* layout.cc (Layout::special_ordering_of_input_section): New
[external/binutils.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107
108   ++Free_list::num_removes;
109
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119         {
120           // Case 1: the indicated region spans the whole node.
121           // Add some fuzz to avoid creating tiny free chunks.
122           if (p->start_ + 3 >= start && p->end_ <= end + 3)
123             p = this->list_.erase(p);
124           // Case 2: remove a chunk from the start of the node.
125           else if (p->start_ + 3 >= start)
126             p->start_ = end;
127           // Case 3: remove a chunk from the end of the node.
128           else if (p->end_ <= end + 3)
129             p->end_ = start;
130           // Case 4: remove a chunk from the middle, and split
131           // the node into two.
132           else
133             {
134               Free_list_node newnode(p->start_, start);
135               p->start_ = end;
136               this->list_.insert(p, newnode);
137               ++Free_list::num_nodes;
138             }
139           this->last_remove_ = p;
140           return;
141         }
142     }
143
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147              "Free_list::remove(%d,%d) not found",
148              static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159              "Free_list::allocate(%08lx, %d, %08lx)",
160              static_cast<long>(len), static_cast<int>(align),
161              static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164
165   ++Free_list::num_allocates;
166
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179         {
180           this->length_ = end;
181           p->end_ = end;
182         }
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184         {
185           if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186             this->list_.erase(p);
187           else if (p->start_ + fuzz >= start)
188             p->start_ = end;
189           else if (p->end_ <= end + fuzz)
190             p->end_ = start;
191           else
192             {
193               Free_list_node newnode(p->start_, start);
194               p->start_ = end;
195               this->list_.insert(p, newnode);
196               ++Free_list::num_nodes;
197             }
198           return start;
199         }
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217               static_cast<long>(p->end_),
218               static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226           program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228           program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230           program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232           program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234           program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236           program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297       if (i >= this->section_infos_.size())
298         {
299           gold_fatal("Section_info of %s missing.\n", os->name());
300         }
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303         gold_fatal("Section order changed.  Expecting %s but see %s\n",
304                    info.output_section->name(), os->name());
305       if (address != info.address
306           || data_size != info.data_size
307           || offset != info.offset)
308         gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322                                      this->symtab_,
323                                      this->target_,
324                                      task);
325
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340         of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353         layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354                                                              this->layout_,
355                                                              of);
356
357       of->resize(file_size);
358     }
359
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362                           this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     unique_segment_for_sections_specified_(false),
412     incremental_inputs_(NULL),
413     record_output_section_data_from_script_(false),
414     script_output_section_data_list_(),
415     segment_states_(NULL),
416     relaxation_debug_check_(NULL),
417     section_order_map_(),
418     section_segment_map_(),
419     input_section_position_(),
420     input_section_glob_(),
421     incremental_base_(NULL),
422     free_list_()
423 {
424   // Make space for more than enough segments for a typical file.
425   // This is just for efficiency--it's OK if we wind up needing more.
426   this->segment_list_.reserve(12);
427
428   // We expect two unattached Output_data objects: the file header and
429   // the segment headers.
430   this->special_output_list_.reserve(2);
431
432   // Initialize structure needed for an incremental build.
433   if (parameters->incremental())
434     this->incremental_inputs_ = new Incremental_inputs;
435
436   // The section name pool is worth optimizing in all cases, because
437   // it is small, but there are often overlaps due to .rel sections.
438   this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446   this->incremental_base_ = base;
447   this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455  return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465   "abbrev",
466   "addr",         // Fission extension
467   // "aranges",   // not used by gdb as of 7.4
468   "frame",
469   "info",
470   "types",
471   "line",
472   "loc",
473   "macinfo",
474   "macro",
475   // "pubnames",  // not used by gdb as of 7.4
476   // "pubtypes",  // not used by gdb as of 7.4
477   "ranges",
478   "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485   "abbrev",
486   // "addr",      // Fission extension
487   // "aranges",   // not used by gdb as of 7.4
488   // "frame",
489   "info",
490   // "types",
491   "line",
492   // "loc",
493   // "macinfo",
494   // "macro",
495   // "pubnames",  // not used by gdb as of 7.4
496   // "pubtypes",  // not used by gdb as of 7.4
497   // "ranges",
498   "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506   "aranges",
507   "pubnames",
508   "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518   // We can do this faster: binary search or a hashtable.  But why bother?
519   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520     if (strcmp(suffix, gdb_sections[i]) == 0)
521       return true;
522   return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530   // We can do this faster: binary search or a hashtable.  But why bother?
531   for (size_t i = 0;
532        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533        ++i)
534     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535       return true;
536   return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545   // We can do this faster: binary search or a hashtable.  But why bother?
546   for (size_t i = 0;
547        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548        ++i)
549     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550       return true;
551   return false;
552 }
553
554 // Sometimes we compress sections.  This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections.  This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566   return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files.  Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575   return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583                         const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585   if (!parameters->options().relocatable()
586       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587     return false;
588
589   switch (shdr.get_sh_type())
590     {
591     case elfcpp::SHT_NULL:
592     case elfcpp::SHT_SYMTAB:
593     case elfcpp::SHT_DYNSYM:
594     case elfcpp::SHT_HASH:
595     case elfcpp::SHT_DYNAMIC:
596     case elfcpp::SHT_SYMTAB_SHNDX:
597       return false;
598
599     case elfcpp::SHT_STRTAB:
600       // Discard the sections which have special meanings in the ELF
601       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
602       // checking the sh_link fields of the appropriate sections.
603       return (strcmp(name, ".dynstr") != 0
604               && strcmp(name, ".strtab") != 0
605               && strcmp(name, ".shstrtab") != 0);
606
607     case elfcpp::SHT_RELA:
608     case elfcpp::SHT_REL:
609     case elfcpp::SHT_GROUP:
610       // If we are emitting relocations these should be handled
611       // elsewhere.
612       gold_assert(!parameters->options().relocatable());
613       return false;
614
615     case elfcpp::SHT_PROGBITS:
616       if (parameters->options().strip_debug()
617           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618         {
619           if (is_debug_info_section(name))
620             return false;
621         }
622       if (parameters->options().strip_debug_non_line()
623           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624         {
625           // Debugging sections can only be recognized by name.
626           if (is_prefix_of(".debug_", name)
627               && !is_lines_only_debug_section(name + 7))
628             return false;
629           if (is_prefix_of(".zdebug_", name)
630               && !is_lines_only_debug_section(name + 8))
631             return false;
632         }
633       if (parameters->options().strip_debug_gdb()
634           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635         {
636           // Debugging sections can only be recognized by name.
637           if (is_prefix_of(".debug_", name)
638               && !is_gdb_debug_section(name + 7))
639             return false;
640           if (is_prefix_of(".zdebug_", name)
641               && !is_gdb_debug_section(name + 8))
642             return false;
643         }
644       if (parameters->options().gdb_index()
645           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646         {
647           // When building .gdb_index, we can strip .debug_pubnames,
648           // .debug_pubtypes, and .debug_aranges sections.
649           if (is_prefix_of(".debug_", name)
650               && is_gdb_fast_lookup_section(name + 7))
651             return false;
652           if (is_prefix_of(".zdebug_", name)
653               && is_gdb_fast_lookup_section(name + 8))
654             return false;
655         }
656       if (parameters->options().strip_lto_sections()
657           && !parameters->options().relocatable()
658           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659         {
660           // Ignore LTO sections containing intermediate code.
661           if (is_prefix_of(".gnu.lto_", name))
662             return false;
663         }
664       // The GNU linker strips .gnu_debuglink sections, so we do too.
665       // This is a feature used to keep debugging information in
666       // separate files.
667       if (strcmp(name, ".gnu_debuglink") == 0)
668         return false;
669       return true;
670
671     default:
672       return true;
673     }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681   for (Section_list::const_iterator p = this->section_list_.begin();
682        p != this->section_list_.end();
683        ++p)
684     if (strcmp((*p)->name(), name) == 0)
685       return *p;
686   return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear.  Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694                             elfcpp::Elf_Word clear) const
695 {
696   for (Segment_list::const_iterator p = this->segment_list_.begin();
697        p != this->segment_list_.end();
698        ++p)
699     if (static_cast<elfcpp::PT>((*p)->type()) == type
700         && ((*p)->flags() & set) == set
701         && ((*p)->flags() & clear) == 0)
702       return *p;
703   return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section.  This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors.  Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run.  This set just keeps track of
714 // these sections which need to be reversed.  It is only changed by
715 // Layout::layout.  It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727           != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS.  NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key.  ORDER is where this should appear
733 // in the output sections.  IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738                            Output_section_order order, bool is_relro)
739 {
740   elfcpp::Elf_Word lookup_type = type;
741
742   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
744   // .init_array, .fini_array, and .preinit_array sections by name
745   // whatever their type in the input file.  We do this because the
746   // types are not always right in the input files.
747   if (lookup_type == elfcpp::SHT_INIT_ARRAY
748       || lookup_type == elfcpp::SHT_FINI_ARRAY
749       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750     lookup_type = elfcpp::SHT_PROGBITS;
751
752   elfcpp::Elf_Xword lookup_flags = flags;
753
754   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755   // read-write with read-only sections.  Some other ELF linkers do
756   // not do this.  FIXME: Perhaps there should be an option
757   // controlling this.
758   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761   const std::pair<Key, Output_section*> v(key, NULL);
762   std::pair<Section_name_map::iterator, bool> ins(
763     this->section_name_map_.insert(v));
764
765   if (!ins.second)
766     return ins.first->second;
767   else
768     {
769       // This is the first time we've seen this name/type/flags
770       // combination.  For compatibility with the GNU linker, we
771       // combine sections with contents and zero flags with sections
772       // with non-zero flags.  This is a workaround for cases where
773       // assembler code forgets to set section flags.  FIXME: Perhaps
774       // there should be an option to control this.
775       Output_section* os = NULL;
776
777       if (lookup_type == elfcpp::SHT_PROGBITS)
778         {
779           if (flags == 0)
780             {
781               Output_section* same_name = this->find_output_section(name);
782               if (same_name != NULL
783                   && (same_name->type() == elfcpp::SHT_PROGBITS
784                       || same_name->type() == elfcpp::SHT_INIT_ARRAY
785                       || same_name->type() == elfcpp::SHT_FINI_ARRAY
786                       || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788                 os = same_name;
789             }
790           else if ((flags & elfcpp::SHF_TLS) == 0)
791             {
792               elfcpp::Elf_Xword zero_flags = 0;
793               const Key zero_key(name_key, std::make_pair(lookup_type,
794                                                           zero_flags));
795               Section_name_map::iterator p =
796                   this->section_name_map_.find(zero_key);
797               if (p != this->section_name_map_.end())
798                 os = p->second;
799             }
800         }
801
802       if (os == NULL)
803         os = this->make_output_section(name, type, flags, order, is_relro);
804
805       ins.first->second = os;
806       return os;
807     }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816   if (! this->script_options_->saw_sections_clause())
817     return false;
818
819   Script_sections* ss = this->script_options_->script_sections();
820   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821   Output_section** output_section_slot;
822   Script_sections::Section_type script_section_type;
823   bool keep;
824
825   name = ss->output_section_name(file_name, name, &output_section_slot,
826                                  &script_section_type, &keep);
827   return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836   // Some flags in the input section should not be automatically
837   // copied to the output section.
838   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839                             | elfcpp::SHF_GROUP
840                             | elfcpp::SHF_MERGE
841                             | elfcpp::SHF_STRINGS);
842
843   // We only clear the SHF_LINK_ORDER flag in for
844   // a non-relocatable link.
845   if (!parameters->options().relocatable())
846     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848   return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
853 // linker created section.  IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file.  ORDER is where this section should appear in the output
856 // sections.  IS_RELRO is true for a relro section.  This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862                               bool is_input_section, Output_section_order order,
863                               bool is_relro)
864 {
865   // We should not see any input sections after we have attached
866   // sections to segments.
867   gold_assert(!is_input_section || !this->sections_are_attached_);
868
869   flags = this->get_output_section_flags(flags);
870
871   if (this->script_options_->saw_sections_clause())
872     {
873       // We are using a SECTIONS clause, so the output section is
874       // chosen based only on the name.
875
876       Script_sections* ss = this->script_options_->script_sections();
877       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878       Output_section** output_section_slot;
879       Script_sections::Section_type script_section_type;
880       const char* orig_name = name;
881       bool keep;
882       name = ss->output_section_name(file_name, name, &output_section_slot,
883                                      &script_section_type, &keep);
884
885       if (name == NULL)
886         {
887           gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888                                      "because it is not allowed by the "
889                                      "SECTIONS clause of the linker script"),
890                      orig_name);
891           // The SECTIONS clause says to discard this input section.
892           return NULL;
893         }
894
895       // We can only handle script section types ST_NONE and ST_NOLOAD.
896       switch (script_section_type)
897         {
898         case Script_sections::ST_NONE:
899           break;
900         case Script_sections::ST_NOLOAD:
901           flags &= elfcpp::SHF_ALLOC;
902           break;
903         default:
904           gold_unreachable();
905         }
906
907       // If this is an orphan section--one not mentioned in the linker
908       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909       // default processing below.
910
911       if (output_section_slot != NULL)
912         {
913           if (*output_section_slot != NULL)
914             {
915               (*output_section_slot)->update_flags_for_input_section(flags);
916               return *output_section_slot;
917             }
918
919           // We don't put sections found in the linker script into
920           // SECTION_NAME_MAP_.  That keeps us from getting confused
921           // if an orphan section is mapped to a section with the same
922           // name as one in the linker script.
923
924           name = this->namepool_.add(name, false, NULL);
925
926           Output_section* os = this->make_output_section(name, type, flags,
927                                                          order, is_relro);
928
929           os->set_found_in_sections_clause();
930
931           // Special handling for NOLOAD sections.
932           if (script_section_type == Script_sections::ST_NOLOAD)
933             {
934               os->set_is_noload();
935
936               // The constructor of Output_section sets addresses of non-ALLOC
937               // sections to 0 by default.  We don't want that for NOLOAD
938               // sections even if they have no SHF_ALLOC flag.
939               if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940                   && os->is_address_valid())
941                 {
942                   gold_assert(os->address() == 0
943                               && !os->is_offset_valid()
944                               && !os->is_data_size_valid());
945                   os->reset_address_and_file_offset();
946                 }
947             }
948
949           *output_section_slot = os;
950           return os;
951         }
952     }
953
954   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956   size_t len = strlen(name);
957   char* uncompressed_name = NULL;
958
959   // Compressed debug sections should be mapped to the corresponding
960   // uncompressed section.
961   if (is_compressed_debug_section(name))
962     {
963       uncompressed_name = new char[len];
964       uncompressed_name[0] = '.';
965       gold_assert(name[0] == '.' && name[1] == 'z');
966       strncpy(&uncompressed_name[1], &name[2], len - 2);
967       uncompressed_name[len - 1] = '\0';
968       len -= 1;
969       name = uncompressed_name;
970     }
971
972   // Turn NAME from the name of the input section into the name of the
973   // output section.
974   if (is_input_section
975       && !this->script_options_->saw_sections_clause()
976       && !parameters->options().relocatable())
977     {
978       const char *orig_name = name;
979       name = parameters->target().output_section_name(relobj, name, &len);
980       if (name == NULL)
981         name = Layout::output_section_name(relobj, orig_name, &len);
982     }
983
984   Stringpool::Key name_key;
985   name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987   if (uncompressed_name != NULL)
988     delete[] uncompressed_name;
989
990   // Find or make the output section.  The output section is selected
991   // based on the section name, type, and flags.
992   return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001                                   elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003   unsigned int sh_type = shdr.get_sh_type();
1004
1005   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006   // PRE_INIT_ARRAY, and NOTE sections.
1007   // All others will be created from scratch and reallocated.
1008   if (!can_incremental_update(sh_type))
1009     return NULL;
1010
1011   // If we're generating a .gdb_index section, we need to regenerate
1012   // it from scratch.
1013   if (parameters->options().gdb_index()
1014       && sh_type == elfcpp::SHT_PROGBITS
1015       && strcmp(name, ".gdb_index") == 0)
1016     return NULL;
1017
1018   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023       shdr.get_sh_addralign();
1024
1025   // Make the output section.
1026   Stringpool::Key name_key;
1027   name = this->namepool_.add(name, true, &name_key);
1028   Output_section* os = this->get_output_section(name, name_key, sh_type,
1029                                                 sh_flags, ORDER_INVALID, false);
1030   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031   if (sh_type != elfcpp::SHT_NOBITS)
1032     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033   return os;
1034 }
1035
1036 // Return the index by which an input section should be ordered.  This
1037 // is used to sort some .text sections, for compatibility with GNU ld.
1038
1039 int
1040 Layout::special_ordering_of_input_section(const char* name)
1041 {
1042   // The GNU linker has some special handling for some sections that
1043   // wind up in the .text section.  Sections that start with these
1044   // prefixes must appear first, and must appear in the order listed
1045   // here.
1046   static const char* const text_section_sort[] = 
1047   {
1048     ".text.unlikely",
1049     ".text.exit",
1050     ".text.startup",
1051     ".text.hot"
1052   };
1053
1054   for (size_t i = 0;
1055        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1056        i++)
1057     if (is_prefix_of(text_section_sort[i], name))
1058       return i;
1059
1060   return -1;
1061 }
1062
1063 // Return the output section to use for input section SHNDX, with name
1064 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1065 // index of a relocation section which applies to this section, or 0
1066 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1067 // relocation section if there is one.  Set *OFF to the offset of this
1068 // input section without the output section.  Return NULL if the
1069 // section should be discarded.  Set *OFF to -1 if the section
1070 // contents should not be written directly to the output file, but
1071 // will instead receive special handling.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1076                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1077                unsigned int reloc_shndx, unsigned int, off_t* off)
1078 {
1079   *off = 0;
1080
1081   if (!this->include_section(object, name, shdr))
1082     return NULL;
1083
1084   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1085
1086   // In a relocatable link a grouped section must not be combined with
1087   // any other sections.
1088   Output_section* os;
1089   if (parameters->options().relocatable()
1090       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1091     {
1092       name = this->namepool_.add(name, true, NULL);
1093       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1094                                      ORDER_INVALID, false);
1095     }
1096   else
1097     {
1098       // Plugins can choose to place one or more subsets of sections in
1099       // unique segments and this is done by mapping these section subsets
1100       // to unique output sections.  Check if this section needs to be
1101       // remapped to a unique output section.
1102       Section_segment_map::iterator it
1103           = this->section_segment_map_.find(Const_section_id(object, shndx));
1104       if (it == this->section_segment_map_.end())
1105         {
1106           os = this->choose_output_section(object, name, sh_type,
1107                                            shdr.get_sh_flags(), true,
1108                                            ORDER_INVALID, false);
1109         }
1110       else
1111         {
1112           // We know the name of the output section, directly call
1113           // get_output_section here by-passing choose_output_section.
1114           elfcpp::Elf_Xword flags
1115             = this->get_output_section_flags(shdr.get_sh_flags());
1116
1117           const char* os_name = it->second->name;
1118           Stringpool::Key name_key;
1119           os_name = this->namepool_.add(os_name, true, &name_key);
1120           os = this->get_output_section(os_name, name_key, sh_type, flags,
1121                                         ORDER_INVALID, false);
1122           if (!os->is_unique_segment())
1123             {
1124               os->set_is_unique_segment();
1125               os->set_extra_segment_flags(it->second->flags);
1126               os->set_segment_alignment(it->second->align);
1127             }
1128         }
1129       if (os == NULL)
1130         return NULL;
1131     }
1132
1133   // By default the GNU linker sorts input sections whose names match
1134   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1135   // sections are sorted by name.  This is used to implement
1136   // constructor priority ordering.  We are compatible.  When we put
1137   // .ctor sections in .init_array and .dtor sections in .fini_array,
1138   // we must also sort plain .ctor and .dtor sections.
1139   if (!this->script_options_->saw_sections_clause()
1140       && !parameters->options().relocatable()
1141       && (is_prefix_of(".ctors.", name)
1142           || is_prefix_of(".dtors.", name)
1143           || is_prefix_of(".init_array.", name)
1144           || is_prefix_of(".fini_array.", name)
1145           || (parameters->options().ctors_in_init_array()
1146               && (strcmp(name, ".ctors") == 0
1147                   || strcmp(name, ".dtors") == 0))))
1148     os->set_must_sort_attached_input_sections();
1149
1150   // By default the GNU linker sorts some special text sections ahead
1151   // of others.  We are compatible.
1152   if (!this->script_options_->saw_sections_clause()
1153       && !parameters->options().relocatable()
1154       && Layout::special_ordering_of_input_section(name) >= 0)
1155     os->set_must_sort_attached_input_sections();
1156
1157   // If this is a .ctors or .ctors.* section being mapped to a
1158   // .init_array section, or a .dtors or .dtors.* section being mapped
1159   // to a .fini_array section, we will need to reverse the words if
1160   // there is more than one.  Record this section for later.  See
1161   // ctors_sections_in_init_array above.
