
898            ++p)
899         {
900           if ((*p)->type() == elfcpp::PT_NOTE
901               && (((*p)->flags() & elfcpp::PF_W)
902                   == (seg_flags & elfcpp::PF_W)))
903             {
904               (*p)->add_output_section(os, seg_flags);
905               break;
906             }
907         }
908
909       if (p == this->segment_list_.end())
910         {
911           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
912                                                            seg_flags);
913           oseg->add_output_section(os, seg_flags);
914         }
915     }
916
917   // If we see a loadable SHF_TLS section, we create a PT_TLS
918   // segment.  There can only be one such segment.
919   if ((flags & elfcpp::SHF_TLS) != 0)
920     {
921       if (this->tls_segment_ == NULL)
922         this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
923                                                        seg_flags);
924       this->tls_segment_->add_output_section(os, seg_flags);
925     }
926
927   // If -z relro is in effect, and we see a relro section, we create a
928   // PT_GNU_RELRO segment.  There can only be one such segment.
929   if (os->is_relro() && parameters->options().relro())
930     {
931       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
932       if (this->relro_segment_ == NULL)
933         this->relro_segment_ = this->make_output_segment(elfcpp::PT_GNU_RELRO,
934                                                          seg_flags);
935       this->relro_segment_->add_output_section(os, seg_flags);
936     }
937 }
938
939 // Make an output section for a script.
940
941 Output_section*
942 Layout::make_output_section_for_script(const char* name)
943 {
944   name = this->namepool_.add(name, false, NULL);
945   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
946                                                  elfcpp::SHF_ALLOC);
947   os->set_found_in_sections_clause();
948   return os;
949 }
950
951 // Return the number of segments we expect to see.
952
953 size_t
954 Layout::expected_segment_count() const
955 {
956   size_t ret = this->segment_list_.size();
957
958   // If we didn't see a SECTIONS clause in a linker script, we should
959   // already have the complete list of segments.  Otherwise we ask the
960   // SECTIONS clause how many segments it expects, and add in the ones
961   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
962
963   if (!this->script_options_->saw_sections_clause())
964     return ret;
965   else
966     {
967       const Script_sections* ss = this->script_options_->script_sections();
968       return ret + ss->expected_segment_count(this);
969     }
970 }
971
972 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
973 // is whether we saw a .note.GNU-stack section in the object file.
974 // GNU_STACK_FLAGS is the section flags.  The flags give the
975 // protection required for stack memory.  We record this in an
976 // executable as a PT_GNU_STACK segment.  If an object file does not
977 // have a .note.GNU-stack segment, we must assume that it is an old
978 // object.  On some targets that will force an executable stack.
979
980 void
981 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
982 {
983   if (!seen_gnu_stack)
984     this->input_without_gnu_stack_note_ = true;
985   else
986     {
987       this->input_with_gnu_stack_note_ = true;
988       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
989         this->input_requires_executable_stack_ = true;
990     }
991 }
992
993 // Create the dynamic sections which are needed before we read the
994 // relocs.
995
996 void
997 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
998 {
999   if (parameters->doing_static_link())
1000     return;
1001
1002   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1003                                                        elfcpp::SHT_DYNAMIC,
1004                                                        (elfcpp::SHF_ALLOC
1005                                                         | elfcpp::SHF_WRITE),
1006                                                        false);
1007   this->dynamic_section_->set_is_relro();
1008
1009   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1010                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1011                                 elfcpp::STV_HIDDEN, 0, false, false);
1012
1013   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1014
1015   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1016 }
1017
1018 // For each output section whose name can be represented as C symbol,
1019 // define __start and __stop symbols for the section.  This is a GNU
1020 // extension.
1021
1022 void
1023 Layout::define_section_symbols(Symbol_table* symtab)
1024 {
1025   for (Section_list::const_iterator p = this->section_list_.begin();
1026        p != this->section_list_.end();
1027        ++p)
1028     {
1029       const char* const name = (*p)->name();
1030       if (name[strspn(name,
1031                       ("0123456789"
1032                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1033                        "abcdefghijklmnopqrstuvwxyz"
1034                        "_"))]
1035           == '\0')
1036         {
1037           const std::string name_string(name);
1038           const std::string start_name("__start_" + name_string);
1039           const std::string stop_name("__stop_" + name_string);
1040
1041           symtab->define_in_output_data(start_name.c_str(),
1042                                         NULL, // version
1043                                         *p,
1044                                         0, // value
1045                                         0, // symsize
1046                                         elfcpp::STT_NOTYPE,
1047                                         elfcpp::STB_GLOBAL,
1048                                         elfcpp::STV_DEFAULT,
1049                                         0, // nonvis
1050                                         false, // offset_is_from_end
1051                                         true); // only_if_ref
1052
1053           symtab->define_in_output_data(stop_name.c_str(),
1054                                         NULL, // version
1055                                         *p,
1056                                         0, // value
1057                                         0, // symsize
1058                                         elfcpp::STT_NOTYPE,
1059                                         elfcpp::STB_GLOBAL,
1060                                         elfcpp::STV_DEFAULT,
1061                                         0, // nonvis
1062                                         true, // offset_is_from_end
1063                                         true); // only_if_ref
1064         }
1065     }
1066 }
1067
1068 // Define symbols for group signatures.
1069
1070 void
1071 Layout::define_group_signatures(Symbol_table* symtab)
1072 {
1073   for (Group_signatures::iterator p = this->group_signatures_.begin();
1074        p != this->group_signatures_.end();
1075        ++p)
1076     {
1077       Symbol* sym = symtab->lookup(p->signature, NULL);
1078       if (sym != NULL)
1079         p->section->set_info_symndx(sym);
1080       else
1081         {
1082           // Force the name of the group section to the group
1083           // signature, and use the group's section symbol as the
1084           // signature symbol.
1085           if (strcmp(p->section->name(), p->signature) != 0)
1086             {
1087               const char* name = this->namepool_.add(p->signature,
1088                                                      true, NULL);
1089               p->section->set_name(name);
1090             }
1091           p->section->set_needs_symtab_index();
1092           p->section->set_info_section_symndx(p->section);
1093         }
1094     }
1095
1096   this->group_signatures_.clear();
1097 }
1098
1099 // Find the first read-only PT_LOAD segment, creating one if
1100 // necessary.
1101
1102 Output_segment*
1103 Layout::find_first_load_seg()
1104 {
1105   for (Segment_list::const_iterator p = this->segment_list_.begin();
1106        p != this->segment_list_.end();
1107        ++p)
1108     {
1109       if ((*p)->type() == elfcpp::PT_LOAD
1110           && ((*p)->flags() & elfcpp::PF_R) != 0
1111           && ((*p)->flags() & elfcpp::PF_W) == 0)
1112         return *p;
1113     }
1114
1115   gold_assert(!this->script_options_->saw_phdrs_clause());
1116
1117   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1118                                                        elfcpp::PF_R);
1119   return load_seg;
1120 }
1121
1122 // Finalize the layout.  When this is called, we have created all the
1123 // output sections and all the output segments which are based on
1124 // input sections.  We have several things to do, and we have to do
1125 // them in the right order, so that we get the right results correctly
1126 // and efficiently.
1127
1128 // 1) Finalize the list of output segments and create the segment
1129 // table header.
1130
1131 // 2) Finalize the dynamic symbol table and associated sections.
1132
1133 // 3) Determine the final file offset of all the output segments.
1134
1135 // 4) Determine the final file offset of all the SHF_ALLOC output
1136 // sections.
1137
1138 // 5) Create the symbol table sections and the section name table
1139 // section.
1140
1141 // 6) Finalize the symbol table: set symbol values to their final
1142 // value and make a final determination of which symbols are going
1143 // into the output symbol table.
1144
1145 // 7) Create the section table header.
1146
1147 // 8) Determine the final file offset of all the output sections which
1148 // are not SHF_ALLOC, including the section table header.
1149
1150 // 9) Finalize the ELF file header.
1151
1152 // This function returns the size of the output file.
1153
1154 off_t
1155 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1156                  Target* target, const Task* task)
1157 {
1158   target->finalize_sections(this);
1159
1160   this->count_local_symbols(task, input_objects);
1161
1162   this->create_gold_note();
1163   this->create_executable_stack_info(target);
1164   this->create_build_id();
1165
1166   Output_segment* phdr_seg = NULL;
1167   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1168     {
1169       // There was a dynamic object in the link.  We need to create
1170       // some information for the dynamic linker.
1171
1172       // Create the PT_PHDR segment which will hold the program
1173       // headers.
1174       if (!this->script_options_->saw_phdrs_clause())
1175         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1176
1177       // Create the dynamic symbol table, including the hash table.
1178       Output_section* dynstr;
1179       std::vector<Symbol*> dynamic_symbols;
1180       unsigned int local_dynamic_count;
1181       Versions versions(*this->script_options()->version_script_info(),
1182                         &this->dynpool_);
1183       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1184                                   &local_dynamic_count, &dynamic_symbols,
1185                                   &versions);
1186
1187       // Create the .interp section to hold the name of the
1188       // interpreter, and put it in a PT_INTERP segment.
1189       if (!parameters->options().shared())
1190         this->create_interp(target);
1191
1192       // Finish the .dynamic section to hold the dynamic data, and put
1193       // it in a PT_DYNAMIC segment.
1194       this->finish_dynamic_section(input_objects, symtab);
1195
1196       // We should have added everything we need to the dynamic string
1197       // table.
1198       this->dynpool_.set_string_offsets();
1199
1200       // Create the version sections.  We can't do this until the
1201       // dynamic string table is complete.
1202       this->create_version_sections(&versions, symtab, local_dynamic_count,
1203                                     dynamic_symbols, dynstr);
1204     }
1205
1206   // If there is a SECTIONS clause, put all the input sections into
1207   // the required order.
1208   Output_segment* load_seg;
1209   if (this->script_options_->saw_sections_clause())
1210     load_seg = this->set_section_addresses_from_script(symtab);
1211   else if (parameters->options().relocatable())
1212     load_seg = NULL;
1213   else
1214     load_seg = this->find_first_load_seg();
1215
1216   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1217     load_seg = NULL;
1218
1219   gold_assert(phdr_seg == NULL || load_seg != NULL);
1220
1221   // Lay out the segment headers.