1162   if (!this->script_options_->saw_sections_clause()
1163       && !parameters->options().relocatable()
1164       && shdr.get_sh_size() > size / 8
1165       && (((strcmp(name, ".ctors") == 0
1166             || is_prefix_of(".ctors.", name))
1167            && strcmp(os->name(), ".init_array") == 0)
1168           || ((strcmp(name, ".dtors") == 0
1169                || is_prefix_of(".dtors.", name))
1170               && strcmp(os->name(), ".fini_array") == 0)))
1171     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1172
1173   // FIXME: Handle SHF_LINK_ORDER somewhere.
1174
1175   elfcpp::Elf_Xword orig_flags = os->flags();
1176
1177   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1178                                this->script_options_->saw_sections_clause());
1179
1180   // If the flags changed, we may have to change the order.
1181   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1182     {
1183       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1184       elfcpp::Elf_Xword new_flags =
1185         os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1186       if (orig_flags != new_flags)
1187         os->set_order(this->default_section_order(os, false));
1188     }
1189
1190   this->have_added_input_section_ = true;
1191
1192   return os;
1193 }
1194
1195 // Maps section SECN to SEGMENT s.
1196 void
1197 Layout::insert_section_segment_map(Const_section_id secn,
1198                                    Unique_segment_info *s)
1199 {
1200   gold_assert(this->unique_segment_for_sections_specified_); 
1201   this->section_segment_map_[secn] = s;
1202 }
1203
1204 // Handle a relocation section when doing a relocatable link.
1205
1206 template<int size, bool big_endian>
1207 Output_section*
1208 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1209                      unsigned int,
1210                      const elfcpp::Shdr<size, big_endian>& shdr,
1211                      Output_section* data_section,
1212                      Relocatable_relocs* rr)
1213 {
1214   gold_assert(parameters->options().relocatable()
1215               || parameters->options().emit_relocs());
1216
1217   int sh_type = shdr.get_sh_type();
1218
1219   std::string name;
1220   if (sh_type == elfcpp::SHT_REL)
1221     name = ".rel";
1222   else if (sh_type == elfcpp::SHT_RELA)
1223     name = ".rela";
1224   else
1225     gold_unreachable();
1226   name += data_section->name();
1227
1228   // In a relocatable link relocs for a grouped section must not be
1229   // combined with other reloc sections.
1230   Output_section* os;
1231   if (!parameters->options().relocatable()
1232       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1233     os = this->choose_output_section(object, name.c_str(), sh_type,
1234                                      shdr.get_sh_flags(), false,
1235                                      ORDER_INVALID, false);
1236   else
1237     {
1238       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1239       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1240                                      ORDER_INVALID, false);
1241     }
1242
1243   os->set_should_link_to_symtab();
1244   os->set_info_section(data_section);
1245
1246   Output_section_data* posd;
1247   if (sh_type == elfcpp::SHT_REL)
1248     {
1249       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1250       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1251                                            size,
1252                                            big_endian>(rr);
1253     }
1254   else if (sh_type == elfcpp::SHT_RELA)
1255     {
1256       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1257       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1258                                            size,
1259                                            big_endian>(rr);
1260     }
1261   else
1262     gold_unreachable();
1263
1264   os->add_output_section_data(posd);
1265   rr->set_output_data(posd);
1266
1267   return os;
1268 }
1269
1270 // Handle a group section when doing a relocatable link.
1271
1272 template<int size, bool big_endian>
1273 void
1274 Layout::layout_group(Symbol_table* symtab,
1275                      Sized_relobj_file<size, big_endian>* object,
1276                      unsigned int,
1277                      const char* group_section_name,
1278                      const char* signature,
1279                      const elfcpp::Shdr<size, big_endian>& shdr,
1280                      elfcpp::Elf_Word flags,
1281                      std::vector<unsigned int>* shndxes)
1282 {
1283   gold_assert(parameters->options().relocatable());
1284   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1285   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1286   Output_section* os = this->make_output_section(group_section_name,
1287                                                  elfcpp::SHT_GROUP,
1288                                                  shdr.get_sh_flags(),
1289                                                  ORDER_INVALID, false);
1290
1291   // We need to find a symbol with the signature in the symbol table.
1292   // If we don't find one now, we need to look again later.
1293   Symbol* sym = symtab->lookup(signature, NULL);
1294   if (sym != NULL)
1295     os->set_info_symndx(sym);
1296   else
1297     {
1298       // Reserve some space to minimize reallocations.
1299       if (this->group_signatures_.empty())
1300         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1301
1302       // We will wind up using a symbol whose name is the signature.
1303       // So just put the signature in the symbol name pool to save it.
1304       signature = symtab->canonicalize_name(signature);
1305       this->group_signatures_.push_back(Group_signature(os, signature));
1306     }
1307
1308   os->set_should_link_to_symtab();
1309   os->set_entsize(4);
1310
1311   section_size_type entry_count =
1312     convert_to_section_size_type(shdr.get_sh_size() / 4);
1313   Output_section_data* posd =
1314     new Output_data_group<size, big_endian>(object, entry_count, flags,
1315                                             shndxes);
1316   os->add_output_section_data(posd);
1317 }
1318
1319 // Special GNU handling of sections name .eh_frame.  They will
1320 // normally hold exception frame data as defined by the C++ ABI
1321 // (http://codesourcery.com/cxx-abi/).
1322
1323 template<int size, bool big_endian>
1324 Output_section*
1325 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1326                         const unsigned char* symbols,
1327                         off_t symbols_size,
1328                         const unsigned char* symbol_names,
1329                         off_t symbol_names_size,
1330                         unsigned int shndx,
1331                         const elfcpp::Shdr<size, big_endian>& shdr,
1332                         unsigned int reloc_shndx, unsigned int reloc_type,
1333                         off_t* off)
1334 {
1335   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1336               || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1337   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1338
1339   Output_section* os = this->make_eh_frame_section(object);
1340   if (os == NULL)
1341     return NULL;
1342
1343   gold_assert(this->eh_frame_section_ == os);
1344
1345   elfcpp::Elf_Xword orig_flags = os->flags();
1346
1347   if (!parameters->incremental()
1348       && this->eh_frame_data_->add_ehframe_input_section(object,
1349                                                          symbols,
1350                                                          symbols_size,
1351                                                          symbol_names,
1352                                                          symbol_names_size,
1353                                                          shndx,
1354                                                          reloc_shndx,
1355                                                          reloc_type))
1356     {
1357       os->update_flags_for_input_section(shdr.get_sh_flags());
1358
1359       // A writable .eh_frame section is a RELRO section.
1360       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1361           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1362         {
1363           os->set_is_relro();
1364           os->set_order(ORDER_RELRO);
1365         }
1366
1367       // We found a .eh_frame section we are going to optimize, so now
1368       // we can add the set of optimized sections to the output
1369       // section.  We need to postpone adding this until we've found a
1370       // section we can optimize so that the .eh_frame section in
1371       // crtbegin.o winds up at the start of the output section.
1372       if (!this->added_eh_frame_data_)
1373         {
1374           os->add_output_section_data(this->eh_frame_data_);
1375           this->added_eh_frame_data_ = true;
1376         }
1377       *off = -1;
1378     }
1379   else
1380     {
1381       // We couldn't handle this .eh_frame section for some reason.
1382       // Add it as a normal section.
1383       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1384       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1385                                    reloc_shndx, saw_sections_clause);
1386       this->have_added_input_section_ = true;
1387
1388       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1389           != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1390         os->set_order(this->default_section_order(os, false));
1391     }
1392
1393   return os;
1394 }
1395
1396 // Create and return the magic .eh_frame section.  Create
1397 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1398 // input .eh_frame section; it may be NULL.
1399
1400 Output_section*
1401 Layout::make_eh_frame_section(const Relobj* object)
1402 {
1403   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1404   // SHT_PROGBITS.
1405   Output_section* os = this->choose_output_section(object, ".eh_frame",
1406                                                    elfcpp::SHT_PROGBITS,
1407                                                    elfcpp::SHF_ALLOC, false,
1408                                                    ORDER_EHFRAME, false);
1409   if (os == NULL)
1410     return NULL;
1411
1412   if (this->eh_frame_section_ == NULL)
1413     {
1414       this->eh_frame_section_ = os;
1415       this->eh_frame_data_ = new Eh_frame();
1416
1417       // For incremental linking, we do not optimize .eh_frame sections
1418       // or create a .eh_frame_hdr section.
1419       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1420         {
1421           Output_section* hdr_os =
1422             this->choose_output_section(NULL, ".eh_frame_hdr",
1423                                         elfcpp::SHT_PROGBITS,
1424                                         elfcpp::SHF_ALLOC, false,
1425                                         ORDER_EHFRAME, false);
1426
1427           if (hdr_os != NULL)
1428             {
1429               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1430                                                         this->eh_frame_data_);
1431               hdr_os->add_output_section_data(hdr_posd);
1432
1433               hdr_os->set_after_input_sections();
1434
1435               if (!this->script_options_->saw_phdrs_clause())
1436                 {
1437                   Output_segment* hdr_oseg;
1438                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1439                                                        elfcpp::PF_R);
1440                   hdr_oseg->add_output_section_to_nonload(hdr_os,
1441                                                           elfcpp::PF_R);
1442                 }
1443
1444               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1445             }
1446         }
1447     }
1448
1449   return os;
1450 }
1451
1452 // Add an exception frame for a PLT.  This is called from target code.
1453
1454 void
1455 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1456                              size_t cie_length, const unsigned char* fde_data,
1457                              size_t fde_length)
1458 {
1459   if (parameters->incremental())
1460     {
1461       // FIXME: Maybe this could work some day....
1462       return;
1463     }
1464   Output_section* os = this->make_eh_frame_section(NULL);
1465   if (os == NULL)
1466     return;
1467   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1468                                             fde_data, fde_length);
1469   if (!this->added_eh_frame_data_)
1470     {
1471       os->add_output_section_data(this->eh_frame_data_);
1472       this->added_eh_frame_data_ = true;
1473     }
1474 }
1475
1476 // Scan a .debug_info or .debug_types section, and add summary
1477 // information to the .gdb_index section.
1478
1479 template<int size, bool big_endian>
1480 void
1481 Layout::add_to_gdb_index(bool is_type_unit,
1482                          Sized_relobj<size, big_endian>* object,
1483                          const unsigned char* symbols,
1484                          off_t symbols_size,
1485                          unsigned int shndx,
1486                          unsigned int reloc_shndx,
1487                          unsigned int reloc_type)
1488 {
1489   if (this->gdb_index_data_ == NULL)
1490     {
1491       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1492                                                        elfcpp::SHT_PROGBITS, 0,
1493                                                        false, ORDER_INVALID,
1494                                                        false);
1495       if (os == NULL)
1496         return;
1497
1498       this->gdb_index_data_ = new Gdb_index(os);
1499       os->add_output_section_data(this->gdb_index_data_);
1500       os->set_after_input_sections();
1501     }
1502
1503   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1504                                          symbols_size, shndx, reloc_shndx,
1505                                          reloc_type);
1506 }
1507
1508 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1509 // the output section.
1510
1511 Output_section*
1512 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1513                                 elfcpp::Elf_Xword flags,
1514                                 Output_section_data* posd,
1515                                 Output_section_order order, bool is_relro)
1516 {
1517   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1518                                                    false, order, is_relro);
1519   if (os != NULL)
1520     os->add_output_section_data(posd);
1521   return os;
1522 }
1523
1524 // Map section flags to segment flags.
1525
1526 elfcpp::Elf_Word
1527 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1528 {
1529   elfcpp::Elf_Word ret = elfcpp::PF_R;
1530   if ((flags & elfcpp::SHF_WRITE) != 0)
1531     ret |= elfcpp::PF_W;
1532   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1533     ret |= elfcpp::PF_X;
1534   return ret;
1535 }
1536
1537 // Make a new Output_section, and attach it to segments as
1538 // appropriate.  ORDER is the order in which this section should
1539 // appear in the output segment.  IS_RELRO is true if this is a relro
1540 // (read-only after relocations) section.
1541
1542 Output_section*
1543 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1544                             elfcpp::Elf_Xword flags,
1545                             Output_section_order order, bool is_relro)
1546 {
1547   Output_section* os;
1548   if ((flags & elfcpp::SHF_ALLOC) == 0
1549       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1550       && is_compressible_debug_section(name))
1551     os = new Output_compressed_section(&parameters->options(), name, type,
1552                                        flags);
1553   else if ((flags & elfcpp::SHF_ALLOC) == 0
1554            && parameters->options().strip_debug_non_line()
1555            && strcmp(".debug_abbrev", name) == 0)
1556     {
1557       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1558           name, type, flags);
1559       if (this->debug_info_)
1560         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1561     }
1562   else if ((flags & elfcpp::SHF_ALLOC) == 0
1563            && parameters->options().strip_debug_non_line()
1564            && strcmp(".debug_info", name) == 0)
1565     {
1566       os = this->debug_info_ = new Output_reduced_debug_info_section(
1567           name, type, flags);
1568       if (this->debug_abbrev_)
1569         this->debug_info_->set_abbreviations(this->debug_abbrev_);
1570     }
1571   else
1572     {
1573       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1574       // not have correct section types.  Force them here.
1575       if (type == elfcpp::SHT_PROGBITS)
1576         {
1577           if (is_prefix_of(".init_array", name))
1578             type = elfcpp::SHT_INIT_ARRAY;
1579           else if (is_prefix_of(".preinit_array", name))
1580             type = elfcpp::SHT_PREINIT_ARRAY;
1581           else if (is_prefix_of(".fini_array", name))
1582             type = elfcpp::SHT_FINI_ARRAY;
1583         }
1584
1585       // FIXME: const_cast is ugly.
1586       Target* target = const_cast<Target*>(&parameters->target());
1587       os = target->make_output_section(name, type, flags);
1588     }
1589
1590   // With -z relro, we have to recognize the special sections by name.
1591   // There is no other way.
1592   bool is_relro_local = false;
1593   if (!this->script_options_->saw_sections_clause()
1594       && parameters->options().relro()
1595       && (flags & elfcpp::SHF_ALLOC) != 0
1596       && (flags & elfcpp::SHF_WRITE) != 0)
1597     {
1598       if (type == elfcpp::SHT_PROGBITS)
1599         {
1600           if ((flags & elfcpp::SHF_TLS) != 0)
1601             is_relro = true;
1602           else if (strcmp(name, ".data.rel.ro") == 0)
1603             is_relro = true;
1604           else if (strcmp(name, ".data.rel.ro.local") == 0)
1605             {
1606               is_relro = true;
1607               is_relro_local = true;
1608             }
1609           else if (strcmp(name, ".ctors") == 0
1610                    || strcmp(name, ".dtors") == 0
1611                    || strcmp(name, ".jcr") == 0)
1612             is_relro = true;
1613         }
1614       else if (type == elfcpp::SHT_INIT_ARRAY
1615                || type == elfcpp::SHT_FINI_ARRAY
1616                || type == elfcpp::SHT_PREINIT_ARRAY)
1617         is_relro = true;
1618     }
1619
1620   if (is_relro)
1621     os->set_is_relro();
1622
1623   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1624     order = this->default_section_order(os, is_relro_local);
1625
1626   os->set_order(order);
1627
1628   parameters->target().new_output_section(os);
1629
1630   this->section_list_.push_back(os);
1631
1632   // The GNU linker by default sorts some sections by priority, so we
1633   // do the same.  We need to know that this might happen before we
1634   // attach any input sections.
1635   if (!this->script_options_->saw_sections_clause()
1636       && !parameters->options().relocatable()
1637       && (strcmp(name, ".init_array") == 0
1638           || strcmp(name, ".fini_array") == 0
1639           || (!parameters->options().ctors_in_init_array()
1640               && (strcmp(name, ".ctors") == 0
1641                   || strcmp(name, ".dtors") == 0))))
1642     os->set_may_sort_attached_input_sections();
1643
1644   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1645   // sections before other .text sections.  We are compatible.  We
1646   // need to know that this might happen before we attach any input
1647   // sections.
1648   if (!this->script_options_->saw_sections_clause()
1649       && !parameters->options().relocatable()
1650       && strcmp(name, ".text") == 0)
1651     os->set_may_sort_attached_input_sections();
1652
1653   // Check for .stab*str sections, as .stab* sections need to link to
1654   // them.
1655   if (type == elfcpp::SHT_STRTAB
1656       && !this->have_stabstr_section_
1657       && strncmp(name, ".stab", 5) == 0
1658       && strcmp(name + strlen(name) - 3, "str") == 0)
1659     this->have_stabstr_section_ = true;
1660
1661   // During a full incremental link, we add patch space to most
1662   // PROGBITS and NOBITS sections.  Flag those that may be
1663   // arbitrarily padded.
1664   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1665       && order != ORDER_INTERP
1666       && order != ORDER_INIT
1667       && order != ORDER_PLT
1668       && order != ORDER_FINI
1669       && order != ORDER_RELRO_LAST
1670       && order != ORDER_NON_RELRO_FIRST
1671       && strcmp(name, ".eh_frame") != 0
1672       && strcmp(name, ".ctors") != 0
1673       && strcmp(name, ".dtors") != 0
1674       && strcmp(name, ".jcr") != 0)
1675     {
1676       os->set_is_patch_space_allowed();
1677
1678       // Certain sections require "holes" to be filled with
1679       // specific fill patterns.  These fill patterns may have
1680       // a minimum size, so we must prevent allocations from the
1681       // free list that leave a hole smaller than the minimum.
1682       if (strcmp(name, ".debug_info") == 0)
1683         os->set_free_space_fill(new Output_fill_debug_info(false));
1684       else if (strcmp(name, ".debug_types") == 0)
1685         os->set_free_space_fill(new Output_fill_debug_info(true));
1686       else if (strcmp(name, ".debug_line") == 0)
1687         os->set_free_space_fill(new Output_fill_debug_line());
1688     }
1689
1690   // If we have already attached the sections to segments, then we
1691   // need to attach this one now.  This happens for sections created
1692   // directly by the linker.
1693   if (this->sections_are_attached_)
1694     this->attach_section_to_segment(&parameters->target(), os);
1695
1696   return os;
1697 }
1698
1699 // Return the default order in which a section should be placed in an
1700 // output segment.  This function captures a lot of the ideas in
1701 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1702 // linker created section is normally set when the section is created;
1703 // this function is used for input sections.
1704
1705 Output_section_order
1706 Layout::default_section_order(Output_section* os, bool is_relro_local)
1707 {
1708   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1709   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1710   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1711   bool is_bss = false;
1712
1713   switch (os->type())
1714     {
1715     default:
1716     case elfcpp::SHT_PROGBITS:
1717       break;
1718     case elfcpp::SHT_NOBITS:
1719       is_bss = true;
1720       break;
1721     case elfcpp::SHT_RELA:
1722     case elfcpp::SHT_REL:
1723       if (!is_write)
1724         return ORDER_DYNAMIC_RELOCS;
1725       break;
1726     case elfcpp::SHT_HASH:
1727     case elfcpp::SHT_DYNAMIC:
1728     case elfcpp::SHT_SHLIB:
1729     case elfcpp::SHT_DYNSYM:
1730     case elfcpp::SHT_GNU_HASH:
1731     case elfcpp::SHT_GNU_verdef:
1732     case elfcpp::SHT_GNU_verneed:
1733     case elfcpp::SHT_GNU_versym:
1734       if (!is_write)
1735         return ORDER_DYNAMIC_LINKER;
1736       break;
1737     case elfcpp::SHT_NOTE:
1738       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1739     }
1740
1741   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1742     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1743
1744   if (!is_bss && !is_write)
1745     {
1746       if (is_execinstr)
1747         {
1748           if (strcmp(os->name(), ".init") == 0)
1749             return ORDER_INIT;
1750           else if (strcmp(os->name(), ".fini") == 0)
1751             return ORDER_FINI;
1752         }
1753       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1754     }
1755
1756   if (os->is_relro())
1757     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1758
1759   if (os->is_small_section())
1760     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1761   if (os->is_large_section())
1762     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1763
1764   return is_bss ? ORDER_BSS : ORDER_DATA;
1765 }
1766
1767 // Attach output sections to segments.  This is called after we have
1768 // seen all the input sections.
1769
1770 void
1771 Layout::attach_sections_to_segments(const Target* target)
1772 {
1773   for (Section_list::iterator p = this->section_list_.begin();
1774        p != this->section_list_.end();
1775        ++p)
1776     this->attach_section_to_segment(target, *p);
1777
1778   this->sections_are_attached_ = true;
1779 }
1780
1781 // Attach an output section to a segment.
1782
1783 void
1784 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1785 {
1786   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1787     this->unattached_section_list_.push_back(os);
1788   else
1789     this->attach_allocated_section_to_segment(target, os);
1790 }
1791
1792 // Attach an allocated output section to a segment.
1793
1794 void
1795 Layout::attach_allocated_section_to_segment(const Target* target,
1796                                             Output_section* os)
1797 {
1798   elfcpp::Elf_Xword flags = os->flags();
1799   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1800
1801   if (parameters->options().relocatable())
1802     return;
1803
1804   // If we have a SECTIONS clause, we can't handle the attachment to
1805   // segments until after we've seen all the sections.