1222   Output_segment_headers* segment_headers;
1223   if (parameters->options().relocatable())
1224     segment_headers = NULL;
1225   else
1226     {
1227       segment_headers = new Output_segment_headers(this->segment_list_);
1228       if (load_seg != NULL)
1229         load_seg->add_initial_output_data(segment_headers);
1230       if (phdr_seg != NULL)
1231         phdr_seg->add_initial_output_data(segment_headers);
1232     }
1233
1234   // Lay out the file header.
1235   Output_file_header* file_header;
1236   file_header = new Output_file_header(target, symtab, segment_headers,
1237                                        this->options_.entry());
1238   if (load_seg != NULL)
1239     load_seg->add_initial_output_data(file_header);
1240
1241   this->special_output_list_.push_back(file_header);
1242   if (segment_headers != NULL)
1243     this->special_output_list_.push_back(segment_headers);
1244
1245   if (this->script_options_->saw_phdrs_clause()
1246       && !parameters->options().relocatable())
1247     {
1248       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1249       // clause in a linker script.
1250       Script_sections* ss = this->script_options_->script_sections();
1251       ss->put_headers_in_phdrs(file_header, segment_headers);
1252     }
1253
1254   // We set the output section indexes in set_segment_offsets and
1255   // set_section_indexes.
1256   unsigned int shndx = 1;
1257
1258   // Set the file offsets of all the segments, and all the sections
1259   // they contain.
1260   off_t off;
1261   if (!parameters->options().relocatable())
1262     off = this->set_segment_offsets(target, load_seg, &shndx);
1263   else
1264     off = this->set_relocatable_section_offsets(file_header, &shndx);
1265
1266   // Set the file offsets of all the non-data sections we've seen so
1267   // far which don't have to wait for the input sections.  We need
1268   // this in order to finalize local symbols in non-allocated
1269   // sections.
1270   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1271
1272   // Set the section indexes of all unallocated sections seen so far,
1273   // in case any of them are somehow referenced by a symbol.
1274   shndx = this->set_section_indexes(shndx);
1275
1276   // Create the symbol table sections.
1277   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1278   if (!parameters->doing_static_link())
1279     this->assign_local_dynsym_offsets(input_objects);
1280
1281   // Process any symbol assignments from a linker script.  This must
1282   // be called after the symbol table has been finalized.
1283   this->script_options_->finalize_symbols(symtab, this);
1284
1285   // Create the .shstrtab section.
1286   Output_section* shstrtab_section = this->create_shstrtab();
1287
1288   // Set the file offsets of the rest of the non-data sections which
1289   // don't have to wait for the input sections.
1290   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1291
1292   // Now that all sections have been created, set the section indexes
1293   // for any sections which haven't been done yet.
1294   shndx = this->set_section_indexes(shndx);
1295
1296   // Create the section table header.
1297   this->create_shdrs(shstrtab_section, &off);
1298
1299   // If there are no sections which require postprocessing, we can
1300   // handle the section names now, and avoid a resize later.
1301   if (!this->any_postprocessing_sections_)
1302     off = this->set_section_offsets(off,
1303                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1304
1305   file_header->set_section_info(this->section_headers_, shstrtab_section);
1306
1307   // Now we know exactly where everything goes in the output file
1308   // (except for non-allocated sections which require postprocessing).
1309   Output_data::layout_complete();
1310
1311   this->output_file_size_ = off;
1312
1313   return off;
1314 }
1315
1316 // Create a note header following the format defined in the ELF ABI.
1317 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1318 // descriptor.  ALLOCATE is true if the section should be allocated in
1319 // memory.  This returns the new note section.  It sets
1320 // *TRAILING_PADDING to the number of trailing zero bytes required.
1321
1322 Output_section*
1323 Layout::create_note(const char* name, int note_type, size_t descsz,
1324                     bool allocate, size_t* trailing_padding)
1325 {
1326   // Authorities all agree that the values in a .note field should
1327   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1328   // they differ on what the alignment is for 64-bit binaries.
1329   // The GABI says unambiguously they take 8-byte alignment:
1330   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1331   // Other documentation says alignment should always be 4 bytes:
1332   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1333   // GNU ld and GNU readelf both support the latter (at least as of
1334   // version 2.16.91), and glibc always generates the latter for
1335   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1336   // here.
1337 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1338   const int size = parameters->target().get_size();
1339 #else
1340   const int size = 32;
1341 #endif
1342
1343   // The contents of the .note section.
1344   size_t namesz = strlen(name) + 1;
1345   size_t aligned_namesz = align_address(namesz, size / 8);
1346   size_t aligned_descsz = align_address(descsz, size / 8);
1347
1348   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1349
1350   unsigned char* buffer = new unsigned char[notehdrsz];
1351   memset(buffer, 0, notehdrsz);
1352
1353   bool is_big_endian = parameters->target().is_big_endian();
1354
1355   if (size == 32)
1356     {
1357       if (!is_big_endian)
1358         {
1359           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1360           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1361           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1362         }
1363       else
1364         {
1365           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1366           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1367           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1368         }
1369     }
1370   else if (size == 64)
1371     {
1372       if (!is_big_endian)
1373         {
1374           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1375           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1376           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1377         }
1378       else
1379         {
1380           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1381           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1382           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1383         }
1384     }
1385   else
1386     gold_unreachable();
1387
1388   memcpy(buffer + 3 * (size / 8), name, namesz);
1389
1390   const char* note_name = this->namepool_.add(".note", false, NULL);
1391   elfcpp::Elf_Xword flags = 0;
1392   if (allocate)
1393     flags = elfcpp::SHF_ALLOC;
1394   Output_section* os = this->make_output_section(note_name,
1395                                                  elfcpp::SHT_NOTE,
1396                                                  flags);
1397   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1398                                                            size / 8,
1399                                                            "** note header");
1400   os->add_output_section_data(posd);
1401
1402   *trailing_padding = aligned_descsz - descsz;
1403
1404   return os;
1405 }
1406
1407 // For an executable or shared library, create a note to record the
1408 // version of gold used to create the binary.
1409
1410 void
1411 Layout::create_gold_note()
1412 {
1413   if (parameters->options().relocatable())
1414     return;
1415
1416   std::string desc = std::string("gold ") + gold::get_version_string();
1417
1418   size_t trailing_padding;
1419   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1420                                          desc.size(), false, &trailing_padding);
1421
1422   Output_section_data* posd = new Output_data_const(desc, 4);
1423   os->add_output_section_data(posd);
1424
1425   if (trailing_padding > 0)
1426     {
1427       posd = new Output_data_zero_fill(trailing_padding, 0);
1428       os->add_output_section_data(posd);
1429     }
1430 }
1431
1432 // Record whether the stack should be executable.  This can be set
1433 // from the command line using the -z execstack or -z noexecstack
1434 // options.  Otherwise, if any input file has a .note.GNU-stack
1435 // section with the SHF_EXECINSTR flag set, the stack should be
1436 // executable.  Otherwise, if at least one input file a
1437 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1438 // section, we use the target default for whether the stack should be
1439 // executable.  Otherwise, we don't generate a stack note.  When
1440 // generating a object file, we create a .note.GNU-stack section with
1441 // the appropriate marking.  When generating an executable or shared
1442 // library, we create a PT_GNU_STACK segment.
1443
1444 void
1445 Layout::create_executable_stack_info(const Target* target)
1446 {
1447   bool is_stack_executable;
1448   if (this->options_.is_execstack_set())
1449     is_stack_executable = this->options_.is_stack_executable();
1450   else if (!this->input_with_gnu_stack_note_)
1451     return;
1452   else
1453     {
1454       if (this->input_requires_executable_stack_)
1455         is_stack_executable = true;
1456       else if (this->input_without_gnu_stack_note_)
1457         is_stack_executable = target->is_default_stack_executable();
1458       else
1459         is_stack_executable = false;
1460     }
1461
1462   if (parameters->options().relocatable())
1463     {
1464       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1465       elfcpp::Elf_Xword flags = 0;
1466       if (is_stack_executable)
1467         flags |= elfcpp::SHF_EXECINSTR;
1468       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1469     }
1470   else
1471     {
1472       if (this->script_options_->saw_phdrs_clause())
1473         return;
1474       int flags = elfcpp::PF_R | elfcpp::PF_W;
1475       if (is_stack_executable)
1476         flags |= elfcpp::PF_X;
1477       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1478     }
1479 }
1480
1481 // If --build-id was used, set up the build ID note.
1482
1483 void
1484 Layout::create_build_id()
1485 {
1486   if (!parameters->options().user_set_build_id())
1487     return;
1488
1489   const char* style = parameters->options().build_id();
1490   if (strcmp(style, "none") == 0)
1491     return;
1492
1493   // Set DESCSZ to the size of the note descriptor.  When possible,
1494   // set DESC to the note descriptor contents.
1495   size_t descsz;
1496   std::string desc;
1497   if (strcmp(style, "md5") == 0)
1498     descsz = 128 / 8;
1499   else if (strcmp(style, "sha1") == 0)
1500     descsz = 160 / 8;
1501   else if (strcmp(style, "uuid") == 0)
1502     {
1503       const size_t uuidsz = 128 / 8;
1504
1505       char buffer[uuidsz];
1506       memset(buffer, 0, uuidsz);
1507
1508       int descriptor = ::open("/dev/urandom", O_RDONLY);
1509       if (descriptor < 0)
1510         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1511                    strerror(errno));
1512       else
1513         {
1514           ssize_t got = ::read(descriptor, buffer, uuidsz);
1515           ::close(descriptor);
1516           if (got < 0)
1517             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1518           else if (static_cast<size_t>(got) != uuidsz)
1519             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1520                        uuidsz, got);
1521         }
1522
1523       desc.assign(buffer, uuidsz);
1524       descsz = uuidsz;
1525     }
1526   else if (strncmp(style, "0x", 2) == 0)
1527     {
1528       hex_init();
1529       const char* p = style + 2;
1530       while (*p != '\0')
1531         {
1532           if (hex_p(p[0]) && hex_p(p[1]))
1533             {
1534               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1535               desc += c;
1536               p += 2;
1537             }
1538           else if (*p == '-' || *p == ':')
1539             ++p;
1540           else
1541             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1542                        style);
1543         }
1544       descsz = desc.size();
1545     }
1546   else
1547     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1548
1549   // Create the note.
1550   size_t trailing_padding;
1551   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1552                                          descsz, true, &trailing_padding);
1553
1554   if (!desc.empty())
1555     {
1556       // We know the value already, so we fill it in now.
1557       gold_assert(desc.size() == descsz);
1558
1559       Output_section_data* posd = new Output_data_const(desc, 4);
1560       os->add_output_section_data(posd);
1561
1562       if (trailing_padding != 0)
1563         {
1564           posd = new Output_data_zero_fill(trailing_padding, 0);
1565           os->add_output_section_data(posd);
1566         }
1567     }
1568   else
1569     {
1570       // We need to compute a checksum after we have completed the
1571       // link.
1572       gold_assert(trailing_padding == 0);
1573       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1574       os->add_output_section_data(this->build_id_note_);
1575       os->set_after_input_sections();
1576     }
1577 }
1578
1579 // Return whether SEG1 should be before SEG2 in the output file.  This
1580 // is based entirely on the segment type and flags.  When this is
1581 // called the segment addresses has normally not yet been set.
1582
1583 bool
1584 Layout::segment_precedes(const Output_segment* seg1,
1585                          const Output_segment* seg2)
1586 {
1587   elfcpp::Elf_Word type1 = seg1->type();
1588   elfcpp::Elf_Word type2 = seg2->type();
1589
1590   // The single PT_PHDR segment is required to precede any loadable
1591   // segment.  We simply make it always first.
1592   if (type1 == elfcpp::PT_PHDR)
1593     {
1594       gold_assert(type2 != elfcpp::PT_PHDR);
1595       return true;
1596     }
1597   if (type2 == elfcpp::PT_PHDR)
1598     return false;
1599
1600   // The single PT_INTERP segment is required to precede any loadable
1601   // segment.  We simply make it always second.
1602   if (type1 == elfcpp::PT_INTERP)
1603     {
1604       gold_assert(type2 != elfcpp::PT_INTERP);
1605       return true;
1606     }
1607   if (type2 == elfcpp::PT_INTERP)
1608     return false;
1609
1610   // We then put PT_LOAD segments before any other segments.
1611   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1612     return true;
1613   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1614     return false;
1615
1616   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1617   // segment, because that is where the dynamic linker expects to find
1618   // it (this is just for efficiency; other positions would also work
1619   // correctly).
1620   if (type1 == elfcpp::PT_TLS
1621       && type2 != elfcpp::PT_TLS
1622       && type2 != elfcpp::PT_GNU_RELRO)
1623     return false;
1624   if (type2 == elfcpp::PT_TLS
1625       && type1 != elfcpp::PT_TLS
1626       && type1 != elfcpp::PT_GNU_RELRO)
1627     return true;
1628
1629   // We put the PT_GNU_RELRO segment last, because that is where the
1630   // dynamic linker expects to find it (as with PT_TLS, this is just
1631   // for efficiency).
1632   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1633     return false;
1634   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1635     return true;
1636
1637   const elfcpp::Elf_Word flags1 = seg1->flags();
1638   const elfcpp::Elf_Word flags2 = seg2->flags();
1639
1640   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1641   // by the numeric segment type and flags values.  There should not
1642   // be more than one segment with the same type and flags.
1643   if (type1 != elfcpp::PT_LOAD)
1644     {
1645       if (type1 != type2)
1646         return type1 < type2;
1647       gold_assert(flags1 != flags2);
1648       return flags1 < flags2;
1649     }
1650
1651   // If the addresses are set already, sort by load address.
1652   if (seg1->are_addresses_set())
1653     {
1654       if (!seg2->are_addresses_set())
1655         return true;
1656
1657       unsigned int section_count1 = seg1->output_section_count();
1658       unsigned int section_count2 = seg2->output_section_count();
1659       if (section_count1 == 0 && section_count2 > 0)
1660         return true;
1661       if (section_count1 > 0 && section_count2 == 0)
1662         return false;
1663
1664       uint64_t paddr1 = seg1->first_section_load_address();
1665       uint64_t paddr2 = seg2->first_section_load_address();
1666       if (paddr1 != paddr2)
1667         return paddr1 < paddr2;
1668     }
1669   else if (seg2->are_addresses_set())
1670     return false;
1671
1672   // We sort PT_LOAD segments based on the flags.  Readonly segments
1673   // come before writable segments.  Then writable segments with data
1674   // come before writable segments without data.  Then executable
1675   // segments come before non-executable segments.  Then the unlikely
1676   // case of a non-readable segment comes before the normal case of a
1677   // readable segment.  If there are multiple segments with the same
1678   // type and flags, we require that the address be set, and we sort
1679   // by virtual address and then physical address.
1680   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1681     return (flags1 & elfcpp::PF_W) == 0;
1682   if ((flags1 & elfcpp::PF_W) != 0
1683       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1684     return seg1->has_any_data_sections();
1685   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1686     return (flags1 & elfcpp::PF_X) != 0;
1687   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1688     return (flags1 & elfcpp::PF_R) == 0;
1689
1690   // We shouldn't get here--we shouldn't create segments which we
1691   // can't distinguish.
1692   gold_unreachable();
1693 }
1694
1695 // Set the file offsets of all the segments, and all the sections they
1696 // contain.  They have all been created.  LOAD_SEG must be be laid out
1697 // first.  Return the offset of the data to follow.
1698
1699 off_t
1700 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1701                             unsigned int *pshndx)
1702 {
1703   // Sort them into the final order.
1704   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1705             Layout::Compare_segments());
1706
1707   // Find the PT_LOAD segments, and set their addresses and offsets
1708   // and their section's addresses and offsets.
1709   uint64_t addr;
1710   if (this->options_.user_set_Ttext())
1711     addr = this->options_.Ttext();
1712   else if (parameters->options().shared())
1713     addr = 0;
1714   else
1715     addr = target->default_text_segment_address();
1716   off_t off = 0;
1717
1718   // If LOAD_SEG is NULL, then the file header and segment headers
1719   // will not be loadable.  But they still need to be at offset 0 in
1720   // the file.  Set their offsets now.
1721   if (load_seg == NULL)
1722     {
1723       for (Data_list::iterator p = this->special_output_list_.begin();
1724            p != this->special_output_list_.end();
1725            ++p)
1726         {
1727           off = align_address(off, (*p)->addralign());
1728           (*p)->set_address_and_file_offset(0, off);
1729           off += (*p)->data_size();
1730         }
1731     }
1732
1733   bool was_readonly = false;
1734   for (Segment_list::iterator p = this->segment_list_.begin();
1735        p != this->segment_list_.end();
1736        ++p)
1737     {
1738       if ((*p)->type() == elfcpp::PT_LOAD)
1739         {
1740           if (load_seg != NULL && load_seg != *p)
1741             gold_unreachable();
1742           load_seg = NULL;
1743
1744           bool are_addresses_set = (*p)->are_addresses_set();
1745           if (are_addresses_set)
1746             {
1747               // When it comes to setting file offsets, we care about
1748               // the physical address.
1749               addr = (*p)->paddr();
1750             }
1751           else if (this->options_.user_set_Tdata()
1752                    && ((*p)->flags() & elfcpp::PF_W) != 0
1753                    && (!this->options_.user_set_Tbss()
1754                        || (*p)->has_any_data_sections()))
1755             {
1756               addr = this->options_.Tdata();
1757               are_addresses_set = true;
1758             }
1759           else if (this->options_.user_set_Tbss()
1760                    && ((*p)->flags() & elfcpp::PF_W) != 0
1761                    && !(*p)->has_any_data_sections())
1762             {
1763               addr = this->options_.Tbss();
1764               are_addresses_set = true;
1765             }
1766
1767           uint64_t orig_addr = addr;
1768           uint64_t orig_off = off;
1769
1770           uint64_t aligned_addr = 0;
1771           uint64_t abi_pagesize = target->abi_pagesize();
1772
1773           // FIXME: This should depend on the -n and -N options.
1774           (*p)->set_minimum_p_align(target->common_pagesize());
1775
1776           if (are_addresses_set)
1777             {
1778               // Adjust the file offset to the same address modulo the
1779               // page size.
1780               uint64_t unsigned_off = off;
1781               uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1782                                       | (addr & (abi_pagesize - 1)));
1783               if (aligned_off < unsigned_off)
1784                 aligned_off += abi_pagesize;
1785               off = aligned_off;
1786             }
1787           else
1788             {
1789               // If the last segment was readonly, and this one is
1790               // not, then skip the address forward one page,
1791               // maintaining the same position within the page.  This
1792               // lets us store both segments overlapping on a single
1793               // page in the file, but the loader will put them on
1794               // different pages in memory.
1795
1796               addr = align_address(addr, (*p)->maximum_alignment());
1797               aligned_addr = addr;
1798
1799               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1800                 {
1801                   if ((addr & (abi_pagesize - 1)) != 0)
1802                     addr = addr + abi_pagesize;
1803                 }
1804
1805               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1806             }
1807
1808           unsigned int shndx_hold = *pshndx;
1809           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1810                                                           &off, pshndx);
1811
1812           // Now that we know the size of this segment, we may be able
1813           // to save a page in memory, at the cost of wasting some
1814           // file space, by instead aligning to the start of a new
1815           // page.  Here we use the real machine page size rather than
1816           // the ABI mandated page size.
1817
1818           if (!are_addresses_set && aligned_addr != addr)
1819             {
1820               uint64_t common_pagesize = target->common_pagesize();
1821               uint64_t first_off = (common_pagesize
1822                                     - (aligned_addr
1823                                        & (common_pagesize - 1)));
1824               uint64_t last_off = new_addr & (common_pagesize - 1);
1825               if (first_off > 0
1826                   && last_off > 0
1827                   && ((aligned_addr & ~ (common_pagesize - 1))
1828                       != (new_addr & ~ (common_pagesize - 1)))
1829                   && first_off + last_off <= common_pagesize)
1830                 {
1831                   *pshndx = shndx_hold;
1832                   addr = align_address(aligned_addr, common_pagesize);
1833                   addr = align_address(addr, (*p)->maximum_alignment());
1834                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1835                   new_addr = (*p)->set_section_addresses(this, true, addr,
1836                                                          &off, pshndx);
1837                 }
1838             }
1839
1840           addr = new_addr;
1841
1842           if (((*p)->flags() & elfcpp::PF_W) == 0)
1843             was_readonly = true;
1844         }
1845     }
1846
1847   // Handle the non-PT_LOAD segments, setting their offsets from their
1848   // section's offsets.