1806   if (this->script_options_->saw_sections_clause())
1807     return;
1808
1809   gold_assert(!this->script_options_->saw_phdrs_clause());
1810
1811   // This output section goes into a PT_LOAD segment.
1812
1813   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1814
1815   // If this output section's segment has extra flags that need to be set,
1816   // coming from a linker plugin, do that.
1817   seg_flags |= os->extra_segment_flags();
1818
1819   // Check for --section-start.
1820   uint64_t addr;
1821   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1822
1823   // In general the only thing we really care about for PT_LOAD
1824   // segments is whether or not they are writable or executable,
1825   // so that is how we search for them.
1826   // Large data sections also go into their own PT_LOAD segment.
1827   // People who need segments sorted on some other basis will
1828   // have to use a linker script.
1829
1830   Segment_list::const_iterator p;
1831   if (!os->is_unique_segment())
1832     {
1833       for (p = this->segment_list_.begin();
1834            p != this->segment_list_.end();
1835            ++p)
1836         {
1837           if ((*p)->type() != elfcpp::PT_LOAD)                        
1838             continue;                        
1839           if ((*p)->is_unique_segment())                        
1840             continue;                        
1841           if (!parameters->options().omagic()                        
1842               && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))                        
1843             continue;                        
1844           if ((target->isolate_execinstr() || parameters->options().rosegment())                        
1845               && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))                        
1846             continue;                        
1847           // If -Tbss was specified, we need to separate the data and BSS                        
1848           // segments.                        
1849           if (parameters->options().user_set_Tbss())                        
1850             {                        
1851               if ((os->type() == elfcpp::SHT_NOBITS)                        
1852                   == (*p)->has_any_data_sections())                        
1853                 continue;                        
1854             }                        
1855           if (os->is_large_data_section() && !(*p)->is_large_data_segment())                        
1856             continue;                        
1857                             
1858           if (is_address_set)                        
1859             {                        
1860               if ((*p)->are_addresses_set())                        
1861                 continue;                        
1862                             
1863               (*p)->add_initial_output_data(os);                        
1864               (*p)->update_flags_for_output_section(seg_flags);                        
1865               (*p)->set_addresses(addr, addr);                        
1866               break;                        
1867             }                        
1868                             
1869           (*p)->add_output_section_to_load(this, os, seg_flags);                        
1870           break;                        
1871         }                        
1872     }
1873
1874   if (p == this->segment_list_.end()
1875       || os->is_unique_segment())
1876     {
1877       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1878                                                        seg_flags);
1879       if (os->is_large_data_section())
1880         oseg->set_is_large_data_segment();
1881       oseg->add_output_section_to_load(this, os, seg_flags);
1882       if (is_address_set)
1883         oseg->set_addresses(addr, addr);
1884       // Check if segment should be marked unique.  For segments marked
1885       // unique by linker plugins, set the new alignment if specified.
1886       if (os->is_unique_segment())
1887         {
1888           oseg->set_is_unique_segment();
1889           if (os->segment_alignment() != 0)
1890             oseg->set_minimum_p_align(os->segment_alignment());
1891         }
1892     }
1893
1894   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1895   // segment.
1896   if (os->type() == elfcpp::SHT_NOTE)
1897     {
1898       // See if we already have an equivalent PT_NOTE segment.
1899       for (p = this->segment_list_.begin();
1900            p != segment_list_.end();
1901            ++p)
1902         {
1903           if ((*p)->type() == elfcpp::PT_NOTE
1904               && (((*p)->flags() & elfcpp::PF_W)
1905                   == (seg_flags & elfcpp::PF_W)))
1906             {
1907               (*p)->add_output_section_to_nonload(os, seg_flags);
1908               break;
1909             }
1910         }
1911
1912       if (p == this->segment_list_.end())
1913         {
1914           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1915                                                            seg_flags);
1916           oseg->add_output_section_to_nonload(os, seg_flags);
1917         }
1918     }
1919
1920   // If we see a loadable SHF_TLS section, we create a PT_TLS
1921   // segment.  There can only be one such segment.
1922   if ((flags & elfcpp::SHF_TLS) != 0)
1923     {
1924       if (this->tls_segment_ == NULL)
1925         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1926       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1927     }
1928
1929   // If -z relro is in effect, and we see a relro section, we create a
1930   // PT_GNU_RELRO segment.  There can only be one such segment.
1931   if (os->is_relro() && parameters->options().relro())
1932     {
1933       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1934       if (this->relro_segment_ == NULL)
1935         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1936       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1937     }
1938
1939   // If we see a section named .interp, put it into a PT_INTERP
1940   // segment.  This seems broken to me, but this is what GNU ld does,
1941   // and glibc expects it.
1942   if (strcmp(os->name(), ".interp") == 0
1943       && !this->script_options_->saw_phdrs_clause())
1944     {
1945       if (this->interp_segment_ == NULL)
1946         this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1947       else
1948         gold_warning(_("multiple '.interp' sections in input files "
1949                        "may cause confusing PT_INTERP segment"));
1950       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1951     }
1952 }
1953
1954 // Make an output section for a script.
1955
1956 Output_section*
1957 Layout::make_output_section_for_script(
1958     const char* name,
1959     Script_sections::Section_type section_type)
1960 {
1961   name = this->namepool_.add(name, false, NULL);
1962   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1963   if (section_type == Script_sections::ST_NOLOAD)
1964     sh_flags = 0;
1965   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1966                                                  sh_flags, ORDER_INVALID,
1967                                                  false);
1968   os->set_found_in_sections_clause();
1969   if (section_type == Script_sections::ST_NOLOAD)
1970     os->set_is_noload();
1971   return os;
1972 }
1973
1974 // Return the number of segments we expect to see.
1975
1976 size_t
1977 Layout::expected_segment_count() const
1978 {
1979   size_t ret = this->segment_list_.size();
1980
1981   // If we didn't see a SECTIONS clause in a linker script, we should
1982   // already have the complete list of segments.  Otherwise we ask the
1983   // SECTIONS clause how many segments it expects, and add in the ones
1984   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1985
1986   if (!this->script_options_->saw_sections_clause())
1987     return ret;
1988   else
1989     {
1990       const Script_sections* ss = this->script_options_->script_sections();
1991       return ret + ss->expected_segment_count(this);
1992     }
1993 }
1994
1995 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1996 // is whether we saw a .note.GNU-stack section in the object file.
1997 // GNU_STACK_FLAGS is the section flags.  The flags give the
1998 // protection required for stack memory.  We record this in an
1999 // executable as a PT_GNU_STACK segment.  If an object file does not
2000 // have a .note.GNU-stack segment, we must assume that it is an old
2001 // object.  On some targets that will force an executable stack.
2002
2003 void
2004 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2005                          const Object* obj)
2006 {
2007   if (!seen_gnu_stack)
2008     {
2009       this->input_without_gnu_stack_note_ = true;
2010       if (parameters->options().warn_execstack()
2011           && parameters->target().is_default_stack_executable())
2012         gold_warning(_("%s: missing .note.GNU-stack section"
2013                        " implies executable stack"),
2014                      obj->name().c_str());
2015     }
2016   else
2017     {
2018       this->input_with_gnu_stack_note_ = true;
2019       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2020         {
2021           this->input_requires_executable_stack_ = true;
2022           if (parameters->options().warn_execstack()
2023               || parameters->options().is_stack_executable())
2024             gold_warning(_("%s: requires executable stack"),
2025                          obj->name().c_str());
2026         }
2027     }
2028 }
2029
2030 // Create automatic note sections.
2031
2032 void
2033 Layout::create_notes()
2034 {
2035   this->create_gold_note();
2036   this->create_executable_stack_info();
2037   this->create_build_id();
2038 }
2039
2040 // Create the dynamic sections which are needed before we read the
2041 // relocs.
2042
2043 void
2044 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2045 {
2046   if (parameters->doing_static_link())
2047     return;
2048
2049   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2050                                                        elfcpp::SHT_DYNAMIC,
2051                                                        (elfcpp::SHF_ALLOC
2052                                                         | elfcpp::SHF_WRITE),
2053                                                        false, ORDER_RELRO,
2054                                                        true);
2055
2056   // A linker script may discard .dynamic, so check for NULL.
2057   if (this->dynamic_section_ != NULL)
2058     {
2059       this->dynamic_symbol_ =
2060         symtab->define_in_output_data("_DYNAMIC", NULL,
2061                                       Symbol_table::PREDEFINED,
2062                                       this->dynamic_section_, 0, 0,
2063                                       elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2064                                       elfcpp::STV_HIDDEN, 0, false, false);
2065
2066       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2067
2068       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2069     }
2070 }
2071
2072 // For each output section whose name can be represented as C symbol,
2073 // define __start and __stop symbols for the section.  This is a GNU
2074 // extension.
2075
2076 void
2077 Layout::define_section_symbols(Symbol_table* symtab)
2078 {
2079   for (Section_list::const_iterator p = this->section_list_.begin();
2080        p != this->section_list_.end();
2081        ++p)
2082     {
2083       const char* const name = (*p)->name();
2084       if (is_cident(name))
2085         {
2086           const std::string name_string(name);
2087           const std::string start_name(cident_section_start_prefix
2088                                        + name_string);
2089           const std::string stop_name(cident_section_stop_prefix
2090                                       + name_string);
2091
2092           symtab->define_in_output_data(start_name.c_str(),
2093                                         NULL, // version
2094                                         Symbol_table::PREDEFINED,
2095                                         *p,
2096                                         0, // value
2097                                         0, // symsize
2098                                         elfcpp::STT_NOTYPE,
2099                                         elfcpp::STB_GLOBAL,
2100                                         elfcpp::STV_DEFAULT,
2101                                         0, // nonvis
2102                                         false, // offset_is_from_end
2103                                         true); // only_if_ref
2104
2105           symtab->define_in_output_data(stop_name.c_str(),
2106                                         NULL, // version
2107                                         Symbol_table::PREDEFINED,
2108                                         *p,
2109                                         0, // value
2110                                         0, // symsize
2111                                         elfcpp::STT_NOTYPE,
2112                                         elfcpp::STB_GLOBAL,
2113                                         elfcpp::STV_DEFAULT,
2114                                         0, // nonvis
2115                                         true, // offset_is_from_end
2116                                         true); // only_if_ref
2117         }
2118     }
2119 }
2120
2121 // Define symbols for group signatures.
2122
2123 void
2124 Layout::define_group_signatures(Symbol_table* symtab)
2125 {
2126   for (Group_signatures::iterator p = this->group_signatures_.begin();
2127        p != this->group_signatures_.end();
2128        ++p)
2129     {
2130       Symbol* sym = symtab->lookup(p->signature, NULL);
2131       if (sym != NULL)
2132         p->section->set_info_symndx(sym);
2133       else
2134         {
2135           // Force the name of the group section to the group
2136           // signature, and use the group's section symbol as the
2137           // signature symbol.
2138           if (strcmp(p->section->name(), p->signature) != 0)
2139             {
2140               const char* name = this->namepool_.add(p->signature,
2141                                                      true, NULL);
2142               p->section->set_name(name);
2143             }
2144           p->section->set_needs_symtab_index();
2145           p->section->set_info_section_symndx(p->section);
2146         }
2147     }
2148
2149   this->group_signatures_.clear();
2150 }
2151
2152 // Find the first read-only PT_LOAD segment, creating one if
2153 // necessary.
2154
2155 Output_segment*
2156 Layout::find_first_load_seg(const Target* target)
2157 {
2158   Output_segment* best = NULL;
2159   for (Segment_list::const_iterator p = this->segment_list_.begin();
2160        p != this->segment_list_.end();
2161        ++p)
2162     {
2163       if ((*p)->type() == elfcpp::PT_LOAD
2164           && ((*p)->flags() & elfcpp::PF_R) != 0
2165           && (parameters->options().omagic()
2166               || ((*p)->flags() & elfcpp::PF_W) == 0)
2167           && (!target->isolate_execinstr()
2168               || ((*p)->flags() & elfcpp::PF_X) == 0))
2169         {
2170           if (best == NULL || this->segment_precedes(*p, best))
2171             best = *p;
2172         }
2173     }
2174   if (best != NULL)
2175     return best;
2176
2177   gold_assert(!this->script_options_->saw_phdrs_clause());
2178
2179   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2180                                                        elfcpp::PF_R);
2181   return load_seg;
2182 }
2183
2184 // Save states of all current output segments.  Store saved states
2185 // in SEGMENT_STATES.
2186
2187 void
2188 Layout::save_segments(Segment_states* segment_states)
2189 {
2190   for (Segment_list::const_iterator p = this->segment_list_.begin();
2191        p != this->segment_list_.end();
2192        ++p)
2193     {
2194       Output_segment* segment = *p;
2195       // Shallow copy.
2196       Output_segment* copy = new Output_segment(*segment);
2197       (*segment_states)[segment] = copy;
2198     }
2199 }
2200
2201 // Restore states of output segments and delete any segment not found in
2202 // SEGMENT_STATES.
2203
2204 void
2205 Layout::restore_segments(const Segment_states* segment_states)
2206 {
2207   // Go through the segment list and remove any segment added in the
2208   // relaxation loop.
2209   this->tls_segment_ = NULL;
2210   this->relro_segment_ = NULL;
2211   Segment_list::iterator list_iter = this->segment_list_.begin();
2212   while (list_iter != this->segment_list_.end())
2213     {
2214       Output_segment* segment = *list_iter;
2215       Segment_states::const_iterator states_iter =
2216           segment_states->find(segment);
2217       if (states_iter != segment_states->end())
2218         {
2219           const Output_segment* copy = states_iter->second;
2220           // Shallow copy to restore states.
2221           *segment = *copy;
2222
2223           // Also fix up TLS and RELRO segment pointers as appropriate.
2224           if (segment->type() == elfcpp::PT_TLS)
2225             this->tls_segment_ = segment;
2226           else if (segment->type() == elfcpp::PT_GNU_RELRO)
2227             this->relro_segment_ = segment;
2228
2229           ++list_iter;
2230         }
2231       else
2232         {
2233           list_iter = this->segment_list_.erase(list_iter);
2234           // This is a segment created during section layout.  It should be
2235           // safe to remove it since we should have removed all pointers to it.
2236           delete segment;
2237         }
2238     }
2239 }
2240
2241 // Clean up after relaxation so that sections can be laid out again.
2242
2243 void
2244 Layout::clean_up_after_relaxation()
2245 {
2246   // Restore the segments to point state just prior to the relaxation loop.
2247   Script_sections* script_section = this->script_options_->script_sections();
2248   script_section->release_segments();
2249   this->restore_segments(this->segment_states_);
2250
2251   // Reset section addresses and file offsets
2252   for (Section_list::iterator p = this->section_list_.begin();
2253        p != this->section_list_.end();
2254        ++p)
2255     {
2256       (*p)->restore_states();
2257
2258       // If an input section changes size because of relaxation,
2259       // we need to adjust the section offsets of all input sections.
2260       // after such a section.
2261       if ((*p)->section_offsets_need_adjustment())
2262         (*p)->adjust_section_offsets();
2263
2264       (*p)->reset_address_and_file_offset();
2265     }
2266
2267   // Reset special output object address and file offsets.
2268   for (Data_list::iterator p = this->special_output_list_.begin();
2269        p != this->special_output_list_.end();
2270        ++p)
2271     (*p)->reset_address_and_file_offset();
2272
2273   // A linker script may have created some output section data objects.
2274   // They are useless now.
2275   for (Output_section_data_list::const_iterator p =
2276          this->script_output_section_data_list_.begin();
2277        p != this->script_output_section_data_list_.end();
2278        ++p)
2279     delete *p;
2280   this->script_output_section_data_list_.clear();
2281 }
2282
2283 // Prepare for relaxation.
2284
2285 void
2286 Layout::prepare_for_relaxation()
2287 {
2288   // Create an relaxation debug check if in debugging mode.
2289   if (is_debugging_enabled(DEBUG_RELAXATION))
2290     this->relaxation_debug_check_ = new Relaxation_debug_check();
2291
2292   // Save segment states.
2293   this->segment_states_ = new Segment_states();
2294   this->save_segments(this->segment_states_);
2295
2296   for(Section_list::const_iterator p = this->section_list_.begin();
2297       p != this->section_list_.end();
2298       ++p)
2299     (*p)->save_states();
2300
2301   if (is_debugging_enabled(DEBUG_RELAXATION))
2302     this->relaxation_debug_check_->check_output_data_for_reset_values(
2303         this->section_list_, this->special_output_list_);
2304
2305   // Also enable recording of output section data from scripts.
2306   this->record_output_section_data_from_script_ = true;
2307 }
2308
2309 // Relaxation loop body:  If target has no relaxation, this runs only once
2310 // Otherwise, the target relaxation hook is called at the end of
2311 // each iteration.  If the hook returns true, it means re-layout of
2312 // section is required.
2313 //
2314 // The number of segments created by a linking script without a PHDRS
2315 // clause may be affected by section sizes and alignments.  There is
2316 // a remote chance that relaxation causes different number of PT_LOAD
2317 // segments are created and sections are attached to different segments.
2318 // Therefore, we always throw away all segments created during section
2319 // layout.  In order to be able to restart the section layout, we keep
2320 // a copy of the segment list right before the relaxation loop and use
2321 // that to restore the segments.
2322 //
2323 // PASS is the current relaxation pass number.
2324 // SYMTAB is a symbol table.
2325 // PLOAD_SEG is the address of a pointer for the load segment.
2326 // PHDR_SEG is a pointer to the PHDR segment.
2327 // SEGMENT_HEADERS points to the output segment header.
2328 // FILE_HEADER points to the output file header.
2329 // PSHNDX is the address to store the output section index.
2330
2331 off_t inline
2332 Layout::relaxation_loop_body(
2333     int pass,
2334     Target* target,
2335     Symbol_table* symtab,
2336     Output_segment** pload_seg,
2337     Output_segment* phdr_seg,
2338     Output_segment_headers* segment_headers,
2339     Output_file_header* file_header,
2340     unsigned int* pshndx)
2341 {
2342   // If this is not the first iteration, we need to clean up after
2343   // relaxation so that we can lay out the sections again.
2344   if (pass != 0)
2345     this->clean_up_after_relaxation();
2346
2347   // If there is a SECTIONS clause, put all the input sections into
2348   // the required order.
2349   Output_segment* load_seg;
2350   if (this->script_options_->saw_sections_clause())
2351     load_seg = this->set_section_addresses_from_script(symtab);
2352   else if (parameters->options().relocatable())
2353     load_seg = NULL;
2354   else
2355     load_seg = this->find_first_load_seg(target);
2356
2357   if (parameters->options().oformat_enum()
2358       != General_options::OBJECT_FORMAT_ELF)
2359     load_seg = NULL;
2360
2361   // If the user set the address of the text segment, that may not be
2362   // compatible with putting the segment headers and file headers into
2363   // that segment.
2364   if (parameters->options().user_set_Ttext()
2365       && parameters->options().Ttext() % target->abi_pagesize() != 0)
2366     {
2367       load_seg = NULL;
2368       phdr_seg = NULL;
2369     }
2370
2371   gold_assert(phdr_seg == NULL
2372               || load_seg != NULL
2373               || this->script_options_->saw_sections_clause());
2374
2375   // If the address of the load segment we found has been set by
2376   // --section-start rather than by a script, then adjust the VMA and
2377   // LMA downward if possible to include the file and section headers.
2378   uint64_t header_gap = 0;
2379   if (load_seg != NULL
2380       && load_seg->are_addresses_set()
2381       && !this->script_options_->saw_sections_clause()
2382       && !parameters->options().relocatable())
2383     {
2384       file_header->finalize_data_size();
2385       segment_headers->finalize_data_size();
2386       size_t sizeof_headers = (file_header->data_size()
2387                                + segment_headers->data_size());
2388       const uint64_t abi_pagesize = target->abi_pagesize();
2389       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2390       hdr_paddr &= ~(abi_pagesize - 1);
2391       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2392       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2393         load_seg = NULL;
2394       else
2395         {
2396           load_seg->set_addresses(load_seg->vaddr() - subtract,
2397                                   load_seg->paddr() - subtract);
2398           header_gap = subtract - sizeof_headers;
2399         }
2400     }
2401
2402   // Lay out the segment headers.
2403   if (!parameters->options().relocatable())
2404     {
2405       gold_assert(segment_headers != NULL);
2406       if (header_gap != 0 && load_seg != NULL)
2407         {
2408           Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2409           load_seg->add_initial_output_data(z);
2410         }
2411       if (load_seg != NULL)
2412         load_seg->add_initial_output_data(segment_headers);
2413       if (phdr_seg != NULL)
2414         phdr_seg->add_initial_output_data(segment_headers);
2415     }
2416
2417   // Lay out the file header.
2418   if (load_seg != NULL)
2419     load_seg->add_initial_output_data(file_header);
2420
2421   if (this->script_options_->saw_phdrs_clause()
2422       && !parameters->options().relocatable())
2423     {
2424       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2425       // clause in a linker script.