1849   for (Segment_list::iterator p = this->segment_list_.begin();
1850        p != this->segment_list_.end();
1851        ++p)
1852     {
1853       if ((*p)->type() != elfcpp::PT_LOAD)
1854         (*p)->set_offset();
1855     }
1856
1857   // Set the TLS offsets for each section in the PT_TLS segment.
1858   if (this->tls_segment_ != NULL)
1859     this->tls_segment_->set_tls_offsets();
1860
1861   return off;
1862 }
1863
1864 // Set the offsets of all the allocated sections when doing a
1865 // relocatable link.  This does the same jobs as set_segment_offsets,
1866 // only for a relocatable link.
1867
1868 off_t
1869 Layout::set_relocatable_section_offsets(Output_data* file_header,
1870                                         unsigned int *pshndx)
1871 {
1872   off_t off = 0;
1873
1874   file_header->set_address_and_file_offset(0, 0);
1875   off += file_header->data_size();
1876
1877   for (Section_list::iterator p = this->section_list_.begin();
1878        p != this->section_list_.end();
1879        ++p)
1880     {
1881       // We skip unallocated sections here, except that group sections
1882       // have to come first.
1883       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1884           && (*p)->type() != elfcpp::SHT_GROUP)
1885         continue;
1886
1887       off = align_address(off, (*p)->addralign());
1888
1889       // The linker script might have set the address.
1890       if (!(*p)->is_address_valid())
1891         (*p)->set_address(0);
1892       (*p)->set_file_offset(off);
1893       (*p)->finalize_data_size();
1894       off += (*p)->data_size();
1895
1896       (*p)->set_out_shndx(*pshndx);
1897       ++*pshndx;
1898     }
1899
1900   return off;
1901 }
1902
1903 // Set the file offset of all the sections not associated with a
1904 // segment.
1905
1906 off_t
1907 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1908 {
1909   for (Section_list::iterator p = this->unattached_section_list_.begin();
1910        p != this->unattached_section_list_.end();
1911        ++p)
1912     {
1913       // The symtab section is handled in create_symtab_sections.
1914       if (*p == this->symtab_section_)
1915         continue;
1916
1917       // If we've already set the data size, don't set it again.
1918       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1919         continue;
1920
1921       if (pass == BEFORE_INPUT_SECTIONS_PASS
1922           && (*p)->requires_postprocessing())
1923         {
1924           (*p)->create_postprocessing_buffer();
1925           this->any_postprocessing_sections_ = true;
1926         }
1927
1928       if (pass == BEFORE_INPUT_SECTIONS_PASS
1929           && (*p)->after_input_sections())
1930         continue;
1931       else if (pass == POSTPROCESSING_SECTIONS_PASS
1932                && (!(*p)->after_input_sections()
1933                    || (*p)->type() == elfcpp::SHT_STRTAB))
1934         continue;
1935       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1936                && (!(*p)->after_input_sections()
1937                    || (*p)->type() != elfcpp::SHT_STRTAB))
1938         continue;
1939
1940       off = align_address(off, (*p)->addralign());
1941       (*p)->set_file_offset(off);
1942       (*p)->finalize_data_size();
1943       off += (*p)->data_size();
1944
1945       // At this point the name must be set.
1946       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1947         this->namepool_.add((*p)->name(), false, NULL);
1948     }
1949   return off;
1950 }
1951
1952 // Set the section indexes of all the sections not associated with a
1953 // segment.
1954
1955 unsigned int
1956 Layout::set_section_indexes(unsigned int shndx)
1957 {
1958   for (Section_list::iterator p = this->unattached_section_list_.begin();
1959        p != this->unattached_section_list_.end();
1960        ++p)
1961     {
1962       if (!(*p)->has_out_shndx())
1963         {
1964           (*p)->set_out_shndx(shndx);
1965           ++shndx;
1966         }
1967     }
1968   return shndx;
1969 }
1970
1971 // Set the section addresses according to the linker script.  This is
1972 // only called when we see a SECTIONS clause.  This returns the
1973 // program segment which should hold the file header and segment
1974 // headers, if any.  It will return NULL if they should not be in a
1975 // segment.
1976
1977 Output_segment*
1978 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1979 {
1980   Script_sections* ss = this->script_options_->script_sections();
1981   gold_assert(ss->saw_sections_clause());
1982
1983   // Place each orphaned output section in the script.
1984   for (Section_list::iterator p = this->section_list_.begin();
1985        p != this->section_list_.end();
1986        ++p)
1987     {
1988       if (!(*p)->found_in_sections_clause())
1989         ss->place_orphan(*p);
1990     }
1991
1992   return this->script_options_->set_section_addresses(symtab, this);
1993 }
1994
1995 // Count the local symbols in the regular symbol table and the dynamic
1996 // symbol table, and build the respective string pools.
1997
1998 void
1999 Layout::count_local_symbols(const Task* task,
2000                             const Input_objects* input_objects)
2001 {
2002   // First, figure out an upper bound on the number of symbols we'll
2003   // be inserting into each pool.  This helps us create the pools with
2004   // the right size, to avoid unnecessary hashtable resizing.
2005   unsigned int symbol_count = 0;
2006   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2007        p != input_objects->relobj_end();
2008        ++p)
2009     symbol_count += (*p)->local_symbol_count();
2010
2011   // Go from "upper bound" to "estimate."  We overcount for two
2012   // reasons: we double-count symbols that occur in more than one
2013   // object file, and we count symbols that are dropped from the
2014   // output.  Add it all together and assume we overcount by 100%.
2015   symbol_count /= 2;
2016
2017   // We assume all symbols will go into both the sympool and dynpool.
2018   this->sympool_.reserve(symbol_count);
2019   this->dynpool_.reserve(symbol_count);
2020
2021   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2022        p != input_objects->relobj_end();
2023        ++p)
2024     {
2025       Task_lock_obj<Object> tlo(task, *p);
2026       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2027     }
2028 }
2029
2030 // Create the symbol table sections.  Here we also set the final
2031 // values of the symbols.  At this point all the loadable sections are
2032 // fully laid out.  SHNUM is the number of sections so far.
2033
2034 void
2035 Layout::create_symtab_sections(const Input_objects* input_objects,
2036                                Symbol_table* symtab,
2037                                unsigned int shnum,
2038                                off_t* poff)
2039 {
2040   int symsize;
2041   unsigned int align;
2042   if (parameters->target().get_size() == 32)
2043     {
2044       symsize = elfcpp::Elf_sizes<32>::sym_size;
2045       align = 4;
2046     }
2047   else if (parameters->target().get_size() == 64)
2048     {
2049       symsize = elfcpp::Elf_sizes<64>::sym_size;
2050       align = 8;
2051     }
2052   else
2053     gold_unreachable();
2054
2055   off_t off = *poff;
2056   off = align_address(off, align);
2057   off_t startoff = off;
2058
2059   // Save space for the dummy symbol at the start of the section.  We
2060   // never bother to write this out--it will just be left as zero.
2061   off += symsize;
2062   unsigned int local_symbol_index = 1;
2063
2064   // Add STT_SECTION symbols for each Output section which needs one.
2065   for (Section_list::iterator p = this->section_list_.begin();
2066        p != this->section_list_.end();
2067        ++p)
2068     {
2069       if (!(*p)->needs_symtab_index())
2070         (*p)->set_symtab_index(-1U);
2071       else
2072         {
2073           (*p)->set_symtab_index(local_symbol_index);
2074           ++local_symbol_index;
2075           off += symsize;
2076         }
2077     }
2078
2079   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2080        p != input_objects->relobj_end();
2081        ++p)
2082     {
2083       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2084                                                         off);
2085       off += (index - local_symbol_index) * symsize;
2086       local_symbol_index = index;
2087     }
2088
2089   unsigned int local_symcount = local_symbol_index;
2090   gold_assert(local_symcount * symsize == off - startoff);
2091
2092   off_t dynoff;
2093   size_t dyn_global_index;
2094   size_t dyncount;
2095   if (this->dynsym_section_ == NULL)
2096     {
2097       dynoff = 0;
2098       dyn_global_index = 0;
2099       dyncount = 0;
2100     }
2101   else
2102     {
2103       dyn_global_index = this->dynsym_section_->info();
2104       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2105       dynoff = this->dynsym_section_->offset() + locsize;
2106       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2107       gold_assert(static_cast<off_t>(dyncount * symsize)
2108                   == this->dynsym_section_->data_size() - locsize);
2109     }
2110
2111   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2112                          &this->sympool_, &local_symcount);
2113
2114   if (!parameters->options().strip_all())
2115     {
2116       this->sympool_.set_string_offsets();
2117
2118       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2119       Output_section* osymtab = this->make_output_section(symtab_name,
2120                                                           elfcpp::SHT_SYMTAB,
2121                                                           0);
2122       this->symtab_section_ = osymtab;
2123
2124       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2125                                                              align,
2126                                                              "** symtab");
2127       osymtab->add_output_section_data(pos);
2128
2129       // We generate a .symtab_shndx section if we have more than
2130       // SHN_LORESERVE sections.  Technically it is possible that we
2131       // don't need one, because it is possible that there are no
2132       // symbols in any of sections with indexes larger than
2133       // SHN_LORESERVE.  That is probably unusual, though, and it is
2134       // easier to always create one than to compute section indexes
2135       // twice (once here, once when writing out the symbols).
2136       if (shnum >= elfcpp::SHN_LORESERVE)
2137         {
2138           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2139                                                                false, NULL);
2140           Output_section* osymtab_xindex =
2141             this->make_output_section(symtab_xindex_name,
2142                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2143
2144           size_t symcount = (off - startoff) / symsize;
2145           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2146
2147           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2148
2149           osymtab_xindex->set_link_section(osymtab);
2150           osymtab_xindex->set_addralign(4);
2151           osymtab_xindex->set_entsize(4);
2152
2153           osymtab_xindex->set_after_input_sections();
2154
2155           // This tells the driver code to wait until the symbol table
2156           // has written out before writing out the postprocessing
2157           // sections, including the .symtab_shndx section.
2158           this->any_postprocessing_sections_ = true;
2159         }
2160
2161       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2162       Output_section* ostrtab = this->make_output_section(strtab_name,
2163                                                           elfcpp::SHT_STRTAB,
2164                                                           0);
2165
2166       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2167       ostrtab->add_output_section_data(pstr);
2168
2169       osymtab->set_file_offset(startoff);
2170       osymtab->finalize_data_size();
2171       osymtab->set_link_section(ostrtab);
2172       osymtab->set_info(local_symcount);
2173       osymtab->set_entsize(symsize);
2174
2175       *poff = off;
2176     }
2177 }
2178
2179 // Create the .shstrtab section, which holds the names of the
2180 // sections.  At the time this is called, we have created all the
2181 // output sections except .shstrtab itself.