2426       Script_sections* ss = this->script_options_->script_sections();
2427       ss->put_headers_in_phdrs(file_header, segment_headers);
2428     }
2429
2430   // We set the output section indexes in set_segment_offsets and
2431   // set_section_indexes.
2432   *pshndx = 1;
2433
2434   // Set the file offsets of all the segments, and all the sections
2435   // they contain.
2436   off_t off;
2437   if (!parameters->options().relocatable())
2438     off = this->set_segment_offsets(target, load_seg, pshndx);
2439   else
2440     off = this->set_relocatable_section_offsets(file_header, pshndx);
2441
2442    // Verify that the dummy relaxation does not change anything.
2443   if (is_debugging_enabled(DEBUG_RELAXATION))
2444     {
2445       if (pass == 0)
2446         this->relaxation_debug_check_->read_sections(this->section_list_);
2447       else
2448         this->relaxation_debug_check_->verify_sections(this->section_list_);
2449     }
2450
2451   *pload_seg = load_seg;
2452   return off;
2453 }
2454
2455 // Search the list of patterns and find the postion of the given section
2456 // name in the output section.  If the section name matches a glob
2457 // pattern and a non-glob name, then the non-glob position takes
2458 // precedence.  Return 0 if no match is found.
2459
2460 unsigned int
2461 Layout::find_section_order_index(const std::string& section_name)
2462 {
2463   Unordered_map<std::string, unsigned int>::iterator map_it;
2464   map_it = this->input_section_position_.find(section_name);
2465   if (map_it != this->input_section_position_.end())
2466     return map_it->second;
2467
2468   // Absolute match failed.  Linear search the glob patterns.
2469   std::vector<std::string>::iterator it;
2470   for (it = this->input_section_glob_.begin();
2471        it != this->input_section_glob_.end();
2472        ++it)
2473     {
2474        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2475          {
2476            map_it = this->input_section_position_.find(*it);
2477            gold_assert(map_it != this->input_section_position_.end());
2478            return map_it->second;
2479          }
2480     }
2481   return 0;
2482 }
2483
2484 // Read the sequence of input sections from the file specified with
2485 // option --section-ordering-file.
2486
2487 void
2488 Layout::read_layout_from_file()
2489 {
2490   const char* filename = parameters->options().section_ordering_file();
2491   std::ifstream in;
2492   std::string line;
2493
2494   in.open(filename);
2495   if (!in)
2496     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2497                filename, strerror(errno));
2498
2499   std::getline(in, line);   // this chops off the trailing \n, if any
2500   unsigned int position = 1;
2501   this->set_section_ordering_specified();
2502
2503   while (in)
2504     {
2505       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2506         line.resize(line.length() - 1);
2507       // Ignore comments, beginning with '#'
2508       if (line[0] == '#')
2509         {
2510           std::getline(in, line);
2511           continue;
2512         }
2513       this->input_section_position_[line] = position;
2514       // Store all glob patterns in a vector.
2515       if (is_wildcard_string(line.c_str()))
2516         this->input_section_glob_.push_back(line);
2517       position++;
2518       std::getline(in, line);
2519     }
2520 }
2521
2522 // Finalize the layout.  When this is called, we have created all the
2523 // output sections and all the output segments which are based on
2524 // input sections.  We have several things to do, and we have to do
2525 // them in the right order, so that we get the right results correctly
2526 // and efficiently.
2527
2528 // 1) Finalize the list of output segments and create the segment
2529 // table header.
2530
2531 // 2) Finalize the dynamic symbol table and associated sections.
2532
2533 // 3) Determine the final file offset of all the output segments.
2534
2535 // 4) Determine the final file offset of all the SHF_ALLOC output
2536 // sections.
2537
2538 // 5) Create the symbol table sections and the section name table
2539 // section.
2540
2541 // 6) Finalize the symbol table: set symbol values to their final
2542 // value and make a final determination of which symbols are going
2543 // into the output symbol table.
2544
2545 // 7) Create the section table header.
2546
2547 // 8) Determine the final file offset of all the output sections which
2548 // are not SHF_ALLOC, including the section table header.
2549
2550 // 9) Finalize the ELF file header.
2551
2552 // This function returns the size of the output file.
2553
2554 off_t
2555 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2556                  Target* target, const Task* task)
2557 {
2558   target->finalize_sections(this, input_objects, symtab);
2559
2560   this->count_local_symbols(task, input_objects);
2561
2562   this->link_stabs_sections();
2563
2564   Output_segment* phdr_seg = NULL;
2565   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2566     {
2567       // There was a dynamic object in the link.  We need to create
2568       // some information for the dynamic linker.
2569
2570       // Create the PT_PHDR segment which will hold the program
2571       // headers.
2572       if (!this->script_options_->saw_phdrs_clause())
2573         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2574
2575       // Create the dynamic symbol table, including the hash table.
2576       Output_section* dynstr;
2577       std::vector<Symbol*> dynamic_symbols;
2578       unsigned int local_dynamic_count;
2579       Versions versions(*this->script_options()->version_script_info(),
2580                         &this->dynpool_);
2581       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2582                                   &local_dynamic_count, &dynamic_symbols,
2583                                   &versions);
2584
2585       // Create the .interp section to hold the name of the
2586       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2587       // if we saw a .interp section in an input file.
2588       if ((!parameters->options().shared()
2589            || parameters->options().dynamic_linker() != NULL)
2590           && this->interp_segment_ == NULL)
2591         this->create_interp(target);
2592
2593       // Finish the .dynamic section to hold the dynamic data, and put
2594       // it in a PT_DYNAMIC segment.
2595       this->finish_dynamic_section(input_objects, symtab);
2596
2597       // We should have added everything we need to the dynamic string
2598       // table.
2599       this->dynpool_.set_string_offsets();
2600
2601       // Create the version sections.  We can't do this until the
2602       // dynamic string table is complete.
2603       this->create_version_sections(&versions, symtab, local_dynamic_count,
2604                                     dynamic_symbols, dynstr);
2605
2606       // Set the size of the _DYNAMIC symbol.  We can't do this until
2607       // after we call create_version_sections.
2608       this->set_dynamic_symbol_size(symtab);
2609     }
2610
2611   // Create segment headers.
2612   Output_segment_headers* segment_headers =
2613     (parameters->options().relocatable()
2614      ? NULL
2615      : new Output_segment_headers(this->segment_list_));
2616
2617   // Lay out the file header.
2618   Output_file_header* file_header = new Output_file_header(target, symtab,
2619                                                            segment_headers);
2620
2621   this->special_output_list_.push_back(file_header);
2622   if (segment_headers != NULL)
2623     this->special_output_list_.push_back(segment_headers);
2624
2625   // Find approriate places for orphan output sections if we are using
2626   // a linker script.
2627   if (this->script_options_->saw_sections_clause())
2628     this->place_orphan_sections_in_script();
2629
2630   Output_segment* load_seg;
2631   off_t off;
2632   unsigned int shndx;
2633   int pass = 0;
2634
2635   // Take a snapshot of the section layout as needed.
2636   if (target->may_relax())
2637     this->prepare_for_relaxation();
2638
2639   // Run the relaxation loop to lay out sections.
2640   do
2641     {
2642       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2643                                        phdr_seg, segment_headers, file_header,
2644                                        &shndx);
2645       pass++;
2646     }
2647   while (target->may_relax()
2648          && target->relax(pass, input_objects, symtab, this, task));
2649
2650   // If there is a load segment that contains the file and program headers,
2651   // provide a symbol __ehdr_start pointing there.
2652   // A program can use this to examine itself robustly.
2653   if (load_seg != NULL)
2654     symtab->define_in_output_segment("__ehdr_start", NULL,
2655                                      Symbol_table::PREDEFINED, load_seg, 0, 0,
2656                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2657                                      elfcpp::STV_DEFAULT, 0,
2658                                      Symbol::SEGMENT_START, true);
2659
2660   // Set the file offsets of all the non-data sections we've seen so
2661   // far which don't have to wait for the input sections.  We need
2662   // this in order to finalize local symbols in non-allocated
2663   // sections.
2664   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2665
2666   // Set the section indexes of all unallocated sections seen so far,
2667   // in case any of them are somehow referenced by a symbol.
2668   shndx = this->set_section_indexes(shndx);
2669
2670   // Create the symbol table sections.
2671   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2672   if (!parameters->doing_static_link())
2673     this->assign_local_dynsym_offsets(input_objects);
2674
2675   // Process any symbol assignments from a linker script.  This must
2676   // be called after the symbol table has been finalized.
2677   this->script_options_->finalize_symbols(symtab, this);
2678
2679   // Create the incremental inputs sections.
2680   if (this->incremental_inputs_)
2681     {
2682       this->incremental_inputs_->finalize();
2683       this->create_incremental_info_sections(symtab);
2684     }
2685
2686   // Create the .shstrtab section.
2687   Output_section* shstrtab_section = this->create_shstrtab();
2688
2689   // Set the file offsets of the rest of the non-data sections which
2690   // don't have to wait for the input sections.
2691   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2692
2693   // Now that all sections have been created, set the section indexes
2694   // for any sections which haven't been done yet.
2695   shndx = this->set_section_indexes(shndx);
2696
2697   // Create the section table header.
2698   this->create_shdrs(shstrtab_section, &off);
2699
2700   // If there are no sections which require postprocessing, we can
2701   // handle the section names now, and avoid a resize later.
2702   if (!this->any_postprocessing_sections_)
2703     {
2704       off = this->set_section_offsets(off,
2705                                       POSTPROCESSING_SECTIONS_PASS);
2706       off =
2707           this->set_section_offsets(off,
2708                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2709     }
2710
2711   file_header->set_section_info(this->section_headers_, shstrtab_section);
2712
2713   // Now we know exactly where everything goes in the output file
2714   // (except for non-allocated sections which require postprocessing).
2715   Output_data::layout_complete();
2716
2717   this->output_file_size_ = off;
2718
2719   return off;
2720 }
2721
2722 // Create a note header following the format defined in the ELF ABI.
2723 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2724 // of the section to create, DESCSZ is the size of the descriptor.
2725 // ALLOCATE is true if the section should be allocated in memory.
2726 // This returns the new note section.  It sets *TRAILING_PADDING to
2727 // the number of trailing zero bytes required.
2728
2729 Output_section*
2730 Layout::create_note(const char* name, int note_type,
2731                     const char* section_name, size_t descsz,
2732                     bool allocate, size_t* trailing_padding)
2733 {
2734   // Authorities all agree that the values in a .note field should
2735   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2736   // they differ on what the alignment is for 64-bit binaries.
2737   // The GABI says unambiguously they take 8-byte alignment:
2738   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2739   // Other documentation says alignment should always be 4 bytes:
2740   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2741   // GNU ld and GNU readelf both support the latter (at least as of
2742   // version 2.16.91), and glibc always generates the latter for
2743   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2744   // here.
2745 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2746   const int size = parameters->target().get_size();
2747 #else
2748   const int size = 32;
2749 #endif
2750
2751   // The contents of the .note section.
2752   size_t namesz = strlen(name) + 1;
2753   size_t aligned_namesz = align_address(namesz, size / 8);
2754   size_t aligned_descsz = align_address(descsz, size / 8);
2755
2756   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2757
2758   unsigned char* buffer = new unsigned char[notehdrsz];
2759   memset(buffer, 0, notehdrsz);
2760
2761   bool is_big_endian = parameters->target().is_big_endian();
2762
2763   if (size == 32)
2764     {
2765       if (!is_big_endian)
2766         {
2767           elfcpp::Swap<32, false>::writeval(buffer, namesz);
2768           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2769           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2770         }
2771       else
2772         {
2773           elfcpp::Swap<32, true>::writeval(buffer, namesz);
2774           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2775           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2776         }
2777     }
2778   else if (size == 64)
2779     {
2780       if (!is_big_endian)
2781         {
2782           elfcpp::Swap<64, false>::writeval(buffer, namesz);
2783           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2784           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2785         }
2786       else
2787         {
2788           elfcpp::Swap<64, true>::writeval(buffer, namesz);
2789           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2790           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2791         }
2792     }
2793   else
2794     gold_unreachable();
2795
2796   memcpy(buffer + 3 * (size / 8), name, namesz);
2797
2798   elfcpp::Elf_Xword flags = 0;
2799   Output_section_order order = ORDER_INVALID;
2800   if (allocate)
2801     {
2802       flags = elfcpp::SHF_ALLOC;
2803       order = ORDER_RO_NOTE;
2804     }
2805   Output_section* os = this->choose_output_section(NULL, section_name,
2806                                                    elfcpp::SHT_NOTE,
2807                                                    flags, false, order, false);
2808   if (os == NULL)
2809     return NULL;
2810
2811   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2812                                                            size / 8,
2813                                                            "** note header");
2814   os->add_output_section_data(posd);
2815
2816   *trailing_padding = aligned_descsz - descsz;
2817
2818   return os;
2819 }
2820
2821 // For an executable or shared library, create a note to record the
2822 // version of gold used to create the binary.
2823
2824 void
2825 Layout::create_gold_note()
2826 {
2827   if (parameters->options().relocatable()
2828       || parameters->incremental_update())
2829     return;
2830
2831   std::string desc = std::string("gold ") + gold::get_version_string();
2832
2833   size_t trailing_padding;
2834   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2835                                          ".note.gnu.gold-version", desc.size(),
2836                                          false, &trailing_padding);
2837   if (os == NULL)
2838     return;
2839
2840   Output_section_data* posd = new Output_data_const(desc, 4);
2841   os->add_output_section_data(posd);
2842
2843   if (trailing_padding > 0)
2844     {
2845       posd = new Output_data_zero_fill(trailing_padding, 0);
2846       os->add_output_section_data(posd);
2847     }
2848 }
2849
2850 // Record whether the stack should be executable.  This can be set
2851 // from the command line using the -z execstack or -z noexecstack
2852 // options.  Otherwise, if any input file has a .note.GNU-stack
2853 // section with the SHF_EXECINSTR flag set, the stack should be
2854 // executable.  Otherwise, if at least one input file a
2855 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2856 // section, we use the target default for whether the stack should be
2857 // executable.  Otherwise, we don't generate a stack note.  When
2858 // generating a object file, we create a .note.GNU-stack section with
2859 // the appropriate marking.  When generating an executable or shared
2860 // library, we create a PT_GNU_STACK segment.
2861
2862 void
2863 Layout::create_executable_stack_info()
2864 {
2865   bool is_stack_executable;
2866   if (parameters->options().is_execstack_set())
2867     is_stack_executable = parameters->options().is_stack_executable();
2868   else if (!this->input_with_gnu_stack_note_)
2869     return;
2870   else
2871     {
2872       if (this->input_requires_executable_stack_)
2873         is_stack_executable = true;
2874       else if (this->input_without_gnu_stack_note_)
2875         is_stack_executable =
2876           parameters->target().is_default_stack_executable();
2877       else
2878         is_stack_executable = false;
2879     }
2880
2881   if (parameters->options().relocatable())
2882     {
2883       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2884       elfcpp::Elf_Xword flags = 0;
2885       if (is_stack_executable)
2886         flags |= elfcpp::SHF_EXECINSTR;
2887       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2888                                 ORDER_INVALID, false);
2889     }
2890   else
2891     {
2892       if (this->script_options_->saw_phdrs_clause())
2893         return;
2894       int flags = elfcpp::PF_R | elfcpp::PF_W;
2895       if (is_stack_executable)
2896         flags |= elfcpp::PF_X;
2897       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2898     }
2899 }
2900
2901 // If --build-id was used, set up the build ID note.
2902
2903 void
2904 Layout::create_build_id()
2905 {
2906   if (!parameters->options().user_set_build_id())
2907     return;
2908
2909   const char* style = parameters->options().build_id();
2910   if (strcmp(style, "none") == 0)
2911     return;
2912
2913   // Set DESCSZ to the size of the note descriptor.  When possible,
2914   // set DESC to the note descriptor contents.
2915   size_t descsz;
2916   std::string desc;
2917   if (strcmp(style, "md5") == 0)
2918     descsz = 128 / 8;
2919   else if (strcmp(style, "sha1") == 0)
2920     descsz = 160 / 8;
2921   else if (strcmp(style, "uuid") == 0)
2922     {
2923       const size_t uuidsz = 128 / 8;
2924
2925       char buffer[uuidsz];
2926       memset(buffer, 0, uuidsz);
2927
2928       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2929       if (descriptor < 0)
2930         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2931                    strerror(errno));
2932       else
2933         {
2934           ssize_t got = ::read(descriptor, buffer, uuidsz);
2935           release_descriptor(descriptor, true);
2936           if (got < 0)
2937             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2938           else if (static_cast<size_t>(got) != uuidsz)
2939             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2940                        uuidsz, got);
2941         }
2942
2943       desc.assign(buffer, uuidsz);
2944       descsz = uuidsz;
2945     }
2946   else if (strncmp(style, "0x", 2) == 0)
2947     {
2948       hex_init();
2949       const char* p = style + 2;
2950       while (*p != '\0')
2951         {
2952           if (hex_p(p[0]) && hex_p(p[1]))
2953             {
2954               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2955               desc += c;
2956               p += 2;
2957             }
2958           else if (*p == '-' || *p == ':')
2959             ++p;
2960           else
2961             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2962                        style);
2963         }
2964       descsz = desc.size();
2965     }
2966   else
2967     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2968
2969   // Create the note.
2970   size_t trailing_padding;
2971   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2972                                          ".note.gnu.build-id", descsz, true,
2973                                          &trailing_padding);
2974   if (os == NULL)
2975     return;
2976
2977   if (!desc.empty())
2978     {
2979       // We know the value already, so we fill it in now.
2980       gold_assert(desc.size() == descsz);
2981
2982       Output_section_data* posd = new Output_data_const(desc, 4);
2983       os->add_output_section_data(posd);
2984
2985       if (trailing_padding != 0)
2986         {
2987           posd = new Output_data_zero_fill(trailing_padding, 0);
2988           os->add_output_section_data(posd);
2989         }
2990     }
2991   else
2992     {
2993       // We need to compute a checksum after we have completed the
2994       // link.
2995       gold_assert(trailing_padding == 0);
2996       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2997       os->add_output_section_data(this->build_id_note_);
2998     }
2999 }
3000
3001 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3002 // field of the former should point to the latter.  I'm not sure who
3003 // started this, but the GNU linker does it, and some tools depend
3004 // upon it.
3005
3006 void
3007 Layout::link_stabs_sections()
3008 {
3009   if (!this->have_stabstr_section_)
3010     return;
3011
3012   for (Section_list::iterator p = this->section_list_.begin();
3013        p != this->section_list_.end();
3014        ++p)
3015     {
3016       if ((*p)->type() != elfcpp::SHT_STRTAB)
3017         continue;
3018
3019       const char* name = (*p)->name();
3020       if (strncmp(name, ".stab", 5) != 0)
3021         continue;
3022
3023       size_t len = strlen(name);
3024       if (strcmp(name + len - 3, "str") != 0)
3025         continue;
3026
3027       std::string stab_name(name, len - 3);
3028       Output_section* stab_sec;
3029       stab_sec = this->find_output_section(stab_name.c_str());
3030       if (stab_sec != NULL)
3031         stab_sec->set_link_section(*p);
3032     }
3033 }
3034
3035 // Create .gnu_incremental_inputs and related sections needed
3036 // for the next run of incremental linking to check what has changed.
3037
3038 void
3039 Layout::create_incremental_info_sections(Symbol_table* symtab)
3040 {
3041   Incremental_inputs* incr = this->incremental_inputs_;
3042
3043   gold_assert(incr != NULL);
3044
3045   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3046   incr->create_data_sections(symtab);
3047
3048   // Add the .gnu_incremental_inputs section.
3049   const char* incremental_inputs_name =
3050     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3051   Output_section* incremental_inputs_os =
3052     this->make_output_section(incremental_inputs_name,
3053                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3054                               ORDER_INVALID, false);
3055   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3056
3057   // Add the .gnu_incremental_symtab section.
3058   const char* incremental_symtab_name =
3059     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3060   Output_section* incremental_symtab_os =
3061     this->make_output_section(incremental_symtab_name,
3062                               elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3063                               ORDER_INVALID, false);
3064   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3065   incremental_symtab_os->set_entsize(4);
3066
3067   // Add the .gnu_incremental_relocs section.
3068   const char* incremental_relocs_name =
3069     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3070   Output_section* incremental_relocs_os =
3071     this->make_output_section(incremental_relocs_name,
3072                               elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3073                               ORDER_INVALID, false);
3074   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3075   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3076
3077   // Add the .gnu_incremental_got_plt section.
3078   const char* incremental_got_plt_name =
3079     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3080   Output_section* incremental_got_plt_os =
3081     this->make_output_section(incremental_got_plt_name,
3082                               elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3083                               ORDER_INVALID, false);
3084   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3085
3086   // Add the .gnu_incremental_strtab section.
3087   const char* incremental_strtab_name =
3088     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3089   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3090                                                         elfcpp::SHT_STRTAB, 0,
3091                                                         ORDER_INVALID, false);
3092   Output_data_strtab* strtab_data =
3093       new Output_data_strtab(incr->get_stringpool());
3094   incremental_strtab_os->add_output_section_data(strtab_data);
3095
3096   incremental_inputs_os->set_after_input_sections();
3097   incremental_symtab_os->set_after_input_sections();
3098   incremental_relocs_os->set_after_input_sections();
3099   incremental_got_plt_os->set_after_input_sections();
3100
3101   incremental_inputs_os->set_link_section(incremental_strtab_os);
3102   incremental_symtab_os->set_link_section(incremental_inputs_os);
3103   incremental_relocs_os->set_link_section(incremental_inputs_os);
3104   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3105 }
3106
3107 // Return whether SEG1 should be before SEG2 in the output file.  This
3108 // is based entirely on the segment type and flags.  When this is
3109 // called the segment addresses have normally not yet been set.
3110
3111 bool
3112 Layout::segment_precedes(const Output_segment* seg1,
3113                          const Output_segment* seg2)
3114 {
3115   elfcpp::Elf_Word type1 = seg1->type();
3116   elfcpp::Elf_Word type2 = seg2->type();
3117
3118   // The single PT_PHDR segment is required to precede any loadable
3119   // segment.  We simply make it always first.
3120   if (type1 == elfcpp::PT_PHDR)
3121     {
3122       gold_assert(type2 != elfcpp::PT_PHDR);
3123       return true;
3124     }
3125   if (type2 == elfcpp::PT_PHDR)
3126     return false;
3127
3128   // The single PT_INTERP segment is required to precede any loadable
3129   // segment.  We simply make it always second.
3130   if (type1 == elfcpp::PT_INTERP)
3131     {
3132       gold_assert(type2 != elfcpp::PT_INTERP);
3133       return true;
3134     }
3135   if (type2 == elfcpp::PT_INTERP)
3136     return false;
3137
3138   // We then put PT_LOAD segments before any other segments.
3139   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3140     return true;
3141   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3142     return false;
3143
3144   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3145   // segment, because that is where the dynamic linker expects to find
3146   // it (this is just for efficiency; other positions would also work
3147   // correctly).
3148   if (type1 == elfcpp::PT_TLS
3149       && type2 != elfcpp::PT_TLS
3150       && type2 != elfcpp::PT_GNU_RELRO)
3151     return false;
3152   if (type2 == elfcpp::PT_TLS
3153       && type1 != elfcpp::PT_TLS
3154       && type1 != elfcpp::PT_GNU_RELRO)
3155     return true;
3156
3157   // We put the PT_GNU_RELRO segment last, because that is where the
3158   // dynamic linker expects to find it (as with PT_TLS, this is just
3159   // for efficiency).
3160   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3161     return false;
3162   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3163     return true;
3164
3165   const elfcpp::Elf_Word flags1 = seg1->flags();
3166   const elfcpp::Elf_Word flags2 = seg2->flags();
3167
3168   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3169   // by the numeric segment type and flags values.  There should not
3170   // be more than one segment with the same type and flags.
3171   if (type1 != elfcpp::PT_LOAD)
3172     {
3173       if (type1 != type2)
3174         return type1 < type2;
3175       gold_assert(flags1 != flags2);
3176       return flags1 < flags2;
3177     }
3178
3179   // If the addresses are set already, sort by load address.
3180   if (seg1->are_addresses_set())
3181     {
3182       if (!seg2->are_addresses_set())
3183         return true;
3184
3185       unsigned int section_count1 = seg1->output_section_count();
3186       unsigned int section_count2 = seg2->output_section_count();
3187       if (section_count1 == 0 && section_count2 > 0)
3188         return true;
3189       if (section_count1 > 0 && section_count2 == 0)
3190         return false;
3191
3192       uint64_t paddr1 = (seg1->are_addresses_set()
3193                          ? seg1->paddr()
3194                          : seg1->first_section_load_address());
3195       uint64_t paddr2 = (seg2->are_addresses_set()
3196                          ? seg2->paddr()
3197                          : seg2->first_section_load_address());
3198
3199       if (paddr1 != paddr2)
3200         return paddr1 < paddr2;
3201     }
3202   else if (seg2->are_addresses_set())
3203     return false;
3204
3205   // A segment which holds large data comes after a segment which does
3206   // not hold large data.
3207   if (seg1->is_large_data_segment())
3208     {
3209       if (!seg2->is_large_data_segment())
3210         return false;
3211     }
3212   else if (seg2->is_large_data_segment())
3213     return true;
3214
3215   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3216   // segments come before writable segments.  Then writable segments
3217   // with data come before writable segments without data.  Then
3218   // executable segments come before non-executable segments.  Then
3219   // the unlikely case of a non-readable segment comes before the
3220   // normal case of a readable segment.  If there are multiple
3221   // segments with the same type and flags, we require that the
3222   // address be set, and we sort by virtual address and then physical
3223   // address.
3224   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3225     return (flags1 & elfcpp::PF_W) == 0;
3226   if ((flags1 & elfcpp::PF_W) != 0
3227       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3228     return seg1->has_any_data_sections();
3229   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3230     return (flags1 & elfcpp::PF_X) != 0;
3231   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3232     return (flags1 & elfcpp::PF_R) == 0;
3233
3234   // We shouldn't get here--we shouldn't create segments which we
3235   // can't distinguish.  Unless of course we are using a weird linker
3236   // script or overlapping --section-start options.  We could also get
3237   // here if plugins want unique segments for subsets of sections.
3238   gold_assert(this->script_options_->saw_phdrs_clause()
3239               || parameters->options().any_section_start()
3240               || this->is_unique_segment_for_sections_specified());
3241   return false;
3242 }
3243
3244 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3245
3246 static off_t
3247 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3248 {
3249   uint64_t unsigned_off = off;
3250   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3251                           | (addr & (abi_pagesize - 1)));
3252   if (aligned_off < unsigned_off)
3253     aligned_off += abi_pagesize;
3254   return aligned_off;
3255 }
3256
3257 // Set the file offsets of all the segments, and all the sections they
3258 // contain.  They have all been created.  LOAD_SEG must be be laid out
3259 // first.  Return the offset of the data to follow.
3260
3261 off_t
3262 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3263                             unsigned int* pshndx)
3264 {
3265   // Sort them into the final order.  We use a stable sort so that we
3266   // don't randomize the order of indistinguishable segments created
3267   // by linker scripts.
3268   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3269                    Layout::Compare_segments(this));
3270
3271   // Find the PT_LOAD segments, and set their addresses and offsets
3272   // and their section's addresses and offsets.
3273   uint64_t start_addr;
3274   if (parameters->options().user_set_Ttext())
3275     start_addr = parameters->options().Ttext();
3276   else if (parameters->options().output_is_position_independent())
3277     start_addr = 0;
3278   else
3279     start_addr = target->default_text_segment_address();
3280
3281   uint64_t addr = start_addr;
3282   off_t off = 0;
3283
3284   // If LOAD_SEG is NULL, then the file header and segment headers
3285   // will not be loadable.  But they still need to be at offset 0 in
3286   // the file.  Set their offsets now.
3287   if (load_seg == NULL)
3288     {
3289       for (Data_list::iterator p = this->special_output_list_.begin();
3290            p != this->special_output_list_.end();
3291            ++p)
3292         {
3293           off = align_address(off, (*p)->addralign());
3294           (*p)->set_address_and_file_offset(0, off);
3295           off += (*p)->data_size();
3296         }
3297     }
3298
3299   unsigned int increase_relro = this->increase_relro_;
3300   if (this->script_options_->saw_sections_clause())
3301     increase_relro = 0;
3302
3303   const bool check_sections = parameters->options().check_sections();
3304   Output_segment* last_load_segment = NULL;
3305
3306   unsigned int shndx_begin = *pshndx;
3307   unsigned int shndx_load_seg = *pshndx;
3308
3309   for (Segment_list::iterator p = this->segment_list_.begin();
3310        p != this->segment_list_.end();
3311        ++p)
3312     {
3313       if ((*p)->type() == elfcpp::PT_LOAD)
3314         {
3315           if (target->isolate_execinstr())
3316             {
3317               // When we hit the segment that should contain the
3318               // file headers, reset the file offset so we place
3319               // it and subsequent segments appropriately.
3320               // We'll fix up the preceding segments below.
3321               if (load_seg == *p)
3322                 {
3323                   if (off == 0)
3324                     load_seg = NULL;
3325                   else
3326                     {
3327                       off = 0;
3328                       shndx_load_seg = *pshndx;
3329                     }
3330                 }
3331             }
3332           else
3333             {
3334               // Verify that the file headers fall into the first segment.
3335               if (load_seg != NULL && load_seg != *p)
3336                 gold_unreachable();
3337               load_seg = NULL;
3338             }
3339
3340           bool are_addresses_set = (*p)->are_addresses_set();
3341           if (are_addresses_set)
3342             {
3343               // When it comes to setting file offsets, we care about
3344               // the physical address.
3345               addr = (*p)->paddr();
3346             }
3347           else if (parameters->options().user_set_Ttext()
3348                    && ((*p)->flags() & elfcpp::PF_W) == 0)
3349             {
3350               are_addresses_set = true;
3351             }
3352           else if (parameters->options().user_set_Tdata()
3353                    && ((*p)->flags() & elfcpp::PF_W) != 0
3354                    && (!parameters->options().user_set_Tbss()
3355                        || (*p)->has_any_data_sections()))
3356             {
3357               addr = parameters->options().Tdata();
3358               are_addresses_set = true;
3359             }
3360           else if (parameters->options().user_set_Tbss()
3361                    && ((*p)->flags() & elfcpp::PF_W) != 0
3362                    && !(*p)->has_any_data_sections())
3363             {
3364               addr = parameters->options().Tbss();
3365               are_addresses_set = true;
3366             }
3367
3368           uint64_t orig_addr = addr;
3369           uint64_t orig_off = off;
3370
3371           uint64_t aligned_addr = 0;
3372           uint64_t abi_pagesize = target->abi_pagesize();
3373           uint64_t common_pagesize = target->common_pagesize();
3374
3375           if (!parameters->options().nmagic()
3376               && !parameters->options().omagic())
3377             (*p)->set_minimum_p_align(abi_pagesize);
3378
3379           if (!are_addresses_set)
3380             {
3381               // Skip the address forward one page, maintaining the same
3382               // position within the page.  This lets us store both segments
3383               // overlapping on a single page in the file, but the loader will
3384               // put them on different pages in memory. We will revisit this
3385               // decision once we know the size of the segment.
3386
3387               addr = align_address(addr, (*p)->maximum_alignment());
3388               aligned_addr = addr;
3389
3390               if (load_seg == *p)
3391                 {
3392                   // This is the segment that will contain the file
3393                   // headers, so its offset will have to be exactly zero.
3394                   gold_assert(orig_off == 0);
3395
3396                   // If the target wants a fixed minimum distance from the
3397                   // text segment to the read-only segment, move up now.
3398                   uint64_t min_addr = start_addr + target->rosegment_gap();
3399                   if (addr < min_addr)
3400                     addr = min_addr;
3401
3402                   // But this is not the first segment!  To make its
3403                   // address congruent with its offset, that address better
3404                   // be aligned to the ABI-mandated page size.
3405                   addr = align_address(addr, abi_pagesize);
3406                   aligned_addr = addr;
3407                 }
3408               else
3409                 {
3410                   if ((addr & (abi_pagesize - 1)) != 0)
3411                     addr = addr + abi_pagesize;
3412
3413                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3414                 }
3415             }
3416
3417           if (!parameters->options().nmagic()
3418               && !parameters->options().omagic())
3419             off = align_file_offset(off, addr, abi_pagesize);
3420           else
3421             {
3422               // This is -N or -n with a section script which prevents
3423               // us from using a load segment.  We need to ensure that
3424               // the file offset is aligned to the alignment of the
3425               // segment.  This is because the linker script
3426               // implicitly assumed a zero offset.  If we don't align
3427               // here, then the alignment of the sections in the
3428               // linker script may not match the alignment of the
3429               // sections in the set_section_addresses call below,
3430               // causing an error about dot moving backward.
3431               off = align_address(off, (*p)->maximum_alignment());
3432             }
3433
3434           unsigned int shndx_hold = *pshndx;
3435           bool has_relro = false;
3436           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3437                                                           &increase_relro,
3438                                                           &has_relro,
3439                                                           &off, pshndx);
3440
3441           // Now that we know the size of this segment, we may be able
3442           // to save a page in memory, at the cost of wasting some
3443           // file space, by instead aligning to the start of a new
3444           // page.  Here we use the real machine page size rather than
3445           // the ABI mandated page size.  If the segment has been
3446           // aligned so that the relro data ends at a page boundary,
3447           // we do not try to realign it.
3448
3449           if (!are_addresses_set
3450               && !has_relro
3451               && aligned_addr != addr
3452               && !parameters->incremental())
3453             {
3454               uint64_t first_off = (common_pagesize
3455                                     - (aligned_addr
3456                                        & (common_pagesize - 1)));
3457               uint64_t last_off = new_addr & (common_pagesize - 1);
3458               if (first_off > 0
3459                   && last_off > 0
3460                   && ((aligned_addr & ~ (common_pagesize - 1))
3461                       != (new_addr & ~ (common_pagesize - 1)))
3462                   && first_off + last_off <= common_pagesize)
3463                 {
3464                   *pshndx = shndx_hold;
3465                   addr = align_address(aligned_addr, common_pagesize);
3466                   addr = align_address(addr, (*p)->maximum_alignment());
3467                   if ((addr & (abi_pagesize - 1)) != 0)
3468                     addr = addr + abi_pagesize;
3469                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3470                   off = align_file_offset(off, addr, abi_pagesize);
3471
3472                   increase_relro = this->increase_relro_;
3473                   if (this->script_options_->saw_sections_clause())
3474                     increase_relro = 0;
3475                   has_relro = false;
3476
3477                   new_addr = (*p)->set_section_addresses(this, true, addr,
3478                                                          &increase_relro,
3479                                                          &has_relro,
3480                                                          &off, pshndx);
3481                 }
3482             }
3483
3484           addr = new_addr;
3485
3486           // Implement --check-sections.  We know that the segments
3487           // are sorted by LMA.
3488           if (check_sections && last_load_segment != NULL)
3489             {
3490               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3491               if (last_load_segment->paddr() + last_load_segment->memsz()
3492                   > (*p)->paddr())
3493                 {
3494                   unsigned long long lb1 = last_load_segment->paddr();
3495                   unsigned long long le1 = lb1 + last_load_segment->memsz();
3496                   unsigned long long lb2 = (*p)->paddr();
3497                   unsigned long long le2 = lb2 + (*p)->memsz();
3498                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3499                                "[0x%llx -> 0x%llx]"),
3500                              lb1, le1, lb2, le2);
3501                 }
3502             }
3503           last_load_segment = *p;
3504         }
3505     }
3506
3507   if (load_seg != NULL && target->isolate_execinstr())
3508     {
3509       // Process the early segments again, setting their file offsets
3510       // so they land after the segments starting at LOAD_SEG.
3511       off = align_file_offset(off, 0, target->abi_pagesize());
3512
3513       for (Segment_list::iterator p = this->segment_list_.begin();
3514            *p != load_seg;
3515            ++p)
3516         {
3517           if ((*p)->type() == elfcpp::PT_LOAD)
3518             {
3519               // We repeat the whole job of assigning addresses and
3520               // offsets, but we really only want to change the offsets and
3521               // must ensure that the addresses all come out the same as
3522               // they did the first time through.
3523               bool has_relro = false;
3524               const uint64_t old_addr = (*p)->vaddr();
3525               const uint64_t old_end = old_addr + (*p)->memsz();
3526               uint64_t new_addr = (*p)->set_section_addresses(this, true,
3527                                                               old_addr,
3528                                                               &increase_relro,
3529                                                               &has_relro,
3530                                                               &off,
3531                                                               &shndx_begin);
3532               gold_assert(new_addr == old_end);
3533             }
3534         }
3535
3536       gold_assert(shndx_begin == shndx_load_seg);
3537     }
3538
3539   // Handle the non-PT_LOAD segments, setting their offsets from their
3540   // section's offsets.
3541   for (Segment_list::iterator p = this->segment_list_.begin();
3542        p != this->segment_list_.end();
3543        ++p)
3544     {
3545       if ((*p)->type() != elfcpp::PT_LOAD)
3546         (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3547                          ? increase_relro
3548                          : 0);
3549     }
3550
3551   // Set the TLS offsets for each section in the PT_TLS segment.
3552   if (this->tls_segment_ != NULL)
3553     this->tls_segment_->set_tls_offsets();
3554
3555   return off;
3556 }
3557
3558 // Set the offsets of all the allocated sections when doing a
3559 // relocatable link.  This does the same jobs as set_segment_offsets,
3560 // only for a relocatable link.
3561
3562 off_t
3563 Layout::set_relocatable_section_offsets(Output_data* file_header,
3564                                         unsigned int* pshndx)
3565 {
3566   off_t off = 0;
3567
3568   file_header->set_address_and_file_offset(0, 0);
3569   off += file_header->data_size();
3570
3571   for (Section_list::iterator p = this->section_list_.begin();
3572        p != this->section_list_.end();
3573        ++p)
3574     {
3575       // We skip unallocated sections here, except that group sections
3576       // have to come first.
3577       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3578           && (*p)->type() != elfcpp::SHT_GROUP)
3579         continue;
3580
3581       off = align_address(off, (*p)->addralign());
3582
3583       // The linker script might have set the address.
3584       if (!(*p)->is_address_valid())
3585         (*p)->set_address(0);
3586       (*p)->set_file_offset(off);
3587       (*p)->finalize_data_size();
3588       off += (*p)->data_size();
3589
3590       (*p)->set_out_shndx(*pshndx);
3591       ++*pshndx;
3592     }
3593
3594   return off;
3595 }
3596
3597 // Set the file offset of all the sections not associated with a
3598 // segment.
3599
3600 off_t
3601 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3602 {
3603   off_t startoff = off;
3604   off_t maxoff = off;
3605
3606   for (Section_list::iterator p = this->unattached_section_list_.begin();
3607        p != this->unattached_section_list_.end();
3608        ++p)
3609     {
3610       // The symtab section is handled in create_symtab_sections.
3611       if (*p == this->symtab_section_)
3612         continue;
3613
3614       // If we've already set the data size, don't set it again.
3615       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3616         continue;
3617
3618       if (pass == BEFORE_INPUT_SECTIONS_PASS
3619           && (*p)->requires_postprocessing())
3620         {
3621           (*p)->create_postprocessing_buffer();
3622           this->any_postprocessing_sections_ = true;
3623         }
3624
3625       if (pass == BEFORE_INPUT_SECTIONS_PASS
3626           && (*p)->after_input_sections())
3627         continue;
3628       else if (pass == POSTPROCESSING_SECTIONS_PASS
3629                && (!(*p)->after_input_sections()
3630                    || (*p)->type() == elfcpp::SHT_STRTAB))
3631         continue;
3632       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3633                && (!(*p)->after_input_sections()
3634                    || (*p)->type() != elfcpp::SHT_STRTAB))
3635         continue;
3636
3637       if (!parameters->incremental_update())
3638         {
3639           off = align_address(off, (*p)->addralign());
3640           (*p)->set_file_offset(off);
3641           (*p)->finalize_data_size();
3642         }
3643       else
3644         {
3645           // Incremental update: allocate file space from free list.
3646           (*p)->pre_finalize_data_size();
3647           off_t current_size = (*p)->current_data_size();
3648           off = this->allocate(current_size, (*p)->addralign(), startoff);
3649           if (off == -1)
3650             {
3651               if (is_debugging_enabled(DEBUG_INCREMENTAL))
3652                 this->free_list_.dump();
3653               gold_assert((*p)->output_section() != NULL);
3654               gold_fallback(_("out of patch space for section %s; "
3655                               "relink with --incremental-full"),
3656                             (*p)->output_section()->name());
3657             }
3658           (*p)->set_file_offset(off);
3659           (*p)->finalize_data_size();
3660           if ((*p)->data_size() > current_size)
3661             {
3662               gold_assert((*p)->output_section() != NULL);
3663               gold_fallback(_("%s: section changed size; "
3664                               "relink with --incremental-full"),
3665                             (*p)->output_section()->name());
3666             }
3667           gold_debug(DEBUG_INCREMENTAL,
3668                      "set_section_offsets: %08lx %08lx %s",
3669                      static_cast<long>(off),
3670                      static_cast<long>((*p)->data_size()),
3671                      ((*p)->output_section() != NULL
3672                       ? (*p)->output_section()->name() : "(special)"));
3673         }
3674
3675       off += (*p)->data_size();
3676       if (off > maxoff)
3677         maxoff = off;
3678
3679       // At this point the name must be set.
3680       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3681         this->namepool_.add((*p)->name(), false, NULL);
3682     }
3683   return maxoff;
3684 }
3685
3686 // Set the section indexes of all the sections not associated with a
3687 // segment.