2182
2183 Output_section*
2184 Layout::create_shstrtab()
2185 {
2186   // FIXME: We don't need to create a .shstrtab section if we are
2187   // stripping everything.
2188
2189   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2190
2191   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2192
2193   // We can't write out this section until we've set all the section
2194   // names, and we don't set the names of compressed output sections
2195   // until relocations are complete.
2196   os->set_after_input_sections();
2197
2198   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2199   os->add_output_section_data(posd);
2200
2201   return os;
2202 }
2203
2204 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2205 // offset.
2206
2207 void
2208 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2209 {
2210   Output_section_headers* oshdrs;
2211   oshdrs = new Output_section_headers(this,
2212                                       &this->segment_list_,
2213                                       &this->section_list_,
2214                                       &this->unattached_section_list_,
2215                                       &this->namepool_,
2216                                       shstrtab_section);
2217   off_t off = align_address(*poff, oshdrs->addralign());
2218   oshdrs->set_address_and_file_offset(0, off);
2219   off += oshdrs->data_size();
2220   *poff = off;
2221   this->section_headers_ = oshdrs;
2222 }
2223
2224 // Count the allocated sections.
2225
2226 size_t
2227 Layout::allocated_output_section_count() const
2228 {
2229   size_t section_count = 0;
2230   for (Segment_list::const_iterator p = this->segment_list_.begin();
2231        p != this->segment_list_.end();
2232        ++p)
2233     section_count += (*p)->output_section_count();
2234   return section_count;
2235 }
2236
2237 // Create the dynamic symbol table.
2238
2239 void
2240 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2241                               Symbol_table* symtab,
2242                               Output_section **pdynstr,
2243                               unsigned int* plocal_dynamic_count,
2244                               std::vector<Symbol*>* pdynamic_symbols,
2245                               Versions* pversions)
2246 {
2247   // Count all the symbols in the dynamic symbol table, and set the
2248   // dynamic symbol indexes.
2249
2250   // Skip symbol 0, which is always all zeroes.
2251   unsigned int index = 1;
2252
2253   // Add STT_SECTION symbols for each Output section which needs one.
2254   for (Section_list::iterator p = this->section_list_.begin();
2255        p != this->section_list_.end();
2256        ++p)
2257     {
2258       if (!(*p)->needs_dynsym_index())
2259         (*p)->set_dynsym_index(-1U);
2260       else
2261         {
2262           (*p)->set_dynsym_index(index);
2263           ++index;
2264         }
2265     }
2266
2267   // Count the local symbols that need to go in the dynamic symbol table,
2268   // and set the dynamic symbol indexes.
2269   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2270        p != input_objects->relobj_end();
2271        ++p)
2272     {
2273       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2274       index = new_index;
2275     }
2276
2277   unsigned int local_symcount = index;
2278   *plocal_dynamic_count = local_symcount;
2279
2280   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2281                                      &this->dynpool_, pversions);
2282
2283   int symsize;
2284   unsigned int align;
2285   const int size = parameters->target().get_size();
2286   if (size == 32)
2287     {
2288       symsize = elfcpp::Elf_sizes<32>::sym_size;
2289       align = 4;
2290     }
2291   else if (size == 64)
2292     {
2293       symsize = elfcpp::Elf_sizes<64>::sym_size;
2294       align = 8;
2295     }
2296   else
2297     gold_unreachable();
2298
2299   // Create the dynamic symbol table section.
2300
2301   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2302                                                        elfcpp::SHT_DYNSYM,
2303                                                        elfcpp::SHF_ALLOC,
2304                                                        false);
2305
2306   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2307                                                            align,
2308                                                            "** dynsym");
2309   dynsym->add_output_section_data(odata);
2310
2311   dynsym->set_info(local_symcount);
2312   dynsym->set_entsize(symsize);
2313   dynsym->set_addralign(align);
2314
2315   this->dynsym_section_ = dynsym;
2316
2317   Output_data_dynamic* const odyn = this->dynamic_data_;
2318   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2319   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2320
2321   // If there are more than SHN_LORESERVE allocated sections, we
2322   // create a .dynsym_shndx section.  It is possible that we don't
2323   // need one, because it is possible that there are no dynamic
2324   // symbols in any of the sections with indexes larger than
2325   // SHN_LORESERVE.  This is probably unusual, though, and at this
2326   // time we don't know the actual section indexes so it is
2327   // inconvenient to check.
2328   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2329     {
2330       Output_section* dynsym_xindex =
2331         this->choose_output_section(NULL, ".dynsym_shndx",
2332                                     elfcpp::SHT_SYMTAB_SHNDX,
2333                                     elfcpp::SHF_ALLOC,
2334                                     false);
2335
2336       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2337
2338       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2339
2340       dynsym_xindex->set_link_section(dynsym);
2341       dynsym_xindex->set_addralign(4);
2342       dynsym_xindex->set_entsize(4);
2343
2344       dynsym_xindex->set_after_input_sections();
2345
2346       // This tells the driver code to wait until the symbol table has
2347       // written out before writing out the postprocessing sections,
2348       // including the .dynsym_shndx section.
2349       this->any_postprocessing_sections_ = true;
2350     }
2351
2352   // Create the dynamic string table section.
2353
2354   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2355                                                        elfcpp::SHT_STRTAB,
2356                                                        elfcpp::SHF_ALLOC,
2357                                                        false);
2358
2359   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2360   dynstr->add_output_section_data(strdata);
2361
2362   dynsym->set_link_section(dynstr);
2363   this->dynamic_section_->set_link_section(dynstr);
2364
2365   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2366   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2367
2368   *pdynstr = dynstr;
2369
2370   // Create the hash tables.
2371
2372   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2373       || strcmp(parameters->options().hash_style(), "both") == 0)
2374     {
2375       unsigned char* phash;
2376       unsigned int hashlen;
2377       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2378                                     &phash, &hashlen);
2379
2380       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2381                                                             elfcpp::SHT_HASH,
2382                                                             elfcpp::SHF_ALLOC,
2383                                                             false);
2384
2385       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2386                                                                    hashlen,
2387                                                                    align,
2388                                                                    "** hash");
2389       hashsec->add_output_section_data(hashdata);
2390
2391       hashsec->set_link_section(dynsym);
2392       hashsec->set_entsize(4);
2393
2394       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2395     }
2396
2397   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2398       || strcmp(parameters->options().hash_style(), "both") == 0)
2399     {
2400       unsigned char* phash;
2401       unsigned int hashlen;
2402       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2403                                     &phash, &hashlen);
2404
2405       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2406                                                             elfcpp::SHT_GNU_HASH,
2407                                                             elfcpp::SHF_ALLOC,
2408                                                             false);
2409
2410       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2411                                                                    hashlen,
2412                                                                    align,
2413                                                                    "** hash");
2414       hashsec->add_output_section_data(hashdata);
2415
2416       hashsec->set_link_section(dynsym);
2417       hashsec->set_entsize(4);
2418
2419       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2420     }
2421 }
2422
2423 // Assign offsets to each local portion of the dynamic symbol table.
2424
2425 void
2426 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2427 {
2428   Output_section* dynsym = this->dynsym_section_;
2429   gold_assert(dynsym != NULL);
2430
2431   off_t off = dynsym->offset();
2432
2433   // Skip the dummy symbol at the start of the section.
2434   off += dynsym->entsize();
2435
2436   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2437        p != input_objects->relobj_end();
2438        ++p)
2439     {
2440       unsigned int count = (*p)->set_local_dynsym_offset(off);
2441       off += count * dynsym->entsize();
2442     }
2443 }
2444
2445 // Create the version sections.
2446
2447 void
2448 Layout::create_version_sections(const Versions* versions,
2449                                 const Symbol_table* symtab,
2450                                 unsigned int local_symcount,
2451                                 const std::vector<Symbol*>& dynamic_symbols,
2452                                 const Output_section* dynstr)
2453 {
2454   if (!versions->any_defs() && !versions->any_needs())
2455     return;
2456
2457   switch (parameters->size_and_endianness())
2458     {
2459 #ifdef HAVE_TARGET_32_LITTLE
2460     case Parameters::TARGET_32_LITTLE:
2461       this->sized_create_version_sections<32, false>(versions, symtab,
2462                                                      local_symcount,
2463                                                      dynamic_symbols, dynstr);
2464       break;
2465 #endif
2466 #ifdef HAVE_TARGET_32_BIG
2467     case Parameters::TARGET_32_BIG:
2468       this->sized_create_version_sections<32, true>(versions, symtab,
2469                                                     local_symcount,
2470                                                     dynamic_symbols, dynstr);
2471       break;
2472 #endif
2473 #ifdef HAVE_TARGET_64_LITTLE
2474     case Parameters::TARGET_64_LITTLE:
2475       this->sized_create_version_sections<64, false>(versions, symtab,
2476                                                      local_symcount,
2477                                                      dynamic_symbols, dynstr);
2478       break;
2479 #endif
2480 #ifdef HAVE_TARGET_64_BIG
2481     case Parameters::TARGET_64_BIG:
2482       this->sized_create_version_sections<64, true>(versions, symtab,
2483                                                     local_symcount,
2484                                                     dynamic_symbols, dynstr);
2485       break;
2486 #endif
2487     default:
2488       gold_unreachable();
2489     }
2490 }
2491
2492 // Create the version sections, sized version.
2493
2494 template<int size, bool big_endian>
2495 void
2496 Layout::sized_create_version_sections(
2497     const Versions* versions,
2498     const Symbol_table* symtab,
2499     unsigned int local_symcount,
2500     const std::vector<Symbol*>& dynamic_symbols,
2501     const Output_section* dynstr)
2502 {
2503   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2504                                                      elfcpp::SHT_GNU_versym,
2505                                                      elfcpp::SHF_ALLOC,
2506                                                      false);
2507
2508   unsigned char* vbuf;
2509   unsigned int vsize;
2510   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2511                                                       local_symcount,
2512                                                       dynamic_symbols,
2513                                                       &vbuf, &vsize);
2514
2515   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2516                                                             "** versions");
2517
2518   vsec->add_output_section_data(vdata);
2519   vsec->set_entsize(2);
2520   vsec->set_link_section(this->dynsym_section_);
2521
2522   Output_data_dynamic* const odyn = this->dynamic_data_;
2523   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2524
2525   if (versions->any_defs())
2526     {
2527       Output_section* vdsec;
2528       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2529                                          elfcpp::SHT_GNU_verdef,
2530                                          elfcpp::SHF_ALLOC,
2531                                          false);
2532
2533       unsigned char* vdbuf;
2534       unsigned int vdsize;
2535       unsigned int vdentries;
2536       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2537                                                        &vdsize, &vdentries);
2538
2539       Output_section_data* vddata =
2540         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2541
2542       vdsec->add_output_section_data(vddata);
2543       vdsec->set_link_section(dynstr);
2544       vdsec->set_info(vdentries);
2545
2546       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2547       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2548     }
2549
2550   if (versions->any_needs())
2551     {
2552       Output_section* vnsec;
2553       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2554                                           elfcpp::SHT_GNU_verneed,
2555                                           elfcpp::SHF_ALLOC,
2556                                           false);
2557
2558       unsigned char* vnbuf;
2559       unsigned int vnsize;
2560       unsigned int vnentries;
2561       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2562                                                         &vnbuf, &vnsize,
2563                                                         &vnentries);
2564
2565       Output_section_data* vndata =
2566         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2567
2568       vnsec->add_output_section_data(vndata);
2569       vnsec->set_link_section(dynstr);
2570       vnsec->set_info(vnentries);
2571
2572       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2573       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2574     }
2575 }
2576
2577 // Create the .interp section and PT_INTERP segment.
2578
2579 void
2580 Layout::create_interp(const Target* target)
2581 {
2582   const char* interp = this->options_.dynamic_linker();
2583   if (interp == NULL)
2584     {
2585       interp = target->dynamic_linker();
2586       gold_assert(interp != NULL);
2587     }
2588
2589   size_t len = strlen(interp) + 1;
2590
2591   Output_section_data* odata = new Output_data_const(interp, len, 1);
2592
2593   Output_section* osec = this->choose_output_section(NULL, ".interp",
2594                                                      elfcpp::SHT_PROGBITS,
2595                                                      elfcpp::SHF_ALLOC,
2596                                                      false);
2597   osec->add_output_section_data(odata);
2598
2599   if (!this->script_options_->saw_phdrs_clause())
2600     {
2601       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2602                                                        elfcpp::PF_R);
2603       oseg->add_output_section(osec, elfcpp::PF_R);
2604     }
2605 }
2606
2607 // Finish the .dynamic section and PT_DYNAMIC segment.
2608
2609 void
2610 Layout::finish_dynamic_section(const Input_objects* input_objects,
2611                                const Symbol_table* symtab)
2612 {
2613   if (!this->script_options_->saw_phdrs_clause())
2614     {
2615       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2616                                                        (elfcpp::PF_R
2617                                                         | elfcpp::PF_W));
2618       oseg->add_output_section(this->dynamic_section_,
2619                                elfcpp::PF_R | elfcpp::PF_W);
2620     }
2621
2622   Output_data_dynamic* const odyn = this->dynamic_data_;
2623
2624   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2625        p != input_objects->dynobj_end();
2626        ++p)
2627     {
2628       // FIXME: Handle --as-needed.
2629       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2630     }
2631
2632   if (parameters->options().shared())
2633     {
2634       const char* soname = this->options_.soname();
2635       if (soname != NULL)
2636         odyn->add_string(elfcpp::DT_SONAME, soname);
2637     }
2638
2639   // FIXME: Support --init and --fini.
2640   Symbol* sym = symtab->lookup("_init");
2641   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2642     odyn->add_symbol(elfcpp::DT_INIT, sym);
2643
2644   sym = symtab->lookup("_fini");
2645   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2646     odyn->add_symbol(elfcpp::DT_FINI, sym);
2647
2648   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2649
2650   // Add a DT_RPATH entry if needed.
2651   const General_options::Dir_list& rpath(this->options_.rpath());
2652   if (!rpath.empty())
2653     {
2654       std::string rpath_val;
2655       for (General_options::Dir_list::const_iterator p = rpath.begin();
2656            p != rpath.end();
2657            ++p)
2658         {
2659           if (rpath_val.empty())
2660             rpath_val = p->name();
2661           else
2662             {
2663               // Eliminate duplicates.
2664               General_options::Dir_list::const_iterator q;
2665               for (q = rpath.begin(); q != p; ++q)
2666                 if (q->name() == p->name())
2667                   break;
2668               if (q == p)
2669                 {
2670                   rpath_val += ':';
2671                   rpath_val += p->name();
2672                 }
2673             }
2674         }
2675
2676       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2677       if (parameters->options().enable_new_dtags())
2678         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2679     }
2680
2681   // Look for text segments that have dynamic relocations.
2682   bool have_textrel = false;
2683   if (!this->script_options_->saw_sections_clause())
2684     {
2685       for (Segment_list::const_iterator p = this->segment_list_.begin();
2686            p != this->segment_list_.end();
2687            ++p)
2688         {
2689           if (((*p)->flags() & elfcpp::PF_W) == 0
2690               && (*p)->dynamic_reloc_count() > 0)
2691             {
2692               have_textrel = true;
2693               break;
2694             }
2695         }
2696     }
2697   else
2698     {
2699       // We don't know the section -> segment mapping, so we are
2700       // conservative and just look for readonly sections with
2701       // relocations.  If those sections wind up in writable segments,
2702       // then we have created an unnecessary DT_TEXTREL entry.
2703       for (Section_list::const_iterator p = this->section_list_.begin();
2704            p != this->section_list_.end();
2705            ++p)
2706         {
2707           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2708               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2709               && ((*p)->dynamic_reloc_count() > 0))
2710             {
2711               have_textrel = true;
2712               break;
2713             }
2714         }
2715     }
2716
2717   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2718   // post-link tools can easily modify these flags if desired.
2719   unsigned int flags = 0;
2720   if (have_textrel)
2721     {
2722       // Add a DT_TEXTREL for compatibility with older loaders.
2723       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2724       flags |= elfcpp::DF_TEXTREL;
2725     }
2726   if (parameters->options().shared() && this->has_static_tls())
2727     flags |= elfcpp::DF_STATIC_TLS;
2728   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2729
2730   flags = 0;
2731   if (parameters->options().initfirst())
2732     flags |= elfcpp::DF_1_INITFIRST;
2733   if (parameters->options().interpose())
2734     flags |= elfcpp::DF_1_INTERPOSE;
2735   if (parameters->options().loadfltr())
2736     flags |= elfcpp::DF_1_LOADFLTR;
2737   if (parameters->options().nodefaultlib())
2738     flags |= elfcpp::DF_1_NODEFLIB;
2739   if (parameters->options().nodelete())
2740     flags |= elfcpp::DF_1_NODELETE;
2741   if (parameters->options().nodlopen())
2742     flags |= elfcpp::DF_1_NOOPEN;
2743   if (parameters->options().nodump())
2744     flags |= elfcpp::DF_1_NODUMP;
2745   if (!parameters->options().shared())
2746     flags &= ~(elfcpp::DF_1_INITFIRST
2747                | elfcpp::DF_1_NODELETE
2748                | elfcpp::DF_1_NOOPEN);
2749   if (flags)
2750     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2751 }
2752
2753 // The mapping of .gnu.linkonce section names to real section names.
2754
2755 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2756 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2757 {
2758   MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2759   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),             // Before "d".
2760   MAPPING_INIT("t", ".text"),
2761   MAPPING_INIT("r", ".rodata"),
2762   MAPPING_INIT("d", ".data"),
2763   MAPPING_INIT("b", ".bss"),
2764   MAPPING_INIT("s", ".sdata"),
2765   MAPPING_INIT("sb", ".sbss"),
2766   MAPPING_INIT("s2", ".sdata2"),
2767   MAPPING_INIT("sb2", ".sbss2"),
2768   MAPPING_INIT("wi", ".debug_info"),
2769   MAPPING_INIT("td", ".tdata"),
2770   MAPPING_INIT("tb", ".tbss"),
2771   MAPPING_INIT("lr", ".lrodata"),
2772   MAPPING_INIT("l", ".ldata"),
2773   MAPPING_INIT("lb", ".lbss"),
2774 };
2775 #undef MAPPING_INIT
2776
2777 const int Layout::linkonce_mapping_count =
2778   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2779
2780 // Return the name of the output section to use for a .gnu.linkonce
2781 // section.  This is based on the default ELF linker script of the old
2782 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2783 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2784 // initialized to the length of NAME.
2785
2786 const char*
2787 Layout::linkonce_output_name(const char* name, size_t *plen)
2788 {
2789   const char* s = name + sizeof(".gnu.linkonce") - 1;
2790   if (*s != '.')
2791     return name;
2792   ++s;
2793   const Linkonce_mapping* plm = linkonce_mapping;
2794   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2795     {
2796       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2797         {
2798           *plen = plm->tolen;
2799           return plm->to;
2800         }
2801     }
2802   return name;
2803 }
2804
2805 // Choose the output section name to use given an input section name.
2806 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2807 // length of NAME.
2808
2809 const char*
2810 Layout::output_section_name(const char* name, size_t* plen)
2811 {
2812   if (Layout::is_linkonce(name))
2813     {
2814       // .gnu.linkonce sections are laid out as though they were named
2815       // for the sections are placed into.
2816       return Layout::linkonce_output_name(name, plen);
2817     }
2818
2819   // gcc 4.3 generates the following sorts of section names when it
2820   // needs a section name specific to a function:
2821   //   .text.FN
2822   //   .rodata.FN
2823   //   .sdata2.FN
2824   //   .data.FN
2825   //   .data.rel.FN
2826   //   .data.rel.local.FN
2827   //   .data.rel.ro.FN
2828   //   .data.rel.ro.local.FN
2829   //   .sdata.FN
2830   //   .bss.FN
2831   //   .sbss.FN
2832   //   .tdata.FN
2833   //   .tbss.FN
2834
2835   // The GNU linker maps all of those to the part before the .FN,
2836   // except that .data.rel.local.FN is mapped to .data, and
2837   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2838   // beginning with .data.rel.ro.local are grouped together.
2839
2840   // For an anonymous namespace, the string FN can contain a '.'.