3688
3689 unsigned int
3690 Layout::set_section_indexes(unsigned int shndx)
3691 {
3692   for (Section_list::iterator p = this->unattached_section_list_.begin();
3693        p != this->unattached_section_list_.end();
3694        ++p)
3695     {
3696       if (!(*p)->has_out_shndx())
3697         {
3698           (*p)->set_out_shndx(shndx);
3699           ++shndx;
3700         }
3701     }
3702   return shndx;
3703 }
3704
3705 // Set the section addresses according to the linker script.  This is
3706 // only called when we see a SECTIONS clause.  This returns the
3707 // program segment which should hold the file header and segment
3708 // headers, if any.  It will return NULL if they should not be in a
3709 // segment.
3710
3711 Output_segment*
3712 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3713 {
3714   Script_sections* ss = this->script_options_->script_sections();
3715   gold_assert(ss->saw_sections_clause());
3716   return this->script_options_->set_section_addresses(symtab, this);
3717 }
3718
3719 // Place the orphan sections in the linker script.
3720
3721 void
3722 Layout::place_orphan_sections_in_script()
3723 {
3724   Script_sections* ss = this->script_options_->script_sections();
3725   gold_assert(ss->saw_sections_clause());
3726
3727   // Place each orphaned output section in the script.
3728   for (Section_list::iterator p = this->section_list_.begin();
3729        p != this->section_list_.end();
3730        ++p)
3731     {
3732       if (!(*p)->found_in_sections_clause())
3733         ss->place_orphan(*p);
3734     }
3735 }
3736
3737 // Count the local symbols in the regular symbol table and the dynamic
3738 // symbol table, and build the respective string pools.
3739
3740 void
3741 Layout::count_local_symbols(const Task* task,
3742                             const Input_objects* input_objects)
3743 {
3744   // First, figure out an upper bound on the number of symbols we'll
3745   // be inserting into each pool.  This helps us create the pools with
3746   // the right size, to avoid unnecessary hashtable resizing.
3747   unsigned int symbol_count = 0;
3748   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3749        p != input_objects->relobj_end();
3750        ++p)
3751     symbol_count += (*p)->local_symbol_count();
3752
3753   // Go from "upper bound" to "estimate."  We overcount for two
3754   // reasons: we double-count symbols that occur in more than one
3755   // object file, and we count symbols that are dropped from the
3756   // output.  Add it all together and assume we overcount by 100%.
3757   symbol_count /= 2;
3758
3759   // We assume all symbols will go into both the sympool and dynpool.
3760   this->sympool_.reserve(symbol_count);
3761   this->dynpool_.reserve(symbol_count);
3762
3763   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3764        p != input_objects->relobj_end();
3765        ++p)
3766     {
3767       Task_lock_obj<Object> tlo(task, *p);
3768       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3769     }
3770 }
3771
3772 // Create the symbol table sections.  Here we also set the final
3773 // values of the symbols.  At this point all the loadable sections are
3774 // fully laid out.  SHNUM is the number of sections so far.
3775
3776 void
3777 Layout::create_symtab_sections(const Input_objects* input_objects,
3778                                Symbol_table* symtab,
3779                                unsigned int shnum,
3780                                off_t* poff)
3781 {
3782   int symsize;
3783   unsigned int align;
3784   if (parameters->target().get_size() == 32)
3785     {
3786       symsize = elfcpp::Elf_sizes<32>::sym_size;
3787       align = 4;
3788     }
3789   else if (parameters->target().get_size() == 64)
3790     {
3791       symsize = elfcpp::Elf_sizes<64>::sym_size;
3792       align = 8;
3793     }
3794   else
3795     gold_unreachable();
3796
3797   // Compute file offsets relative to the start of the symtab section.
3798   off_t off = 0;
3799
3800   // Save space for the dummy symbol at the start of the section.  We
3801   // never bother to write this out--it will just be left as zero.
3802   off += symsize;
3803   unsigned int local_symbol_index = 1;
3804
3805   // Add STT_SECTION symbols for each Output section which needs one.
3806   for (Section_list::iterator p = this->section_list_.begin();
3807        p != this->section_list_.end();
3808        ++p)
3809     {
3810       if (!(*p)->needs_symtab_index())
3811         (*p)->set_symtab_index(-1U);
3812       else
3813         {
3814           (*p)->set_symtab_index(local_symbol_index);
3815           ++local_symbol_index;
3816           off += symsize;
3817         }
3818     }
3819
3820   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3821        p != input_objects->relobj_end();
3822        ++p)
3823     {
3824       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3825                                                         off, symtab);
3826       off += (index - local_symbol_index) * symsize;
3827       local_symbol_index = index;
3828     }
3829
3830   unsigned int local_symcount = local_symbol_index;
3831   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3832
3833   off_t dynoff;
3834   size_t dyn_global_index;
3835   size_t dyncount;
3836   if (this->dynsym_section_ == NULL)
3837     {
3838       dynoff = 0;
3839       dyn_global_index = 0;
3840       dyncount = 0;
3841     }
3842   else
3843     {
3844       dyn_global_index = this->dynsym_section_->info();
3845       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3846       dynoff = this->dynsym_section_->offset() + locsize;
3847       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3848       gold_assert(static_cast<off_t>(dyncount * symsize)
3849                   == this->dynsym_section_->data_size() - locsize);
3850     }
3851
3852   off_t global_off = off;
3853   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3854                          &this->sympool_, &local_symcount);
3855
3856   if (!parameters->options().strip_all())
3857     {
3858       this->sympool_.set_string_offsets();
3859
3860       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3861       Output_section* osymtab = this->make_output_section(symtab_name,
3862                                                           elfcpp::SHT_SYMTAB,
3863                                                           0, ORDER_INVALID,
3864                                                           false);
3865       this->symtab_section_ = osymtab;
3866
3867       Output_section_data* pos = new Output_data_fixed_space(off, align,
3868                                                              "** symtab");
3869       osymtab->add_output_section_data(pos);
3870
3871       // We generate a .symtab_shndx section if we have more than
3872       // SHN_LORESERVE sections.  Technically it is possible that we
3873       // don't need one, because it is possible that there are no
3874       // symbols in any of sections with indexes larger than
3875       // SHN_LORESERVE.  That is probably unusual, though, and it is
3876       // easier to always create one than to compute section indexes
3877       // twice (once here, once when writing out the symbols).
3878       if (shnum >= elfcpp::SHN_LORESERVE)
3879         {
3880           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3881                                                                false, NULL);
3882           Output_section* osymtab_xindex =
3883             this->make_output_section(symtab_xindex_name,
3884                                       elfcpp::SHT_SYMTAB_SHNDX, 0,
3885                                       ORDER_INVALID, false);
3886
3887           size_t symcount = off / symsize;
3888           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3889
3890           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3891
3892           osymtab_xindex->set_link_section(osymtab);
3893           osymtab_xindex->set_addralign(4);
3894           osymtab_xindex->set_entsize(4);
3895
3896           osymtab_xindex->set_after_input_sections();
3897
3898           // This tells the driver code to wait until the symbol table
3899           // has written out before writing out the postprocessing
3900           // sections, including the .symtab_shndx section.
3901           this->any_postprocessing_sections_ = true;
3902         }
3903
3904       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3905       Output_section* ostrtab = this->make_output_section(strtab_name,
3906                                                           elfcpp::SHT_STRTAB,
3907                                                           0, ORDER_INVALID,
3908                                                           false);
3909
3910       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3911       ostrtab->add_output_section_data(pstr);
3912
3913       off_t symtab_off;
3914       if (!parameters->incremental_update())
3915         symtab_off = align_address(*poff, align);
3916       else
3917         {
3918           symtab_off = this->allocate(off, align, *poff);
3919           if (off == -1)
3920             gold_fallback(_("out of patch space for symbol table; "
3921                             "relink with --incremental-full"));
3922           gold_debug(DEBUG_INCREMENTAL,
3923                      "create_symtab_sections: %08lx %08lx .symtab",
3924                      static_cast<long>(symtab_off),
3925                      static_cast<long>(off));
3926         }
3927
3928       symtab->set_file_offset(symtab_off + global_off);
3929       osymtab->set_file_offset(symtab_off);
3930       osymtab->finalize_data_size();
3931       osymtab->set_link_section(ostrtab);
3932       osymtab->set_info(local_symcount);
3933       osymtab->set_entsize(symsize);
3934
3935       if (symtab_off + off > *poff)
3936         *poff = symtab_off + off;
3937     }
3938 }
3939
3940 // Create the .shstrtab section, which holds the names of the
3941 // sections.  At the time this is called, we have created all the
3942 // output sections except .shstrtab itself.
3943
3944 Output_section*
3945 Layout::create_shstrtab()
3946 {
3947   // FIXME: We don't need to create a .shstrtab section if we are
3948   // stripping everything.
3949
3950   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3951
3952   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3953                                                  ORDER_INVALID, false);
3954
3955   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3956     {
3957       // We can't write out this section until we've set all the
3958       // section names, and we don't set the names of compressed
3959       // output sections until relocations are complete.  FIXME: With
3960       // the current names we use, this is unnecessary.
3961       os->set_after_input_sections();
3962     }
3963
3964   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3965   os->add_output_section_data(posd);
3966
3967   return os;
3968 }
3969
3970 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3971 // offset.
3972
3973 void
3974 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3975 {
3976   Output_section_headers* oshdrs;
3977   oshdrs = new Output_section_headers(this,
3978                                       &this->segment_list_,
3979                                       &this->section_list_,
3980                                       &this->unattached_section_list_,
3981                                       &this->namepool_,
3982                                       shstrtab_section);
3983   off_t off;
3984   if (!parameters->incremental_update())
3985     off = align_address(*poff, oshdrs->addralign());
3986   else
3987     {
3988       oshdrs->pre_finalize_data_size();
3989       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3990       if (off == -1)
3991           gold_fallback(_("out of patch space for section header table; "
3992                           "relink with --incremental-full"));
3993       gold_debug(DEBUG_INCREMENTAL,
3994                  "create_shdrs: %08lx %08lx (section header table)",
3995                  static_cast<long>(off),
3996                  static_cast<long>(off + oshdrs->data_size()));
3997     }
3998   oshdrs->set_address_and_file_offset(0, off);
3999   off += oshdrs->data_size();
4000   if (off > *poff)
4001     *poff = off;
4002   this->section_headers_ = oshdrs;
4003 }
4004
4005 // Count the allocated sections.
4006
4007 size_t
4008 Layout::allocated_output_section_count() const
4009 {
4010   size_t section_count = 0;
4011   for (Segment_list::const_iterator p = this->segment_list_.begin();
4012        p != this->segment_list_.end();
4013        ++p)
4014     section_count += (*p)->output_section_count();
4015   return section_count;
4016 }
4017
4018 // Create the dynamic symbol table.
4019
4020 void
4021 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4022                               Symbol_table* symtab,
4023                               Output_section** pdynstr,
4024                               unsigned int* plocal_dynamic_count,
4025                               std::vector<Symbol*>* pdynamic_symbols,
4026                               Versions* pversions)
4027 {
4028   // Count all the symbols in the dynamic symbol table, and set the
4029   // dynamic symbol indexes.
4030
4031   // Skip symbol 0, which is always all zeroes.
4032   unsigned int index = 1;
4033
4034   // Add STT_SECTION symbols for each Output section which needs one.
4035   for (Section_list::iterator p = this->section_list_.begin();
4036        p != this->section_list_.end();
4037        ++p)
4038     {
4039       if (!(*p)->needs_dynsym_index())
4040         (*p)->set_dynsym_index(-1U);
4041       else
4042         {
4043           (*p)->set_dynsym_index(index);
4044           ++index;
4045         }
4046     }
4047
4048   // Count the local symbols that need to go in the dynamic symbol table,
4049   // and set the dynamic symbol indexes.
4050   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4051        p != input_objects->relobj_end();
4052        ++p)
4053     {
4054       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4055       index = new_index;
4056     }
4057
4058   unsigned int local_symcount = index;
4059   *plocal_dynamic_count = local_symcount;
4060
4061   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4062                                      &this->dynpool_, pversions);
4063
4064   int symsize;
4065   unsigned int align;
4066   const int size = parameters->target().get_size();
4067   if (size == 32)
4068     {
4069       symsize = elfcpp::Elf_sizes<32>::sym_size;
4070       align = 4;
4071     }
4072   else if (size == 64)
4073     {
4074       symsize = elfcpp::Elf_sizes<64>::sym_size;
4075       align = 8;
4076     }
4077   else
4078     gold_unreachable();
4079
4080   // Create the dynamic symbol table section.
4081
4082   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4083                                                        elfcpp::SHT_DYNSYM,
4084                                                        elfcpp::SHF_ALLOC,
4085                                                        false,
4086                                                        ORDER_DYNAMIC_LINKER,
4087                                                        false);
4088
4089   // Check for NULL as a linker script may discard .dynsym.
4090   if (dynsym != NULL)
4091     {
4092       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4093                                                                align,
4094                                                                "** dynsym");
4095       dynsym->add_output_section_data(odata);
4096
4097       dynsym->set_info(local_symcount);
4098       dynsym->set_entsize(symsize);
4099       dynsym->set_addralign(align);
4100
4101       this->dynsym_section_ = dynsym;
4102     }
4103
4104   Output_data_dynamic* const odyn = this->dynamic_data_;
4105   if (odyn != NULL)
4106     {
4107       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4108       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4109     }
4110
4111   // If there are more than SHN_LORESERVE allocated sections, we
4112   // create a .dynsym_shndx section.  It is possible that we don't
4113   // need one, because it is possible that there are no dynamic
4114   // symbols in any of the sections with indexes larger than
4115   // SHN_LORESERVE.  This is probably unusual, though, and at this
4116   // time we don't know the actual section indexes so it is
4117   // inconvenient to check.
4118   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4119     {
4120       Output_section* dynsym_xindex =
4121         this->choose_output_section(NULL, ".dynsym_shndx",
4122                                     elfcpp::SHT_SYMTAB_SHNDX,
4123                                     elfcpp::SHF_ALLOC,
4124                                     false, ORDER_DYNAMIC_LINKER, false);
4125
4126       if (dynsym_xindex != NULL)
4127         {
4128           this->dynsym_xindex_ = new Output_symtab_xindex(index);
4129
4130           dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4131
4132           dynsym_xindex->set_link_section(dynsym);
4133           dynsym_xindex->set_addralign(4);
4134           dynsym_xindex->set_entsize(4);
4135
4136           dynsym_xindex->set_after_input_sections();
4137
4138           // This tells the driver code to wait until the symbol table
4139           // has written out before writing out the postprocessing
4140           // sections, including the .dynsym_shndx section.
4141           this->any_postprocessing_sections_ = true;
4142         }
4143     }
4144
4145   // Create the dynamic string table section.
4146
4147   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4148                                                        elfcpp::SHT_STRTAB,
4149                                                        elfcpp::SHF_ALLOC,
4150                                                        false,
4151                                                        ORDER_DYNAMIC_LINKER,
4152                                                        false);
4153
4154   if (dynstr != NULL)
4155     {
4156       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4157       dynstr->add_output_section_data(strdata);
4158
4159       if (dynsym != NULL)
4160         dynsym->set_link_section(dynstr);
4161       if (this->dynamic_section_ != NULL)
4162         this->dynamic_section_->set_link_section(dynstr);
4163
4164       if (odyn != NULL)
4165         {
4166           odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4167           odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4168         }
4169
4170       *pdynstr = dynstr;
4171     }
4172
4173   // Create the hash tables.
4174
4175   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4176       || strcmp(parameters->options().hash_style(), "both") == 0)
4177     {
4178       unsigned char* phash;
4179       unsigned int hashlen;
4180       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4181                                     &phash, &hashlen);
4182
4183       Output_section* hashsec =
4184         this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4185                                     elfcpp::SHF_ALLOC, false,
4186                                     ORDER_DYNAMIC_LINKER, false);
4187
4188       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4189                                                                    hashlen,
4190                                                                    align,
4191                                                                    "** hash");
4192       if (hashsec != NULL && hashdata != NULL)
4193         hashsec->add_output_section_data(hashdata);
4194
4195       if (hashsec != NULL)
4196         {
4197           if (dynsym != NULL)
4198             hashsec->set_link_section(dynsym);
4199           hashsec->set_entsize(4);
4200         }
4201
4202       if (odyn != NULL)
4203         odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4204     }
4205
4206   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4207       || strcmp(parameters->options().hash_style(), "both") == 0)
4208     {
4209       unsigned char* phash;
4210       unsigned int hashlen;
4211       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4212                                     &phash, &hashlen);
4213
4214       Output_section* hashsec =
4215         this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4216                                     elfcpp::SHF_ALLOC, false,
4217                                     ORDER_DYNAMIC_LINKER, false);
4218
4219       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4220                                                                    hashlen,
4221                                                                    align,
4222                                                                    "** hash");
4223       if (hashsec != NULL && hashdata != NULL)
4224         hashsec->add_output_section_data(hashdata);
4225
4226       if (hashsec != NULL)
4227         {
4228           if (dynsym != NULL)
4229             hashsec->set_link_section(dynsym);
4230
4231           // For a 64-bit target, the entries in .gnu.hash do not have
4232           // a uniform size, so we only set the entry size for a
4233           // 32-bit target.
4234           if (parameters->target().get_size() == 32)
4235             hashsec->set_entsize(4);
4236
4237           if (odyn != NULL)
4238             odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4239         }
4240     }
4241 }
4242
4243 // Assign offsets to each local portion of the dynamic symbol table.
4244
4245 void
4246 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4247 {
4248   Output_section* dynsym = this->dynsym_section_;
4249   if (dynsym == NULL)
4250     return;
4251
4252   off_t off = dynsym->offset();
4253
4254   // Skip the dummy symbol at the start of the section.
4255   off += dynsym->entsize();
4256
4257   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4258        p != input_objects->relobj_end();
4259        ++p)
4260     {
4261       unsigned int count = (*p)->set_local_dynsym_offset(off);
4262       off += count * dynsym->entsize();
4263     }
4264 }
4265
4266 // Create the version sections.
4267
4268 void
4269 Layout::create_version_sections(const Versions* versions,
4270                                 const Symbol_table* symtab,
4271                                 unsigned int local_symcount,
4272                                 const std::vector<Symbol*>& dynamic_symbols,
4273                                 const Output_section* dynstr)
4274 {
4275   if (!versions->any_defs() && !versions->any_needs())
4276     return;
4277
4278   switch (parameters->size_and_endianness())
4279     {
4280 #ifdef HAVE_TARGET_32_LITTLE
4281     case Parameters::TARGET_32_LITTLE:
4282       this->sized_create_version_sections<32, false>(versions, symtab,
4283                                                      local_symcount,
4284                                                      dynamic_symbols, dynstr);
4285       break;
4286 #endif
4287 #ifdef HAVE_TARGET_32_BIG
4288     case Parameters::TARGET_32_BIG:
4289       this->sized_create_version_sections<32, true>(versions, symtab,
4290                                                     local_symcount,
4291                                                     dynamic_symbols, dynstr);
4292       break;
4293 #endif
4294 #ifdef HAVE_TARGET_64_LITTLE
4295     case Parameters::TARGET_64_LITTLE:
4296       this->sized_create_version_sections<64, false>(versions, symtab,
4297                                                      local_symcount,
4298                                                      dynamic_symbols, dynstr);
4299       break;
4300 #endif
4301 #ifdef HAVE_TARGET_64_BIG
4302     case Parameters::TARGET_64_BIG:
4303       this->sized_create_version_sections<64, true>(versions, symtab,
4304                                                     local_symcount,
4305                                                     dynamic_symbols, dynstr);
4306       break;
4307 #endif
4308     default:
4309       gold_unreachable();
4310     }
4311 }
4312
4313 // Create the version sections, sized version.
4314
4315 template<int size, bool big_endian>
4316 void
4317 Layout::sized_create_version_sections(
4318     const Versions* versions,
4319     const Symbol_table* symtab,
4320     unsigned int local_symcount,
4321     const std::vector<Symbol*>& dynamic_symbols,
4322     const Output_section* dynstr)
4323 {
4324   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4325                                                      elfcpp::SHT_GNU_versym,
4326                                                      elfcpp::SHF_ALLOC,
4327                                                      false,
4328                                                      ORDER_DYNAMIC_LINKER,
4329                                                      false);
4330
4331   // Check for NULL since a linker script may discard this section.