2841
2842   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2843   // GNU linker maps to .rodata.
2844
2845   // The .data.rel.ro sections enable a security feature triggered by
2846   // the -z relro option.  Section which need to be relocated at
2847   // program startup time but which may be readonly after startup are
2848   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2849   // segment.  The dynamic linker will make that segment writable,
2850   // perform relocations, and then make it read-only.  FIXME: We do
2851   // not yet implement this optimization.
2852
2853   // It is hard to handle this in a principled way.
2854
2855   // These are the rules we follow:
2856
2857   // If the section name has no initial '.', or no dot other than an
2858   // initial '.', we use the name unchanged (i.e., "mysection" and
2859   // ".text" are unchanged).
2860
2861   // If the name starts with ".data.rel.ro.local" we use
2862   // ".data.rel.ro.local".
2863
2864   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2865
2866   // Otherwise, we drop the second '.' and everything that comes after
2867   // it (i.e., ".text.XXX" becomes ".text").
2868
2869   const char* s = name;
2870   if (*s != '.')
2871     return name;
2872   ++s;
2873   const char* sdot = strchr(s, '.');
2874   if (sdot == NULL)
2875     return name;
2876
2877   const char* const data_rel_ro_local = ".data.rel.ro.local";
2878   if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2879     {
2880       *plen = strlen(data_rel_ro_local);
2881       return data_rel_ro_local;
2882     }
2883
2884   const char* const data_rel_ro = ".data.rel.ro";
2885   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2886     {
2887       *plen = strlen(data_rel_ro);
2888       return data_rel_ro;
2889     }
2890
2891   *plen = sdot - name;
2892   return name;
2893 }
2894
2895 // Record the signature of a comdat section, and return whether to
2896 // include it in the link.  If GROUP is true, this is a regular
2897 // section group.  If GROUP is false, this is a group signature
2898 // derived from the name of a linkonce section.  We want linkonce
2899 // signatures and group signatures to block each other, but we don't
2900 // want a linkonce signature to block another linkonce signature.
2901
2902 bool
2903 Layout::add_comdat(Relobj* object, unsigned int shndx,
2904                    const std::string& signature, bool group)
2905 {
2906   Kept_section kept(object, shndx, group);
2907   std::pair<Signatures::iterator, bool> ins(
2908     this->signatures_.insert(std::make_pair(signature, kept)));
2909
2910   if (ins.second)
2911     {
2912       // This is the first time we've seen this signature.
2913       return true;
2914     }
2915
2916   if (ins.first->second.group_)
2917     {
2918       // We've already seen a real section group with this signature.
2919       return false;
2920     }
2921   else if (group)
2922     {
2923       // This is a real section group, and we've already seen a
2924       // linkonce section with this signature.  Record that we've seen
2925       // a section group, and don't include this section group.
2926       ins.first->second.group_ = true;
2927       return false;
2928     }
2929   else
2930     {
2931       // We've already seen a linkonce section and this is a linkonce
2932       // section.  These don't block each other--this may be the same
2933       // symbol name with different section types.
2934       return true;
2935     }
2936 }
2937
2938 // Find the given comdat signature, and return the object and section
2939 // index of the kept group.
2940 Relobj*
2941 Layout::find_kept_object(const std::string& signature,
2942                          unsigned int* pshndx) const
2943 {
2944   Signatures::const_iterator p = this->signatures_.find(signature);
2945   if (p == this->signatures_.end())
2946     return NULL;
2947   if (pshndx != NULL)
2948     *pshndx = p->second.shndx_;
2949   return p->second.object_;
2950 }
2951
2952 // Store the allocated sections into the section list.
2953
2954 void
2955 Layout::get_allocated_sections(Section_list* section_list) const
2956 {
2957   for (Section_list::const_iterator p = this->section_list_.begin();
2958        p != this->section_list_.end();
2959        ++p)
2960     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2961       section_list->push_back(*p);
2962 }
2963
2964 // Create an output segment.
2965
2966 Output_segment*
2967 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2968 {
2969   gold_assert(!parameters->options().relocatable());
2970   Output_segment* oseg = new Output_segment(type, flags);
2971   this->segment_list_.push_back(oseg);
2972   return oseg;
2973 }
2974
2975 // Write out the Output_sections.  Most won't have anything to write,
2976 // since most of the data will come from input sections which are
2977 // handled elsewhere.  But some Output_sections do have Output_data.
2978
2979 void
2980 Layout::write_output_sections(Output_file* of) const
2981 {
2982   for (Section_list::const_iterator p = this->section_list_.begin();
2983        p != this->section_list_.end();
2984        ++p)
2985     {
2986       if (!(*p)->after_input_sections())
2987         (*p)->write(of);
2988     }
2989 }
2990
2991 // Write out data not associated with a section or the symbol table.
2992
2993 void
2994 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2995 {
2996   if (!parameters->options().strip_all())
2997     {
2998       const Output_section* symtab_section = this->symtab_section_;
2999       for (Section_list::const_iterator p = this->section_list_.begin();
3000            p != this->section_list_.end();
3001            ++p)
3002         {
3003           if ((*p)->needs_symtab_index())
3004             {
3005               gold_assert(symtab_section != NULL);
3006               unsigned int index = (*p)->symtab_index();
3007               gold_assert(index > 0 && index != -1U);
3008               off_t off = (symtab_section->offset()
3009                            + index * symtab_section->entsize());
3010               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3011             }
3012         }
3013     }
3014
3015   const Output_section* dynsym_section = this->dynsym_section_;
3016   for (Section_list::const_iterator p = this->section_list_.begin();
3017        p != this->section_list_.end();
3018        ++p)
3019     {
3020       if ((*p)->needs_dynsym_index())
3021         {
3022           gold_assert(dynsym_section != NULL);
3023           unsigned int index = (*p)->dynsym_index();
3024           gold_assert(index > 0 && index != -1U);
3025           off_t off = (dynsym_section->offset()
3026                        + index * dynsym_section->entsize());
3027           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3028         }
3029     }
3030
3031   // Write out the Output_data which are not in an Output_section.
3032   for (Data_list::const_iterator p = this->special_output_list_.begin();
3033        p != this->special_output_list_.end();
3034        ++p)
3035     (*p)->write(of);
3036 }
3037
3038 // Write out the Output_sections which can only be written after the
3039 // input sections are complete.
3040
3041 void
3042 Layout::write_sections_after_input_sections(Output_file* of)
3043 {
3044   // Determine the final section offsets, and thus the final output
3045   // file size.  Note we finalize the .shstrab last, to allow the
3046   // after_input_section sections to modify their section-names before
3047   // writing.
3048   if (this->any_postprocessing_sections_)
3049     {
3050       off_t off = this->output_file_size_;
3051       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3052       
3053       // Now that we've finalized the names, we can finalize the shstrab.
3054       off =
3055         this->set_section_offsets(off,
3056                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3057
3058       if (off > this->output_file_size_)
3059         {
3060           of->resize(off);
3061           this->output_file_size_ = off;
3062         }
3063     }
3064
3065   for (Section_list::const_iterator p = this->section_list_.begin();
3066        p != this->section_list_.end();
3067        ++p)
3068     {
3069       if ((*p)->after_input_sections())
3070         (*p)->write(of);
3071     }
3072
3073   this->section_headers_->write(of);
3074 }
3075
3076 // If the build ID requires computing a checksum, do so here, and
3077 // write it out.  We compute a checksum over the entire file because
3078 // that is simplest.
3079
3080 void
3081 Layout::write_build_id(Output_file* of) const
3082 {
3083   if (this->build_id_note_ == NULL)
3084     return;
3085
3086   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3087
3088   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3089                                           this->build_id_note_->data_size());
3090
3091   const char* style = parameters->options().build_id();
3092   if (strcmp(style, "sha1") == 0)
3093     {
3094       sha1_ctx ctx;
3095       sha1_init_ctx(&ctx);
3096       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3097       sha1_finish_ctx(&ctx, ov);
3098     }
3099   else if (strcmp(style, "md5") == 0)
3100     {
3101       md5_ctx ctx;
3102       md5_init_ctx(&ctx);
3103       md5_process_bytes(iv, this->output_file_size_, &ctx);
3104       md5_finish_ctx(&ctx, ov);
3105     }
3106   else
3107     gold_unreachable();
3108
3109   of->write_output_view(this->build_id_note_->offset(),
3110                         this->build_id_note_->data_size(),
3111                         ov);
3112
3113   of->free_input_view(0, this->output_file_size_, iv);
3114 }
3115
3116 // Write out a binary file.  This is called after the link is
3117 // complete.  IN is the temporary output file we used to generate the
3118 // ELF code.  We simply walk through the segments, read them from
3119 // their file offset in IN, and write them to their load address in
3120 // the output file.  FIXME: with a bit more work, we could support
3121 // S-records and/or Intel hex format here.
3122
3123 void
3124 Layout::write_binary(Output_file* in) const
3125 {
3126   gold_assert(this->options_.oformat_enum()
3127               == General_options::OBJECT_FORMAT_BINARY);
3128
3129   // Get the size of the binary file.
3130   uint64_t max_load_address = 0;
3131   for (Segment_list::const_iterator p = this->segment_list_.begin();
3132        p != this->segment_list_.end();
3133        ++p)
3134     {
3135       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3136         {
3137           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3138           if (max_paddr > max_load_address)
3139             max_load_address = max_paddr;
3140         }
3141     }
3142
3143   Output_file out(parameters->options().output_file_name());
3144   out.open(max_load_address);
3145
3146   for (Segment_list::const_iterator p = this->segment_list_.begin();
3147        p != this->segment_list_.end();
3148        ++p)
3149     {
3150       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3151         {
3152           const unsigned char* vin = in->get_input_view((*p)->offset(),
3153                                                         (*p)->filesz());
3154           unsigned char* vout = out.get_output_view((*p)->paddr(),
3155                                                     (*p)->filesz());
3156           memcpy(vout, vin, (*p)->filesz());
3157           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3158           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3159         }
3160     }
3161
3162   out.close();
3163 }
3164
3165 // Print the output sections to the map file.
3166
3167 void
3168 Layout::print_to_mapfile(Mapfile* mapfile) const
3169 {
3170   for (Segment_list::const_iterator p = this->segment_list_.begin();
3171        p != this->segment_list_.end();
3172        ++p)
3173     (*p)->print_sections_to_mapfile(mapfile);
3174 }
3175
3176 // Print statistical information to stderr.  This is used for --stats.