4332   if (vsec != NULL)
4333     {
4334       unsigned char* vbuf;
4335       unsigned int vsize;
4336       versions->symbol_section_contents<size, big_endian>(symtab,
4337                                                           &this->dynpool_,
4338                                                           local_symcount,
4339                                                           dynamic_symbols,
4340                                                           &vbuf, &vsize);
4341
4342       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4343                                                                 "** versions");
4344
4345       vsec->add_output_section_data(vdata);
4346       vsec->set_entsize(2);
4347       vsec->set_link_section(this->dynsym_section_);
4348     }
4349
4350   Output_data_dynamic* const odyn = this->dynamic_data_;
4351   if (odyn != NULL && vsec != NULL)
4352     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4353
4354   if (versions->any_defs())
4355     {
4356       Output_section* vdsec;
4357       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4358                                           elfcpp::SHT_GNU_verdef,
4359                                           elfcpp::SHF_ALLOC,
4360                                           false, ORDER_DYNAMIC_LINKER, false);
4361
4362       if (vdsec != NULL)
4363         {
4364           unsigned char* vdbuf;
4365           unsigned int vdsize;
4366           unsigned int vdentries;
4367           versions->def_section_contents<size, big_endian>(&this->dynpool_,
4368                                                            &vdbuf, &vdsize,
4369                                                            &vdentries);
4370
4371           Output_section_data* vddata =
4372             new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4373
4374           vdsec->add_output_section_data(vddata);
4375           vdsec->set_link_section(dynstr);
4376           vdsec->set_info(vdentries);
4377
4378           if (odyn != NULL)
4379             {
4380               odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4381               odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4382             }
4383         }
4384     }
4385
4386   if (versions->any_needs())
4387     {
4388       Output_section* vnsec;
4389       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4390                                           elfcpp::SHT_GNU_verneed,
4391                                           elfcpp::SHF_ALLOC,
4392                                           false, ORDER_DYNAMIC_LINKER, false);
4393
4394       if (vnsec != NULL)
4395         {
4396           unsigned char* vnbuf;
4397           unsigned int vnsize;
4398           unsigned int vnentries;
4399           versions->need_section_contents<size, big_endian>(&this->dynpool_,
4400                                                             &vnbuf, &vnsize,
4401                                                             &vnentries);
4402
4403           Output_section_data* vndata =
4404             new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4405
4406           vnsec->add_output_section_data(vndata);
4407           vnsec->set_link_section(dynstr);
4408           vnsec->set_info(vnentries);
4409
4410           if (odyn != NULL)
4411             {
4412               odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4413               odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4414             }
4415         }
4416     }
4417 }
4418
4419 // Create the .interp section and PT_INTERP segment.
4420
4421 void
4422 Layout::create_interp(const Target* target)
4423 {
4424   gold_assert(this->interp_segment_ == NULL);
4425
4426   const char* interp = parameters->options().dynamic_linker();
4427   if (interp == NULL)
4428     {
4429       interp = target->dynamic_linker();
4430       gold_assert(interp != NULL);
4431     }
4432
4433   size_t len = strlen(interp) + 1;
4434
4435   Output_section_data* odata = new Output_data_const(interp, len, 1);
4436
4437   Output_section* osec = this->choose_output_section(NULL, ".interp",
4438                                                      elfcpp::SHT_PROGBITS,
4439                                                      elfcpp::SHF_ALLOC,
4440                                                      false, ORDER_INTERP,
4441                                                      false);
4442   if (osec != NULL)
4443     osec->add_output_section_data(odata);
4444 }
4445
4446 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4447 // called by the target-specific code.  This does nothing if not doing
4448 // a dynamic link.
4449
4450 // USE_REL is true for REL relocs rather than RELA relocs.
4451
4452 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4453
4454 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4455 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4456 // some targets have multiple reloc sections in PLT_REL.
4457
4458 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4459 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4460 // section.
4461
4462 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4463 // executable.
4464
4465 void
4466 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4467                                 const Output_data* plt_rel,
4468                                 const Output_data_reloc_generic* dyn_rel,
4469                                 bool add_debug, bool dynrel_includes_plt)
4470 {
4471   Output_data_dynamic* odyn = this->dynamic_data_;
4472   if (odyn == NULL)
4473     return;
4474
4475   if (plt_got != NULL && plt_got->output_section() != NULL)
4476     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4477
4478   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4479     {
4480       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4481       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4482       odyn->add_constant(elfcpp::DT_PLTREL,
4483                          use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4484     }
4485
4486   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4487       || (dynrel_includes_plt
4488           && plt_rel != NULL
4489           && plt_rel->output_section() != NULL))
4490     {
4491       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4492       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4493       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4494                                 (have_dyn_rel
4495                                  ? dyn_rel->output_section()
4496                                  : plt_rel->output_section()));
4497       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4498       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4499         odyn->add_section_size(size_tag,
4500                                dyn_rel->output_section(),
4501                                plt_rel->output_section());
4502       else if (have_dyn_rel)
4503         odyn->add_section_size(size_tag, dyn_rel->output_section());
4504       else
4505         odyn->add_section_size(size_tag, plt_rel->output_section());
4506       const int size = parameters->target().get_size();
4507       elfcpp::DT rel_tag;
4508       int rel_size;
4509       if (use_rel)
4510         {
4511           rel_tag = elfcpp::DT_RELENT;
4512           if (size == 32)
4513             rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4514           else if (size == 64)
4515             rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4516           else
4517             gold_unreachable();
4518         }
4519       else
4520         {
4521           rel_tag = elfcpp::DT_RELAENT;
4522           if (size == 32)
4523             rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4524           else if (size == 64)
4525             rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4526           else
4527             gold_unreachable();
4528         }
4529       odyn->add_constant(rel_tag, rel_size);
4530
4531       if (parameters->options().combreloc() && have_dyn_rel)
4532         {
4533           size_t c = dyn_rel->relative_reloc_count();
4534           if (c > 0)
4535             odyn->add_constant((use_rel
4536                                 ? elfcpp::DT_RELCOUNT
4537                                 : elfcpp::DT_RELACOUNT),
4538                                c);
4539         }
4540     }
4541
4542   if (add_debug && !parameters->options().shared())
4543     {
4544       // The value of the DT_DEBUG tag is filled in by the dynamic
4545       // linker at run time, and used by the debugger.
4546       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4547     }
4548 }
4549
4550 // Finish the .dynamic section and PT_DYNAMIC segment.
4551
4552 void
4553 Layout::finish_dynamic_section(const Input_objects* input_objects,
4554                                const Symbol_table* symtab)
4555 {
4556   if (!this->script_options_->saw_phdrs_clause()
4557       && this->dynamic_section_ != NULL)
4558     {
4559       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4560                                                        (elfcpp::PF_R
4561                                                         | elfcpp::PF_W));
4562       oseg->add_output_section_to_nonload(this->dynamic_section_,
4563                                           elfcpp::PF_R | elfcpp::PF_W);
4564     }
4565
4566   Output_data_dynamic* const odyn = this->dynamic_data_;
4567   if (odyn == NULL)
4568     return;
4569
4570   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4571        p != input_objects->dynobj_end();
4572        ++p)
4573     {
4574       if (!(*p)->is_needed() && (*p)->as_needed())
4575         {
4576           // This dynamic object was linked with --as-needed, but it
4577           // is not needed.
4578           continue;
4579         }
4580
4581       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4582     }
4583
4584   if (parameters->options().shared())
4585     {
4586       const char* soname = parameters->options().soname();
4587       if (soname != NULL)
4588         odyn->add_string(elfcpp::DT_SONAME, soname);
4589     }
4590
4591   Symbol* sym = symtab->lookup(parameters->options().init());
4592   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4593     odyn->add_symbol(elfcpp::DT_INIT, sym);
4594
4595   sym = symtab->lookup(parameters->options().fini());
4596   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4597     odyn->add_symbol(elfcpp::DT_FINI, sym);
4598
4599   // Look for .init_array, .preinit_array and .fini_array by checking
4600   // section types.
4601   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4602       p != this->section_list_.end();
4603       ++p)
4604     switch((*p)->type())
4605       {
4606       case elfcpp::SHT_FINI_ARRAY:
4607         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4608         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4609         break;
4610       case elfcpp::SHT_INIT_ARRAY:
4611         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4612         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4613         break;
4614       case elfcpp::SHT_PREINIT_ARRAY:
4615         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4616         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4617         break;
4618       default:
4619         break;
4620       }
4621
4622   // Add a DT_RPATH entry if needed.
4623   const General_options::Dir_list& rpath(parameters->options().rpath());
4624   if (!rpath.empty())
4625     {
4626       std::string rpath_val;
4627       for (General_options::Dir_list::const_iterator p = rpath.begin();
4628            p != rpath.end();
4629            ++p)
4630         {
4631           if (rpath_val.empty())
4632             rpath_val = p->name();
4633           else
4634             {
4635               // Eliminate duplicates.
4636               General_options::Dir_list::const_iterator q;
4637               for (q = rpath.begin(); q != p; ++q)
4638                 if (q->name() == p->name())
4639                   break;
4640               if (q == p)
4641                 {
4642                   rpath_val += ':';
4643                   rpath_val += p->name();
4644                 }
4645             }
4646         }
4647
4648       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4649       if (parameters->options().enable_new_dtags())
4650         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4651     }
4652
4653   // Look for text segments that have dynamic relocations.
4654   bool have_textrel = false;
4655   if (!this->script_options_->saw_sections_clause())
4656     {
4657       for (Segment_list::const_iterator p = this->segment_list_.begin();
4658            p != this->segment_list_.end();
4659            ++p)
4660         {
4661           if ((*p)->type() == elfcpp::PT_LOAD
4662               && ((*p)->flags() & elfcpp::PF_W) == 0
4663               && (*p)->has_dynamic_reloc())
4664             {
4665               have_textrel = true;
4666               break;
4667             }
4668         }
4669     }
4670   else
4671     {
4672       // We don't know the section -> segment mapping, so we are
4673       // conservative and just look for readonly sections with
4674       // relocations.  If those sections wind up in writable segments,
4675       // then we have created an unnecessary DT_TEXTREL entry.
4676       for (Section_list::const_iterator p = this->section_list_.begin();
4677            p != this->section_list_.end();
4678            ++p)
4679         {
4680           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4681               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4682               && (*p)->has_dynamic_reloc())
4683             {
4684               have_textrel = true;
4685               break;
4686             }
4687         }
4688     }
4689
4690   if (parameters->options().filter() != NULL)
4691     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4692   if (parameters->options().any_auxiliary())
4693     {
4694       for (options::String_set::const_iterator p =
4695              parameters->options().auxiliary_begin();
4696            p != parameters->options().auxiliary_end();
4697            ++p)
4698         odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4699     }
4700
4701   // Add a DT_FLAGS entry if necessary.
4702   unsigned int flags = 0;
4703   if (have_textrel)
4704     {
4705       // Add a DT_TEXTREL for compatibility with older loaders.
4706       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4707       flags |= elfcpp::DF_TEXTREL;
4708
4709       if (parameters->options().text())
4710         gold_error(_("read-only segment has dynamic relocations"));
4711       else if (parameters->options().warn_shared_textrel()
4712                && parameters->options().shared())
4713         gold_warning(_("shared library text segment is not shareable"));
4714     }
4715   if (parameters->options().shared() && this->has_static_tls())
4716     flags |= elfcpp::DF_STATIC_TLS;
4717   if (parameters->options().origin())
4718     flags |= elfcpp::DF_ORIGIN;
4719   if (parameters->options().Bsymbolic())
4720     {
4721       flags |= elfcpp::DF_SYMBOLIC;
4722       // Add DT_SYMBOLIC for compatibility with older loaders.
4723       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4724     }
4725   if (parameters->options().now())
4726     flags |= elfcpp::DF_BIND_NOW;
4727   if (flags != 0)
4728     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4729
4730   flags = 0;
4731   if (parameters->options().initfirst())
4732     flags |= elfcpp::DF_1_INITFIRST;
4733   if (parameters->options().interpose())
4734     flags |= elfcpp::DF_1_INTERPOSE;
4735   if (parameters->options().loadfltr())
4736     flags |= elfcpp::DF_1_LOADFLTR;
4737   if (parameters->options().nodefaultlib())
4738     flags |= elfcpp::DF_1_NODEFLIB;
4739   if (parameters->options().nodelete())
4740     flags |= elfcpp::DF_1_NODELETE;
4741   if (parameters->options().nodlopen())
4742     flags |= elfcpp::DF_1_NOOPEN;
4743   if (parameters->options().nodump())
4744     flags |= elfcpp::DF_1_NODUMP;
4745   if (!parameters->options().shared())
4746     flags &= ~(elfcpp::DF_1_INITFIRST
4747                | elfcpp::DF_1_NODELETE
4748                | elfcpp::DF_1_NOOPEN);
4749   if (parameters->options().origin())
4750     flags |= elfcpp::DF_1_ORIGIN;
4751   if (parameters->options().now())
4752     flags |= elfcpp::DF_1_NOW;
4753   if (parameters->options().Bgroup())
4754     flags |= elfcpp::DF_1_GROUP;
4755   if (flags != 0)
4756     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4757 }
4758
4759 // Set the size of the _DYNAMIC symbol table to be the size of the
4760 // dynamic data.
4761
4762 void
4763 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4764 {
4765   Output_data_dynamic* const odyn = this->dynamic_data_;
4766   if (odyn == NULL)
4767     return;
4768   odyn->finalize_data_size();
4769   if (this->dynamic_symbol_ == NULL)
4770     return;
4771   off_t data_size = odyn->data_size();
4772   const int size = parameters->target().get_size();
4773   if (size == 32)
4774     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4775   else if (size == 64)
4776     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4777   else
4778     gold_unreachable();
4779 }
4780
4781 // The mapping of input section name prefixes to output section names.
4782 // In some cases one prefix is itself a prefix of another prefix; in
4783 // such a case the longer prefix must come first.  These prefixes are
4784 // based on the GNU linker default ELF linker script.
4785
4786 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4787 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4788 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4789 {
4790   MAPPING_INIT(".text.", ".text"),
4791   MAPPING_INIT(".rodata.", ".rodata"),
4792   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4793   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4794   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4795   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4796   MAPPING_INIT(".data.", ".data"),
4797   MAPPING_INIT(".bss.", ".bss"),
4798   MAPPING_INIT(".tdata.", ".tdata"),
4799   MAPPING_INIT(".tbss.", ".tbss"),
4800   MAPPING_INIT(".init_array.", ".init_array"),
4801   MAPPING_INIT(".fini_array.", ".fini_array"),
4802   MAPPING_INIT(".sdata.", ".sdata"),
4803   MAPPING_INIT(".sbss.", ".sbss"),
4804   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4805   // differently depending on whether it is creating a shared library.
4806   MAPPING_INIT(".sdata2.", ".sdata"),
4807   MAPPING_INIT(".sbss2.", ".sbss"),
4808   MAPPING_INIT(".lrodata.", ".lrodata"),
4809   MAPPING_INIT(".ldata.", ".ldata"),
4810   MAPPING_INIT(".lbss.", ".lbss"),
4811   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4812   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4813   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4814   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4815   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4816   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4817   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4818   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4819   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4820   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4821   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4822   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4823   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4824   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4825   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4826   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4827   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4828   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4829   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4830   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4831   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4832 };
4833 #undef MAPPING_INIT
4834 #undef MAPPING_INIT_EXACT
4835
4836 const int Layout::section_name_mapping_count =
4837   (sizeof(Layout::section_name_mapping)
4838    / sizeof(Layout::section_name_mapping[0]));
4839
4840 // Choose the output section name to use given an input section name.
4841 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4842 // length of NAME.
4843
4844 const char*
4845 Layout::output_section_name(const Relobj* relobj, const char* name,
4846                             size_t* plen)
4847 {
4848   // gcc 4.3 generates the following sorts of section names when it
4849   // needs a section name specific to a function:
4850   //   .text.FN
4851   //   .rodata.FN
4852   //   .sdata2.FN
4853   //   .data.FN
4854   //   .data.rel.FN
4855   //   .data.rel.local.FN
4856   //   .data.rel.ro.FN
4857   //   .data.rel.ro.local.FN
4858   //   .sdata.FN
4859   //   .bss.FN
4860   //   .sbss.FN
4861   //   .tdata.FN
4862   //   .tbss.FN
4863
4864   // The GNU linker maps all of those to the part before the .FN,
4865   // except that .data.rel.local.FN is mapped to .data, and
4866   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4867   // beginning with .data.rel.ro.local are grouped together.
4868
4869   // For an anonymous namespace, the string FN can contain a '.'.
4870
4871   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4872   // GNU linker maps to .rodata.
4873
4874   // The .data.rel.ro sections are used with -z relro.  The sections
4875   // are recognized by name.  We use the same names that the GNU
4876   // linker does for these sections.
4877
4878   // It is hard to handle this in a principled way, so we don't even
4879   // try.  We use a table of mappings.  If the input section name is
4880   // not found in the table, we simply use it as the output section
4881   // name.
4882
4883   const Section_name_mapping* psnm = section_name_mapping;
4884   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4885     {
4886       if (psnm->fromlen > 0)
4887         {
4888           if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4889             {
4890               *plen = psnm->tolen;
4891               return psnm->to;
4892             }
4893         }
4894       else
4895         {
4896           if (strcmp(name, psnm->from) == 0)
4897             {
4898               *plen = psnm->tolen;
4899               return psnm->to;
4900             }
4901         }
4902     }
4903
4904   // As an additional complication, .ctors sections are output in
4905   // either .ctors or .init_array sections, and .dtors sections are
4906   // output in either .dtors or .fini_array sections.
4907   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4908     {
4909       if (parameters->options().ctors_in_init_array())
4910         {
4911           *plen = 11;
4912           return name[1] == 'c' ? ".init_array" : ".fini_array";
4913         }
4914       else
4915         {
4916           *plen = 6;
4917           return name[1] == 'c' ? ".ctors" : ".dtors";
4918         }
4919     }
4920   if (parameters->options().ctors_in_init_array()
4921       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4922     {
4923       // To make .init_array/.fini_array work with gcc we must exclude
4924       // .ctors and .dtors sections from the crtbegin and crtend
4925       // files.
4926       if (relobj == NULL
4927           || (!Layout::match_file_name(relobj, "crtbegin")
4928               && !Layout::match_file_name(relobj, "crtend")))
4929         {
4930           *plen = 11;
4931           return name[1] == 'c' ? ".init_array" : ".fini_array";
4932         }
4933     }
4934
4935   return name;
4936 }
4937
4938 // Return true if RELOBJ is an input file whose base name matches
4939 // FILE_NAME.  The base name must have an extension of ".o", and must
4940 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4941 // to match crtbegin.o as well as crtbeginS.o without getting confused
4942 // by other possibilities.  Overall matching the file name this way is
4943 // a dreadful hack, but the GNU linker does it in order to better
4944 // support gcc, and we need to be compatible.
4945
4946 bool
4947 Layout::match_file_name(const Relobj* relobj, const char* match)
4948 {
4949   const std::string& file_name(relobj->name());
4950   const char* base_name = lbasename(file_name.c_str());
4951   size_t match_len = strlen(match);
4952   if (strncmp(base_name, match, match_len) != 0)
4953     return false;
4954   size_t base_len = strlen(base_name);
4955   if (base_len != match_len + 2 && base_len != match_len + 3)
4956     return false;
4957   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4958 }
4959
4960 // Check if a comdat group or .gnu.linkonce section with the given
4961 // NAME is selected for the link.  If there is already a section,
4962 // *KEPT_SECTION is set to point to the existing section and the
4963 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4964 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4965 // *KEPT_SECTION is set to the internal copy and the function returns
4966 // true.
4967
4968 bool
4969 Layout::find_or_add_kept_section(const std::string& name,
4970                                  Relobj* object,
4971                                  unsigned int shndx,
4972                                  bool is_comdat,
4973                                  bool is_group_name,
4974                                  Kept_section** kept_section)
4975 {
4976   // It's normal to see a couple of entries here, for the x86 thunk
4977   // sections.  If we see more than a few, we're linking a C++
4978   // program, and we resize to get more space to minimize rehashing.
4979   if (this->signatures_.size() > 4
4980       && !this->resized_signatures_)
4981     {
4982       reserve_unordered_map(&this->signatures_,
4983                             this->number_of_input_files_ * 64);
4984       this->resized_signatures_ = true;
4985     }
4986
4987   Kept_section candidate;
4988   std::pair<Signatures::iterator, bool> ins =
4989     this->signatures_.insert(std::make_pair(name, candidate));
4990
4991   if (kept_section != NULL)
4992     *kept_section = &ins.first->second;
4993   if (ins.second)
4994     {
4995       // This is the first time we've seen this signature.
4996       ins.first->second.set_object(object);
4997       ins.first->second.set_shndx(shndx);
4998       if (is_comdat)
4999         ins.first->second.set_is_comdat();
5000       if (is_group_name)
5001         ins.first->second.set_is_group_name();
5002       return true;
5003     }
5004
5005   // We have already seen this signature.
5006
5007   if (ins.first->second.is_group_name())
5008     {
5009       // We've already seen a real section group with this signature.
5010       // If the kept group is from a plugin object, and we're in the
5011       // replacement phase, accept the new one as a replacement.
5012       if (ins.first->second.object() == NULL
5013           && parameters->options().plugins()->in_replacement_phase())
5014         {
5015           ins.first->second.set_object(object);
5016           ins.first->second.set_shndx(shndx);
5017           return true;
5018         }
5019       return false;
5020     }
5021   else if (is_group_name)
5022     {
5023       // This is a real section group, and we've already seen a
5024       // linkonce section with this signature.  Record that we've seen
5025       // a section group, and don't include this section group.
5026       ins.first->second.set_is_group_name();
5027       return false;
5028     }
5029   else
5030     {
5031       // We've already seen a linkonce section and this is a linkonce
5032       // section.  These don't block each other--this may be the same
5033       // symbol name with different section types.
5034       return true;
5035     }
5036 }
5037
5038 // Store the allocated sections into the section list.
5039
5040 void
5041 Layout::get_allocated_sections(Section_list* section_list) const
5042 {
5043   for (Section_list::const_iterator p = this->section_list_.begin();
5044        p != this->section_list_.end();
5045        ++p)
5046     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5047       section_list->push_back(*p);
5048 }
5049
5050 // Store the executable sections into the section list.
5051
5052 void
5053 Layout::get_executable_sections(Section_list* section_list) const
5054 {
5055   for (Section_list::const_iterator p = this->section_list_.begin();
5056        p != this->section_list_.end();
5057        ++p)
5058     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5059         == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5060       section_list->push_back(*p);
5061 }
5062
5063 // Create an output segment.
5064
5065 Output_segment*
5066 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5067 {
5068   gold_assert(!parameters->options().relocatable());
5069   Output_segment* oseg = new Output_segment(type, flags);
5070   this->segment_list_.push_back(oseg);
5071
5072   if (type == elfcpp::PT_TLS)
5073     this->tls_segment_ = oseg;
5074   else if (type == elfcpp::PT_GNU_RELRO)
5075     this->relro_segment_ = oseg;
5076   else if (type == elfcpp::PT_INTERP)
5077     this->interp_segment_ = oseg;
5078
5079   return oseg;
5080 }
5081
5082 // Return the file offset of the normal symbol table.
5083
5084 off_t
5085 Layout::symtab_section_offset() const
5086 {
5087   if (this->symtab_section_ != NULL)
5088     return this->symtab_section_->offset();
5089   return 0;
5090 }
5091
5092 // Return the section index of the normal symbol table.  It may have
5093 // been stripped by the -s/--strip-all option.
5094
5095 unsigned int
5096 Layout::symtab_section_shndx() const
5097 {
5098   if (this->symtab_section_ != NULL)
5099     return this->symtab_section_->out_shndx();
5100   return 0;
5101 }
5102
5103 // Write out the Output_sections.  Most won't have anything to write,
5104 // since most of the data will come from input sections which are
5105 // handled elsewhere.  But some Output_sections do have Output_data.
5106
5107 void
5108 Layout::write_output_sections(Output_file* of) const
5109 {
5110   for (Section_list::const_iterator p = this->section_list_.begin();
5111        p != this->section_list_.end();
5112        ++p)
5113     {
5114       if (!(*p)->after_input_sections())
5115         (*p)->write(of);
5116     }
5117 }
5118
5119 // Write out data not associated with a section or the symbol table.
5120
5121 void
5122 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5123 {
5124   if (!parameters->options().strip_all())
5125     {
5126       const Output_section* symtab_section = this->symtab_section_;
5127       for (Section_list::const_iterator p = this->section_list_.begin();
5128            p != this->section_list_.end();
5129            ++p)
5130         {
5131           if ((*p)->needs_symtab_index())
5132             {
5133               gold_assert(symtab_section != NULL);
5134               unsigned int index = (*p)->symtab_index();
5135               gold_assert(index > 0 && index != -1U);
5136               off_t off = (symtab_section->offset()
5137                            + index * symtab_section->entsize());
5138               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5139             }
5140         }
5141     }
5142
5143   const Output_section* dynsym_section = this->dynsym_section_;
5144   for (Section_list::const_iterator p = this->section_list_.begin();
5145        p != this->section_list_.end();
5146        ++p)
5147     {
5148       if ((*p)->needs_dynsym_index())
5149         {
5150           gold_assert(dynsym_section != NULL);
5151           unsigned int index = (*p)->dynsym_index();
5152           gold_assert(index > 0 && index != -1U);
5153           off_t off = (dynsym_section->offset()
5154                        + index * dynsym_section->entsize());
5155           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5156         }
5157     }
5158
5159   // Write out the Output_data which are not in an Output_section.
5160   for (Data_list::const_iterator p = this->special_output_list_.begin();
5161        p != this->special_output_list_.end();
5162        ++p)
5163     (*p)->write(of);
5164 }
5165
5166 // Write out the Output_sections which can only be written after the
5167 // input sections are complete.
5168
5169 void
5170 Layout::write_sections_after_input_sections(Output_file* of)
5171 {
5172   // Determine the final section offsets, and thus the final output
5173   // file size.  Note we finalize the .shstrab last, to allow the
5174   // after_input_section sections to modify their section-names before
5175   // writing.
5176   if (this->any_postprocessing_sections_)
5177     {
5178       off_t off = this->output_file_size_;
5179       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5180
5181       // Now that we've finalized the names, we can finalize the shstrab.
5182       off =
5183         this->set_section_offsets(off,
5184                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5185
5186       if (off > this->output_file_size_)
5187         {
5188           of->resize(off);
5189           this->output_file_size_ = off;
5190         }
5191     }
5192
5193   for (Section_list::const_iterator p = this->section_list_.begin();
5194        p != this->section_list_.end();
5195        ++p)
5196     {
5197       if ((*p)->after_input_sections())
5198         (*p)->write(of);
5199     }
5200
5201   this->section_headers_->write(of);
5202 }
5203
5204 // If the build ID requires computing a checksum, do so here, and
5205 // write it out.  We compute a checksum over the entire file because
5206 // that is simplest.
5207
5208 void
5209 Layout::write_build_id(Output_file* of) const
5210 {
5211   if (this->build_id_note_ == NULL)
5212     return;
5213
5214   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5215
5216   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5217                                           this->build_id_note_->data_size());
5218
5219   const char* style = parameters->options().build_id();
5220   if (strcmp(style, "sha1") == 0)
5221     {
5222       sha1_ctx ctx;
5223       sha1_init_ctx(&ctx);
5224       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5225       sha1_finish_ctx(&ctx, ov);
5226     }
5227   else if (strcmp(style, "md5") == 0)
5228     {
5229       md5_ctx ctx;
5230       md5_init_ctx(&ctx);
5231       md5_process_bytes(iv, this->output_file_size_, &ctx);
5232       md5_finish_ctx(&ctx, ov);
5233     }
5234   else
5235     gold_unreachable();
5236
5237   of->write_output_view(this->build_id_note_->offset(),
5238                         this->build_id_note_->data_size(),
5239                         ov);
5240
5241   of->free_input_view(0, this->output_file_size_, iv);
5242 }
5243
5244 // Write out a binary file.  This is called after the link is
5245 // complete.  IN is the temporary output file we used to generate the
5246 // ELF code.  We simply walk through the segments, read them from
5247 // their file offset in IN, and write them to their load address in
5248 // the output file.  FIXME: with a bit more work, we could support
5249 // S-records and/or Intel hex format here.
5250
5251 void
5252 Layout::write_binary(Output_file* in) const
5253 {
5254   gold_assert(parameters->options().oformat_enum()
5255               == General_options::OBJECT_FORMAT_BINARY);
5256
5257   // Get the size of the binary file.
5258   uint64_t max_load_address = 0;
5259   for (Segment_list::const_iterator p = this->segment_list_.begin();
5260        p != this->segment_list_.end();
5261        ++p)
5262     {
5263       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5264         {
5265           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5266           if (max_paddr > max_load_address)
5267             max_load_address = max_paddr;
5268         }
5269     }
5270
5271   Output_file out(parameters->options().output_file_name());
5272   out.open(max_load_address);
5273
5274   for (Segment_list::const_iterator p = this->segment_list_.begin();
5275        p != this->segment_list_.end();
5276        ++p)
5277     {
5278       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5279         {
5280           const unsigned char* vin = in->get_input_view((*p)->offset(),
5281                                                         (*p)->filesz());
5282           unsigned char* vout = out.get_output_view((*p)->paddr(),
5283                                                     (*p)->filesz());
5284           memcpy(vout, vin, (*p)->filesz());
5285           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5286           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5287         }
5288     }
5289
5290   out.close();
5291 }
5292
5293 // Print the output sections to the map file.
5294
5295 void
5296 Layout::print_to_mapfile(Mapfile* mapfile) const
5297 {
5298   for (Segment_list::const_iterator p = this->segment_list_.begin();
5299        p != this->segment_list_.end();
5300        ++p)
5301     (*p)->print_sections_to_mapfile(mapfile);
5302 }
5303
5304 // Print statistical information to stderr.  This is used for --stats.
5305
5306 void
5307 Layout::print_stats() const
5308 {
5309   this->namepool_.print_stats("section name pool");
5310   this->sympool_.print_stats("output symbol name pool");
5311   this->dynpool_.print_stats("dynamic name pool");
5312
5313   for (Section_list::const_iterator p = this->section_list_.begin();
5314        p != this->section_list_.end();
5315        ++p)
5316     (*p)->print_merge_stats();
5317 }
5318
5319 // Write_sections_task methods.
5320
5321 // We can always run this task.
5322
5323 Task_token*
5324 Write_sections_task::is_runnable()
5325 {
5326   return NULL;
5327 }
5328
5329 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5330 // when finished.
5331
5332 void
5333 Write_sections_task::locks(Task_locker* tl)
5334 {
5335   tl->add(this, this->output_sections_blocker_);
5336   tl->add(this, this->final_blocker_);
5337 }
5338
5339 // Run the task--write out the data.
5340
5341 void
5342 Write_sections_task::run(Workqueue*)
5343 {
5344   this->layout_->write_output_sections(this->of_);
5345 }
5346
5347 // Write_data_task methods.
5348
5349 // We can always run this task.
5350
5351 Task_token*
5352 Write_data_task::is_runnable()
5353 {
5354   return NULL;
5355 }
5356
5357 // We need to unlock FINAL_BLOCKER when finished.
5358
5359 void
5360 Write_data_task::locks(Task_locker* tl)
5361 {
5362   tl->add(this, this->final_blocker_);
5363 }
5364
5365 // Run the task--write out the data.
5366
5367 void
5368 Write_data_task::run(Workqueue*)
5369 {
5370   this->layout_->write_data(this->symtab_, this->of_);
5371 }
5372
5373 // Write_symbols_task methods.
5374
5375 // We can always run this task.
5376
5377 Task_token*
5378 Write_symbols_task::is_runnable()
5379 {
5380   return NULL;
5381 }
5382
5383 // We need to unlock FINAL_BLOCKER when finished.
5384
5385 void
5386 Write_symbols_task::locks(Task_locker* tl)
5387 {
5388   tl->add(this, this->final_blocker_);
5389 }
5390
5391 // Run the task--write out the symbols.
5392
5393 void
5394 Write_symbols_task::run(Workqueue*)
5395 {
5396   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5397                                this->layout_->symtab_xindex(),
5398                                this->layout_->dynsym_xindex(), this->of_);
5399 }
5400
5401 // Write_after_input_sections_task methods.
5402
5403 // We can only run this task after the input sections have completed.
5404
5405 Task_token*
5406 Write_after_input_sections_task::is_runnable()
5407 {
5408   if (this->input_sections_blocker_->is_blocked())
5409     return this->input_sections_blocker_;
5410   return NULL;
5411 }
5412
5413 // We need to unlock FINAL_BLOCKER when finished.
5414
5415 void
5416 Write_after_input_sections_task::locks(Task_locker* tl)
5417 {
5418   tl->add(this, this->final_blocker_);
5419 }
5420
5421 // Run the task.
5422
5423 void
5424 Write_after_input_sections_task::run(Workqueue*)
5425 {
5426   this->layout_->write_sections_after_input_sections(this->of_);
5427 }
5428
5429 // Close_task_runner methods.
5430
5431 // Run the task--close the file.
5432
5433 void
5434 Close_task_runner::run(Workqueue*, const Task*)
5435 {
5436   // If we need to compute a checksum for the BUILD if, we do so here.
5437   this->layout_->write_build_id(this->of_);
5438
5439   // If we've been asked to create a binary file, we do so here.
5440   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5441     this->layout_->write_binary(this->of_);
5442
5443   this->of_->close();
5444 }
5445
5446 // Instantiate the templates we need.  We could use the configure
5447 // script to restrict this to only the ones for implemented targets.
5448
5449 #ifdef HAVE_TARGET_32_LITTLE
5450 template
5451 Output_section*
5452 Layout::init_fixed_output_section<32, false>(
5453     const char* name,
5454     elfcpp::Shdr<32, false>& shdr);
5455 #endif
5456
5457 #ifdef HAVE_TARGET_32_BIG
5458 template
5459 Output_section*
5460 Layout::init_fixed_output_section<32, true>(
5461     const char* name,
5462     elfcpp::Shdr<32, true>& shdr);
5463 #endif
5464
5465 #ifdef HAVE_TARGET_64_LITTLE
5466 template
5467 Output_section*
5468 Layout::init_fixed_output_section<64, false>(
5469     const char* name,
5470     elfcpp::Shdr<64, false>& shdr);
5471 #endif
5472
5473 #ifdef HAVE_TARGET_64_BIG
5474 template
5475 Output_section*
5476 Layout::init_fixed_output_section<64, true>(
5477     const char* name,
5478     elfcpp::Shdr<64, true>& shdr);
5479 #endif
5480
5481 #ifdef HAVE_TARGET_32_LITTLE
5482 template
5483 Output_section*
5484 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5485                           unsigned int shndx,
5486                           const char* name,
5487                           const elfcpp::Shdr<32, false>& shdr,
5488                           unsigned int, unsigned int, off_t*);
5489 #endif
5490
5491 #ifdef HAVE_TARGET_32_BIG
5492 template
5493 Output_section*
5494 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5495                          unsigned int shndx,
5496                          const char* name,
5497                          const elfcpp::Shdr<32, true>& shdr,
5498                          unsigned int, unsigned int, off_t*);
5499 #endif
5500
5501 #ifdef HAVE_TARGET_64_LITTLE
5502 template
5503 Output_section*
5504 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5505                           unsigned int shndx,
5506                           const char* name,
5507                           const elfcpp::Shdr<64, false>& shdr,
5508                           unsigned int, unsigned int, off_t*);
5509 #endif
5510
5511 #ifdef HAVE_TARGET_64_BIG
5512 template
5513 Output_section*
5514 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5515                          unsigned int shndx,
5516                          const char* name,
5517                          const elfcpp::Shdr<64, true>& shdr,
5518                          unsigned int, unsigned int, off_t*);
5519 #endif
5520
5521 #ifdef HAVE_TARGET_32_LITTLE
5522 template
5523 Output_section*
5524 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5525                                 unsigned int reloc_shndx,
5526                                 const elfcpp::Shdr<32, false>& shdr,
5527                                 Output_section* data_section,
5528                                 Relocatable_relocs* rr);
5529 #endif
5530
5531 #ifdef HAVE_TARGET_32_BIG
5532 template
5533 Output_section*
5534 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5535                                unsigned int reloc_shndx,
5536                                const elfcpp::Shdr<32, true>& shdr,
5537                                Output_section* data_section,
5538                                Relocatable_relocs* rr);
5539 #endif
5540
5541 #ifdef HAVE_TARGET_64_LITTLE
5542 template
5543 Output_section*
5544 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5545                                 unsigned int reloc_shndx,
5546                                 const elfcpp::Shdr<64, false>& shdr,
5547                                 Output_section* data_section,
5548                                 Relocatable_relocs* rr);
5549 #endif
5550
5551 #ifdef HAVE_TARGET_64_BIG
5552 template
5553 Output_section*
5554 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5555                                unsigned int reloc_shndx,
5556                                const elfcpp::Shdr<64, true>& shdr,
5557                                Output_section* data_section,
5558                                Relocatable_relocs* rr);
5559 #endif
5560
5561 #ifdef HAVE_TARGET_32_LITTLE
5562 template
5563 void
5564 Layout::layout_group<32, false>(Symbol_table* symtab,
5565                                 Sized_relobj_file<32, false>* object,
5566                                 unsigned int,
5567                                 const char* group_section_name,
5568                                 const char* signature,
5569                                 const elfcpp::Shdr<32, false>& shdr,
5570                                 elfcpp::Elf_Word flags,
5571                                 std::vector<unsigned int>* shndxes);
5572 #endif
5573
5574 #ifdef HAVE_TARGET_32_BIG
5575 template
5576 void
5577 Layout::layout_group<32, true>(Symbol_table* symtab,
5578                                Sized_relobj_file<32, true>* object,
5579                                unsigned int,
5580                                const char* group_section_name,
5581                                const char* signature,
5582                                const elfcpp::Shdr<32, true>& shdr,
5583                                elfcpp::Elf_Word flags,
5584                                std::vector<unsigned int>* shndxes);
5585 #endif
5586
5587 #ifdef HAVE_TARGET_64_LITTLE
5588 template
5589 void
5590 Layout::layout_group<64, false>(Symbol_table* symtab,
5591                                 Sized_relobj_file<64, false>* object,
5592                                 unsigned int,
5593                                 const char* group_section_name,
5594                                 const char* signature,
5595                                 const elfcpp::Shdr<64, false>& shdr,
5596                                 elfcpp::Elf_Word flags,
5597                                 std::vector<unsigned int>* shndxes);
5598 #endif
5599
5600 #ifdef HAVE_TARGET_64_BIG
5601 template
5602 void
5603 Layout::layout_group<64, true>(Symbol_table* symtab,
5604                                Sized_relobj_file<64, true>* object,
5605                                unsigned int,
5606                                const char* group_section_name,
5607                                const char* signature,
5608                                const elfcpp::Shdr<64, true>& shdr,
5609                                elfcpp::Elf_Word flags,
5610                                std::vector<unsigned int>* shndxes);
5611 #endif
5612
5613 #ifdef HAVE_TARGET_32_LITTLE
5614 template
5615 Output_section*
5616 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5617                                    const unsigned char* symbols,
5618                                    off_t symbols_size,
5619                                    const unsigned char* symbol_names,
5620                                    off_t symbol_names_size,
5621                                    unsigned int shndx,
5622                                    const elfcpp::Shdr<32, false>& shdr,
5623                                    unsigned int reloc_shndx,
5624                                    unsigned int reloc_type,
5625                                    off_t* off);
5626 #endif
5627
5628 #ifdef HAVE_TARGET_32_BIG
5629 template
5630 Output_section*
5631 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5632                                   const unsigned char* symbols,
5633                                   off_t symbols_size,
5634                                   const unsigned char* symbol_names,
5635                                   off_t symbol_names_size,
5636                                   unsigned int shndx,
5637                                   const elfcpp::Shdr<32, true>& shdr,
5638                                   unsigned int reloc_shndx,
5639                                   unsigned int reloc_type,
5640                                   off_t* off);
5641 #endif
5642
5643 #ifdef HAVE_TARGET_64_LITTLE
5644 template
5645 Output_section*
5646 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5647                                    const unsigned char* symbols,
5648                                    off_t symbols_size,
5649                                    const unsigned char* symbol_names,
5650                                    off_t symbol_names_size,
5651                                    unsigned int shndx,
5652                                    const elfcpp::Shdr<64, false>& shdr,
5653                                    unsigned int reloc_shndx,
5654                                    unsigned int reloc_type,
5655                                    off_t* off);
5656 #endif
5657
5658 #ifdef HAVE_TARGET_64_BIG
5659 template
5660 Output_section*
5661 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5662                                   const unsigned char* symbols,
5663                                   off_t symbols_size,
5664                                   const unsigned char* symbol_names,
5665                                   off_t symbol_names_size,
5666                                   unsigned int shndx,
5667                                   const elfcpp::Shdr<64, true>& shdr,
5668                                   unsigned int reloc_shndx,
5669                                   unsigned int reloc_type,
5670                                   off_t* off);
5671 #endif
5672
5673 #ifdef HAVE_TARGET_32_LITTLE
5674 template
5675 void
5676 Layout::add_to_gdb_index(bool is_type_unit,
5677                          Sized_relobj<32, false>* object,
5678                          const unsigned char* symbols,
5679                          off_t symbols_size,
5680                          unsigned int shndx,
5681                          unsigned int reloc_shndx,
5682                          unsigned int reloc_type);
5683 #endif
5684
5685 #ifdef HAVE_TARGET_32_BIG
5686 template
5687 void
5688 Layout::add_to_gdb_index(bool is_type_unit,
5689                          Sized_relobj<32, true>* object,
5690                          const unsigned char* symbols,
5691                          off_t symbols_size,
5692                          unsigned int shndx,
5693                          unsigned int reloc_shndx,
5694                          unsigned int reloc_type);
5695 #endif
5696
5697 #ifdef HAVE_TARGET_64_LITTLE
5698 template
5699 void
5700 Layout::add_to_gdb_index(bool is_type_unit,
5701                          Sized_relobj<64, false>* object,
5702                          const unsigned char* symbols,
5703                          off_t symbols_size,
5704                          unsigned int shndx,
5705                          unsigned int reloc_shndx,
5706                          unsigned int reloc_type);
5707 #endif
5708
5709 #ifdef HAVE_TARGET_64_BIG
5710 template
5711 void
5712 Layout::add_to_gdb_index(bool is_type_unit,
5713                          Sized_relobj<64, true>* object,
5714                          const unsigned char* symbols,
5715                          off_t symbols_size,
5716                          unsigned int shndx,
5717                          unsigned int reloc_shndx,
5718                          unsigned int reloc_type);
5719 #endif
5720
5721 } // End namespace gold.