3177
3178 void
3179 Layout::print_stats() const
3180 {
3181   this->namepool_.print_stats("section name pool");
3182   this->sympool_.print_stats("output symbol name pool");
3183   this->dynpool_.print_stats("dynamic name pool");
3184
3185   for (Section_list::const_iterator p = this->section_list_.begin();
3186        p != this->section_list_.end();
3187        ++p)
3188     (*p)->print_merge_stats();
3189 }
3190
3191 // Write_sections_task methods.
3192
3193 // We can always run this task.
3194
3195 Task_token*
3196 Write_sections_task::is_runnable()
3197 {
3198   return NULL;
3199 }
3200
3201 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3202 // when finished.
3203
3204 void
3205 Write_sections_task::locks(Task_locker* tl)
3206 {
3207   tl->add(this, this->output_sections_blocker_);
3208   tl->add(this, this->final_blocker_);
3209 }
3210
3211 // Run the task--write out the data.
3212
3213 void
3214 Write_sections_task::run(Workqueue*)
3215 {
3216   this->layout_->write_output_sections(this->of_);
3217 }
3218
3219 // Write_data_task methods.
3220
3221 // We can always run this task.
3222
3223 Task_token*
3224 Write_data_task::is_runnable()
3225 {
3226   return NULL;
3227 }
3228
3229 // We need to unlock FINAL_BLOCKER when finished.
3230
3231 void
3232 Write_data_task::locks(Task_locker* tl)
3233 {
3234   tl->add(this, this->final_blocker_);
3235 }
3236
3237 // Run the task--write out the data.
3238
3239 void
3240 Write_data_task::run(Workqueue*)
3241 {
3242   this->layout_->write_data(this->symtab_, this->of_);
3243 }
3244
3245 // Write_symbols_task methods.
3246
3247 // We can always run this task.
3248
3249 Task_token*
3250 Write_symbols_task::is_runnable()
3251 {
3252   return NULL;
3253 }
3254
3255 // We need to unlock FINAL_BLOCKER when finished.
3256
3257 void
3258 Write_symbols_task::locks(Task_locker* tl)
3259 {
3260   tl->add(this, this->final_blocker_);
3261 }
3262
3263 // Run the task--write out the symbols.
3264
3265 void
3266 Write_symbols_task::run(Workqueue*)
3267 {
3268   this->symtab_->write_globals(this->input_objects_, this->sympool_,
3269                                this->dynpool_, this->layout_->symtab_xindex(),
3270                                this->layout_->dynsym_xindex(), this->of_);
3271 }
3272
3273 // Write_after_input_sections_task methods.
3274
3275 // We can only run this task after the input sections have completed.
3276
3277 Task_token*
3278 Write_after_input_sections_task::is_runnable()
3279 {
3280   if (this->input_sections_blocker_->is_blocked())
3281     return this->input_sections_blocker_;
3282   return NULL;
3283 }
3284
3285 // We need to unlock FINAL_BLOCKER when finished.
3286
3287 void
3288 Write_after_input_sections_task::locks(Task_locker* tl)
3289 {
3290   tl->add(this, this->final_blocker_);
3291 }
3292
3293 // Run the task.
3294
3295 void
3296 Write_after_input_sections_task::run(Workqueue*)
3297 {
3298   this->layout_->write_sections_after_input_sections(this->of_);
3299 }
3300
3301 // Close_task_runner methods.
3302
3303 // Run the task--close the file.
3304
3305 void
3306 Close_task_runner::run(Workqueue*, const Task*)
3307 {
3308   // If we need to compute a checksum for the BUILD if, we do so here.
3309   this->layout_->write_build_id(this->of_);
3310
3311   // If we've been asked to create a binary file, we do so here.
3312   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3313     this->layout_->write_binary(this->of_);
3314
3315   this->of_->close();
3316 }
3317
3318 // Instantiate the templates we need.  We could use the configure
3319 // script to restrict this to only the ones for implemented targets.
3320
3321 #ifdef HAVE_TARGET_32_LITTLE
3322 template
3323 Output_section*
3324 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3325                           const char* name,
3326                           const elfcpp::Shdr<32, false>& shdr,
3327                           unsigned int, unsigned int, off_t*);
3328 #endif
3329
3330 #ifdef HAVE_TARGET_32_BIG
3331 template
3332 Output_section*
3333 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3334                          const char* name,
3335                          const elfcpp::Shdr<32, true>& shdr,
3336                          unsigned int, unsigned int, off_t*);
3337 #endif
3338
3339 #ifdef HAVE_TARGET_64_LITTLE
3340 template
3341 Output_section*
3342 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3343                           const char* name,
3344                           const elfcpp::Shdr<64, false>& shdr,
3345                           unsigned int, unsigned int, off_t*);
3346 #endif
3347
3348 #ifdef HAVE_TARGET_64_BIG
3349 template
3350 Output_section*
3351 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3352                          const char* name,
3353                          const elfcpp::Shdr<64, true>& shdr,
3354                          unsigned int, unsigned int, off_t*);
3355 #endif
3356
3357 #ifdef HAVE_TARGET_32_LITTLE
3358 template
3359 Output_section*
3360 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3361                                 unsigned int reloc_shndx,
3362                                 const elfcpp::Shdr<32, false>& shdr,
3363                                 Output_section* data_section,
3364                                 Relocatable_relocs* rr);
3365 #endif
3366
3367 #ifdef HAVE_TARGET_32_BIG
3368 template
3369 Output_section*
3370 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3371                                unsigned int reloc_shndx,
3372                                const elfcpp::Shdr<32, true>& shdr,
3373                                Output_section* data_section,
3374                                Relocatable_relocs* rr);
3375 #endif
3376
3377 #ifdef HAVE_TARGET_64_LITTLE
3378 template
3379 Output_section*
3380 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3381                                 unsigned int reloc_shndx,
3382                                 const elfcpp::Shdr<64, false>& shdr,
3383                                 Output_section* data_section,
3384                                 Relocatable_relocs* rr);
3385 #endif
3386
3387 #ifdef HAVE_TARGET_64_BIG
3388 template
3389 Output_section*
3390 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3391                                unsigned int reloc_shndx,
3392                                const elfcpp::Shdr<64, true>& shdr,
3393                                Output_section* data_section,
3394                                Relocatable_relocs* rr);
3395 #endif
3396
3397 #ifdef HAVE_TARGET_32_LITTLE
3398 template
3399 void
3400 Layout::layout_group<32, false>(Symbol_table* symtab,
3401                                 Sized_relobj<32, false>* object,
3402                                 unsigned int,
3403                                 const char* group_section_name,
3404                                 const char* signature,
3405                                 const elfcpp::Shdr<32, false>& shdr,
3406                                 elfcpp::Elf_Word flags,
3407                                 std::vector<unsigned int>* shndxes);
3408 #endif
3409
3410 #ifdef HAVE_TARGET_32_BIG
3411 template
3412 void
3413 Layout::layout_group<32, true>(Symbol_table* symtab,
3414                                Sized_relobj<32, true>* object,
3415                                unsigned int,
3416                                const char* group_section_name,
3417                                const char* signature,
3418                                const elfcpp::Shdr<32, true>& shdr,
3419                                elfcpp::Elf_Word flags,
3420                                std::vector<unsigned int>* shndxes);
3421 #endif
3422
3423 #ifdef HAVE_TARGET_64_LITTLE
3424 template
3425 void
3426 Layout::layout_group<64, false>(Symbol_table* symtab,
3427                                 Sized_relobj<64, false>* object,
3428                                 unsigned int,
3429                                 const char* group_section_name,
3430                                 const char* signature,
3431                                 const elfcpp::Shdr<64, false>& shdr,
3432                                 elfcpp::Elf_Word flags,
3433                                 std::vector<unsigned int>* shndxes);
3434 #endif
3435
3436 #ifdef HAVE_TARGET_64_BIG
3437 template
3438 void
3439 Layout::layout_group<64, true>(Symbol_table* symtab,
3440                                Sized_relobj<64, true>* object,
3441                                unsigned int,
3442                                const char* group_section_name,
3443                                const char* signature,
3444                                const elfcpp::Shdr<64, true>& shdr,
3445                                elfcpp::Elf_Word flags,
3446                                std::vector<unsigned int>* shndxes);
3447 #endif
3448
3449 #ifdef HAVE_TARGET_32_LITTLE
3450 template
3451 Output_section*
3452 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3453                                    const unsigned char* symbols,
3454                                    off_t symbols_size,
3455                                    const unsigned char* symbol_names,
3456                                    off_t symbol_names_size,
3457                                    unsigned int shndx,
3458                                    const elfcpp::Shdr<32, false>& shdr,
3459                                    unsigned int reloc_shndx,
3460                                    unsigned int reloc_type,
3461                                    off_t* off);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 Output_section*
3467 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3468                                    const unsigned char* symbols,
3469                                    off_t symbols_size,
3470                                   const unsigned char* symbol_names,
3471                                   off_t symbol_names_size,
3472                                   unsigned int shndx,
3473                                   const elfcpp::Shdr<32, true>& shdr,
3474                                   unsigned int reloc_shndx,
3475                                   unsigned int reloc_type,
3476                                   off_t* off);
3477 #endif
3478
3479 #ifdef HAVE_TARGET_64_LITTLE
3480 template
3481 Output_section*
3482 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3483                                    const unsigned char* symbols,
3484                                    off_t symbols_size,
3485                                    const unsigned char* symbol_names,
3486                                    off_t symbol_names_size,
3487                                    unsigned int shndx,
3488                                    const elfcpp::Shdr<64, false>& shdr,
3489                                    unsigned int reloc_shndx,
3490                                    unsigned int reloc_type,
3491                                    off_t* off);
3492 #endif
3493
3494 #ifdef HAVE_TARGET_64_BIG
3495 template
3496 Output_section*
3497 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3498                                    const unsigned char* symbols,
3499                                    off_t symbols_size,
3500                                   const unsigned char* symbol_names,
3501                                   off_t symbol_names_size,
3502                                   unsigned int shndx,
3503                                   const elfcpp::Shdr<64, true>& shdr,
3504                                   unsigned int reloc_shndx,
3505                                   unsigned int reloc_type,
3506                                   off_t* off);
3507 #endif
3508
3509 } // End namespace gold.